WO2022005069A1 - 세탁물 처리기기 - Google Patents

세탁물 처리기기 Download PDF

Info

Publication number
WO2022005069A1
WO2022005069A1 PCT/KR2021/007683 KR2021007683W WO2022005069A1 WO 2022005069 A1 WO2022005069 A1 WO 2022005069A1 KR 2021007683 W KR2021007683 W KR 2021007683W WO 2022005069 A1 WO2022005069 A1 WO 2022005069A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
duct
laundry treatment
air
tub
Prior art date
Application number
PCT/KR2021/007683
Other languages
English (en)
French (fr)
Inventor
용호
김두현
강덕원
김정곤
이준희
김정원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200083069A external-priority patent/KR20220005337A/ko
Priority claimed from KR1020200144466A external-priority patent/KR20220004528A/ko
Priority claimed from KR1020210040697A external-priority patent/KR20220135096A/ko
Priority claimed from KR1020210040696A external-priority patent/KR20220135095A/ko
Priority claimed from KR1020210040703A external-priority patent/KR20220135098A/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2022580855A priority Critical patent/JP2023531774A/ja
Priority to AU2021299595A priority patent/AU2021299595B2/en
Publication of WO2022005069A1 publication Critical patent/WO2022005069A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment

Definitions

  • the present invention relates to a laundry treatment apparatus, and more particularly, to a laundry treatment apparatus including a drying function for laundry.
  • a laundry treatment device is a device that processes laundry by applying a physical and chemical action to the laundry.
  • Such laundry treatment devices are collectively referred to as a washing device for removing contamination from laundry, a dehydrating device for dehydrating laundry by rotating a washing tub containing laundry at high speed, and a drying device for drying wet laundry by applying hot air into the washing tub.
  • laundry treatment devices that appear recently are not limited to individually performing the washing function, dehydration function, and drying function in each device, but are configured to perform all of the above functions together in one laundry treatment device, have.
  • the relatively low temperature and high humidity air by absorbing moisture is discharged from the tub, and the moisture is removed from the exhausted air, heated, and then circulated in such a way that it is re-supplied into the tub.
  • a configuration for removing moisture from the air a configuration for heating the air, and a configuration for circulating the air are essentially required for a laundry treatment device including a drying function.
  • Korean Patent Application Laid-Open No. 10-2017-0069461 (hereinafter referred to as 'Prior Document 1') discloses a drying device and a washing dryer including the same.
  • a cabinet including an inlet through which external air is introduced, a drum disposed inside the cabinet and accommodating dry matter, a condensation duct provided to condense moisture in the air introduced from the inside of the drum, the above An exhaust port communicating with the condensation duct to exhaust a part of the air introduced from the condensation duct, the condensation duct to heat a part of the air introduced from the condensation duct and the outside air introduced through the inlet to supply it to the inside of the drum and a drying duct connected to the inlet and the drum.
  • Korean Patent Application Laid-Open No. 10-2008-0051878 (hereinafter referred to as 'Prior Document 2') discloses a dryer.
  • a main body a drying chamber provided inside the main body and accommodating a drying object, a supply unit for supplying a fluid generated from an external heat source into the main body, a supply unit connected to the supply unit and heat exchanged with the fluid supplied to the supply unit to generate air
  • a heat exchange unit for heating
  • a drying duct for guiding heated air into the drying chamber
  • a heater installed on a front surface of the heat exchange unit
  • a blower for circulating air inside the drying chamber and the drying duct.
  • a blower device, a heat exchange unit, and a heater are all installed in one drying duct disposed on the upper surface of the drying chamber.
  • the heat exchange unit installed in the drying duct is a configuration that heats air by utilizing an external heat source, and corresponds to a configuration that additionally heats air in addition to the heater.
  • a configuration for condensing moisture in the circulating air is not installed in the drying duct, and moisture in the air circulated through the condensation duct and condenser disposed at the rear of the drying chamber is condensed.
  • the laundry treatment device of Prior Document 2 also has a problem in that a space for disposing a condensation duct for condensation of moisture must be separately secured.
  • An object of the present invention is to solve the above problems of a laundry treatment device including a drying function for laundry.
  • the present invention optimizes the arrangement of a configuration for removing moisture from air, a configuration for heating air, and a configuration for circulating air, which are required in a laundry treatment device including a drying function, to realize a larger capacity
  • An object of the present invention is to provide a laundry treatment device capable of this.
  • the present invention provides a laundry treatment device capable of effectively removing moisture from circulating air by smoothly condensing moisture in the air while having a more simplified heat exchange structure in a laundry processing device including a drying function aim to do
  • Another object of the present invention is to provide a laundry treatment device capable of further improving drying efficiency for laundry by performing the process of removing moisture and heating from air in an optimal order in a laundry treatment device including a drying function. do it with
  • the present invention minimizes the adhesion of foreign substances such as lint generated during the drying process of laundry in a laundry treatment device including a drying function to the main components, so that the drying function for the laundry is not deteriorated and the laundry can be smoothly performed.
  • the purpose is to provide a processing device.
  • the laundry treatment apparatus is configured to optimize the structure of a duct assembly installed on a tub to guide air discharged from the tub and re-introduce it into the tub. Specifically, not only the blowing fan and heater, but also a water-cooled heat exchanger that exchanges heat to cool the air is installed inside the duct installed on the tub, so that a separate space for condensing moisture in the air is not required.
  • the laundry treatment apparatus is configured to further simplify the condensing unit for condensing moisture in the air. Specifically, by disposing a water-cooled heat exchanger that exchanges heat with air through the supplied cooling water in the duct, it is configured to have a more simplified heat exchange structure.
  • the laundry treatment apparatus is configured to more efficiently condense and heat air circulated for drying laundry. Specifically, moisture is first removed from the heat exchanger with respect to the air transferred along the inside of the duct through the blower fan, and then the air is heated in the heater so that the air is re-introduced into the tub in a high temperature and dry state.
  • the heat exchanger and the heater are spaced apart from each other so that heat emitted from the heater does not affect the function of the heat exchanger.
  • the blowing fan and the heater are spaced apart from each other, and the heat exchanger is disposed in this spaced space, so that the heat emitted from the heater does not damage the injection product of the blowing fan, the motor, etc. .
  • the laundry treatment apparatus may use some of the washing water as cooling water without a separate configuration for supplying cooling water to the heat exchanger.
  • cooling water flows into the pipe of the loop coil shape and may exchange heat with air outside the pipe.
  • cooling water flows into a pipe made of a corrosion-resistant material and may exchange heat with air outside the pipe.
  • the heat exchanger part into which the cooling water is introduced may be disposed behind the heat exchanger part through which the coolant is discharged.
  • a portion of the heat exchanger exposed to the outside of the duct may be supported by a gasket disposed on a portion of the duct.
  • the corresponding portions may be disposed at the same height or at a height overlapping a certain portion.
  • the laundry treatment device according to one aspect of the present invention can be treated by injecting cooling water discharged from the heat exchanger into a tub without a separate discharge structure.
  • laundry treatment device can be used to condense moisture on the surface of the drum by injecting cooling water discharged from the heat exchanger into the tub.
  • the laundry treatment apparatus can minimize the introduction of foreign substances into the duct by collecting foreign substances in the air discharged from the tub.
  • the laundry treatment device can prevent the accumulation of foreign substances in the filter itself by washing the filter that collects foreign substances in the air.
  • the laundry treatment apparatus may use some of the cooling water as the filter washing water without a separate configuration for supplying the filter washing water to the filter washing unit.
  • FIG. 1 is a perspective view showing a laundry treatment device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating a laundry treatment device according to an embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating a duct assembly installed in a tub in a laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing a duct assembly in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG 5 and 6 are views showing the inside of the duct assembly in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 7 to 9 are views showing a condensing unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 10 is a view illustrating a state in which a condensing unit is installed in a circulation passage unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 11 is a view showing the inside of a tub in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 12 is a view showing a filter washing unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 13 to 16 are views showing a first example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG 17 and 18 are views showing a second example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 19 and 20 are views showing a third example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention.
  • 21 to 24 are views illustrating a blower fan base, a heat exchanger base, and a heater base in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 25 is a view showing the part A shown in FIG. 24 in more detail.
  • 26 is a view showing the condensation efficiency according to the spacing between the heat exchanger and the heater in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIGS. 27 to 29 are views showing a modified example of the heat exchanger base in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 30 is a diagram schematically illustrating a supply and discharge path of cooling water, washing water, and condensed water in the laundry treatment apparatus according to an embodiment of the present invention.
  • 31 is a view showing a dispenser and a house trap in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 32 is a diagram schematically illustrating an algorithm for performing a stroke of a laundry treatment apparatus according to an embodiment of the present invention.
  • FIG 33 is a view showing a tub in more detail in the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 34 is a view exemplarily showing heat exchange performed in the laundry treatment apparatus according to an embodiment of the present invention.
  • 35 is a view showing a required amount of heat exchange and a heat exchange length of the laundry treatment apparatus according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a laundry treatment device according to an embodiment of the present invention.
  • 2 is an exploded perspective view illustrating a laundry treatment device according to an embodiment of the present invention.
  • the laundry treatment device 1000 includes a cabinet 20 forming an exterior, and a tub installed inside the cabinet 20 to accommodate washing water ( 100) and a drum 200 rotatably installed inside the tub 100 to accommodate laundry.
  • An inlet is formed in the front part of the cabinet 20 to put laundry into the drum 200 .
  • the inlet is opened and closed by the door 30 installed on the front part of the cabinet 20 .
  • the tub 100 includes a front tub 101 and a rear tub 102 constituting the front and rear sides, and a tub back 103 forming a rear wall of the rear tub 102 .
  • the rear tub 102 has an opening formed at the rear thereof, and the rear gasket 104, which is a flexible member, is coupled to the opening.
  • the rear gasket 104 is connected to the tub bag 103 from the inside in the radial direction.
  • the tub bag 103 is inserted through the rotation shaft 206 to be described later.
  • the rear gasket 104 is connected to be sealed to the tub bag 103 and the rear tub 102, respectively, so that the wash water in the tub 100 does not leak.
  • the tub bag 103 vibrates together with the drum 200 when the drum 200 rotates, but since the rear gasket 104 can be flexibly deformed, the tub bag 103 does not interfere with the rear tub 102 . Allow relative movement.
  • the rear gasket 104 may have a curved portion or a wrinkled portion that may be extended to a sufficient length to allow the relative movement of the tub bag 103 .
  • the drum 200 includes a drum front 201 , a drum center 202 , and a drum back 203 , and a balancer 204 is installed at the front and rear of the drum 200 , respectively.
  • the drum bag 203 is connected to the spider 205 , and the spider 205 is connected to the rotation shaft 206 .
  • the drum 200 rotates in the tub 100 by the rotational force transmitted through the rotation shaft 206 .
  • a plurality of through holes for discharging wash water generated from laundry during washing or spin-drying are formed in the circumferential surface of the drum 200 .
  • a bearing housing 106 is coupled to the rear surface of the tub bag 103 . And, the bearing housing 106 rotatably supports the rotation shaft 206 between the motor and the tub bag 103 . The bearing housing 106 is supported against the cabinet 20 by a suspension unit 107 .
  • FIG. 3 is a perspective view illustrating a duct assembly installed in a tub in a laundry treatment apparatus according to an embodiment of the present invention.
  • 4 is an exploded perspective view showing a duct assembly in the laundry treatment apparatus according to an embodiment of the present invention.
  • 5 and 6 are views showing the inside of the duct assembly in the laundry treatment apparatus according to an embodiment of the present invention.
  • the laundry treatment apparatus 1000 includes a duct assembly 10 .
  • the duct assembly 10 is installed on the tub 100 and guides the air discharged from the tub 100 to re-introduce it into the tub 100 , and includes a circulation passage unit 300 , a blower unit 400 , and condensation. It includes a unit 500 and a heating unit 600 .
  • hot dry air is supplied into the drum 200 .
  • the high-temperature dry air introduced into the drum 200 comes into contact with the wet laundry accommodated in the drum 200 to take moisture from the laundry and dry the laundry.
  • the high-temperature dry air is changed to a low-temperature, high-humidity air state, and is discharged to the outside of the drum 200 through a hole formed in the wall surface of the drum 200 .
  • the low-temperature and humid air discharged to the outside of the drum 200 flows between the tub 100 and the drum 200 .
  • the relatively low-temperature and high-humidity air by absorbing moisture is discharged from the tub 100, moisture is removed from the discharged air, heated, and then circulated in such a way that it is re-supplied into the tub 100 .
  • air may be discharged through a portion of the tub 100, and air may be introduced through another portion again. That is, the low-temperature and high-humidity air present inside the tub 100 is discharged to the outside of the tub 100 through a part, and is converted to a high-temperature and dry state through a predetermined treatment process in the duct assembly 10, and then through the other part. It is injected into the tub 100 again.
  • the circulation flow path part 300 is installed on the tub 100 and forms a flow path for air, so that the air discharged to the outside of the tub 100 can be introduced into the tub 100 again without being scattered. form a flow path.
  • the circulation passage part 300 may be a duct 300a installed on the tub 100 and provided with an air inlet 110 and an air inlet 120 for the flow of air, as described above. It may be made to include various configurations that form a flow path for air circulation.
  • the duct 300a is installed on the upper portion of the tub 100, which is relatively easy to secure space in the interior space of the cabinet.
  • the tub 100 In order to implement the laundry treatment device 1000 in a large capacity, the tub 100 also needs to be enlarged, and in order to install the duct 300a in any one of the front, rear and side surfaces of the tub 100, the width or width of the cabinet is equivalent to that of the cabinet. should be made larger
  • the blower 400 is installed in the circulation flow path part 300 and transports the air discharged from the tub 100 along the circulation flow path part 300, and transports the air at a predetermined pressure in the air circulation direction. to be formed uniformly.
  • the blower 400 may be a blower fan 400a installed in the duct 300a to form a flow of air between the air inlet 110 and the air inlet 120 , as described above. It can be made including various configurations for conveying air for circulation.
  • blowing fan 400a is disposed relatively close to the air intake 110 among the inside of the duct 300a, so that the low-temperature and humid air in the tub 100 is discharged more quickly and transferred to the duct 300a.
  • the condensing unit 500 is installed in the circulation passage unit 300 to supply cooling water and condenses moisture in the air transported along the circulation passage unit 300, and removes moisture in the humid air to dry it. convert
  • the condensing unit 500 may be a heat exchanger 500a installed in the duct 300a to supply cooling water, and heat exchanged to cool the air transported along the inside of the duct 300a, as described above. It may include various configurations for condensing moisture in the circulated air.
  • the heat exchanger 500a is not installed in a separate space such as the rear surface of the tub 100 , but is installed together with a blower fan 400a and a heater 600a to be described later in the duct 300a. Therefore, it may not be necessary to secure a separate space for moisture condensation in the circulated air.
  • the structure of the heat exchanger 500a needs to be relatively simplified. If the structure of the heat exchanger 500a is complicated, problems such as difficulty in disposing the heat exchanger 500a inside the duct 300a or the need to make the duct 300a too large may occur. .
  • the heat exchanger 500a has a water-cooling structure that heat-exchanges with air through the supplied cooling water.
  • heat exchange efficiency may be high, and it may be possible to exchange heat with air having a larger capacity.
  • a separate configuration is essentially required to circulate the refrigerant. Accordingly, in this case, the structure of the heat exchanger may be relatively complicated.
  • the structure of the heat exchanger 500a using the water-cooling structure can be relatively simplified compared to a heat exchanger other than the water-cooling type.
  • the water-cooled heat exchanger 500a has the most optimized structure.
  • the air transferred along the inside of the duct 300a by the blower fan 400a comes into contact with the heat exchanger 500a and exchanges heat with the cooling water inside the heat exchanger 500a. Accordingly, while the air inside the duct 300a is cooled, moisture in the air is condensed. Then, the condensed moisture is formed on the contact surface with the heat exchanger (500a) and then falls.
  • the heat exchanger 500a may be formed as a closed flow path so that the cooling water flow path is separated from the air flow path. That is, since the flow path of the cooling water used in the heat exchanger 500a is separated from the flow path for drying the air, it is possible to prevent the coolant from leaking into unnecessary parts and coming into contact with laundry.
  • the air from which moisture has been removed by the heat exchanger 500a flows toward the air inlet 120 along the duct 300a.
  • the heating unit 600 is installed in the circulation passage unit 300 and heats the air transferred along the circulation passage unit 300 , and converts the low temperature air into a high temperature state.
  • the heating unit 600 may be a heater 600a that is installed in the duct 300a and heats the air transported along the inside of the duct 300a, and heats the circulated air as described above. It may include various configurations.
  • the air transferred along the inside of the duct 300a by the blower fan 400a comes into contact with the heater 600a and the temperature rises. Accordingly, the air inside the duct 300a is converted to a high temperature state while being heated. And, the air converted to a high temperature state by the heater 600a flows toward the air inlet 120 along the duct 300a.
  • the low-temperature and humid air discharged from the tub 100 by the blower fan 400a and flowing along the duct 300a passes through the heat exchanger 500a and the heating unit 600 installed in the duct 300a. It is converted to a hot and humid state. And, the air converted to the high-temperature and humid state as described above is again injected into the tub 100 to dry the laundry.
  • the blowing fan 400a and the heater 600a but also the heat exchanger 500a are installed inside the duct 300a installed on the tub 100, Since it is not necessary to secure a separate space for condensing moisture in the air, it is possible to minimize the limitations of implementing the laundry treatment device 1000 in a large capacity.
  • the laundry treatment device 1000 has a more simplified heat exchange structure by disposing a water-cooled heat exchanger 500a that exchanges heat with air through the supplied cooling water in the duct 300a, so that the air While the configuration for moisture condensation in the inside is minimized, moisture can be removed smoothly.
  • the water-cooled heat exchanger 500a in the laundry treatment device 1000 according to the present embodiment is not only economical compared to a heat pump type heat exchanger, but also can be easily disposed in a limited space within the duct 300a.
  • the condensing unit 500 may be disposed between the blowing unit 400 and the heating unit 600 . That is, the heat exchanger 500a may be disposed between the blowing fan 400a and the heater 600a.
  • the flow of air may be formed in a direction from the air inlet 110 toward the air inlet 120 through the heat exchanger 500a and the heater 600a sequentially.
  • the air discharged from the tub 100 is first in contact with the heat exchanger 500a and then in contact with the heater 600a. it is preferable
  • the low-temperature and high-humidity air discharged from the tub 100 is first in contact with the heat exchanger 500a, moisture is removed, and converted into low-temperature, dry air. After that, the low-temperature dry air may be in contact with the heater 600a and converted into high-temperature dry air.
  • the low-temperature and high-humidity air discharged from the tub 100 is first in contact with the heater 600a, it is heated and converted into high-temperature and high-humidity air. After that, if hot and humid air comes into contact with the heat exchanger 500a, moisture in the air may be removed, but the air is cooled by the heat exchanger 500a and converted to a low temperature state.
  • the heat exchanger 500a is disposed between the blower fan 400a and the heater 600a, so that the air discharged from the tub 100 is first in contact with the heat exchanger 500a. It is preferable to be in contact with the heater (600a).
  • moisture is first removed from the heat exchanger 500a with respect to the air transferred along the inside of the duct 300a through the blower fan 400a, and then the heater 600a). Since the air is heated in the air conditioner, the drying efficiency of the laundry can be further improved by preventing the situation in which the heated air is cooled again.
  • the condensing unit 500 may be disposed to be spaced apart from the heating unit 600 so as not to come into contact with the heating unit 600 . That is, the heat exchanger 500a may be disposed to be spaced apart from the heater 600a so as not to come into contact with the heater 600a.
  • the heat exchanger 500a when the heat exchanger 500a is disposed between the blower fan 400a and the heater 600a, an influence may occur between the heat exchanger 500a and the heater 600a due to a difference in temperature.
  • the heat emitted from the heater 600a in a relatively high temperature state affects the heat exchanger 500a in a relatively low temperature state, the temperature of the surface of the coolant and the heat exchanger 500a rises to facilitate cooling of the air. may not happen
  • the heat exchanger 500a and the heater 600a disposed adjacent to each other are spaced apart while maintaining a minimum distance so as not to affect the functions of each other.
  • a heat insulator for blocking heat transfer between the heat exchanger 500a and the heater 600a may be disposed.
  • a plurality of ventilation holes may be formed.
  • the heat exchanger 500a and the heater 600a are spaced apart from each other so that the heat emitted from the heater 600a does not affect the function of the heat exchanger 500a. Therefore, it is possible to prevent the temperature of the heat exchanger (500a) itself from being increased and the reliability from being deteriorated.
  • blower fan 400a and the heater 600a are disposed adjacent to each other without being spaced apart from each other, the blower fan 400a may be damaged such as melted or deformed by the heat emitted from the heater 600a.
  • the motor for driving the blower fan 400a is also overheated by the heat emitted from the heater 600a, and there is a fear that the function of the motor may be deteriorated.
  • the blower fan 400a and the heater 600a are spaced apart from each other, and the heat exchanger 500a is disposed in this spaced apart space, and heat emitted from the heater 600a. Since the blower fan 400a does not damage the ejected product and the motor, the function of the blowing fan 400a is deteriorated, thereby preventing a disruption in air circulation.
  • 26 is a view showing the condensation efficiency according to the spacing between the heat exchanger and the heater in the laundry treatment apparatus according to an embodiment of the present invention.
  • the heat exchanger 500a may be disposed to have a spacing D1 in a range of 2.5 cm or more and 7 cm or less from the heater 600a.
  • the distance D1 between the heaters 600a of the heat exchanger 500a will be described with reference to FIG. 26 as follows.
  • the distance D1 between the heat exchanger (500a) and the heater (600a) must be secured at least 2.5cm.
  • the 2.5 cm spacing D1 is a limit value at which the heat emitted from the heater 600a does not affect the performance of the heat exchanger 500a.
  • the moisture condensation efficiency in the air through the heat exchanger 500a is lowered to about 80% or less, so that heat exchange with the air through the heat exchanger 500a may not be performed smoothly.
  • the spacing D1 is less than 2.5 cm, compared to the case of 2.5 cm or more, the moisture condensation efficiency in the air through the heat exchanger 500a is critically sharply lowered in that , it is preferable to maintain the distance D1 between the heat exchanger 500a and the heater 600a to be 2.5 cm or more.
  • the distance D1 between the heat exchanger 500a and the heater 600a exceeds 7 cm, the air that has passed through the heat exchanger 500a is excessively cooled before reaching the heater 600a, and the heater ( 600a) may not be sufficiently heated.
  • the spacing D1 is more than 7 cm, compared to the case of 7 cm or less, the moisture condensation efficiency in the air through the heat exchanger 500a is critically sharply lowered in that,
  • the distance D1 between the heat exchanger 500a and the heater 600a is preferably maintained at 7 cm or less.
  • the distance D1 between the heat exchanger 500a and the heater 600a is preferably maintained in the range of 2.5 cm or more and 7 cm or less. can do.
  • the spacing D1 between the heat exchanger 500a and the heater 600a is the spacing between the blower fan 400a and the heat exchanger 500a. It may be relatively smaller than the interval D2.
  • the heat exchanger 500a is higher than the blowing fan 400a. It may be disposed closer to the heater 600a.
  • the distance D1 between the heat exchanger 500a and the heater 600a maintain the minimum limit value as described above.
  • the distance D1 between the heat exchanger 500a and the heater 600a is within the limit of maintaining a minimum limit value, between the blower fan 400a and the heat exchanger 500a. It is preferable to be formed smaller than the spacing distance (D2).
  • the cooling water may be used by supplying some of the washing water used in the tub 100 to the condensing unit 500 . That is, the cooling water may be used by supplying some of the wash water to the heat exchanger 500a.
  • the tub 100 is provided with a water supply hose for supplying washing water.
  • the water supply hose may supply washing water to the inside of the tub 100 through a separately installed detergent box.
  • the water supply hose connected to the tub 100 may be connected to the front or outer circumferential surface of the tub 100 .
  • the water supply hose may be branched and connected to the front and outer peripheral surfaces of the tub 100 , respectively.
  • each branched hose may additionally include a valve for blocking the flow path of wash water.
  • a branch hose may be connected from the water supply hose to the heat exchanger 500a so that some of the wash water is supplied to the heat exchanger 500a.
  • the laundry treatment device 1000 uses some of the washing water as cooling water without a separate configuration for supplying cooling water to the heat exchanger 500a, so that the structure of the heat exchanger 500a is improved.
  • the degree of freedom of arrangement thereof can be improved.
  • FIG. 7 to 9 are views showing a condensing unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • 10 is a view illustrating a state in which a condensing unit is installed in a circulation passage unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • the condensing unit 500 is formed in a loop coil shape to allow cooling water to pass therein.
  • structure can be formed. That is, the heat exchanger 500a may include a pipe 510 formed in a loop coil shape and through which cooling water can pass.
  • the loop coil shape means a coil shape that is repeatedly wound in an annular shape with respect to the central axis (X).
  • coolant flows into the pipe 510 of the loop coil shape and heat exchanges with the air outside the pipe 510 , so the heat exchanger 500a inside the duct 300a ) can improve the heat exchange efficiency compared to the area occupied by it.
  • 35 is a view showing a required amount of heat exchange and a heat exchange length of the laundry treatment apparatus according to an embodiment of the present invention.
  • the required heat exchange length may be set to 2.4 m to 3 m.
  • a three-stage loop coil structure in which an intermediate tube portion is additionally present between the lower tube portion and the upper tube portion may be considered.
  • the three-stage loop coil structure has only about 3% difference in condensation performance, which can be said to be substantially equivalent.
  • the three-stage loop coil structure reduces the open area on the air movement path, so that more lint can be attached to the heat exchanger 500a and the amount of air can be reduced.
  • the heat exchanger 500a has a two-stage loop coil structure.
  • the length W in the direction intersecting the central axis X is relatively larger than the length A in the direction parallel to the central axis X. It is preferable to be
  • the pipe 510 in the shape of a loop coil so that W/A>1.
  • the length of A may be relatively smaller than the length of W.
  • the pipe 510 may be made of a material including at least one of stainless steel, a copper alloy, an aluminum alloy, and a nickel alloy.
  • stainless steel is a steel alloy made to withstand corrosion well, and is a material made of an alloy of iron, nickel, chromium, or the like.
  • Copper alloy is a material made of an alloy of copper (copper), tin, zinc, and aluminum.
  • Aluminum alloy is a material made of an alloy of aluminum, copper (copper), and magnesium.
  • Nickel alloy is a material made of an alloy of nickel, copper (copper), chromium, molybdenum, and iron.
  • the moisture condensed by the heat exchanger 500a is condensed on the contact surface with the heat exchanger 500a. Accordingly, the surface of the pipe 510 in direct contact with the circulating air is exposed to moisture for a long time.
  • the corresponding contaminants may be introduced into the tub 100 through the circulating air, and such contaminants may contaminate laundry.
  • the pipe 510 is made of a material containing at least one of stainless steel, copper alloy, aluminum alloy, and nickel alloy, which is relatively less prone to corrosion, so that even if the pipe 510 is exposed to moisture for a long time, hygiene It is desirable to avoid problems.
  • cooling water flows into the pipe 510 made of a corrosion-resistant material and heat exchanges with the air outside the pipe 510, so that corrosion of the heat exchanger 500a It is possible to prevent the occurrence of a sanitary problem of the laundry treatment device 1000 .
  • the pipe 510 is made of a material containing aluminum (Al)
  • a phenomenon in which the surface of the pipe 510 is peeled may occur. This phenomenon occurs when the surface of aluminum (Al) is exposed to oxygen (O 2 ) to become aluminum oxide (Al 2 O 3 ).
  • the volume expands in the process of oxidizing the aluminum (Al) surface, and the stress generated in this process causes the surface to peel.
  • the peeling phenomenon may cause deterioration of durability of the member as well as usability from a user's point of view.
  • a method of minimizing delamination by forming a solid oxide film by anodizing the surface of the pipe 510 may be considered.
  • the cooling water flows into the condensing unit 500 into one end disposed relatively close to the air inlet 120 side, and relatively to the air inlet 110 side.
  • the cooling water may be discharged to the other end disposed close to it.
  • the heat exchanger 500a is disposed relatively close to the air inlet 120 side on the plane, and disposed relatively close to the water supply port 520 for introducing cooling water into the pipe 510 and the air intake port 110 side on the plane. It may further include a drain hole 530 for discharging the coolant from the pipe 510 .
  • a counter-flow flow in which a high-temperature fluid and a low-temperature fluid enter opposite sides of the heat exchanger 500a and flow in opposite directions is cooled with the lowest temperature coolant to the rearmost point on the air flow path.
  • the counterflow flow has higher heat exchange efficiency.
  • the air flow direction and the cooling water flow direction in the duct 300a are formed opposite to each other, so that counterflow can be achieved.
  • the part of the heat exchanger 500a into which the cooling water is introduced is the part of the heat exchanger 500a through which the coolant is discharged. Since it is disposed more rearward, its efficiency can be maximized by cooling with the lowest temperature coolant to the rearmost point on the air flow path.
  • the duct assembly 10 has a sealing part 310 interposed in a portion where each of one end and the other end of the condensing unit 500 is exposed to the outside of the circulation passage. may include more.
  • the duct 300a may include a gasket 310a installed on a side surface of a portion where the heat exchanger 500a is disposed and penetrated by each of the water supply port 520 and the drain port 530 .
  • the sealing part 310 may be a gasket 310a (gasket), and includes various configurations for maintaining airtightness with respect to the remaining parts other than the water supply port 520 and the drain port 530 for supplying cooling water. can be done
  • the cooling water subjected to heat exchange must be discharged and new low-temperature cooling water must be supplied.
  • the cooling water needs to be circulated around the heat exchanger 500a, and it may be difficult to arrange all the components for the circulation of the cooling water in the duct 300a.
  • the air circulated along the duct 300a is scattered to the outside of the duct 300a, or the air outside the duct 300a is minimized from flowing into the duct 300a. There is a need.
  • the portion of the heat exchanger 500a exposed to the outside of the duct 300a is supported by the gasket 310a disposed on a portion of the duct 300a, Cooling water may be smoothly circulated while maintaining airtightness between the inside and outside of the duct 300a.
  • any one of the uppermost end (H) and the lowermost end (L) of the water supply port 520 is between the uppermost end (h) and the lowermost end (l) of the drain port 530 . can be located at the height of
  • the duct 300a may be manufactured by combining several members separated from each other, if necessary.
  • the upper surface of the upper surface of the duct 300a And the duct assembly 10 can be assembled by covering it with a cover member constituting the upper side.
  • the side surfaces of the base member and the cover member should be formed to reflect this.
  • the gasket 310a is assembled on the coupling surface of each of the base member and the cover member. , the assembly of each member can be made more easily.
  • the water supply port 520 and the drain port 530 may be physically formed on the same height in consideration of manufacturing and installation errors.
  • the height difference between the water supply port 520 and the drain port 530 is reduced to a range that does not significantly reduce the ease of assembly as described above. need to limit
  • any one of the uppermost end (H) and the lowermost end (L) of the water supply port 520 is located at a height between the uppermost end (h) and the lowest end (l) of the drain port 530 .
  • the heat exchanger 500a may be installed in the duct 300a.
  • the laundry treatment apparatus 1000 when there are a plurality of parts of the heat exchanger 500a exposed to the outside of the duct 300a, the parts are disposed at the same height or overlapping each other by a certain part. Therefore, the assembly between the heat exchanger (500a) and the duct (300a) can be made more easily.
  • the water supply port 520 and the drain port 530 may be formed in the same direction with respect to the pipe 510 .
  • the water supply port 520 and the drain port 530 may pass through either side of the duct 300a.
  • the length of the hose connected to the water supply port 520 and the drain port 530 can be minimized in that the piping can be arranged only in one direction. have.
  • the heat exchanger 500a including the pipe 510 , the water inlet 520 and the drain 530 , and the installation of the heat exchanger 500a to the duct 300a is also easier. can be done
  • the duct 300a may be provided with a washing water inlet 331 for introducing the washing water into the washing nozzle 700a, and this washing water inlet 331 is at least one of the water supply port 520 and the drain port 530 such as direction can be formed.
  • the arrangement of pipes such as branch pipes may be efficient, and the installation of the heat exchanger 500a to the duct 300a may also be made more easily.
  • the pipe 510 may have a spiral central axis X along the air flow direction.
  • the pipe 510 when viewed along the flow direction of the air, the pipe 510 may be disposed in the shape shown in FIG. 8 . Accordingly, the pipe 510 may be disposed so that the projection surface along the air flow direction is annular.
  • the air discharged from the tub 100 passes between the pipes 510 of the spiral structure that reciprocate repeatedly. Accordingly, a relatively large open area is secured on the air flow path, so that the amount of air passing through the inside of the duct 300a can be increased.
  • the arrangement direction of the heater 600a may also be partially parallel to the heat exchanger 500a. That is, the heater 600a may include a radiator 610 extending in a zigzag shape along the air flow direction.
  • the radiator 610 may include a plurality of straight pipes and a curved pipe connecting adjacent straight pipes to each other.
  • each straight tube is arranged in a direction in which the longitudinal direction intersects the air flow direction.
  • the straight pipe of the radiator 610 is spaced apart from each other at regular intervals along the flow direction of the air and arranged side by side, and a curved pipe is coupled to the end of the straight pipe.
  • the radiator 610 may form a zigzag shape as a whole, and may extend along the flow direction of air.
  • the radiator 610 as described above may also have a pipe structure through which a high-temperature fluid passes, and considering the air volume and air passing through the inside of the duct 300a and the contact surface of the radiator 610, the arrangement of the radiator 610 It is preferable that the direction is made as shown in FIG. 6 .
  • 11 is a view showing the inside of a tub in the laundry treatment apparatus according to an embodiment of the present invention.
  • 12 is a view showing a filter washing unit in the laundry treatment apparatus according to an embodiment of the present invention.
  • 30 is a diagram schematically illustrating a supply and discharge path of cooling water, washing water, and condensed water in the laundry treatment apparatus according to an embodiment of the present invention.
  • the other end of the condensing unit 500 is connected to the tub 100 , and the cooling water discharged from the condensing unit 500 may be injected into the tub 100 . have.
  • the drain 530 is connected to the tub 100 , and the cooling water discharged from the drain 530 may be injected into the tub 100 .
  • cooling water discharged from the heat exchanger 500a may be guided to the tub 100 without inducing a separate configuration to utilize the discharge structure formed in the tub 100 .
  • the tub 100 has a separately formed discharging structure for discharging the used washing water or dehydrated water after washing the laundry, if the cooling water is guided to the tub 100, the discharging structure of the tub 100 is Cooling water may be discharged together with washing water through the
  • the coolant induced into the tub 100 may flow along the outer peripheral surface of the drum 200 and be stored in the tub 100 to serve as wash water for washing laundry.
  • the cooling water discharged from the heat exchanger 500a is injected into the tub 100 without a separate discharging structure and treated, so the structure of the heat exchanger 500a
  • the degree of freedom of arrangement may be improved by further simplifying the .
  • the coolant injected into the tub 100 may form a condensation surface on the surface of the drum 200 .
  • the coolant injected into the tub 100 may fall on the outer peripheral surface of the drum 200 .
  • the cooling water falling to the outer peripheral surface of the drum 200 may lower the temperature of the drum 200 so that the drum 200 serves as a condensing plate.
  • the cooling water is supplied only enough to wet the surface of the drum 200 to prevent it from flowing into the inside of the drum 200 (ie, the space where the laundry is located).
  • the cooling water supplied to the outer circumferential surface of the drum 200 may be introduced through the through hole formed in the drum 200 .
  • the cooling water supplied to the outer peripheral surface of the drum 200 by increasing the rotational speed of the drum 200 can be prevented from flowing through the through hole of the drum 200 .
  • the rotational speed of the drum 200 may be such that the coolant remaining on the outer peripheral surface of the drum 200 does not flow into the inside of the drum 200 through the through hole.
  • the rotational speed of the drum 200 it is preferable to maintain the rotational speed of the drum 200 at about 40 to 110 rpm during drying of laundry. More preferably, it is preferable to maintain the rotation speed of the drum 200 at 50 to 70 rpm.
  • the drum 200 when the drum 200 is rotated at a rotation speed of 110 rpm or more, the laundry in the drum 200 is rotated by being attached to the inner circumferential surface of the drum 200 . In this case, the laundry and drying air are not effectively mixed, thereby reducing drying efficiency. Therefore, it is preferable to maintain the rotation speed of the drum 200 at 110 rpm or less.
  • the laundry treatment device 1000 injects cooling water discharged from the heat exchanger 500a into the tub 100 and uses it to condense moisture on the surface of the drum 200, In addition to moisture condensation made in the duct 300a, it is possible to additionally remove moisture in the air.
  • FIG 33 is a view showing a tub in more detail in the laundry treatment apparatus according to an embodiment of the present invention.
  • the coolant may be injected to flow down along the rear surface of the tub 100 . That is, the cooling water flowing down along the rear surface of the tub 100 may form a condensation surface on the rear surface of the tub 100 .
  • the cooling water flowing down along the rear surface of the tub 100 may be discharged through the discharge structure of the tub 100 .
  • the condensation body 210 may be formed on the rear surface of the tub 100 .
  • the condensing body 210 may be provided as a plate bent with the same curvature as the circumferential surface of the rear surface of the tub 100 so as to correspond to the circumferential surface of the rear surface of the tub 100 .
  • the condensation body 210 may be provided with a plurality of grooves having a concavely bent surface, or may be provided with a plurality of protrusions protruding from the surface of the condensation body 210 . Through this, since the surface area of the condensing body 210 can be increased, the dehumidification efficiency while the cooling water flows down along the rear surface of the tub 100 can be improved.
  • the grooves or protrusions provided in the condensation body 210 are preferably provided along a direction parallel to the direction from the front to the rear of the tub 100 . This is to minimize the amount of cooling water used by maximizing the time that the cooling water supplied to the rear surface of the tub 100 moves to the first drain pipe 292 located on the bottom surface of the tub 100 .
  • the discharge structure of the tub 100 includes a drain pump 223 positioned outside the tub 100 , a first drain pipe 221 for guiding water inside the tub 100 to the drain pump 223 , and a drain pump 223 .
  • a drain pump 223 may include a second drain pipe 225 for guiding the water discharged from the cabinet 20 to the outside.
  • the laundry treatment device 1000 guides the cooling water discharged from the heat exchanger 500a to the rear surface of the tub 100 and is used to condense moisture on the rear surface of the tub 100 , In addition to moisture condensation made in the duct 300a, it is possible to additionally remove moisture in the air.
  • the water flowing down to the lower part of the tub 100 may be in a state of being collected before being discharged through the discharge structure of the tub 100 .
  • the water collected in this way may form a condensation surface on the lower surface of the tub 100 .
  • primary condensation may be performed through the heat exchanger 500a, and secondary condensation may be performed through water flowing down the rear surface of the tub 100.
  • the tertiary condensation may be made through the water collected on the lower surface of the tub 100 .
  • FIG. 34 is a view exemplarily showing heat exchange performed in the laundry treatment apparatus according to an embodiment of the present invention.
  • 600W is heat exchanged through primary condensation through the heat exchanger 500a, and secondary condensation of water flowing down the rear surface of the tub 100 is performed.
  • 200W may be exchanged through heat exchange
  • 50W may be exchanged through tertiary condensation of water collected on the lower surface of the tub 100 .
  • 550W may generate heat loss through heat dissipation.
  • the primary condensation, secondary condensation and tertiary condensation are relatively primary condensation amount > secondary condensation amount > tertiary condensation amount.
  • the primary condensation amount is relatively larger than the secondary condensation amount.
  • the tub 100 is installed on the air intake 110 and includes a filter 130 for collecting foreign substances in the air transferred to the duct 300a. can do.
  • Air circulating through the tub 100 and the duct 300a for drying laundry may contain foreign substances such as lint generated from the laundry. These foreign substances may be introduced into the duct 300a and attached to at least one of the blowing fan 400a, the heat exchanger 500a, and the heater 600a.
  • the blowing pressure of the blowing fan 400a is reduced or the heat exchanged area on the surface of the heat exchanger 500a and the heater 600a is reduced, so that the functions of the respective components may be deteriorated.
  • the filter 130 may be installed in a place exposed to the inside of the tub 100 .
  • the filter 130 may be located on a circumferential surface of the tub 100 .
  • it may be installed to extend along the inner circumferential surface of the tub 100 at a point where it meets the air intake 110 among the circumferential surface of the tub 100 .
  • the laundry treatment device 1000 collects foreign substances in the air discharged from the tub 100 and minimizes the introduction of foreign substances into the duct 300a, so the main components in the duct 300a It is possible to prevent foreign substances from adhering to the laundry and deterioration of the drying function of the laundry.
  • the tub 100 is installed on the air intake 110 and further includes a filter washing unit 140 for spraying the filter washing water to the filter 130 . can do.
  • the filter 130 when the filter 130 is installed in the tub 100 , when the drum 200 rotates, a rotational airflow of air is formed around the drum 200 by the rotation. The rotating air flow collides with the filter 130 , and foreign substances such as lint collected in the filter 130 may be removed.
  • water from the laundry may be radiated to the inner wall surface of the tub 100 through the through hole of the drum 200 .
  • a certain portion of the filter 130 may be washed while the radiated water collides with the filter 130 .
  • the filter washing water may be sprayed from the air intake 110 toward the filter 130 . Since foreign substances collected in the filter 130 are removed by the injection of the filter washing water, the performance of the filter 130 can be stably maintained.
  • the filter washing water may also be introduced into the tub 100 after passing through the filter 130 . Therefore, the filter washing water falls on the upper outer peripheral surface of the drum 200 to lower the temperature of the drum 200, so that the drum 200 can serve as a condensing plate.
  • the filter washing water is ejected at a predetermined pressure for washing the filter 130 .
  • the filter washing water ejected at a predetermined pressure is diffused by the filter 130 in the form of a mesh while passing through the filter 130 so that the surface of the drum 200 can be cooled wider and faster.
  • the laundry treatment device 1000 washes the filter 130 that collects foreign substances in the air, thereby preventing the foreign substances from being accumulated in the filter 130 itself, so that the air circulation is smooth. It is possible to improve the collecting efficiency of foreign substances while doing so.
  • the filter washing water may be used by supplying some of the cooling water to the filter washing unit 140 .
  • the cooling water discharged from the heat exchanger 500a may be guided into the tub 100 to be treated or to form a condensing surface on the surface of the drum 200 .
  • the cooling water discharged from the heat exchanger 500a may be guided to the filter washing unit 140 and used for washing the filter 130 .
  • some of the cooling water is used as the filter washing water without a separate configuration for supplying the filter washing water to the filter washing unit 140 .
  • the space in which the filter washing unit 140 is installed can be minimized.
  • the laundry treatment apparatus 1000 is installed in the branch pipe 710 and the branch pipe 710 respectively connected to the washing nozzle 700a and the filter washing unit 140, and the washing nozzle It may further include a branch valve 720 for controlling the supply of washing water to at least one of the 700a and the filter washing unit 140 .
  • both the washing water used in the washing nozzle 700a and the filter washing water used in the filter washing unit 140 are washing water for laundry or cooling water discharged from the heat exchanger 500a, etc. can be used using
  • the washing unit 700 and the filter washing unit A part of washing water or cooling water may be supplied to the unit 140 .
  • each branch pipe 710 for transferring any one of washing water, cooling water, and washing water may be coupled to at least one branch valve 720 to control the supply of water in an appropriate configuration according to a necessary situation.
  • washing of the filter 130 and washing of the heat exchanger 500a can be performed simultaneously or selectively in one branch valve 720 .
  • the washing of the washing nozzle 700a of the heat exchanger 500a and the washing of the filter washing unit 140 of the filter 130 are performed simultaneously.
  • washing nozzle 700a and the filter washing unit 140 may be driven at the same time.
  • water supplied to the laundry treatment device 1000 is injected into the tub 100 through a dry valve, etc. to condense moisture on the surface of the drum 200, as well as a water-cooled heat exchanger. It can be supplied to (500a) and used as cooling water.
  • cooling water discharged from the water-cooled heat exchanger (500a), the condensed water condensed inside the duct (300a), and the washing water for the heat exchanger (500a) are collected through different arbitrary branch pipes (710), respectively, and then of the tub (100). can be injected internally.
  • FIGS. 13 to 16 are views showing a first example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention. In this case, for convenience of description, it will be described with reference to FIGS. 3 to 6 together.
  • the laundry treatment apparatus 1000 may further include a washing unit 700 .
  • the washing unit 700 is installed in the circulation flow path unit 300 to wash the condensing unit 500 , and removes foreign substances in the air discharged from the tub 100 attached to the condensing unit 500 .
  • the washing unit 700 may be a washing nozzle 700a that is installed in the duct 300a and sprays washing water to the heat exchanger 500a, and as described above, removes foreign substances attached to it through washing. It may include various configurations.
  • the washing water may be used by utilizing the washing water for the above-described laundry or cooling water discharged from the heat exchanger 500a.
  • the washing water may be supplied to the washing unit 700 .
  • each branch hose for transferring any one of washing water, cooling water, and washing water may be coupled to at least one branch valve to control the supply of water in an appropriate configuration according to a necessary situation.
  • the laundry treatment device 1000 not only the blowing fan 400a and the heater 600a but also the heat exchanger 500a are installed inside the duct 300a installed on the tub 100, Since foreign substances are removed by spraying washing water on the heat exchanger 500a, the foreign substances can be effectively removed while optimizing the structure of the duct assembly 10.
  • the duct 300a is a blower fan cover 320 that covers the upper surface of each of the blowing fan 400a, the heat exchanger 500a and the heater 600a; It includes a heat exchanger cover 330 and a heater cover 340 , and the washing nozzle 700a is disposed on the heat exchanger cover 330 to spray washing water downward toward the heat exchanger 500a.
  • the upper surface of the duct 300a may include a blower fan cover 320 , a heat exchanger cover 330 , and a heater cover 340 .
  • the heater cover 340 is preferably made of a metal material in consideration of deformation due to heat.
  • the blower fan cover 320 and the heat exchanger cover 330 are made of a material different from that of the heater cover 340, and may be integrally formed as needed.
  • the washing nozzle 700a for washing the heat exchanger 500a is installed on the heat exchanger cover 330, the washing unit 700 through a simpler structure without a configuration for installing a separate washing nozzle 700a. can be made
  • the washing nozzle 700a for washing foreign substances is disposed on the heat exchanger cover 330, direct washing of the heat exchanger 500a can be performed. .
  • a plurality of washing units 700 may be disposed in the upper surface of the circulation passage unit 300 covering the plane of the condensing unit 500 . That is, a plurality of cleaning nozzles 700a may be disposed in an area covering the plane of the heat exchanger 500a.
  • washing nozzle 700a it is necessary to evenly arrange the washing nozzle 700a over the entire area covering the plane of the heat exchanger 500a, rather than arranging the washing nozzle 700a on a specific part.
  • a plurality of washing nozzles 700a are disposed on the heat exchanger cover 330 to wash the entire plane of the heat exchanger 500a, so that foreign substances are accumulated. Foreign matter may be removed for the entire part.
  • the heat exchanger cover 330 is formed on the upper surface to be connected to the washing water inlet 331 for introducing the washing water and each washing nozzle 700a, It may include a washing flow path 333 forming a flow path.
  • a washing water inlet 331 is formed in a portion of the heat exchanger cover 330 .
  • washing water can be smoothly supplied to each part through the washing passage 333 formed on the heat exchanger cover 330 .
  • washing water inlet 331 and the washing flow path 333 are formed in the heat exchanger cover 330 , the entire washing is performed even through one washing water inlet 331 . Washing water may be supplied to the nozzle 700a.
  • the washing passage 333 formed in the heat exchanger cover 330 may be inclined in a relatively low shape as it moves away from the washing water inlet 331 . Accordingly, the washing water introduced through the washing water inlet 331 may be smoothly supplied to each part of the heat exchanger cover 330 along the inclination of the washing flow path 333 .
  • the washing flow path 333 intersects the central flow path 333a extending along the inflow direction of the washing water from the washing water inlet 331 and the central flow path 333a. It may include a branch flow path 333b branching along the direction.
  • the washing water flowing into the washing water inlet 331 flows into the central flow path 333a formed along the center in the opposite direction.
  • the washing water flowing along the central flow path 333a may flow to each branch flow path 333b branched from the central flow path 333a and be dispersed over the entire area on the heat exchanger cover 330 .
  • the washing flow path 333 is composed of the central flow path 333a and the branch flow path 333b, the washing water is not biased to a specific part and the entire washing nozzle ( 700a) can be supplied.
  • the branch flow path 333b may be formed at an angle to move away from the washing water inlet 331 toward the outside.
  • the amount of washing water flowing toward the end of the branch flow path 333b may decrease. Accordingly, sufficient washing water may not be supplied to the end of the branch flow path 333b.
  • the washing water flowing into the branch flow path 333b flows in parallel with the direction initially introduced from the washing water inlet 331.
  • each of the washing nozzles 700a connected to the branch flow path 333b may be formed so that the size of the washing nozzle 700a disposed on the outside is larger than the size of the washing nozzle 700a disposed at the relatively center. have.
  • the size of the washing nozzle 700a disposed relatively rearward in the direction of movement of the washing water in the branch flow path 333b may be the same as or larger than the size of the washing nozzle 700a disposed relatively forward.
  • washing nozzle 700a disposed at the front If the size of the washing nozzle 700a disposed at the front is large, most of the washing water is discharged before reaching the washing nozzle 700a disposed at the rear, and the washing water is smoothly sprayed from the washing nozzle 700a disposed at the rear. may not support
  • the cleaning nozzle 700a disposed in the front is formed to be relatively small, and the cleaning nozzle 700a disposed in the rear is the same as or relatively larger than the size of the cleaning nozzle 700a disposed in the front, so that it is branched.
  • the washing water may be supplied even to the washing nozzle 700a connected at the end of the flow path 333b.
  • the washing unit 700 may have a relatively large washing power as it is closer to the blowing unit 400 side. That is, as the washing nozzle 700a is closer to the blowing fan 400a, the jetting force of the washing water may be relatively increased.
  • the air introduced into the duct 300a through the blowing fan 400a moves toward the heat exchanger 500a. Accordingly, a portion of the heat exchanger 500a close to the blowing fan 400a comes into contact with the air introduced into the duct 300a first.
  • the laundry treatment device 1000 is configured to remove foreign substances with a stronger washing force with respect to a part close to the blower fan 400a of the heat exchanger 500a. In consideration of the amount, efficient foreign matter removal can be achieved.
  • the arrangement position of the washing water inlet 331 directly connected to the central flow path 333a may be arranged biasedly to a part requiring a stronger washing power. may be
  • the heat exchanger cover 330 covers the heat exchanger 500a and the cover body 339 and the washing passage ( 333) may further include a cover top plate 335 coupled to the cover body 339 to cover the top surface.
  • the heat exchanger cover 330 may include a cover body 339 and a cover top plate 335 that are detachably coupled to each other.
  • a washing passage 333 is formed on the upper surface of the heat exchanger cover 330 .
  • the cleaning passage 333 is exposed to the outside, foreign substances or the like may be accumulated in the cleaning passage 333 to deteriorate the cleaning performance of the heat exchanger 500a.
  • the washing flow path 333 is formed on the upper surface of the heat exchanger cover 330, but the upper surface of the washing flow path 333 must also be covered with a predetermined member so that the washing flow path 333 is not exposed to the outside.
  • the heat exchanger cover 330 into the cover body 339 in which the washing passage 333 is formed and the cover top plate 335 that can be coupled to the upper surface of the cover body 339 .
  • cover body 339 and the cover top plate 335 may be coupled to each other through a separate fastening member 337 as shown in FIG. They may be coupled to each other to be detachable.
  • FIG 17 and 18 are views showing a second example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention.
  • the branch flow path 333b may be formed to become narrower toward the outside.
  • the heat exchange efficiency of the heat exchanger 500a may decrease.
  • the branch flow path 333b by forming the branch flow path 333b to be narrower toward the outside, it is possible to flow faster in the narrow portion. Through this, even if a certain amount of flow is reduced, the washing water flows relatively quickly at the end of the branch flow path 333b so that the injection pressure for washing can be sufficiently secured.
  • FIG. 19 and 20 are views showing a third example of a heat exchanger cover in the laundry treatment apparatus according to an embodiment of the present invention.
  • the washing flow path 333 is connected from the washing water inlet 331 to the opposite side of the washing water inlet 331 along the outer portion of the outer flow path 333c and the washing water inlet. It may include a divided flow path 333d for dividing the upper surface of the heat exchanger cover 330 from the opposite surface of the 331 toward the washing water inlet 331 .
  • the washing water flowing into the washing water inlet 331 flows into the outer flow path 333c formed along the outer portion in the opposite direction.
  • the washing water reaching the opposite direction along the outer flow path 333c flows into the divided flow path 333d and may be dispersed over the entire area on the heat exchanger cover 330 .
  • the outer flow path 333c is provided with a plurality of branches branching from the washing water inlet 331 , and the divided flow path 333d may be formed between the plurality of outer flow paths 333c.
  • the washing flow path 333 is composed of the outer flow path 333c and the divided flow path 333d, the washing water is not biased to a specific part and the entire washing nozzle ( 700a) can be supplied.
  • each washing nozzle 700a connected to the divided flow path 333d has a size of the washing nozzle 700a disposed relatively close to the washing water inlet 331 is relatively close to the opposite surface of the washing water inlet 331. It may be formed to be larger than the size of the washing nozzle 700a.
  • the size of the washing nozzle 700a disposed relatively rearward in the moving direction of the washing water in the divided flow path 333d may be the same as or larger than the size of the washing nozzle 700a disposed relatively forward.
  • washing nozzle 700a disposed at the front If the size of the washing nozzle 700a disposed at the front is large, most of the washing water is discharged before reaching the washing nozzle 700a disposed at the rear, and the washing water is smoothly sprayed from the washing nozzle 700a disposed at the rear. may not support
  • the cleaning nozzle 700a disposed in the front is formed to be relatively small, and the cleaning nozzle 700a disposed in the rear is formed to be the same as or relatively larger in size than the cleaning nozzle 700a disposed in the front.
  • the washing water may be supplied even to the washing nozzle 700a connected at the end of the flow path 333d.
  • each of the washing nozzles 700a may be connected to the divided passage 333d instead of being connected to the outer passage 333c.
  • washing nozzle 700a is connected to the outer passage 333c, a large amount of washing water may be discharged from the outer passage 333c before reaching the divided passage 333d.
  • the outer flow path 333c is disposed on the outer portion of the heat exchanger 500a that does not require a relatively large amount of lint removal, it may not be desirable to discharge a large amount of washing water from the outer flow path 333c.
  • the washing nozzle 700a is not connected to the outer flow path 333c, so that the washing water flows into the divided flow path 333d without being discharged, and then the washing water is sprayed from the washing nozzle 700a connected to the divided flow path 333d. can make it happen
  • FIG. 21 to 24 are views illustrating a blower fan base, a heat exchanger base, and a heater base in the laundry treatment apparatus 1000 according to an embodiment of the present invention.
  • FIG. 25 is a view showing the part A shown in FIG. 24 in more detail.
  • the bottom of the circulation passage unit 300 may have a drainage passage 380 formed from the condensing unit 500 toward the center of the blowing unit 400 .
  • the duct 300a includes a blowing fan base 350, a heat exchanger base 360, and a heater base 370 supporting the lower surfaces of the blowing fan 400a, the heat exchanger 500a and the heater 600a, respectively.
  • a drainage passage 380 may be formed from the heat exchanger base 360 toward the center of the blower fan base 350 .
  • the washing water that has washed the heat exchanger 500a through the above-described process falls to the bottom of the duct 300a. It is not preferable that the dropped washing water accumulates in the duct 300a or flows to an unnecessary part in that it may impair the function of the duct assembly 10 .
  • the washing water that has fallen to the bottom of the duct 300a along a direction that is as fast and stable as possible.
  • the washing water can be rapidly and stably discharged along the drain 380 .
  • the air intake 110 of the tub 100 is disposed at the center of the blower fan base 350 , and washing water flowing along the drain 380 may be introduced into the tub 100 . And, the washing water introduced into the tub 100 may be treated similarly to the above-described filter washing water.
  • a drain 380 for guiding the washing water flowing to the bottom of the duct 300a toward the center of the blower fan base 350 is formed, so that the washing water is transferred to the duct 300a ) can be effectively discharged to the outside.
  • the circulation flow path unit 300 may have a first order sill 391 formed on the floor between the condensing unit 500 and the heating unit 600 . That is, the first order sill 391 may be formed between the heat exchanger base 360 and the heater base 370 .
  • the washing water that has fallen to the bottom of the duct 300a flows toward the heater 600a. This is because, when the washing water comes into contact with the heater 600a, the function of the heater 600a for heating air by lowering the temperature of the heater 600a may be deteriorated.
  • the first order sill 391 blocking the movement of the condensed water or washing water flowing to the bottom of the duct 300a to the heater 600a is formed, so the heater ( It is possible to prevent deterioration of the function of the heater 600a due to contact of condensed water or washing water with 600a).
  • the height of the first order sill 391 may be formed to be relatively lower than the height from the upper surface of the heat exchanger base 360 to the lower surface of the pipe 510 .
  • the first order sill 391 may protrude upward only to a height lower than that of the pipe 510 .
  • the air flow area inside the duct 300a may be reduced.
  • the first order sill 391 is formed to protrude upward only to a height lower than that of the pipe 510 , thereby preventing a decrease in the air volume inside the duct 300a.
  • the bottom of the circulation passage unit 300 may be inclined from the condensing unit 500 toward the center of the blowing unit 400 .
  • the heat exchanger base 360 is inclined along one direction, and the drain 380 may be connected to the lowest point of the heat exchanger base 360 .
  • the blowing fan base 350 may be formed to be inclined toward the center.
  • the washing water or condensed water that has fallen to the bottom of the duct 300a is not discharged and it is not desirable to collect on the heat exchanger base 360 . This is because foreign substances may accumulate in the stagnant condensate or washing water, which may cause sanitary problems, such as contamination or odor.
  • the heat exchanger base 360 inclined and connect the drain 380 to the lowest point of the heat exchanger base 360 so that the condensed water or washing water is quickly guided to the drain 380 .
  • the condensed water or washing water flowing to the bottom of the duct 300a is guided to the drain 380 along the slope of the heat exchanger base 360, so the heat exchanger base 360 ) to prevent condensate or washing water from accumulating in the area.
  • blower fan base 350 inclined toward the center so that the condensed water or washing water is rapidly discharged to the air intake 110 .
  • the condensed water or washing water flowing to the bottom of the duct 300a is guided to the center along the slope of the blower fan base 350, so the blower fan base 350 part Condensate or washing water can be prevented from accumulating.
  • the second order sill 392 is formed except for the portion where the drain 380 is formed on the floor between the blower 400 and the condensing unit 500 .
  • the second order sill 392 may be formed between the blower fan base 350 and the heat exchanger base 360 , except for the portion where the drain 380 is formed.
  • the washing water or condensed water that has fallen to the bottom of the duct 300a should be guided toward the blower fan 400a, but it is not preferable to flow to parts other than the drain 380. This is because, if the condensed water or washing water is scattered to parts other than the drain passage 380 , the condensed water or the washing water may not be smoothly discharged.
  • the second water sill 392 blocking the movement of condensed water or washing water flowing to the bottom of the duct 300a to the blowing fan 400a rather than the drain 380 . ) is formed, so that condensed water or washing water is not scattered to unnecessary parts and can be discharged through an optimal path.
  • FIGS. 27 to 29 are views showing a modified example of the heat exchanger base in the laundry treatment apparatus according to an embodiment of the present invention.
  • the heat exchanger base 360 may be inclined toward the first point P1 on the plane.
  • the heat exchanger base 360 may have a washing water discharge hole 801 formed at the first point P1.
  • the washing water or condensed water that has fallen to the bottom of the duct 300a is not discharged and it is not preferable to collect on the heat exchanger base 360 .
  • condensed water or washing water may be discharged to the air inlet 110 .
  • condensed water or washing water contains foreign substances such as lint, foreign substances may be accumulated in the filter 130 of the air intake port 110 .
  • the condensed water or washing water may be guided and discharged through the washing water discharge hole 801 separately formed in the heat exchanger base 360 without discharging the condensed water or the washing water through the air inlet 110 .
  • washing water discharge hole 801 is connected to the tub 100 , and condensed water discharged from the washing water discharge hole 801 may be injected into the tub 100 .
  • the condensed water discharged from the washing water discharge hole 801 can be discharged by utilizing the discharge structure formed in the tub 100 .
  • condensed water discharged from the washing water discharge hole 801 may be injected into the tub 100 to condense moisture on the surface of the drum 200 .
  • the condensed water discharged from the washing water discharge hole 801 may be guided to the rear surface of the tub 100 and used to condense moisture on the rear surface of the tub 100 .
  • FIG. 32 is a diagram schematically illustrating an algorithm for performing a stroke of a laundry treatment apparatus according to an embodiment of the present invention.
  • An algorithm for performing a washing cycle, a rinsing cycle, a dehydration cycle, and a drying cycle for laundry in the laundry treatment device 1000 according to an embodiment of the present invention will be schematically described with reference to FIG. 32 .
  • washing cycle (or washing cycle and rinsing cycle) for the laundry is completed
  • dehydration cycle (S200, S500) and drying cycle (S700, S800) for removing moisture contained in the laundry are sequentially performed.
  • the dehydration cycle may be completed after the washing cycle ( S400 ) of the heat exchanger 500a in which the dehydration cycle is performed before the drying cycle. That is, the washing cycle of the heat exchanger 500a is performed before the drying cycle, and the dehydration cycle can be completed after the washing cycle.
  • the water film that may be generated during washing of the heat exchanger 500a is removed in the dehydration cycle, so that the heat exchange efficiency for drying laundry is not lowered and can be smoothly performed. have.
  • the cleaning operation of the heat exchanger 500a and the filter cleaning operation of the filter 130 may be simultaneously performed.
  • a water film that may be generated during the washing of the filter 130 may be similarly removed in the dehydration process.
  • the dehydration cycle is performed after the first dehydration (S200) is performed on the laundry, and then the internal temperature of the drum 200 is increased (S300) for the laundry.
  • the secondary dehydration (S500) is additionally performed, and the secondary dehydration of the laundry may be performed after the washing cycle of the heat exchanger (500a).
  • increasing the internal temperature of the drum 200 during the second dehydration is to improve the dewatering performance by reducing the surface tension of the moisture contained in the load.
  • the second dehydration may be performed after the washing operation of the heat exchanger 500a.
  • the dehydration cycle is divided into two steps, and the washing cycle of the heat exchanger 500a is performed between them, so that the water film removal is not performed in the second dehydration step. Not only is it possible, but the dewatering performance can be improved under elevated temperature.
  • cooling water When cooling water is supplied to the heat exchanger 500a for the drying cycle, it may be most advantageous in terms of drying efficiency to continuously supply cooling water for a predetermined time.
  • the amount of cooling water used is relatively large, and there is a limitation that a certain amount of cooling water must be discharged through the discharge structure of the tub 100 at the same time the cooling water is supplied.
  • the supply of the cooling water to the heat exchanger 500a may be intermittently and repeatedly performed a plurality of times.
  • the method of supplying cooling water to the heat exchanger 500a may include a process of 'water supply for 7 seconds - pause for 2 seconds - water supply for 7 seconds - pause for 2 seconds - (repeatedly performed)'.
  • the amount of cooling water used can be relatively reduced, so that even if a certain amount of cooling water is not discharged through the discharge structure of the tub 100 at the same time as cooling water is supplied, contact of the cooling water contained in the tub 100 with the laundry is minimized.
  • the supply of the coolant to the heat exchanger 500a is intermittently and repeatedly performed over a plurality of times, so that the amount of coolant used is reduced and the coolant is prevented from contacting the laundry. etc., an optimal operation can be achieved.
  • the cooling water to the tub 100 may be continuously discharged for a set time.
  • a drain time may be set for 15 seconds to discharge the coolant.
  • the laundry treatment apparatus 1000 since the cooling water discharge from the tub 100 is continuously performed for a set time, a predetermined time required for the cooling water discharge can be sufficiently secured.
  • the supply of cooling water to the heat exchanger 500a may be stopped.
  • the supply of the cooling water may be stopped and the cooling water may be discharged.
  • the supply of cooling water to the heat exchanger 500a is stopped, so that the operation of each component for drying laundry is performed. can be done efficiently.
  • the drying cycle is performed in a high-temperature drying state in which the heater 600a and the blowing fan 400a are driven together (S700), and the heat exchanger 500a
  • the supply of the cooling water may be performed after a set time has elapsed from the time when the driving of the heater 600a and the blower fan 400a is started.
  • the supply of cooling water to the heat exchanger 500a is performed when the internal temperature of the drum 200 reaches a saturation state or the inside of the drum 200 . It can be carried out when the temperature has reached the set temperature.
  • the cooling water to the heat exchanger 500a may be supplied only when the internal temperature of the drum 200 reaches a preset temperature (eg, 93° C.).
  • the heat exchanger 500a Since the supply of cooling water is performed, the operation of each component for drying laundry can be performed efficiently.
  • the drying cycle is additionally performed in a low-temperature drying state in which the heater 600a is not driven and the blower fan 400a is driven (S800) (the internal temperature of the drum cooling process for lowering), and supply of cooling water to the heat exchanger 500a may be performed until the time when the operation of the blowing fan 400a is terminated.
  • the heater 600a is not operated. Additional condensation is possible even in this state, and the load temperature is lowered, so safety can be improved.
  • the washing operation of the heat exchanger 500a may be performed in a state in which the driving of the blowing fan 400a is reduced.
  • the blowing fan 400a is driven with a certain intensity or more, the washing water for washing may be scattered by the blowing fan 400a. In this case, if the washing water is scattered into the drum 200, there is a risk that the laundry to be dried becomes wet again.
  • the heater 600a is driven and the heat exchanger ( Since the supply of cooling water to each of 500a) is stopped, unnecessary operation in a state in which the drying function is not performed can be minimized.
  • the washing operation of the heat exchanger 500a may be performed in a state in which the rotation of the drum 200 is increased.
  • the heat exchanger 500a is washed in a state in which the rotation of the drum 200 is increased, it is possible to minimize the inflow of washing water into the drum. .
  • 31 is a view showing a dispenser and a house trap in the laundry treatment apparatus according to an embodiment of the present invention.
  • the laundry treatment apparatus 1000 may further include a dispenser 910 and a house trap 920 .
  • the dispenser 910 is a part installed to supply additives to the drum 200 , and may be installed on a path through which wash water is supplied to the tub 100 .
  • the house trap 920 is a part that connects the drum 200 and the dispenser 910 , and when the washing water supplied through the dispenser 910 moves, some of the moving wash water is stored, so that the washing water movement path is sealed. create a space to be By the house trap 920 , detergent bubbles or air generated inside the tub 100 may be prevented from flowing back into the dispenser 910 .
  • washing water may be filled in the house trap 920 between the dehydration cycle and the drying cycle ( S600 ).
  • the evaporated moisture during the drying cycle is discharged to the dispenser 910 as it reduces drying efficiency.
  • the house trap 920 may not perform a predetermined function depending on vibrations generated during the spin-drying cycle, it is necessary to sufficiently supply washing water to the house trap 920 between the spin-drying cycle and the drying cycle.
  • the moisture evaporated during the drying process for the laundry is transferred to the dispenser 910 ) can be prevented from entering.
  • gasket 320 blower fan cover
  • heat exchanger cover 331 washing water inlet
  • washing flow path 333a central flow path
  • split flow path 335 cover top plate
  • cover body 340 heater cover
  • blow fan base 360 heat exchanger base
  • heater base 380 drain
  • first order jaw 392 second order jaw
  • blower 400a blower fan
  • washing unit 700a washing nozzle
  • washing water discharge hole 910 dispenser
  • the blowing fan and the heater not only the blowing fan and the heater, but also a water-cooled heat exchanger for exchanging heat to cool the air is installed inside the duct installed on the tub, so it is not necessary to secure a separate space for condensing moisture in the air. Therefore, it is possible to minimize the limitations of implementing the laundry treatment device in a large capacity.
  • a water-cooled heat exchanger that exchanges heat with air through the supplied cooling water is disposed inside the duct to have a more simplified heat exchange structure, so that the configuration for condensation of moisture in the air is minimized while Moisture removal can be performed smoothly.
  • moisture is first removed from the heat exchanger with respect to the air transported along the inside of the duct through the blower fan, and then the air is heated in the heater, so that the heated air is cooled again.
  • the heat exchanger and the heater are spaced apart from each other and the heat emitted from the heater does not affect the function of the heat exchanger, the temperature of the heat exchanger itself rises to prevent deterioration of reliability can do.
  • the blowing fan and the heater are spaced apart from each other and the heat exchanger is disposed in the spaced apart space, the heat emitted from the heater does not damage the injection product of the blowing fan, the motor, etc. It is possible to prevent the disruption of air circulation due to the deterioration of the function of the air conditioner.
  • the structure of the heat exchanger can be simplified and the degree of freedom of arrangement thereof can be improved. have.
  • cooling water flows into the loop coil-shaped pipe and heat-exchanges with air outside the pipe, heat exchange efficiency can be improved compared to the area occupied by the heat exchanger in the duct.
  • coolant flows into the pipe made of a corrosion-resistant material and heat exchanges with the air outside the pipe, thereby preventing sanitary problems of the laundry treatment equipment due to corrosion of the heat exchanger. can do.
  • the heat exchanger part into which the cooling water is introduced is disposed behind the heat exchanger part through which the coolant is discharged, so the last part on the air flow path The efficiency can be maximized by cooling with the lowest temperature coolant to the room point.
  • cooling water can be circulated smoothly while maintaining airtightness between the inside and outside of the duct. have.
  • the assembly between the heat exchanger and the duct is more can be done easily.
  • the structure of the heat exchanger can be simplified more and the degree of freedom of arrangement thereof can be improved. have.
  • cooling water discharged from the heat exchanger is injected into the tub and used to condense moisture on the surface of the drum, in addition to moisture condensation in the duct, moisture in the air can be removed.
  • the filter for collecting foreign substances in the air is washed to prevent the foreign substances from being accumulated in the filter itself, the efficiency of collecting foreign substances is improved while ensuring smooth air circulation. can do it
  • the structure of the filter washing unit is further simplified to a space in which the filter washing unit is installed. can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

세탁물에 대한 건조 기능을 포함하는 세탁물 처리기기가 제공된다. 본 발명의 일 측면에 따른 세탁물 처리기기는 세탁수가 수용되는 터브; 상기 터브 내에 회전 가능하게 설치되는 드럼; 상기 터브 상에 설치되어, 공기의 유동을 위한 공기흡입구와 공기유입구가 구비되는 덕트; 상기 덕트 내에 설치되어, 상기 공기흡입구와 상기 공기유입구 사이에서 상기 공기의 유동을 형성시키는 송풍팬; 냉각수가 공급되도록 상기 덕트 내에 설치되어, 상기 덕트 내부를 따라 이송되는 상기 공기를 냉각시키도록 열교환되는 열교환기; 및 상기 덕트 내에 설치되어, 상기 덕트 내부를 따라 이송되는 상기 공기를 가열하는 히터;를 포함한다.

Description

세탁물 처리기기
본 발명은 세탁물 처리기기에 관한 것으로, 보다 상세하게는, 세탁물에 대한 건조 기능을 포함하는 세탁물 처리기기에 관한 것이다.
일반적으로 세탁물 처리기기는 세탁물에 물리적, 화학적 작용을 가하여 세탁물을 처리하는 기기이다. 이러한 세탁물 처리기기는 세탁물에 뭍은 오염을 제거하는 세탁장치, 세탁물이 담긴 세탁조를 고속으로 회전시켜 세탁물을 탈수시키는 탈수장치, 세탁조 내로 열풍을 가하여 젖은 세탁물을 건조시키는 건조장치 등을 통칭한다.
이와 관련하여, 최근에 등장하는 세탁물 처리기기는 세탁 기능, 탈수 기능 및 건조 기능을 각 장치에서 개별적으로 수행하는 것에 그치지 않고, 하나의 세탁물 처리기기에서 상기의 모든 기능을 함께 수행할 수 있도록 구성되고 있다.
이에 따라, 세탁물에 대한 처리 시 중간 단계에서 사용자의 조작이 없더라도 세탁코스, 헹굼코스, 탈수코스 및 건조코스 등으로 이어지는 일련의 행정을 자동으로 진행할 수 있다.
한편, 건조 기능을 포함하는 세탁물 처리기기의 경우, 세탁물을 건조시키기 위하여 터브 및 드럼 내부로 고온 건조한 공기를 공급한다. 그리고, 공급된 고온 건조한 공기는 세탁물로부터 수분을 흡수하여 세탁물을 건조시키게 된다.
이 경우, 수분을 흡수하여 상대적으로 저온 다습하게 된 공기는 터브로부터 배출되며, 배출되는 공기에서 수분을 제거하고 가열한 후 터브 내부로 재공급되는 방식으로 순환될 수 있다.
따라서, 건조 기능을 포함하는 세탁물 처리기기는 공기에서 수분을 제거하기 위한 구성, 공기를 가열하기 위한 구성 및 공기를 순환시키기 위한 구성이 필수적으로 요구된다고 할 수 있다.
상기와 같은 건조 기능을 포함하는 세탁물 처리기기와 관련하여, 한국공개특허 10-2017-0069461호(이하, ‘선행문헌 1’이라고 함)는 건조 장치 및 이를 포함하는 세탁건조기를 개시하고 있다.
구체적으로, 외부 공기가 유입되는 유입구를 포함하는 케비닛, 상기 케비닛 내측에 배치되고 건조물을 수용하는 드럼, 상기 드럼의 내부로부터 유입된 공기 중의 수분을 응축시키도록 구성되도록 마련되는 응축덕트, 상기 응축덕트로부터 유입된 공기의 일부를 배기하도록 상기 응축덕트와 연통되는 배기구, 상기 응축덕트로부터 유입된 공기의 일부와 상기 유입구를 통해 유입된 외부공기를 가열하여 상기 드럼의 내부로 공급하도록 상기 응축덕트 및 상기 유입구와 상기 드럼과 연결되는 건조덕트 등을 개시하고 있다.
이러한 선행문헌 1의 세탁물 처리기기의 경우, 터브로부터 배출되는 공기 중의 수분을 제거하기 위한 응축덕트가 터브의 후면에 배치되는 구조를 제시한다. 이와 같은 구조의 경우, 응축덕트의 배치 공간을 확보하기 위해서는 제한된 케비닛 내에서 터브의 크기가 상대적으로 줄어들 수 밖에 없다.
특히, 보다 대용량의 세탁물 처리기기를 선호하는 소비자들의 요구를 충족시키기 위하여, 터브의 크기를 보다 크게 제작할 필요가 있으나, 상기와 같은 선행문헌 1의 구조에서는 터브의 크기를 대형화하는데 제약이 따를 수 밖에 없다는 문제점이 있다.
그리고, 한국공개특허 10-2008-0051878호(이하, ‘선행문헌 2’라고 함)는 건조기를 개시하고 있다.
구체적으로, 본체, 상기 본체 내부에 구비되며 건조대상물을 수용하는 건조실, 외부 열원으로부터 생성된 유체를 상기 본체 내부로 공급하는 공급부, 상기 공급부와 연결되고 상기 공급부로 공급된 유체와 열 교환되어 공기를 가열하는 열교환부, 가열된 공기를 상기 건조실로 안내하는 건조덕트, 상기 열교환부의 전면에 설치되는 히터 및 상기 건조실 내부와 상기 건조덕트 내부에서 공기를 순환시키는 송풍장치 등을 개시하고 있다.
이러한 선행문헌 2의 세탁물 처리기기의 경우, 건조실 상면에 배치된 하나의 건조덕트 내에 송풍장치, 열교환부 및 히터가 모두 설치된 구성을 개시하고 있다. 그러나, 건조덕트 내에 설치된 열교환부는 외부 열원을 활용하여 공기를 가열하는 구성으로서, 히터 이외에 부가적으로 공기를 가열하는 구성에 해당한다.
특히, 건조덕트 내에는 순환되는 공기 중의 수분을 응축시키기 위한 구성은 함께 설치되어 있지 않으며, 건조실 후면에 배치된 응축덕트 및 응축기를 통해 순환되는 공기 중의 수분이 응축된다.
따라서, 선행문헌 2의 세탁물 처리기기 역시 수분의 응축을 위한 응축덕트의 배치 공간이 별도로 확보되어야 한다는 문제가 있다.
이상과 같이, 세탁물에 대한 건조 기능을 포함하는 세탁물 처리기기의 경우, 터브와 같은 주요 구성의 규격을 제약하지 않으면서도 효율적으로 건조 기능을 수행하기 위하여 해결되어야 하는 과제를 안고 있다. 또한, 세탁물 처리기기의 가격경쟁력을 확보하고 제한된 공간 내에서 가장 효율적으로 열교환기 등과 같은 주요 장치를 설치하기 위하여 해결되어야 하는 과제를 안고 있다. 그러나, 종래의 세탁물 처리기기는 이러한 과제를 적절히 해결할 수 없다는 한계가 있다.
본 발명은 세탁물에 대한 건조 기능을 포함하는 세탁물 처리기기가 가지고 있는 상기의 문제점을 해결하는 것을 목적으로 한다.
구체적으로, 본 발명은 건조 기능을 포함하는 세탁물 처리기기에서 요구되는 공기로부터 수분을 제거하기 위한 구성, 공기를 가열하기 위한 구성 및 공기를 순환시키기 위한 구성들에 대한 배치를 최적화하여, 보다 대용량 구현이 가능한 세탁물 처리기기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 건조 기능을 포함하는 세탁물 처리기기에서 보다 단순화된 열교환 구조를 가지면서도 공기 중의 수분 응축이 원활하게 이루어지도록 하여, 순환되는 공기 중의 수분 제거를 효과적으로 수행할 수 있는 세탁물 처리기기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 건조 기능을 포함하는 세탁물 처리기기에서 공기에 대한 수분 제거와 가열 과정이 최적의 순서로 이루어지도록 하여, 세탁물에 대한 건조 효율을 보다 향상시킬 수 있는 세탁물 처리기기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 건조 기능을 포함하는 세탁물 처리기기에서 세탁물의 건조 과정에서 발생하는 린트 등의 이물질이 주요 구성에 부착되는 것을 최소화하여, 세탁물에 대한 건조 기능이 저하되지 않고 원활하게 이루어질 수 있는 세탁물 처리기기를 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 또는 다른 목적을 달성하기 위해, 본 발명의 일 측면에 따른 세탁물 처리기기는 터브 상에 설치되어 터브로부터 배출되는 공기를 가이드하여 터브로 재유입시키는 덕트조립체의 구조를 최적화하도록 구성된다. 구체적으로는 송풍팬 및 히터 뿐만 아니라 공기를 냉각시키도록 열교환하는 수랭식 열교환기도 터브 상에 설치된 덕트 내부에 설치되어, 공기 중의 수분 응축을 위한 별도의 공간확보가 필요하지 않도록 구성된다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 공기 중의 수분을 응축시키는 응축부를 보다 단순화하도록 구성된다. 구체적으로는 공급되는 냉각수를 통하여 공기와 열교환하는 수랭식 열교환기를 덕트 내부에 배치하여, 보다 단순화된 열교환 구조를 갖도록 구성된다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 세탁물의 건조를 위해 순환되는 공기에 대한 응축과 가열이 보다 효율적으로 이루어지도록 구성된다. 구체적으로는 송풍팬을 통해 덕트 내부를 따라 이송되는 공기에 대하여 열교환기에서 먼저 수분을 제거한 후 히터에서 공기를 가열하여, 공기가 고온 건조한 상태로 터브에 재유입되도록 구성된다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 열교환기와 히터가 서로 이격되어 히터에서 방출되는 열이 열교환기의 기능에 영향을 미치지 않도록 할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 송풍팬과 히터가 서로 이격되고 이러한 이격 공간에 열교환기가 배치되어, 히터에서 방출되는 열이 송풍팬의 사출물 및 모터 등을 손상시키지 않도록 할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 열교환기로 냉각수를 공급하기 위한 별도의 구성 없이 세탁수 중 일부를 냉각수로 사용할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 루프코일 형상의 파이프 내부로 냉각수가 흐르며 파이프 외부의 공기와 열교환될 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 내식성 재질로 이루어지는 파이프의 내부로 냉각수가 흐르며 파이프 외부의 공기와 열교환될 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 덕트 내부의 공기 이동 경로를 기준으로, 냉각수가 유입되는 열교환기 부분이 냉각수가 배출되는 열교환기 부분보다 후방에 배치될 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 덕트의 외부로 노출되는 열교환기 부분은 덕트의 일부분에 배치된 개스킷에 의하여 지지될 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 덕트의 외부로 노출되는 열교환기 부분이 복수인 경우, 해당 부분이 서로 동일하거나 일정 부분 중첩되는 높이 상에 배치될 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 열교환기에서 배출되는 냉각수를 별도의 배출 구조 없이 터브로 주입시켜 처리할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 열교환기에서 배출되는 냉각수를 터브로 주입시켜, 드럼의 표면에서 수분을 응축하는데 사용할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 터브로부터 배출되는 공기 중의 이물질을 포집하여 덕트 내부로 이물질이 유입되는 것을 최소화할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 공기 중의 이물질을 포집하는 필터를 세척하여, 필터 자체에 이물질이 집적되는 것을 방지할 수 있다.
또한, 본 발명의 일 측면에 따른 세탁물 처리기기는 필터세척부로 필터세척수를 공급하기 위한 별도의 구성 없이 냉각수 중 일부를 필터세척수로 사용할 수 있다.
본 발명에서 이루고자 하는 기술적 과제들의 해결 수단은 이상에서 언급한 해결 수단들로 제한되지 않으며, 언급하지 않은 또 다른 해결 수단들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 세탁물 처리기기를 나타내는 사시도이다.
도 2는 본 발명의 일 실시예에 따른 세탁물 처리기기를 나타내는 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브에 설치된 덕트조립체를 나타내는 사시도이다.
도 4는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 덕트조립체를 나타내는 분해 사시도이다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 덕트조립체의 내부를 나타내는 도면이다.
도 7 내지 도 9는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 응축부를 나타내는 도면이다.
도 10은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 응축부가 순환유로부에 설치된 상태를 나타내는 도면이다.
도 11은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브의 내부를 나타내는 도면이다.
도 12는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 필터세척부를 나타내는 도면이다.
도 13 내지 도 16은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제1 례를 나타내는 도면이다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제2 례를 나타내는 도면이다.
도 19 및 도 20은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제3 례를 나타내는 도면이다.
도 21 내지 도 24는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 송풍팬베이스, 열교환기베이스 및 히터베이스를 나타내는 도면이다.
도 25는 도 24에 도시된 A 부분을 보다 상세히 나타내는 도면이다.
도 26은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기와 히터 사이의 이격 간격에 따른 응축 효율을 나타내는 도면이다.
도 27 내지 도 29는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기베이스의 변형례를 나타내는 도면이다.
도 30은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 냉각수, 세척수 및 응축수의 공급 및 배출 경로를 개략적으로 나타내는 도면이다.
도 31은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 디스펜서 및 하우스트랩을 나타내는 도면이다.
도 32는 본 발명의 일 실시예에 따른 세탁물 처리기기의 행정 수행 알고리즘을 개략적으로 나타내는 도면이다.
도 33은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브를 보다 상세히 나타내는 도면이다.
도 34는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 이루어지는 열교환을 예시적으로 나타내는 도면이다.
도 35는 본 발명의 일 실시예에 따른 세탁물 처리기기의 필요 열교환량 및 열교환길이를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 세탁물 처리기기를 나타내는 사시도이다. 도 2는 본 발명의 일 실시예에 따른 세탁물 처리기기를 나타내는 분해 사시도이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는 외관을 형성하는 캐비닛(20), 캐비닛(20)의 내부에 설치되어 세탁수가 수용되는 터브(100) 및 터브(100)의 내부에 회전 가능하게 설치되어 세탁물을 수용하는 드럼(200)으로 구성된다.
캐비닛(20)의 전면부에는 드럼(200)의 내부로 세탁물을 투입할 수 있도록 투입구가 형성된다. 투입구는 캐비닛(20)의 전면부에 설치된 도어(30)에 의해 개폐된다.
터브(100)는 전방 및 후방을 구성하는 프런트터브(101) 및 리어터브(102), 리어터브(102)의 후벽을 형성하는 터브백(103)으로 구성된다.
리어터브(102)는 후방에 개구부가 형성되며, 개구부에 플렉서블한 부재인 후방개스킷(104)이 결합된다. 후방개스킷(104)은 반경방향 내측에서 터브백(103)과 연결된다. 터브백(103)은 후술할 회전축(206)이 관통 삽입된다.
후방개스킷(104)은 터브백(103) 및 리어터브(102)와 각각 실링되도록 연결되어 터브(100) 내의 세탁수가 누수 되지 않도록 한다. 터브백(103)은 드럼(200)의 회전시 드럼(200)과 함께 진동하지만, 후방개스킷(104)이 유연하게 변형될 수 있기 때문에 터브백(103)이 리어터브(102)에 간섭되지 않고 상대 운동하는 것을 허용한다.
이 경우, 후방개스킷(104)은 터브백(103)의 상대 운동을 허용하기 위해 충분한 길이로 연장될 수 있는 곡면부 또는 주름부를 가질 수 있다.
드럼(200)은 드럼프런트(201), 드럼센터(202) 및 드럼백(203)으로 구성되며, 드럼(200)의 전방 및 후방에는 밸런서(204)가 각각 설치된다. 드럼백(203)은 스파이더(205)와 연결되며, 스파이더(205)는 회전축(206)과 연결된다.
드럼(200)은 상기 회전축(206)을 통해 전달된 회전력에 의해 터브(100) 내에서 회전하게 된다. 드럼(200)의 원주면에는 세탁 또는 탈수 시 세탁물에서 발생되는 세탁수가 배출되기 위한 다수의 통공이 형성된다.
터브백(103)의 후면에는 베어링하우징(106)이 결합된다. 그리고, 베어링하우징(106)은 모터와 터브백(103) 사이에서 회전축(206)을 회전 가능하게 지지한다. 베어링하우징(106)은 서스펜션유닛(107)에 의해 캐비닛(20)에 대해 지지된다.
도 3은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브에 설치된 덕트조립체를 나타내는 사시도이다. 도 4는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 덕트조립체를 나타내는 분해 사시도이다. 도 5 및 도 6은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 덕트조립체의 내부를 나타내는 도면이다.
도 3 내지 도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는 덕트조립체(10)를 포함한다.
덕트조립체(10)는 터브(100) 상에 설치되어 터브(100)로부터 배출되는 공기를 가이드하여 터브(100)로 재유입시키는 부분으로, 순환유로부(300), 송풍부(400), 응축부(500) 및 가열부(600)를 포함한다.
세탁물을 건조시키기 위하여, 고온 건조한 공기가 드럼(200)의 내부로 공급된다. 드럼(200)으로 유입된 고온의 건조 공기는 드럼(200) 내부에 수용된 젖은 세탁물과 접촉하여 세탁물로부터 수분을 빼앗아 세탁물을 건조시키게 된다.
이 과정에서 고온의 건조 공기는 저온 다습한 습공기 상태로 변화되고, 드럼(200)의 벽면에 형성된 통공을 통해 드럼(200)의 외부로 배출된다. 드럼(200)의 외부로 배출된 저온 다습한 공기는 터브(100)와 드럼(200)의 사이로 유동하게 된다.
이 경우, 세탁물을 지속적으로 건조시키기 위해서는 터브(100) 및 드럼(200) 내부에 존재하는 저온 다습한 공기를 배출시키고, 다시 고온 건조한 공기를 터브(100) 및 드럼(200) 내부로 주입시킬 필요가 있다.
이를 위해, 수분을 흡수하여 상대적으로 저온 다습하게 된 공기를 터브(100)로부터 배출시키고, 배출되는 공기에서 수분을 제거하고 가열한 후 터브(100) 내부로 재공급되는 방식으로 순환시키게 된다.
상기와 같은 공기의 순환을 위하여, 터브(100)는 일부분을 통하여 공기가 배출되고, 다시 다른 일부분을 통하여 공기가 유입될 수 있다. 즉, 터브(100) 내부에 존재하는 저온 다습한 공기는 일부분을 통하여 터브(100) 외부로 배출되고, 덕트조립체(10)에서 소정의 처리 과정을 거쳐 고온 건조한 상태로 변환된 후 다른 일부분을 통하여 다시 터브(100) 내부로 주입된다.
순환유로부(300)는 터브(100) 상에 설치되어, 공기의 유로를 형성하는 부분으로, 터브(100)의 외부로 배출된 공기가 비산되지 않고 다시 터브(100)로 유입될 수 있도록 하는 유로를 형성한다.
이 경우, 순환유로부(300)는 터브(100) 상에 설치되어, 공기의 유동을 위한 공기흡입구(110)와 공기유입구(120)가 구비되는 덕트(300a)일 수 있으며, 상술한 바와 같이 공기 순환을 위한 유로를 형성하는 다양한 구성을 포함하여 이루어질 수 있다.
특히, 덕트(300a)는 캐비닛의 내부 공간 중 상대적으로 공간 확보가 용이한 터브(100)의 상부에 설치된다. 세탁물 처리기기(1000)를 대용량으로 구현하기 위해서는 터브(100) 역시 대형화되어야 하는 만큼, 터브(100)의 정면, 후면 및 측면 중 어느 한 곳에 덕트(300a)를 설치하기 위해서는 그만큼 캐비닛의 폭이나 너비를 크게 하여야 한다.
그러나, 세탁물 처리기기(1000)를 설치하는 공간의 폭이나 너비는 제한적일 수 밖에 없다는 점에서, 이와 같은 덕트(300a)의 배치는 바람직하지 않을 수 있다.
반면, 터브(100)의 상부에 덕트(300a)를 배치하여 캐비닛의 높이를 크게 하는 것은 세탁물 처리기기(1000)를 설치하는 공간의 높이 상 제약이 상대적으로 덜하다는 점에서, 일정 부분 바람직한 덕트(300a)의 배치일 수 있다.
송풍부(400)는 순환유로부(300) 내에 설치되어, 터브(100)로부터 배출되는 공기를 순환유로부(300)를 따라 이송시키는 부분으로, 공기를 소정의 압력으로 이송시켜 공기의 순환 방향이 일정하게 형성되도록 한다.
이 경우, 송풍부(400)는 덕트(300a) 내에 설치되어, 공기흡입구(110)와 공기유입구(120) 사이에서 공기의 유동을 형성시키는 송풍팬(400a)일 수 있으며, 상술한 바와 같이 공기 순환을 위해 공기를 이송시키는 다양한 구성을 포함하여 이루어질 수 있다.
특히, 송풍팬(400a)은 덕트(300a)의 내부 중에서도 상대적으로 공기흡입구(110)에 가깝게 배치되어, 터브(100) 내의 저온 다습한 공기가 보다 신속하게 배출되어 덕트(300a)로 이송되도록 할 수 있다.
응축부(500)는 냉각수가 공급되도록 순환유로부(300) 내에 설치되어, 순환유로부(300)를 따라 이송되는 공기 중의 수분을 응축시키는 부분으로, 다습한 공기 중의 수분을 제거하여 건조한 상태로 변환시킨다.
이 경우, 응축부(500)는 냉각수가 공급되도록 덕트(300a) 내에 설치되어, 덕트(300a) 내부를 따라 이송되는 공기를 냉각시키도록 열교환되는 열교환기(500a)일 수 있으며, 상술한 바와 같이 순환되는 공기 중의 수분을 응축시키는 다양한 구성을 포함하여 이루어질 수 있다.
특히, 열교환기(500a)는 터브(100)의 후면 등과 같은 별도의 공간에 설치되지 않고, 덕트(300a)의 내부에 송풍팬(400a) 및 후술할 히터(600a)와 함께 설치된다. 따라서, 순환되는 공기 중의 수분 응축을 위한 별도의 공간확보가 필요하지 않을 수 있다.
또한, 상기와 같이 열교환기(500a)가 덕트(300a) 내부에 문제 없이 설치되기 위해서는, 상대적으로 열교환기(500a)의 구조가 단순화될 필요가 있다. 만약, 열교환기(500a)의 구조가 복잡하게 구성되는 경우, 덕트(300a) 내부에 열교환기(500a)가 배치되기 곤란하거나, 지나치게 덕트(300a)를 크게 형성하여야 하는 등의 문제가 발생할 수 있다.
이에 따라, 열교환기(500a)는 공급되는 냉각수를 통하여 공기와 열교환하는 수랭식 구조로 이루어진다. 수랭식 열교환기(500a)의 경우 공랭식에 비하여, 열교환 효율이 높을 뿐만 아니라 보다 많은 용량의 공기와 열교환하는 것이 가능할 수 있다.
또한, 열교환기(500a)로 냉각수를 공급하는 구성만으로도 덕트(300a) 내부의 공기와 열교환이 이루어질 수 있으므로, 상대적으로 단순한 구조를 통해 원활한 수분 제거가 이루어질 수 있다.
구체적으로, 수랭식 구조 이외의 열교환기의 경우, 냉매를 순환시키기 위하여 별도의 구성이 필수적으로 요구된다. 따라서, 이러한 경우에는 열교환기의 구조가 상대적으로 복잡해질 수 있다.
한편, 세탁물 처리기기(1000)의 설치 환경을 고려하였을 때, 세탁수의 급수를 위한 구성은 이미 갖추어져 있다는 점에서, 수랭식 구조의 냉각수를 순환시키기 위하여 별도의 구성이 추가되지 않더라도 열교환이 이루어질 수 있다.
따라서, 수랭식 구조를 이용하는 열교환기(500a)의 구조가 수랭식 이외의 열교환기와 비교하여 상대적으로 단순화될 수 있다. 특히, 용이하게 급수가 가능한 세탁물 처리기기(1000)에서는 수랭식 열교환기(500a)가 가장 최적화된 구조라고 할 수 있다.
송풍팬(400a)에 의해 덕트(300a) 내부를 따라 이송되는 공기는 열교환기(500a)와 접촉되며 열교환기(500a) 내부의 냉각수와 열교환된다. 이에 따라, 덕트(300a) 내부의 공기는 냉각되면서, 공기 중의 수분이 응축된다. 그리고, 응축된 수분은 열교환기(500a)와의 접촉면에 맺힌 후 낙하된다.
이 경우, 열교환기(500a)는 냉각수의 유로가 공기의 유로와 분리되도록 폐쇄된 유로로 형성될 수 있다. 즉, 열교환기(500a)에 사용되는 냉각수의 유로가 공기의 건조를 위한 유로와는 분리되므로, 냉각수가 불필요한 부분으로 누출되어 세탁물과 접촉되는 것을 방지할 수 있다.
한편, 열교환기(500a)에 의해 수분이 제거된 공기는 덕트(300a)를 따라 공기유입구(120)를 향하여 흐르게 된다.
가열부(600)는 순환유로부(300) 내에 설치되어, 순환유로부(300)를 따라 이송되는 공기를 가열하는 부분으로, 저온의 공기를 가열하여 고온의 상태로 변환시킨다.
이 경우, 가열부(600)는 덕트(300a) 내에 설치되어, 상기 덕트(300a) 내부를 따라 이송되는 상기 공기를 가열하는 히터(600a)일 수 있으며, 상술한 바와 같이 순환되는 공기를 가열하는 다양한 구성을 포함하여 이루어질 수 있다.
송풍팬(400a)에 의해 덕트(300a) 내부를 따라 이송되는 공기는 히터(600a)와 접촉되며 온도가 상승하게 된다. 이에 따라, 덕트(300a) 내부의 공기는 가열되면서 고온의 상태로 변환된다. 그리고, 히터(600a)에 의해 고온 상태로 변환된 공기는 덕트(300a)를 따라 공기유입구(120)를 향하여 흐르게 된다.
상기와 같이, 송풍팬(400a)에 의하여 터브(100)로부터 배출되어 덕트(300a)를 따라 흐르는 저온 다습한 공기는, 덕트(300a) 내에 설치된 열교환기(500a) 및 가열부(600)를 거치며 고온 다습한 상태로 변환된다. 그리고, 이처럼 고온 다습한 상태로 변환된 공기는 다시 터브(100) 내로 주입되어 세탁물을 건조시키게 된다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a) 및 히터(600a) 뿐만 아니라 열교환기(500a)도 터브(100) 상에 설치된 덕트(300a) 내부에 설치되어, 공기 중의 수분 응축을 위한 별도의 공간확보가 필요하지 않으므로, 세탁물 처리기기(1000)를 대용량으로 구현하는데 따르는 제약을 최소화할 수 있다.
또한, 본 실시예에 따른 세탁물 처리기기(1000)는, 공급되는 냉각수를 통하여 공기와 열교환하는 수랭식 열교환기(500a)를 덕트(300a) 내부에 배치하여, 보다 단순화된 열교환 구조를 가지므로, 공기 중의 수분 응축을 위한 구성이 최소화되면서도 수분 제거가 원활하게 이루어질 수 있다.
특히, 본 실시예에 따른 세탁물 처리기기(1000)에서의 수랭식 열교환기(500a)는 히트펌프 방식의 열교환기와 비교하여 경제적일 뿐만 아니라, 한정된 덕트(300a) 내의 공간에서 배치가 용이할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 응축부(500)는 송풍부(400)와 가열부(600)의 사이에 배치될 수 있다. 즉, 열교환기(500a)는 송풍팬(400a)과 히터(600a)의 사이에 배치될 수 있다.
이 경우, 공기의 유동은 공기흡입구(110)로부터 열교환기(500a)와 히터(600a)를 순차적으로 거쳐 공기유입구(120)를 향하는 방향으로 형성될 수 있다.
상술한 과정을 통해 덕트(300a) 내에서 저온 다습한 공기를 고온 건조한 상태로 변환시키는 경우, 터브(100)로부터 배출되는 공기는 열교환기(500a)와 먼저 접촉된 후 히터(600a)와 접촉되는 것이 바람직하다.
이러한 경우에는, 터브(100)로부터 배출되는 저온 다습한 공기가 우선 열교환기(500a)와 접촉되며 수분이 제거되어 저온 건조한 공기로 변환된다. 그 이후에, 저온 건조한 공기가 히터(600a)와 접촉되며 고온 건조한 공기로 변환될 수 있다.
반면, 터브(100)로부터 배출되는 저온 다습한 공기가 우선 히터(600a)와 접촉되는 경우에는 가열되어 고온 다습한 공기로 변환된다. 그 이후에, 고온 다습한 공기가 열교환기(500a)와 접촉된다면 공기 중의 수분은 제거될 수 있으나 열교환기(500a)에 의해 공기가 냉각되어 저온 상태로 변환된다.
즉, 터브(100)로부터 배출되는 공기가 히터(600a)와 먼저 접촉된 후 열교환기(500a)와 접촉되는 경우에는, 가열된 공기가 다시 냉각되어 건조 효율이 떨어질 수 있다는 문제점이 있다.
따라서, 덕트(300a) 내에서 열교환기(500a)가 송풍팬(400a)과 히터(600a)의 사이에 배치되도록 하여, 터브(100)로부터 배출되는 공기는 열교환기(500a)와 먼저 접촉된 후 히터(600a)와 접촉되도록 하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a)을 통해 덕트(300a) 내부를 따라 이송되는 공기에 대하여 열교환기(500a)에서 먼저 수분을 제거한 후 히터(600a)에서 공기를 가열하므로, 가열된 공기가 다시 냉각되는 상황을 방지하여 세탁물에 대한 건조 효율이 보다 향상될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 응축부(500)는 가열부(600)와 접촉되지 않도록 가열부(600)와 이격되게 배치될 수 있다. 즉, 열교환기(500a)는 히터(600a)와 접촉되지 않도록 히터(600a)와 이격되게 배치될 수 있다.
상기와 같이, 열교환기(500a)가 송풍팬(400a)과 히터(600a) 사이에 배치되는 경우, 열교환기(500a)와 히터(600a) 간에는 서로 간의 온도 차에 의한 영향이 발생할 수 있다. 특히, 상대적 고온 상태의 히터(600a)로부터 방출되는 열이 상대적 저온 상태의 열교환기(500a)에 영향을 미치는 경우, 냉각수 및 열교환기(500a) 표면의 온도가 상승되어 공기에 대한 냉각이 원활하게 일어나지 않을 수 있다.
따라서, 서로 인접하게 배치되는 열교환기(500a)와 히터(600a)는 서로 간의 기능에 영향을 미치치 않도록 하는 최소한의 간격을 유지하며 이격되는 것이 바람직하다.
이 경우, 필요에 따라서는 열교환기(500a)와 히터(600a) 사이에 열전달을 차단하기 위한 단열재 등이 배치될 수 있으며, 이러한 단열재는 덕트(300a) 내부의 공기 이동에 지장을 미치지 않기 위하여, 다수의 통기홀 등이 형성될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)와 히터(600a)가 서로 이격되어 히터(600a)에서 방출되는 열이 열교환기(500a)의 기능에 영향을 미치지 않으므로, 열교환기(500a) 자체의 온도가 상승하여 신뢰성이 저하되는 것을 방지할 수 있다.
한편, 상술한 바와 같이, 열교환기(500a)가 송풍팬(400a)과 히터(600a)의 사이에 배치되는 경우, 송풍팬(400a)의 손상을 방지할 수도 있다.
만약, 송풍팬(400a)과 히터(600a)가 서로 이격되지 않고 인접하게 배치된다면, 히터(600a)로부터 방출되는 열에 의해 송풍팬(400a)의 사출물이 녹거나 변형되는 등 손상될 수 있다.
또한, 송풍팬(400a)을 구동시키는 모터 역시 히터(600a)로부터 방출되는 열에 의해 과열되는 등 모터의 기능이 저하될 우려가 있다.
따라서, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a)과 히터(600a)가 서로 이격되고 이러한 이격 공간에 열교환기(500a)가 배치되어, 히터(600a)에서 방출되는 열이 송풍팬(400a)의 사출물 및 모터 등을 손상시키지 않으므로, 송풍팬(400a)의 기능이 저하되어 공기 순환에 차질이 발생하는 것을 방지할 수 있다.
도 26은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기와 히터 사이의 이격 간격에 따른 응축 효율을 나타내는 도면이다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)는 히터(600a)로부터 2.5cm 이상이고 7cm 이하의 범위에서 이격 간격(D1)을 갖도록 배치될 수 있다.
구체적으로, 도 26을 참조하여 열교환기(500a)는 히터(600a) 사이의 이격 간격(D1)에 대하여 설명하면 다음과 같다.
우선, 열교환기(500a)와 히터(600a)의 이격 간격(D1)은 최소한 2.5cm 확보되어야 한다. 이러한, 2.5cm의 이격 간격(D1)은 히터(600a)에서 방출되는 열이 열교환기(500a)의 성능에 영향을 미치지 않는 한계값이다.
만약, 이격 간격(D1)이 2.5cm 미만인 경우에는 열교환기(500a)를 통한 공기 중의 수분 응축 효율이 약 80% 이하로 저하되어 열교환기(500a)를 통한 공기와의 열교환이 원활하게 이루어지지 않을 수 있다.
특히, 도 26에 도시된 바와 같이, 이격 간격(D1)이 2.5cm 미만인 경우에는 2.5cm 이상인 경우에 비하여, 열교환기(500a)를 통한 공기 중의 수분 응축 효율이 임계적으로 급격하게 저하된다는 점에서, 열교환기(500a)와 히터(600a)의 이격 간격(D1)은 2.5cm 이상으로 유지하는 것이 바람직하다.
한편, 열교환기(500a)와 히터(600a)의 이격 간격(D1)이 멀어질수록 히터(600a)에 의한 열교환기(500a)의 성능 저하는 방지될 수 있으며, 열교환기(500a)를 통한 공기 중의 수분 응축 효율에 미치는 영향 또한 크지 않게된다.
그러나, 열교환기(500a)와 히터(600a)의 이격 간격(D1)이 7cm를 초과하는 경우, 열교환기(500a)를 통과한 공기가 히터(600a)에 도달하기 이전에 과다하게 냉각되어 히터(600a)에서 충분히 가열되지 못할 수 있다.
특히, 도 26에 도시된 바와 같이, 이격 간격(D1)이 7cm 초과인 경우에는 7cm 이하인 경우에 비하여, 열교환기(500a)를 통한 공기 중의 수분 응축 효율이 임계적으로 급격하게 저하된다는 점에서, 열교환기(500a)와 히터(600a)의 이격 간격(D1)은 7cm 이하로 유지하는 것이 바람직하다.
따라서, 공기 중의 수분 응축 효율과 공기의 가열이 모두 원활하게 이루어지도록 하기 위하여, 열교환기(500a)와 히터(600a)의 이격 간격(D1)은 2.5cm 이상이고 7cm 이하의 범위로 유지되는 것이 바람직할 수 있다.
한편, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)와 히터(600a) 사이의 이격 간격(D1)은 송풍팬(400a)과 열교환기(500a) 사이의 이격 간격(D2)보다 상대적으로 작을 수 있다.
즉, 도 6에 도시된 바와 같이, 덕트(300a)의 내부에 송풍팬(400a), 열교환기(500a) 및 히터(600a)가 배치될 때, 열교환기(500a)는 송풍팬(400a) 보다 히터(600a)에 더 가깝게 배치될 수 있다.
물론, 이 경우에도 열교환기(500a)와 히터(600a) 사이의 이격 간격(D1)은 상기와 같은 최소한의 한계값을 유지하는 것이 바람직하다.
송풍팬(400a)을 통과한 공기가 열교환기(500a)에 도달하기까지의 이동 거리가 달라지더라도 공기의 상태 변화가 크지 않다. 반면, 상술한 바와 같이, 열교환기(500a)를 통과한 공기가 히터(600a)에 도달하기까지의 이동 거리가 길어지는 경우, 열교환기(500a)를 통과하며 냉각된 공기가 히터(600a)에서 충분히 가열되지 못할 수 있다.
따라서, 공기의 이동 경로 상에서, 열교환기(500a)와 히터(600a) 사이의 이격 간격(D1)은 최소한의 한계값을 유지하는 한도 내에서, 송풍팬(400a)과 열교환기(500a) 사이의 이격 간격(D2)보다 작게 형성되는 것이 바람직하다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 냉각수는 터브(100)에서 사용되는 세탁수 중 일부를 응축부(500)로 공급하여 사용될 수 있다. 즉, 냉각수는 세탁수 중 일부를 열교환기(500a)로 공급하여 사용될 수 있다.
터브(100)에는 세탁수를 공급하는 위한 급수호스가 구비된다. 급수호스는 별도로 설치되는 세제박스 등을 통해 터브(100)의 내부로 세탁수를 공급할 수 있다.
터브(100)로 연결되는 급수호스는 터브(100)의 전방 또는 외주면에 연결될 수 있다. 또한, 급수호스는 터브(100)의 전방 및 외주면으로 각각 분기되어 연결될 수도 있다. 급수호스가 분기되어 연결되는 경우, 분기되는 각각의 호스에는 세탁수의 유로를 차폐하기 위한 밸브 등이 추가적으로 구비될 수 있다.
따라서, 열교환기(500a)로 냉각수를 공급하기 위하여 별도의 냉각수 공급 장치를 설치하지 않더라도, 세탁수 중 일부를 열교환기(500a)로 공급하여 냉각수로 사용할 수 있다. 이를 위하여, 상기의 급수호스 등으로부터 열교환기(500a)까지 분기호스를 연결하여, 열교환기(500a)에 세탁수 중 일부가 공급되도록 할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)로 냉각수를 공급하기 위한 별도의 구성 없이 세탁수 중 일부를 냉각수로 사용하므로, 열교환기(500a)의 구조를 보다 단순화하여 그 배치의 자유도가 향상될 수 있다.
도 7 내지 도 9는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 응축부를 나타내는 도면이다. 도 10은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 응축부가 순환유로부에 설치된 상태를 나타내는 도면이다.
도 7 내지 도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 응축부(500)는 루프코일(loop coil) 형상으로 형성되어 내부로 냉각수가 통과 가능한 파이프 구조로 형성될 수 있다. 즉, 열교환기(500a)는 루프코일 형상으로 형성되어 내부로 냉각수가 통과 가능한 파이프(510)를 포함할 수 있다.
이 경우, 루프코일 형상이란 중심축(X)을 기준으로 고리 모양으로 여러 번 반복적으로 감긴 코일 형상을 의미하는 것으로서, 하부관 부분과 이로부터 상측으로 이격된 상부관 부분이 반복적으로 왕복하는 나선형 구조로 이루어질 수 있다.
이러한 구조의 파이프(510)의 경우 한정된 공간에서 열교환에 필요한 표면적이 보다 크게 확보될 수 있으므로, 파이프(510)의 나선형 구조 사이의 공간을 통하여 이동되는 공기는 파이프(510)의 표면에서 파이프(510) 내부의 냉각수와 열교환될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 루프코일 형상의 파이프(510) 내부로 냉각수가 흐르며 파이프(510) 외부의 공기와 열교환되므로, 덕트(300a) 내부에서 열교환기(500a)가 차지하는 면적 대비 열교환 효율이 향상될 수 있다.
도 35는 본 발명의 일 실시예에 따른 세탁물 처리기기의 필요 열교환량 및 열교환길이를 나타내는 도면이다.
한편, 도 35에 도시된 바와 같이, 실험결과 건조시간을 25분/kg 이내로 하기 위해서는 약 650W의 열교환량이 필요하고, 이에 따른 필요 열교환길이는 2.4m 이상일 수 있다.
다만, 열교환길이가 필요 이상으로 지나치게 길어질 경우, 오히려 과냉각이 일어나게 되어 세탁물에 대한 건조효율이 저하될 우려가 있다.
이에 따라, 필요 열교환길이는 2.4m ~ 3m로 설정하는 것이 바람직할 수 있다.
그리고, 상기와 같은 열교환길이를 갖는 열교환기(500a)가 덕트(300a) 내부에 효과적으로 배치되기 위해서는 루프코일 형상의 파이프(510)로 이루어지는 것이 바람직하다.
이 경우, 하부관 부분과 상부관 부분 사이에 중간관 부분이 추가로 존재하는 3단의 루프코일 구조를 고려해 볼 수도 있다.
그러나, 도 7에 도시된 바와 같은 2단의 루프코일 구조와 비교하여 3단의 루프코일 구조는 응축성능이 약 3% 차이밖에 나지 않아 사실상 동등 수준이라고 할 수 있다.
오히려, 3단의 루프코일 구조는 공기의 이동 경로 상에서 개방 면적을 줄어들게 하여 열교환기(500a)에 린트가 보다 많이 부착될 수 있을 뿐만 아니라 공기량이 줄어들 수 있는 문제가 있다.
따라서, 상기와 같은 제반 사정을 고려할 때, 열교환기(500a)는 2단의 루프코일 구조로 이루어지는 것이 바람직하다.
한편, 도 7에 도시된 루프코일 형상의 파이프(510)에서, 중심축(X)과 교차되는 방향의 길이(W)는 중심축(X)과 나란한 방향의 길이(A)보다 상대적으로 크게 형성되는 것이 바람직하다.
즉, W/A > 1 이도록 루프코일 형상의 파이프(510)를 설계하는 것이 바람직하다.
상술한 바와 같이, 열교환길이는 2.4m ~ 3m로 설정한 경우 A의 길이가 증가할수록 W의 길이는 감소할 수 밖에 없다. 이 경우, A가 지나치게 커지게 된다면 전체 열교환길이가 과다해지는 것과 마찬가지로 과냉각이 일어나게 되어 세탁물에 대한 건조효율이 저하될 우려가 있다.
이에 따라, A의 길이는 W의 길이보다 상대적으로 작게 설계하는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 파이프(510)는 스테인레스강(stainless steel), 동합금, 알루미늄합금 및 니켈합금 중 적어도 하나를 포함하는 재질로 이루어질 수 있다.
이 경우, 스테인레스강은 부식에 잘 견디는 용도로 만든 강철 합금으로서, 철, 니켈, 크롬 등이 합금으로 만들어진 재질이다. 동합금은 동(구리), 주석, 아연, 알루미늄 등이 합금으로 만들어진 재질이다. 알루미늄합금은 알루미늄, 동(구리), 마그네슘 등이 합금으로 만들어진 재질이다. 니켈합금은 니켈, 동(구리), 크롬, 몰리브텐, 철 등이 합금으로 만들어진 재질이다.
상술한 바와 같이, 열교환기(500a)에 의하여 응축된 수분은 열교환기(500a)와의 접촉면에 맺히게 된다. 따라서, 순환되는 공기와 직접적으로 접촉되는 파이프(510)의 표면은 장시간 수분에 노출되게 된다.
이 경우, 덕트(300a) 내에 배치된 열교환기(500a)에서 부식이 발생된다면 해당 오염물이 순환되는 공기를 통해 터브(100) 내로 유입될 수 있으며, 이러한 오염물은 세탁물을 오염시킬 우려가 있다.
따라서, 상대적으로 부식의 염려가 적은 스테인레스강, 동합금, 알루미늄합금 및 니켈합금 중 적어도 하나를 포함하는 재질로 파이프(510)를 제작하여, 파이프(510)가 장시간 수분에 노출되더라도 오염에 따른 위생상의 문제가 발생되지 않도록 하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 내식성 재질로 이루어지는 파이프(510)의 내부로 냉각수가 흐르며 파이프(510) 외부의 공기와 열교환되므로, 열교환기(500a)의 부식 등에 의한 세탁물 처리기기(1000)의 위생상 문제가 발생되는 것을 방지할 수 있다.
한편, 파이프(510)가 알루미늄(Al)을 포함하는 재질로 이루어지는 경우, 파이프(510)의 표면이 박리되는 현상이 발생할 수 있다. 이러한 현상은 알루미늄(Al) 표면이 산소(O2)에 노출되어 산화알루미늄(Al2O3)이 되는 과정에서 발생한다.
즉, 알루미늄(Al) 표면이 산화되는 과정에서 부피가 팽창하게 되며, 이 과정에서 생성되는 응력이 표면의 박리를 일으키는 원인이 된다. 그리고, 이러한 박리 현상은 부재의 내구성을 저하시킬 뿐만 아니라 사용자 입장에서의 사용성 또한 저하되는 원인이 될 수 있다.
따라서, 알루미늄(Al)을 포함하는 재질로 이루어지는 파이프(510)는 표면 처리를 수행함으로써 박리가 일어나는 것을 방지할 필요가 있다.
이를 위하여, 파이프(510)의 표면을 코팅 처리하는 등의 방법으로 알루미늄(Al) 표면의 산화를 방지하는 방법을 고려할 수 있다.
또는, 파이프(510)의 표면을 아노다이징(Anodizing) 처리하는 등의 방법으로 견고한 산화막을 형성시킴으로써 박리가 최소화되도록 하는 방법을 고려할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 응축부(500)는 공기유입구(120) 측에 상대적으로 가깝게 배치되는 일단으로 냉각수가 유입되고, 공기흡입구(110) 측에 상대적으로 가깝게 배치되는 타단으로 냉각수가 배출될 수 있다.
즉, 열교환기(500a)는 평면 상에서 공기유입구(120) 측에 상대적으로 가깝게 배치되어 파이프(510)로 냉각수를 유입시키는 급수구(520) 및 평면 상에서 공기흡입구(110) 측에 상대적으로 가깝게 배치되어 파이프(510)로부터 냉각수를 배출시키는 배수구(530)를 더 포함할 수 있다.
일반적으로, 고온의 유체와 저온의 유체가 열교환기(500a)의 반대쪽으로 들어가서 서로 반대 방향으로 흐르는 대향류(counter flow) 유동이, 공기의 유동 경로 상의 최후방 지점까지 가장 저온의 냉각수로 냉각시킬 수 있다.
따라서, 고온의 유체와 저온의 유체가 열교환기(500a)의 같은 쪽으로 들어가서 서로 같은 방향으로 흐르는 평행류(parallel flow) 유동에 비하여, 대향류 유동이 열교환 효율이 높게 된다.
이와 관련하여, 상술한 바와 같이 급수구(520)와 배수구(530)가 배치된다면, 덕트(300a) 내에서의 공기 유동 방향과 냉각수 진행 방향이 서로 반대로 형성되어 대향류 유동이 이루어질 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 내부의 공기 이동 경로를 기준으로, 냉각수가 유입되는 열교환기(500a) 부분이 냉각수가 배출되는 열교환기(500a) 부분보다 후방에 배치되므로, 공기의 유동 경로 상의 최후방 지점까지 가장 저온의 냉각수로 냉각시켜 그 효율이 극대화될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 덕트조립체(10)는 응축부(500)의 일단과 타단 각각이 순환유로의 외부로 노출되는 부분에 개재되는 실링부(310)를 더 포함할 수 있다.
즉, 덕트(300a)는 열교환기(500a)가 배치되는 부분의 측면에 설치되어, 급수구(520)와 배수구(530) 각각에 의해 관통되는 개스킷(310a)을 포함할 수 있다.
이 경우, 실링부(310)는 개스킷(310a)(gasket)일 수 있으며, 냉각수의 공급을 위한 급수구(520) 및 배수구(530) 이외의 나머지 부분에 대한 기밀성을 유지하는 다양한 구성을 포함하여 이루어질 수 있다.
상술한 바와 같이, 열교환기(500a)가 공급되는 냉각수를 통해 수분을 응축시키기 위해서는, 열교환이 이루어진 냉각수를 배출하고 새로운 저온의 냉각수를 공급하여야 한다.
이를 위하여 냉각수는 열교환기(500a)를 중심으로 순환될 필요가 있으며, 이러한 냉각수의 순환을 위한 구성이 모두 덕트(300a) 내에 배치되는 것은 어려울 수 있다.
특히, 세탁수 중 일부를 냉각수로 사용하는 경우, 급수호스 등이 덕트(300a)의 내부에 배치되기는 어렵다는 점에서, 열교환기(500a) 중 급수구(520) 및 배수구(530)는 덕트(300a)의 외부로 노출될 필요가 있다.
한편, 세탁물에 대한 건조 기능이 원활하게 이루어지기 위해서는 덕트(300a)를 따라 순환되는 공기가 덕트(300a) 외부로 비산되거나, 덕트(300a) 외부의 공기가 덕트(300a) 내로 유입되는 것을 최소화할 필요가 있다.
이에 따라, 냉각수의 순환을 위해 급수구(520) 및 배수구(530)를 덕트(300a)의 외부로 노출시키는 경우, 해당 부분에 대한 기밀성이 확보되도록 하는 것이 세탁물에 대한 건조 효율과 관련되어 있다고 할 수 있다.
따라서, 급수구(520)와 배수구(530) 각각에 의해 관통되는 개스킷(310a)으로 덕트(300a)의 일 측면을 형성하여, 해당 부분에 대한 기밀성을 확보하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a)의 외부로 노출되는 열교환기(500a) 부분은 덕트(300a)의 일부분에 배치된 개스킷(310a)에 의하여 지지되므로, 덕트(300a)의 내외부간의 기밀성을 유지하면서 냉각수가 원활하게 순환될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 급수구(520)의 최상단(H)과 최하단(L) 중 어느 하나는 배수구(530)의 최상단(h)과 최하단(l) 사이의 높이에 위치할 수 있다.
상술한 바와 같은 구성을 갖는 덕트조립체(10)를 조립하는 경우, 필요에 따라 덕트(300a)는 서로 분리된 여러 부재를 결합시켜 제작될 수 있다.
예를 들어, 덕트(300a)의 바닥과 하부 측면을 구성하는 베이스 부재 상에 송풍팬(400a), 열교환기(500a) 및 히터(600a)를 탑재한 후, 그 상부를 덕트(300a)의 상면과 상부 측면을 구성하는 커버 부재로 덮어 덕트조립체(10)를 조립할 수 있다.
이 경우, 급수구(520)와 배수구(530)가 서로 다른 높이 상에 형성된다면, 이를 반영하여 상기의 베이스 부재와 커버 부재 각각의 측면을 형성하여야 한다.
반면, 도 10에 도시된 바와 같이, 급수구(520)와 배수구(530)가 서로 동일한 높이 상에 형성된다면, 상기의 베이스 부재와 커버 부재 각각의 결합면 상에 개스킷(310a)이 조립되도록 하여, 각 부재의 조립이 보다 용이하게 이루어질 수 있다.
다만, 급수구(520)와 배수구(530)가 물리적으로 서로 동일한 높이 상에 형성되는 것은, 제작 및 설치 오차를 고려할 때 사실상 불가능할 수 있다.
따라서, 급수구(520)와 배수구(530)가 일정 부분 서로 다른 높이 상에 형성되더라도, 상기와 같이 조립의 용이성을 크게 저하시키지 않은 범위로 급수구(520)와 배수구(530)의 높이차를 제한할 필요가 있다,
이를 위하여, 도 10에 도시된 바와 같이, 급수구(520)의 최상단(H)과 최하단(L) 중 어느 하나는 배수구(530)의 최상단(h)과 최하단(l) 사이의 높이에 위치하도록 열교환기(500a)를 덕트(300a)에 설치할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a)의 외부로 노출되는 열교환기(500a) 부분이 복수인 경우, 해당 부분이 서로 동일하거나 일정 부분 중첩되는 높이 상에 배치되므로, 열교환기(500a)와 덕트(300a) 간의 조립이 보다 용이하게 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 급수구(520)와 배수구(530)는 파이프(510)를 기준으로 서로 같은 방향에 형성될 수 있다. 예를 들어, 도 10에 도시된 바와 같이 급수구(520)와 배수구(530)는 덕트(300a) 중 어느 하나의 측면을 함께 관통할 수 있다.
이와 같이 급수구(520)와 배수구(530)가 배치되는 경우, 급수구(520) 및 배수구(530)와 연결되는 호스 등이 배관이 일방향에만 배치될 수 있다는 점에서, 그 길이가 최소화될 수 있다.
또한, 파이프(510), 급수구(520) 및 배수구(530)로 이루어지는 열교환기(500a)의 제작이 보다 용이할 수 있으며, 덕트(300a)에 대한 열교환기(500a)의 설치 또한 보다 용이하게 이루어질 수 있다.
한편, 덕트(300a)는 세척노즐(700a)로 세척수를 유입시키는 세척수유입구(331)가 구비될 수 있으며, 이러한 세척수유입구(331)는 급수구(520)와 배수구(530) 중 적어도 하나와 같은 방향에 형성될 수 있다.
이에 따라, 상술한 바와 같이 분기관 등의 배관 배치가 효율적일 수 있으며, 덕트(300a)에 대한 열교환기(500a)의 설치 또한 보다 용이하게 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 파이프(510)는 나선형의 중심축(X)이 공기의 유동 방향을 따라 배치될 수 있다.
즉, 공기의 유동 방향을 따라 바라보았을 때, 도 8에 도시된 형상으로 파이프(510)가 배치될 수 있다. 이에 따라, 파이프(510)는 공기의 유동 방향을 따른 투영면이 고리형이도록 배치될 수 있다.
이와 같이 배치된 파이프(510)에 대하여, 터브(100)로부터 배출되는 공기는 반복적으로 왕복하는 나선형 구조의 파이프(510) 사이를 통과하게 된다. 따라서, 공기의 유동 경로 상에서 개방 면적이 상대적으로 크게 확보되어 덕트(300a) 내부를 통과하는 풍량이 증가될 수 있다.
반면, 공기의 유동 방향을 따라 바라보았을 때, 도 9에 도시된 형상으로 파이프(510)가 배치된다면, 상기의 경우보다 개방 면적이 줄어들어 덕트(300a) 내부를 통과하는 풍량이 감소될 수 있다.
한편, 상기와 같이 배치된 열교환기(500a)에 대하여, 히터(600a)의 배치 방향도 열교환기(500a)와 일정 부분 나란하게 배치될 수 있다. 즉, 히터(600a)는 공기의 유동 방향을 따라 지그재그(zigzag)형으로 연장되는 라디에이터(radiator)(610)를 포함할 수 있다.
구체적으로, 도 6에 도시된 바와 같이 라디에이터(610)는 복수의 직선관 및 서로 인접한 직선관을 연결하는 곡선관을 포함할 수 있다. 이 경우, 각각의 직선관은 길이 방향이 공기의 유동 방향과 교차하는 방향으로 배치된다.
이에 따라, 라디에이터(610)의 직선관은 공기의 유동 방향을 따라 일정 간격 이격되며 서로 나란하게 배치되고, 이러한 직선관의 단부에는 곡선관이 결합된다.
따라서, 라디에이터(610)는 전체적으로 지그재그형을 이룰 수 있으며, 공기의 유동 방향을 따라 연장될 수 있다.
상기와 같은 라디에이터(610) 역시 내부로 고온의 유체가 통과하는 파이프 구조일 수 있으며, 덕트(300a) 내부를 통과하는 풍량 및 공기와 라디에이터(610)의 접촉면을 고려할 때, 라디에이터(610)의 배치 방향이 도 6과 같이 이루어지는 것이 바람직하다.
도 11은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브의 내부를 나타내는 도면이다. 도 12는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 필터세척부를 나타내는 도면이다. 도 30은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 냉각수, 세척수 및 응축수의 공급 및 배출 경로를 개략적으로 나타내는 도면이다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 응축부(500)의 타단은 터브(100)와 연결되어, 응축부(500)로부터 배출되는 냉각수는 터브(100)로 주입될 수 있다.
즉, 배수구(530)는 터브(100)와 연결되어, 배수구(530)로부터 배출되는 냉각수는 터브(100)로 주입될 수 있다.
상술한 바와 같이, 열교환기(500a)에서는 열교환이 이루어진 냉각수를 배출하고 새로운 저온의 냉각수를 공급받을 필요가 있다. 이에 따라, 열교환이 이루어진 냉각수를 열교환기(500a)로부터 배출시킨 후 처리하기 위한 별도의 구성이 요구될 수 있다.
그러나, 열교환기(500a)로부터 배출되는 냉각수를 별도의 구성으로 유도하지 않고, 터브(100)로 유도하여 터브(100)에 형성된 배출 구조를 활용할 수 있다.
즉, 터브(100)에는 세탁물을 세탁한 후 사용된 세탁수 또는 탈수된 물을 배출하기 위한 배출 구조가 별도로 형성되어 있으므로, 냉각수를 터브(100)로 유도한다면 이러한 터브(100)의 배출 구조를 통해 세탁수와 함께 냉각수가 배출될 수 있다.
또는, 경우에 따라서, 터브(100) 내로 유도된 냉각수는 드럼(200)의 외주면을 따라 흘러 터브(100)에 저장되어 세탁물의 세탁을 위한 세탁수의 역할을 수행할 수도 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)에서 배출되는 냉각수를 별도의 배출 구조 없이 터브(100)의 내부로 주입시켜 처리하므로, 열교환기(500a)의 구조를 보다 단순화하여 그 배치의 자유도가 향상될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100)의 내부로 주입되는 냉각수는 드럼(200)의 표면에 응축면을 형성할 수 있다.
즉, 도 11에 도시된 바와 같이, 터브(100)의 내부로 주입되는 냉각수는 드럼(200)의 외주면에 낙하될 수 있다. 이처럼 드럼(200)의 외주면으로 낙하되는 냉각수는 드럼(200)의 온도를 낮추어 드럼(200)이 응축판 역할을 수행하도록 할 수 있다.
이 경우, 냉각수는 드럼(200)의 표면을 적실 정도만 공급되어 드럼(200)의 내부(즉, 세탁물이 위치하는 공간)으로 유입되는 것을 방지하는 것이 바람직하다.
한편, 상술한 바와 같이 드럼(200)의 외주면 표면에 냉각수를 공급하여 드럼(200)을 냉각시킬 경우, 드럼(200)에 형성된 통공을 통하여 드럼(200)의 외주면에 공급되는 냉각수가 유입될 수 있다.
이러한 경우 응축수 생성을 위하여 공급되는 냉각수가 건조되는 세탁물과 접촉하여 오히려 세탁물을 적시는 효과를 가져와 건조효과를 떨어뜨릴 수 있는 문제가 있다.
이에 따라, 드럼(200)의 회전속도를 증가시켜 드럼(200)의 외주면으로 공급되는 냉각수가 드럼(200)의 통공을 통하여 유입되는 것을 방지할 수 있다. 이 경우, 드럼(200)의 회전 속도는 드럼(200)의 외주면에 잔류하는 냉각수가 통공을 통하여 드럼(200)의 내부로 유입되지 않을 정도의 속도일 수 있다.
예를 들어, 세탁물의 건조 시 드럼(200)의 회전속도를 40~110rpm 정도로 유지하는 것이 바람직하다. 보다 바람직하게는 드럼(200)의 회전 속도를 50~70rpm으로 유지하는 것이 바람직하다.
통상적으로 드럼(200)이 110rpm 이상의 회전속도일 때 드럼(200) 내의 세탁물이 드럼(200)의 내주면에 붙어 회전된다. 이러한 경우 세탁물과 건조 공기가 효과적으로 혼합되지 않아 건조 효율을 떨어뜨리게 된다. 따라서 드럼(200)의 회전속도를 110rpm 이하로 유지하는 것이 바람직하다.
즉, 세탁물의 건조 시 세탁물과 건조 공기의 혼합을 위하여 세탁물이 드럼(200)의 내주면에 붙지 않을 정도의 회전속도를 유지하여야 된다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)에서 배출되는 냉각수를 터브(100)의 내부로 주입시켜, 드럼(200)의 표면에서 수분을 응축하는데 사용하므로, 덕트(300a)에서 이루어지는 수분 응축 이외에도 부가적으로 공기 중의 수분을 제거할 수 있다.
도 33은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 터브를 보다 상세히 나타내는 도면이다.
또한, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 냉각수는 터브(100)의 후면을 따라 흘러내리도록 주입될 수 있다. 즉, 터브(100)의 후면을 따라 흘러내리는 냉각수는 터브(100)의 후면에 응축면을 형성할 수 있다.
이 경우, 터브(100)의 후면을 따라 흘러내리는 냉각수는 터브(100)의 배출 구조를 통해 배출될 수 있다.
구체적으로, 도 33에 도시된 바와 같이, 터브(100)의 후면에는 응축바디(210)가 형성될 수 있다. 이 경우, 응축바디(210)는 터브(100) 후면의 원주면에 대응되도록, 터브(100) 후면의 원주면과 동일한 곡률로 휘어진 판으로 구비될 수 있다.
응축바디(210)는 표면이 오목하게 절곡된 다수의 홈이 구비될 수도 있고, 응축바디(210)의 표면에서 돌출된 다수의 돌기로 구비될 수도 있다. 이를 통해, 응축바디(210)의 표면적을 넓힐 수 있으므로, 냉각수가 터브(100)의 후면을 따라 흘러내리는 동안의 제습 효율을 향상시킬 수 있다.
이 경우, 응축바디(210)에 구비되는 홈이나 돌기는 터브(100)의 전면에서 후면을 향하는 방향에 평행한 방향을 따라 구비됨이 바람직하다. 터브(100)의 후면으로 공급되는 냉각수가 터브(100)의 바닥면에 위치된 제1 배수관(292)으로 이동하는 시간을 극대화함으로써, 냉각수 사용량을 최소화하기 위함이다.
터브(100)의 배출 구조는 터브(100)의 외부에 위치하는 배수펌프(223), 터브(100) 내부의 물을 배수펌프(223)로 안내하는 제1 배수관(221), 배수펌프(223)에서 배출된 물을 캐비닛(20)의 외부로 안내하는 제2 배수관(225)을 포함하여 이루어질 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)에서 배출되는 냉각수를 터브(100)의 후면으로 유도하여, 터브(100)의 후면에서 수분을 응축하는데 사용하므로, 덕트(300a)에서 이루어지는 수분 응축 이외에도 부가적으로 공기 중의 수분을 제거할 수 있다.
한편, 도 31에 도시된 바와 같이, 터브(100)의 하부로 흘러내린 물은 터브(100)의 배출 구조를 통해 배출되기 이전에 집수된 상태일 수 있다. 이처럼 집수된 물은 터브(100)의 하부면에 응축면을 형성할 수 있다.
이에 따라, 본 실시예에 따른 세탁물 처리기기(1000)는 열교환기(500a)를 통한 1차 응축이 이루어질 수 있고, 터브(100)의 후면을 따라 흘러내리는 물을 통해 2차 응축이 이루어질 수 있으며, 터브(100)의 하부면에 집수된 물을 통해 3차 응축이 이루어질 수 있다.
도 34는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 이루어지는 열교환을 예시적으로 나타내는 도면이다.
예를 들어, 도 34에 도시된 바와 같이 입열량이 1400W인 경우, 열교환기(500a)를 통한 1차 응축을 통해 600W가 열교환되고, 터브(100)의 후면을 따라 흘러내리는 물의 2차 응축을 통해 200W가 열교환되며, 터브(100)의 하부면에 집수된 물의 3차 응축을 통해 50W가 열교환될 수 있다. 이 과정에서 550W는 방열 등을 통한 열손실이 발생될 수 있다.
한편, 이와 같은 1차 응축, 2차 응축 및 3차 응축은 세탁물 처리기기(1000)의 구조적 효율성을 고려할 때, 상대적으로 1차 응축량 > 2차 응축량 > 3차 응축량으로 이루어지는 것이 바람직하다.
상술한 바와 같이, 세탁물 처리기기(1000)를 보다 대형화하고 효과적인 구조를 구현하기 위해서는 터브(100)의 후면을 크게 형성하는데 제약이 있다.따라서, 터브(100)의 후면을 따라 흘러내리는 물을 통한 2차 응축량에도 제약이 있을 수 밖에 없다는 점에서, 1차 응축량이 2차 응축량보다 상대적으로 많도록 설계하는 것이 바람직하다.
또한, 터브(100)의 하부면에 집수되는 물은 건조 중의 세탁물과 접촉되는 것을 방지하기 위하여, 소정의 높이까지만 집수되도록 제한할 필요가 있으며, 각 행정의 수행 상태에 따라 물을 배출할 필요가 있다.
따라서, 터브(100)의 하부면에 집수된 물을 통한 3차 응축량에도 제약이 있으며, 1차 응축량 및 2차 응축량보다 상대적으로 작도록 설계하여 보조적으로만 활용하는 것이 바람직하다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100)는 공기흡입구(110) 상에 설치되어, 덕트(300a)로 이송되는 공기 중의 이물질을 포집하는 필터(130)를 포함할 수 있다.
세탁물의 건조를 위해 터브(100) 및 덕트(300a)를 순환하는 공기에는 세탁물로부터 발생된 린트 등과 같은 이물질이 함유되어 있을 수 있다. 이러한 이물질은 덕트(300a) 내로 유입되어 송풍팬(400a), 열교환기(500a) 및 히터(600a) 중 적어도 어느 하나에 부착될 수 있다.
이러한 경우, 송풍팬(400a)의 송풍 압력이 저하되거나, 열교환기(500a) 및 히터(600a) 표면에서 열교환되는 면적이 감소되어, 각 구성들의 기능이 저하될 수 있다.
따라서, 터브(100)로부터 배출되는 공기 중의 이물질이 필터(130)에 의하여 포집되도록 하여 덕트(300a) 내로 이물질이 유입되는 것을 방지하는 것이 바람직하다.
이 경우, 필터(130)는 터브(100)의 내부로 노출되는 곳에 설치될 수 있다. 특히, 필터(130)는 터브(100) 중 원주면에 위치될 수 있다. 바람직하게는 터브(100)의 원주면 중 공기흡입구(110)와 만나는 지점에 터브(100)의 내주면을 따라 연장되어 설치될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 터브(100)로부터 배출되는 공기 중의 이물질을 포집하여 덕트(300a) 내부로 이물질이 유입되는 것을 최소화하므로, 덕트(300a) 내의 주요 구성에 이물질이 부착되어 세탁물의 건조 기능이 저하되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100)는 공기흡입구(110) 상에 설치되어, 필터(130)에 필터세척수를 분사하는 필터세척부(140)를 더 포함할 수 있다.
상술한 바와 같이 필터(130)가 터브(100)에 설치되는 경우, 드럼(200)이 회전하면 그 회전에 의해 드럼(200) 주위에 공기의 회전 기류가 형성된다. 회전기류는 필터(130)에 부딪히며 필터(130)에 포집된 린트 등의 이물질이 제거될 수 있다.
또한, 드럼(200) 내부에 젖은 세탁물이 있는 경우 세탁물에서 나오는 물은 드럼(200)의 통공을 통해 터브(100) 내벽면에 방사될 수 있다. 그리고, 방사되는 물이 필터(130)에 부딪히면서 필터(130)에 대한 일정 부분 세척이 이루어질 수 있다.
그러나, 보다 직접적으로 필터(130)를 세척하기 위하여, 공기흡입구(110) 상에서 필터(130)를 향하여 필터세척수를 분사할 수 있다. 이러한 필터세척수의 분사에 의해, 필터(130)에 포집된 이물질이 떨어져 나가므로, 필터(130)의 성능이 안정적으로 유지될 수 있다.
이 경우, 필터세척수 또한 필터(130)를 통과한 후 터브(100)의 내측으로 유입될 수 있다. 따라서, 드럼(200)의 상부 외주면에 필터세척수가 낙하되어 드럼(200)의 온도를 낮춤으로써, 드럼(200)이 응축판 역할을 수행하도록 할 수 있다.
특히, 필터세척수는 필터(130)의 세척을 위하여 소정의 압력으로 분출된다. 소정의 압력으로 분출되는 필터세척수는 필터(130)를 통과하면서 망 형태의 필터(130)에 의해 확산되어 드럼(200)의 표면을 보다 넓고 빠르게 냉각시킬 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 공기 중의 이물질을 포집하는 필터(130)를 세척하여, 필터(130) 자체에 이물질이 집적되는 것을 방지하므로, 공기의 순환이 원활하게 이루어지도록 하면서도 이물질의 포집 효율을 향상시킬 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 필터세척수는 냉각수 중 일부를 필터세척부(140)로 공급하여 사용될 수 있다.
상술한 바와 같이, 열교환기(500a)로부터 배출되는 냉각수는 터브(100) 내로 유도되어 처리되거나 드럼(200)의 표면에 응축면이 형성되도록 할 수 있다. 이와 별개로 열교환기(500a)로부터 배출되는 냉각수는 필터세척부(140)로 유도되어 필터(130)의 세척에 사용될 수도 있다.
따라서, 필터세척부(140)로 필터세척수를 공급하기 위하여 별도의 공급 장치를 설치하지 않더라도, 냉각수 중 일부를 필터세척부(140)로 공급하여 사용할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 필터세척부(140)로 필터세척수를 공급하기 위한 별도의 구성 없이 냉각수 중 일부를 필터세척수로 사용하므로, 필터세척부(140)의 구조를 보다 단순화하여 필터세척부(140)가 설치되는 공간을 최소화할 수 있다.
한편, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는, 세척노즐(700a)과 필터세척부(140)와 각각 연결되는 분기관(710) 및 분기관(710)에 설치되어 세척노즐(700a)과 필터세척부(140) 중 적어도 하나로의 세척수 공급을 조절하는 분기밸브(720)을 더 포함할 수 있다.
구체적으로, 도 11에 도시된 바와 같이, 세척노즐(700a)에서 사용되는 세척수와 필터세척부(140)에서 사용되는 필터세척수는 모두 세탁물에 대한 세탁수 또는 열교환기(500a)로부터 배출되는 냉각수 등을 활용하여 사용될 수 있다.
이를 위하여, 상기의 급수호스 또는 열교환기(500a)까지 분기호스를 세척노즐(700a)과 필터세척부(140)와 각각 연결되는 분기관(710)에 연결하여, 세척부(700)와 필터세척부(140)에 세탁수 또는 냉각수 중 일부가 공급되도록 할 수 있다.
특히, 세탁수, 냉각수 및 세척수 중 어느 하나를 이송시키는 각 분기관(710)은 적어도 하나의 분기밸브(720)에 결합되어, 필요한 상황에 따라 적절한 구성으로 물이 공급되도록 제어할 수 있다.
이를 통해, 하나의 분기밸브(720)에서 필터(130)에 대한 세척과 열교환기(500a)에 대한 세척이 동시 또는 선택적으로 이루어질 수 있다.
특히, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)에 대한 세척노즐(700a)의 세척과 필터(130)에 대한 필터세척부(140)의 세척이 동시에 수행될 수 있다.
이와 관련하여, 본 실시예에 따른 세탁물 처리기기(1000)에서의 냉각수, 세척수 및 응축수의 공급 및 배출에 대하여 도 30을 참조하여 설명하도록 한다.
우선, 세탁물에 대한 세탁수로 사용되기 위한 수돗물 등이 세탁물 처리기기(1000)로 공급되는 경우, 임의의 분기관(710)에 의하여 세척노즐(700a) 뿐만 아니라 필터세척부(140)로 동시에 급수가 이루어질 수 있다.
이에 따라, 세척노즐(700a)과 필터세척부(140)의 구동이 동시에 이루어질 수 있다.
또한, 세탁물 처리기기(1000)로 공급되는 물은 건식밸브(dry valve) 등을 통해 터브(100)의 내부로 주입되어 드럼(200)의 표면에서 수분을 응축시킬 수 있을 뿐만 아니라, 수랭식 열교환기(500a)로 공급되어 냉각수로 사용될 수 있다.
이 경우, 별도의 리듀서(reducer) 등의 관 이음구조를 통해 수랭식 열교환기(500a)로 공급되는 관의 직경을 감소시킬 수 있다.
또한, 수랭식 열교환기(500a)로부터 배출되는 냉각수와 덕트(300a) 내부에서 응축된 응축수 및 열교환기(500a)에 대한 세척수는 각각 다른 임의의 분기관(710)을 통해 모여진 후 터브(100)의 내부로 주입될 수 있다.
도 13 내지 도 16은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제1 례를 나타내는 도면이다. 이 경우, 설명의 편의를 위하여 도 3 내지 도 6을 함께 참조하여 설명하도록 한다.
도 13 내지 도 16에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는 세척부(700)를 더 포함할 수 있다.
세척부(700)는 순환유로부(300)에 설치되어, 응축부(500)를 세척하는 부분으로, 터브(100)로부터 배출되는 공기 중의 이물질이 응축부(500)에 부착된 것을 제거한다.
이 경우, 세척부(700)는 덕트(300a)에 설치되어, 열교환기(500a)에 세척수를 분사하는 세척노즐(700a)일 수 있으며, 상술한 바와 같이 세척을 통해 이물질이 부착된 것을 제거하는 다양한 구성을 포함하여 이루어질 수 있다.
세탁물에 대한 건조를 위해 터브(100) 및 덕트(300a)에서 공기가 순환되는 경우, 세탁물 중의 린트 등과 같은 이물질이 함께 덕트(300a)로 유입될 수 있다. 이와 같은 이물질은 덕트(300a) 내부에 배치된 송풍팬(400a), 열교환기(500a) 및 히터(600a) 중 적어도 하나에 부착될 수 있다.
특히, 상술한 바와 같이 열교환기(500a)는 표면에 수분이 존재한다는 점에서, 린트 등과 같은 이물질이 보다 쉽게 부착될 수 있다. 그리고, 이와 같이 부착된 이물질은 열교환기(500a) 내부의 냉각수와 열교환기(500a) 표면의 공기 간의 열교환을 방해하여 그 효율이 저하될 수 있다.
따라서, 덕트(300a)에 설치된 세척노즐(700a)을 통해 열교환기(500a)에 세척수를 분사함으로써, 열교환기(500a)에 부착된 이물질을 제거하는 것이 세탁물에 대한 건조 효율을 향상시키는 것과 관련되어 있다.
이 경우, 세척수는 상술한 세탁물에 대한 세탁수 또는 열교환기(500a)로부터 배출되는 냉각수 등을 활용하여 사용될 수 있다. 이를 위하여, 상기의 급수호스 또는 열교환기(500a)까지 분기호스를 연결하여, 세척부(700)에 세탁수 또는 냉각수 중 일부가 공급되도록 할 수 있다.
특히, 세탁수, 냉각수 및 세척수 중 어느 하나를 이송시키는 각 분기호스는 적어도 하나의 분기밸브에 결합되어, 필요한 상황에 따라 적절한 구성으로 물이 공급되도록 제어할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a) 및 히터(600a) 뿐만 아니라 열교환기(500a)도 터브(100) 상에 설치된 덕트(300a) 내부에 설치되고, 이러한 열교환기(500a)에 세척수를 분사하여 이물질을 제거하므로, 덕트조립체(10)의 구조를 최적화하면서도 이물질이 효과적으로 제거될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 덕트(300a)는 송풍팬(400a), 열교환기(500a) 및 히터(600a) 각각의 상면을 커버하는 송풍팬커버(320), 열교환기커버(330) 및 히터커버(340)를 포함하고, 세척노즐(700a)은 열교환기커버(330)에 배치되어, 열교환기(500a)를 향하여 하방으로 세척수를 분사할 수 있다.
즉, 도 4에 도시된 바와 같이, 덕트(300a)의 상면은 송풍팬커버(320), 열교환기커버(330) 및 히터커버(340)로 이루어질 수 있다. 이 경우, 히터커버(340)는 열에 의한 변형 등을 고려하여 금속 재질로 이루어지는 것이 바람직하다. 또한, 송풍팬커버(320)와 열교환기커버(330)는 히터커버(340)와는 다른 재질로 이루어지고, 필요에 따라 일체로 형성될 수도 있다.
그리고, 열교환기(500a)의 세척을 위한 세척노즐(700a)이 열교환기커버(330)에 설치됨으로써, 별도의 세척노즐(700a)을 설치하기 위한 구성 없이 보다 단순한 구조를 통해 세척부(700)가 이루어질 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 이물질의 세척을 위한 세척노즐(700a)이 열교환기커버(330)에 배치되므로, 열교환기(500a)에 대한 직접적인 세척이 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세척부(700)는 응축부(500)의 평면을 커버하는 순환유로부(300)의 상면 내에 복수로 배치될 수 있다. 즉, 세척노즐(700a)은 열교환기(500a)의 평면을 커버하는 영역 내에 복수로 배치될 수 있다.
방열핀 등을 포함하는 열교환 구조의 경우, 상대적으로 촘촘하게 배치되는 방열핀 등에 의하여 린트 등의 이물질이 열교환 구조의 전방에만 집중적으로 부착된다.
반면, 본 실시예에 따른 열교환 구조의 경우, 상술한 바와 같이 덕트(300a) 내부를 통과하는 공기가 열교환기(500a)의 전 영역을 원활하게 통과할 수 있다. 이에 따라, 열교환기(500a)의 전 영역에 린트 등의 이물질이 부착되게 되므로, 이러한 열교환기(500a) 전 영역에 대한 세척이 중요하다고 할 수 있다.
따라서, 세척노즐(700a)을 특정 부분에 배치하는 것이 아니라 열교환기(500a)의 평면을 커버하는 영역 전체에 고르게 배치할 필요가 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기커버(330)에 세척노즐(700a)이 복수로 배치되어 열교환기(500a) 평면 전체를 세척하도록 구성되므로, 이물질이 집적되는 부분 전체에 대한 이물질 제거가 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기커버(330)는 세척수를 유입시키는 세척수유입구(331) 및 각각의 세척노즐(700a)과 연결되도록 상면에 형성되어, 세척수의 유로를 형성하는 세척유로(333)를 포함할 수 있다.
즉, 도 13 및 도 14에 도시된 바와 같이, 열교환기커버(330)의 일부분에 세척수유입구(331)가 형성된다. 이러한 세척수유입구(331)는 열교환기커버(330)에 많이 형성될수록 세척수의 공급이 원활할 수 있으나, 세척수유입구(331)가 많을수록 세척부(700)의 구조가 복잡해질 수 있다.
따라서, 하나의 세척수유입구(331)만을 형성한 후, 열교환기커버(330) 상에 형성된 세척유로(333)를 통해 세척수가 각 부분으로 원활하게 공급되도록 할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기커버(330)에 세척수유입구(331) 및 세척유로(333)가 형성되므로, 하나의 세척수유입구(331)를 통해서도 전체의 세척노즐(700a)로 세척수를 공급할 수 있다.
이 경우, 열교환기커버(330)에 형성되는 세척유로(333)는 세척수유입구(331)로부터 멀어질수록 상대적으로 낮은 형상으로 경사지게 형성될 수 있다. 이에 따라, 세척수유입구(331)를 통해 유입된 세척수는 세척유로(333)의 경사를 따라 열교환기커버(330)의 각 부분으로 원활하게 공급될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세척유로(333)는 세척수유입구(331)로부터 세척수의 유입 방향을 따라 연장되는 중심유로(333a) 및 중심유로(333a)로부터 교차되는 방향을 따라 분기되는 분기유로(333b)를 포함할 수 있다.
즉, 도 13 및 도 14에 도시된 바와 같이, 세척수유입구(331)로 유입된 세척수는 중심부를 따라 반대 방향까지 형성된 중심유로(333a)로 흐르게 된다. 그리고, 중심유로(333a)를 따라 흐르는 세척수는 중심유로(333a)로부터 분기된 각각의 분기유로(333b)로 흘러 열교환기커버(330) 상의 전체 영역에 분산될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 세척유로(333)가 중심유로(333a) 및 분기유로(333b)로 구성되므로, 세척수가 특정 부분으로 편중되지 않고 전체의 세척노즐(700a)로 공급되도록 할 수 있다.
이 경우, 도 13 및 도 14에 도시된 바와 같이, 분기유로(333b)는 외곽으로 갈수록 세척수유입구(331)로부터 멀어지도록 비스듬하게 형성될 수 있다.
중심유로(333a)에서 분기유로(333b)로 흘러가는 세척수의 경우, 분기유로(333b)의 끝단으로 갈수록 흐르는 양이 줄어들 수 있다. 이에 따라, 분기유로(333b)의 끝단에는 충분한 세척수가 공급되지 않을 수 있다.
그 결과, 열교환기(500a)의 외곽 부분에 대한 세척이 원활하게 이루어지지 않아 열교환 효율이 저하될 우려가 있다.
따라서, 상기와 같은 문제점을 방지하기 위하여, 분기유로(333b)를 비스듬하게 형성함으로써, 분기유로(333b)로 유입된 세척수가 세척수유입구(331)로부터 최초 유입된 방향과 일정 부분 나란하게 흐르도록 할 수 있다.
이를 통해, 세척수가 흐르는 수압이 분기유로(333b)에 부딪히며 상쇄되는 것을 일정 부분 감소시켜, 분기유로(333b)의 끝단까지도 세척수가 공급되도록 할 수 있다.
또한, 분기유로(333b)와 연결되는 각각의 세척노즐(700a)은 상대적으로 외곽에 배치된 세척노즐(700a)의 크기가 상대적으로 중앙에 배치된 세척노즐(700a)의 크기 이상으로 형성될 수 있다.
즉, 분기유로(333b)에서 세척수의 이동 방향 상에서 상대적으로 후방에 배치되는 세척노즐(700a)의 크기는 상대적으로 전방에 배치되는 세척노즐(700a)의 크기와 같거나 더 크게 형성될 수 있다.
만약, 전방에 배치되는 세척노즐(700a)의 크기가 크다면 세척수가 후방에 배치되는 세척노즐(700a)에 이르기 전에 대부분 배출되어 후방에 배치되는 세척노즐(700a)에서는 세척수의 분사가 원활하게 이루어지지 않을 수 있다.
따라서, 전방에 배치되는 세척노즐(700a)은 상대적으로 작게 형성하고, 후방에 배치되는 세척노즐(700a)은 전방에 배치되는 세척노즐(700a)의 크기와 같거나 상대적으로 더 크게 형성하여, 분기유로(333b)의 끝단에서 연결되는 세척노즐(700a)까지도 세척수가 공급되도록 할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세척부(700)는 송풍부(400) 측에 가까울수록 상대적으로 세척력이 커질 수 있다. 즉, 세척노즐(700a)은 송풍팬(400a) 측에 가까울수록 상대적으로 세척수의 분사력이 커질 수 있다.
상술한 바와 같이, 송풍팬(400a)을 통해 덕트(300a) 내부로 유입된 공기는 열교환기(500a)를 향하여 이동된다. 따라서, 열교환기(500a) 중 송풍팬(400a)에 가까운 부분이 가장 먼저 덕트(300a)로 유입된 공기와 접촉하게 된다.
이에 따라, 열교환기(500a) 중 송풍팬(400a)에 가까운 부분에 보다 많은 이물질이 부착될 수 있다. 그러므로, 열교환기(500a)에 대한 세척 시 송풍팬(400a)에 가까운 부분을 보다 중점적으로 세척하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a) 중 송풍팬(400a)에 가까운 부분에 대하여 보다 강한 세척력으로 이물질이 제거되도록 구성되므로, 각 부분에 집적되는 이물질의 양을 고려하여 효율적인 이물질 제거가 이루어질 수 있다.
한편, 세척부(700)의 세척력을 배치 위치에 따라 서로 다르게 하는 것은, 각 세척노즐(700a)의 개방 면적을 서로 다르게 하거나, 각 세척노즐(700a)에 설치되는 펌프 등의 분사압력을 서로 다르게 하는 방법으로 조절될 수 있다.
또한, 상대적으로 흐르는 세척수의 양이 많은 중심유로(333a)를 고려하여, 이러한 중심유로(333a)와 직접적으로 연결되는 세척수유입구(331)의 배치 위치를 보다 강한 세척력이 필요한 부분으로 편중되게 배치할 수도 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기커버(330)는 열교환기(500a)를 커버하고 상면에 세척유로(333)가 형성되는 커버본체(339) 및 세척유로(333)의 상면을 커버하도록 커버본체(339)에 결합되는 커버상판(335)을 더 포함할 수 있다.
즉, 도 13에 도시된 바와 같이, 열교환기커버(330)는 서로 착탈 가능하도록 결합되는 커버본체(339) 및 커버상판(335)을 포함하여 이루어질 수 있다.
상술한 바와 같이, 열교환기커버(330)의 상면에는 세척유로(333)가 형성된다. 이 경우, 세척유로(333)가 외부로 노출된다면 이물질 등이 세척유로(333)에 집적되어 열교환기(500a)에 대한 세척 성능이 저하될 수 있다.
따라서, 열교환기커버(330)의 상면에 세척유로(333)를 형성하되, 이러한 세척유로(333)가 외부로 노출되지 않도록 세척유로(333)의 상면 역시 소정의 부재로 커버되어야 한다.
이와 같은 사항을 고려할 때, 열교환기커버(330)는 단일의 부재를 가공하여 형성하는 것은 사실상 곤란하다. 예를 들어, 금형 등을 통한 사출 성형 시 단일의 부재로 이루어지는 열교환기커버(330)의 상면 내부에 세척유로(333)를 형성하는 것은 매우 어렵기 때문이다.
이에 따라, 열교환기커버(330)는 세척유로(333)가 형성되는 커버본체(339)와 이러한 커버본체(339)의 상면에 결합 가능한 커버상판(335)으로 분리하여 제작하는 것이 바람직하다.
이 경우, 커버본체(339)와 커버상판(335)은 도 13에 도시된 바와 같이 별도의 체결부재(337)를 통해 서로 결합될 수 있으나, 반드시 이에 한정되는 것은 아니며, 필요에 따라 다양한 방법으로 서로 착탈 가능하도록 결합될 수 있다.
도 17 및 도 18은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제2 례를 나타내는 도면이다.
도 17 및 도 18에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 분기유로(333b)는 외곽으로 갈수록 폭이 좁아지게 형성될 수 있다.
상술한 바와 같이, 분기유로(333b)의 끝단에는 충분한 세척수가 공급되지 않아 열교환기(500a)의 열교환 효율이 저하될 우려가 있다.
따라서, 분기유로(333b)를 외곽으로 갈수록 폭이 좁아지게 형성함으로써, 폭이 좁은 부분에서 보다 빠르게 흐르도록 할 수 있다. 이를 통해, 일정 부분 흐르는 양이 줄어들더라도, 분기유로(333b)의 끝단에서는 세척수가 상대적으로 빠르게 흘러 세척을 위한 분사 압력이 충분히 확보되도록 할 수 있다.
도 19 및 도 20은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기커버의 제3 례를 나타내는 도면이다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세척유로(333)는 세척수유입구(331)로부터 외곽부를 따라 세척수유입구(331)의 반대면까지 연결되는 외곽유로(333c) 및 세척수유입구(331)의 반대면으로부터 세척수유입구(331)를 향하여 열교환기커버(330)의 상면을 분할하는 분할유로(333d)를 포함할 수 있다.
즉, 도 19 및 도 20에 도시된 바와 같이, 세척수유입구(331)로 유입된 세척수는 외곽부를 따라 반대 방향까지 형성된 외곽유로(333c)로 흐르게 된다. 그리고, 외곽유로(333c)를 따라 반대 방향에 도달한 세척수는 분할유로(333d)로 흘러 열교환기커버(330) 상의 전체 영역에 분산될 수 있다.
특히, 외곽유로(333c)는 세척수유입구(331)로부터 분기되어 복수로 구비되고, 분할유로(333d)는 복수의 외곽유로(333c) 사이에 형성될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 세척유로(333)가 외곽유로(333c) 및 분할유로(333d)로 구성되므로, 세척수가 특정 부분으로 편중되지 않고 전체의 세척노즐(700a)로 공급되도록 할 수 있다.
또한, 분할유로(333d)와 연결되는 각각의 세척노즐(700a)은 상대적으로 세척수유입구(331)에 가깝게 배치된 세척노즐(700a)의 크기가 상대적으로 세척수유입구(331)의 반대면에 가깝게 배치된 세척노즐(700a)의 크기 이상으로 형성될 수 있다.
즉, 분할유로(333d)에서 세척수의 이동 방향 상에서 상대적으로 후방에 배치되는 세척노즐(700a)의 크기는 상대적으로 전방에 배치되는 세척노즐(700a)의 크기와 같거나 더 크게 형성될 수 있다.
만약, 전방에 배치되는 세척노즐(700a)의 크기가 크다면 세척수가 후방에 배치되는 세척노즐(700a)에 이르기 전에 대부분 배출되어 후방에 배치되는 세척노즐(700a)에서는 세척수의 분사가 원활하게 이루어지지 않을 수 있다.
따라서, 전방에 배치되는 세척노즐(700a)은 상대적으로 작게 형성하고, 후방에 배치되는 세척노즐(700a)은 전방에 배치되는 세척노즐(700a)의 크기와 같거나 상대적으로 더 크게 형성하여, 분할유로(333d)의 끝단에서 연결되는 세척노즐(700a)까지도 세척수가 공급되도록 할 수 있다.
또한, 각각의 세척노즐(700a)은 외곽유로(333c)에 연결되지 않고 분할유로(333d)에 연결될 수 있다.
만약, 세척노즐(700a)은 외곽유로(333c)에 연결된다면 세척수가 분할유로(333d)에 이르기 전에 외곽유로(333c)에서 다량 배출될 수 있다. 그러나, 외곽유로(333c)는 상대적으로 린트의 제거 필요성이 크기 않은 열교환기(500a)의 외곽부 상에 배치된다는 점에서 외곽유로(333c)에서의 세척수의 다량 배출은 바람직하지 않을 수 있다.
따라서, 외곽유로(333c)에는 세척노즐(700a)을 연결하지 않도록 하여, 세척수가 배출되지 않고 분할유로(333d)로 흘러가도록 한 후 분할유로(333d)에 연결된 세척노즐(700a)에서 세척수가 분사되도록 할 수 있다.
도 21 내지 도 24는 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서 송풍팬베이스, 열교환기베이스 및 히터베이스를 나타내는 도면이다. 도 25는 도 24에 도시된 A 부분을 보다 상세히 나타내는 도면이다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 순환유로부(300)의 바닥은 응축부(500)로부터 송풍부(400)의 중심을 향하여 배수로(380)가 형성될 수 있다.
즉, 덕트(300a)는 송풍팬(400a), 열교환기(500a) 및 히터(600a) 각각의 하면을 지지하는 송풍팬베이스(350), 열교환기베이스(360) 및 히터베이스(370)를 포함하고, 열교환기베이스(360)로부터 송풍팬베이스(350)의 중심을 향하여 배수로(380)가 형성될 수 있다.
상술한 과정을 통해 열교환기(500a)를 세척한 세척수는 덕트(300a)의 바닥으로 낙하된다. 이처럼 낙하된 세척수가 덕트(300a) 내부에 고이거나 불필요한 부분으로 흘러 가는 것은 덕트조립체(10)의 기능을 저해할 수 있다는 점에서 바람직하지 않다.
따라서, 최대한 신속하고 안정적인 방향을 따라 덕트(300a) 바닥으로 낙하된 세척수가 배출되도록 할 필요가 있다. 이를 위하여, 열교환기베이스(360)로부터 송풍팬베이스(350)의 중심을 향하여 배수로(380)를 형성함으로써, 배수로(380)를 따라 세척수가 신속하고 안정적으로 배출되도록 할 수 있다.
이 경우, 송풍팬베이스(350)의 중심은 터브(100)의 공기흡입구(110)가 배치되어, 배수로(380)를 따라 흐르는 세척수는 터브(100)로 유입될 수 있다. 그리고, 터브(100)로 유입된 세척수는 상술한 필터세척수와 유사하게 처리될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 바닥으로 흐르는 세척수를 송풍팬베이스(350)의 중심을 향하여 유도시키는 배수로(380)가 형성되므로, 세척수를 덕트(300a) 외부로 효과적으로 배출시킬 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 순환유로부(300)는 응축부(500)와 가열부(600) 사이의 바닥에 제1 차수턱(391)이 형성될 수 있다. 즉, 열교환기베이스(360)와 히터베이스(370) 사이에 제1 차수턱(391)이 형성될 수 있다.
열교환기(500a)를 세척한 후 덕트(300a)의 바닥으로 낙하된 세척수가 히터(600a) 측으로 흐르는 것은 바람직하지 않다. 세척수가 히터(600a)에 접촉될 경우, 히터(600a)의 온도를 저하시켜 공기를 가열하기 위한 히터(600a)의 기능이 저하될 수 있기 때문이다.
또한, 세척수와 별도로 열교환기(500a)에서 응축되는 응축수가 히터(600a) 측으로 흐르는 것 역시 바람직하지 않다.
따라서, 열교환기베이스(360)와 히터베이스(370) 사이에 형성된 제1 차수턱(391)을 통해, 응축수 또는 세척수가 히터(600a) 측으로 흘러가는 것을 차단하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 바닥으로 흐르는 응축수 또는 세척수가 히터(600a) 측으로 이동되는 것을 차단하는 제1 차수턱(391)이 형성되므로, 히터(600a)에 응축수 또는 세척수가 접촉되어 히터(600a)의 기능이 저하되는 것을 방지할 수 있다.
이 경우, 제1 차수턱(391)의 높이는 열교환기베이스(360)의 상면으로부터 파이프(510)의 하면까지의 높이보다 상대적으로 낮게 형성될 수 있다.
즉, 제1 차수턱(391)은 파이프(510)보다 낮은 높이까지만 상부로 돌출 형성될 수 있다.
제1 차수턱(391)을 통한 응축수 또는 세척수의 차단을 위해서는 제1 차수턱(391)의 높이가 높을수록 유리하다. 그러나, 제1 차수턱(391)이 높게 형성될수록 덕트(300a) 내부의 공기 유동 면적은 줄어들 수 있다.
따라서, 덕트(300a) 내부를 통과하는 공기가 열교환기(500a)와는 원활하게 접촉되면서도 차수 기능을 발휘하기 위한 높이로 차수턱(391)의 높이기 제할될 필요가 있다.
이에 따라, 제1 차수턱(391)은 파이프(510)보다 낮은 높이까지만 상부로 돌출 형성되도록 하여, 덕트(300a) 내부의 풍량이 저감되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 순환유로부(300)의 바닥은 응축부(500)로부터 송풍부(400)의 중심을 향하여 경사지게 형성될 수 있다.
즉, 열교환기베이스(360)는 일방향을 따라 경사지게 형성되고, 배수로(380)는 열교환기베이스(360)의 가장 낮은 지점에 연결될 수 있다. 또한, 송풍팬베이스(350)는 중심을 향하여 경사지게 형성될 수 있다.
열교환기(500a)를 세척한 후 덕트(300a)의 바닥으로 낙하된 세척수 또는 응축수가 배출되지 않고 열교환기베이스(360) 상에 고이는 것은 바람직하지 않다. 고인 응축수 또는 세척수에 이물질 등이 집적되어 오염이나 악취가 발생하는 등, 위생 상의 문제가 발생할 수 있기 때문이다.
따라서, 열교환기베이스(360)를 경사지게 형성하고 그 중 가장 낮은 지점에 배수로(380)를 연결하여, 응축수 또는 세척수가 신속하게 배수로(380)로 유도되도록 하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 바닥으로 흐르는 응축수 또는 세척수가 열교환기베이스(360)의 경사를 따라 배수로(380)로 유도되므로, 열교환기베이스(360) 부분에 응축수 또는 세척수가 고이는 것을 방지할 수 있다.
또한, 열교환기(500a)를 세척한 후 덕트(300a)의 바닥으로 낙하된 응축수 또는 세척수가 배출되지 않고 송풍팬베이스(350) 상에 고이는 것 역시 바람직하지 않다. 고인 응축수 또는 세척수에 이물질 등이 집적되어 오염이나 악취가 발생하는 등, 위생 상의 문제가 발생할 수 있기 때문이다.
따라서, 송풍팬베이스(350)를 중심을 향하여 경사지게 형성하여, 응축수 또는 세척수가 신속하게 공기흡입구(110)로 배출되도록 하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 바닥으로 흐르는 응축수 또는 세척수가 송풍팬베이스(350)의 경사를 따라 중심부로 유도되므로, 송풍팬베이스(350) 부분에 응축수 또는 세척수가 고이는 것을 방지할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 송풍부(400)와 응축부(500) 사이의 바닥에 배수로(380)가 형성된 부분을 제외하고 제2 차수턱(392)이 형성될 수 있다. 즉, 송풍팬베이스(350)와 열교환기베이스(360) 사이에 배수로(380)가 형성된 부분을 제외하고 제2 차수턱(392)이 형성될 수 있다.
열교환기(500a)를 세척한 후 덕트(300a)의 바닥으로 낙하된 세척수 또는 응축수는 송풍팬(400a) 측으로 유도되어야 하나, 배수로(380)를 제외한 부분으로 흐르는 것은 바람직하지 않다. 응축수 또는 세척수가 배수로(380)를 제외한 부분으로 비산될 경우, 응축수 또는 세척수의 배출이 원활하게 이루어지지 않을 수 있기 때문이다.
따라서, 송풍팬베이스(350)와 열교환기베이스(360) 사이에 형성된 제2 차수턱(392)을 통해, 응축수 또는 세척수가 불필요한 부분으로 비산되는 것을 차단하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 덕트(300a) 바닥으로 흐르는 응축수 또는 세척수가 배수로(380)가 아닌 송풍팬(400a) 측으로 이동되는 것을 차단하는 제2 차수턱(392)이 형성되므로, 응축수 또는 세척수가 불필요한 부분으로 비산되지 않고 최적의 경로로 배출되도록 할 수 있다.
도 27 내지 도 29는 본 발명의 일 실시예에 따른 세탁물 처리기기에서 열교환기베이스의 변형례를 나타내는 도면이다.
도 27 내지 도 29에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기베이스(360)는 평면상의 제1 지점(P1)을 향하여 경사지게 형성될 수 있다.
이 경우, 열교환기베이스(360)는 제1 지점(P1)에 세척수배출홀(801)이 형성될 수 있다.
상술한 바와 같이, 열교환기(500a)를 세척한 후 덕트(300a)의 바닥으로 낙하된 세척수 또는 응축수가 배출되지 않고 열교환기베이스(360) 상에 고이는 것은 바람직하지 않다.
이와 관련하여, 응축수 또는 세척수를 공기흡입구(110)로 배출할 수 있다. 그러나, 이러한 응축수 또는 세척수에는 린트 등의 이물질이 포함되어 있다는 점에서, 공기흡입구(110)의 필터(130)에 이물질이 집적될 수 있다.
따라서, 응축수 또는 세척수를 공기흡입구(110)로 배출하지 않고, 열교환기베이스(360)에 별도로 형성된 세척수배출홀(801)로 유도하여 배출할 수 있다.
한편, 세척수배출홀(801)은 터브(100)와 연결되어, 세척수배출홀(801)로부터 배출되는 응축수는 터브(100)로 주입될 수 있다.
이를 통해, 세척수배출홀(801)로부터 배출되는 응축수를 터브(100)에 형성된 배출 구조를 활용하여 배출할 수 있다. 또는, 세척수배출홀(801)로부터 배출되는 응축수를 터브(100)의 내부로 주입시켜, 드럼(200)의 표면에서 수분을 응축하는데 사용할 수 있다. 또는, 세척수배출홀(801)로부터 배출되는 응축수를 터브(100)의 후면으로 유도하여, 터브(100)의 후면에서 수분을 응축하는데 사용할 수 있다.
도 32는 본 발명의 일 실시예에 따른 세탁물 처리기기의 행정 수행 알고리즘을 개략적으로 나타내는 도면이다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세탁물에 대한 세탁행정, 헹굼행정, 탈수행정 및 건조행정을 수행하는 알고리즘을 도 32를 참조하여 개략적으로 설명하도록 한다.
우선 세탁물에 대한 세탁행정(S100)(또는 세탁행정과 헹굼행정)이 완료된 이후 일반적으로 세탁물에 함유된 수분을 제거하기 위한 탈수행정(S200, S500) 및 건조행정(S700, S800)이 순차적으로 수행될 수 있다.
다만, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는 탈수행정이 건조행정 이전에 수행되는 열교환기(500a)의 세척행정(S400) 이후에 완료될 수 있다. 즉, 건조행정 이전에 열교환기(500a)의 세척행정이 수행되고, 이러한 세척행정 이후에 탈수행정이 완료될 수 있다.
이에 따라, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)의 세척 시 발생될 수 있는 수막이 탈수행정에서 제거되어 세탁물의 건조를 위한 열교환 효율이 저하되지 않고 원활하게 이루어질 수 있다.
한편, 상술한 바와 같이, 열교환기(500a)의 세척행정과 필터(130)의 필터세척행정이 동시에 수행될 수도 있다. 이 경우, 필터(130)의 세척 시 발생될 수 있는 수막이 탈수행정에서 마찬가지로 제거될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 탈수행정은 세탁물에 대한 제1차 탈수(S200)가 수행된 후, 드럼(200)의 내부 온도를 상승(S300)시켜 세탁물에 대한 제2차 탈수(S500)가 추가적으로 수행되며, 세탁물에 대한 제2차 탈수는 열교환기(500a)의 세척행정 이후에 수행될 수 있다.
이 경우, 제2차 탈수 시 드럼(200)의 내부 온도를 상승시키는 것은, 부하가 함습한 수분의 표면장력을 작게 하여 탈수 성능을 향상시키기 위한 것이다.
그러나, 제1차 탈수 시부터 온도를 상승시키는 것은 상당량의 에너지 소모가 발생하므로, 일단 제1차 탈수를 수행한 후 제2차 탈수만 드럼(200)의 내부 온도를 상승시킨 상태에서 수행할 수 있다.
특히, 상술한 바와 같이 세척에 따른 수막 제거를 위하여 제2차 탈수는 열교환기(500a)의 세척행정 이후에 수행될 수 있다.
이에 따라, 본 실시예에 따른 세탁물 처리기기(1000)는, 탈수행정이 두번의 단계로 나뉘어 수행되고, 그 사이에 열교환기(500a)의 세척행정이 수행되므로, 제2 탈수 단계에서 수막 제거가 가능할 뿐만 아니라 상승된 온도 하에서 탈수 성능이 향상될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 세탁물에 대한 건조행정의 알고리즘에 대하여 보다 상세히 설명하도록 한다.
건조행정을 위해 열교환기(500a)로 냉각수를 공급하는 경우, 소정의 시간 동안 냉각수를 연속적으로 공급하는 것이 건조 효율면에서 가장 유리할 수 있다.
그러나, 상기와 같이 냉각수를 연속적으로 공급하는 경우에는 냉각수의 사용량이 상대적으로 많아지고, 냉각수가 공급되는 것과 동시에 일정량의 냉각수가 터브(100)의 배출 구조를 통해 배출되어야만 한다는 제약이 있다.
따라서, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)에 대한 냉각수의 공급은 복수회에 걸쳐 단속적으로 반복 수행될 수 있다.
예를 들어, 열교환기(500a)에 대한 냉각수의 공급 방법은 '7초간 급수 - 2초간 휴지 - 7초간 급수 - 2초간 휴지 - (반복 수행)'의 과정으로 이루어질 수 있다.
이를 통해, 냉각수의 사용량을 상대적으로 줄일 수 있으므로, 냉각수가 공급되는 것과 동시에 일정량의 냉각수가 터브(100)의 배출 구조를 통해 배출되지 않더라도 터브(100) 내에 수용된 냉각수가 세탁물에 접촉되는 것이 최소화될 수 있다.
오히려, 터브(100) 내에 일정량의 냉각수가 수용되어 있으므로, 그에 따른 수분의 응축 효과가 발생할 수도 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)에 대한 냉각수의 공급은 복수회에 걸쳐 단속적으로 반복 수행되므로, 냉각수 사용량 감소 및 세탁물에 냉각수가 접촉되는 것을 방지하는 등 최적의 작동이 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100) 에 대한 냉각수의 배출은 설정된 시간 동안 연속적으로 수행될 수 있다. 예를 들어, 냉각수의 배출을 위해 15초 동안 배수타임이 설정될 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100)로부터의 냉각수 배출이 설정 시간 동안 연속적으로 수행되므로, 냉각수의 배출에 필요한 소정의 시간이 충분하게 확보될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100) 에 대한 냉각수의 배출 시 열교환기(500a)에 대한 냉각수의 공급이 중단될 수 있다.
이 경우, 터브(100)에는 별도의 수위센서가 설치되어 수용된 냉각수의 양이 일정량 이상으로 감지된다면, 냉각수의 공급을 중단하고 냉각수를 배출시킬 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)에서, 터브(100)로부터 냉각수가 배출되는 동안에는 열교환기(500a)에 대한 냉각수의 공급이 중단되므로, 세탁물의 건조를 위한 각 구성의 작동이 효율적으로 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 건조행정은 히터(600a)와 송풍팬(400a)이 함께 구동되는 고온건조 상태에서 수행(S700)되고, 열교환기(500a)에 대한 냉각수의 공급은 히터(600a) 및 송풍팬(400a)의 구동이 시작되는 시점으로부터 설정된 시간 경과 후에 수행될 수 있다.
히터(600a) 및 송풍팬(400a)의 구동이 시작되더라도 소정의 시간이 경과될 때까지는 건조 효율이 높지 않은 상태이므로, 설정된 시간이 경과되어 수분의 응축 효율이 높은 상태에 도달하였을 때 비로소 열교환기(500a)에 대한 냉각수를 공급하도록 할 수 있다.
특히, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)에 대한 냉각수의 공급은 드럼(200)의 내부 온도가 포화 상태에 도달하였을 때 또는 드럼(200)의 내부 온도가 설정된 온도에 도달하였을 때 수행될 수 있다.
즉, 드럼(200)의 내부 온도가 서서히 증가하다 정상상태에 도달하여 포화된 상태일 때 비로소 열교환기(500a)에 대한 냉각수를 공급하도록 할 수 있다.
또는, 드럼(200)의 내부 온도가 사전에 설정된 온도(예를 들어, 93℃)에 도달하였을 때 비로소 열교환기(500a)에 대한 냉각수를 공급하도록 할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 드럼(200)의 내부 온도가 포화 상태에 도달하였을 때 또는 드럼(200)의 내부 온도가 설정된 온도에 도달하였을 때 열교환기(500a)에 대한 냉각수의 공급이 수행되므로, 세탁물의 건조를 위한 각 구성의 작동이 효율적으로 이루어질 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 건조행정은 히터(600a)는 구동되지 않고 송풍팬(400a)은 구동되는 저온건조 상태에서 추가적으로 수행(S800)(드럼의 내부 온도를 낮추기 위한 쿨링 과정)되고, 열교환기(500a)에 대한 냉각수의 공급은 송풍팬(400a)의 구동이 종료되는 시점까지 수행될 수 있다.
즉, 히터(600a)는 구동되지 않는 상태이더라도 송풍팬(400a)만을 구동시키며 열교환기(500a)에 열교환하도록 하여 추가 응축이 이루어지도록 할 수 있다. 또한, 송풍팬(400a)의 구동에 따라 부하 온도가 낮아질 수 있으므로, 사용자가 뜨거움을 느끼지 않도록 하여 안전성을 높일 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a)의 구동이 종료될 때까지 열교환기(500a)에 대한 냉각수의 공급이 수행되므로, 히터(600a)가 작동되지 않는 상태에서도 추가 응축이 가능하며 부하온도가 낮아져서 안전성이 향상될 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)에 대한 세척행정의 알고리즘에 대하여 보다 상세히 설명하도록 한다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)의 세척행정은 송풍팬(400a)의 구동이 감소된 상태에서 수행될 수 있다.
만약, 열교환기(500a)의 세척행정 중에도 송풍팬(400a)이 일정 강도 이상으로 구동된다면, 세척을 위한 세척수가 송풍팬(400a)에 의해 비산될 수 있다. 이 경우, 세척수가 드럼(200) 내로 비산된다면 건조되어야 할 세탁물이 다시 젖게 될 우려가 있다.
따라서, 본 실시예에 따른 세탁물 처리기기(1000)는, 송풍팬(400a)의 구동이 감소된 상태에서 열교환기(500a)의 세척이 수행되므로, 세척수가 송풍팬(400a)의 작동에 따라 불필요한 부분으로 비산되는 것을 최소화할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)의 세척행정 중 송풍팬(400a)이 구동되지 않는 경우에는 히터(600a)의 구동 및 열교환기(500a)에 대한 냉각수의 공급이 각각 중단될 수 있다.
즉, 송풍팬(400a)이 구동되지 않는 경우라면, 더 이상 건조 기능이 발휘될 수 없으므로, 히터(600a) 역시 구동될 이유가 없다고 할 수 있다. 또한, 열교환기(500a)에 대한 냉각수의 공급 역시 아무런 의미가 없으므로 냉각수의 공급 역시 중단하는 것이 바람직하다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 열교환기(500a)의 세척이 수행되는 과정에서 송풍팬(400a)의 구동이 종료되는 경우, 히터(600a)의 구동 및 열교환기(500a)에 대한 냉각수의 공급이 각각 중단되므로, 건조 기능이 수행되지 않는 상태에서의 불필요한 작동을 최소화할 수 있다.
본 발명의 일 실시예에 따른 세탁물 처리기기(1000)에서, 열교환기(500a)의 세척행정은 드럼(200)의 회전이 증가된 상태에서 수행될 수 있다.
상술한 바와 같이, 세척수가 드럼(200) 내로 유입된다면 건조되어야 할 세탁물이 다시 젖게 될 우려가 있다.
따라서, 열교환기(500a)의 세척행정 시 드럼(200)의 회전을 증가시켜, 드럼(200) 표면으로 세척수가 흐르더라도 드럼(200)의 회전에 따라 드럼(200) 내로 유입되지 않도록 할 수 있다.
이와 같이, 본 실시예에 따른 세탁물 처리기기(1000)는, 드럼(200)의 회전이 증가된 상태에서 열교환기(500a)의 세척이 수행되므로, 세척수가 드럼 내부로 유입되는 것을 최소화할 수 있다.
도 31은 본 발명의 일 실시예에 따른 세탁물 처리기기에서 디스펜서 및 하우스트랩을 나타내는 도면이다.
도 31에 도시된 바와 같이, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는, 디스펜서(910) 및 하우스트랩(920)을 더 포함할 수 있다.
디스펜서(910)는 드럼(200)으로 첨가제를 공급하도록 설치되는 부분으로, 세탁수가 터브(100)로 공급되는 경로 상에 설치될 수 있다.
하우스트랩(920)은 드럼(200)과 디스펜서(910)를 연결하는 부분으로, 디스펜서(910)를 통하여 공급되는 세탁수가 이동될 때 이동되는 세탁수 중 일부가 저수되어 세탁수의 이동경로가 밀폐되는 공간을 형성한다. 이러한 하우스트랩(920)에 의해 터브(100) 내부에서 발생되는 세제 거품 또는 공기가 디스펜서(910)로 역류하는 것이 방지될 수 있다.
이 경우, 본 발명의 일 실시예에 따른 세탁물 처리기기(1000)는, 탈수행정과 건조행정 사이에 하우스트랩(920)에 세탁수가 채워질 수 있다(S600).
건조행정 시 증발된 수분이 디스펜서(910)로 배출되는 것은 건조 효율을 떨어뜨려 바람직하지 않다. 특히, 탈수행정 중에 발생하는 진동에 따라 하우스트랩(920)이 소정의 기능을 수행하지 못할 수 있다는 점에서, 탈수행정과 건조행정 사이에는 하우스트랩(920)에 세탁수를 충분히 공급할 필요가 있다.
이에 따라, 본 실시예에 따른 세탁물 처리기기(1000)는, 세탁물에 대한 건조행정이 수행되기 이전에 하우스트랩(920)에 세탁수가 채워지므로, 세탁물에 대한 건조 과정에서 증발된 수분이 디스펜서(910)로 유입되는 것을 방지할 수 있다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
- 부호의 설명 -
10: 덕트조립체 100: 터브
110: 공기흡입구 120: 공기유입구
130: 필터 140: 필터세척부
200: 드럼 300: 순환유로부
300a: 덕트 310: 실링부
310a: 개스킷 320: 송풍팬커버
330: 열교환기커버 331: 세척수유입구
333: 세척유로 333a: 중심유로
333b: 분기유로 333c: 외곽유로
333d: 분할유로 335: 커버상판
339: 커버본체 340: 히터커버
350: 송풍팬베이스 360: 열교환기베이스
370: 히터베이스 380: 배수로
391: 제1 차수턱 392: 제2 차수턱
400: 송풍부 400a: 송풍팬
500: 응축부 500a: 열교환기
510: 파이프 520: 급수구
530: 배수구 600: 가열부
600a: 히터 610: 라디에이터
700: 세척부 700a: 세척노즐
801: 세척수배출홀 910: 디스펜서
920: 하우스트랩 1000: 세탁물 처리기기
본 발명의 실시 예들 중 적어도 하나에 의하면, 송풍팬 및 히터 뿐만 아니라 공기를 냉각시키도록 열교환하는 수랭식 열교환기도 터브 상에 설치된 덕트 내부에 설치되어, 공기 중의 수분 응축을 위한 별도의 공간확보가 필요하지 않으므로, 세탁물 처리기기를 대용량으로 구현하는데 따르는 제약을 최소화할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 공급되는 냉각수를 통하여 공기와 열교환하는 수랭식 열교환기를 덕트 내부에 배치하여, 보다 단순화된 열교환 구조를 가지므로, 공기 중의 수분 응축을 위한 구성이 최소화되면서도 수분 제거가 원활하게 이루어질 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 송풍팬을 통해 덕트 내부를 따라 이송되는 공기에 대하여 열교환기에서 먼저 수분을 제거한 후 히터에서 공기를 가열하므로, 가열된 공기가 다시 냉각되는 상황을 방지하여 세탁물에 대한 건조 효율이 보다 향상될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 열교환기와 히터가 서로 이격되어 히터에서 방출되는 열이 열교환기의 기능에 영향을 미치지 않으므로, 열교환기 자체의 온도가 상승하여 신뢰성이 저하되는 것을 방지할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 송풍팬과 히터가 서로 이격되고 이러한 이격 공간에 열교환기가 배치되어, 히터에서 방출되는 열이 송풍팬의 사출물 및 모터 등을 손상시키지 않으므로, 송풍팬의 기능이 저하되어 공기 순환에 차질이 발생하는 것을 방지할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 열교환기로 냉각수를 공급하기 위한 별도의 구성 없이 세탁수 중 일부를 냉각수로 사용하므로, 열교환기의 구조를 보다 단순화하여 그 배치의 자유도가 향상될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 루프코일 형상의 파이프 내부로 냉각수가 흐르며 파이프 외부의 공기와 열교환되므로, 덕트 내부에서 열교환기가 차지하는 면적 대비 열교환 효율이 향상될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 내식성 재질로 이루어지는 파이프의 내부로 냉각수가 흐르며 파이프 외부의 공기와 열교환되므로, 열교환기의 부식 등에 의한 세탁물 처리기기의 위생상 문제가 발생되는 것을 방지할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 덕트 내부의 공기 이동 경로를 기준으로, 냉각수가 유입되는 열교환기 부분이 냉각수가 배출되는 열교환기 부분보다 후방에 배치되므로, 공기의 유동 경로 상의 최후방 지점까지 가장 저온의 냉각수로 냉각시켜 그 효율이 극대화될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 덕트의 외부로 노출되는 열교환기 부분은 덕트의 일부분에 배치된 개스킷에 의하여 지지되므로, 덕트의 내외부간의 기밀성을 유지하면서 냉각수가 원활하게 순환될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 덕트의 외부로 노출되는 열교환기 부분이 복수인 경우, 해당 부분이 서로 동일하거나 일정 부분 중첩되는 높이 상에 배치되므로, 열교환기와 덕트 간의 조립이 보다 용이하게 이루어질 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 열교환기에서 배출되는 냉각수를 별도의 배출 구조 없이 터브의 내부로 주입시켜 처리하므로, 열교환기의 구조를 보다 단순화하여 그 배치의 자유도가 향상될 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 열교환기에서 배출되는 냉각수를 터브의 내부로 주입시켜, 드럼의 표면에서 수분을 응축하는데 사용하므로, 덕트에서 이루어지는 수분 응축 이외에도 부가적으로 공기 중의 수분을 제거할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 터브로부터 배출되는 공기 중의 이물질을 포집하여 덕트 내부로 이물질이 유입되는 것을 최소화하므로, 덕트 내의 주요 구성에 이물질이 부착되어 세탁물의 건조 기능이 저하되는 것을 방지할 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 공기 중의 이물질을 포집하는 필터를 세척하여, 필터 자체에 이물질이 집적되는 것을 방지하므로, 공기의 순환이 원활하게 이루어지도록 하면서도 이물질의 포집 효율을 향상시킬 수 있다.
또한, 본 발명의 실시 예들 중 적어도 하나에 의하면, 필터세척부로 필터세척수를 공급하기 위한 별도의 구성 없이 냉각수 중 일부를 필터세척수로 사용하므로, 필터세척부의 구조를 보다 단순화하여 필터세척부가 설치되는 공간을 최소화할 수 있다.

Claims (25)

  1. 세탁수가 수용되는 터브;
    상기 터브 내에 회전 가능하게 설치되는 드럼;
    상기 터브 상에 설치되어, 공기의 유동을 위한 공기흡입구와 공기유입구가 구비되는 덕트;
    상기 덕트 내에 설치되어, 상기 공기흡입구와 상기 공기유입구 사이에서 상기 공기의 유동을 형성시키는 송풍팬;
    냉각수가 공급되도록 상기 덕트 내에 설치되어, 상기 덕트 내부를 따라 이송되는 상기 공기를 냉각시키도록 열교환되는 열교환기; 및
    상기 덕트 내에 설치되어, 상기 덕트 내부를 따라 이송되는 상기 공기를 가열하는 히터;
    를 포함하는 세탁물 처리기기.
  2. 제1항에 있어서,
    상기 열교환기는 상기 송풍팬과 상기 히터의 사이에 배치되는, 세탁물 처리기기.
  3. 제2항에 있어서,
    상기 공기의 유동은 상기 공기흡입구로부터 상기 열교환기와 상기 히터를 순차적으로 거쳐 상기 공기유입구를 향하는 방향으로 형성되는, 세탁물 처리기기.
  4. 제2항에 있어서,
    상기 열교환기는 상기 히터로부터 2.5cm 이상이고 7cm 이하의 범위에서 이격 간격(D1)을 갖도록 배치되는, 세탁물 처리기기.
  5. 제2항에 있어서,
    상기 열교환기와 상기 히터 사이의 이격 간격(D1)은 상기 송풍팬과 상기 열교환기 사이의 이격 간격(D2)보다 상대적으로 작은, 세탁물 처리기기.
  6. 제1항에 있어서,
    상기 열교환기는
    루프코일(loop coil) 형상으로 형성되어 내부로 상기 냉각수가 통과 가능한 파이프,
    상기 파이프로 상기 냉각수를 유입시키는 급수구 및
    상기 파이프로부터 상기 냉각수를 배출시키는 배수구를 포함하는, 세탁물 처리기기.
  7. 제6항에 있어서,
    상기 파이프는 스테인레스강(stainless steel), 동합금, 알루미늄합금 및 니켈합금 중 적어도 하나를 포함하는 재질로 이루어지는, 세탁물 처리기기.
  8. 제6항에 있어서,
    상기 급수구는 평면 상에서 상기 공기유입구 측에 상대적으로 가깝게 배치되고,
    상기 배수구는 평면 상에서 상기 공기흡입구 측에 상대적으로 가깝게 배치되는, 세탁물 처리기기.
  9. 제8항에 있어서,
    상기 급수구와 상기 배수구는 상기 파이프를 기준으로 서로 같은 방향에 형성되는, 세탁물 처리기기.
  10. 제6항에 있어서,
    상기 파이프는 나선형의 중심축(X)이 상기 공기의 유동 방향을 따라 배치되는, 세탁물 처리기기.
  11. 제10항에 있어서,
    상기 히터는
    상기 공기의 유동 방향을 따라 지그재그(zigzag)형으로 연장되는 라디에이터(radiator)를 포함하는, 세탁물 처리기기.
  12. 제6항에 있어서,
    상기 덕트는
    상기 열교환기가 배치되는 부분의 측면에 설치되어, 상기 급수구와 상기 배수구 각각에 의해 관통되는 개스킷(gasket)을 포함하는, 세탁물 처리기기.
  13. 제12항에 있어서,
    상기 급수구의 최상단(H)과 최하단(L) 중 어느 하나는 상기 배수구의 최상단(h)과 최하단(l) 사이의 높이에 위치하는, 세탁물 처리기기.
  14. 제6항에 있어서,
    상기 배수구는 상기 터브와 연결되어, 상기 배수구로부터 배출되는 상기 냉각수는 상기 터브로 주입되는, 세탁물 처리기기.
  15. 제14항에 있어서,
    상기 냉각수는 상기 터브로 주입되어 상기 드럼의 표면에 응축면을 형성시키는, 세탁물 처리기기.
  16. 제14항에 있어서,
    상기 냉각수는 상기 터브의 후면을 따라 흘러내리도록 주입되는, 세탁물 처리기기.
  17. 제1항에 있어서,
    상기 덕트는
    상기 열교환기의 하면을 지지하는 열교환기베이스 및
    상기 열교환기의 상면을 커버하는 열교환기커버를 포함하는, 세탁물 처리기기.
  18. 제17항에 있어서,
    상기 열교환기는
    상기 덕트의 외부로 노출되어 상기 냉각수가 유입되는 급수구 및
    상기 덕트의 외부로 노출되어 상기 냉각수가 배출되는 배수구를 포함하고,
    상기 급수구와 상기 배수구는 상기 열교환기베이스와 상기 열교환기커버 중 적어도 어느 하나에서 서로 같은 방향에 형성되는, 세탁물 처리기기.
  19. 제18항에 있어서,
    상기 덕트는
    상기 급수구와 상기 배수구 각각이 상기 덕트의 외부로 노출되는 부분에 개재되는 실링부를 더 포함하는, 세탁물 처리기기.
  20. 제17항에 있어서,
    상기 열교환기베이스는 평면상의 제1 지점을 향하여 경사지게 형성되는, 세탁물 처리기기.
  21. 제20항에 있어서,
    상기 열교환기베이스는 상기 제1 지점에 세척수배출홀이 형성되는, 세탁물 처리기기.
  22. 제21항에 있어서,
    상기 세척수배출홀은 상기 터브와 연결되어, 상기 세척수배출홀로부터 배출되는 응축수는 상기 터브로 주입되는, 세탁물 처리기기.
  23. 제17항에 있어서,
    상기 덕트는
    상기 히터의 하면을 지지하는 히터베이스를 더 포함하고,
    상기 열교환기베이스와 상기 히터베이스 사이에 제1 차수턱이 형성되는, 세탁물 처리기기.
  24. 제23항에 있어서,
    상기 열교환기는
    루프코일 형상으로 형성되어 내부로 상기 냉각수가 통과 가능한 파이프를 포함하고,
    상기 제1 차수턱의 높이는 상기 열교환기베이스의 상면으로부터 상기 파이프의 하면까지의 높이보다 상대적으로 낮게 형성되는, 세탁물 처리기기.
  25. 제17항에 있어서,
    상기 덕트는
    상기 송풍팬의 하면을 지지하는 송풍팬베이스를 더 포함하고,
    상기 송풍팬베이스와 상기 열교환기베이스 사이에 제2 차수턱이 형성되는, 세탁물 처리기기.
PCT/KR2021/007683 2020-07-03 2021-06-18 세탁물 처리기기 WO2022005069A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022580855A JP2023531774A (ja) 2020-07-03 2021-06-18 衣類処理装置
AU2021299595A AU2021299595B2 (en) 2020-07-03 2021-06-18 Laundry treatment machine

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2020-0082116 2020-07-03
KR20200082116 2020-07-03
KR10-2020-0083069 2020-07-06
KR1020200083069A KR20220005337A (ko) 2020-07-06 2020-07-06 세탁물 처리기기
KR1020200144466A KR20220004528A (ko) 2020-07-03 2020-11-02 세탁물 처리기기
KR10-2020-0144466 2020-11-02
KR1020210040697A KR20220135096A (ko) 2021-03-29 2021-03-29 세탁물 처리기기
KR1020210040696A KR20220135095A (ko) 2021-03-29 2021-03-29 세탁물 처리기기
KR10-2021-0040697 2021-03-29
KR10-2021-0040696 2021-03-29
KR10-2021-0040703 2021-03-29
KR1020210040703A KR20220135098A (ko) 2021-03-29 2021-03-29 세탁물 처리기기

Publications (1)

Publication Number Publication Date
WO2022005069A1 true WO2022005069A1 (ko) 2022-01-06

Family

ID=76764899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007683 WO2022005069A1 (ko) 2020-07-03 2021-06-18 세탁물 처리기기

Country Status (6)

Country Link
US (2) US11692292B2 (ko)
EP (2) EP3933088B1 (ko)
JP (1) JP2023531774A (ko)
CN (1) CN113882115A (ko)
AU (1) AU2021299595B2 (ko)
WO (1) WO2022005069A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352736B2 (en) * 2019-07-15 2022-06-07 Lg Electronics Inc. Laundry processing apparatus
CN114775217B (zh) * 2022-04-29 2023-07-25 珠海格力电器股份有限公司 一种衣物处理装置及控制方法
CN114775241B (zh) * 2022-04-29 2024-03-08 珠海格力电器股份有限公司 筒体组件以及具有的衣物处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980017703A (ko) * 1996-08-31 1998-06-05 구자홍 건조 겸용 드럼세탁기의 순환공기 제습용 응축장치
JP2005065907A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd ドラム式洗濯乾燥機
KR20150081602A (ko) * 2014-01-06 2015-07-15 삼성전자주식회사 세탁 건조기 및 그 제어방법
KR20160116465A (ko) * 2015-03-30 2016-10-10 엘지전자 주식회사 세탁물처리장치
KR20170082045A (ko) * 2016-01-05 2017-07-13 엘지전자 주식회사 의류처리장치

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT221382Z2 (it) * 1989-12-01 1994-03-16 Zanussi A Spa Industrie Dispositivo di condensazione del vapore per macchine asciugabiancheriao macchine combinate per il lavaggio e l'asciugatura della biancheria
JP3102637B2 (ja) * 1997-10-08 2000-10-23 エルジー電子株式会社 マイクロ波洗濯乾燥機
KR100556420B1 (ko) * 2004-04-09 2006-03-03 엘지전자 주식회사 건조겸용 드럼세탁기
KR20050097277A (ko) * 2004-04-01 2005-10-07 주식회사 대우일렉트로닉스 드럼세탁기용 응축기
JP2006115950A (ja) * 2004-10-19 2006-05-11 Toshiba Corp 熱交換器および洗濯乾燥機
CN1834333A (zh) * 2005-03-17 2006-09-20 海尔集团公司 具高效烘干功能的洗衣机及其烘干方法
KR101235193B1 (ko) 2005-06-13 2013-02-20 삼성전자주식회사 세탁기 및 그 제어방법
JP4685588B2 (ja) * 2005-10-24 2011-05-18 日立アプライアンス株式会社 洗濯乾燥機
JP2007275444A (ja) * 2006-04-11 2007-10-25 Hitachi Appliances Inc 洗濯乾燥機
JP2008006123A (ja) * 2006-06-30 2008-01-17 Hitachi Appliances Inc 洗濯乾燥機
KR20080051878A (ko) 2006-12-07 2008-06-11 엘지전자 주식회사 건조기
KR101128810B1 (ko) * 2009-01-09 2012-03-23 엘지전자 주식회사 세탁장치
EP2241663B1 (en) * 2009-04-15 2013-03-20 Electrolux Home Products Corporation N.V. Washing-drying machine and method for operating the same
KR20120040380A (ko) 2010-10-19 2012-04-27 엘지전자 주식회사 건조겸용 세탁장치
KR20120113363A (ko) * 2011-04-05 2012-10-15 엘지전자 주식회사 세탁장치
KR102129793B1 (ko) 2013-02-06 2020-07-03 엘지전자 주식회사 의류처리장치
KR102300343B1 (ko) * 2014-10-28 2021-09-09 엘지전자 주식회사 의류처리장치
KR101613963B1 (ko) * 2014-12-08 2016-04-20 엘지전자 주식회사 히트펌프 사이클을 구비한 의류처리장치
EP3075898B1 (en) * 2015-03-30 2018-06-20 LG Electronics Inc. Laundry treatment apparatus
PL3109356T3 (pl) * 2015-06-26 2024-05-06 Electrolux Appliances Aktiebolag Sposób suszenia w pralko-suszarce
KR102521491B1 (ko) * 2015-12-11 2023-04-14 삼성전자주식회사 건조 장치 및 이를 포함하는 세탁건조기
KR102428247B1 (ko) 2016-01-05 2022-08-02 엘지전자 주식회사 세탁물처리장치 및 그의 급수밸브제어방법
EP3241944A1 (en) 2016-05-03 2017-11-08 BSH Hausgeräte GmbH Household appliance having a process air circuit
KR20180027043A (ko) 2016-09-05 2018-03-14 엘지전자 주식회사 의류처리장치
CN107815812B (zh) * 2016-09-13 2020-06-09 青岛海尔滚筒洗衣机有限公司 一种高效冷凝器和具有该冷凝器的洗衣机
JP6998179B2 (ja) * 2017-11-08 2022-02-10 日立グローバルライフソリューションズ株式会社 洗濯乾燥機
KR20200082116A (ko) 2018-12-28 2020-07-08 한국전자통신연구원 통신 시스템에서 프레임 검출을 위한 방법 및 장치
KR20200083069A (ko) 2018-12-31 2020-07-08 (주)루쏘코리아 스마트 웨어러블 공기정화기
KR102406020B1 (ko) 2019-06-18 2022-06-10 한국전자통신연구원 탈 중앙화된 비잔틴 오류 감내 분산 합의 장치 및 방법
KR102375885B1 (ko) 2019-10-04 2022-03-18 한국바이오젠 주식회사 실릴화폴리우레탄계 하이브리드 실란트
KR20210040703A (ko) 2019-10-04 2021-04-14 삼성전자주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
KR20210040697A (ko) 2019-10-04 2021-04-14 비씨엔씨시스템 주식회사 수명과 반사 성능이 향상된 자외선 반사막을 포함하는 엑시머 램프

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980017703A (ko) * 1996-08-31 1998-06-05 구자홍 건조 겸용 드럼세탁기의 순환공기 제습용 응축장치
JP2005065907A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Ind Co Ltd ドラム式洗濯乾燥機
KR20150081602A (ko) * 2014-01-06 2015-07-15 삼성전자주식회사 세탁 건조기 및 그 제어방법
KR20160116465A (ko) * 2015-03-30 2016-10-10 엘지전자 주식회사 세탁물처리장치
KR20170082045A (ko) * 2016-01-05 2017-07-13 엘지전자 주식회사 의류처리장치

Also Published As

Publication number Publication date
EP4311874A3 (en) 2024-04-03
EP4311874A2 (en) 2024-01-31
CN113882115A (zh) 2022-01-04
EP3933088A1 (en) 2022-01-05
AU2021299595B2 (en) 2024-06-13
US11692292B2 (en) 2023-07-04
EP3933088B1 (en) 2024-01-17
US20220002929A1 (en) 2022-01-06
AU2021299595A1 (en) 2023-02-02
JP2023531774A (ja) 2023-07-25
US20230287617A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2022005069A1 (ko) 세탁물 처리기기
WO2019216631A1 (ko) 의류 처리 장치
WO2018066805A1 (en) Washing and drying machine
WO2020214004A1 (en) Condensing duct, and washing and drying machine including the same
WO2019216639A1 (ko) 의류처리장치 및 이의 제어방법
WO2013085296A1 (ko) 벽걸이형 드럼세탁기
WO2013085302A1 (ko) 벽걸이형 드럼세탁기
WO2013085299A1 (ko) 벽걸이형 드럼세탁기
WO2013085297A1 (ko) 벽걸이형 드럼세탁기
WO2022182127A1 (en) Laundry treating apparatus
WO2016080788A1 (ko) 건조기
AU2022218063A1 (en) Laundry treatment apparatus
WO2013085301A1 (ko) 벽걸이형 드럼세탁기
WO2022270831A1 (ko) 의류 처리장치
WO2022169327A1 (en) Laundry treating apparatus
WO2022169341A1 (en) Laundry treating apparatus
WO2023096306A1 (ko) 의류처리장치의 제어방법
WO2022169320A1 (en) Laundry treating apparatus and method for controlling the same
WO2023191492A1 (ko) 의류처리장치
WO2023158202A1 (ko) 의류처리장치
WO2024080508A1 (ko) 식기세척기 및 식기세척기의 제어 방법
WO2022169313A1 (en) Laundry treating apparatus
WO2023101318A1 (ko) 의류처리장치
WO2022169167A1 (en) Laundry treating apparatus
WO2022182215A1 (en) Laundry treating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580855

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021299595

Country of ref document: AU

Date of ref document: 20210618

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834087

Country of ref document: EP

Kind code of ref document: A1