WO2022004899A1 - Uvc照射処理容器 - Google Patents

Uvc照射処理容器 Download PDF

Info

Publication number
WO2022004899A1
WO2022004899A1 PCT/JP2021/025705 JP2021025705W WO2022004899A1 WO 2022004899 A1 WO2022004899 A1 WO 2022004899A1 JP 2021025705 W JP2021025705 W JP 2021025705W WO 2022004899 A1 WO2022004899 A1 WO 2022004899A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
container
uvc
light source
fluid
Prior art date
Application number
PCT/JP2021/025705
Other languages
English (en)
French (fr)
Inventor
宣夫 大山
Original Assignee
宣夫 大山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宣夫 大山 filed Critical 宣夫 大山
Priority to EP21832016.6A priority Critical patent/EP4180065A1/en
Priority to CA3189785A priority patent/CA3189785A1/en
Priority to CN202180046917.3A priority patent/CN115803066A/zh
Priority to US18/013,655 priority patent/US20240051850A1/en
Publication of WO2022004899A1 publication Critical patent/WO2022004899A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/134Distributing means, e.g. baffles, valves, manifolds, nozzles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3228Units having reflectors, e.g. coatings, baffles, plates, mirrors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a method for continuously sterilizing these fluids by irradiating air or water with C-region ultraviolet rays (hereinafter referred to as "UVC").
  • UVC C-region ultraviolet rays
  • a cylindrical UVC lamp is installed in the center of a cylindrical container that is optically shielded from indoor air and water during piping transportation from the external environment, and between this and the inner wall of the cylindrical container.
  • a fluid sterilizer that continuously passes a fluid and irradiates the fluid with UVC for the passage time is commercially available.
  • such equipment is limited to equipment having an extremely small processing capacity due to its low energy efficiency.
  • UVC LED is not suitable for a sterilizer that irradiates UVC in the above cylindrical container due to its shape and radiation direction, and the basic shape inside it as a container that performs UVC irradiation that makes the best use of the characteristics of the radiation direction.
  • a sterilization method using a container in which is a rectangular parallelepiped can be considered.
  • the diameter of the processing container is increased, and the rate of increase in volume is increased compared to the rate of increase in the area of the inner wall thereof. This means that the amount of fluid existing in the processing container and the amount of sterilizing decomposition target existing in the processing container together with the fluid increase at the same rate, while the ratio of UVC energy to be irradiated is absorbed by the inner wall of the processing container. This will reduce the amount of energy to irradiate these sterilizing and decomposing objects.
  • the processing container of the fluid sterilizer mentioned in the above [0003] is optically shielded from the external environment, and the UVC irradiation processing container whose basic shape inside is a square (hereinafter referred to as “square processing container” or “processing”).
  • a light source such as a large number of UVC LED chips or UVC LED lamps or a conventional cylindrical UVC lamp (hereinafter referred to as “UVC light source” or “light source”) arranged side by side on the entire surface of one of the inner surfaces thereof.
  • UVC light source a conventional cylindrical UVC lamp
  • the arrangement surface on the UVC radiation side of the light source in [0009] above (hereinafter, ""
  • the amount of fluid in the processing container is greatly increased by greatly increasing the distance between the inner wall facing the light source (hereinafter referred to as “light source facing inner wall”) and the inner wall facing the light source (hereinafter referred to as "light source facing inner wall”).
  • light source facing inner wall the inner wall facing the light source
  • the difficulty described in [0007] arises.
  • the means for solving this problem in the rectangular parallelepiped processing container described in the above [0009] is to greatly widen the space between the light source arranging surface and the inner wall facing the light source portion, and the fluid flowing from one end of the processing container is the arranging surface of the light source. It forms a layer of flow that extends parallel to and about the same size as its entire surface, then bends one after another into layers of similar flow, forming a continuous layer of flow that overlaps each other over the entire surface of the processing vessel. It has a functional structure that receives UVC irradiation from a light source lined surface while flowing through a plurality of overlapping layers of flow.
  • the fluid flowing from one end of the processing container forms a layer of an annular flow that surrounds the cylindrical UVC lamp installed in the center of the processing container. Then, it bends one after another into a layer of a similar flow, and while forming and flowing a layer of a continuous flow that overlaps with each other over the entire area of the processing container, it passes through the layers of the plurality of folded flows related to UVC irradiation from the lamp. It is to have a functional structure to receive.
  • a rectangular parallelepiped surface made of a plate-shaped UVC highly transmissive material is formed between the light source arranging surface 6 and the inner wall facing the light source portion.
  • a partition wall 7a having a partition wall 7a or a partition wall 7a having a sheet or a film-like UVC highly transmissive material attached to a highly rigid rectangular parallelepiped frame is parallel to the light source arrangement surface 6 and each of the light source arrangement surface 6 and the inner wall facing the light source portion.
  • a dimension having a predetermined space between the two is given to the housing of the processing container (hereinafter referred to as “housing 1a”), and the three end faces of the partition wall 7a are brought into close contact with the inner wall of the housing 1a or the inner wall of the processing container. The remaining end face is spaced from the inner wall at a predetermined distance to form an opening through which the fluid passes.
  • the space between the inner wall facing the light source portion and the partition wall 7a closest to the light source portion is provided with dimensions parallel to each other and having a predetermined spacing to the housing 1a of the processing container, and the above-mentioned opening is provided between the adjacent partition walls 7a.
  • an inner wall surface (hereinafter referred to as "light source mounting surface 5") or a light source arrangement surface on which UVC light sources are arranged and mounted on the entire surface on the inner wall surface facing the inner wall on the opening side of the partition wall 7a closest to the light source arrangement surface 6.
  • An opening leading to the outside of the processing container is provided in a portion sandwiched between the surface of the partition 6 and the partition wall 7a immediately adjacent to the 6 and having the same shape and the same size as the portion or approximately the same area.
  • the portion sandwiched between the inner wall facing the light source portion and the inner wall facing the light source portion on the inner wall opposite to the opening of the partition wall 7a closest to the inner wall facing the light source portion and the partition wall facing the light source portion 7a has the same shape as the relevant portion or is approximately the same size.
  • An opening of the same area leading to the outside of the processing container is provided.
  • a similar opening leading to the outside of the container is provided at the end of the partition wall 7a on the inner wall facing the light source portion on the opposite side to the opening side.
  • One of the openings leading to the outside of the processing container described in [0015] and [0016] above is the outflow port 2a from the fluid processing container, and the other is the inflow port 4a to the fluid processing container.
  • a duct that wraps around the outside of the processing container is connected to the inlet 4a, and a fluid intake port 3a is provided at the tip of this duct.
  • FIG. 1 is a conceptual diagram of a rectangular parallelepiped processing container when the fluid to be sterilized by UVC irradiation (hereinafter referred to as “target fluid”) is air, and has a light source mounting surface 5 and a light source aligned surface on one inner wall of the housing 1a. It has 6, two partition walls 7a, an air outlet 2a, an air inlet 4a, and an air intake port 3a.
  • FIG. 2 shows a rough state in which air flows by forming a layer in which air folds along these partition walls 7a.
  • the fluid outlet should be installed at a height higher than the maximum water level in the processing container, and the position of the intake port should be higher than the position of the relevant outlet. The power required for the movement of the fluid within can be eliminated.
  • a single cylindrical partition wall made of a UVC highly transmissive material or a plurality of partition partitions having different predetermined diameters. It is held on a concentric circle centered on the central axis of the main cylindrical portion of the processing container, one end face of the partition wall is in close contact with one end face inside the treatment container, and the other end face of the partition wall is the other end face inside the treatment container. If there are openings at predetermined intervals between the end face and a plurality of partition walls, the opening is between the end faces on opposite sides of each other and the inner end face of the processing vessel between adjacent partition walls. Have in.
  • FIG. 3 is a schematic diagram of a cylindrical processing container when the target fluid is air, in which a cylindrical housing 1b, one UVC lamp 10b on the central axis of the circle of the housing 1b, and concentric circles of the central axis. It has one cylindrical partition wall 7b, an air outlet 2b at the center of one end surface of the housing 1b, and an air intake port 3b over the entire circumference of the outer peripheral wall of the housing 1b.
  • FIG. 4 is a schematic diagram of a cylindrical processing container when the target fluid is water, in which one UVC lamp 10c is on the central axis of a circle of a cylindrical housing 1c, and 2 on different concentric circles of the central axis. It has two cylindrical partition walls 7c, a water outlet 2c at the center of one end face of the housing 1c, and a water intake port 3c at the center of the other end face.
  • the UVC energy amount per unit volume of the fluid received up to the fluid outlet is the integration of the UVC energy amount received by the fluid in each fluid layer per unit volume. It becomes the quantity.
  • the UVC irradiation intensity in each fluid layer is applied to the arrangement surface of the light source or the structure from the inside of the processing container and the outflow port of the fluid to the outside by the time the UVC radiated from the light source reaches each fluid layer. It is absorbed and attenuated, but a large percentage of such attenuation is reduced in each fluid layer by increasing its thickness, slowing the flow velocity, lengthening the time the fluid is exposed to UVC in the layer, and the unit of fluid. Compensate by increasing the amount of UVC energy received per volume.
  • the difference in thickness between adjacent fluid layers is limited to a range in which the flow passage and the retention portion described in the above [0007] do not occur.
  • an aluminum sheet having a surface subjected to UVC reflection processing of about 90% (hereinafter referred to as "reflection sheet"). Is attached to the inner wall of the housing with its reflective surface facing the inside of the housing.
  • the reflective surface of the reflective sheet is attached to the reflective sheet of each part of the inner wall described in the above [0025].
  • An end portion 2 bent 180 degrees including an angle is provided, and this end portion 2 is used as a screwed portion to each portion of the inner wall.
  • the width of the end portion 2 is such that each bent structure of the reflective sheet formed in this way (hereinafter referred to as “reflecting body”) is screwed to each portion of the inner wall via a spacer having a thickness of about 1 to 2 mm. At that time, the dimension is such that a space of 5 mm or more remains between the bending angle to the end portion 2 and the spacer. Further, as shown in FIG. 5B, having a narrow surface bent 90 degrees on the opposite side of the reflecting surface of the reflector also means that the end portion of the reflector having no such bending has rigidity of the reflector. Has the effect of improving.
  • the reflector formed as described in [0028] above and attached to the inner wall has a pair of ends of each partition wall between the reflector and the adjacent reflector, and the orthogonal cross section shown in FIG. 6A is T.
  • the position of the partition wall can be determined. Can be fixed.
  • Both rectangular parallelepiped and cylindrical processing containers are formed by being sandwiched at an angle of 90 degrees between the inner wall of the processing container and the partition wall, which are in contact with the end faces opposite to the opening side of the partition wall, and flow of fluid.
  • These corners extending in the direction orthogonal to the above are indicated by reference numerals 8a, 8b, 8c, respectively, in FIGS. 1, 3, and 4, respectively, and are referred to as "orthogonal corners".
  • reference numerals 9a and 9c in FIGS. 1 and 3.
  • the end of the housing and the end of the partition on the opening side are ridges extending in a direction orthogonal to the flow of fluid and are called "outer corners".
  • outer corners In a cylindrical processing container using water as the target fluid, only the end portion on the opening side of the partition wall is a protruding corner, which is indicated by reference numeral 9c in FIG.
  • the inner wall of the processing container forming an opening between the partition and the inner wall or the inner wall facing the inner wall, the light source alignment surface, the partition, and the light source portion.
  • Orthogonal corners formed between each of the opposing inner walls are between the light source alignment surface and its nearest orthogonal corners, between the orthogonal corners, or for each section of the inner wall section having orthogonal corners at one end [
  • a curved surface or a flat surface portion that bends inside the housing on the reflective surface side of the reflective sheet along the inner corner line of the orthogonal inner corner is formed into the orthogonal inner corner of the reflective sheet in each section.
  • a reflective sheet is attached to the end portion on the side so as to cover the orthogonal entrance corner with the curved surface portion or the flat surface portion.
  • the measures for the orthogonal corners are orthogonal to the rectangular parallelepiped processing container with long-axis bodies having various cross-sectional shapes that alleviate the sudden change of direction of the fluid due to the orthogonal corners. It is also an option to cover the inside corners or the orthogonal inside corners of the cylindrical processing container as shown in FIG. 7 (b) with an annular body similar to the annular body shown in FIG. 7 (a).
  • the relevant exit corners are intended to relax the abrupt diversion of the fluid at the exit corners and to generate a small flow on the vortex or towards the bulkhead in the vicinity of the orthogonal exit corners.
  • One of the options is to insert the tip of the orthogonal protruding corner into a long-axis body or an annular body whose cross-sectional shape orthogonal to the extension direction of the protruding corner is a circle or a shape close to the circle.
  • a structure having various cross-sectional shapes is used in addition to the countermeasures described in [0032], [0033] and [0034] above.
  • a size that includes the area of the opening by installing it in front of the fluid flow at the orthogonal entrance and exit corners, or in place of the opening formed between the partition wall and the inner wall of the processing vessel.
  • the range including the opening of the partition wall By providing a large number of holes over an appropriate range, turbulence and branch flow are caused, so that the fluid near the outside corner or the fluid in the inside corner is turbulent or branch, respectively. It is possible to get caught up in the flow.
  • the structural material described in [0033], [0034], and [0035] above is a material having as high a UVC transmittance as possible.
  • a material having a high UVC reflectance is used as much as possible.
  • the functional structure obtained in the above [0012] and [0013] is realized by the basic structure of the UVC irradiation processing container described in [0014] to [0036], the method for manufacturing the processing container based on the basic structure, and the method for reinforcing the function of the processing container. do. It provides a functional structure that continuously UVC-irradiates a fluid with high energy utilization efficiency, and it is considered that this will greatly open the way to the development of various sterilization devices and sterilization systems that utilize UVC irradiation.
  • the total amount of ultraviolet energy received by a predetermined amount of fluid is the sum of the amount of ultraviolet energy received by the same amount of fluid in each layer according to the functional structure of the present invention.
  • the amount of ultraviolet energy received by a predetermined amount of fluid from the light source within a predetermined time is the same as that of the conventional single-layer processing container from the same light source. It means that the amount of energy that the fluid receives in the same time can be significantly increased.
  • FIG. 1 Bird's eye view of rectangular parallelepiped processing container
  • FIG. 1 is a bird's-eye view of the reflector
  • FIG. 1 is a bird's-eye view of the reflector
  • FIG. 1 is a bird's-eye view of the reflector
  • FIG. 1 is a bird's-eye view of the reflector with additional bending.
  • FIG. 1 is a bird's-eye view of the T-shaped fastener.
  • B is a T-shaped fastener insertion diagram.
  • A) is a bird's-eye view of a corner cover with an annular body and a partition wall fastening.
  • (B) is a bird's-eye view of an annular body mounting.
  • an axial flow fan is attached to the fluid outlet of the former and a cross fan is attached to the fluid outlet of the latter.
  • a UVC-irradiated air sterilizer Is a UVC-irradiated air sterilizer.
  • the rectangular parallelepiped processing container can be made into a sterilized air conditioner by connecting the air outlet to the air intake port of the air conditioner with a duct.
  • both cylindrical and rectangular containers are used as sterilization parts of water transported by piping in the water treatment system.
  • the fluid outflow port of the cylindrical processing container is connected to each pipe, the fluid outflow port of the rectangular parallelepiped processing container is set at the position described in the above [0020], and water is poured into the inflow port. Will be.
  • the target fluid is air
  • a stainless steel container having an inner size of 850 mm x 950 mm x 440 mm an inner wall having a size of 850 mm x 950 mm is used as a light source mounting surface, and an inner wall of 850 mm x 440 mm is used as an upper surface of the container.
  • the air outlets described in [0015] and [0016] above are provided at the ends of the light source mounting surface side, and the air described in [0015] and [0016] are also provided at the ends of the same inner wall on the side facing the light source portion. Provide an inlet for the air.
  • UVC light source a Philips UVC lamp, G30 T8 Tube 30 Watt UVC Tube UV Output: 253.7 nm, 10 lamps are used.
  • Ten projectiles having an outer dimension of 55 mm in the depth direction of the reflecting surface are connected side by side and integrally molded into a reflecting body having an outer dimension of a rectangular portion of 850 mm ⁇ 950 mm and an outer dimension of 55 mm.
  • the reflector is attached to the light source attachment surface with a width of 25 mm from each side thereof, and the ten UVC lamps are attached to the reflector.
  • AGC's product which is made of ETFE and has a thickness of 50 ⁇ m, is attached to a stainless steel frame with an edge width of 25 mm and external dimensions of 950 mm x 850 mm. Use.
  • the first partition wall is 80 mm from the arrangement surface of the light source, the second partition wall is 90 mm from the first partition wall, the third partition wall is 100 mm from the second partition wall, and 115 mm from the inner wall facing the light source portion.
  • a reflector having a rising height of the reflective surface of 25 mm is attached to the inner wall having an air outlet. Fills the space between the first and third partition walls closest to the line of light sources, and in the inner wall facing the inner wall, 25 mm between the inner wall and the end of the reflector of the lamp. A second by inserting into a gap, filling the space between the light source mounting surface and the end of the second partition, and mounting a similar reflector between the end of the second partition and the inner wall facing the light source. The end of the partition forms a groove into which it is inserted.
  • the reflector attached to the pair of inner walls having no opening between the partition walls is formed by inserting the T-shaped partition wall position stopper described in [0029] and has a rising height of 25 mm. Insert it into the 25 mm gap at the side edge of the reflector of the lamp and attach it at the same position with a size that fills the space between the position of the frame of the first partition wall, the frame of the first partition wall and the frame of the second partition wall, the second. Fill the space between the frame of the partition wall and the frame of the third partition wall, the frame of the third partition wall and the inner wall facing the light source portion, and form a groove into which the frame of these partition walls and the T-shaped fastener is inserted. Insert the bulkhead after the T-shaped bulkhead position stopper, or insert the same fastener after the bulkhead to attach the bulkhead.
  • the air inlet is connected to a duct having the same orthogonal cross-sectional shape and dimensions as the inlet that wraps around the outside of the inner wall facing the light source along the outer wall of the container, and the duct is connected to the duct 30 cm below the outer wall of the container. Cut to the outside at 45 degrees, attach a filter to this, use it as an air intake, attach a cross fan to the air outlet, and add a function to continuously suck up the air in the container and blow it out, an air sterilizer And.
  • the reflective sheet described in [0025] is attached to the inner peripheral surface and the flat surface of the bottom of a cylindrical container made of stainless steel having an inner diameter of 120 mm and a height of 890 mm, and the upper part of the container is attached. It has a structure in which a lid having a cylindrical portion having an inner diameter of 150 mm and a height of 100 mm and a cylindrical portion having an inner diameter of 80 mm and a height of 50 mm is attached by floating the lid 14 mm from the mouth of the container with the same central axis of the cylinder. ..
  • Its internal structure consists of one lamp with the same specifications as the UVC lamp used in the above [0045] on the same central axis, and an inner diameter of 80 mm, an outer diameter of 86 mm, and a height on a concentric circle between the lamp and the inner wall of the container.
  • a 890 mm quartz pipe partition is held at a distance of 14 mm from the bottom of the container.
  • the UVC lamp is attached to the socket cover for the lamp, which is inserted and fixed in the center of the bottom of the container, and the plate-shaped one that extends every 120 degrees from the socket cover to the center of the cylinder with an inner diameter of 80 mm.
  • the arm is screwed from the outside of the cylindrical part, and the lead wire is pulled out together with the arm.
  • the partition wall is attached to the container at the same part over the end face and the peripheral surface of the lower end of the partition wall, and has a right-angled notch in contact with both the end face and the peripheral surface, and the partition wall is separated from the bottom surface by 14 mm and from the inner peripheral surface of the container by 17 mm.
  • a plate-shaped spacer that is in contact with both the bottom surface and the peripheral surface of the container is screwed to the inner peripheral surface of the container every 120 degrees, and the partition wall is inserted into the three notches.
  • the upper part of the partition wall is the end face of the partition wall on the flat surface having the annular body inside corner cover and partition wall fastening shown in FIG.
  • the inner peripheral surface of the annular body is screwed so that the inner peripheral surface of the annular body is located at the position where the outer peripheral surface of the partition wall hits, and the end portion of the partition wall is inserted into this as shown in FIG. 7 (b).
  • An axial fan is attached to the upper end of a cylinder with an inner diameter of 80 mm to suck out the air inside the container, so that the opening between the container and the lid becomes an air intake, and the whole is vertical. It is attached to a stand supported by a UVC-irradiated air sterilizer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

[課題] 外部より光学的に遮断された容器内でのUVC照射による流体の連続滅菌に於いて、単位当たりのUVCエネルギーが流体中の殺菌分解対象を照射する割合を大幅に高くする為に、UVC光源よりの照射を受ける流体の奥行きを大幅に大きくし、流入する流体中の全ての殺菌分解対象への均一な量でのUVCエネルギー照射を行う。 [解決手段] 上記容器へ流入する流体全体を同一の容器内移動時間で容器から流出させる為に、容器内に、単数又は複数のUVC高透過材よりなる隔壁をUVC光源からの放射を最大限に受ける角度で、一方の端部には流体の通過する開口部を、流体の流出入口を含め、隣り合う間で互いに反対側の端部に位置するように設置することにより、係る容器へ流入する流体は、隔壁に沿う層を形成して流れ、隔壁の開口部より、さらなる流れの層へと次々と折れ曲がり、互いに重なり合う一繋がりの流れの層を容器の全域に亘り形成し、これらの層を透してUVCを照射する。

Description

UVC照射処理容器
 本発明は空気又は水へのC領域紫外線(以下「UVC」と記す)照射によるこれらの流体の連続滅菌方法に関するものである。
 室内の空気や配管輸送中の水を外部環境から光学的に遮断された円筒形状の容器の中心部に1本の円柱状のUVCランプを据え、これと円筒形状の容器の内壁との間に流体を連続的に通過させ、その通過時間に亘る流体へのUVC照射による流体滅菌装置が2020年4月現在、市販されている。但し、係る装置はそのエネルギー効率の低さより、極めて小さな処理容量の装置に限られている。
 一方、我が国の研究機関、大学、企業等ではUVC LEDの高効率化と長寿命化の研究開発を進めており、その成功例も公表されている。UVC LEDはその形状と放射方向より、上記の円筒形状の容器に於いてUVC照射を行う滅菌装置には不向きであり、その放射方向の特性を活かすUVC照射を行う容器として、その内側の基本形状が直方体である容器を用いる滅菌方法が考えられる。
国立研究開発法人 理化学研究所 平山量子光素子研究室主任研究員 平山秀樹著 「殺菌用・深紫外線LEDの開発」 株式会社ワイズカンパニー 「紫外線照射みず殺菌装置(配管型)」
 流体の滅菌装置に於いて、滅菌対象流体を上記[0002]に述べる小径の円筒形状の容器内を連続的に通過させながらUVC照射を行う方法では、流体中の細菌その他の微生物やウイルス(以下「殺菌分解対象」と記す)の流体中に占める体積の割合が極めて微小であり、水及び空気のUVC吸収率は係る容器の構造材に比べて極めて低いことより、係る流体に照射されるUVCエネルギーの殆どはこのUVC照射処理を行う円筒形状の容器(以下「円筒型処理容器」又は「処理容器」と記す)内で反射吸収を繰り返し、処理容器の構造材に吸収される。
 このような目的外の物質にUVCエネルギーが吸収される割合を小さくする為に、処理容器の径を拡げ、その内壁の面積の増える率に比べ容積の増える率を大きくする。このことは、処理容器内に存在する流体量も、その流体と共に処理容器内に存在する殺菌分解対象の量も同率で増える一方、照射されるUVCエネルギーが処理容器の内壁に吸収される割合が減ることになり、これらの殺菌分解対象を照射するエネルギー量が増えることになる。
 但し、[0006]に述べる如く,円筒型処理容器の内径を大きくし、処理容器内の流体量を多くした場合、処理容器の内径と流体流出口の内径との差が拡がるに従い、係る流出口と流入口とを結ぶ「流れの通」と呼ばれる、処理容器内の大部分の流体より流速の大きい部分的流れが生じ易くなる。
 この「流れの通」が生じた場合は、流体の処理容器内を通過する速度をUVCの照射強度に合わせることは不可能であることより、流体の処理容器内の流れに乱流を起こし、係る「流れの通」の発生を防ぐ事はできるが、処理容器の内径と流出口の内径との差が大きくなるに従い、処理容器内全体に亘り十分な乱流を起こすことは難しくなり、他の方法による対処が必要になる。
 一方、上記[0003]で言及した流体滅菌装置の処理容器は、外部環境から光学的に遮断され、その内側の基本形状が直方体であるUVC照射処理容器(以下「直方体型処理容器」又は「処理容器」と記す)であり、その内面の1つの面の全面に並べ取り付けた多数のUVC LEDチップ又はUVC LEDランプ又は従来の円柱型のUVCランプ等の光源(以下「UVC光源」又は「光源」と記す)による、係る処理容器内を連続的に通過する流体へのUVC照射により、係る流体の滅菌を行う。
 直方体型処理容器に於いて、上記[0005]と同様の問題を軽減し、[0006]と同様の効果を得る方法として、上記[0009]に於ける光源のUVC放射側の並び面(以下「光源並び面」と記す)とこれに対向する内壁(以下「光源部対向内壁」と記す)との間隔を大幅に拡げることにより処理容器内の流体量を大幅に増やし、[0006]に述べると同様の効果を得ることに於いても[0007]に述べる難点が生じる。
 本発明は係る直方体型処理容器及び円筒型処理容器に於ける[0007]並びに[0010]に述べる難点を解消することを課題とする。
 上記[0009]に述べる直方体型処理容器に於ける本課題の解決手段は、光源並び面と光源部対向内壁との間を大幅に拡げ、当該処理容器の一端から流入する流体が光源の並び面に平行に、且つその全面とほぼ同じ広さに広がる流れの層を形成し、さらなる同様の流れの層へと次々に折れ曲がり、互いに重なり合う一繋がりの流れの層を処理容器の全域に亘り形成して流れながら光源並び面からのUVC照射を係る折り重なる複数の流れの層を透して受ける機能構造を持つことである。
 円筒型処理容器に於ける課題解決手段としては、係る処理容器の一端から流入する流体が、処理容器の中心部に据えられた円柱形状のUVCランプを囲む環状体形状の流れの層を為してさらなる同様の流れの層へと次々に折れ曲がり、互いに重なり合う一繋がりの流れの層を処理容器の全域に亘り形成して流れながら、上記ランプからのUVC照射を係る折り重なる複数の流れの層を透して受ける機能構造を持つことである。
 直方体型処理容器に於いて、上記[0012]に述べる流体の流れを得る為には、光源並び面6と光源部対向内壁との間に板状のUVC高透過材よりなる直方形の面を持つ隔壁7a、或いはシート又はフィルム状のUVC高透過材を剛性の高い直方形の枠に取り付けた隔壁7aを、光源並び面6に平行に、且つ、光源並び面6と光源部対向内壁の夫々との間に所定の間隔を持つ寸法を処理容器の筐体(以下「筐体1a」と記す)に与え、隔壁7aの3つの端面は筐体1aの内壁又は処理容器の内壁と密着させ、残る端面は内壁との間に所定の間隔を空け、流体の通る開口部を形成し、係る隔壁7aが複数となる場合は、光源並び面6とその直近の隔壁7aとの間、隔壁7a相互の間、光源部対向内壁とその直近の隔壁7aとの間の夫々で、互いに平行で所定の間隔を持つ寸法を処理容器の筐体1aに与え、隣り合う隔壁7a間では、上記の開口部が互いに反対側の端部と内壁との間に形成されるように、これらを上記の所定の間隔で当該処理容器の筐体1aに取り付ける。
 さらに、光源並び面6に直近の隔壁7aの開口部側の内壁に対向する内壁面上の、UVC光源を全面に並べ取り付けた内壁面(以下「光源取り付け面5」と記す)又は光源並び面6とその直近の隔壁7aの面に挟まれる部分に、当該部分と同形同寸の、或いは、概ね同面積の、処理容器の外側に通じる開口部を設ける。
 一方、光源部対向内壁に直近の隔壁7aの開口部の反対側の内壁上の光源部対向内壁とその直近の隔壁7aに挟まれた部分に、当該部分と同形同寸の、或いは、概ね同面積の、処理容器の外側に通じる開口部を設ける。或いは、これに替り、光源部対向内壁上の係る隔壁7aの開口部側と反対側の端部に、同様の、当該容器の外側に通じる開口部を設ける。
 上記[0015]及び[0016]に述べる処理容器の外側に通じる夫々の開口部のいずれか一方を流体の処理容器からの流出口2a、他方を流体の処理容器への流入口4aとし、この流入口4aに処理容器の外側に回り込むダクトを繋ぎ、このダクトの先に流体の取り入れ口3aを設ける。
 図1はUVC照射による滅菌対象流体(以下「対象流体」と記す)が空気である場合の直方体型処理容器の概念図であり、筐体1aの1つの内壁に光源取り付け面5及び光源並び面6、2つの隔壁7a、空気の流出口2a、空気の流入口4a、空気の取り入れ口3aを持つ。図2はこれらの隔壁7aに沿って空気が折り重なる層を作って流れる大まかな様子を示す。
 直方体型処理容器の対象流体が水である場合は、流体流出口を処理容器内の最高水位以上の高さに設置し、取り入れ口の位置を係る流出口の位置より高くすることにより、処理容器内での流体の移動に要する動力を不要にすることが出来る。
 円筒型処理容器に於いて、上記[0013]に述べる流体の流れを得る為には、筐体の主たる円筒部の内壁の中心軸上に円柱形状のUVCランプを持つ円筒型処理容器に於いては、図3及び図4の如く、係るUVCランプと処理容器の主たる円筒部の内壁との間に、UVC高透過材よりなる円筒形状の単数の隔壁又は複数の異なる所定の径を持つ隔壁を処理容器の主たる円筒部の中心軸を中心とする同心円上に持ち、隔壁の一方の端面は処理容器の内側の一方の端面に密着し、当該隔壁の他方の端面は処理容器の内側の他方の端面との間に流体が通る所定の間隔の開口部を持ち、複数の隔壁を持つ場合は、隣り合う隔壁間では、係る開口部を互いに反対側の端面と処理容器の内側の端面との間に持つ。
 図3は対象流体が空気である場合の円筒型処理容器の略図あり、円筒形状の筐体1b、筐体1bの円の中心軸上に1本のUVCランプ10b、係る中心軸の同心円上に1つの円筒状の隔壁7b、筐体1bの一方の端面の中心部に空気流出口2b、筐体1bの外周壁上の全周に亘る空気取り入れ口3bを持つ。
 図4は対象流体が水である場合の円筒型処理容器の略図であり、円筒形状の筐体1cの円の中心軸上に1本のUVCランプ10c、係る中心軸の互いに異なる同心円上に2つの円筒形状の隔壁7c、筐体1cの一方の端面の中心部に水流出口2c、他方の端面の中心部に水取り入れ口3cを持つ。
 これらの直方体型処理容器及び円筒型処理容器に於いては、流体の流出口迄に受ける流体の単位体積当たりのUVCエネルギー量は、流体が各流体層で単位体積当たり受けたUVC エネルギー量の積算量となる。
 一方、各流体層でのUVC照射強度は、光源の並び面、或いは光源から放射されたUVCが各流体層に至る迄に、処理容器の内側の及び流体の流出入口から外部に至る構造物に吸収され減衰するが、係る減衰の大きな割合を、各流体層に於いて、その厚さを増すことにより流速を遅くし、当該層内で流体がUVC照射を受ける時間を長くし、流体の単位体積当たり受けるUVCエネルギー量を増やすことにより、補填する。但し、隣り合う流体層間の厚さの差は、上記[0007]に述べる流れの通や滞留部が発生しない範囲に留める。
 係る処理容器の製作に於いては、筐体の内壁のUVCの反射率が十分でない場合は、90パーセント前後のUVC反射加工を施した面を持つアルミニュームシート(以後「反射シート」と呼ぶ)をその反射面を筐体の内側に向けて筐体内壁に取り付ける。
 係る反射シートの取り付けに於いては、隔壁を取り付ける部品、又は、薄手の隔壁材を用いる場合の隔壁材を保持する枠によるUVC照射の妨げを最小限にすることを兼ねる方法を採る。
 その方法として、本発明に於いては、隔壁との間に開口部を形成しない一対の筐体内壁に於いて、光源並び面とその直近の隔壁との間、隔壁相互の間、光源部対向内壁とその直近の隔壁との間の係る内壁の各部の反射シートの反射面を、保持枠を有しない隔壁を用いる場合は5mmから15mm程、保持枠を有する隔壁を用いる場合は保持枠を覆う位置迄、筐体の内側に出し、又は立ち上げて取り付けることにより、これらの隣り合う反射シート相互の間に、隔壁の側端部を差し込む溝を形成する。但し、反射シートを筐体の内側へ立ち上げる寸法は、上記の各間で等しくする。
 このように反射シートを筐体の内側に立ち上げて取り付ける一つの方法としては、上記[0025]に述べる内壁の各部の反射シートに、図5の(a)の如く、当該反射シートの反射面の反対側に90度折り曲げた所定の幅の端部1と係る折り曲げ角の稜線より所定の幅を採った線で、さらに内側に90度、即ち、筐体の内側に向く反射面からの折り曲げ角度を含めて180度折り曲げた端部2を設け、この端部2を上記内壁の各部へのねじ止め部に用いる。この端部2の幅は、このように形成される反射シートの各折り曲げ構造体(以下「反射体」と記す)を上記内壁の各部に厚さ1から2mm程のスペーサーを介してねじ止めする際に、端部2への折り曲げ角とスペーサーとの間に5mm以上のスペースが残る寸法とする。又、反射体の係る折り曲げを持たない端部にも、図5の(b)の如く、反射体の反射面の反対側に90度折り曲げられた小幅な面を持つことは、反射体の剛性を向上させる効果を持つ。
 上記[0028]に述べる如く成形され、係る内壁に取り付けられた反射体は、隣り合う反射体との間に各隔壁の一対の端部と、図6の(a)に示す直交横断面がT字型の一対の位置止め具のいずれをも差し込める溝を形成し、係る位置止め具を隔壁の先に又は後に図6の(b)に示すように溝に差し込むことにより、隔壁の位置を固定することが出来る。
 直方体型及び円筒型の双方の処理容器とも、隔壁の開口部側と反対側の端面に接する処理容器の内壁と隔壁の2つの面に90度の角度で挟まれることにより形成され、流体の流れに直交する方向に延びるこれらの入隅は図1、図3、図4に於いて、夫々符号8a、8b、8cにより示され、「直交入隅」と記される。又、直方体型処理容器及び対象流体を空気とする円筒型処理容器に於いては、図1及び図3に於いて符号9a及び9cにより示される流体の流入口の構成の一部となるこれらの筐体の端部及び隔壁の開口部側の端部は流体の流れに直交する方向に延びる突条であり、「出隅」と呼ばれている。対象流体を水とする円筒型処理容器に於いては、隔壁の開口部側の端部のみが出隅となり、図4に於いて符号9cにより示される。
 これらの直交入隅及び直交出隅はこれらの近傍の流体の流れの小さな部分での滞留又は遅れを生じさせ得る。
 上記[0030]の直方体型処理容器に形成される直交入隅の中で、隔壁との間に開口部を形成する処理容器の内壁又は係る内壁に対向する内壁と光源並び面、隔壁、光源部対向内壁の夫々との間に形成される直交入隅は光源並び面とその直近の直交入隅との間、直交入隅相互の間、或いは一端に直交入隅持つ内壁区間の区間毎に[0025]に述べる反射シートを取り付ける場合、係る直交入隅の入隅線に沿って、反射シートの反射面側となる筐体の内側に反り返る曲面又は平面部を各区間の反射シートの直交入隅側の端部に設け、係る曲面部或いは平面部で直交入隅を覆うように反射シートを取り付ける。
 係る直交入隅への対処としては、上記[0032]に述べる対処の他、係る直交入隅による流体の急激な方向転換を緩和する種々の断面形状を持つ長軸体により直方体型処理容器の直交入隅を、或いは図7の(a)に示す環状体と同様の環状体により図7の(b)に示す如く円筒型処理容器の直交入隅を、夫々に覆うことも選択肢となる。
 直交出隅については、係る出隅での流体の急激な方向転換を緩めると共に、係る直交出隅の近傍で渦上の或いは隔壁に向かって回り込む小さな流れを発生させる為に係る直交出隅に当該出隅の伸び方向への直交断面形状が円又はこれに近い形状の長軸体又は環状体に、係る直交出隅の先端を差し込むように取り付けることも選択肢のひとつとなる。
 係る直交入隅、直交出隅での流れの滞留又は遅れの防止又は軽減には、上記[0032]、[0033]、[0034]に述べる対処方法の他、種々の断面形状の構造体を係る直交入隅及び直交出隅の流体の流れに於ける手前に設置することにより、或いは隔壁と処理容器の内壁との間に形成される開口部に替り、その開口部の面積も含む大きさの隔壁の係る開口部を含む範囲適切な範囲に亘り、多数の穴を設けることにより、乱流,枝流を引き起こすことにより、出隅近傍の流体或いは入隅の流体を夫々これらの乱流又は枝流に巻き込むことが考えられる。
 直交入隅の構成に隔壁が入る場合、及又は直交出隅が隔壁による場合は、上記[0033]、[0034]、[0035]に述べる構造材には出来る限りUVC透過率の高い材料か、或いは、出来る限りUVC反射率の高い材料を用いる。
 上記[0012]及び[0013]で求める機能構造は[0014]から[0036]に亘って述べるUVC照射処理容器の基本構造と、これに基づく処理容器の製作方法、処理容器の機能補強方法により実現する。それは、高いエネルギー利用効率で流体を連続的にUVC照射処理する機能構造を提供するものであり、これによりUVC照射を利用する種々の滅菌装置、滅菌システムの開発に大きく道を開くものと考える。
 それは、UVC照射強度の光源からの距離による差を係る各層に分割し、各層内でのUVC照射強度の差を小さくし、流体内の細菌その他の微生物及びウイルスが受けるUVC照射強度の均一化を進める。その受けるエネルギー量は各層での流体の流速によって決まる照射時間と照射強度の積であることより、所定の処理速度と各層の厚さ或いは体積により、各層の流体の流速が決まり、これにより、所定の処理量の流体が係る層内を通過する時間、そして、これと係る層内での照射強度との積が、係る層に於いて、所定の処理量の流体が受ける照射エネルギー量になる。所定の処理量の流体が受ける紫外線エネルギーの総量は、本発明の機能構造により、各層に於いて同量の流体が受ける紫外線エネルギー量の総和となる。
 これは、上記処理容器に於ける各層の厚さの設定により、光源より所定量の流体が所定の時間内に受ける紫外線エネルギー量を、同じ光源より従来の単層の処理容器により、同量の流体が同時間内に受けるエネルギー量に比べ大幅に増やすことが出来ることを意味する。
直方体処理容器俯瞰図 直方体処理容器に於ける空気の流れの概念図 空気を対象とする円筒型処理容器概略図 水を対象とする円筒型処理装置概略図 (a)は反射体の俯瞰図 (b)は追加折り曲げ付き反射体俯瞰図 (a)はT字型留め具俯瞰図 (b)はT字型留め具差し込み図 (a)は環状体入り隅カバー兼隔壁留め俯瞰図 (b)は環状体取り付け俯瞰図
 本発明の円筒型処理容器及び直方体型処理容器の対象流体が空気である場合は、前者の流体流出口には軸流ファン、後者の流体流出口にはクロスファンを取り付けることにより、夫々の容器はUVC照射空気滅菌装置となる。
 又、直方体型処理容器はその空気流出口を空気調和記の空気取り入れ口にダクトで繋ぐことにより滅菌空調機とすることも出来る。
 これらの容器の対象流体が水である場合は、円筒形、直方形型のいずれの容器も、水処理システムに於いて、配管輸送されて来る水の滅菌部として利用される。
 この場合、円筒型処理容器の流体の流出入口は、夫々に配管に繋がれ、直方体処理容器の流体の流出入口は上記[0020]に述べる位置に設定され、係る流入口に水が注ぎ込まれる形態となる。
 本実施例は、対象流体を空気とするもので、内寸850mmx950mmx440mmのステンレススチール製の容器に於いて、850mmx950mmの寸法を持つ内壁を光源取り付け面とし、850mmx440mmの内壁を容器の上面とし、当該内壁の光源取り付け面側の端部に上記[0015]及び[0016]に述べる空気の流出口を設け、同じ内壁の光源部対向内壁側の端部に、同じく[0015]及び[0016]に述べる空気の流入口を設ける。
 UVC光源には、フィリップス社のUVCランプ、G30 T8 Bulb 30Watt UVC Tube UV Output:253.7nm、10本を用いる。係るランプと同じ長さのUVC光源用の反射体で、その長軸方向に直交する横断面が楕円の一方の焦点を含む局面であり、係る反射体の開口部の外側の幅が80mmであり、反射面の深さ方向の外寸が55mmである射体10本を横並びに繋げ、850mmx950mmの直方形部の外形寸法と55mmの外形の厚さを持つ反射体に一体成形する。係る反射体を光源取り付け面に、その各辺より25mmの幅を残して取り付け、これに10本の上記UVCランプを取り付ける。
 AGCの製品で、ETFEを材料とする商品名「エフクリーン」の厚さ50μmのフィルムを縁幅25mm、外形寸法950mm x 850mmのステンレススチール製の枠に取り付けたものを隔壁として、これを3枚用いる。その第一の隔壁は光源の並び面より80mm、第2の隔壁は第1の隔壁より90mm、第3の隔壁は第2の隔壁より100mm、光源部対向内壁からは115mmの位置に取り付けられる。
 容器内壁への反射シートの取り付けは、上記[0026]、[0027]、[0028]に於いて、反射面の立ち上げ高さを25mmにした反射体を、空気流出口を持つ内壁に於いては光源の並び面に直近の第1の隔壁と第3の隔壁との間を埋め、当該内壁に対向する内壁に於いては、係る内壁とランプの反射体の端部との間の25mmの隙間に差し込み、光源取り付け面と第2の隔壁の端部との間を埋め、同様の反射体の第2の隔壁の端部と光源部対向内壁の間への取り付けルことにより、第2の隔壁の端部が差し込まれる溝を形成する。
 隔壁との間に開口部を持たない一対の内壁に取り付ける反射体は、[0029]に述べるT字型の隔壁位置止め具を差し込む形状で25mmの立ち上げの高さにし、これを係る内壁とランプの反射体の側端の25mmの隙間に差し込み、第1の隔壁の枠の位置との間を埋める寸法で同位置に取り付け、第1隔壁の枠と第2の隔壁の枠、第2の隔壁の枠と第3の隔壁の枠、第3の隔壁の枠と光源部対向内壁との各間を埋めて、且つこれらの隔壁の枠及び上記T字型留め具を差し込む溝を形成し、T字型の隔壁位置止め具に続いて隔壁を差し込み、又は隔壁に続いて同留め具を差し込んで隔壁を取り付ける。
 空気の流入口は容器の外壁に沿って光源部対向内壁の外側に回り込む当該流入口と同じ直行断面形状と寸法を持つダクトに繋ぎ、係る外壁沿って30cm下がった位置で、係るダクトを容器の外側に向け45度に切り、これにフィルターを取り付け、空気取り入れ口とし、空気の流出口にはクロスファンを取り付け、連続的に容器内の空気を吸い上げ、外に噴き出す機能を付け、空気滅菌装置とする。
 実施例の処理容器の筐体は、内径120mm、高さ890mmのステンレススチール製の円筒形の容器の内側の周面と底の平面部に[0025]に述べる反射シートを張り付け、当該容器の上部に、内径150mm、高さ100mmの円筒部に続き、内径80mm、高さ50mmの円筒部を持つ蓋を、円筒の中心軸を同じにして、当該容器の口から14mm浮かせて取り付けた構造を持つ。その内部構造は、同中心軸上に、上記[0045]に於いて用いたUVCランプと同じ仕様のランプを一灯、当該ランプと容器内壁の間の同心円上に内径80mm、外径86mm、高さ890mmの石英パイプの隔壁を容器底面と14mmの間隔を開けて持つ。
 UVC ランプの取り付けは、容器の底の中心部に差し込み固定したランプ用のソケットカバーと蓋の内径80mmの円筒部の中心部にソケットカバーより係る円筒部の内壁に120度毎に伸びる板状の腕を係る円筒部の外側よりねじ止めし、リード線は係る腕と共に外側に出す。
 隔壁の容器への取り付けは、隔壁の下端の端面と周面に亘る同一部で、その端面と周面の双方に接する直角の切込みを持ち、隔壁を底面から14mm、容器の周内面から17mm離して容器の底面と周面の双方に接する、板状のスペーサーを容器内周面に120度毎にねじ留めし、係る3つの切込みに隔壁を差し込む。隔壁の上部は、蓋の内径が150mmから80mmに移る平面部と隔壁とにより形成される入隅を埋める図7の(a)に示す環状体入隅カバー兼隔壁留めを係る平面に隔壁の端面の外周が当たる位置に環状体の内周面が位置するようにねじ留めし、これに隔壁の端部を図7の(b)の如く差し込む。
 内径80mmの円筒部の上の端部に軸流ファンを取り付け、容器内の空気を吸いだす機能を持つことにより、容器と蓋との間の開口部は空気の取り入れ口となり、この全体を縦に支える架台に取り付け、UVC照射空気滅菌装置する。
 本発明の予想される貢献度の高さより、手術室、重症者用病室、介護施設、教室等がその利用の高い可能性として挙げられる。
 1a 直方体型処理容器の筐体
 2a 直方体型処理容器の空気の流出口
 3a 直方体型処理容器の空気の取り入れ口
 4a 直方体型処理容器の空気の流入口
 5  光源取り付け面
 6  光源並び面
 7a 直方体処理容器の隔壁
 8a 直方体処理容器の直交入隅 参照段落
 9a 直方体処理容器の出隅
 1b 空気対象円筒型処理容器の筐体
 2b 空気対象円筒型処理容器の空気流出口
 3b 空気対象円筒型処理容器の空気取り入れ口
 7b 空気対象円筒型処理容器の隔壁
 8b 空気対象円筒型処理容器の入隅
 9b 空気対象円筒型処理容器の出隅
 10b 空気対象円筒型処理容器のUVCランプ
 1c 水対象円筒型処理容器の筐体
 2c 水対象円筒型処理容器の水流出口
 3c 水対象円筒型処理容器の水取り入れ口
 7c 水対象円筒型処理容器の隔壁
 8c 水対象円筒型処理容器の入隅
 9c 水対象円筒型処理容器の出隅
 10c UVCランプ

Claims (5)

  1.  C領域紫外線(以下「UVC」と記す)ランプ又はUVC LEDランプ又はUVC LEDチップ等のUVC光源を、内側の基本形状が直方体で、外部より光学的に遮断された容器の1つの内壁(以下「光源取り付け面」と記す)のほぼ全面に亘り、UVC放射の中心方向を光源取り付け面に対向する内壁(以下「光源部対向内壁」と記す)に向け並べて取り付け、係る光源のUVC放射側の並び面(以下「光源並び面」と記す)と光源部対向内壁との間に、UVC高透過材よりなり、その面が直方形の複数又は単数の隔壁を光源取り付け面に平行に且つ、光源並び面と光源部対向内壁の夫々からと、隔壁相互間で所定の間隔を為し、各隔壁の1つの端面は内壁との間に所定の幅の開口部を、隣り合う隔壁間では互いに反対側の端面側に持ち、光源並び面に直近の隔壁との間に開口部を形成する内壁に対向する内壁に於ける係る隔壁と光源取り付け面との間、及び光源部対向内壁に直近の隔壁との間に開口部を持つ内壁に対向する内壁に於ける係る隔壁と光源部対向内壁との間、或いはこれに替り、光源部対向内壁に直近の隔壁の開口部側と反対側の光源部対向内壁の端部に、容器の外側に通じる開口部を持ち、これらのいずれか一方を流体の容器からの流出口、他方を流体の容器への流入口とする容器内を連続的に通過する流体に対するUVC照射を行う上記機能構造を特徴とするUVC照射処理容器。
  2.  請求項1に於ける、隔壁との間に開口部を形成しない一対の内壁に於いて、光源並び面とその直近の隔壁との間、隔壁相互の間、光源部対向内壁とその直近の隔壁との間の各内壁部にUVC高反射加工を施した面を持つアルミニュームシート(以下「反射シート」と記す)の反射面を係る容器の内側へ向かって、所定の高さ立ち上げて取り付けることにより、各内壁部の係る反射シート相互の間に形成される溝に隔壁を差し込む仕組みを持つUVC照射処理容器。
  3.  請求項2に述べる各内壁部の反射シートに当該反射シートの反射面の反対側に90度折り曲げた所定の幅の端部1と係る折り曲げ角の稜線より所定の幅を採った線で、さらに内側に90度、即ち容器内面に向く反射面からの折り曲げ角度を含めて180度折り曲げた端部2を設け、これを当該反射シートの請求項2に述べる内壁部への取り付け部とし、直接或いはスペーサーを介して取り付けることにより、請求項2に述べる反射シートの立ち上がりを得る方法。
  4.  請求項1及び請求項2に於いて隔壁と開口部を形成する一対の内壁と光源並び面、隔壁、光源部対向内壁の夫々とにより形成される入隅に挟まれる、又は入隅を一端に持つ上記内壁の各部毎に請求項2に述べる反射シートを取り付ける場合、夫々の反射シートの入隅側の端部に、係る入隅線に沿って、係る反射シートの反射面側となる容器の内側に反り返る曲面部を設けて反射シートを取り付ける方法。
  5.  外部より光学的に遮断された円筒形状の内壁を持つ容器の円筒の中心部に円柱形状のUVCランプを持ち、係るランプと容器の内周壁との間に単数又は複数のUVC高透過材よりなる円筒形状の隔壁を持ち、係る隔壁の一端は容器の端部内壁との間に開口部を持ち、他端は容器の反対側の端部内壁と密着し、複数の係る隔壁を持つ場合は、容器の端部内壁との開口部の位置が隔壁間で交互に逆になる容器内を連続的に通過する流体に対するUVC照射を行う上記の機能構造を特徴とするUVC照射処理容器。
PCT/JP2021/025705 2020-07-01 2021-06-30 Uvc照射処理容器 WO2022004899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21832016.6A EP4180065A1 (en) 2020-07-01 2021-06-30 Uvc irradiation treatment container
CA3189785A CA3189785A1 (en) 2020-07-01 2021-06-30 Uvc irradiation treatment container
CN202180046917.3A CN115803066A (zh) 2020-07-01 2021-06-30 Uvc照射处理容器
US18/013,655 US20240051850A1 (en) 2020-07-01 2021-06-30 Uvc irradiation treatment container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020125801A JP2022013480A (ja) 2020-07-01 2020-07-01 Uvc照射処理容器
JP2020-125801 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004899A1 true WO2022004899A1 (ja) 2022-01-06

Family

ID=79316417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025705 WO2022004899A1 (ja) 2020-07-01 2021-06-30 Uvc照射処理容器

Country Status (7)

Country Link
US (1) US20240051850A1 (ja)
EP (1) EP4180065A1 (ja)
JP (1) JP2022013480A (ja)
CN (1) CN115803066A (ja)
CA (1) CA3189785A1 (ja)
TW (1) TW202210108A (ja)
WO (1) WO2022004899A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150991A (ja) * 1990-10-09 1992-05-25 Cosmo Giken Kk 液体の殺菌用低圧放電灯
JPH09271766A (ja) * 1996-04-02 1997-10-21 Ushio Inc 紫外線洗浄ユニット
JP2004073916A (ja) * 2002-08-12 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 水殺菌装置
JP2004089941A (ja) * 2002-09-03 2004-03-25 Ebara Corp 紫外線照射装置
JP3141893U (ja) * 2008-03-11 2008-05-22 陳美蘭 紫外線殺菌装置
CN103845755A (zh) * 2014-03-14 2014-06-11 上海添添照明装饰工程有限公司 通道式紫外线空气消毒器
JP2014117665A (ja) * 2012-12-18 2014-06-30 Stanley Electric Co Ltd 紫外線照射装置
US20150344329A1 (en) * 2014-06-03 2015-12-03 Sensor Electronic Technology, Inc. Ultraviolet Transparent Enclosure
JP2020175258A (ja) * 2020-05-19 2020-10-29 裕 道脇 毒性対象減消装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150991A (ja) * 1990-10-09 1992-05-25 Cosmo Giken Kk 液体の殺菌用低圧放電灯
JPH09271766A (ja) * 1996-04-02 1997-10-21 Ushio Inc 紫外線洗浄ユニット
JP2004073916A (ja) * 2002-08-12 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd 水殺菌装置
JP2004089941A (ja) * 2002-09-03 2004-03-25 Ebara Corp 紫外線照射装置
JP3141893U (ja) * 2008-03-11 2008-05-22 陳美蘭 紫外線殺菌装置
JP2014117665A (ja) * 2012-12-18 2014-06-30 Stanley Electric Co Ltd 紫外線照射装置
CN103845755A (zh) * 2014-03-14 2014-06-11 上海添添照明装饰工程有限公司 通道式紫外线空气消毒器
US20150344329A1 (en) * 2014-06-03 2015-12-03 Sensor Electronic Technology, Inc. Ultraviolet Transparent Enclosure
JP2020175258A (ja) * 2020-05-19 2020-10-29 裕 道脇 毒性対象減消装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEKI HIRAYAMA: "UV Irradiation Water Sterilization Equipment (Pipe-Type", HIRAYAMA QUANTUM OPTICAL DEVICE LABORATORY

Also Published As

Publication number Publication date
EP4180065A1 (en) 2023-05-17
TW202210108A (zh) 2022-03-16
CA3189785A1 (en) 2022-01-06
US20240051850A1 (en) 2024-02-15
JP2022013480A (ja) 2022-01-18
CN115803066A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
US6328937B1 (en) Apparatus for killing microorganisms
ES2649713T3 (es) Sistema compacto con alta homogeneidad del campo de radiación
JP6063424B2 (ja) 紫外線照射空気殺菌装置
JP7270371B2 (ja) 流体殺菌装置
US10451298B2 (en) Germicidal apparatus
WO2014058011A1 (ja) 殺菌装置
JP6963956B2 (ja) 紫外線殺菌装置および紫外線照射装置
KR101683351B1 (ko) 라이트 커튼형 led 광 조사기
TWI757666B (zh) 透過紫外光對流體消毒的裝置和方法
WO2019059378A1 (ja) Uv殺菌装置およびこれを備えたウォータサーバ
WO2022004899A1 (ja) Uvc照射処理容器
JP2023014058A (ja) 波動増幅装置
JP2019201862A (ja) 流体殺菌装置
ES2827843B2 (es) Dispositivo de desinfeccion para fluidos que circulan a traves de conductos mediante radiacion uv
JP7071144B2 (ja) 紫外線殺菌装置および紫外線照射装置
CN215692928U (zh) 一种灭菌装置、空气过滤器及过滤系统
US20230382770A1 (en) Uvc irradiation container
CN216080184U (zh) 一种紫外消杀设备
JP2020039388A (ja) 殺菌装置
JP2022060113A (ja) 殺菌光線による高効率な流体殺菌装置
JPH0234677B2 (ja)
CN218722124U (zh) 一种双风机净化器
JP2022163644A (ja) 流体殺菌装置
US10981807B1 (en) Disinfecting fluid using disinfection light
CN113559666A (zh) 一种灭菌装置、空气过滤器及过滤系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3189785

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832016

Country of ref document: EP

Effective date: 20230201