WO2022007049A1 - 一种显示面板、显示面板的制作方法及显示装置 - Google Patents

一种显示面板、显示面板的制作方法及显示装置 Download PDF

Info

Publication number
WO2022007049A1
WO2022007049A1 PCT/CN2020/105400 CN2020105400W WO2022007049A1 WO 2022007049 A1 WO2022007049 A1 WO 2022007049A1 CN 2020105400 W CN2020105400 W CN 2020105400W WO 2022007049 A1 WO2022007049 A1 WO 2022007049A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
under
screen device
area
Prior art date
Application number
PCT/CN2020/105400
Other languages
English (en)
French (fr)
Inventor
潘杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/261,609 priority Critical patent/US11877495B2/en
Publication of WO2022007049A1 publication Critical patent/WO2022007049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to the field of display technology, and in particular, to a display panel, a manufacturing method of the display panel, and a display device.
  • Display devices usually use organic light-emitting diode (Organic Light-Emitting Diode, referred to as OLED) devices, and OLED devices are being widely used in smart terminal products such as mobile phones and tablet computers.
  • OLED Organic Light-Emitting Diode
  • Many terminal manufacturers apply it to full-screen and borderless products. Since full-screen and borderless products require a larger light-emitting area, in practical applications, it is usually necessary to set mounting holes on the organic light-emitting display to use In order to reserve the installation position of the front camera, earpiece, start button and other hardware on the terminal device.
  • mounting holes are provided in the non-display area outside the effective display area, which limits the area of the effective display area and cannot prepare a full screen.
  • the installation holes are arranged in the display area of the display panel, which can reduce the frame and increase the effective area of the display area, thereby realizing the fabrication of a full screen.
  • under-screen devices such as cameras, etc.
  • devices such as cameras need to be placed under the panel.
  • the panel area corresponding to these under-screen devices is called the under-screen device area, and the under-screen devices are required
  • the under-screen device area needs to be designed as a semi-transparent semi-display area, that is, the common electrode layer of the display panel needs to achieve a certain light transmittance in this area.
  • the existing full-screen display panel includes a base substrate 102 , a pixel electrode layer 103 , an organic layer 104 , a common electrode layer 105 , and an encapsulation layer 106 .
  • the full-screen display panel area also includes an under-screen device area 15 and a non-under-screen device area 16.
  • the existing common electrode layer 105 is vapor-deposited on the full-screen display panel over the entire surface.
  • the thickness of the common electrode layer 105 is the same everywhere, and cannot be It is realized that the thickness of the common electrode layer located in the under-screen device area 15 is smaller than the thickness of the common electrode layer located in the non-under-screen display area 16, which cannot meet the light transmission requirements of the under-screen device area.
  • embodiments of the present invention provide a display panel, a method for manufacturing a display panel, and a display device, so as to solve the problem in the prior art that the area where the hardware is installed on the display panel limits the area of the effective display area and cannot achieve a full screen .
  • a display panel which includes: an under-screen device area and a non-under-screen device area, wherein the under-screen device area corresponds to an area below which includes installation hardware;
  • the under-screen device area includes: a substrate portion, and an anode layer, a pixel definition layer, a deformation layer, a cathode layer and an encapsulation layer sequentially arranged on the substrate portion;
  • the volume of the deformable layer expands under the first predetermined condition, so that the thickness of the cathode layer in the under-screen device region is smaller than the thickness of the cathode layer in the non-under-screen device region.
  • the first predetermined condition includes illumination conditions in a first predetermined wavelength range; the volume of the deformable layer is restored to an original state from an expanded state under a second predetermined condition, wherein the second predetermined condition includes a second predetermined wavelength range of lighting conditions.
  • the illumination in the first predetermined wavelength range includes ultraviolet light; the illumination in the second predetermined wavelength range includes green light.
  • the area of the top surface of the deformation layer is larger than the area of the bottom surface, and after the volume expansion of the deformation layer, the top surfaces of adjacent deformation layers are in contact.
  • the material of the deformation layer is an azophenyl polymer.
  • a method for manufacturing a display panel including:
  • the display panel is divided into an under-screen device area and a non-under-screen device area; wherein, the under-screen device area corresponds to an area including installation hardware below;
  • the volume of the deformed layer is expanded by the first predetermined condition, so that the thickness of the cathode layer above the deformed layer is smaller than the thickness of the cathode layer in the non-under-screen device region.
  • the first predetermined condition includes illumination conditions in a first predetermined wavelength range; the volume of the deformable layer is restored to an original state from an expanded state under a second predetermined condition, wherein the second predetermined condition includes a second predetermined wavelength range of lighting conditions.
  • the illumination in the first predetermined wavelength range includes ultraviolet light; the illumination in the second predetermined wavelength range includes green light.
  • the material of the deformation layer is an azophenyl polymer.
  • a display device including the display panel according to any one of the above-mentioned first aspects.
  • Embodiments of the present invention provide a display panel, a method for fabricating a display panel, and a display device, wherein the display panel includes: an under-screen device area and a non-under-screen device area, wherein the under-screen device area corresponds to a lower part of which includes installation hardware.
  • the device area under the screen includes: a substrate part, and an anode layer, a pixel definition layer, a deformation layer, a cathode layer and an encapsulation layer sequentially arranged on the substrate part; wherein, the deformation layer expands in volume under a first predetermined condition , so that the thickness of the cathode layer in the under-screen device region is smaller than the thickness of the cathode layer in the non-under-screen device region.
  • a deformable layer whose shape can be changed is added between the pixel definition layer and the cathode layer of the existing display panel, so that the continuous film formation of the cathode layer is blocked during the process of making the cathode layer, so that the The thickness of the cathode layer in the under-screen device area is smaller than the thickness of the cathode layer in the non-under-screen device area, and in the display panel in the prior art, the common electrode layer is evaporated on the entire surface of the display panel, and the thickness of the common electrode layer varies. It is the same in all parts, which cannot meet the light transmission requirements of the device area under the screen.
  • the installation holes can be arranged in the display area of the display panel, and the hardware structure to be installed is installed in the display area, so the frame can be reduced and the display area can be enlarged.
  • the effective area of then realizes the production of a full screen. It solves the problem in the prior art that the area where the hardware is installed on the display panel limits the area of the effective display area and cannot achieve a full screen, realizes the requirement that the device area under the screen can be displayed normally and ensures its light transmittance, and improves the organic light-emitting display.
  • the display effect of the panel is arranged in the display area of the display panel, and the hardware structure to be installed is installed in the display area, so the frame can be reduced and the display area can be enlarged.
  • the effective area of then realizes the production of a full screen. It solves the problem in the prior art that the area where the hardware is installed on the display panel limits the area of the effective display area and cannot achieve a full screen, realizes the requirement that the device area under the screen can be displayed normally and
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display panel
  • FIG. 2 is a schematic structural diagram of a display device
  • FIG. 3 is a schematic cross-sectional structure diagram of a display panel provided according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for manufacturing a display panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structure diagram of a display panel formed in a manufacturing process of the display panel provided according to an embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional structural diagram of a display panel formed in a manufacturing process of the display panel provided according to an embodiment of the present invention
  • FIG. 7 is a schematic cross-sectional structure diagram of a display panel formed in a manufacturing process of a display panel provided according to an embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional structural diagram of a display panel formed in a manufacturing process of the display panel provided according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of a display panel formed in a manufacturing process of the display panel provided according to an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • a display panel which is mainly aimed at a full-screen and bezel-less display panel, and can of course also be applied to an ordinary bezel or narrow-bezel display panel.
  • the structure in the present invention can be adopted. The specific structure of the display panel will be described in detail below.
  • the display panel according to the embodiment of the present invention includes an under-screen device area 15 and a non-under-screen device area 16 as shown in FIG. 2 .
  • the under-screen device area 15 corresponds to an area including installation hardware below.
  • the hardware structure includes: One or more of the following structures: front camera, start button, earpiece or speaker, and the specific installation method of the hardware structure is not limited here.
  • the shape of the cutting mounting holes is determined according to the hardware structure to be installed. For different hardware structures, different shapes of mounting holes can be set.
  • the cross-section of the mounting holes in the direction parallel to the substrate substrate The shape is one or more of the following: circle, oval, rectangle, trapezoid, diamond, or square.
  • the under-screen device area 15 includes: a substrate part 1 , and an anode layer 2 , a pixel definition layer 3 , a deformation layer 4 , a cathode layer 6 and an encapsulation layer 7 sequentially arranged on the substrate part 1 .
  • the deformable layer 4 expands in volume under the first predetermined condition, so that the thickness of the cathode layer in the under-screen device region 15 is smaller than the thickness of the cathode layer in the non-under-screen device region 16 .
  • the present invention is mainly applicable to full-screen and borderless display panels.
  • it generally includes at least a base substrate, and a thin film transistor structure, an anode layer, a light-emitting layer, a thin film transistor structure, an anode layer, a light-emitting layer, Cathode layer and encapsulation layer.
  • some other film layers are also included, for example, a planarization layer, a passivation layer, etc., which are not limited herein.
  • the thin film transistor layers are arranged on one side surface of the base substrate, and are used to control the light emission of the pixel region.
  • the thin film transistor layer includes a plurality of thin film transistors.
  • Each thin film transistor includes a gate electrode formed on a base substrate, a gate insulating layer overlying the gate electrode, an active layer formed on the gate insulating layer, and a source electrode formed on the active layer and drain electrode. It can be understood that the above-mentioned thin film transistor is described by taking a bottom gate type as an example, and the present invention is not limited herein. In other embodiments, the thin film transistor may be a top gate type.
  • a deformable layer whose shape can be changed is added between the pixel definition layer and the cathode layer of the existing display panel, so that the continuous film formation of the cathode layer is blocked during the process of making the cathode layer, so that the The thickness of the cathode layer in the under-screen device area 15 is smaller than the thickness of the cathode layer in the non-under-screen device area 16, and in the display panel in the prior art, the common electrode layer is evaporated on the entire surface of the display panel, and the common electrode layer is The thickness is the same everywhere, which cannot meet the light transmission requirements of the device area under the screen.
  • the mounting holes can be arranged in the display area of the display panel, and the hardware structure to be installed is installed in the display area, so the frame can be reduced, and the The effective area of the large display area, thereby realizing the production of a full screen. It solves the problem in the prior art that the area where the hardware is installed on the display panel limits the area of the effective display area and cannot achieve a full screen, realizes the requirement that the device area under the screen can be displayed normally and ensures its light transmittance, and improves the organic light-emitting display. The display effect of the panel.
  • the material of the cathode layer 6 may be Ag, Al, Ca, In, Li, Mg and other low work function metal materials or low work function composite metal materials.
  • the material of the cathode layer in this example can be magnesium-silver alloy or metal magnesium.
  • the work function of magnesium-silver alloy and metal magnesium is low, which is conducive to the transition of electrons generated by the cathode to the light-emitting layer, thereby improving the recombination rate of electrons and holes, and improving the light extraction efficiency.
  • the electrical conductivity of the two is also very good, and the price is cheap, which is conducive to saving costs.
  • the structure of the above-mentioned encapsulation layer may not be limited.
  • a three-layer structure may be provided, that is, a first inorganic layer, a second organic layer and a third inorganic layer may be provided.
  • a multi-layered structure can also be provided.
  • the inorganic layer in the encapsulation layer can be made of silicon nitride, silicon oxynitride, silicon oxide, and aluminum oxide materials;
  • the non-organic layer in the encapsulation layer can be made of organic compound materials such as acrylic, epoxy resin, and silicon.
  • the encapsulation layer is disposed on the side of the cathode layer away from the array substrate.
  • the encapsulation layer can block air and water vapor for the organic light-emitting unit, thereby ensuring the reliability of the display panel.
  • the substrate in this embodiment may be a flexible substrate, and the corresponding organic light-emitting display panel may be a flexible organic light-emitting display panel.
  • the flexible organic light-emitting display panel has special effects such as low power consumption and bendability, and is suitable for various displays. devices, especially in wearable display devices.
  • the material of the flexible substrate is polyesterimide or polyethylene terephthalate resin.
  • the substrate can also be a rigid substrate, and the corresponding organic light-emitting display panel is a rigid organic light-emitting display panel. In fact, this embodiment does not specifically limit the material of the organic light emitting display panel.
  • the material of the anode in this embodiment may be a transparent conductive film, such as indium tin oxide or indium zinc oxide.
  • the anode at least includes a reflective film, the reflective film may be located on a surface of the anode near the light-emitting layer, and the material of the reflective film may be silver.
  • a negative voltage can be applied to the cathode during electroluminescence.
  • the organic light-emitting display panel in this embodiment may have m light emitting colors, where m is an integer greater than or equal to 3, and this exemplary embodiment may include three light emitting colors, namely red, green and blue, respectively.
  • the light-emitting device corresponds to a light-emitting color.
  • the organic functional layer included in the organic light-emitting device includes an electron transport layer, a hole transport layer and a light-emitting layer, wherein the electron transport layer is arranged near the cathode, the hole transport layer is arranged near the anode, and the light-emitting layer is located between the electron transport layer and the hole transport layer. between.
  • electrons e are injected from the cathode to the organic functional layer, and holes h are injected from the anode to the organic functional layer.
  • the injected electrons e migrate from the electron transport layer of the organic functional layer to the light emitting layer, and the injected holes h migrate from the hole transport layer of the organic functional layer to the light emitting layer.
  • the injected electrons e and the injected holes h recombine in the light-emitting layer to generate excitons.
  • the excitons migrate under the action of the electric field and transfer energy to the organic light-emitting molecules in the light-emitting layer.
  • the electrons of the organic light-emitting molecules transition from the ground state to the excited state and release energy. Finally, the energy is released in the form of photons and emits light.
  • the organic light-emitting device at least includes an organic light-emitting device with a light output color of red, an organic light-emitting device with a light output color of green, and an organic light-emitting device with a light output color of blue.
  • the pixel definition layer 3 is used for dividing an organic light-emitting device whose light color is red, an organic light-emitting device whose light-emitting color is green, and an organic light-emitting device whose light-emitting color is blue.
  • the pixel definition layer 3 can also adjust the light-emitting area of each organic light-emitting device.
  • An example is an organic light-emitting device whose light-emitting color is red as an example.
  • each organic light-emitting device is not particularly limited, and the specific value may be determined according to different products.
  • the above-mentioned first predetermined conditions that can change the volume size of the deformation layer 4 can include many kinds, for example, under the irradiation of light in a specific wavelength range, it can change from trans to cis, and volume expansion occurs, or light in a specific wavelength range can occur.
  • the first predetermined condition may be the illumination condition of the first predetermined wavelength range.
  • the second predetermined condition may be, for example, an illumination condition in a second predetermined wavelength range.
  • the light in the first predetermined wavelength range may be a light source with a shorter wavelength such as ultraviolet light
  • the light in the second predetermined wavelength range may be a light source with a longer wavelength such as green light.
  • the area of the top surface of the deformation layer is larger than the area of the bottom surface, and after the volume expansion of the deformation layer, the top surfaces of adjacent deformation layers are in contact.
  • the cathode layer 6 above the pixel definition layer 3 in the under-screen device region 15 can be continuously formed into a film, that is, the thickness of the cathode layer in the under-screen device region 15 is uniform, and the uniform thickness is smaller than that in the non-under-screen device region 16 The thickness of the cathode layer in .
  • the material of the deformation layer 4 is an azophenyl polymer C4AzoC11OH,
  • An embodiment of the present invention also provides a method for manufacturing a display panel, which divides the display panel into an under-screen device area and a non-under-screen device area; wherein, the under-screen device area corresponds to an area below which includes installation hardware, as shown in FIG. 4 .
  • the manufacturing method of the display panel includes the following process steps:
  • Step S401 providing a substrate, the substrate in this step is an integral substrate covering the under-screen device area 15 and the non-under-screen device area 16 .
  • Step S402 The anode layer 2 and the pixel definition layer 3 are formed on the substrate, as shown in FIG. 5, to form the cross-sectional structure of the display panel in the manufacturing process of the display panel.
  • Step S403 forming a deformation layer on the pixel definition layer of the under-screen device area 15 , for example, the deformation layer 4 can be formed by chemical vapor deposition and then etched or fabricated by evaporation or transfer; as shown in FIG. 6 , forming a cross-sectional structure of the display panel during the manufacturing process of the display panel.
  • the chemical vapor deposition mentioned above refers to the process of introducing the vapor containing the gaseous reactant or liquid reactant and other gases required for the reaction into the reaction chamber, and a chemical reaction occurs on the surface of the substrate to form a thin film. It has the advantages of low temperature, easy control of film composition and thickness, film thickness proportional to deposition time, good uniformity and repeatability, and convenient operation.
  • Step S404 fabricating the organic layers 5 in sequence, as shown in FIG. 7 , to form a cross-sectional structure of the display panel in the process of fabricating the display panel.
  • Step S405 when the cathode layer is formed, the volume of the deformed layer is expanded according to the first predetermined condition, so as to shield the upper cathode layer.
  • the above-mentioned first predetermined condition that can change the volume size of the deformation layer 4 can include many kinds.
  • the first predetermined condition can be an illumination condition of a first predetermined wavelength range.
  • the second predetermined condition may be, for example, an illumination condition in a second predetermined wavelength range.
  • the light in the first predetermined wavelength range may be a light source with a shorter wavelength such as ultraviolet light
  • the light in the second predetermined wavelength range may be a light source with a longer wavelength such as green light.
  • the area of the top surface of the deformation layer is larger than the area of the bottom surface.
  • the cathode layer 6 above the pixel definition layer 3 in the device area 15 can be continuously formed into a film, that is, the thickness of the cathode layer in the under-screen device area 15 is uniform, and the uniform thickness is smaller than that of the cathode layer in the non-under-screen device area 16. thickness.
  • the deformable layer 4 may expand in volume at the beginning, middle or end of the cathode layer 6 to make the film thickness thinner.
  • the material of the deformation layer 4 is an azophenyl polymer C4AzoC11OH,
  • Step S406 forming the cathode layer 6 in sequence, and the deformation layer will block the continuous film formation of the cathode layer 6 ; as shown in FIG. 9 , the cross-sectional structure of the display panel in the manufacturing process of the display panel is formed.
  • Step S407 Irradiate the deformation layer 4 with green light to restore it to its original state, and continue to fabricate the cathode layer 6, so that the thickness of the cathode layer above the deformation layer is smaller than the thickness of the cathode layer in the non-under-screen device area, as shown in the figure 3 shown.
  • Step S408 forming the encapsulation layer 7 in sequence.
  • the substrate in this embodiment may be a flexible substrate, and the corresponding organic light-emitting display panel may be a flexible organic light-emitting display panel.
  • the flexible organic light-emitting display panel has special effects such as low power consumption and bendability, and is suitable for various display devices, especially suitable for in wearable display devices.
  • the material of the flexible substrate is polyesterimide or polyethylene terephthalate resin.
  • the substrate can also be a rigid substrate, and the corresponding organic light-emitting display panel is a rigid organic light-emitting display panel. In fact, this embodiment does not specifically limit the material of the organic light emitting display panel.
  • An embodiment of the present invention further provides a display device, including the display panel in any of the foregoing embodiments.
  • the display device is not limited to a mobile phone.
  • the display device may include but not limited to a personal computer (Personal Computer, referred to as PC), Personal Digital Assistant (Personal Digital Assistant, referred to as PDA), wireless handheld devices, tablet computers (Tablet Computer), MP4 players or televisions and any other electronic device with display function.
  • a deformable layer whose shape can be changed is added between the pixel definition layer and the cathode layer of the existing display panel, so that the continuity of the cathode layer is blocked during the process of manufacturing the cathode layer.
  • a film is formed, so that the thickness of the cathode layer in the under-screen device area is smaller than the thickness of the cathode layer in the non-under-screen device area, and in the display panel in the prior art, the common electrode layer is evaporated on the entire surface of the display panel.
  • the thickness of the electrode layer is the same everywhere, which cannot meet the light transmission requirements of the device area under the screen.
  • the mounting holes can be arranged in the display area of the display panel, and the hardware structure to be installed is installed in the display area, so it can reduce the The frame increases the effective area of the display area, thereby realizing the production of a full screen. It solves the problem in the prior art that the area where the hardware is installed on the display panel limits the area of the effective display area and cannot achieve a full screen, realizes the requirement that the device area under the screen can be displayed normally and ensures its light transmittance, and improves the organic light-emitting display. The display effect of the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本发明实施例提供了一种显示面板、显示面板的制作方法及显示装置,其中,显示面板包括:屏下装置区和非屏下装置区,其中,屏下装置区对应下方包括安装硬件的区域;屏下装置区包括:基板部分,以及依次设置于该基板部分上的阳极层、像素定义层、形变层、阴极层和封装层;其中,该形变层在第一预定条件下体积产生膨胀,使得屏下装置区中阴极层的厚度小于非屏下装置区中阴极层的厚度。解决了现有技术中显示面板安装硬件的区域限制了有效显示区域的面积,无法实现全面屏的问题,实现了使得屏下装置区可以正常显示又保证其透光率的需求,改善了有机发光显示面板的显示效果。

Description

一种显示面板、显示面板的制作方法及显示装置 技术领域
本发明涉及显示技术领域,具体涉及一种显示面板、显示面板的制作方法及显示装置。
背景技术
全面屏手机凭借其超高的屏占比和极好的用户体验感,成为时下最热门的技术之一。显示器件通常采用有机发光二极管(Organic Light-Emitting Diode,简称为OLED)器件,而OLED器件正在被大量用于手机和平板电脑等智能终端产品中,由于其便于对外观进行定制化,越来越多的终端厂商将其应用到全面屏和无边框产品中,由于全面屏和无边框产品需要更大的发光面积,因此,在实际应用过程中,通常需要在有机发光显示器上设置安装孔,用以在终端设备上预留前置摄像头、听筒和起始键等硬件的安装位置。现有技术一般是在有效显示区域外的非显示区域设置安装孔,这种方式限制了有效显示区域的面积,无法制备全面屏。
将安装孔设置在显示面板的显示区域,可以减少边框,增大显示区域的有效面积,进而可以实现全面屏的制作。为了满足面板全面屏技术兼容屏下装置(如摄像头等)的需求,需要将如摄像头等装置放置在面板的下方,这些屛下装置对应的面板区域称为屏下装置区,并且要求屏下装置区同时满足显示和透光的需求,需要将屏下装置区设计为半透明的半显示区域,即在该区域内显示面板的公共电极层需要达到一定的透光率。然而,如图1及图2所示,现有的全面屏显示面板包括衬底基板102、像素电极层103、有机层104、以及公共电极层105,封装层106。全面屏显示面板区域又包括屏下装置区15和非屏下装置区16,现有公共电极层105为整面蒸镀在全面屏显示面板上,公共电极层105的厚度各处均相同,不能实现位于屏下装置区15的公共电极层的厚度小于位于非屏下显示区16的公共电极层的厚度,无法满足屏下装置区的透光需求。
技术问题
针对现有技术中,将摄像头等硬件安装于屏下装置区,不能使得屏下装置 区同时满足显示和透光的需求,占屏比较低的问题,还未提出有效的解决方式。
技术解决方案
有鉴于此,本发明实施例提供了一种显示面板、显示面板的制作方法及显示装置,以解决现有技术中显示面板安装硬件的区域限制了有效显示区域的面积,无法实现全面屏的问题。
为此,本发明实施例提供了如下技术方案:
本发明第一方面,提供了一种显示面板,包括:屏下装置区和非屏下装置区,其中,所述屏下装置区对应下方包括安装硬件的区域;
所述屏下装置区包括:基板部分,以及依次设置于所述基板部分上的阳极层、像素定义层、形变层、阴极层和封装层;
其中,所述形变层在第一预定条件下体积产生膨胀,使得屏下装置区中阴极层的厚度小于所述非屏下装置区中阴极层的厚度。
可选地,所述第一预定条件包括第一预定波长范围的光照条件;所述形变层在第二预定条件下体积由膨胀状态恢复原始状态,其中所述第二预定条件包括第二预定波长范围的光照条件。
可选地,所述第一预定波长范围的光照包括紫外光;所述第二预定波长范围的光照包括绿光。
可选地,所述形变层顶面的面积大于底面的面积,所述形变层体积膨胀之后,相邻形变层顶面接触。
可选地,所述形变层的材料为偶氮苯基聚合物。
本发明第二方面,提供了一种显示面板的制作方法,包括:
将显示面板区分为屏下装置区和非屏下装置区;其中,所述屏下装置区对应下方包括安装硬件的区域;
提供一基板;
在所述基板上方形成阳极层;
在所述阳极层上方形成有机层和像素定义层;
在所述屏下装置区的像素定义层上方形成形变层;
在形成阴极层时,通过第一预定条件使所述形变层的体积产生膨胀,使得位于所述形变层上方的阴极层的厚度小于所述非屏下装置区中阴极层的厚度。
可选地,所述第一预定条件包括第一预定波长范围的光照条件;所述形变层在第二预定条件下体积由膨胀状态恢复原始状态,其中所述第二预定条件包括第二预定波长范围的光照条件。
可选地,所述第一预定波长范围的光照包括紫外光;所述第二预定波长范围的光照包括绿光。
可选地,所述形变层的材料为偶氮苯基聚合物。
本发明第三方面,提供了一种显示装置,包括上述第一方面中任一的显示面板。
有益效果
本发明实施例技术方案,具有如下优点:
本发明实施例提供了一种显示面板、显示面板的制作方法及显示装置,其中,显示面板,包括:屏下装置区和非屏下装置区,其中,屏下装置区对应下方包括安装硬件的区域;屏下装置区包括:基板部分,以及依次设置于该基板部分上的阳极层、像素定义层、形变层、阴极层和封装层;其中,该形变层在第一预定条件下体积产生膨胀,使得屏下装置区中阴极层的厚度小于非屏下装置区中阴极层的厚度。本发明实施例的显示面板,在现有的显示面板的像素定义层与阴极层之间增加了形状可以发生变化的形变层,使得在制作阴极层的过程中阻断其连续成膜,从而使得屏下装置区中阴极层的厚度小于非屏下装置区中阴极层的厚度,而现有技术中的显示面板,公共电极层是整面蒸镀在显示面板上的,公共电极层的厚度各处均相同,无法满足屏下装置区的透光需求,本发明实施例可以将安装孔设置在显示面板的显示区域,即将安装的硬件结构安装在显示区域,因此可以减少边框,增大显示区域的有效面积,进而实现全面屏的制作。解决了现有技术中显示面板安装硬件的区域限制了有效显示区域的面积,无法实现全面屏的问题,实现了屏下装置区可以正常显示又保证其透光率的需求,改善了有机发光显示面板的显示效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是显示面板的截面结构示意图;
图2是显示装置的结构示意图;
图3是根据本发明实施例提供的显示面板的截面结构示意图;
图4是根据本发明实施例提供的显示面板的制作方法的流程图;
图5是根据本发明实施例提供的显示面板的制作过程中形成的显示面板的截面结构示意图;
图6是根据本发明实施例提供的显示面板的制作过程中形成的显示面板的截面结构示意图;
图7是根据本发明实施例提供的显示面板的制作过程中形成的显示面板的截面结构示意图;
图8是根据本发明实施例提供的显示面板的制作过程中形成的显示面板的截面结构示意图;
图9是根据本发明实施例提供的显示面板的制作过程中形成的显示面板的截面结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明 所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
其中,附图中膜层厚度和区域形状不反映其真实比例,目的只是示意说明本发明的内容。
根据本发明实施例,提供了一种显示面板,主要是针对全面屏和无边框的显示面板,当然也可以应用到普通有边框或者窄边框的显示面板中。只要是需要在显示面板上设置开孔的显示面板结构,均可以采用本发明中的结构,下面对显示面板的具体结构进行详细的说明。
本发明实施例的显示面板,如图3所示,包括如图2所示的屏下装置区15和非屏下装置区16,屏下装置区15对应下方包括安装硬件的区域,硬件结构包括下列结构中的一种或多种:前置摄像头、起始键、听筒或扬声器,硬件结构的具体安装方式,在此不做限定,在实际制作显示面板的过程中,根据显示面板需要制作什么产品,确定对应需要在哪些位置设置硬件结构,以及需要切割的安装孔的尺寸大小和形状。在切割安装孔时,根据需要安装的硬件结构决定切割的安装孔的形状,针对不同的硬件结构,可以设置不同形状的安装孔,可选地,安装孔在平行于衬底基板方向上的截面形状为下列形状中的一种或多种:圆形、椭圆形、矩形、梯形、菱形或正方形。
屏下装置区15包括:基板部分1,以及依次设置于基板部分1上的阳极层2、像素定义层3、形变层4、阴极层6和封装层7。形变层4在第一预定条件下体积产生膨胀,使得屏下装置区15中阴极层的厚度小于非屏下装置区16 中阴极层的厚度。
在具体实施时,本发明主要适用于全面屏和无边框的显示面板,针对OLED显示面板,一般至少包括衬底基板、以及依次设置在衬底基板上的薄膜晶体管结构、阳极层、发光层、阴极层和封装层。另外还包括一些其它的膜层,例如,平坦化层、钝化层等,在此不做限定。薄膜晶体管层层叠设于衬底基板一侧表面,用于控制像素区域发光。具体地,薄膜晶体管层包括多个薄膜晶体管。每个薄膜晶体管包括形成于衬底基板上的栅电极、覆设于栅电极上的栅极绝缘层、形成于栅极绝缘层上的有源层、以及形成于有源层上的源电极与漏电极。可以理解,上述薄膜晶体管以底栅型为例进行说明,本发明在此不作限定,在其他一些实施例中,薄膜晶体管可以为顶栅型。
本发明实施例的显示面板,在现有的显示面板的像素定义层与阴极层之间增加了形状可以发生变化的形变层,使得在制作阴极层的过程中阻断其连续成膜,从而使得屏下装置区15中阴极层的厚度小于非屏下装置区16中阴极层的厚度,而现有技术中的显示面板,公共电极层是整面蒸镀在显示面板上的,公共电极层的厚度各处均相同,无法满足屏下装置区的透光需求,而本发明实施例可以将安装孔设置在显示面板的显示区域,即将安装的硬件结构安装在显示区域,因此可以减少边框,增大显示区域的有效面积,进而实现全面屏的制作。解决了现有技术中显示面板安装硬件的区域限制了有效显示区域的面积,无法实现全面屏的问题,实现了屏下装置区可以正常显示又保证其透光率的需求,改善了有机发光显示面板的显示效果。
在一个可选实施方式中,阴极层6的材料可为Ag,Al,Ca,In,Li,Mg等低功函数金属材料或着低功函数复合金属材料。本实例中的阴极层的材质可为镁银合金或者金属镁。镁银合金和金属镁的功函数较低,利于阴极产生的电子跃迁至发光层,进而提高电子和空穴的复合率,提高出光效率。并且二者的导电性能也很好,价格便宜,利于节省成本。
在具体实施时,上述封装层的结构可以不做限定。例如,可以设置为三叠层结构,即包括第一层无机层,第二层有机层和第三层无机层。当然,也可以设置为多层叠层结构。其中,封装层中的无机层可以采用氮化硅、氮氧化硅、氧化硅、氧化铝材料;封装中的无有机层可以采用亚克力、环氧树脂、硅的有 机化合物材料。封装层设置于阴极层背离阵列基板的一侧。容易理解的是,由于有机发光材料对水汽和氧气等外部环境十分敏感,如果将显示面板中的有机发光材料层暴露在有水汽或氧气的环境中,会造成显示面板的性能急剧下降或者完全损坏。封装层能够为有机发光单元阻挡空气及水汽,从而保证显示面板的可靠性。
可以理解的是,本实施例中的基板可为柔性基板,相应的有机发光显示面板可为柔性有机发光显示面板,柔性有机发光显示面板具有低功耗和可弯曲等特效,适用于各种显示设备,尤其适用于可穿戴显示设备中。可选的,柔性基板的材质为聚酯亚胺或聚对苯二甲酸乙二醇脂树脂。另外,基板还可为刚性基板,相应的有机发光显示面板为刚性有机发光显示面板。事实上,本实施例并不对有机发光显示面板的材质做特别限定。
本实施例中的阳极的材质可为透明导电薄膜,例如氧化铟锡或者氧化铟锌。具体的,阳极至少包括反射性膜,反射性膜可位于阳极靠近发光层的一侧表面上,反射性膜的材料可为银。并且,在电致发光过程中可向阴极施加负电压。
本实施例中的有机发光显示面板可具有m种出光颜色,m为大于或者等于3的整数,示例性的本实施例可包括三种出光颜色,分别为红色、绿色和蓝色,每一个有机发光器件对应一种出光颜色。有机发光器件所包括的有机功能层包括电子传输层、空穴传输层以及发光层,其中电子传输层靠近阴极设置,空穴传输层靠近阳极设置,发光层位于电子传输层和空穴传输层之间。在外加电场的作用下,电子e从阴极向有机功能层注入,空穴h从阳极向有机功能层注入。注入的电子e从有机功能层的电子传输层向发光层迁移,注入的空穴h从有机功能层的空穴传输层向发光层迁移。注入的电子e和注入的空穴h在发光层复合后产生激子。激子在电场的作用下迁移,将能量传递给发光层中的有机发光分子,有机发光分子的电子由基态跃迁到激发态并释放能量,最后能量通过光子的形式释放并发出光线。
有机发光器件至少包括出光颜色为红色的有机发光器件、出光颜色为绿色的有机发光器件和出光颜色为蓝色的有机发光器件。像素定义层3用于划分出光颜色为红色的有机发光器件、出光颜色为绿色的有机发光器件和出光颜色为 蓝色的有机发光器件。像素定义层3还可调节各个有机发光器件的出光面积,示例性的以出光颜色为红色的有机发光器件为例,像素定义层3对出光颜色为红色的有机发光器件的遮挡面积越大,则红光的出光口越小;反之,像素定义层对出光颜色为红色的有机发光器件的遮挡面积越小,则红光的出光口越大,出光越多。事实上,本实施例中并不对每个有机发光器件的出光面积进行特别限定,具体数值可根据不同的产品而定。
可以改变形变层4体积大小的上述第一预定条件可以包括很多种,例如,在特定波长范围的光照射下可以由反式变成顺式、并发生体积膨胀,也可以在特定波长范围的光照射下由顺式再变成反式,该第一预定条件可以是第一预定波长范围的光照条件,在该第一预定波长范围的光照照射形变层4时,形变层4的体积膨胀变大。形变层4在第二预定条件下体积由膨胀状态恢复原始状态,该第二预定条件例如可以是第二预定波长范围的光照条件。具体地,该第一预定波长范围的光照可以是紫外光等波长较短的光源,该第二预定波长范围的光照可以是绿光等波长较长的光源。
在一个可选实施例中,所述形变层顶面的面积大于底面的面积,所述形变层体积膨胀之后,相邻形变层顶面接触。进而可以使得屏下装置区15中像素定义层3上方的阴极层6可以连续成膜,即屏下装置区15中的阴极层的厚度是均匀的,该均匀的厚度小于非屏下装置区16中的阴极层的厚度。
在一个可选实施例中,形变层4的材料为偶氮苯基聚合物C4AzoC11OH,
Figure PCTCN2020105400-appb-000001
本发明实施例还提供了一种显示面板的制作方法,将显示面板区分为屏下装置区和非屏下装置区;其中,屏下装置区对应下方包括安装硬件的区域,如图4所示,该显示面板的制作方法包括如下工艺步骤:
步骤S401:提供一基板,在该步骤中的基板为覆盖屏下装置区15和非屏下装置区16整体基板。
步骤S402:在该基板上方形成阳极层2和像素定义层3,如图5所示,形 成显示面板的制作过程中的显示面板的截面结构。
步骤S403:在屏下装置区15的像素定义层上制作形变层,例如形变层4可采用化学气相沉积成膜后进行刻蚀制作或采用蒸镀或转印的方式制作;如图6所示,形成显示面板的制作过程中的显示面板的截面结构。
上述提及的化学气相沉积,是指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程,具有淀积温度低、薄膜成分和厚度易控、薄膜厚度与淀积时间成正比、均匀性与重复性好以及操作方便等优点。
步骤S404:依次制作有机层5,如图7所示,形成显示面板的制作过程中的显示面板的截面结构。
步骤S405:在形成阴极层时,通过第一预定条件使该形变层的体积产生膨胀,起到遮挡上方阴极层的作用。可以改变形变层4体积大小的上述第一预定条件可以包括很多种,例如,该第一预定条件可以是第一预定波长范围的光照条件,在该第一预定波长范围的光照照射形变层4时,形变层4的体积膨胀变大。形变层4在第二预定条件下体积由膨胀状态恢复原始状态,该第二预定条件例如可以是第二预定波长范围的光照条件。具体地,该第一预定波长范围的光照可以是紫外光等波长较短的光源,该第二预定波长范围的光照可以是绿光等波长较长的光源。如图8所示,形成显示面板的制作过程中的显示面板的截面结构,形变层顶面的面积大于底面的面积,形变层体积膨胀之后,相邻形变层顶面接触,进而可以使得屏下装置区15中像素定义层3上方的阴极层6可以连续成膜,即屏下装置区15中的阴极层的厚度是均匀的,该均匀的厚度小于非屏下装置区16中的阴极层的厚度。
需要说明的是形变层4可以在制作阴极层6的开始或中间或结尾时体积膨胀,使其膜厚变薄。
在一个可选实施例中,形变层4的材料为偶氮苯基聚合物C4AzoC11OH,
Figure PCTCN2020105400-appb-000002
步骤S406:依次制作阴极层6,形变层会阻断阴极层6的连续成膜;如图9所示,形成显示面板的制作过程中的显示面板的截面结构。
步骤S407:采用绿光照射形变层4,使其恢复至原态,继续制作阴极层6,使得位于该形变层上方的阴极层的厚度小于该非屏下装置区中阴极层的厚度,如图3所示。
步骤S408:依次制作封装层7。
本实施例中的基板可为柔性基板,相应的有机发光显示面板可为柔性有机发光显示面板,柔性有机发光显示面板具有低功耗和可弯曲等特效,适用于各种显示设备,尤其适用于可穿戴显示设备中。可选的,柔性基板的材质为聚酯亚胺或聚对苯二甲酸乙二醇脂树脂。另外,基板还可为刚性基板,相应的有机发光显示面板为刚性有机发光显示面板。事实上,本实施例并不对有机发光显示面板的材质做特别限定。
本发明实施例还提供了一种显示装置,包括上述实施例中任一的显示面板。以手机作为显示装置为例进行示例,但显示装置并不限制为手机,具体的,该显示装置可以包括但不限于个人计算机(Personal Computer,简称为PC)、个人数字助理(PersonalDigital Assistant,简称为PDA)、无线手持设备、平板电脑(Tablet Computer)、MP4播放器或电视机等任何具有显示功能的电子设备。
综上所述,本发明实施例的显示面板,在现有的显示面板的像素定义层与阴极层之间增加了形状可以发生变化的形变层,使得在制作阴极层的过程中阻断其连续成膜,从而使得屏下装置区中阴极层的厚度小于非屏下装置区中阴极层的厚度,而现有技术中的显示面板,公共电极层是整面蒸镀在显示面板上的,公共电极层的厚度各处均相同,无法满足屏下装置区的透光需求,而本发明实施例可以将安装孔设置在显示面板的显示区域,即将安装的硬件结构安装在显示区域,因此可以减少边框,增大显示区域的有效面积,进而实现全面屏的制作。解决了现有技术中显示面板安装硬件的区域限制了有效显示区域的面积,无法实现全面屏的问题,实现了屏下装置区可以正常显示又保证其透光率的需求,改善了有机发光显示面板的显示效果。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之 间未构成冲突就可以相互结合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种显示面板,包括:屏下装置区和非屏下装置区,其中,所述屏下装置区对应下方包括安装硬件的区域;
    所述屏下装置区包括:基板部分,以及依次设置于所述基板部分上的阳极层、像素定义层、形变层、阴极层和封装层;
    其中,所述形变层在第一预定条件下体积产生膨胀,使得屏下装置区中阴极层的厚度小于所述非屏下装置区中阴极层的厚度。
  2. 根据权利要求1所述的显示面板,其中,所述第一预定条件包括第一预定波长范围的光照条件;所述形变层在第二预定条件下体积由膨胀状态恢复原始状态,其中所述第二预定条件包括第二预定波长范围的光照条件。
  3. 根据权利要求2所述的显示面板,其中,所述第一预定波长范围的光照包括紫外光;所述第二预定波长范围的光照包括绿光。
  4. 根据权利要求1所述的显示面板,其特征在于,所述形变层顶面的面积大于底面的面积,所述形变层体积膨胀之后,相邻形变层顶面接触。
  5. 根据权利要求1至4中任一所述的显示面板,其中,所述形变层的材料为偶氮苯基聚合物。
  6. 一种显示面板的制作方法,包括:
    将显示面板区分为屏下装置区和非屏下装置区;其中,所述屏下装置区对应下方包括安装硬件的区域;
    提供一基板;
    在所述基板上方形成阳极层;
    在所述阳极层上方形成有机层和像素定义层;
    在所述屏下装置区的像素定义层上方形成形变层;
    在形成阴极层时,通过第一预定条件使所述形变层的体积产生膨胀,使得位于所述形变层上方的阴极层的厚度小于所述非屏下装置区中阴极层的厚度。
  7. 根据权利要求6所述的显示面板的制作方法,其中,所述第一预定条件包括第一预定波长范围的光照条件;所述形变层在第二预定条件下体积由膨胀状态恢复原始状态,其中所述第二预定条件包括第二预定波长范围的光照条 件。
  8. 根据权利要求7所述的显示面板的制作方法,其中,所述第一预定波长范围的光照包括紫外光;所述第二预定波长范围的光照包括绿光。
  9. 根据权利要求6至8中任一所述的显示面板的制作方法,其中,所述形变层的材料为偶氮苯基聚合物。
  10. 一种显示装置,包括权利要求1至5中的显示面板。
PCT/CN2020/105400 2020-07-10 2020-07-29 一种显示面板、显示面板的制作方法及显示装置 WO2022007049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/261,609 US11877495B2 (en) 2020-07-10 2020-07-29 Display panel, manufacturing method of display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010661236.5A CN111864106B (zh) 2020-07-10 2020-07-10 一种显示面板、显示面板的制作方法及显示装置
CN202010661236.5 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007049A1 true WO2022007049A1 (zh) 2022-01-13

Family

ID=73152663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105400 WO2022007049A1 (zh) 2020-07-10 2020-07-29 一种显示面板、显示面板的制作方法及显示装置

Country Status (3)

Country Link
US (1) US11877495B2 (zh)
CN (1) CN111864106B (zh)
WO (1) WO2022007049A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435588B (zh) * 2020-12-09 2022-05-31 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN112582348B (zh) * 2020-12-10 2022-11-25 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN112864200B (zh) * 2021-01-12 2023-12-01 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN113299850B (zh) * 2021-05-08 2022-08-23 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的制作方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160315288A1 (en) * 2015-04-24 2016-10-27 Samsung Display Co., Ltd. Display device
CN110114884A (zh) * 2019-03-27 2019-08-09 京东方科技集团股份有限公司 显示基板、显示设备和制造显示基板的方法
CN110379839A (zh) * 2019-07-24 2019-10-25 京东方科技集团股份有限公司 一种显示基板、显示基板的制作方法及显示装置
CN110890477A (zh) * 2019-11-29 2020-03-17 昆山国显光电有限公司 透光显示面板及其制作方法、显示面板
CN111341820A (zh) * 2020-03-12 2020-06-26 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317971A (ja) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
US20080238297A1 (en) * 2007-03-29 2008-10-02 Masuyuki Oota Organic el display and method of manufacturing the same
WO2012155099A1 (en) * 2011-05-12 2012-11-15 Universal Display Corporation Flexible lighting devices
KR102360783B1 (ko) * 2014-09-16 2022-02-10 삼성디스플레이 주식회사 디스플레이 장치
US9690181B2 (en) * 2015-10-08 2017-06-27 Prysm, Inc. Multilayered screens for scanning beam display systems
CN108075048B (zh) * 2017-12-12 2020-05-22 合肥鑫晟光电科技有限公司 Oled面板及其制作方法、显示装置
CN109524439B (zh) * 2018-11-21 2020-08-25 京东方科技集团股份有限公司 封装盖板、oled显示装置
CN110048005B (zh) * 2019-03-29 2020-06-16 武汉华星光电半导体显示技术有限公司 一种oled显示器件及其制备方法
CN110600508B (zh) * 2019-08-22 2021-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板和显示装置
CN110611048A (zh) * 2019-08-29 2019-12-24 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160315288A1 (en) * 2015-04-24 2016-10-27 Samsung Display Co., Ltd. Display device
CN110114884A (zh) * 2019-03-27 2019-08-09 京东方科技集团股份有限公司 显示基板、显示设备和制造显示基板的方法
CN110379839A (zh) * 2019-07-24 2019-10-25 京东方科技集团股份有限公司 一种显示基板、显示基板的制作方法及显示装置
CN110890477A (zh) * 2019-11-29 2020-03-17 昆山国显光电有限公司 透光显示面板及其制作方法、显示面板
CN111341820A (zh) * 2020-03-12 2020-06-26 昆山国显光电有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN111864106A (zh) 2020-10-30
US11877495B2 (en) 2024-01-16
US20220190062A1 (en) 2022-06-16
CN111864106B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022007049A1 (zh) 一种显示面板、显示面板的制作方法及显示装置
CN106941113B (zh) 一种oled显示面板及其制备方法、显示装置
US10249699B2 (en) Organic light emitting diode substrate, method of fabricating the same and display apparatus having the same
CN110416269B (zh) 一种显示面板和显示面板的制作方法
TWI552332B (zh) 有機發光裝置、以及包含其之影像顯示系統
US9453948B2 (en) Color filter substrate, manufacturing method thereof and display device
CN109920816B (zh) 显示基板及其制作方法、显示装置
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
US8796704B2 (en) Emissive display having polarizer and retarder films
WO2016150030A1 (zh) Oled基板及其制作方法、oled显示面板和电子设备
WO2018149106A1 (zh) 复合透明电极、oled及其制备方法、阵列基板和显示装置
CN207082555U (zh) 显示基板及显示面板
CN109166905B (zh) 一种显示面板及其显示装置
CN110797384B (zh) 阵列基板、显示面板及阵列基板的制作方法
US20210343990A1 (en) Display panel and manufacturing thereof
US10964755B2 (en) Organic light emitting diode panel including light emitting units and color filter layer, method for manufacturing the same, and display device
CN109599430B (zh) Oled基板及其制备方法、oled显示装置
US20230032598A1 (en) Display panel, display apparatus, and manufacturing method for display panel
US20190237695A1 (en) Oled display panel, display device and manufacturing method of oled display panel
CN109671724B (zh) 发光面板及显示装置
US10916733B2 (en) Display device and method of manufacturing same
US11302887B2 (en) Organic electroluminescent diode device having light-emitting layer disposed on electron injection layer, display panel, and manufacturing method thereof
US7687985B2 (en) Double-sided organic electro-luminescent device
US10665656B2 (en) OLED display panel
KR20150033236A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943992

Country of ref document: EP

Kind code of ref document: A1