WO2022007017A1 - 模具表面处理方法及其镀膜结构 - Google Patents

模具表面处理方法及其镀膜结构 Download PDF

Info

Publication number
WO2022007017A1
WO2022007017A1 PCT/CN2020/104083 CN2020104083W WO2022007017A1 WO 2022007017 A1 WO2022007017 A1 WO 2022007017A1 CN 2020104083 W CN2020104083 W CN 2020104083W WO 2022007017 A1 WO2022007017 A1 WO 2022007017A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
coating
layer
plating
cleaning
Prior art date
Application number
PCT/CN2020/104083
Other languages
English (en)
French (fr)
Inventor
余君仔
王勇
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007017A1 publication Critical patent/WO2022007017A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Definitions

  • the invention relates to the technical field of mold surface treatment, in particular to a mold surface treatment method and a coating structure thereof.
  • the surface of the mold is not coated, but the machining accuracy of the mold is improved and the roughness is reduced during mold processing.
  • the surface of the mold is coated.
  • the surface coating structure consists of two layers.
  • the bottom 1-3 ⁇ m is a phosphorus-containing alloy coating with a hardness of 450-600HV, and the upper layer is a composite coating with a thickness of about 2 ⁇ m.
  • the coating material is mainly doped.
  • the fluorine-containing particles with a diameter of 100-200nm make the fluorine content of the coating material reach 10%-20%.
  • the fluorine-containing particles in the coating are processed by co-deposition, so there will be a certain gap between the particles, which is easy to fall off during use (as shown in the circle in Figure 1), forming pits or white spots.
  • the mold material is easy to penetrate or adhere to the detached position, and the hardness of the coating layer is not high, and the overall mold service life is also reduced, and the total film time can only be about 1000 films.
  • the purpose of the present invention is to provide a mold surface treatment method and its coating structure which can reduce the mold processing cost and improve the productivity.
  • a mold surface treatment method comprising:
  • Step S1 providing a hot-pressing mold, and cleaning the surface of the hot-pressing mold to obtain a cleaning mold;
  • Step S2 placing the cleaning mold in a first coating solution, and plating a phosphorus-containing alloy layer on the surface of the cleaning mold to obtain a first coating mold;
  • Step S3 placing the first coating mold in a second coating solution, and plating a fluorine-containing composite layer on the surface of the first coating mold to obtain a second coating mold;
  • Step S4 plating a metal nano-layer on the surface of the second coating mold to obtain a third coating mold
  • Step S5 plating a transition state metal nitride nano-layer on the surface of the third coating mold to obtain a hot pressing mold with four-layer coating.
  • the step S1 specifically includes:
  • a hot-pressing mold is provided, and after ultrasonic cleaning with alcohol, the hot-pressing mold is subjected to surface cleaning treatment again using an alkaline cleaning agent in an electrolytic environment, and then a strong oxidizing solvent is used to remove the mold surface oxide to obtain the cleaning mold.
  • the step S2 further includes:
  • the step S2 specifically includes:
  • the cleaning mold is placed in the first coating solution with a temperature of 80-90° C., a pH value of 4.3-5.8, and a metal ion concentration of 5.1-5.8 g/L, and the surface of the cleaning mold is plated by chemical plating.
  • a phosphorus-containing alloy layer is prepared to obtain a first coating mold.
  • the step S3 further includes:
  • the step S3 specifically includes:
  • the cleaning mold is placed in a second coating solution with a temperature of 85-90° C., a pH value of 4.2-5.9, a metal ion concentration of 4.0-5.0g/L, and a volume fraction of a fluorine-containing solution of 1%-5%,
  • the surface of the hot pressing mold is coated with a fluorine-containing composite layer by a co-deposition method to obtain a second coating mold.
  • the step S4 specifically includes:
  • a metal nano-layer is plated on the surface of the second coating mold by utilizing the physical vapor deposition vacuum plating method or the filtering cathodic vacuum arc technology coating method to obtain a third coating mold.
  • the step S5 specifically includes:
  • a transition state metal nitride nano-layer is plated on the surface of the third coating mold by using a physical vapor deposition vacuum plating method or a filtered cathode vacuum arc technology coating method to obtain a coating structure on the mold surface.
  • the mold surface coating structure for compression molding for compression molding, and after obtaining the failed mold, further comprising: placing the failed mold in a mixed solution of sodium hydroxide and sodium carbonate for electrolytic stripping treatment to obtain a reusable mold mold.
  • a mold surface coating structure obtained based on the above-mentioned mold surface treatment method comprising a phosphorus-containing alloy layer, a fluorine-containing composite layer, a metal nanolayer, and a transition-state metal nitride nanolayer sequentially plated on the surface of the hot-pressing mold from the inside to the outside.
  • Floor A mold surface coating structure obtained based on the above-mentioned mold surface treatment method, comprising a phosphorus-containing alloy layer, a fluorine-containing composite layer, a metal nanolayer, and a transition-state metal nitride nanolayer sequentially plated on the surface of the hot-pressing mold from the inside to the outside.
  • Floor A mold surface coating structure obtained based on the above-mentioned mold surface treatment method, comprising a phosphorus-containing alloy layer, a fluorine-containing composite layer, a metal nanolayer, and a transition-state metal nitride nanolayer sequentially plated on the surface of the hot-pressing mold from the inside to
  • the mold surface treatment method of the present invention has the advantages of low surface energy, low friction coefficient, large contact angle, etc. of the fluorine-containing composite layer by plating a functional film layer on the surface of the mold, and also has a metal nano layer and a transition state metal nitride.
  • the nano-layer has the characteristics of low porosity and high hardness, so that the surface of the mold is not easily damaged.
  • the fluorine-containing composite layer is a soft layer, which can be used as a buffer layer, which greatly improves the strength performance of the entire coating and the consistency of the product surface. It also improves the performance of the coating.
  • Fig. 1 is the partial enlarged schematic diagram of the die coating surface in the background technology
  • Fig. 2 is the sectional structure schematic diagram of the coating structure of the mold surface of the present invention.
  • FIG. 3 is a schematic flow chart of the mold surface treatment method of the present invention.
  • the first aspect of the present invention discloses a mold surface coating structure, including a hot-pressing mold 50.
  • the surface of the hot-pressing mold is The treatment layer has been designed, and the coating structure on the surface of the mold is specifically divided into four layers, including a first phosphorus-containing alloy layer 10, a second fluorine-containing composite layer 20, a second layer of fluorine-containing composite layers plated on the surface of the mold body from inside to outside The third metal nanolayer 30 and the fourth transition state metal nitride nanolayer 40 .
  • the phosphorus-containing alloy layer is a preparation for plating the fluorine-containing composite layer, which improves the bonding strength of the fluorine-containing composite layer and the mold, and can also greatly reduce the porosity of the fluorine-containing composite layer;
  • the fluorine-containing composite layer 20 is a soft layer, which is a To ensure that the fluorine-containing particles in the layer are not easy to fall off, and the fine holes in the coating can be closed, which further improves the performance of the coating and the consistency of the product surface.
  • the two layers have high hardness (the hardness is 3-4 times that of the mold itself), which can achieve the effect of soft and hard combination, which not only ensures the bonding force, but also improves the performance of the coating.
  • the lamination material will not penetrate into the coating.
  • a mold surface treatment method including:
  • Step S1 providing a hot-pressing mold, and cleaning the surface of the hot-pressing mold to obtain a cleaning mold;
  • a hot-pressing mold is provided, and after ultrasonic cleaning with alcohol, the hot-pressing mold is subjected to surface cleaning treatment again with an alkaline cleaning agent in an electrolytic environment, and then a strong oxidizing solvent is used to remove oxides on the surface of the mold to obtain the described
  • the strong oxidizing solvent used in this scheme is a conventional oxidizing agent, such as hydrogen peroxide, potassium permanganate solution, etc.
  • Step S10 Use Group VIII metal solution to perform surface activation treatment on the hot-pressed mold after cleaning, so as to replace metal ions (such as Ni) on the surface of the hot-pressed mold to obtain a hot-pressed mold with an active surface, which is convenient for subsequent steps.
  • Step S2 placing the hot-pressing mold with active surface in the first coating solution, and plating a phosphorus-containing alloy layer on the surface of the hot-pressing mold to obtain a first coating mold.
  • the hot-pressing mold with active surface is placed in the first coating solution with a temperature of 80-90° C., a pH value of 4.3-5.8, and a metal ion concentration of 5.1-5.8 g/L.
  • the surface of the hot pressing mold is plated with a phosphorus-containing alloy layer to obtain a first coating mold.
  • Step S3 placing the first coating mold in a second coating solution, and plating a fluorine-containing composite layer on the surface of the first coating mold to obtain a second coating mold.
  • the cleaning mold is placed in a second coating film with a temperature of 85-90° C., a pH of 4.2-5.9, a metal ion concentration of 4.0-5.0 g/L, and a volume fraction of a fluorine-containing solution of 1%-5%.
  • a fluorine-containing composite layer is coated on the surface of the hot-pressing mold by a co-deposition method to obtain a second coating mold.
  • Step S30 put the second coating mold into the sealing agent for 10 minutes; use 75°C hot water to clean the soaked second coating mold and blow dry; heat treatment at 150-200°C to obtain sealing mold.
  • the pore sealing agent in this scheme is selected from cyclic amines: cyclohexylamine, dicyclohexylamine, etc.
  • Step S4 plating a metal nano-layer on the surface of the sealing mold to obtain a third coating mold
  • a metal nano-layer is plated on the surface of the second coating mold by means of physical vapor deposition vacuum coating to obtain a third coating mold.
  • the material is well matched with the fluorine-containing composite layer and the fourth layer, which can further ensure the bonding force. Coupled with its high cost performance, it can save production costs.
  • the metal rake is heated and then bombarded with argon ions to excite atoms or ions on the surface and then deposited on the surface of the second coating mold.
  • this scheme can also use the method of filtering cathode vacuum arc technology to realize the metal plating on the second coating mold. This scheme can filter out large particles, so that the surface of the prepared film layer is smooth and smooth, with low porosity and corrosion resistance. Well, the binding force with the body is very strong.
  • Step S5 plating a transition state metal nitride nano-layer on the surface of the third coating mold to obtain a mold surface coating structure with four-layer coating.
  • a transition state metal nitride nano-layer is plated on the surface of the third coating mold by using a physical vapor deposition vacuum coating method to obtain a mold surface coating structure.
  • the metal rake is heated and then bombarded with argon ions to excite atoms or ions on the surface, and at the same time combine with ionized nitrogen gas (N2) to deposit as the surface of the third coating mold.
  • N2 ionized nitrogen gas
  • this scheme can also use the filtering cathode vacuum arc technology coating method to realize the metal plating on the third coating mold. Ceramic material can filter out large particles, so that the surface of the prepared membrane layer is smooth and smooth, with good corrosion resistance and strong bonding force with the body.
  • the fluorine-containing composite layer in the coating has many advantages of easy demoulding and low friction coefficient on the surface, but the fluorine-containing coating is obtained by co-deposition method, the particles are adhered and easy to fall off due to friction, and the coating has fine of holes. Then, a nano-layer is plated on the surface of the coating layer to protect the particles from falling, and the effect of sealing holes is also achieved, which improves the use performance of the coating layer.
  • the efficiency of single cleaning film times/time and total stamping times/time of the mold coated with 4 layers of this scheme is much higher than that of the molds with serial numbers 1 and 2, which can be stripped, which not only improves the production efficiency, but also improves the production efficiency. It saves the processing cost of the mold and improves the product yield.
  • mould recycling can also be carried out, specifically including:
  • the mold After stripping, it can be used like a new mold. The cost of the mold is saved. In this operation, the mold can be stripped at least 2 times, that is to say, a pair of molds can be used for at least 3 rounds.
  • the coating can save at least the processing cost of 2 pairs of molds; increase the efficiency by at least 3 times; increase the production capacity by at least 5 times; also save the cost of manual cleaning; improve product performance by at least 35%; improve customer satisfaction Spend.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明提供了一种模具表面处理方法及其镀膜结构。本发明的模具表面处理方法包括:提供热压模具,并对热压模具的表面进行清洗处理,得到清洗模具;利用Ⅷ族元素的溶液将清洗模具表面进行活化;将表面被活化的模具置于第一镀膜溶液中,在热压模具的表面镀制含磷合金层,得到第一镀膜模具;将第一镀膜模具置于第二镀膜溶液中,在第一镀膜模具的表面镀制含氟复合层,得到第二镀膜模具;在所述第二镀膜模具的表面镀制金属纳米层,得到第三镀膜模具;在所述第三镀膜模具的表面镀制过渡态金属氮化物纳米层,得到模具表面镀膜结构。含氟复合层为软层,金属纳米层以及过渡态金属氮化物纳米层为硬层,软硬结合,既保证了结合力,又提升了镀层的使用性能和寿命。

Description

模具表面处理方法及其镀膜结构 技术领域
本发明涉及模具表面处理的技术领域,尤其涉及一种模具表面处理方法及其镀膜结构。
背景技术
目前在热压模具上防黏膜及提高产品质量的方式主要是两种:
1.模具表面不做镀层,但是在模具加工时提高模具的加工精度和降低粗糙度。
2.模具表面做镀层,表面镀层结构由两层结构组成,底部1-3μm是450-600HV硬度的含磷合金镀层,上一层为2μm左右厚的复合镀层,主要是向镀膜材料里面掺杂100-200nm直径大小的含氟颗粒,使镀膜材料含氟量达10%-20%。
上述第一种方法存在如下缺点:
1)模具加工成本高,生产过程模具表面也容易受损,并且模具运输保护成本也相应比普通模具高。
2)不能满足所有的压模材料,会有粘膜的问题,影响良率。
3)清洗频繁,从而导致生产效率低。
4)模具损坏后不能重复利用,无形中也提高了生产成本。
上述第二种方法存在如下缺点:
1)相比第一种方法,模具粘膜得到了很大的改善,清洗次数也呈指数减少,但是仍然100膜次不到就需要清洗一次。
2)镀层中含氟颗粒是通过共沉积加工的,所以颗粒之间会有一定的间隙,使用过程容易脱落(如图1圆圈中所示),形成凹坑或白斑。这样压模材料容易渗进或黏附在脱落位置,再加上该镀层硬度不高,总体模具使用寿命也就降低了,总膜次只能做到1000膜左右。
技术问题
本发明的目的在于提供一种减少模具加工成本,提高产能效率的模具表面处理方法及其镀膜结构。
技术解决方案
本发明第一方面公开的技术方案如下:
一种模具表面处理方法,包括:
步骤S1:提供热压模具,并对所述热压模具的表面进行清洗处理,得到清洗模具;
步骤S2:将所述清洗模具置于第一镀膜溶液中,在所述清洗模具的表面镀制含磷合金层,得到第一镀膜模具;
步骤S3:将所述第一镀膜模具置于第二镀膜溶液中,在所述第一镀膜模具的表面镀制含氟复合层,得到第二镀膜模具;
步骤S4:在所述第二镀膜模具表面镀制金属纳米层,得到第三镀膜模具;
步骤S5:在所述第三镀膜模具表面镀制过渡态金属氮化物纳米层,得到具有四层镀膜的热压模具。
优选地,所述步骤S1具体包括:
提供热压模具,用酒精超声清洗后,在电解环境中使用碱性 清洗剂对所述热压模具再次进行表面清洗处理,再利用强氧化性溶剂去除模具表面氧化物,得到所述清洗模具。
优选地,所述步骤S2还包括:
利用第Ⅷ族金属溶液对所述清洗模具进行表面活化处理,得到表面具有活性的热压模具;将所述表面具有活性的热压模具置于第一镀膜溶液中,进一步镀制含磷合金层。
优选地,所述步骤S2具体包括:
将所述清洗模具置于温度为80-90℃,pH值为4.3-5.8,金属离子浓度为5.1-5.8g/L的第一镀膜溶液中,通过化学镀方式使所述清洗模具的表面镀制含磷合金层,得到第一镀膜模具。
优选地,所述步骤S3还包括:
将所述第二镀膜模具放入封孔剂中浸泡10-20min;
使用70-90℃热水清洗浸泡后的第二镀膜模具并吹干;
在150-200℃的环境下进行热处理。
优选地,所述步骤S3具体包括:
将所述清洗模具置于温度为85-90℃,pH值为4.2-5.9,金属离子浓度为4.0-5.0g/L,含氟溶液体积分数为1%-5%的第二镀膜溶液中,通过共沉积方式使所述热压模具的表面镀制含氟复合层,得到第二镀膜模具。
优选地,所述步骤S4具体包括:
利用物理气相沉积真空镀方式或过滤阴极真空电弧技术镀 膜方式在所述第二镀膜模具表面镀制金属纳米层,得到第三镀膜模具。
优选地,所述步骤S5具体包括:
利用物理气相沉积真空镀方式或过滤阴极真空电弧技术镀膜方式在所述第三镀膜模具表面镀制过渡态金属氮化物纳米层,得到所述模具表面镀膜结构。
优选地,使用所述模具表面镀膜结构进行压模,得到失效模具后,还包括:将所述失效模具置于氢氧化钠与碳酸钠的混合溶液中进行电解退镀处理,得到可二次利用模具。
本发明第二方面公开的技术方案如下:
一种基于上述的模具表面处理方法得到的模具表面镀膜结构,包括由内至外依次镀制于热压模具表面的含磷合金层、含氟复合层、金属纳米层以及过渡态金属氮化物纳米层。
有益效果
本发明的有益效果在于:
本发明的模具表面处理方法通过在模具表面镀制功能膜层,同时具备了含氟复合层表面能低、摩擦系数低、接触角大等优点,还具备了金属纳米层以及过渡态金属氮化物纳米层孔隙率低,硬度高的特点,使模具表面不易受损。含氟复合层为软层,可以作为缓冲层,大大提高整个镀层的强度性能和产品面型一致性,金属纳米层以及过渡态金属氮化物纳米层为硬层,软硬结合,既保证了结合力,又提升了镀层的使用性能。
附图说明
图1为背景技术中模具镀层表面的局部放大示意图;
图2为本发明模具表面镀膜结构的剖视结构示意图;
图3为本发明模具表面处理方法的流程示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参阅图2,本发明第一方面公开一种模具表面镀膜结构,包括热压模具50,经过综合分析常规镀层的性质及压模材料的性能,结合化学镀和真空镀原理对热压模具表面处理层进行了设计,该模具表面镀膜结构具体分为四层,包括由内至外依次镀制于所述模具本体表面的第一层含磷合金层10、第二层含氟复合层20、第三层金属纳米层30以及第四层过渡态金属氮化物纳米层40。
本发明的模具表面镀膜结构具有的性能,如下表一所示:
表一
镀层 厚度/nm 应力/Gpa 硬度/Gpa 模量/Gpa 摩擦系数 接触角
第四层 300~700 -3.77~-1.62 28.20±3.37 688.9±6.76 0.2~0.50 100~110.6
含磷合金层是为了镀制含氟复合层所做的准备,提高了含氟复合层与模具的结合强度,也可大大降低含氟复合层孔隙率;含氟复合层20为软层,为确保该层中的含氟颗粒不容易掉落,镀层中的细微孔洞达到封闭的效果,进一步提高镀层的使用性能和产品面型一致性,利用电镀和真空镀优点相结合,设计了金属纳 米层30以及过渡态金属氮化物纳米层40,该两层硬度高(硬度是模具本身硬度的3-4倍),可达到软硬结合的效果,既保证结合力,又提升了镀层的使用性能,在模具使用压膜的过程中,由于其表面不存在空隙,压膜材料也不会渗入镀层。
请进一步参阅图3,本发明第二方面公开了一种模具表面处理方法,包括:
步骤S1:提供热压模具,并对所述热压模具的表面进行清洗处理,得到清洗模具;
具体地,提供热压模具,用酒精超声清洗后,在电解环境中使用碱性清洗剂对所述热压模具再次进行表面清洗处理,再利用强氧化性溶剂去除模具表面氧化物,得到所述清洗模具,本方案使用的强氧化溶剂为常规氧化剂,如双氧水、高锰酸钾溶液等。
步骤S10:利用第Ⅷ族金属溶液对清洗处理后的所述热压模具进行表面活化处理,以置换出热压模具表面的金属离子(如Ni),得到表面具有活性的热压模具,便于后续含磷复合层的镀制。
步骤S2:将所述表面具有活性的热压模具置于第一镀膜溶液中,在所述热压模具的表面镀制含磷合金层,得到第一镀膜模具。
具体地,将所述表面具有活性的热压模具置于温度为80-90℃,pH值为4.3-5.8,金属离子浓度为5.1-5.8g/L的第一镀膜溶液中,通过化学镀方式使所述热压模具的表面镀制含磷合 金层,得到第一镀膜模具。
步骤S3:将所述第一镀膜模具置于第二镀膜溶液中,在所述第一镀膜模具的表面镀制含氟复合层,得到第二镀膜模具。
具体地,将所述清洗模具置于温度为85-90℃,pH值为4.2-5.9,金属离子浓度为4.0-5.0g/L,含氟溶液体积分数为1%-5%的第二镀膜溶液中,通过共沉积方式使所述热压模具的表面镀制含氟复合层,得到第二镀膜模具。
步骤S30:将所述第二镀膜模具放入封孔剂中浸泡10min;使用75℃热水清洗浸泡后的第二镀膜模具并吹干;在150-200℃的环境下进行热处理,得到封孔模具。本方案中的封孔剂选用环胺类物质:环已胺,二环已胺等。
步骤S4:在所述封孔模具表面镀制金属纳米层,得到第三镀膜模具;
具体地,利用物理气相沉积真空镀膜方式在所述第二镀膜模具表面镀制金属纳米层,得到第三镀膜模具,本方案的金属纳米层中的金属成分可以为钛、铬等材料,上述金属材料与含氟复合层和第四层的匹配度好,可以进一步确保结合力。再加上其性价比高,可节省生产成本。具体地通过加热金属耙材,再通过氩离子轰击使其表面激发出原子或离子后沉积在作为第二镀膜模具的表面。当然,本方案还可以采用过滤阴极真空电弧技术镀膜方式实现金属在第二镀膜模具上的镀附,该方案可以过滤掉大颗粒,使制备的膜层表面平整光滑,孔隙率低,抗腐蚀性能好,与机体 的结合力很强。
步骤S5:在所述第三镀膜模具表面镀制过渡态金属氮化物纳米层,得到具有四层镀膜的模具表面镀膜结构。
具体地,利用物理气相沉积真空镀膜方式在所述第三镀膜模具表面镀制过渡态金属氮化物纳米层,得到模具表面镀膜结构。具体地通过加热金属耙材,再通过氩离子轰击使其表面激发出原子或离子,同时与离化后的氮气(N2)结合后沉积作为第三镀膜模具的表面。当然,本方案还可以采用过滤阴极真空电弧技术镀膜方式实现金属在第三镀膜模具上的镀附,该方案中的过渡态金属氮化物纳米层采用的成分为氮化铬等抗腐蚀性强的陶瓷材料,可以过滤掉大颗粒,使制备的膜层表面平整光滑,抗腐蚀性能好,与机体的结合力很强。
由于镀层中的含氟复合层具备易脱模,表面光滑摩擦系数低的很多优势,但是含氟镀层是通过共沉积方式得到的,颗粒是黏附上去,容易因摩擦脱落,并且该镀层还有细微的孔洞。那么在该镀层表面再镀一层纳米层,保护颗粒不掉落,还达到了封孔的效果,提高了镀层的使用性能。
本方案镀制了4层镀层的模具单次清洗膜次/次以及总压模次数/次的效率远远高于序号1以及序号2的模具,其可退镀,既提高了生产效率,又节省了模具的加工成本,更提高了产品良率。
需要说明的是,使用所述具有四层镀膜的热压模具进行压模 后,得到失效模具,还可以进行模具回收利用,具体包括:
S800、回收利用:将所述失效模具置于氢氧化钠与碳酸钠的混合溶液中进行电解退镀处理,得到可二次利用模具。
退镀后又可以和新模具一样进行使用。节省了模具的成本,这样的操作,模具至少可以被退镀2次,也就是说一副模具至少可以使用3个回合。
综上所述,该镀层可以至少省去2副模具的加工成本;效率上提高至少3倍;产能提高至少5倍;还节省了人工清洗的成本;产品性能至少提高35%;提高客户的满意度。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种模具表面处理方法,其特征在于,包括:
    步骤S1:提供热压模具,并对所述热压模具的表面进行清洗处理,得到清洗模具;
    步骤S2:将所述清洗模具进行表面活化后置于第一镀膜溶液中,在所述清洗模具后的表面镀制含磷合金层,得到第一镀膜模具;
    步骤S3:将所述第一镀膜模具置于第二镀膜溶液中,在所述第一镀膜模具的表面镀制含氟复合层,得到第二镀膜模具;
    步骤S4:在所述第二镀膜模具的表面镀制金属纳米层,得到第三镀膜模具;
    步骤S5:在所述第三镀膜模具的表面镀制过渡态金属氮化物纳米层,得到模具表面镀膜结构。
  2. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S1具体包括:
    提供热压模具,用酒精超声清洗后,在电解环境中使用碱性清洗剂对所述热压模具再次进行表面清洗处理,再利用强氧化性溶剂去除模具表面氧化物,得到所述清洗模具。
  3. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S2还包括:
    利用第Ⅷ族元素金属溶液对所述清洗模具进行表面活化处理,得到表面具有活性的热压模具,将所述表面具有活性的热压 模具置于第一镀膜溶液中,进一步镀制含磷合金层。
  4. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S2具体包括:
    将所述清洗模具置于温度为80-90℃,pH值为4.3-5.8,金属离子浓度为5.1-5.8g/L的溶液中镀制,通过化学镀的方式使所述清洗模具的表面镀制含磷合金层,从而得到第一镀膜模具。
  5. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S3还包括:
    将所述第二镀膜模具放入封孔剂中浸泡10-20min;
    使用70-90℃热水清洗浸泡后的第二镀膜模具并吹干;
    在150-200℃的环境下进行热处理。
  6. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S3具体包括:
    将所述第一镀膜模具置于温度为85-90℃,pH值为4.2-5.9,金属离子浓度为4.0-5.0g/L,含氟溶液体积分数为1%-5%的第二镀膜溶液中,通过共沉积方式使所述热压模具的表面镀制含氟复合层,得到第二镀膜模具。
  7. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S4具体包括:
    利用物理气相沉积真空镀方式或过滤阴极真空电弧技术镀膜方式在所述第二镀膜模具表面镀制金属纳米层,得到第三镀膜模具。
  8. 根据权利要求1所述的模具表面处理方法,其特征在于,所述步骤S5具体包括:
    利用物理气相沉积真空镀方式或过滤阴极真空电弧技术镀膜方式在第三镀膜模具表面镀制过渡态金属氮化物纳米层,得到所述模具表面镀膜结构。
  9. 一种基于权利要求1-8中任一项所述的模具表面处理方法得到的模具表面镀膜结构,其特征在于,包括由内至外依次镀制热压模具表面的含磷合金层、含氟复合层、金属纳米层以及过渡态金属氮化物纳米层。
PCT/CN2020/104083 2020-07-10 2020-07-24 模具表面处理方法及其镀膜结构 WO2022007017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010661179.0 2020-07-10
CN202010661179.0A CN111593334B (zh) 2020-07-10 2020-07-10 模具表面处理方法及其镀膜结构

Publications (1)

Publication Number Publication Date
WO2022007017A1 true WO2022007017A1 (zh) 2022-01-13

Family

ID=72186748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104083 WO2022007017A1 (zh) 2020-07-10 2020-07-24 模具表面处理方法及其镀膜结构

Country Status (2)

Country Link
CN (1) CN111593334B (zh)
WO (1) WO2022007017A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251802B (zh) * 2020-09-15 2022-01-25 深圳市裕展精密科技有限公司 退镀方法以及退镀装置
CN115245920B (zh) * 2021-04-28 2024-02-06 潍坊华光光电子有限公司 一种半导体激光器镀膜夹具的清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042182A (ja) * 2003-07-25 2005-02-17 Honda Motor Co Ltd 有摺接面部材及びその製造方法
CN1616713A (zh) * 2004-09-13 2005-05-18 中国兵器工业第五九研究所 钢铁材料氟聚合物协合涂层处理工艺
CN102115883A (zh) * 2011-01-12 2011-07-06 超晶科技有限公司 铝合金材料表面复合强化工艺
CN109722666A (zh) * 2017-10-31 2019-05-07 香港科技大学 具有表面微纳结构的金属薄膜模具的制备方法和金属薄膜模具中间体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176337B2 (ja) * 2006-05-12 2013-04-03 株式会社デンソー 皮膜構造及びその形成方法
CN103597118B (zh) * 2011-06-17 2016-10-26 太阳诱电化学科技株式会社 利用硬质膜被覆而成的硬质膜被覆构件及其制造方法
CN203333795U (zh) * 2013-05-28 2013-12-11 模德模具(东莞)有限公司 一种汽车模具涂层结构
CN106967954B (zh) * 2017-03-31 2019-07-26 吉林省力科科技有限公司 一种高温耐磨涂层、凹模及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042182A (ja) * 2003-07-25 2005-02-17 Honda Motor Co Ltd 有摺接面部材及びその製造方法
CN1616713A (zh) * 2004-09-13 2005-05-18 中国兵器工业第五九研究所 钢铁材料氟聚合物协合涂层处理工艺
CN102115883A (zh) * 2011-01-12 2011-07-06 超晶科技有限公司 铝合金材料表面复合强化工艺
CN109722666A (zh) * 2017-10-31 2019-05-07 香港科技大学 具有表面微纳结构的金属薄膜模具的制备方法和金属薄膜模具中间体

Also Published As

Publication number Publication date
CN111593334A (zh) 2020-08-28
CN111593334B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2022007017A1 (zh) 模具表面处理方法及其镀膜结构
US20090181283A1 (en) Regeneration method of separator for fuel cell, regenerated separator for fuel cell and fuel cell
CN109560289B (zh) 一种金属双极板及其制备方法以及燃料电池
CN112795886B (zh) 一种用于金属双极板成形的导电耐蚀预涂层及其制备方法
CN109755592B (zh) 一种金属双极板及其制备方法以及燃料电池
CN113584441B (zh) 一种金属双极板涂层及其制备方法
CN112111716B (zh) 一种用于氢燃料电池金属双极板的超低电阻耐腐蚀涂层的制备工艺
CN115612998B (zh) 一种镁合金表面润滑耐磨复合膜层及其制备方法
CN110808384A (zh) 一种金属双极板及其制备方法以及燃料电池
KR20110139825A (ko) 연료전지용 분리판 및 그 제조 방법
CN110484866B (zh) 一种铝合金表面防腐涂层的制备方法
CN113206267A (zh) 一种燃料电池金属极板涂层制备方法
KR101078231B1 (ko) 전도성 금속산화막이 코팅된 고분자전해질 연료전지용 금속 분리판의 제조방법
CN110970626B (zh) 燃料电池双极板及其涂层
KR101655612B1 (ko) 연료전지용 고내구성 전극막 접합체의 제조방법
KR102427732B1 (ko) 이차전지 제조설비용 프레스롤의 수명연장을 위한 wc/c코팅막 구조
CN110783595B (zh) 一种金属双极板及其制备方法以及燃料电池
CN115679250A (zh) 用于质子交换膜燃料电池双极板的复合涂层及制备方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
JP2001006694A (ja) 固体高分子型燃料電池用セパレータ
JP3171576B2 (ja) 金属基板のコーティング方法及び金属材
CN111394710A (zh) 一种氮化钛涂层不锈钢刀制备工艺
CN115261948B (zh) 一种镀膜件及其制备方法、壳体及电子产品
JP2021026839A (ja) 燃料電池用セパレータの製造方法
CN218115584U (zh) 一种附载体极薄铜箔的生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944251

Country of ref document: EP

Kind code of ref document: A1