WO2022007397A1 - 一种风冷永磁滚筒 - Google Patents

一种风冷永磁滚筒 Download PDF

Info

Publication number
WO2022007397A1
WO2022007397A1 PCT/CN2021/075063 CN2021075063W WO2022007397A1 WO 2022007397 A1 WO2022007397 A1 WO 2022007397A1 CN 2021075063 W CN2021075063 W CN 2021075063W WO 2022007397 A1 WO2022007397 A1 WO 2022007397A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cylinder
heat dissipation
wall
air
installation groove
Prior art date
Application number
PCT/CN2021/075063
Other languages
English (en)
French (fr)
Inventor
张春晖
李文龙
Original Assignee
江苏嘉轩智能工业科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏嘉轩智能工业科技股份有限公司 filed Critical 江苏嘉轩智能工业科技股份有限公司
Publication of WO2022007397A1 publication Critical patent/WO2022007397A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer

Definitions

  • the invention relates to the technical field of electric heat dissipation, and more particularly, to an air-cooled permanent magnet drum.
  • the air cooling of the stator is mainly based on the welding heat sink on the inner wall of the stator. Due to the inner wall of the stator ring, the welding torch is often not easy. Therefore, in order to allow the welding torch to enter, the distance between the heat sinks will increase accordingly, so the number of welded heat sinks is limited, and the actual number is often less than the ideal number, so that a good heat dissipation effect cannot be achieved.
  • CN108539889A discloses a permanent magnet synchronous motor rotor air-cooling structure, which adopts air guide channels evenly distributed inside the motor housing and outside the water channel of the motor housing along the circumferential direction. 6 fins are used to dissipate heat to the inner rotor motor. The number of fins is small and the heat dissipation effect is poor.
  • the purpose of the present invention is to solve the above-mentioned problems, and to provide an air-cooled permanent magnet drum with a non-welded, multi-surface heat dissipation structure.
  • the provided technical solution is an air-cooled permanent magnet drum, which includes a stator assembly, and the stator assembly includes a heat dissipation structure 2; , the notch of the mounting groove 7 is deformed to be in pressure contact with the side surface of the heat sink 3 .
  • the shape of the heat sink 3 can be a wave shape, a "V"-like shape, or a tooth shape; the above shape is conducive to increasing the heat dissipation area, and the wave shape is conducive to ventilation.
  • the heat sink 3 and the installation groove 7 are installed by riveting, one end surface of the heat sink 3 is in contact with the bottom surface of the installation groove 7 and the heat sink 3 and the side surface of the installation groove 7 are in contact with each other .
  • an indentation area 12 is formed on the inner wall of the steel cylinder 4 near the installation groove 7 .
  • an indentation area 12 is formed near the notch of the installation groove 7, so that the installation groove 7 is transformed into a shape similar to a dovetail groove with a large bottom and a small notch. , so as to fasten the heat sink 3 firmly.
  • the thermal conductive silicone grease 8 is injected into the installation groove 7, and the thermal conductive silicone grease 8 is injected and filled into the installation groove 7 first, and then the riveting tooling is performed. Air conducts heat better.
  • the installation groove 7 is a square, a trapezoid, a spherical shape or a combination of the above shapes.
  • the depth of the installation groove 7 is greater than 4 mm and less than one third of the wall thickness of the steel cylinder 4 . If the depth of the installation groove 7 is too deep, it will affect the strength of the steel cylinder 4 , and if the installation depth is too shallow, it is not conducive to the installation strength and stability of the heat sink 3 .
  • the installation grooves 7 are evenly distributed on the inner wall of the steel cylinder 4 according to the circumference.
  • the steel cylinder 4 is one-piece or split.
  • the split type is a fan-shaped structure, and a plurality of the fan-shaped structures are formed around the steel cylinder 4 .
  • the heat dissipation structure 2 includes rib plates 5 , and a plurality of the rib plates 5 are fixedly connected to the inner wall of the steel cylinder 4 .
  • the stator assembly includes a stator punch 1, an air guide hood 10 and a central shaft 6, the stator punch 1 is connected to the steel cylinder 4 by shrink-fitting, and the stator punch 1 is provided with uniform distribution along the circumference. groove.
  • a plurality of the ribs 5 are fixedly connected to the central shaft 6 .
  • the heat dissipation structure of the present invention is mainly used for the stator assembly, and the inner wall of the steel cylinder is provided with a mounting groove for riveting the heat sink, which can reduce the use of welding materials and welding torches during welding, and is environmentally friendly and safe.
  • Multiple heat sinks can be attached to the inner wall of the steel cylinder.
  • the inner wall of the steel cylinder and the heat sink serve as the heat dissipation surface.
  • the number of heat sinks can be increased according to the actual heat dissipation demand, and the heat dissipation area is increased, which directly improves the heat dissipation efficiency of the motor.
  • Fig. 1 is the installation structure diagram of the heat sink of the prior art
  • FIG. 2 is a heat dissipation structure diagram provided by an embodiment of the present invention.
  • FIG. 3 is a structural diagram of a stator assembly provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an installation groove provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of installing a heat sink according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an indentation area formed by installing a heat sink according to an embodiment of the present invention.
  • Stator punch 1 heat dissipation structure 2
  • heat sink 3 steel cylinder 4
  • rib 5 central axis 6
  • installation slot 7 thermal grease 8
  • rivet head 9 air guide 10
  • Figure 1 shows the installation structure of the heat sink in the prior art.
  • the heat sink is evenly distributed and welded on the inner wall of the stator steel cylinder.
  • the distance L between the heat sink and the heat sink should be considered that the actual welding torch should not be too small.
  • the number of slices will be greatly limited.
  • Embodiment 1 This embodiment provides an integrated steel cylinder air-cooled permanent magnet drum.
  • the heat dissipation structure 2 includes a steel cylinder 4 , a square cooling fin 3 and a rib 5 , and a plurality of ribs 5 are fixedly connected to the inner wall of the steel cylinder 4 .
  • the inner wall of the steel cylinder 4 is provided with a square installation groove 7 .
  • the structure of the installation groove 7 is shown in FIG. 4 .
  • the steel cylinder 4 is a one-piece cylindrical structure, and the installation grooves 7 are evenly distributed on the inner wall of the steel cylinder 4 according to the circumference.
  • FIG. 5 which is a schematic diagram of the installation of the heat sink 3 provided in Embodiment 1 of the present invention
  • the thermal conductive silicone grease 8 is injected into the installation groove 7
  • the thermal conductive silicone grease 8 is first injected into the installation groove 7
  • the groove 7 and the square heat sink are installed. 3.
  • the riveting tooling is carried out through the riveting head 9.
  • the riveting tooling makes a gap between the installation groove 7 and the square heat sink 3.
  • the gap formed by the riveting tooling can be sealed, so as to eliminate the air and conduct better heat conduction.
  • the rivet head 9 has a groove that fits the shape of the heat sink 3.
  • an indentation is formed on the inner wall of the steel cylinder 4 near the notch of the installation groove 7.
  • the area 12, as shown in FIG. 6, forms an arc-shaped indentation, so that the mounting groove 7 is transformed into a shape similar to a dovetail groove with a large bottom and a small groove, so as to firmly fasten the heat sink 3.
  • the depth of the installation groove 7 is 6 mm, which is a quarter of the wall thickness of the steel cylinder 4 .
  • the stator assembly includes a stator punch 1 , an air guide cover 10 and a central shaft 6 , and a plurality of ribs 5 are fixedly connected to the central shaft 6 .
  • the stator punch 1 is connected with the steel cylinder 4 by shrink-fitting, and the stator punch 1 is provided with grooves evenly distributed along the circumference.
  • the air guide hood 10 is used to connect the cooling fan, the air-cooled fixing seat, the stator assembly and the heat dissipation structure 2 together, and the air guide hood is composed of two annular end faces connected by a circumferential surface.
  • a rotor assembly is sleeved around the stator assembly, both sides of the rotor assembly are connected to the end cover assembly through bolts, the end cover assembly is fixed on the bearing seats on both sides of the stator assembly through bearings, and the cable leads are threaded through the central shaft 6
  • the holes are introduced into the stator assembly, and the input current generates a magnetic field, which causes the rotor assembly to rotate.
  • the heat sink 3 in this embodiment is riveted after the notch is installed, which can reduce the use of a large amount of welding materials and welding man-hours, which is not only environmentally friendly but also reduces material and labor costs.
  • a plurality of heat sinks can be attached to the inner wall of the cylinder according to actual needs, which improves the heat dissipation effect.
  • Embodiment 2 This embodiment provides a split steel cylinder air-cooled permanent magnet drum.
  • the stator punch 1 is assembled on the outer circle of the heat dissipation structure 2 of the air-cooled drum.
  • the heat dissipation structure 2 is mainly composed of a steel cylinder 4, a heat sink 3 and a fixed rib 5; and grooves, the bosses and grooves are arranged at intervals, the inner wall of the stator punch 1 has a process slot 11 for punching welding, the stator punch 1 and the steel cylinder 4 are heat-sleeved together, and the radiating fins 3 are evenly distributed on the steel cylinder 4.
  • the inner wall, the inner wall of the steel cylinder 4 and the fixed rib 5 are welded, and the fixed rib 5 is welded with the central shaft 6 to fix the steel cylinder 4 on the intermediate shaft 6 .
  • the steel cylinder 4 is cylindrical, and the fixed rib plate 5 is divided into six equal parts, and the inner wall of each equal part is provided with five square installation grooves 7 evenly distributed around the circumference.
  • heat sinks 3 are installed on the inner wall of the steel cylinder 4 through the installation grooves 7 , and the gaps of the installation grooves 7 are filled with thermal conductive silicone grease 8 .
  • the installation groove 7 is embedded in the heat sink 3, under the pressing action of the rivet head 9, the notch is transformed into a form similar to a dovetail groove, which is large at the top and small at the bottom, so that the heat sink 3 is firmly fastened.
  • the steel cylinder 4 is of a split type, and the split type is a fan-shaped structure, and a plurality of the fan-shaped structures are surrounded to form the steel cylinder 4 .
  • heat sinks 3 attached to the inner wall of the steel cylinder 4.
  • the inner wall of the steel cylinder 4 and the heat sink 3 are used as the heat dissipation surface, and the heat sink 3 is riveted after the notch installation.
  • the number of heat sinks 3 can be arbitrarily increased according to the actual heat dissipation requirements.
  • the split type is easier to install or weld the cooling fins 3, the fixed rib 5 and the split type steel cylinder 4 are welded more firmly, and the strength stability is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明涉及电动散热技术领域,公开了一种风冷永磁滚筒,包括:定子组件和散热结构(2);散热结构(2)包括钢筒(4)和散热片(3),其中钢筒(4)的内壁开设安装槽(7),所述安装槽的槽口变形以与散热片(3)侧面压力接触。本发明的散热结构主要用于定子组件,钢筒内壁设安装槽进行散热片的铆接,可以减少焊接材料及焊接时焊枪的使用,环保安全;不使用焊枪即无需考虑散热片的间距问题,使得钢筒的内壁上可以附有多块散热片,钢筒的内壁和散热片作为散热面,散热片均布数量可依据实际散热需求增加,散热面积增大从而直接提高了电机散热效率。

Description

一种风冷永磁滚筒 技术领域
本发明涉及电动散热技术领域,更具体地说,涉及一种风冷永磁滚筒。
背景技术
电机散热结构形式多样,主要由水冷和风冷两种形式但是对于外转子电机的定子风冷散热主要还是以定子内壁焊接散热片为主,由于在定子圆环内壁,进行焊接时焊枪往往不容易伸进去,因此往往为了焊枪能够进入,散热片间距会相应增大,从而焊接散热片的数量受到限制,实际数量往往要比理想数量要少,从而不能达到很好的散热效果。
CN108539889A中公布了一种永磁同步电机转子风冷结构,其采用将导气通道沿圆周方向均匀分布于电机壳体内部以及电机壳体水道的外侧,在导气通道内部布置有2~6个散热片,用于对内转子电机的散热,散热片数量少,散热效果差。
发明内容
本发明的目的是解决上述提出的问题,提供一种非焊接的、多散热面散热结构的风冷永磁滚筒。
提供的技术方案为一种风冷永磁滚筒,包括定子组件,所述定子组件包括散热结构2;所述散热结构2包括钢筒4和散热片3,其中钢筒4的内壁开设安装槽7,所述安装槽7的槽口变形以与散热片3侧面压力接触。散热片3的形状可以为波浪形、类“V”字形、齿形;上述形状有利于增大散热面积,且波浪形有利于通风。
优选的,所述散热片3与所述安装槽7通过铆接安装,所述散热片3的一端面与所述安装槽7底面接触且所述散热片3与所述安装槽7的侧面相互接触。
优选的,安装槽7附近的钢筒4内壁形成压痕区域12。安装槽7在嵌入散热片3后,在铆接工装的挤压作用下,在安装槽7的槽口附近形成压痕区域12,使得安装槽7变形成底部大、槽口小的类似燕尾槽形式,从而把散热片3牢牢紧固。
优选的,所述安装槽7内注入导热硅脂8,先在安装槽7内注入填充导热硅脂8,然后进行铆接工装,导热硅脂8凝固后能够将铆接工装形成的缝隙密封,从而排除空气更好的进行导热。
优选的,所述安装槽7为方形或梯形或类球形或以上形状的结合。
优选的,所述安装槽7深度大于4mm且小于所述钢筒4壁厚的三分之一。安装槽7深度过深,对钢筒4的强度有影响,而安装深度过浅,不利于散热片3的安装强度和稳定性。
优选的,所述安装槽7按圆周均匀分布在所述钢筒4的内壁。
优选的,所述钢筒4为一体式或分截式。
优选的,所述分截式为扇形结构,多个所述扇形结构围绕形成所述钢筒4。
优选的,所述散热结构2包括筋板5,多个所述筋板5与所述钢筒4的内壁固定连接。
优选的,所述定子组件包括定子冲片1、导风罩10和中心轴6,所述定子冲片1与所述钢筒4热套连接,所述定子冲片1设有沿圆周均匀分布的凹槽。
优选的,多个所述筋板5与所述中心轴6固定连接。
本发明的有益效果是:
本发明的散热结构主要用于定子组件,钢筒内壁设安装槽进行散热片的铆接,可以减少焊接材料及焊接时焊枪的使用,环保安全,不使用焊枪即无需考虑散热片的间距问题,使得钢筒的内壁上可以附有多块散热片,钢筒的内壁和散热片作为散热面,散热片均布数量可依据实际散热需求增加,散热面积增大从而直接提高了电机散热效率。
附图说明
图1为现有技术的散热片安装结构图;
图2为本发明实施例提供的散热结构图;
图3为本发明实施例提供的定子组件结构图;
图4为本发明实施例提供的安装槽示意图;
图5为本发明实施例提供的散热片安装示意图;
图6为本发明实施例提供的散热片安装形成压痕区域示意图。
定子冲片1,散热结构2,散热片3,钢筒4,筋板5,中心轴6,安装槽7,导热硅脂8,铆头9,导风罩10,工艺槽11,压痕区域12。
具体实施方式
下面将参照附图更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包 含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
如图1所示为现有技术散热片安装结构,散热片均匀分布焊接于定子钢筒内壁,散热片与散热片之间距离L需考虑实际焊枪不能过小,L需在30mm以上,因此散热片数量会受到大幅度限制。
实施例1 本实施例提供一种一体式钢筒风冷永磁滚筒。
如图2所示,散热结构2包括钢筒4、方形散热片3和筋板5,多个筋板5与所述钢筒4的内壁固定连接。其中钢筒4的内壁开设方形的安装槽7,安装槽7的结构如图4所示,所述方形的安装槽7的槽口变形以与散热片3侧面压力接触。钢筒4为一体式圆筒结构,安装槽7按圆周均匀分布在所述钢筒4的内壁,安装槽7的深度h在4mm以上且小于等于钢筒4壁厚H的1/3。
如图5所示,为本发明实施例1提供的散热片3安装示意图,安装槽7内注入导热硅脂8,先在安装槽7内注入导热硅脂8,然后安装槽7和方形散热片3通过铆头9进行铆接工装,铆接工装使得安装槽7和方形散热片3之间有缝隙,导热硅脂8凝固后能够将铆接工装形成的缝隙密封,从而排除空气更好的进行导热。
铆头9具有与散热片3形状契合的槽,将铆头9推至钢筒内壁时,由于铆头9的挤压作用,在靠近安装槽7槽口位置的钢筒4内壁上形成压痕区域12,如图6所示,形成圆弧型的压痕,使得安装槽7变形成底部大、槽口小的类似燕尾槽形式,从而把散热片3牢牢紧固。安装槽7深度为6mm,为钢筒4壁厚的四分之一,此安装深度既有利于钢筒4保持强度,同时对散热片3的安装强度和稳定性无影响。
如图3所示,定子组件包括定子冲片1、导风罩10和中心轴6,多个筋板5与中心轴6固定连接。定子冲片1与钢筒4热套接连,定子冲片1设有沿圆周均匀分布的凹槽。导风罩10用于将冷却风机、风冷固定座以及定子组件和散热结构2连接在一起,导风罩由两个环形端面通过圆周面连接组成。
在优选的实施例中,定子组件外围套设转子组件,转子组件两侧通过螺栓与端盖组件相连,端盖组件通过轴承固定于定子组件两侧的轴承座上,电缆引线通过中心轴6穿线孔引入定子组件,输入电流产生磁场,从而使转子组件进行转动。
本实施例的散热片3为槽口安装后铆接方式,可以减少大量焊接材料及焊接工时焊枪的使用,既环保又减少材料和人力成本,不使用焊枪即无需考虑散热片的间距问题,使得钢筒 的内壁上可以根据实际需求附有多块散热片,提高了散热效果。
实施例2 本实施例提供一种分截式钢筒风冷永磁滚筒。
定子冲片1装配在风冷滚筒的散热结构2外圆、散热结构2主要由钢筒4、散热片3和固定作用的筋板5组成;定子冲片1冲压而成,外周布有凸台和凹槽,凸台与凹槽间隔排列,定子冲片1的内壁具有冲片焊接用工艺槽11,定子冲片1与钢筒4热套在一起,散热片3均匀分布在钢筒4的内壁,钢筒4内壁和固定作用的筋板5焊接,固定作用的筋板5与中心轴6焊接,将钢筒4固定于中间轴6上。
钢筒4为圆筒状,被固定作用的筋板5分割成六等分,每等分内壁设有圆周均布的5个方形安装槽7。
若干散热片3通过安装槽7安装在钢筒4内壁,安装槽7间隙内填满导热硅脂8。安装槽7在嵌入散热片3后在铆头9的挤压作用下,槽口变形成上大下小的类似燕尾槽形式,从而把散热片3牢牢紧固。
在优选的实施例中,钢筒4为分截式,分截式为扇形结构,多个所述扇形结构围绕形成所述钢筒4。
钢筒4内壁上附有多块散热片3,钢筒4内壁和散热片3作为散热面,且散热片3为槽口安装后铆接方式,散热片3均布数量可依据实际散热需求任意增加,分截式相对整体钢筒4更易于安装或焊接散热片3,固定作用的筋板5与分截式钢筒4焊接更牢靠,强度稳定性更好。
以上所述的具体实施例,对本发明的目的,技术方案和有益效果进行了进一步详细说明,此外,应当理解,虽然本说明书按照实施方式加以描述,但上述实施例是示例性的,并不用于限定本发明的保护范围,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下对上述实施例进行的任何变化、修改、替换和变型,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种风冷永磁滚筒,包括定子组件,其特征在于:所述定子组件包括散热结构(2);所述散热结构(2)包括钢筒(4)和散热片(3),其中钢筒(4)的内壁开设安装槽(7),所述安装槽(7)的槽口变形以与所述散热片(3)侧面压力接触以减小散热片间距,增大散热面积;所述散热片(3)的形状为波浪形以增大散热面积;所述安装槽(7)变形成底部大、槽口小的类似燕尾槽形式;所述钢筒(4)为分截式,所述分截式为扇形结构,多个所述扇形结构围绕形成所述钢筒(4);
    所述安装槽(7)附近的钢筒(4)内壁形成压痕区域(12);
    所述安装槽(7)内注入导热硅脂(8);
    所述安装槽(7)深度大于4mm且小于所述钢筒(4)壁厚的三分之一;
    所述散热结构(2)包括筋板(5),多个所述筋板(5)与所述钢筒(4)的内壁固定连接。
  2. 如权利要求1所述的风冷永磁滚筒,其特征在于,所述散热片(3)与所述安装槽(7)通过铆接安装,所述散热片(3)的一端面与所述安装槽(7)底面接触且所述散热片(3)与所述安装槽(7)的侧面相互接触。
  3. 如权利要求1所述的风冷永磁滚筒,其特征在于,所述安装槽(7)选自方形或梯形或类球形或以上形状的结合。
  4. 如权利要求3所述的风冷永磁滚筒,其特征在于,所述安装槽(7)按圆周均匀分布在所述钢筒(4)的内壁。
  5. 如权利要求4所述的风冷永磁滚筒,其特征在于,所述定子组件包括定子冲片(1)、导风罩(10)和中心轴(6),所述定子冲片(1)与所述钢筒(4)热套连接,所述定子冲片(1)设有沿圆周均匀分布的凹槽。
  6. 如权利要求5所述的风冷永磁滚筒,其特征在于,多个所述筋板(5)与所述中心轴(6)固定连接。
PCT/CN2021/075063 2020-07-07 2021-02-03 一种风冷永磁滚筒 WO2022007397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010644357.9A CN111541317B (zh) 2020-07-07 2020-07-07 一种风冷永磁滚筒
CN202010644357.9 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007397A1 true WO2022007397A1 (zh) 2022-01-13

Family

ID=71979798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075063 WO2022007397A1 (zh) 2020-07-07 2021-02-03 一种风冷永磁滚筒

Country Status (2)

Country Link
CN (1) CN111541317B (zh)
WO (1) WO2022007397A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541317B (zh) * 2020-07-07 2021-02-26 江苏嘉轩智能工业科技股份有限公司 一种风冷永磁滚筒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190229595A1 (en) * 2018-01-19 2019-07-25 Hamilton Sundstrand Corporation Slot cooling fins in electrical machines
CN110284142A (zh) * 2019-07-24 2019-09-27 东莞智富五金制品有限公司 一种改进铆嵌结构的铝散热器及铆固方法
CN111130266A (zh) * 2020-04-01 2020-05-08 江苏嘉轩智能工业科技股份有限公司 一种外转子电动滚筒的风冷结构
CN111372425A (zh) * 2020-03-12 2020-07-03 苏州永腾电子制品有限公司 一种磁吸式风冷散热器
CN111541317A (zh) * 2020-07-07 2020-08-14 江苏嘉轩智能工业科技股份有限公司 一种风冷永磁滚筒

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204545838U (zh) * 2015-04-16 2015-08-12 深圳市三维机电设备有限公司 一种散热片自动化生产装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190229595A1 (en) * 2018-01-19 2019-07-25 Hamilton Sundstrand Corporation Slot cooling fins in electrical machines
CN110284142A (zh) * 2019-07-24 2019-09-27 东莞智富五金制品有限公司 一种改进铆嵌结构的铝散热器及铆固方法
CN111372425A (zh) * 2020-03-12 2020-07-03 苏州永腾电子制品有限公司 一种磁吸式风冷散热器
CN111130266A (zh) * 2020-04-01 2020-05-08 江苏嘉轩智能工业科技股份有限公司 一种外转子电动滚筒的风冷结构
CN111541317A (zh) * 2020-07-07 2020-08-14 江苏嘉轩智能工业科技股份有限公司 一种风冷永磁滚筒

Also Published As

Publication number Publication date
CN111541317B (zh) 2021-02-26
CN111541317A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2015198961A1 (ja) 電動機の固定子及び回転電機の冷却構造
WO2022007397A1 (zh) 一种风冷永磁滚筒
JP2017011946A (ja) 回転電機、並びに回転電機の冷却システム
JP7122200B2 (ja) 外転型回転電機および巻上機
US20190040871A1 (en) Fan having an impeller including a resin portion and a metal plate
CN211791143U (zh) 一种铁芯的冷却增强结构与一种轴向磁场电机
US11664689B2 (en) Electrical machines
CN210958000U (zh) 一种电动车用高速电机壳
RU2809533C1 (ru) Барабан с постоянными магнитами с воздушным охлаждением
CN211046636U (zh) 一种中大型电机
JP2001103704A (ja) 回転電機
KR20140066880A (ko) 하이브리드 차량용 구동모터 방열장치
CN215646469U (zh) 具有散热结构的电机外壳及双定子盘式电机
CN220457203U (zh) 一种电机用绝缘端盖
CN215071839U (zh) 一种工业风扇散热电机
CN215071929U (zh) 一种冷却电机
CN219612469U (zh) 应用于杂波吸收器散热的散热结构与杂波吸收器组件
CN216312871U (zh) 散热电机轴及电机
CN217355329U (zh) 一种防龟裂合成铸铁制动鼓
CN220874323U (zh) 一种电机内散热机壳结构
CN211018494U (zh) 冷却效果好的异步电动机
CN214698875U (zh) 一种高效散热的汽车离合器压盘
CN220816355U (zh) 一种制动盘及汽车
CN210599910U (zh) 一种隔热法兰盘
CN218387063U (zh) 电机及其轴承套

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2023106545

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 21836838

Country of ref document: EP

Kind code of ref document: A1