WO2022007323A1 - 活塞、活塞制造装置及活塞制作方法 - Google Patents

活塞、活塞制造装置及活塞制作方法 Download PDF

Info

Publication number
WO2022007323A1
WO2022007323A1 PCT/CN2020/134196 CN2020134196W WO2022007323A1 WO 2022007323 A1 WO2022007323 A1 WO 2022007323A1 CN 2020134196 W CN2020134196 W CN 2020134196W WO 2022007323 A1 WO2022007323 A1 WO 2022007323A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
reaction mechanism
sealing
layer
clamp
Prior art date
Application number
PCT/CN2020/134196
Other languages
English (en)
French (fr)
Inventor
李志杰
齐少豹
王世杰
马飞
夏原
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to CA3185286A priority Critical patent/CA3185286A1/en
Priority to EP20944794.5A priority patent/EP4180647A4/en
Publication of WO2022007323A1 publication Critical patent/WO2022007323A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings

Definitions

  • the present application relates to the technical field of machining, for example, to a piston, a piston manufacturing device, and a piston manufacturing method.
  • aluminum alloy materials Due to the low density, good thermal conductivity, and high strength of aluminum alloy materials, aluminum alloy materials are widely used in the related fields of internal combustion engine piston manufacturing. Compared with traditional steel pistons and cast iron pistons, aluminum alloy pistons have a series of advantages such as high power, low vibration, small wear and strong corrosion resistance in internal combustion engine applications. However, with the development and update of internal combustion engine technology, defects such as low thermal strength and poor high temperature mechanical properties of aluminum alloy pistons are gradually exposed. Under the action of high-strength thermal shock cycles, aluminum alloy pistons often experience failure problems such as ablation and corrosion.
  • the traditional electrolyte adjustment can increase the concentration by adding solutes, but if you want to reduce the concentration, or set different ratios with the plasma oxide coating at different growth stages solution, the reaction needs to be interrupted and the electrolyte solution needs to be reconstituted, which increases the preparation time and preparation cost.
  • the application provides a piston, which has good heat insulation performance, good corrosion resistance, and realizes the protective performance of controlling combustion temperature.
  • the present application provides a piston manufacturing device and a piston manufacturing method, which eliminates the need for repeated installation and disassembly, and saves production costs.
  • An embodiment provides a piston, comprising:
  • a porous functional layer arranged on the top surface of the piston base
  • a microporous filling layer provided on the top surface of the porous functional layer, the diameter of the holes in the microporous filling layer is smaller than the diameter of the holes in the porous functional layer;
  • the sealing layer is arranged on the top surface of the micropore filling layer, and is arranged to partially block the holes in the micropore filling layer.
  • the embodiment of the present application also provides a piston manufacturing device for manufacturing the above-mentioned piston, and the piston manufacturing device includes:
  • a clamp configured to clamp the piston base body, the top of the piston base body sealingly protrudes into the clamp, and forms a sealed cavity with the inner wall of the clamp;
  • the anode of the power supply is electrically connected to the piston base, and the cathode of the power supply is electrically connected to the clamp;
  • a first reaction mechanism selectively communicated with the sealing cavity to form the porous functional layer on the top surface of the piston base
  • a second reaction mechanism selectively communicated with the sealing cavity to form the micropore filling layer on the top surface of the porous functional layer
  • the third reaction mechanism is selectively communicated with the sealing cavity to form the sealing layer on the top surface of the micropore filling layer.
  • the embodiment of the present application also provides a method for manufacturing a piston, using the above-mentioned piston manufacturing device to manufacture a piston, and the method for manufacturing a piston includes:
  • the piston base body is sealed and clamped by the clamp, and the sealing cavity is formed between the piston base body and the inner wall of the clamp;
  • the anode of the power source is electrically connected to the piston base, and the cathode of the power source is electrically connected to the clamp;
  • a micropore filling layer is formed on the surface
  • the third reaction mechanism is opened, the first reaction mechanism and the second reaction mechanism are closed, and the third reaction mechanism is communicated with the sealing cavity, so as to form all the holes covering the top surface of the micropore filling layer. the sealing layer.
  • Fig. 1 is the structural representation of the piston of the present application
  • Fig. 2 is the structural representation of the piston manufacturing device of the present application
  • FIG. 3 is a flow chart of the piston manufacturing method of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the piston includes: a piston base 100 , a porous functional layer 101 , a microporous filling layer 102 and a sealing layer 103 , and the piston base 100 can be optionally made of aluminum. Made of alloy material.
  • the porous functional layer 101 is disposed on the top surface of the piston base 100 , and the porous functional layer 101 has a loose porous layer structure.
  • the microporous filling layer 102 is disposed on the top surface of the porous functional layer 101 , and the diameter of the pores in the microporous filling layer 102 is smaller than the diameter of the pores in the porous functional layer 101 .
  • the sealing layer 103 is disposed on the top surface of the micropore filling layer 102 and is configured to block the holes in the micropore filling layer 102, and the sealing layer 103 plays a role of sealing.
  • a porous functional layer 101 is provided on the top surface of the piston base 100, a microporous filling layer 102 is provided on the top surface of the porous functional layer 101, and the holes in the microporous filling layer 102 and the porous functional layer are provided
  • the holes in 101 form a channel, and the channel is used to store air and play a role of heat insulation. Since the diameter of the pores in the microporous filling layer 102 is smaller than the diameter of the pores in the porous functional layer 101, the microporous filling layer 102 plays a transition role between the porous functional layer 101 and the sealing layer 103, and the microporous filling layer 102 plays a role in Filling the porous functional layer 101 to a certain extent.
  • the sealing layer 103 is arranged on the top surface of the microporous filling layer 102, and is set to block the holes in the microporous filling layer 102.
  • the sealing layer 103 plays a role of sealing to prevent the corrosive medium from entering the porous functional layer 101 and the micropores.
  • the holes of the layer 102 are filled to corrode them, so as to protect the piston base 100, thereby improving the corrosion resistance of the piston.
  • an air layer can be formed in the pores of the porous functional layer 101 and the microporous filling layer 102, which effectively reduces the heat capacity of the entire piston and ensures that the
  • the better thermal insulation protection performance can also achieve the protection performance of controlling the combustion temperature, so that the piston itself is easily heated, and the intake temperature of the cold air entering the combustion chamber is lower, avoiding the intake air heating, thus improving the heat conversion. For the efficiency of useful work, effectively reduce fuel consumption.
  • the pores in the microporous filling layer 102 are distributed continuously, and along the direction away from the porous functional layer 101, the pores in the microporous filling layer 102 are distributed continuously. At least one parameter of porosity and diameter exhibits a decreasing distribution.
  • the porous functional layer 101 enables the piston to obtain good thermal insulation performance, and the microporous filling layer 102 can not only play a role in reducing the thermal conductivity of the coating, but also serve as a second barrier for anti-corrosion media.
  • the pores in the microporous filling layer 102 are continuously distributed in a decreasing distribution, which can not only maintain a good structural transition between the two coatings of the porous functional layer 101 and the microporous filling layer 102, but also ensure both thermal insulation and low thermal conductivity. realization of a function.
  • an adhesive layer 104 is formed between the top surface of the dense piston base 100 and the porous functional layer 101 , and the adhesive layer 104 acts as a piston The role of the transition between the substrate 100 and the porous functional layer 101 .
  • this embodiment also provides a piston manufacturing device, as shown in FIG.
  • the clamp 1 is configured to clamp the piston base 100
  • the top of the piston base 100 is sealed and protrudes into the clamp 1 , and forms a sealed cavity with the inner wall of the clamp 1 .
  • the anode of the power source 2 is electrically connected to the piston base 100
  • the cathode of the power source 2 is electrically connected to the clamp 1 .
  • the first reaction mechanism 3 is selectively communicated with the sealing cavity to form a porous functional layer 101 on the top surface of the piston base 100 .
  • the second reaction mechanism 4 is selectively communicated with the sealing cavity to form a micropore filling layer 102 on the top surface of the porous functional layer 101 .
  • the third reaction mechanism 5 is selectively communicated with the sealing cavity to form a sealing layer 103 on the top surface of the micropore filling layer 102 .
  • the fixture 1 has the effect of fixing the piston base 100 , the top of the piston base 100 is sealed and protrudes into the fixture 1 to form a sealing cavity, and the sealing cavity is for preparing a coating on the top surface of the piston base 100 .
  • the porous functional layer 101 is prepared on the top surface of the piston base 100 through the first reaction mechanism 3 communicating with the sealing cavity.
  • the second reaction mechanism 4 is communicated with the sealed cavity, and the micropore filling layer 102 is prepared on the top surface of the porous functional layer 101 .
  • the third reaction mechanism 5 is communicated with the sealing cavity, and the sealing layer 103 is prepared on the top surface of the micropore filling layer 102 .
  • the fixture 1 is a box structure, the fixture 1 has a accommodating cavity, a first joint and a second joint are provided on the top of the fixture 1, the first joint is a liquid inlet, and the first joint is respectively connected to the first reaction mechanism. 3.
  • the second joint is a liquid outlet, and the second joint is connected to the first reaction mechanism 3 and the second reaction mechanism 4 respectively, so that the liquid in the sealed cavity that has completed the reaction flows out through the second joint.
  • the top of the clamp 1 is also provided with a cathode connector, the cathode of the power source 2 is electrically connected to the clamp 1 through the cathode connector, and the anode of the power source 2 is electrically connected to the piston base 100 .
  • the cathode of the power source 2 is electrically connected to the clamp 1 through the cathode connector
  • the anode of the power source 2 is electrically connected to the piston base 100 .
  • the piston manufacturing device further includes a sealing ring 6, the sealing ring 6 is an O-shaped sealing ring 6, and the sealing ring 6 is made of polytetrafluoroethylene Made of vinyl fluoride, the sealing ring 6 is sleeved on the piston base 100 and abuts on the inner wall of the fixture 1, a sealing cavity is formed between the sealing ring 6 and the inner wall of the fixture 1, and the sealing ring 6 plays the role of the piston base 100 and the fixture 1. In addition to the sealing function between the inner walls, it also plays the role of insulation and isolation between the piston base 100 and the clamp 1, so that the sealed cavity becomes a closed cavity that can withstand certain positive and negative pressures.
  • the piston manufacturing device also includes a fixed Ring 7, the fixing ring 7 is a stainless steel ring, the fixing ring 7 is sleeved on the piston base 100 and abuts on the bottom surface of the sealing ring 6, after the sealing ring 6 is coated with vacuum grease and forms an interference fit with the fixing ring 7, the connection is made.
  • the parts pass through the fixing ring 7 and the piston base 100 .
  • the connecting parts are bolts, the bolts are M10*50 bolts, and the number of bolts is six to ensure the fixing effect between the fixing ring 7 and the clamp 1, thereby ensuring the stability and reliability of the clamping of the piston base 100.
  • the anode of the power source 2 can be electrically connected to the piston base 100 through a connector, and the anode wire of the power source 2 is connected to the connector. Since the connector is connected to the fixing ring 7, the fixing ring 7 is connected to the piston base 100, so as to realize The anode of the power source 2 is electrically connected to the piston base 100 , so that the installation between the anode of the power source 2 and the piston base 100 is convenient and reliable.
  • the first reaction mechanism 3 includes a first reaction box 31 and a first valve 32 , the first reaction box 31 is configured to accommodate the first electrolyte and communicated with the sealing chamber, and the first valve 32 is configured In order to control the opening and closing of the first reaction box 31 .
  • the second reaction mechanism 4 includes a second reaction box 41 and a second valve 42 , the second reaction box 41 is configured to accommodate the second electrolyte and communicated with the sealing chamber, and the second valve 42 is configured to control the opening and closing of the second reaction box 41 .
  • the third reaction mechanism 5 includes a third reaction box 51 and a third valve 52 , the third reaction box 51 is configured to accommodate the sealing agent and communicated with the sealing cavity, and the third valve 52 is configured to control the opening and closing of the third reaction box 51 .
  • the first reaction box 31, the second reaction box 41 and the third reaction box 51 are all arranged above the fixture 1, and the first valve 32, the second valve 42 and the third valve 52 are respectively arranged at the corresponding At the bottom of the first reaction box 31, the second reaction box 41 and the third reaction box 51, when each valve is opened, the liquid in the corresponding reaction box flows into the sealed cavity under its own gravity; When closed, the liquid in the corresponding reaction box stops entering the sealed cavity.
  • the structure is simple, but the speed of the liquid flow is constant, so that the liquid inlet speed is relatively slow, and the recovery of the liquid cannot be realized.
  • the piston manufacturing device further includes a hydraulic pump 8, the inlet of the hydraulic pump 8 is communicated with the sealing chamber, and the outlet of the hydraulic pump 8 is communicated with the first reaction box 31 and the second reaction box 41.
  • a first valve 32 is provided on the connection pipeline between the pump 8 and the first reaction tank 31
  • a second valve 42 is provided on the connection pipeline between the hydraulic pump 8 and the second reaction tank 41 .
  • the hydraulic pump 8 drives the first electrolyte in the first reaction box 31 to be transported to the sealing chamber through the first joint, and the first electrolyte is in the sealing chamber and between the piston base 100 .
  • the first electrolyte is returned to the first reaction tank 31 through the inlet of the hydraulic pump 8, so as to realize the circulation and circulation of the first electrolyte. Recycle.
  • the hydraulic pump 8 drives the second electrolyte in the second reaction tank 41 to be transported to the sealed chamber through the first joint, and the second electrolyte is in the sealed chamber and the porous functional layer 101 After electrochemical reaction occurs on the top surface of the microporous filling layer 102, under the driving action of the hydraulic pump 8, the second electrolyte is returned to the second reaction tank 41 through the inlet of the hydraulic pump 8, thereby realizing the Recycle and recycle.
  • the piston manufacturing device further includes a flow controller, which is used to control the flow rate and water pressure of the first electrolyte and the second electrolyte, respectively, through the hydraulic pump 8 and the flow controller.
  • a flow controller which is used to control the flow rate and water pressure of the first electrolyte and the second electrolyte, respectively, through the hydraulic pump 8 and the flow controller.
  • the piston manufacturing device further includes a three-way valve 9 and a pump 10.
  • the first end of the three-way valve 9 is respectively connected to the first reaction mechanism 3 and the second reaction mechanism 4.
  • the three-way valve The second end of the three-way valve 9 is connected to the sealing chamber and the third reaction mechanism 5 respectively, and the third end of the three-way valve 9 is connected to the outside atmosphere.
  • the pump 10 is arranged on the connecting pipeline between the hydraulic pump 8 and the fixture 1. The pump 10 can be communicated with the sealing cavity, so that the outside air can enter the sealing cavity through the three-way valve 9 to blow and dry the piston base 100.
  • the device also includes a first vacuum valve 11 and a second vacuum valve 12.
  • the first vacuum valve 11 and the second vacuum valve 12 are respectively arranged on both sides of the pump 10, and the first vacuum valve 11 is arranged between the hydraulic pump 8 and the pump 10. , the second vacuum valve 12 is arranged between the pump 10 and the fixture 1 .
  • the second vacuum valve 12 and the three-way valve 9 are opened, and the first vacuum valve 11 is closed to cut off the communication with the first reaction box 31 and the second reaction box 41.
  • the first reaction mechanism 3 And the second reaction mechanism 4 can also be dismantled, so that only the part of the pump 10 and the clamp 1 is in working condition.
  • the pump 10 starts to work, the three-way valve 9 is opened, and the pump 10 extracts the air in the sealed cavity, so that the outside air enters through the three-way valve 9, enters the fixture 1 through the first joint, and flows out from the second joint.
  • the first joint plays the role of air intake, and the second joint plays the role of air outlet, and the inner wall of the clamp 1 and the piston base 100 are dried by utilizing the circulating flow of air.
  • the pump 10 can also be used as a driving source for the process of preparing the sealing layer 103 .
  • the pore sealing agent is added into the third reaction box 51, then the three-way valve 9, the first vacuum valve 11 and the third valve 52 are closed, the second vacuum valve 12 is opened, and the pump 10 is turned on.
  • the sealing agent in the third reaction box 51 flows in the direction of the fixture 1 through the third valve 52, and is sprayed to the top of the piston base 100 through the first joint to coat a sealing layer on the micropore filling layer 102 103.
  • a period of reaction time such as 1 min
  • open the three-way valve 9 to deflate unload the piston base 100 that has completed the sealing process, and place it in a drying box to dry, thereby completing the sealing process.
  • the traditional electrolyte adjustment can increase the concentration by adding solutes, but if you want to reduce the concentration, or set different ratios of solutions with the plasma oxide coating at different growth stages , then the reaction needs to be interrupted and the electrolyte solution needs to be reconstituted, which increases the preparation time and preparation cost.
  • the present embodiment also provides a method for manufacturing a piston.
  • the above-mentioned piston manufacturing device is used to manufacture the piston.
  • the method for manufacturing the piston includes: using the clamp 1 to seal and clamp the piston base 100 , and place the piston base 100 and the clamp 1 between the piston base 100 and the clamp 1 .
  • a sealed cavity is formed between them; the anode of the power supply 2 is electrically connected to the piston base 100, and the cathode of the power supply 2 is electrically connected to the fixture 1; the first reaction mechanism 3 is turned on, the second reaction mechanism 4 and the third reaction mechanism 5 are closed, and the first reaction mechanism The reaction mechanism 3 is connected to the sealing cavity, and a porous functional layer 101 is formed on the top surface of the piston base 100 by electrochemical means; the second reaction mechanism 4 is turned on, the first reaction mechanism 3 and the third reaction mechanism 5 are closed, and the second reaction mechanism is turned on.
  • the mechanism 4 is connected to the sealed cavity, and the microporous filling layer 102 is formed on the top surface of the porous functional layer 101 by electrochemical means; the third reaction mechanism 5 is turned on, and the first reaction mechanism 3 and the second reaction mechanism 4 are closed, so that the third reaction mechanism The reaction mechanism 5 is communicated with the sealing cavity to form a sealing layer 103 covering the top surface of the micropore filling layer 102 .
  • the anode of the power source 2 is electrically connected to the piston base 100
  • the cathode of the power source 2 is electrically connected to the fixture 1 for the electrochemical reaction used to generate the porous functional layer 101 and the microporous filling layer 102 .
  • Only the first reaction mechanism 3 is opened to prepare the porous functional layer 101 in the sealed cavity; only the second reaction mechanism 4 is opened to prepare the microporous filling layer 102 in the sealed cavity; only the third reaction mechanism 5 is opened to use
  • the microporous sealing layer 103 is prepared in the sealed cavity.
  • the independent sub-control setting of the first reaction mechanism 3, the second reaction mechanism 4 and the third reaction mechanism 5 can realize the free combination and recycling of various electrolytes, without interrupting the test, independent adjustment, and good flexibility.
  • the clamp 1 only needs to clamp and fix the piston base 100 once, and does not need to be installed and disassembled for each reaction, which simplifies the process flow and saves the production cost, and each process is carried out in the sealed cavity, avoiding coating Pollution.
  • the top surface of the piston base body 100 is pretreated before the clamp 1 clamps the piston base body 100 .
  • the top end of the piston base 100 needs to be pretreated, and the main purpose is to remove grease, dirt and scratches on the surface of the piston base 100 .
  • the pretreatment includes the following steps: degreasing the piston base 100 to remove grease and dirt on the top of the piston base 100; A micro-groove structure is formed on the top surface to increase the bonding area between the coating and the piston base 100 and enhance the bonding force; ultrasonic cleaning, water washing and air-drying processes are performed to obtain a clean surface with a certain roughness.
  • the pretreated piston base 100 is placed in the fixture 1 for clamping and fixing, and then the anode and cathode of the power source 2 are electrically connected to the piston base 100 and the fixture 1 respectively, and the first reaction mechanism 3 can deliver the first electrolysis to the sealed cavity.
  • liquid wherein sodium silicate nonahydrate (10g/L-25g/L), sodium hydroxide (0.5g/L-3g/L), disodium EDTA (0.5g/L-3g/L) , sodium tripolyphosphate (1g/L-5g/L) and sodium tungstate (0.5g/L-3g/L) are used as electrolytic solutes, and deionized water is used as solvent to prepare the first electrolyte of preset concentration.
  • the piston base 100 is clamped on the insulated fixture 1 as an anode, the fixture 1 is connected to the cathode of the power supply 2, and the power supply 2 is output in a constant current pulse mode.
  • the current density in this process is set to 8A/dm 2 -20A/dm 2 , negative and positive
  • the current ratio is 0.9-1.3
  • the duty cycle of the positive pulse is 30%-65%
  • the pulse frequency range is 800Hz-1600Hz, within the first 10min
  • the low current of 8A/dm 2 -12A/dm 2 is used for continuous, after 10min Every 2min increments with a gradient of 20% until the arc starts.
  • the forward current of the optional power source 2 is set to 3A
  • the negative direction current is 6.8A
  • the frequency of the power source 2 is 1000Hz
  • the duty ratio of the positive and negative pulses is 60:40.
  • the second reaction mechanism 4 can deliver the second electrolyte to the sealed cavity.
  • the current density in this process is set to 14A/dm 2 -18A/dm 2
  • the negative-to-positive current ratio is 0.9-1.3
  • the negative-positive pulse duty ratio is 50%-65%
  • the pulse frequency range is 1000Hz-1500Hz
  • the time is 10min-20min.
  • the forward current of the power supply 2 is set to 8A
  • the negative current is 9A
  • the frequency of the power supply 2 is 1200 Hz
  • the duty ratio of the positive and negative pulses is set to 50:50
  • the Discharge for 15min is set to 8A
  • the prepared porous functional layer 101 and the microporous filling layer 102 have a thermal insulation function, which can effectively prevent heat dissipation in the combustion chamber. Under thermal fatigue test conditions, the piston has a longer service life than ordinary aluminum pistons. Since both the porous functional layer 101 and the microporous filling layer 102 have a hole structure and have a high porosity, a rapid change in the temperature of the coating wall can be achieved, and the heating of the intake air is avoided. The piston base 100 avoids violent heat exchange and increases the heat With the efficiency converted into useful work, the fuel consumption is reduced by about 0.3%.
  • the electrolytic solute of the second electrolyte contains nano ZrO 2 , and ZrO 2 nanoparticles are used as filling materials.
  • high concentration of ZrO 2 will lead to an increase in the arcing voltage, which makes the application of ZrO 2 per unit time.
  • the energy on the surface increases, when the coating grows to a certain thickness, the breakdown difficulty will increase, and it is easy to cause continuous discharge only in a few weak places, which will reduce the overall thickness of the coating and limit the thermal insulation performance; while the low concentration of ZrO 2 is not well sealed and does not contribute much to reducing thermal conductivity.
  • this embodiment adopts two sets of independent first reaction mechanisms 3 and second reaction mechanisms 4, and uses the first valve 32 to control the flow and on-off of the first electrolyte in the first reaction box 31.
  • the first The electrolyte is mainly configured to prepare a porous functional layer 101 with a relatively large thickness, and the thickness of the loose porous functional layer 101 is about 90 ⁇ m-110 ⁇ m.
  • the second valve 42 is used to control the flow and on-off of the second electrolyte in the second reaction box 41.
  • the second electrolyte is an electrolyte containing a high concentration of ZrO 2 and is set to prepare the microporous filling layer 102.
  • the micropores are filled with The layer 102 can reduce the capacitance and seal the pores of the porous functional layer 101 to a certain extent.
  • the power supply 2 , the first reaction mechanism 3 , the second reaction mechanism 4 and the third reaction mechanism 5 are turned off, and the three-way valve 9 and the pump 10 are opened to allow the outside Air enters the sealed cavity through the three-way valve 9 to blow and dry the piston base 100 and the fixture 1.
  • the ventilation and drying treatment time can be selected from 15min to 25min. The drying process is also completed in this sealed cavity, and the whole process does not need to disassemble the fixture 1, which avoids coating pollution and saves time and cost.
  • the third reaction mechanism 5 can deliver the sealing agent to the sealing cavity.
  • the sealing agent is polysilazane.
  • a sealing agent is sprayed on the top surface of the layer 102 to realize the sealing treatment of the micropore filling layer 102 .
  • the independent first valve 32 and the second valve 42 control the first reaction box 31 and the second reaction box 41 respectively, which can realize the negative pressure vacuum sealing process, and can ensure the first electrolyte and the Recycling and recycling of the second electrolyte.
  • the preparation of the porous functional layer 101 , the preparation of the micropore filling layer 102 , the coating of the sealing layer 103 and the drying treatment can be completed in the same working station of the sealing chamber, which can avoid coating contamination while simplifying the processing process and shortening the preparation cycle.
  • a porous functional layer 101 is provided on the top surface of the piston base 100, a microporous filling layer 102 is provided on the top surface of the porous functional layer 101, and the holes in the microporous filling layer 102 and the porous functional layer 101 are provided
  • the inner hole forms a channel, and the channel is used to store air and play the role of heat insulation.
  • the diameter of the pores in the microporous filling layer 102 is smaller than the diameter of the pores in the porous functional layer 101. While the microporous filling layer 102 plays a transition role between the porous functional layer 101 and the sealing layer 103, the porous functional layer 101 is affected to a certain extent. filled up.
  • the sealing layer 103 is arranged on the top surface of the microporous filling layer 102, and is set to block the holes in the microporous filling layer 102.
  • the sealing layer 103 plays a role of sealing, preventing high-temperature gas and corrosive medium from entering the porous functional layer 101.
  • the pores of the micropore filling layer 102 are oxidized and corroded at high temperature, which plays a protective role for the piston base 100, thereby improving the high temperature resistance and corrosion resistance of the piston.
  • air filling can be formed in the pores of the porous functional layer 101 and the microporous filling layer 102, which effectively reduces the volume specific heat capacity of the piston coating. While ensuring better thermal insulation and protection performance, it can also achieve the protection performance of controlling combustion temperature, so that the piston itself is easily heated, and the intake temperature of the cold air entering the combustion chamber is lower, avoiding intake air heating, thereby improving the heat consumption. Efficiency converted into useful work, effectively reducing fuel consumption.
  • the clamp 1 has the effect of fixing the piston base 100 , the top of the piston base 100 is sealed and protrudes into the clamp 1 , and forms a sealing cavity with the inner wall of the clamp 1 , and the sealing cavity is on the top of the piston base 100 .
  • Surface preparation coatings provide a reactive environment.
  • the first reaction mechanism 3 is communicated with the sealing cavity, and is configured to prepare a porous functional layer 101 on the top surface of the piston base 100 .
  • the second reaction mechanism 4 is communicated with the sealed cavity, and is configured to prepare a micropore filling layer 102 on the top surface of the porous functional layer 101 .
  • the third reaction mechanism 5 is communicated with the sealing cavity, and is configured to prepare a sealing layer 103 on the top surface of the micropore filling layer 102 .
  • the three preparation processes of the porous functional layer 101 , the microporous filling layer 102 and the sealing layer 103 are all completed in the sealed cavity formed by the special fixture 1 and the top of the piston base 100 , and there is no need to install and install each reaction mechanism. Disassembly saves time and cost and avoids secondary pollution of each coating.
  • the anode of the power source 2 is electrically connected to the piston base 100, and the cathode of the power source 2 is electrically connected to the fixture 1 for the electrochemical reaction used to generate the porous functional layer 101 and the micropore filling layer 102.
  • Only the first reaction mechanism 3 is opened, and the porous functional layer 101 is prepared in the sealed cavity; only the second reaction mechanism 4 is opened, and the microporous filling layer 102 is prepared in the sealed cavity; only the third reaction mechanism 5 is opened, and the preparation is made in the sealed cavity Micropore sealing layer 103 .
  • the independent sub-control setting of the first reaction mechanism 3, the second reaction mechanism 4 and the third reaction mechanism 5 can realize the free combination and recycling of various electrolytes, without interrupting the test, independent adjustment, and good flexibility.
  • the clamp 1 only needs to clamp and fix the piston base 100 once, and there is no need to perform installation and disassembly for each reaction, which simplifies the process flow and saves production costs, and each process is carried out in a sealed cavity, avoiding coating pollution. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Fuel Cell (AREA)

Abstract

一种活塞、活塞制造装置及活塞制作方法。该活塞包括:活塞基体(100);多孔功能层(101),设置于活塞基体(100)的顶面上;微孔填充层(102),设置于多孔功能层(101)的顶面上,微孔填充层(102)内的孔洞的直径小于多孔功能层(101)内的孔洞的直径;封闭层(103),设置于微孔填充层(102)的顶面上,且设置为部分封堵微孔填充层(102)内的孔洞。该活塞的微孔填充层(102)在起到了多孔功能层(101)和封闭层(103)之间过渡作用的同时,微孔填充层(102)起到了对多孔功能层(101)在一定程度上的填充作用。封闭层(103)起到了封堵的作用,避免腐蚀介质进入多孔功能层(101)和微孔填充层(102)的孔洞内以对其进行腐蚀,提高活塞的耐腐蚀性。

Description

活塞、活塞制造装置及活塞制作方法
本申请要求申请日为2020年7月7日、申请号为202010643583.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及机加工技术领域,例如涉及一种活塞、活塞制造装置及活塞制作方法。
背景技术
由于铝合金材料具有密度低、导热性好、强度高等优良特性,使得铝合金材料被广泛应用于内燃机活塞制造的相关领域中。与传统钢活塞、铸铁活塞相比,铝合金活塞在内燃机应用中具有高功率、低震颤、小磨损和强耐蚀等一系列的优势。然而,随着内燃机技术的发展和更新,铝合金活塞热强度低和高温力学性能差等缺陷逐渐暴露出来,在高强热冲击循环作用下,铝合金活塞经常发生烧蚀、腐蚀等失效问题。
在目前的活塞防护技术中,大多数采用隔热技术处理,使基体受到保护的同时还能增加燃烧室内的温度,因为采取隔热处理后的活塞在工作时,通过燃烧室表面传向冷却水的热量减少,相应地由冷却水带走的传热损失减小,一方面减少了能量损失,提高了内燃机的效率。但随着隔热技术的发展,隔热材料的隔热性能逐渐提升,优异的隔热性能在使基体得以防护,但是由于隔热材料的体积比热容较大,活塞自身不容易被加热,燃烧室的冷空气进气温度较高,燃烧温度也会相应的提高。当燃烧温度提高到一定程度后,导致燃烧腔体内气体分子间距变大,造成吸气冲程的吸气量减少,从而使油气比和燃烧效率的降低。
此外,在现有等离子体氧化物涂层制备中,传统电解液调节可以通过加入溶质的方法增加浓度,但是如果想减少浓度,或随着等离子体氧化物涂层在不同生长阶段设置不同配比的溶液,则需要反应中断并重新配制电解液,增加制备时间和制备成本。
发明内容
本申请提供了一种活塞,隔热性能好,防腐性好,实现控制燃烧温度的防护性能。
本申请提供了一种活塞制造装置及活塞制作方法,无需反复安装和拆卸,节省生产成本。
一实施例提供一种活塞,包括:
活塞基体;
多孔功能层,设置于所述活塞基体的顶面上;
微孔填充层,设置所述多孔功能层的顶面上,所述微孔填充层内的孔洞的直径小于所述多孔功能层内的孔洞的直径;
封闭层,设置于所述微孔填充层的顶面上,且设置为部分封堵所述微孔填充层内的孔洞。
本申请实施例还提供了一种活塞制造装置,用于制作上述的活塞,所述活塞制造装置包括:
夹具,设置为夹紧所述活塞基体,所述活塞基体的顶部密封伸入所述夹具内,且与所述夹具的内壁形成密封腔;
电源,所述电源的阳极电连接于所述活塞基体,所述电源的阴极电连接于所述夹具;
第一反应机构,选择性连通于所述密封腔,以在所述活塞基体的顶面形成所述多孔功能层;
第二反应机构,选择性连通于所述密封腔,以在所述多孔功能层的顶面形成所述微孔填充层;
第三反应机构,选择性连通于所述密封腔,以在所述微孔填充层的顶面形成所述封闭层。
本申请实施例还提供了一种活塞制作方法,采用上述的活塞制造装置进行活塞制作,所述活塞制作方法包括:
利用所述夹具密封夹紧所述活塞基体,在所述活塞基体和所述夹具的内壁之间形成所述密封腔;
将所述电源的阳极电连接于所述活塞基体,所述电源的阴极电连接于所述夹具;
开启所述第一反应机构,关闭所述第二反应机构和所述第三反应机构,使所述第一反应机构连通于所述密封腔,采用电化学的方式在所述活塞基体的顶 面形成多孔功能层;
开启所述第二反应机构,关闭所述第一反应机构和所述第三反应机构,使所述第二反应机构连通所述于密封腔,采用电化学的方式在所述多孔功能层的顶面形成微孔填充层;
开启所述第三反应机构,关闭所述第一反应机构和所述第二反应机构,使所述第三反应机构连通于所述密封腔,形成覆盖于所述微孔填充层顶面的所述封闭层。
附图说明
图1是本申请活塞的结构示意图;
图2是本申请活塞制造装置的结构示意图;
图3是本申请活塞制作方法的流程图。
图中:
100、活塞基体;101、多孔功能层;102、微孔填充层;103、封闭层;104、粘接层;
1、夹具;2、电源;3、第一反应机构;4、第二反应机构;5、第三反应机构;6、密封圈;7、固定环;8、液压泵;9、三通阀;10、泵;11、第一真空阀;12、第二真空阀;
31、第一反应箱;32、第一阀;
41、第二反应箱;42、第二阀;
51、第三反应箱;52、第三阀。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直 接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
对于现有铝合金活塞而言,其多孔结构涂层的表面存在很多贯穿或半封闭的缝隙通道,在铝合金活塞的燃烧腔内,这种半开放式的通道中会产生热量对流,涂层隔热性能差。另外,在燃烧室内,燃烧热和燃烧产物对铝合金活塞表面产生腐蚀作用,腐蚀介质容易渗入通道并对其进行腐蚀,造成防护材料或活塞的侵蚀,使活塞的耐蚀性下降。
为了解决这个问题,本实施例提供了一种活塞,如图1所示,该活塞包括:活塞基体100、多孔功能层101、微孔填充层102及封闭层103,活塞基体100可选采用铝合金材料制成。多孔功能层101设置于活塞基体100的顶面上,多孔功能层101为疏松的多孔层结构。微孔填充层102设置于多孔功能层101的顶面上,微孔填充层102内的孔洞直径小于多孔功能层101内孔洞的直径。封闭层103设置于微孔填充层102的顶面上,且设置为封堵微孔填充层102内的孔洞,封闭层103起到了封堵的作用。
本实施例提供的活塞,通过在活塞基体100的顶面设置有多孔功能层101,多孔功能层101的顶面上设置有微孔填充层102,微孔填充层102内的孔洞和多孔功能层101内孔洞形成通道,通道内用于储存空气,起到了隔热的作用。通过微孔填充层102内的孔洞直径小于多孔功能层101内孔洞的直径,微孔填充层102在起到了多孔功能层101和封闭层103之间过渡作用的同时,微孔填充层102起到了对多孔功能层101在一定程度上的填充作用。封闭层103设置于微孔填充层102的顶面上,且设置为封堵微孔填充层102内的孔洞,封闭层103起到了封堵的作用,避免腐蚀介质进入多孔功能层101和微孔填充层102的孔洞内以对其进行腐蚀,对活塞基体100起到了防护作用,从而提高活塞的耐腐蚀性。
另外,在多孔功能层101和微孔填充层102的相互配合作用下,在多孔功能层101和微孔填充层102的孔洞内可以形成空气层,有效地降低了整个活塞的热容,在保证较好的隔热防护性能的同时,又能实现控制燃烧温度的防护性能,使得活塞自身容易被加热,进入燃烧室的冷空气进气温度较低,避免进气 加热,从而提高了热量用转化为有用功的效率,有效降低燃油耗。
可选地,为了保证多孔功能层101和微孔填充层102的相互配合,微孔填充层102内孔洞连续性分布,且沿远离多孔功能层101的方向,微孔填充层102内的孔洞的孔隙率和直径中的至少一个参数呈递减分布。多孔功能层101使活塞获得良好的隔热性能,微孔填充层102不仅能够起到降低涂层热导率的作用,同时可以作为防腐蚀介质的第二道屏障。采用微孔填充层102内的孔洞呈递减分布连续性分布,既能保持多孔功能层101和微孔填充层102两种涂层之间良好的结构过渡,又能保证隔热和低热导率两种功能的实现。
在活塞基体100的顶面的基础上形成多孔功能层101的过程中,在致密的活塞基体100的顶面和多孔功能层101之间会形成一个粘接层104,粘接层104起到了活塞基体100和多孔功能层101之间过渡的作用。
为了实现对上述活塞的生产制作,本实施例还提供了一种活塞制造装置,如图2所示,该活塞制造装置包括:夹具1、电源2、第一反应机构3、第二反应机构4及第三反应机构5,夹具1设置为夹紧活塞基体100,活塞基体100的顶部密封伸入夹具1内,且与夹具1的内壁形成密封腔。电源2的阳极电连接于活塞基体100,电源2的阴极电连接于夹具1。第一反应机构3选择性连通于密封腔,以在活塞基体100的顶面形成多孔功能层101。第二反应机构4选择性连通于密封腔,以在多孔功能层101的顶面形成微孔填充层102。第三反应机构5选择性连通于密封腔,以在微孔填充层102的顶面形成封闭层103。
本实施例提供的活塞制造装置,夹具1起到了对活塞基体100固定的效果,活塞基体100的顶部密封伸入夹具1内,形成密封腔,密封腔为在活塞基体100的顶面制备涂层提供了反应环境。通过第一反应机构3连通于密封腔,在活塞基体100的顶面制备多孔功能层101。通过第二反应机构4连通于密封腔,在多孔功能层101的顶面制备微孔填充层102。通过第三反应机构5连通于密封腔,在微孔填充层102的顶面制备封闭层103。采用这种结构,多孔功能层101、微孔填充层102及封闭层103三个制备工序,都在专用的夹具1与活塞基体100顶部形成的密封腔内完成,无需进行每个反应机构的安装和拆卸,节约了时间成本,避免了每个涂层二次污染。
示例性地,夹具1为箱体结构,夹具1具有容纳腔,在夹具1的顶部设置有第一接头和第二接头,第一接头为进液口,第一接头分别连通于第一反应机构3、第二反应机构4及第三反应机构5,使得每个反应机构内的液体经第一接 头进入密封腔内。第二接头为出液口,第二接头分别连通于第一反应机构3和第二反应机构4,使得密封腔内的完成反应的液体经第二接头流出。
在夹具1的顶部还设置有阴极接头,电源2的阴极通过阴极接头电连接于夹具1,电源2的阳极电连接于活塞基体100。为了保证活塞基体100和夹具1之间的绝缘效果,如图2所示,可选地,该活塞制造装置还包括密封圈6,密封圈6为O形密封圈6,密封圈6采用聚四氟乙烯制作而成,密封圈6套设于活塞基体100上并抵接于夹具1的内壁,密封圈6和夹具1的内壁之间形成密封腔,密封圈6起到了活塞基体100和夹具1内壁之间密封作用的同时,还起到了活塞基体100和夹具1两者之间绝缘、隔绝的作用,使密封腔成为能够承受一定正压和负压的密闭腔体。
电源2的阳极可以直接电连接于活塞基体100,但是采用直接接触的方式,难以保证电性连接的可靠性和稳定性,为了解决这个问题,如图2所示,该活塞制造装置还包括固定环7,固定环7为不锈钢钢环,固定环7套设于活塞基体100上并抵接于密封圈6的底面,密封圈6涂上真空脂后与固定环7形成过盈配合后,连接件穿设固定环7和活塞基体100。连接件为螺栓,螺栓为M10*50的螺栓,螺栓的数量为六个,以保证固定环7和夹具1之间的固定效果,从而保证活塞基体100夹紧的稳定性和可靠性。
可选地,电源2的阳极可以通过连接件电连接于活塞基体100,电源2的阳极电线连接于连接件上,由于连接件连接于固定环7,固定环7连接于活塞基体100,从而实现电源2的阳极电性连接于活塞基体100,使得电源2阳极和活塞基体100之间的安装方便,可靠性好。
可选地,如图2所示,第一反应机构3包括第一反应箱31和第一阀32,第一反应箱31设置为容纳第一电解液并连通于密封腔,第一阀32设置为控制第一反应箱31的启闭。第二反应机构4包括第二反应箱41和第二阀42,第二反应箱41设置为容纳第二电解液并连通于密封腔,第二阀42设置为控制第二反应箱41的启闭。第三反应机构5包括第三反应箱51和第三阀52,第三反应箱51设置为容纳封孔剂并连通于密封腔,第三阀52设置为控制第三反应箱51的启闭。
可选地,第一反应箱31、第二反应箱41及第三反应箱51均设置于夹具1的上方,第一阀32、第二阀42和第三阀52分别设置于相对应的第一反应箱31、第二反应箱41以及第三反应箱51的底部,当每个阀打开时,与其相对应的反 应箱内的液体在自身重力下分别流动至密封腔内;当每个阀关闭时,与其相对应的反应箱内的液体停止进入密封腔内。采用这种方式,结构简单,但是液体流动的速度一定,使得进液速度较慢,且不能实现液体的回收。
为了解决上述问题,可选地,该活塞制造装置还包括液压泵8,液压泵8的进口连通于密封腔,液压泵8的出口连通于第一反应箱31和第二反应箱41,在液压泵8和第一反应箱31之间的连接管路上设置有第一阀32,在液压泵8和第二反应箱41之间的连接管路上设置有第二阀42。
当液压泵8和第一阀32开启时,液压泵8驱动第一反应箱31内的第一电解液经第一接头输送至密封腔内,第一电解液在密封腔内和活塞基体100的顶面发生电化学反应形成多孔功能层101之后,在液压泵8的驱动作用下,第一电解液经液压泵8的进口回流至第一反应箱31内,从而实现第一电解液的循环和回收。
当液压泵8和第二阀42开启时,液压泵8驱动第二反应箱41内的第二电解液经第一接头输送至密封腔内,第二电解液在密封腔内和多孔功能层101的顶面发生电化学反应形成微孔填充层102之后,在液压泵8的驱动作用下,第二电解液经液压泵8的进口回流至第二反应箱41内,从而实现第二电解液的循环和回收。
可选地,该活塞制造装置还包括流量控制器,通过液压泵8和流量控制器,用来分别控制第一电解液和第二电解液的流速和水压。
利用第二电解液完成制备微孔填充层102之后,等离子氧化物多孔层制备工艺结束,为了保证微孔填充层102和封闭层103之间结合效果,需要对活塞基体100和夹具1进行干燥处理。可选地,如图2所示,该活塞制造装置还包括三通阀9和泵10,三通阀9的第一端分别连通于第一反应机构3、第二反应机构4,三通阀9的第二端分别连通于密封腔、第三反应机构5,三通阀9的第三端连通于外界大气。泵10设置于液压泵8和夹具1之间的连接管路上,泵10能够连通于密封腔,使外界空气经三通阀9进入密封腔内,以对活塞基体100吹风和干燥处理。
由于在进行封闭层103的制备过程中,第一反应机构3和第二反应机构4不再参与反应,为了保证第一反应机构3和第二反应机构4与夹具1的隔绝效果,该活塞制造装置还包括第一真空阀11、第二真空阀12,第一真空阀11和第二真空阀12分别设置于泵10的两侧,第一真空阀11设置于液压泵8和泵10 之间,第二真空阀12设置于泵10和夹具1之间。
当需要干燥处理时,打开第二真空阀12和三通阀9,关闭第一真空阀11,用于切断与第一反应箱31和第二反应箱41的连通,此时第一反应机构3和第二反应机构4也可以进行拆除,使得只有泵10和夹具1这部分处于工作状态。泵10开始工作,三通阀9开启,泵10抽取密封腔内的空气,使得外界空气经三通阀9进入,并通过第一接头进入夹具1内,并从第二接头流出,此时第一接头起到了进气的作用,第二接头起到了出气的作用,利用空气的循环流动,实现对夹具1的内壁和活塞基体100的干燥。
可选地,泵10作为干燥驱动源的同时,泵10还可以作为制备封闭层103工序的驱动源。示例性地,在干燥处理结束之后,将封孔剂加入第三反应箱51内,然后关闭三通阀9、第一真空阀11及第三阀52,打开第二真空阀12,开启泵10,使泵10对密封腔进行抽取真空,当密封腔内的气压达到预设真空度后,关闭泵10和第二真空阀12,并开启第三阀52,在密封腔内的负压作用下,第三反应箱51内的封孔剂经第三阀52向夹具1的方向流动,并通过第一接头内喷涂至活塞基体100的顶端,以在微孔填充层102涂覆一层封闭层103。经过一段反应时间后,例如1min,开启三通阀9进行放气,卸载已完成封孔处理的活塞基体100,并将其放置于干燥箱内干燥,从而完成封孔处理。
在现有等离子体氧化物涂层制备中,传统电解液调节可以通过加入溶质的方法增加浓度,但是如果想减少浓度,或随着等离子体氧化物涂层在不同生长阶段设置不同配比的溶液,则需要反应中断并重新配制电解液,增加制备时间和制备成本。
为了解决这个问题,本实施例还提供了一种活塞制作方法,采用上述的活塞制造装置进行活塞制作,活塞制作方法包括:利用夹具1密封夹紧活塞基体100,在活塞基体100和夹具1之间形成密封腔;将电源2的阳极电连接于活塞基体100,电源2的阴极电连接于夹具1;开启第一反应机构3,关闭第二反应机构4和第三反应机构5,使第一反应机构3连通于密封腔,采用电化学的方式在活塞基体100的顶面形成多孔功能层101;开启第二反应机构4,关闭第一反应机构3和第三反应机构5,使第二反应机构4连通于密封腔,采用电化学的方式在多孔功能层101的顶面形成微孔填充层102;开启第三反应机构5,关闭第一反应机构3和第二反应机构4,使第三反应机构5连通于密封腔,形成覆盖于微孔填充层102顶面的封闭层103。
本实施例提供的活塞制作方法,将电源2的阳极电连接于活塞基体100,电源2的阴极电连接于夹具1,以供用于生成多孔功能层101和微孔填充层102的电化学反应。只开启第一反应机构3,用于在密封腔内制备多孔功能层101;只开启第二反应机构4,用于在密封腔内制备微孔填充层102;只开启第三反应机构5,用于在密封腔内制备微孔封闭层103。采用第一反应机构3、第二反应机构4及第三反应机构5独立的分控设置,能够实现多种电解液的自由组合和回收利用,无需中断试验,独立调节,灵活性好。同时,夹具1只需对活塞基体100夹紧固定一次,无需进行每次反应都进行安装和拆卸,简化了工艺流程,节约生产成本,且每个工序都在密封腔内进行,避免了涂层污染。
可选地,为了保证在活塞基体100的顶面制备涂层的效果,在夹具1夹紧活塞基体100之前,对活塞基体100的顶面进行预处理。在制备等离子体氧化物涂层之前需要对活塞基体100顶端进行前处理,主要目的是去除活塞基体100表面的油脂、污物和划痕。
示例性地,预处理包括以下步骤:对活塞基体100进行去油处理,用于去除活塞基体100顶端的油脂和污物;使用1500目的砂纸对活塞基体100的顶面进行表面哑光处理,使顶面形成微沟壑结构,以增加涂层和活塞基体100的结合面积,起到增强结合力的作用;进行超声清洗、水洗和风干工序,以获得洁净且具有一定粗糙度的表面。
将完成预处理的活塞基体100放置于夹具1内进行夹紧固定,再将电源2的阳极和阴极分别电连接于活塞基体100和夹具1,第一反应机构3能够向密封腔输送第一电解液,其中以硅酸钠九水(10g/L-25g/L)、氢氧化钠(0.5g/L-3g/L)、乙二胺四乙酸二钠(0.5g/L-3g/L)、三聚磷酸钠(1g/L-5g/L)及钨酸钠(0.5g/L-3g/L)作为电解溶质,以去离子水为溶剂,配制预设浓度的第一电解液。
活塞基体100作为阳极装夹在与之绝缘的夹具1上,夹具1接电源2阴极,电源2采用恒流脉冲模式输出,此过程电流密度设置为8A/dm 2-20A/dm 2,负正电流比为0.9-1.3,正脉冲占空比为30%-65%,脉冲频率范围为800Hz-1600Hz,前10min内,采用低电流8A/dm 2-12A/dm 2的低电流持续,10min后每间隔2min以20%的梯度递增,直至起弧。在上述步骤出现弧光后,逐渐降低电流至10A/dm 2-15A/dm 2,电解液温度控制在20℃-25℃,在电压进入平稳区后保持放电35min-55min。
本实施例在多孔功能层101的制备过程中,可选电源2的正向电流设定为 3A,负向电流为6.8A,电源2频率为1000Hz,正负脉冲占空比取60:40,20min后,增加正向电流至3.6A保持2min,4.3A保持2min,5.2A保持2min,依次20%递加至起弧,起弧后,调节电流至6A,保持恒温并持续放电45min。
利用第一电解液完成制备多孔功能层101之后,第二反应机构4能够向密封腔输送第二电解液,以硅酸钠九水(10g/L-25g/L)、氢氧化钠(0.5g/L-3g/L)、乙二胺四乙酸二钠(0.5g/L-3g/L)、三聚磷酸钠(1g/L-5g/L)、钨酸钠(0.5g/L-3g/L)、三乙醇胺(1ml/L-3.5ml/L)、纳米ZrO 2(5g/L-12g/L)为电解溶质,并用恒流脉冲模式输出,此过程电流密度设置为14A/dm 2-18A/dm 2,负正电流比为0.9-1.3,负正脉冲占空比为50%-65%,脉冲频率范围为1000Hz-1500Hz,时间为10min-20min。
本实施例在微孔填充层102的制备过程中,可选地,电源2正向电流设定为8A,负向电流9A,电源2频率1200Hz,正负脉冲占空比取50:50,保持放电15min。
完成制备的多孔功能层101和微孔填充层102具有隔热功能,可以有效阻碍燃烧室内热量的散失,在热疲劳试验条件下,相比于普通铝活塞,该活塞的使用寿命较长。由于多孔功能层101和微孔填充层102均具有孔洞结构,孔隙率较高,能够实现涂层壁面温度的快速变化,避免了进气加热,活塞基体100避免了剧烈的热交换,提高了热量用转化为有用功的效率,燃油耗降低量大约0.3%左右。
第二电解液的电解溶质含有纳米ZrO 2,采用ZrO 2的纳米颗粒作为填充材料,但是在等离子体氧化物制备工艺中,高浓度的ZrO 2会导致起弧电压升高,使单位时间内施加在表面的能量变大,当涂层生长至一定厚度后,击穿难度会增大,容易造成仅在少数薄弱处持续放电,使涂层整体厚度降低,隔热性能受到限制;而低浓度ZrO 2的封闭效果不佳,而且对降低热导率的贡献不大。
鉴于上述现象,本实施例采用了两组独立的第一反应机构3和第二反应机构4,利用第一阀32对第一反应箱31内的第一电解液进行流量和开关控制,第一电解液主要设置为制备较大厚度的多孔功能层101,疏松的多孔功能层101的厚度大约为90μm-110μm。利用第二阀42对第二反应箱41内的第二电解液进行流量和开关控制,第二电解液是含有高浓度ZrO 2的电解液,且设置为制备微孔填充层102,微孔填充层102能够降低电容,并对多孔功能层101的孔洞进行一定程度的封闭。
在微孔填充层102制备完成之后,在形成封闭层103之前,关闭电源2、第一反应机构3、第二反应机构4及第三反应机构5,开启三通阀9和泵10,使外界空气经三通阀9进入密封腔内,以对活塞基体100和夹具1吹风和干燥,通风干燥处理时间可选15min-25min。干燥处理同样在此密封腔中完成,整个过程无需拆卸夹具1,避免了涂层污染,节约了时间成本。
在干燥处理后,第三反应机构5能够向密封腔输送封孔剂。封孔剂为聚硅氮烷,在将50ml封孔剂加入第三反应箱51之后,关闭三通阀9、第三阀52及第一真空阀11,开启泵10,使密封腔内保持0.08Mpa-0.1Mpa的真空,然后关闭第二真空阀12,开启第三阀52,密封腔的负压将第三反应箱51内的封孔剂吸入密封腔内,通过第一接头在微孔填充层102的顶面喷涂封孔剂,以实现对微孔填充层102的封孔处理。经过一段反应时间后,例如1min,开启三通阀9进行放气,卸载已完成封孔处理的活塞基体100,并将其放置于干燥箱内干燥,从而完成封孔处理。
在封孔工艺中,独立的第一阀32和第二阀42分别控制第一反应箱31和第二反应箱41,可以实现负压真空封孔处理的同时,而且能够保证第一电解液和第二电解液的循环回收使用。另外,可在密封腔同一种工位下可以完成多孔功能层101的制备、微孔填充层102的制备、封闭层103的涂覆以及干燥处理,避免涂层污染的同时简化了处理工艺、缩短了制备周期。
如图3所示,本实施例提供的活塞制作方法的过程如下所示:
S1、对活塞基体100的顶面进行预处理;
S2、配制第一电解液并将其放置于第一反应箱31内,配制第二电解液并将其放置于第二反应箱41内;
S3、将完成预处理的活塞基体100放置于夹具1内进行夹紧固定,并将电源2的阳极电连接于活塞基体100,电源2的阴极电连接于夹具1;
S4、开启电源2、液压泵8、第一阀32及三通阀9,将第一电解液输送至密封腔,以完成多孔功能层101的制备;
S5、开启电源2、液压泵8、第二阀42及三通阀9,将第二电解液输送至密封腔,以完成微孔填充层102的制备;
S6、关闭电源2、液压泵8、第一阀32、第二阀42、第三阀52及第一真空阀11,开启三通阀9、泵10及第二真空阀12,对密封腔进行吹风干燥处理;
S7、将封孔剂放置于第三反应箱51内,关闭泵10和第二真空阀12,开启 第三阀52,密封腔内的负压将封孔剂喷涂至活塞基体100的顶面,并保持预设时间;
S8、开启三通阀9,对密封腔进行放气,拆卸活塞基体100并放置于空气中晾干。
本申请的有益效果:
本申请提供的活塞,通过在活塞基体100的顶面设置有多孔功能层101,多孔功能层101的顶面上设置有微孔填充层102,微孔填充层内102的孔洞和多孔功能层101内孔洞形成通道,通道内用于储存空气,起到了隔热的作用。微孔填充层102内的孔洞直径小于多孔功能层101内孔洞的直径,微孔填充层102在起到了多孔功能层101和封闭层103之间过渡作用的同时,对多孔功能层101在一定程度上起到了填充作用。封闭层103设置于微孔填充层102的顶面上,且设置为封堵微孔填充层102内的孔洞,封闭层103起到了封堵的作用,避免高温气体、腐蚀介质进入多孔功能层101和微孔填充层102的孔洞内以对其进行高温氧化及腐蚀,起到了对活塞基体100的防护作用,从而提高活塞的耐高温性能及耐腐蚀性。
另外,在多孔功能层101和微孔填充层102的相互配合作用下,在多孔功能层101和微孔填充层102的孔洞内可以形成空气填充,有效地降低了活塞涂层的体积比热容,在保证较好的隔热防护性能的同时,又能实现控制燃烧温度的防护性能,使得活塞自身容易被加热,进入燃烧室的冷空气进气温度较低,避免进气加热,从而提高了热量用转化为有用功的效率,有效降低燃油耗。
本申请提供的活塞制造装置,夹具1起到了对活塞基体100固定的效果,活塞基体100的顶部密封伸入夹具1内,与夹具1的内壁形成密封腔,密封腔为在活塞基体100的顶面制备涂层提供了反应环境。第一反应机构3连通于密封腔,且设置为在活塞基体100的顶面制备多孔功能层101。第二反应机构4连通于密封腔,且设置为在多孔功能层101的顶面制备微孔填充层102。第三反应机构5连通于密封腔,且设置为在微孔填充层102的顶面制备封闭层103。采用这种结构,多孔功能层101、微孔填充层102及封闭层103三个制备工序都在专用的夹具1与活塞基体100顶部形成的密封腔内完成,无需进行每个反应机构的安装和拆卸,节约了时间成本,避免了每个涂层二次污染。
本申请提供的活塞制作方法,将电源2的阳极电连接于活塞基体100,电源2的阴极电连接于夹具1,以供用于生成多孔功能层101和微孔填充层102的电 化学反应。只开启第一反应机构3,在密封腔内制备多孔功能层101;只开启第二反应机构4,在密封腔内制备微孔填充层102;只开启第三反应机构5,在密封腔内制备微孔封闭层103。采用第一反应机构3、第二反应机构4及第三反应机构5独立的分控设置,能够实现多种电解液的自由组合和回收利用,无需中断试验,独立调节,灵活性好。同时,夹具1只需对活塞基体100夹紧固定一次,无需进行每次反应都进行安装和拆卸简化了工艺流程,节约生产成本,且每个工序都在密封腔内进行,避免了涂层污染。
于本文的描述中,需要理解的是,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。

Claims (10)

  1. 一种活塞,包括:
    活塞基体(100);
    多孔功能层(101),设置于所述活塞基体(100)的顶面上;
    微孔填充层(102),设置于所述多孔功能层(101)的顶面上,所述微孔填充层(102)内的孔洞的直径小于所述多孔功能层(101)内的孔洞的直径;
    封闭层(103),设置于所述微孔填充层(102)的顶面上,且设置为部分封堵所述微孔填充层(102)内的孔洞。
  2. 根据权利要求1所述的活塞,其中,沿远离所述多孔功能层(101)的方向,所述微孔填充层(102)内的孔洞的孔隙率和直径中的至少一个参数呈递减分布。
  3. 一种活塞制造装置,用于制作如权利要求1-2任一项所述的活塞,所述活塞制造装置包括:
    夹具(1),设置为夹紧所述活塞基体(100),所述活塞基体(100)的顶部密封伸入所述夹具(1)内,且与所述夹具(1)的内壁形成密封腔;
    电源(2),所述电源(2)的阳极电连接于所述活塞基体(100),所述电源(2)的阴极电连接于所述夹具(1);
    第一反应机构(3),选择性连通于所述密封腔,以在所述活塞基体(100)的顶面形成所述多孔功能层(101);
    第二反应机构(4),选择性连通于所述密封腔,以在所述多孔功能层(101)的顶面形成所述微孔填充层(102);
    第三反应机构(5),选择性连通于所述密封腔,以在所述微孔填充层(102)的顶面形成所述封闭层(103)。
  4. 根据权利要求3所述的活塞制造装置,还包括:
    三通阀(9),所述三通阀(9)的第一端分别连通于所述第一反应机构(3)、所述第二反应机构(4),所述三通阀(9)的第二端分别连通于所述密封腔、所述第三反应机构(5),所述三通阀(9)的第三端连通于外界大气;
    泵(10),能够连通于所述密封腔,以使外界空气经所述三通阀(9)进入所述密封腔内,并对所述活塞基体(100)进行吹风和干燥。
  5. 根据权利要求3所述的活塞制造装置,还包括密封圈(6),所述密封圈(6)套设于所述活塞基体(100)上并抵接于所述夹具(1)的内壁,所述密封圈(6)和所述夹具(1)的内壁之间形成所述密封腔。
  6. 根据权利要求5所述的活塞制造装置,还包括固定环(7)和连接件,所述 固定环(7)套设于所述活塞基体(100)上并抵接于所述密封圈(6)的底面,所述连接件穿设所述固定环(7)和所述活塞基体(100)。
  7. 一种活塞制作方法,采用如权利要求3-6任一项所述的活塞制造装置进行活塞制作,所述活塞制作方法包括:
    利用所述夹具(1)密封夹紧所述活塞基体(100),在所述活塞基体(100)和所述夹具(1)的内壁之间形成所述密封腔;
    将所述电源(2)的阳极电连接于所述活塞基体(100),所述电源(2)的阴极电连接于所述夹具(1);
    开启所述第一反应机构(3),关闭所述第二反应机构(4)和所述第三反应机构(5),使所述第一反应机构(3)连通于所述密封腔,采用电化学的方式在所述活塞基体(100)的顶面形成所述多孔功能层(101);
    开启所述第二反应机构(4),关闭所述第一反应机构(3)和所述第三反应机构(5),使所述第二反应机构(4)连通于所述密封腔,采用电化学的方式在所述多孔功能层(101)的顶面形成所述微孔填充层(102);
    开启所述第三反应机构(5),关闭所述第一反应机构(3)和所述第二反应机构(4),使所述第三反应机构(5)连通于所述密封腔,形成覆盖于所述微孔填充层(102)顶面的所述封闭层(103)。
  8. 根据权利要求7所述的活塞制作方法,其中,在形成所述封闭层(103)之前,还包括关闭所述电源(2)、所述第一反应机构(3)、所述第二反应机构(4)及所述第三反应机构(5),开启三通阀(9)和泵(10),使外界空气经所述三通阀(9)进入所述密封腔内,以对所述活塞基体(100)和所述夹具(1)进行吹风和干燥。
  9. 根据权利要求7所述的活塞制作方法,其中,所述第一反应机构(3)能够向所述密封腔输送第一电解液,所述第二反应机构(4)能够向所述密封腔输送第二电解液,所述第三反应机构(5)能够向所述密封腔输送封孔剂。
  10. 根据权利要求7所述的活塞制作方法,其中,在所述夹具(1)夹紧所述活塞基体(100)之前,还包括对所述活塞基体(100)的顶面进行预处理。
PCT/CN2020/134196 2020-07-07 2020-12-07 活塞、活塞制造装置及活塞制作方法 WO2022007323A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3185286A CA3185286A1 (en) 2020-07-07 2020-12-07 Piston, piston manufacturing device, and piston manufacturing method
EP20944794.5A EP4180647A4 (en) 2020-07-07 2020-12-07 PISTONS, DEVICE FOR PRODUCING PISTONS AND METHOD FOR PRODUCING PISTONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010643583.5A CN111535935B (zh) 2020-07-07 2020-07-07 一种活塞、活塞制造装置及活塞制作方法
CN202010643583.5 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007323A1 true WO2022007323A1 (zh) 2022-01-13

Family

ID=71978342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134196 WO2022007323A1 (zh) 2020-07-07 2020-12-07 活塞、活塞制造装置及活塞制作方法

Country Status (4)

Country Link
EP (1) EP4180647A4 (zh)
CN (1) CN111535935B (zh)
CA (1) CA3185286A1 (zh)
WO (1) WO2022007323A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535935B (zh) * 2020-07-07 2020-11-20 潍柴动力股份有限公司 一种活塞、活塞制造装置及活塞制作方法
CN113441703A (zh) * 2021-06-29 2021-09-28 潍柴动力股份有限公司 一种钢质缸套的制备方法及钢质缸套

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106216A (ja) * 2001-09-28 2003-04-09 Nippon Piston Ring Co Ltd シリンダーとピストンリングとの組み合わせ
US20070218303A1 (en) * 2006-03-20 2007-09-20 Nissan Motor Co., Ltd. Aluminum alloy-made part
JP2009235539A (ja) * 2008-03-28 2009-10-15 Aisin Seiki Co Ltd アルミニウム部材の陽極酸化処理方法
CN105339531A (zh) * 2014-03-27 2016-02-17 铃木株式会社 铝构件的表面形成覆膜的方法、表面形成有覆膜的铝构件和内燃机用活塞
CN105452503A (zh) * 2013-08-05 2016-03-30 丰田自动车株式会社 内燃机及其制造方法
JP2017061722A (ja) * 2015-09-25 2017-03-30 アイシン精機株式会社 金属酸化物被膜、ピストン、及び、金属酸化物被膜の製造方法
CN107313095A (zh) * 2017-08-30 2017-11-03 重庆协成汽车零部件有限公司 阳极氧化装置和活塞阳极氧化加工工艺
CN107532303A (zh) * 2015-04-08 2018-01-02 爱信精机株式会社 车辆用机械部件及活塞
CN110461798A (zh) * 2017-03-29 2019-11-15 日本碍子株式会社 多孔质陶瓷颗粒及多孔质陶瓷结构体
CN111535935A (zh) * 2020-07-07 2020-08-14 潍柴动力股份有限公司 一种活塞、活塞制造装置及活塞制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750014A (en) * 1995-02-09 1998-05-12 International Hardcoat, Inc. Apparatus for selectively coating metal parts
JP4661794B2 (ja) * 2007-01-19 2011-03-30 トヨタ自動車株式会社 内燃機関用のピストンおよびその製造方法
JP5707826B2 (ja) * 2010-09-30 2015-04-30 マツダ株式会社 アルミ合金製品の断熱構造
JP2018025164A (ja) * 2016-08-12 2018-02-15 日立オートモティブシステムズ株式会社 内燃機関のピストン、及び内燃機関のピストンの製造方法
JP2020033591A (ja) * 2018-08-29 2020-03-05 いすゞ自動車株式会社 陽極酸化皮膜を有する金属成形体の製造方法、陽極酸化皮膜を有する金属成形体、ピストンおよび内燃機関

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106216A (ja) * 2001-09-28 2003-04-09 Nippon Piston Ring Co Ltd シリンダーとピストンリングとの組み合わせ
US20070218303A1 (en) * 2006-03-20 2007-09-20 Nissan Motor Co., Ltd. Aluminum alloy-made part
JP2009235539A (ja) * 2008-03-28 2009-10-15 Aisin Seiki Co Ltd アルミニウム部材の陽極酸化処理方法
CN105452503A (zh) * 2013-08-05 2016-03-30 丰田自动车株式会社 内燃机及其制造方法
CN105339531A (zh) * 2014-03-27 2016-02-17 铃木株式会社 铝构件的表面形成覆膜的方法、表面形成有覆膜的铝构件和内燃机用活塞
CN107532303A (zh) * 2015-04-08 2018-01-02 爱信精机株式会社 车辆用机械部件及活塞
JP2017061722A (ja) * 2015-09-25 2017-03-30 アイシン精機株式会社 金属酸化物被膜、ピストン、及び、金属酸化物被膜の製造方法
CN110461798A (zh) * 2017-03-29 2019-11-15 日本碍子株式会社 多孔质陶瓷颗粒及多孔质陶瓷结构体
CN107313095A (zh) * 2017-08-30 2017-11-03 重庆协成汽车零部件有限公司 阳极氧化装置和活塞阳极氧化加工工艺
CN111535935A (zh) * 2020-07-07 2020-08-14 潍柴动力股份有限公司 一种活塞、活塞制造装置及活塞制作方法

Also Published As

Publication number Publication date
CN111535935B (zh) 2020-11-20
CA3185286A1 (en) 2022-01-13
EP4180647A4 (en) 2024-07-10
CN111535935A (zh) 2020-08-14
EP4180647A1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
WO2022007323A1 (zh) 活塞、活塞制造装置及活塞制作方法
CN104087996B (zh) 铝合金表面易洁性微弧氧化陶瓷膜层的制备方法
RU2344203C2 (ru) Электролизер и применяемые в нем конструкционные элементы
CN107858629B (zh) 一种利用陶瓷材料密封热喷涂陶瓷涂层孔隙工艺
JP2017186638A (ja) 真空と蒸気噴射を用いて陽極酸化膜の孔を封止する封孔装置とその方法
CN101092730A (zh) 一种低能耗微弧氧化方法和装置
CN103184498A (zh) 滚刷式微弧氧化处理方法及装置
GB1055001A (zh)
CN116516370A (zh) 基于多孔润湿异性电极的气膜层减阻装置、控制方法及应用
CN204408834U (zh) 一种散热装置
CN207313721U (zh) 一种用于金属微弧氧化单向表面改性的装置
CN213507163U (zh) 一种真空镀膜用集成腔室
CN112095131B (zh) 一种用于制备收口筒形内腔陶瓷层的工装设备及方法
CN204550748U (zh) 一种铝合金阳极氧化装置
CN210164281U (zh) 一种电沉积法水中混凝土裂缝修复装置
CN109392204B (zh) 一种放热面为电绝缘面阻垢双流道环腔管电加热器
CN111893536A (zh) 一种用于双筒作动筒内腔微弧氧化的工装夹具
CN206279277U (zh) 防腐处理及氧化装置
CN106435679B (zh) 一种降低陶瓷电镀镍层起泡的方法
CN118292081A (zh) 微弧氧化陶瓷层局部修复装置及修复方法
CN110455111A (zh) 一种主动式强化传热装置及主动式强化传热方法
CN215404592U (zh) 航空钛合金作动筒及其复合膜层的制备装置
KR100759105B1 (ko) 냉매를 이용한 고효율 진공장치
CN211424535U (zh) 一种多腔体、逐级加热装置
CN113431696B (zh) 缸盖、复合涂层的制备装置及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185286

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944794

Country of ref document: EP

Effective date: 20230207