WO2022004468A1 - 複合顔料、それを含む熱可塑性樹脂組成物、および成形体 - Google Patents

複合顔料、それを含む熱可塑性樹脂組成物、および成形体 Download PDF

Info

Publication number
WO2022004468A1
WO2022004468A1 PCT/JP2021/023442 JP2021023442W WO2022004468A1 WO 2022004468 A1 WO2022004468 A1 WO 2022004468A1 JP 2021023442 W JP2021023442 W JP 2021023442W WO 2022004468 A1 WO2022004468 A1 WO 2022004468A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
resin
composite
metal oxide
layer
Prior art date
Application number
PCT/JP2021/023442
Other languages
English (en)
French (fr)
Inventor
正見 佐藤
貴之 中尾
桂 川島
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to JP2022533881A priority Critical patent/JPWO2022004468A1/ja
Priority to CN202180045579.1A priority patent/CN115996993A/zh
Priority to EP21831902.8A priority patent/EP4177312A1/en
Priority to KR1020237002594A priority patent/KR20230031305A/ko
Priority to US18/012,880 priority patent/US20230257590A1/en
Publication of WO2022004468A1 publication Critical patent/WO2022004468A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • C09C1/648Aluminium treated with inorganic and organic, e.g. polymeric, compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/405Compounds of aluminium containing combined silica, e.g. mica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/65Chroma (C*)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers

Definitions

  • the present invention relates to a composite pigment, a thermoplastic resin composition containing the composite pigment, and a molded product.
  • Patent Document 1 discloses a composite pigment (colored aluminum pigment) obtained by adhering a colored pigment to the surface of scaly aluminum particles.
  • an object of the present invention is to provide a composite pigment having excellent water resistance and suppressing peeling of the pigment from the substrate particles.
  • a composite pigment comprising a base material particles and a pigment layer provided on the surface of the base material particles.
  • the pigment layer contains a pigment, a resin and a metal oxide
  • the pigment layer contains a pigment, a resin and a metal oxide.
  • the metal oxide is a composite pigment containing at least one selected from the group consisting of silicon oxides, polysiloxanes, and composites thereof.
  • the resin is a radical polymer of at least one of a monomer and an oligomer, and at least one of the monomer and the oligomer has two or more polymerizable double bonds. Pigment.
  • the composite pigment of the present invention has excellent water resistance as compared with the conventional composite pigment to which a coloring pigment is attached. Further, by immobilizing the pigment on the surface of the base particles with the resin and further imparting heat resistance and mechanical strength to the resin with the metal oxide, the base particles of the pigment at the time of kneading at a high temperature can be used. Can suppress peeling (falling off). Therefore, according to the present invention, it is possible to provide a thermoplastic resin composition containing a composite pigment in which peeling of the pigment from the substrate particles is suppressed when the composite pigment is used in the production of a molded product or the like. This makes it possible to reduce the saturation of the molded product obtained by using the composite pigment, suppress the variation in color tone, and the like.
  • FIG. 1 It is sectional drawing which shows the composite pigment of an embodiment. It is a schematic diagram which shows the enlarged cross section in the example of the composite pigment of an embodiment.
  • A) is an optical micrograph of the surface of a molded product obtained by using the composite pigment of Example 1.
  • B) is an optical micrograph of the surface of a molded product obtained by using the composite pigment of Comparative Example 1.
  • A) is an SEM photograph (reference photograph) showing a cross section of an example of the composite pigment of the embodiment.
  • (B) is an SEM photograph (comparative reference photograph) showing a cross section of an example of a composite pigment different from the embodiment.
  • A) is a BF-STEM image showing a cross section near the surface of the composite pigment of Example 1.
  • FIG. (B) is a HAADF-STEM image showing a cross section near the surface of the composite pigment of the same Example 1. It is a partially enlarged image of the region (I) of FIG. It is a partially enlarged image of the region (II) of FIG. It is a partially enlarged image of FIG. 7. It is a partially enlarged image of the region (III) of FIG. It is a partially enlarged image of FIG. (A) is a HAADF-STEM image having almost the same field of view as FIG. 7 (b).
  • (B) to (h) are STEM-EDX images in the same visual field as in FIG. 7. (Note that, in FIGS. 11 to 13 and FIGS.
  • FIG. 16 (b) to (h) are images showing the distribution of C, N, O, Al, Si, Cl, and Cu, respectively.)
  • (A) is the same image as in FIG. 8 (b).
  • (B) to (h) are STEM-EDX images in the same field of view as in FIG. (A) is the same image as in FIG. 10 (b).
  • (B) to (h) are STEM-EDX images in the same field of view as in FIG. It is a partially enlarged image of the region (IV) of FIG. It is a partially enlarged image of FIG. (A) is the same image as in FIG. 15 (b).
  • (B) to (h) are STEM-EDX images in the same field of view as in FIG.
  • the composite pigment 1 includes a base particle 2 and a pigment layer 3 provided on the surface of the base particle 2.
  • the pigment layer 3 contains a pigment, a resin and a metal oxide.
  • the metal oxide includes at least one selected from the group consisting of silicon oxides, polysiloxanes, and composites thereof.
  • the pigment layer 3 is composed of a plurality of particles in which the pigment 3a is coated with the resin 3b, and the plurality of particles.
  • a metal oxide (not shown) is attached to the surface 3c of the above.
  • the composite of the resin and the metal oxide is interposed between the plurality of pigments. Since the resin 3b contained in the pigment layer 3 has a three-dimensional crosslinked structure, it is unlikely to melt even when heated, and further, it exists in the pigment layer 3 together with the resin 3b (for example, the surface of the resin 3b).
  • the metal oxide improves water resistance.
  • the mechanical strength is also improved, it is possible to prevent the pigment from peeling off (falling off) from the surface of the substrate particles when the composite pigment is added to the resin and kneaded, or when the composite pigment is added to the paint and stirred. It also has the effect of being able to do it.
  • a layer 30 containing only the pigment is formed in the vicinity of the surface of the substrate particles 2.
  • a layer 31 made of a metal oxide and a resin is formed on the surface of the layer 30.
  • the pigment-only layer 30 becomes brittle. Therefore, when the thermoplastic resin and the composite pigment are kneaded at a high temperature, the pigment is peeled off from the base particles and released into the thermoplastic resin.
  • the photograph of FIG. 4 is a photograph of the composite pigment 1 present in the thermoplastic resin 4.
  • the pigment layer 3 in which the pigment, the resin and the metal oxide are mixed on the surface of the base particle 2 is formed. Is formed.
  • the water-resistant pigment layer itself can be used as the outermost layer, and a composite pigment having high water resistance can be obtained while maintaining the saturation.
  • thermoplastic resin and the composite pigment are kneaded at a high temperature. This makes it possible to reduce the saturation of the molded product obtained by using the composite pigment, suppress the variation in color tone, and the like.
  • the base particle is a particle that is a base material of the composite pigment. It is preferable that at least the surface of the base particles has a brilliant property.
  • the base particles having brilliance include metal flakes such as aluminum, titanium, copper, brass, and stainless steel, as well as natural mica, synthetic mica, alumina flakes, and glass flakes.
  • the present invention is particularly effective when the substrate particles are aluminum or an aluminum alloy, which is prone to gas generation problems.
  • the base particles particles that have been treated to be water resistant with a phosphorus compound, a molybdenum compound, or the like, or particles coated with a resin, a metal oxide, or the like may be used.
  • the shape of the base particle is not particularly limited, but is particularly preferably flake-shaped, scale-shaped, disk-shaped, elliptical-shaped, or the like.
  • the size of the base particle is not particularly limited, but for example, particles having a D50 of 1 ⁇ m to 200 ⁇ m in the volume distribution by the laser diffraction method can be preferably used.
  • the pigment layer is provided on the surface of the substrate particles.
  • the pigment may be directly fixed to the surface of the base material particles, or may be indirectly fixed to the base material particles via an adhesive component such as a resin.
  • the pigment layer contains pigments, resins and metal oxides.
  • the pigment layer 3 is preferably composed of a matrix (three-dimensional crosslinked structure) composed of particles of the resin 3b containing the pigment 3a and a metal oxide adhering to the surface 3c thereof. ..
  • the pigment various known pigments exhibiting a color tone can be used.
  • the color tone is not particularly limited, and is not particularly limited, and may be any of chromatic (chromatic color), white, black, and the like, and may be opaque or translucent, or may be transparent.
  • the pigment is not particularly limited, but is, for example, organic such as diketopyrrolopyrrole type, quinacridone type, dioxazine type, isoindolenone type, condensed azo type, slene type, perinone type, perylene type, quinophthalone type, phthalocyanine type and the like.
  • Pigments and inorganic pigments such as iron oxide, titanium oxide and carbon black can be mentioned.
  • the pigment in this embodiment is a compound different from the metal oxide described later.
  • organic pigments include phthalocyanine, halogenated phthalocyanine, quinacridone, diketopyrrolopyrrole, isoindolenone, azomethine metal complex, indanslon, perylene, perinone, anthraquinone, dioxazine, benzoimidazolone, condensed azo, and triphenyl.
  • organic pigments include methane, quinophthalone, anthrapyrimidine, and aniline black.
  • the inorganic pigment include iron oxide, ultramarine, navy blue, cobalt blue, chrome green, bismuth vanadium acid, composite oxide fired pigment, carbon black, titanium black, titanium oxide, and ultrafine titanium oxide.
  • the average thickness of the pigment layer on the surface of the substrate particles on one side is preferably 1 nm to 5 ⁇ m. If the average thickness of the pigment layer is less than 1 nm, the composite pigment may not be colored to the extent that it exhibits sufficient design. Further, when the average thickness of the pigment layer exceeds 5 ⁇ m, the pigment layer tends to be easily peeled off, and the hiding power of the composite pigment per unit mass tends to decrease.
  • the average thickness of the pigment layer can be measured by an electron microscope with the cross section exposed by ion milling while being embedded in the resin.
  • the resin is not particularly limited, but is preferably a radical polymer of at least one of a monomer and an oligomer. At least one of the monomers and oligomers preferably has two or more polymerizable double bonds. In this case, a three-dimensionally crosslinked resin (resin matrix) is efficiently formed, which is advantageous in that heat resistance is improved.
  • the composition of the resin and the like will be described in detail in "Method for Producing Composite Pigment" described later.
  • the amount of the resin is not particularly limited, but it is preferable that the amount of the pigment layer can be suppressed from peeling from the base particles and the pigment layer is composed of a porous matrix. Specifically, the amount of the resin is preferably 5 to 100% by mass, more preferably 10 to 70% by mass, based on the total amount of the pigment and the binder.
  • the metal oxide can be attached to the surface including the voids thereof, so that the metal oxide efficiently improves the heat resistance and mechanical strength of the pigment layer. Can be improved. Therefore, the pigment layer is preferably porous.
  • the specific surface area of the pigment layer is preferably 10 to 100 m 2 / g, more preferably 15 to 90 m 2 / g.
  • the pigment layer further contains a metal oxide in the composite pigment of the present embodiment.
  • the metal oxide is present in the pigment layer in combination with the pigment and the resin. Since the metal oxide has heat resistance and mechanical strength, it protects the pigment layer from thermal deformation and mechanical stress of the protective layer even when heated and kneaded during molding, and the pigment layer is applied to the surface of the base material. Can be fastened. That is, the metal oxide has an effect of suppressing the pigment layer from peeling off from the base material and being liberated into the thermoplastic resin.
  • the metal oxide contains at least one selected from the group consisting of silicon oxide, polysiloxane, and a composite thereof.
  • the metal oxide is preferably colorless so as not to inhibit the color development by the pigment. Silicon oxides, polysiloxanes, and composites thereof are superior in terms of transparency, safety, and production cost.
  • the metal oxide may contain components other than silicon oxide, polysiloxane, and a composite thereof, and in that case, the constituent material of the metal oxide is not particularly limited, but Al and Si. , Ti, Cr, Zr, Mo and Ce, an oxide or hydroxide of at least one element selected from the group is preferably used.
  • the metal oxide may contain hydrated water as long as the effect of the present embodiment is not impaired.
  • silicon oxide and the complex (condensate) of silicon oxide and polysiloxane are oxides of Si.
  • polysiloxane means a compound in which an organosilicon compound is condensed by a siloxane bond.
  • the metal oxide is preferably amorphous. This is because if it is crystalline, it becomes hard but brittle, and in applications where mechanical stress is applied, it may crack and the water resistance may decrease.
  • One aspect of the method for producing a composite pigment of the present embodiment mainly includes the following pigment adhesion step and pigment layer forming step.
  • the pigment adhesion step is a step of adhering a pigment to the surface of a plurality of base particles.
  • the pigment may be directly fixed to the surface of the base material particles, or may be indirectly fixed to the base material particles via an adhesive component such as a resin.
  • the method for adhering the pigment to the surface of the base particle is not particularly limited, and various known methods can be used.
  • the pigment can be attached to the surface of the base particles by adding a carboxylic acid and / or an amine compound as a binder to the base particles and the pigment (coloring pigment) and kneading them.
  • the binder is preferably a mixture of a carboxylic acid and an amine compound.
  • the carboxylic acid preferably has two or more carboxyl groups.
  • the amine compound preferably has two or more amino groups.
  • the amount of such a binder depends on the type of pigment and the particle size, but in order to make the pigment layer porous, it is preferably 50 parts by mass or less, and 40 parts by mass or less per 100 parts by mass of the pigment. Is more preferable.
  • the ratio of the amount of the pigment to the total amount of the composite pigment is preferably 10 to 60% by mass, more preferably 15 to 50% by mass.
  • voids are present between the pigments adhering to the surface of the substrate particles, and the resin and the metal oxide enter the voids, and it becomes easy to form a pigment layer composed of the pigment, the resin and the metal oxide. ..
  • Pigment layer forming step a pigment layer containing a pigment, a resin and a metal oxide is formed.
  • a pigment layer containing a pigment adhering to the surface of the substrate particles, a metal oxide, and a resin having a three-dimensional crosslinked structure is formed.
  • the following method can be preferably adopted.
  • the base particles to which the pigment obtained in the coloring step is attached are dispersed in a hydrocarbon solvent or an alcohol solvent (preferably a hydrocarbon solvent).
  • a monomer and / or an oligomer and a radical polymerization initiator are added to the obtained slurry and heated while stirring to proceed with the radical polymerization, whereby the resin is applied to the surface of the substrate particles to which the pigment is attached. Precipitate.
  • radical polymerization initiator examples include benzoyl peroxide, isobutyl peroxide, azobisisobutyronitrile, and azobisisovaleronitrile.
  • the amount of the radical polymerization initiator added is preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the monomer and / or oligomer.
  • the polymerization reaction is preferably carried out in an oxygen-free atmosphere (for example, an atmosphere of an inert gas such as nitrogen or argon).
  • the temperature of the polymerization reaction is preferably 50 to 150 ° C, more preferably 70 to 110 ° C.
  • the time of the polymerization reaction is preferably 30 minutes or more and 30 hours or less.
  • the above-mentioned monomers and oligomers are not particularly limited, and are, for example, acrylate, methacrylic acid, methyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, cyclohexyl acrylate, and 2 acrylate.
  • Nonandiol Diacrylate Neopentyl Glycol Diacrylate, Tripropylene Glycol Diacrylate, Tetraethylene Glycol Diacrylate, Trimethylol Propanetriacrylate, Trimethylol Propanetrimethacrylate, Tetramethylol Methantetraacrylate, Pentaerythritol Triacrylate, Trisacrylate Loxyethyl phosphate, ditrimethylolpropane tetraacrylate, styrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, acrylic nitrile
  • At least one of the monomers and oligomers has two or more polymerizable double bonds.
  • a three-dimensionally crosslinked resin resin matrix
  • the resin is a metal oxide described later. Firmly bonds with and improves heat resistance.
  • the base particles coated with a resin matrix or the like containing the pigment are dispersed in a solvent.
  • the solvent is not particularly specified, but any solvent may be used as long as it does not interfere with the precipitation of metal oxides by the sol-gel method. Examples thereof include alcohol-based, glycol ether-based, and hydrocarbon-based solvents.
  • a metal compound as a raw material for a metal oxide and water are added to the obtained slurry, and hydrolysis is carried out using an acid or a base as a catalyst to precipitate the metal oxide.
  • a pigment layer formed by combining a resin containing a pigment and a metal oxide is formed.
  • the metal oxide is preferably fixed to the surface 3c of the matrix composed of particles of the resin 3b containing the pigment 3a, for example, as shown in FIG.
  • the blending amount of the metal compound should be 2.0 to 45.0% by mass (as the solid content after the TEOS reaction) with respect to the total amount of the pigment and the binder. It is more preferably 3.0 to 35.0% by mass (as a solid content after the TEOS reaction).
  • a known hydrolyzable metal compound can be used without particular limitation.
  • metal compounds include alkoxides of Al, Si, Ti, Cr, Zr, Mo and Ce, chlorides, carboxylates and acetylacetonate complexes.
  • specific examples of the metal compound include tetraethoxysilane (TEOS).
  • thermoplastic resin composition of the present embodiment contains the above-mentioned composite pigment and the thermoplastic resin.
  • the molded product of the present embodiment contains the above-mentioned thermoplastic resin composition.
  • thermoplastic resin composition of the present embodiment can be melted by heating and molded into a desired shape when the molded product is manufactured.
  • thermoplastic resin is not particularly limited, but for example, at least one resin selected from polyethylene, ABS, polycarbonate and the like can be used.
  • the amount of the thermoplastic resin in the thermoplastic resin composition is not particularly limited, but for example, when the thermoplastic resin composition is used as a master batch (solid additive for plastics), 100 parts by mass of the thermoplastic resin is used. On the other hand, it is preferable that the amount of the composite pigment is 20 parts by mass or more and 200 parts by mass or less. If it is less than 20 parts by mass, the coloring power is weak and a desired design may not be obtained. On the other hand, if it exceeds 200 parts by mass, it becomes difficult to use it as a masterbatch.
  • the amount of the composite pigment is 0.01 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. If it is less than 0.01 parts by mass, the coloring power is weak and the desired design may not be obtained. On the other hand, if it exceeds 30 parts by mass, the mechanical strength of the molded product tends to be significantly reduced.
  • thermoplastic resin composition is not particularly limited as long as it is a composition containing the above-mentioned composite pigment and the thermoplastic resin, and is, for example, a powder such as a compound or a masterbatch, a paint, an ink, a cosmetic, or the like.
  • the composition containing the above-mentioned solvent is also included in the thermoplastic resin composition.
  • Example 1 [Preparation of substrate particles] Put 600 mL of mineral spirit in a three-necked flask, and add 286.0 g of aluminum flake pigment (trade name: "CS460", metal content 70% by mass, average particle size 16 ⁇ m, manufactured by Toyo Aluminum Co., Ltd.) as a base material, and diaside. 1550 (manufactured by Harima Kasei Co., Ltd.) was added, and the mixture was heated and stirred at 100 ° C., cooled to room temperature, and filtered to perform degreasing. As a result, degreased aluminum flakes (solid content 70% by mass) used as base particles were obtained.
  • aluminum flake pigment trade name: "CS460", metal content 70% by mass, average particle size 16 ⁇ m, manufactured by Toyo Aluminum Co., Ltd.
  • 1550 manufactured by Harima Kasei Co., Ltd.
  • the surface of the base particle is coated with a pigment and a resin having a crosslinked structure of trimethylolpropane trimethacrylate and divinylbenzene (resin-coated particles). ) was obtained.
  • the amount of the resin (trimethylolpropane trimethacrylate and divinylbenzene) used here is 29.4% by mass with respect to the total amount of the pigment and the binder.
  • IPA isopropyl alcohol
  • TEOS tetraethoxysilane
  • Example 2 A composite pigment was obtained in the same manner as in Example 1 except that the amount of TEOS was changed to 7 g (3.7% by mass with respect to the total amount of the pigment and the binder) in the metal oxide adhesion step.
  • Example 3 A composite pigment was obtained in the same manner as in Example 1 except that the amount of TEOS was changed to 15 g (8.0% by mass with respect to the total amount of the pigment and the binder) in the metal oxide adhesion step.
  • Comparative Example 1 A composite pigment of Comparative Example 1 in which a layer consisting only of a pigment and a resin was formed on the surface of the base material particles was obtained in the same manner as in Example 1 except that the metal oxide adhering step was omitted.
  • Comparative Example 2 In the resin coating step, the resin material used was changed to 1.0 g of acrylic acid, 120.0 g of trimethylolpropane trimethacrylate, 30 g of divinylbenzene, and 5.0 g of azobisisobutyronitrile.
  • the composite pigment of Comparative Example 2 was obtained in the same manner as in Example 1 except for the above points.
  • a layer made of a composite of a pigment, a resin and a metal oxide was not formed, and the layer made of the resin pigment and the resin and the layer of the metal oxide were separated. It existed.
  • Example 1 10 g of each composite pigment was measured as a solid content in a PP (prepropylene) cup, and 20 g of thinner (manufactured by Nippon Paint Co., Ltd., trade name: nax Admira 500 Standard Thinner) was weighed and stirred well with a spatula. 110 g of clear (clear for correction of nax Admira 280 manufactured by Nippon Paint Co., Ltd.) was added thereto, and the mixture was stirred with a stirrer at 500 rpm for 5 minutes. 110 g of the thinner mentioned above and 10 g of nax multi (10: 1) # 20 hardener were added thereto, and the mixture was stirred well to prepare a test paint.
  • PP prepropylene
  • the intermediate-coated steel sheet [base material (iron), electrodeposition layer (zinc-treated layer), intermediate coating (chipping resistance) layer, base coat layer (for base concealment and decoration) and top coat layer ( Using a spray gun (manufactured by Anest Iwata, trade name: W-101-134G) on one surface of the steel plate having the protective layer of the base coat in this order, the dry film thickness is 13 to 15 ⁇ m.
  • the above test paint was applied and dried at 80 ° C. for 20 minutes.
  • c * value which is an index of saturation, was calculated by the following formula (1) from the measured values of the chromaticity (a * value and b * value) at the color measurement angle of 15 °.
  • c * (a * 2 + b * 2 ) 1/2 (1)
  • FI value the measurement angle of 15 °, 45 ° and 110 ° L * 15 ° is L * value (lightness) in case of, from the measured values of L * 110 ° and L * 45 °, the following equation ( Calculated according to 2). Since the visual metallic feeling is felt as the shadow difference between the front view and the tilted view is larger, the FI value is considered to have a correlation with the visual metallic feeling.
  • the gas generation amount of the composite pigments of Examples 1 to 3 was significantly smaller than that of Comparative Example 1. It is considered that this is because in Examples 1 to 3, the peeling of the pigment layer from the surface of the base material was suppressed, and the gas generation due to the deterioration reaction of the base material particles was suppressed. On the other hand, in the composite pigment of Comparative Example 1, it is considered that the pigment layer was peeled off from the surface of the base material and hydrogen gas was generated by the deterioration reaction of the base material particles.
  • the composite pigments of Examples 1 to 3 were compared with the composite pigments of Comparative Example 2. It can be seen that the FI value and the C * value are high and the color tone is excellent.
  • the pigment layer of Examples 1 to 3 is a layer in which a resin obtained by polymerizing a monomer and an oligomer containing one or more monomers or oligomers having two or more polymerizable double bonds and a metal oxide are composited. Therefore, it is considered that the reduction in the saturation of the dried paint (molded body) and the variation in color tone were suppressed.
  • the resin material of Comparative Example 2 since the resin and silica were in the respective layers, it is considered that the pigment layer was easily peeled off and the saturation of the dried product (molded product) of the paint was reduced.
  • ⁇ Test Example 3> The composite pigments of each Example and Comparative Example were blended in an amount of 1 part by weight based on 100 parts by weight of a transparent ABS resin (product name "CL-430" manufactured by Denka Co., Ltd.) and kneaded at 230 ° C. for thermoplasticity. A resin composition was obtained. Using the obtained resin composition, the cylinder temperature was set to the nozzle part 230 ° C, the front part 230 ° C, the middle part 225 ° C, the rear part 220 ° C, and the mold temperature by the injection molding machine "FE80S12ASE” (manufactured by Nissei Resin Industry Co., Ltd.).
  • the temperature was set to 60 ° C., and injection molding was performed into a plate mold (50 mm ⁇ 80 mm ⁇ 3 mm) to obtain a molded product.
  • the FI (flip-flop index) value and C * value (saturation) of the obtained molded product were measured using a multi-angle spectrophotometer (MA68 manufactured by X-Rite).
  • the composite pigments of Examples 1 to 3 were compared with the composite pigments of Comparative Example 2. It can be seen that the FI value and C * value are high and the color tone is excellent. This is because the resin materials of Examples 1 to 3 are radical polymers, and at least one of the monomers and oligomers has two or more polymerizable double bonds, so that the color of the dried product (molded body) of the paint is colored. It is considered that the reduction of the degree and the variation of the color tone were suppressed.
  • FIG. 3A is a photograph of the surface of the molded body obtained by using the composite pigment of Example 1 at a magnification of 1000 times using an optical microscope (“Digital Microscope VHX-6000”, manufactured by KEYENCE CORPORATION). It is a photograph.
  • FIG. 3B is a photograph of the surface of the molded product obtained by using the composite pigment of Comparative Example 1 in the same manner.
  • the white portion is a portion where the pigment layer is peeled off from the surface of the composite pigment.
  • the composite pigment of Example 1 in which silica (metal oxide) is contained in the pigment layer (between the pigments) is more metal-oxidized in the pigment layer. It can be seen that the peeling of the pigment from the surface of the substrate particles (aluminum flakes) is suppressed as compared with the composite pigment of Comparative Example 1 containing no substance.
  • TEM image> TEM (transmission electron microscope) images taken for Example 1 are shown in FIGS. 5 to 10, 14 and 15. In each figure, (a) is a BF-STEM image and (b) is a HAADF-STEM image. Further, STEM-EDX (scanning transmission electron microscope-energy dispersive X-ray analysis) images taken for Example 1 are shown in FIGS. 11 to 13 and 16.
  • FIG. 5A is a BF-STEM (bright-field scanning transmission electron microscope) image showing a cross section near the surface of the composite pigment of the example.
  • B is a HAADF-STEM (high-angle annular dark-field scanning transmission electron microscope) image showing a cross section near the surface of the composite pigment of the same example.
  • the acceleration voltage was 200 kV.
  • FIG. 6 is a partially magnified image of the region (I) of FIG. In FIG. 6, the portion described as “aluminum flakes” is aluminum flakes (base particle).
  • FIG. 7 is a partially magnified image of the region (II) of FIG.
  • FIG. 8 is a partially enlarged image of FIG. 7.
  • FIG. 9 is a partially magnified image of the region (III) of FIG.
  • FIG. 10 is a partially magnified image of FIG. 11 (a) is a HAADF-STEM image having almost the same field of view as FIG. 7 (b).
  • 11 (b) to 11 (h) are STEM-EDX images in the same visual field as in FIG. 7.
  • FIGS. 11 to 13 and 16 are images showing the distribution of C, N, O, Al, Si, Cl, and Cu, respectively, and are white portions in the figure. Is the region where each element exists.
  • FIG. 12 (a) is the same image as in FIG.
  • FIG. 8 (b). 12 (b) to 12 (h) are STEM-EDX images in the same field of view as in FIG. 13 (a) is the same image as FIG. 10 (b).
  • 13 (b) to 13 (h) are STEM-EDX images in the same field of view as in FIG.
  • FIG. 14 is a partially magnified image of the region (IV) of FIG.
  • FIG. 15 is a partially enlarged image of FIG. 16 (a) is the same image as FIG. 15 (b).
  • 16 (b) to 16 (h) are STEM-EDX images in the same field of view as in FIG.
  • Table 2 shows the results of measuring the specific surface area (SSA) of the composite pigments of Example 1 and Comparative Example 1.
  • Table 2 also shows the SSA measurement results of the pre-pigment aluminum pigment (CS460).
  • the specific surface area (SSA) was measured by Macsorb (registered trademark) HM model-1200 (manufactured by Mountech Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

基材粒子と、前記基材粒子の表面に設けられた顔料層と、を備える複合顔料であって、前記顔料層は、顔料、樹脂および金属酸化物を含有し、前記金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物からなる群から選択される少なくとも1種を含む、複合顔料。

Description

複合顔料、それを含む熱可塑性樹脂組成物、および成形体
 本発明は、複合顔料、それを含む熱可塑性樹脂組成物、および成形体に関する。
 光輝性と高い彩度を兼ね備えた外観を付与する方法として、光輝性の基材粒子の表面を有彩色の顔料で被覆してなる複合顔料がある。
 例えば、特許文献1(WO2014/050893号公報)には、鱗片状アルミニウム粒子の表面に着色顔料を付着させてなる複合顔料(着色アルミニウム顔料)が開示されている。
WO2014/050893号公報
 しかしながら、耐水性が不十分であるため、水性塗料に用いる場合、水性溶剤に溶出しやすい顔料の使用に制限があったり、特に基材が金属の場合では加温した状態で水性塗料を貯蔵すると金属の腐食による水素ガス発生の問題がある。また、上記複合顔料を熱可塑性樹脂に練り込んだ組成物を用いて成形体を製造する際に、複合顔料と熱可塑性樹脂を高温で混練することにより、顔料(着色顔料)が基材粒子から剥がれて熱可塑性樹脂中に遊離するおそれがある。そのため、得られる成形体の彩度が低減したり、色調がバラついたりするという問題もある。
 したがって、本発明の目的は、耐水性に優れ、かつ顔料の基材粒子からの剥離が抑制された複合顔料を提供することである。
 〔1〕 基材粒子と、前記基材粒子の表面に設けられた顔料層と、を備える複合顔料であって、
 前記顔料層は、顔料、樹脂および金属酸化物を含有し、
 前記金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物からなる群から選択される少なくとも1種を含む、複合顔料。
 〔2〕 前記樹脂は、モノマーおよびオリゴマーの少なくともいずれかのラジカル重合物であり、前記モノマーおよび前記オリゴマーの少なくとも1種は2つ以上の重合性二重結合を有する、〔1〕に記載の複合顔料。
 〔3〕 前記基材粒子は、アルミニウム、アルミニウム合金、ガラス、アルミナ、およびマイカからなる群から選択される少なくとも1種を含有する、〔1〕または〔2〕に記載の複合顔料。
 〔4〕 前記顔料層は多孔質である、〔1〕~〔3〕のいずれかに記載の複合顔料。
 〔5〕 前記顔料層の比表面積は、10~100m/gである、〔4〕に記載の複合顔料。
 〔6〕 〔1〕~〔5〕のいずれかに記載の複合顔料を含む熱可塑性樹脂組成物。
 〔7〕 〔6〕に記載の熱可塑性樹脂組成物からなる成形体。
本発明の複合顔料には着色顔料を付着させた従来の複合顔料に比べ、耐水性に優れる。
 また、基材粒子の表面において、樹脂によって顔料を固定化し、さらに金属酸化物によって樹脂に耐熱性および機械的強度を付与することにより、高温での混練時等の際における顔料の基材粒子からの剥離(脱落)を抑制できる。したがって、本発明によれば、成形体の製造等における複合顔料の使用時において、顔料の基材粒子からの剥離が抑制された複合顔料を含む熱可塑性樹脂組成物を提供することができる。
 これにより、複合顔料を用いて得られる成形体の彩度の低減、色調のバラつき等を抑制することができる。
実施形態の複合顔料を示す断面模式図である。 実施形態の複合顔料の一例における拡大断面を示す模式図である。 (a)は、実施例1の複合顔料を用いて得られた成形体の表面の光学顕微鏡写真である。(b)は、比較例1の複合顔料を用いて得られた成形体の表面の光学顕微鏡写真である。 (a)は、実施形態の複合顔料の一例の断面を示すSEM写真(参考写真)である。(b)は、実施形態とは異なる複合顔料の一例の断面を示すSEM写真(比較参考写真)である。 (a)は、実施例1の複合顔料の表面付近の断面を示すBF-STEM像である。(b)は、同じ実施例1の複合顔料の表面付近の断面を示すHAADF-STEM像である。 図5の領域(I)の部分拡大像である。 図6の領域(II)の部分拡大像である。 図7の部分拡大像である。 図6の領域(III)の部分拡大像である。 図9の部分拡大像である。 (a)は、図7(b)とほぼ同じ視野のHAADF-STEM像である。(b)~(h)は、図7とほぼ同じ視野におけるSTEM-EDX像である。(なお、図11~図13および図16において、(b)~(h)は、それぞれC、N、O、Al、Si、Cl、およびCuの分布を示す像である。) (a)は、図8(b)と同じ像である。(b)~(h)は、図8と同じ視野におけるSTEM-EDX像である。 (a)は、図10(b)と同じ像である。(b)~(h)は、図10と同じ視野におけるSTEM-EDX像である。 図6の領域(IV)の部分拡大像である。 図14の部分拡大像である。 (a)は、図15(b)と同じ像である。(b)~(h)は、図15と同じ視野におけるSTEM-EDX像である。
 <複合顔料>
 図1を参照して、本実施形態の複合顔料は、複合顔料1は、基材粒子2と、基材粒子2の表面に設けられた顔料層3とを備える。
 顔料層3は、顔料、樹脂および金属酸化物を含有する。なお、金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物からなる群から選択される少なくとも1種を含む。
 より具体的には、例えば、図2に示されるように、基材粒子2の表面において、顔料層3は、顔料3aが樹脂3bに被覆されてなる複数の粒子から構成され、該複数の粒子の表面3cに図示しない金属酸化物が付着している。
 すなわち、本実施態様では、顔料、樹脂および金属酸化物を含む顔料層3において、複数の顔料の間に樹脂と金属酸化物との複合体が介在した状態で存在している。
 顔料層3に含まれる樹脂3bは、3次元架橋構造を有しているため、加熱しても溶融を起こしにくく、さらに、樹脂3bと共に顔料層3中(例えば、樹脂3bの表面)に存在する金属酸化物によって、耐水性が向上する。また、機械的強度も向上しているため、複合顔料を樹脂に加えてを混練する際や、塗料に加えて撹拌する際に、顔料が基材粒子の表面から剥離(脱落)することを抑制できるという効果も有する。
 一方、図4(b)の比較参考写真(オスミウム染色後のSEM(走査型電子顕微鏡)像)に示される複合顔料1では、基材粒子2の表面近傍に顔料のみの層30が形成され、その層30の表面に金属酸化物および樹脂からなる層31が形成されている。このような態様では、樹脂および金属酸化物が顔料の外側にあるため、顔料のみの層30が脆くなる。したがって、熱可塑性樹脂と複合顔料とを高温で混練する際に、顔料が基材粒子から剥がれて熱可塑性樹脂中に遊離してしまう。なお、図4の写真は、熱可塑性樹脂4中に存在する複合顔料1の写真である。
 これに対して、図4(a)の参考写真に示されるように、本実施形態の複合顔料1では、基材粒子2の表面に顔料、樹脂および金属酸化物が混在してなる顔料層3が形成されている。これにより、耐水性が付与された顔料層自体を最外層とすることができるようになり、彩度を維持しつつ耐水性の高い複合顔料を得ることができる。
 また、熱可塑性樹脂と複合顔料とを高温で混練する際に、顔料が基材粒子から剥がれることを抑制することもできる。これにより、複合顔料を用いて得られる成形体の彩度の低減、色調のバラつき等を抑制することができる。
 〔基材粒子〕
 基材粒子とは、複合顔料の基材となる粒子である。基材粒子は、少なくともその表面が光輝性を有することが好ましい。
 光輝性を有する基材粒子としては、例えば、アルミニウム、チタン、銅、真鍮、ステンレススチールなどの金属フレークの他、天然マイカ、合成マイカ、アルミナフレーク、ガラスフレークなどが挙げられる。
 基材粒子が、ガス発生の問題が起こりやすいアルミニウムまたはアルミニウム合金の場合、本発明は特に有効である。
 なお、基材粒子としては、リン化合物、モリブデン化合物などにより耐水化処理された粒子や、樹脂、金属酸化物等で被覆された粒子を使用してもよい。
 基材粒子の形状は、特に限定されないが、例えば、フレーク状、鱗片状、円盤状、楕円盤状などであることが特に好ましい。
 基材粒子の大きさは、特に限定されないが、例えば、レーザー回折法による体積分布におけるD50が1μm~200μmである粒子を好適に用いることができる。
 〔顔料層〕
 顔料層は基材粒子の表面に設けられる。なお、顔料(着色顔料)は、基材粒子の表面に直接固着されていてもよく、樹脂等の接着成分を介して間接的に基材粒子に固着されていてもよい。
 顔料層は、顔料、樹脂および金属酸化物を含有する。
 図2を参照して、顔料層3は、顔料3aを包含する樹脂3bの粒子からなるマトリックス(3次元架橋構造)と、その表面3cに付着した金属酸化物と、から構成されることが好ましい。
 (顔料)
 顔料としては、色調を呈する種々公知の顔料を使用することができる。色調は、特に限定されず、特に限定されず、有色(有彩色)、白色、黒色等のいずれでもよく、不透明または半透明であってもよく、透明であってもよい。
 顔料としては、特に制限されないが、例えば、ジケトピロロピロール系、キナクリドン系、ジオキサジン系、イソインドリノン系、縮合アゾ系、スレン系、ペリノン系、ペリレン系、キノフタロン系、フタロシアニン系、等の有機顔料、および、酸化鉄、酸化チタン、カーボンブラック等の無機顔料が挙げられる。なお、本実施形態における顔料は、後述する金属酸化物とは異なる別の化合物である。
 有機顔料の具体例としては、フタロシアニン、ハロゲン化フタロシアニン、キナクリドン、ジケトピロロピロール、イソインドリノン、アゾメチン金属錯体、インダンスロン、ペリレン、ペリノン、アントラキノン、ジオキサジン、ベンゾイミダゾロン、縮合アゾ、トリフェニルメタン、キノフタロン、アントラピリミジン、アニリンブラックなどが挙げられる。
 無機顔料の具体例としては、酸化鉄、群青、紺青、コバルトブルー、クロムグリーン、バナジウム酸ビスマス、複合酸化物焼成顔料、カーボンブラック、チタンブラック、酸化チタン、超微粒子酸化チタンなどが挙げられる。
 顔料層の積層量は、基材粒子の比表面積に応じて適宜調整することが好ましい。基材粒子表面の顔料層の片側平均厚みは、1nm~5μmであることが好ましい。顔料層の平均厚みが1nm未満の場合は、複合顔料が十分な意匠性を発現する程度まで着色されない可能性がある。また、顔料層の平均厚みが5μmを超える場合は、顔料層が剥がれ落ちやすくなったり、単位質量当たりの複合顔料の隠ぺい力が低下する傾向がある。なお、顔料層の平均厚みは、樹脂に包埋した状態でイオンミリングにより断面を露出させ電子顕微鏡により測定することができる。
 なお、通常は染料として分類される着色材料であっても、所定の条件下で粒子状態を保持するものであれば、本実施形態における顔料として使用することができる。
 (樹脂)
 樹脂としては、特に限定されないが、モノマーおよびオリゴマーの少なくともいずれかのラジカル重合物であることが好ましい。モノマーおよびオリゴマーの少なくとも1種は2つ以上の重合性二重結合を有することが好ましい。この場合、3次元架橋された樹脂(樹脂マトリックス)が効率よく形成され、耐熱性が向上する点で有利である。
 なお、樹脂の組成等については、後述の「複合顔料の製造方法」において詳述する。
 樹脂の量は特に限定されないが、顔料層の基材粒子からの剥離を抑制でき、かつ、顔料層が多孔性のマトリックスで構成される程度の量であることが好ましい。具体的には、樹脂の量は、顔料およびバインダーの合計量に対して、5~100質量%であることが好ましく、10~70質量%であることがより好ましい。
 なお、顔料層において、樹脂が多孔性のマトリックスを形成する場合、金属酸化物をその空隙部を含む表面に付着させることができるため、金属酸化物によって顔料層の耐熱性および機械的強度を効率的に向上させることができる。このため、顔料層は多孔質であることが好ましい。顔料層の比表面積は、好ましくは10~100m/gであり、より好ましくは、15~90m/gである。
 しかし、樹脂だけでは耐水性、耐熱性および機械的強度が十分でないため、本実施形態の複合顔料において、顔料層は金属酸化物をさらに含んでいる。
 (金属酸化物)
 金属酸化物は、顔料層内に顔料および樹脂と混在して存在する。金属酸化物は、耐熱性および機械的強度を有するため、成型の際に加熱、混練されても保護層の熱変形や機械的なストレスから顔料層を保護し、顔料層を基材の表面に留めることができる。すなわち、金属酸化物は、顔料層が基材から剥がれて熱可塑性樹脂に遊離してしまうことを抑制する作用を有する。
 本実施形態において、金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物からなる群から選択される少なくとも1種を含む。金属酸化物は、顔料による発色を阻害しないために、無色であることが好ましい。ケイ素酸化物、ポリシロキサン、および、これらの複合物は、透明性、安全性、および生産コストの面で優れている。
 なお、金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物以外の成分を含んでいてもよく、その場合、金属酸化物の構成材料としては、特に限定されないが、Al、Si、Ti、Cr、Zr、MoおよびCeからなる群より選ばれる少なくとも1つの元素の酸化物または水酸化物が好適に用いられる。なお、金属酸化物は、本実施形態の効果を損なわない範囲で、水和水を含んでいても良い。
 なお、酸化ケイ素、および、酸化ケイ素とポリシロキサンとの複合物(縮合物)は、ともにSiの酸化物である。また、「ポリシロキサン」は、有機ケイ素化合物がシロキサン結合で縮合した化合物を意味する。
 金属酸化物は、非晶質であることが好ましい。結晶質であると硬いが脆くなり、機械的ストレスがかかる用途では割れてしまい、耐水性などが低下するおそれがあるからである。
 <複合顔料の製造方法>
 本実施形態の複合顔料の製造方法の一態様について、以下に説明する。
 本実施形態の複合顔料の製造方法の一態様は、主に、下記の顔料付着工程と顔料層形成工程とを備える。
 (顔料付着工程)
 顔料付着工程は、複数の基材粒子の表面に顔料を付着させる工程である。なお、顔料(着色顔料)は、基材粒子の表面に直接固着されていてもよく、樹脂等の接着成分を介して間接的に基材粒子に固着されていてもよい。
 基材粒子の表面に顔料を付着させる方法としては、特に限定されず、種々公知の方法を用いることができる。具体的には、例えば、基材粒子および顔料(着色顔料)に、バインダーとしてカルボン酸および/またはアミン化合物を加えて混錬することにより、基材粒子の表面に顔料を付着させることができる。バインダーは、カルボン酸およびアミン化合物の混合物であることが好ましい。カルボン酸は、2つ以上のカルボキシル基を有することが好ましい。アミン化合物は、2つ以上のアミノ基を有することが好ましい。このようなバインダーの量は、顔料の種類や粒子径にもよるが、顔料層を多孔質にするためには、顔料100質量部あたり、50質量部以下であることが好ましく、40質量部以下であることがより好ましい。
 顔料の量の複合顔料の総量に対する比率は、好ましくは10~60質量%であり、より好ましくは15~50質量%である。この場合、基材粒子の表面に付着した顔料の間に空隙が存在し、樹脂および金属酸化物がその空隙に入り込んで、顔料、樹脂および金属酸化物から構成される顔料層を形成し易くなる。
 (顔料層形成工程)
 顔料層形成工程では、顔料、樹脂および金属酸化物を含有する顔料層を形成する。例えば、基材粒子の表面に付着した顔料と、金属酸化物および3次元架橋構造を有する樹脂と、を含む顔料層を形成する。
 顔料層を形成する方法としては、例えば、以下の方法を好適に採用することができる。
 まず、着色工程で得られた顔料が付着した基材粒子を、炭化水素系溶媒またはアルコール系溶媒(好ましくは炭化水素系溶媒)中に分散させる。次に、得られたスラリーに、モノマーおよび/またはオリゴマーとラジカル重合開始剤とを添加し、撹拌させながら加熱してラジカル重合を進行させることで、顔料が付着した基材粒子の表面に樹脂を析出させる。
 上記のラジカル重合開始剤としては、例えば、過酸化ベンゾイル、過酸化イソブチル、アゾビスイソブチロニトリル、アゾビスイソバレロニトリルなどが挙げられる。ラジカル重合開始剤の添加量は、モノマーおよび/またはオリゴマー100質量部に対して、1質量部以上50質量部以下であることが好ましい。
 重合反応は、無酸素雰囲気(例えば、窒素、アルゴン等の不活性ガス雰囲気)下で行なわれることが好ましい。重合反応の温度は、好ましくは50~150℃、より好ましくは70~110℃である。また、重合反応の時間は、30分以上30時間以下であることが好ましい。
 上記のモノマーおよびオリゴマーとしては、特に限定されないが、例えば、アクリル酸、メタクリル酸、メタクリル酸メチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシブチル、アクリル酸2-メトキシエチル、アクリル酸2-ジエチルアミノエチル、メタクリル酸ブチル、メタクリル酸オクチル、1,4ブタンジオールジアクリレート、1,6ヘキサンジオールジアクリレート、1,9ノナンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、トリスアクリロキシエチルホスフェート、ジトリメチロールプロパンテトラアクリレート、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン、アクリルニトリル、メタクリルニトリル、酢酸ビニル、プロピオン酸ビニル、マレイン酸、クロトン酸、イタコン酸、ポリブタジエン、アマニ油、大豆油、エポキシ化大豆油、エポキシ化ポリブタジエン、シクロヘキセンビニルモノオキサイド、ジビニルベンゼンモノオキサイド、モノ(2-アクリロイルオキシエチル)アシッドホスフェート、モノ(2-メタクリロイルオキシエチル)アシッドホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート、2-メタクリロイロキシエチルアッシドフォスフェート、2-アクリロイロキシエチルアッシドフォスフェート、ジフェニル-2-メタクリロイロキシエチルアッシドフォスフェート、ジフェニル-2-アクリロイロキシエチルアッシドフォスフェート、ジブチル-2-メタクリロイロキシエチルアッシドフォスフェート、ジブチル-2-アクリロイロキシエチルアッシドフォスフェート、ジオクチル-2-メタクリロイロキシエチルアッシドフォスフェート、ジオクチル-2-アクリロイロキシエチルアッシドフォスフェート、2-メタクリロイロキシプロピルアッシドフォスフェート、ビス(2-クロロエチル)ビニルホスホネート、ジ-2-メタクリロイロキシエチルアッシドフォスフェート、トリ-2-メタクリロイロキシエチルアッシドフォスフェート、ジ-2-アクリロイロキシエチルアッシドフォスフェート、トリ-2-アクリロイロキシエチルアッシドフォスフェート、ジアリルジブチルホスホノサクシネート、アクリル変性ポリエステル(重合度2~20程度)、アクリル変性ポリエーテル(重合度2~20程度)、アクリル変性ウレタン(重合度2~20程度)、アクリル変性エポキシ(重合度2~20程度)、アクリル変性スピラン(重合度2~20程度)等が挙げられる。
 モノマーおよびオリゴマーの少なくとも1種は2つ以上の重合性二重結合を有することが好ましい。この場合、3次元架橋された樹脂(樹脂マトリックス)が効率よく形成され、耐熱性が向上する点で有利である。
 また、モノマーおよび/またはオリゴマーとして、ビニルトリエトキシシラン、アクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリエトキシシランなどの重合性二重結合を有する有機ケイ素化合物を用いると、樹脂が後述する金属酸化物と強固に結合し、耐熱性が向上する。
 なお、このような樹脂による被覆の工程までは、国際公開第2014/050893号に開示された方法と同様である。
 次に、顔料を包含する樹脂マトリックス等で被覆された基材粒子を溶媒に分散させる。溶媒は特に指定しないが、ゾルゲル法による金属酸化物の析出を妨げない溶媒であればよい。例えばアルコール系、グリコールエーテル系、炭化水素系溶媒等があげられる。得られたスラリーに、金属酸化物の原料となる金属化合物と水を加えて、触媒として酸または塩基を用いて加水分解を行ない、金属酸化物を析出させる。これにより、顔料を含む樹脂と金属酸化物とが複合してなる顔料層が形成される。
 なお、金属酸化物は、例えば、図2に示されるように、顔料3aを包含する樹脂3bの粒子からなるマトリックスの表面3cに固着されることが好ましい。このような状態が得られやすくするためには、金属化合物の配合量は、顔料およびバインダーの合計量に対して2.0~45.0質量%(TEOS反応後固形分として)であることが好ましく、3.0~35.0質量%(TEOS反応後固形分として)であることがより好ましい。
 金属酸化物の原料としては、加水分解可能な公知の金属化合物を特に制限なく使用できる。この様な金属化合物としては、例えば、Al、Si、Ti、Cr、Zr、MoおよびCeのアルコキシド、塩化物、カルボン酸塩およびアセチルアセトーナート錯体などが挙げられる。金属化合物の具体例としては、例えば、テトラエトキシシラン(TEOS)が挙げられる。
 <熱可塑性樹脂組成物および成形体>
 本実施形態の熱可塑性樹脂組成物は、上記の複合顔料と、熱可塑性樹脂と、を含む。
 また、本実施形態の成形体は、上記の熱可塑性樹脂組成物を含む。
 本実施形態の熱可塑性樹脂組成物は、熱可塑性樹脂を含有することで、成形体を製造する際に、加熱により溶融して所望とする形状に成形可能である。
 熱可塑性樹脂としては、特に限定されないが、例えば、ポリエチレン、ABS、ポリカーボネートなどから選択される少なくとも1種の樹脂を用いることができる。
 熱可塑性樹脂組成物中の熱可塑性樹脂の量は、特に限定されないが、例えば、熱可塑性樹脂組成物がマスターバッチ(プラスチック用の固体添加剤)として用いられる場合は、熱可塑性樹脂100質量部に対して、複合顔料が20質量部以上200質量部以下であることが好ましい。20質量部未満の場合、着色力が弱く所望の意匠が得られない可能性がある。一方、200質量部を越える場合、マスターバッチとして使用することが難しくなる。熱可塑性樹脂組成物が射出成形などの成形体の製造に用いられる場合は、熱可塑性樹脂100質量部に対して複合顔料が0.01質量以上30質量部以下であることが好ましい。0.01質量部未満の場合、着色力が弱く所望の意匠が得られない可能性がある。一方、30質量部を越える場合、成形体の機械的強度が著しく低下する傾向がある。
 なお、熱可塑性樹脂組成物は、上記の複合顔料と熱可塑性樹脂とを含む組成物であれば特に限定されず、例えば、コンパウンド、マスターバッチなどの粉体、または、塗料、インキ、化粧料などの溶媒を含む組成物も熱可塑性樹脂組成物に含まれる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 [基材粒子の調製]
 三ツ口フラスコにミネラルスピリット600mLを入れ、これに基材としてアルミニウムフレーク顔料(商品名:「CS460」、金属分70質量%、平均粒径16μm、東洋アルミニウム株式会社製)を286.0g、およびダイアシッド1550(ハリマ化成株式会社製)40.0gを加え、100℃にて加熱および攪拌した後、常温まで冷却し、これを濾過することにより、脱脂を行なった。これにより、基材粒子として用いられる脱脂処理されたアルミニウムフレーク(固形分70質量%)を得た。
 [顔料付着工程]
 次に、以下の材料を混練機に投入し、80℃で1時間攪拌した。
脱脂処理されたアルミニウムフレーク(基材粒子):200.0g(固形分として)
ミネラルスピリット(非極性溶媒):400mL
青色顔料(LIONOL BLUE 7185-PM、トーヨーカラー株式会社製):150.0g
脂肪族ジカルボン酸(ダイアシッド1550、ハリマ化成株式会社製):10.0g
ヒンダートアミン(アデカスタブLA-67、株式会社ADEKA製):10.0g
 これにより、顔料および樹脂が表面に付着したアルミニウムフレーク(顔料被覆粒子)を含有するスラリーを得た。
 [顔料層形成工程]
 次に、三ツ口フラスコ内のミネラルスピリット1000mLに、得られた顔料被覆粒子を含有するスラリー全量を加え、さらにアクリル酸1.0gを添加して、それらを攪拌した。さらに、三ツ口フラスコ内に、トリメチロールプロパントリメタクリレート40.0g、ジビニルベンゼン10.0gおよびアゾビスイソブチロニトリル5.0gをそれぞれミネラルスピリット150mLに溶解した液を添加して、窒素を吹き込みながら混合物を100℃で6時間撹拌した。その後、常温まで冷却されたスラリーを濾過することにより、基材粒子の表面が、顔料、および、トリメチロールプロパントリメタクリレートとジビニルベンゼンとの架橋構造を有する樹脂によって被覆されてなる粒子(樹脂被覆粒子)を得た。
 なお、ここで使用した樹脂(トリメチロールプロパントリメタクリレートおよびジビニルベンゼン)の量は、顔料およびバインダーの合計量に対して29.4質量%である。
 (金属酸化物付着:シリカコート)
 得られた樹脂被覆粒子(固形分100g、金属分47.6g)を三ツ口フラスコ内のイソプロピルアルコール(IPA)1000mLに分散させてなるスラリーを調製し、該スラリーを50℃に昇温した。昇温後のスラリーに水30gを加え、適量のモノエタノールアミンを加えることにより、スラリーのpHを8.5に調整した。
 次に、金属化合物(金属酸化物の原料)としてテトラエトキシシラン(以下、「TEOS」と略す)30g(反応後固形分8.4g、顔料およびバインダーの合計量に対して16.0質量%(固形分として))をスラリーに徐々に加え、さらに70℃で6時間攪拌混合することで、TEOSを樹脂被覆粒子の樹脂マトリックスの表面にシリカとして析出させる反応を進行させた。その間、2時間毎にスラリーのpH値をチェックし、適量のモノエタノールアミンを加えることによりスラリーのpHが8.5になるように調整した。反応終了後、スラリーを常温まで冷却し、これを濾過することにより、顔料と樹脂とシリカ(金属酸化物)とを含む顔料層を表面に備える複合顔料を得た(図2参照)。
 (実施例2)
 金属酸化物付着工程においてTEOSの量を7g(顔料およびバインダーの合計量に対して3.7質量%)に変更した点以外は、実施例1と同様にして複合顔料を得た。
 (実施例3)
 金属酸化物付着工程においてTEOSの量を15g(顔料およびバインダーの合計量に対して8.0質量%)に変更した点以外は、実施例1と同様にして複合顔料を得た。
 (比較例1)
 金属酸化物付着工程を省略した点以外は実施例1と同様にして、基材粒子の表面に顔料と樹脂のみからなる層が形成されてなる比較例1の複合顔料を得た。
 (比較例2)
 樹脂被覆工程において、使用する樹脂材料を、アクリル酸1.0g、トリメチロールプロパントリメタクリレート120.0g、ジビニルベンゼン30g、および、アゾビスイソブチロニトリル5.0gに変更した。それ以外の点は実施例1と同様にして、比較例2の複合顔料を得た。
 なお、得られた比較例2の複合顔料では、顔料、樹脂および金属酸化物の複合体からなる層が形成されず、樹脂顔料および樹脂からなる層と、金属酸化物の層とが分離して存在していた。これは、トリメチロールプロパントリメタクリレート(重合性二重結合を有するモノマー)の量が多すぎると、多孔性の樹脂マトリックスが形成されず、金属酸化物が樹脂マトリックス内に侵入できなかったためであると考えられる。
 (比較例3)
 実施例1の樹脂被覆工程時において、窒素を吹き込む前のスラリーに、疎水性フュームドシリカ(AEROSIL(登録商標)R972、日本アエロジル株式会社製)8.4g(TEOS 30gの固形分に相当する)を添加してから、反応をスタートさせた。
 しかし、反応途中でスラリーが増粘したため、反応を停止した。スラリーの増粘は、遊離したフュームドシリカにより系内の粒子数が著しく増加し、構造粘性を伴ったためであると考えられる。
 <試験例1>
 各複合顔料をPP(プリプロピレン)製カップに固形分として10g測り取り、そこへシンナー(日本ペイント株式会社製、商品名:naxアドミラ 500 スタンダードシンナー)を20g測り入れスパチュラで良くかき混ぜた。そこへクリヤー(日本ペイント株式会社製、naxアドミラ 280 補正用クリヤー)を110g加え、攪拌機で500rpmで5分撹拌した。そこへ前述のシンナーを110gとnaxマルチ(10:1)#20ハードナーを10gを入れ、良くかき混ぜることで、試験用塗料を調製した。
 次に、中塗りが施された鋼板〔基材(鉄)、電着層(亜鉛処理層)、中塗り(耐チッピング性)層、ベースコート層(下地隠蔽および加飾用)およびトップコート層(ベースコートの保護層)をこの順で有する鋼板〕の一方の表面に、スプレーガン(アネスト岩田製、商品名:W-101-134G)を用いて、乾燥膜厚が13~15μmになるように、上記試験用塗料を塗布し、80℃で20分間乾燥させた。
 乾燥後の鋼板の試験用塗料が塗布された面について、多角度分光測色計(X-Rite社製、MA68)を用いて、FI(フリップフロップインデックス)値およびC値(彩度)を測定した。測定結果を表1に示す。
 なお、彩度の指標となるc値は、測色角度15°における色度(a値およびb値)の測定値から、下記式(1)により算出した。
   c=(a*2+b*21/2   (1)
 また、FI値は、測定角度が15°、45°および110°の場合のL値(明度)であるL15°、L110°およびL45°の測定値から、下記式(2)により算出した。目視による金属感は、正面から見た時と傾けて見た時の陰影差が大きいほど感じられるため、FI値は、目視による金属感と相関性を有すると考えられる。
Figure JPOXMLDOC01-appb-M000001
 <試験例2>
 上記実施例および比較例で作製されたサンプルを固形分で25g測り取り、ブチルセロソルブ90gを加えスラリーにする。そこへ水90gを加え、適量の10%ジメチルアミノエタノール水溶液を加えて、pHを10.5に調整した。
 このスラリー200gを測り取り、40℃に維持されたガス発生試験機内で96時間放置した。その際に発生した水素ガス量を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるガス発生量の結果から、実施例1~3の複合顔料は、比較例1よりもガス発生量が顕著に少なかった。これは、実施例1~3では、基材表面からの顔料層の剥離が抑制されており、基材粒子の劣化反応によるガス発生が抑制されたためであると考えられる。これに対して、比較例1の複合顔料は、基材表面から顔料層の剥離し、基材粒子の劣化反応により水素ガスが発生したと考えられる。
 また、表1に示されるFIおよびCの結果から、実施例1~3の複合顔料(実施例の複合顔料を用いて調製された塗料の乾燥物)は、比較例2の複合顔料に比べて、FI値およびC値が高く、色調に優れていることがわかる。これは、実施例1~3の顔料層は、重合性二重結合を2つ以上有するモノマーまたはオリゴマ―を1種以上含むモノマーおよびオリゴマーを重合させた樹脂と、金属酸化物が複合された層となっているため、塗料の乾燥物(成形体)の彩度の低減、色調のバラつき等が抑制されたと考えられる。一方、比較例2の樹脂材料は、樹脂とシリカがそれぞれの層となったため、顔料層が剥がれやすくなり、塗料の乾燥物(成形体)の彩度等が低減したと考えられる。
 <試験例3>
各実施例および比較例の複合顔料を、透明ABS樹脂(製品名「CL-430」デンカ株式会社製)100重量部に対して固形分で1重量部配合し、230℃で混練して熱可塑性樹脂組成物を得た。得られた樹脂組成物を用い、射出成形機「FE80S12ASE」(日精樹脂工業株式会社製)により、シリンダー温度をノズル部230℃、前部230℃、中間部225℃、後部220℃、金型温度60℃とし、プレート型(50mm×80mm×3mm)に射出成形し、成型体を得た。得られた成形体を多角度分光測色計(X-Rite社製、MA68)を用いて、FI(フリップフロップインデックス)値およびC値(彩度)を測定した。
Figure JPOXMLDOC01-appb-T000003
 表2に示されるFIおよびCの結果から、実施例1~3の複合顔料(実施例の複合顔料を用いて調製された塗料の乾燥物)は、比較例2の複合顔料に比べて、FI値およびC値が高く、色調に優れていることがわかる。これは、実施例1~3の樹脂材料が、ラジカル重合物であり、モノマーおよびオリゴマーの少なくとも1種は2つ以上の重合性二重結合を有するため、塗料の乾燥物(成形体)の彩度の低減、色調のバラつき等が抑制されたと考えられる。一方、比較例2の樹脂材料は、重合性二重結合を有するモノマーの量が多すぎたため、樹脂と金属酸化物が分離した層となり顔料層が剥れやすくなったことにより、成形体の彩度等が低減したと考えられる。
 図3(a)は、実施例1の複合顔料を用いて得られた成形体の表面を光学顕微鏡(「デジタルマイクロスコープ VHX-6000」、株式会社キーエンス製)を用いて倍率1000倍で撮影した写真である。また、図3(b)は、比較例1の複合顔料を用いて得られた成形体の表面を同様に撮影した写真である。なお、図3(b)において、白い部分は複合顔料の表面から顔料層が剥離した部分である。図3(a)および(b)に示される写真からも、顔料層中(顔料の間)にシリカ(金属酸化物)が含まれる実施例1の複合顔料の方が、顔料層中に金属酸化物が含まれない比較例1の複合顔料に比べて、基材粒子(アルミニウムフレーク)表面からの顔料の剥離が抑制されていることがわかる。
 <TEM像>
 実施例1について撮影したTEM(透過型電子顕微鏡)像を図5~図10、図14および図15に示す。各図において、(a)はBF-STEM像であり、(b)はHAADF-STEM像である。
 また、実施例1について撮影したSTEM-EDX(走査透過型電子顕微鏡-エネルギー分散型X線分析)像を図11~図13および図16に示す。
 なお、図5(a)は、実施例 の複合顔料の表面付近の断面を示すBF-STEM(明視野走査透過型電子顕微鏡)像である。(b)は、同じ実施例 の複合顔料の表面付近の断面を示すHAADF-STEM(高角度環状暗視野走査透過型電子顕微鏡)像である。なお、FIB-STEM(収束イオンビーム加工-走査透過型電子顕微鏡)像(BF-STEMおよびHAADF-STEM)の撮影において、加速電圧は200kVであった。
 図6は、図5の領域(I)の部分拡大像である。図6において、「アルミフレーク」と記載された部分が、アルミニウムフレーク(基材粒子)である。
 図7は、図6の領域(II)の部分拡大像である。図8は、図7の部分拡大像である。
 図9は、図6の領域(III)の部分拡大像である。図10は、図9の部分拡大像である。
 図11(a)は、図7(b)とほぼ同じ視野のHAADF-STEM像である。図11(b)~(h)は、図7とほぼ同じ視野におけるSTEM-EDX像である。なお、図11~図13および図16において、(b)~(h)は、それぞれC、N、O、Al、Si、Cl、およびCuの分布を示す像であり、図中の白色の部分が各元素の存在する領域である。
 図12(a)は、図8(b)と同じ像である。図12(b)~(h)は、図8と同じ視野におけるSTEM-EDX像である。
 図13(a)は、図10(b)と同じ像である。図13(b)~(h)は、図10と同じ視野におけるSTEM-EDX像である。
 図14は、図6の領域(IV)の部分拡大像である。
 図15は、図14の部分拡大像である。
 図16(a)は、図15(b)と同じ像である。図16(b)~(h)は、図15と同じ視野におけるSTEM-EDX像である。
 図5~図16(特に、Si元素とCu、Cl元素の分布が示された図11~図13および図16)から、実施例の複合顔料において、基材粒子(アルミニウムフレーク)に隣接する顔料層内でシリカ(金属酸化物)が均一に分散した状態で存在していることが分かる。
 <比表面積:SSA>
 なお、実施例1および比較例1の複合顔料の比表面積(SSA)の測定した結果を表2に示す。なお、参考として、顔料付着前アルミ顔料(CS460)のSSAの測定結果を併せて表2に示す。ここで、比表面積(SSA)はMacsorb(登録商標)HM model-1200 (株式会社マウンテック製により測定した。
Figure JPOXMLDOC01-appb-T000004
 表3に示される結果から、実施例1の複合顔料は、比較例1に比べて比表面積が大きく、多孔性の樹脂マトリックスが形成されていることが分かる。なお、比較例1の比表面積が実施例1より小さくなったのは顔料層に含まれる非晶質シリカが存在しないためであると考えられる。
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 複合顔料、2 基材粒子、3 顔料層、3a 顔料、3b 樹脂、3c 表面(金属酸化物)。

Claims (7)

  1.  基材粒子と、前記基材粒子の表面に設けられた顔料層と、を備える複合顔料であって、
     前記顔料層は、顔料、樹脂および金属酸化物を含有し、
     前記金属酸化物は、ケイ素酸化物、ポリシロキサン、および、これらの複合物からなる群から選択される少なくとも1種を含む、複合顔料。
  2.  前記樹脂は、モノマーおよびオリゴマーの少なくともいずれかのラジカル重合物であり、前記モノマーおよび前記オリゴマーの少なくとも1種は2つ以上の重合性二重結合を有する、請求項1に記載の複合顔料。
  3.  前記基材粒子は、アルミニウム、アルミニウム合金、ガラス、アルミナ、およびマイカからなる群から選択される少なくとも1種を含有する、請求項1または2に記載の複合顔料。
  4.  前記顔料層は多孔質である、請求項1~3のいずれか1項に記載の複合顔料。
  5.  前記顔料層の比表面積は、10~100m/gである、請求項4に記載の複合顔料。
  6.  請求項1~5のいずれかに記載の複合顔料を含む熱可塑性樹脂組成物。
  7.  請求項6に記載の熱可塑性樹脂組成物からなる成形体。
PCT/JP2021/023442 2020-07-02 2021-06-21 複合顔料、それを含む熱可塑性樹脂組成物、および成形体 WO2022004468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022533881A JPWO2022004468A1 (ja) 2020-07-02 2021-06-21
CN202180045579.1A CN115996993A (zh) 2020-07-02 2021-06-21 复合颜料、包含其的热塑性树脂组合物和成形体
EP21831902.8A EP4177312A1 (en) 2020-07-02 2021-06-21 Composite pigment, thermoplastic resin composition containing same, and molded body
KR1020237002594A KR20230031305A (ko) 2020-07-02 2021-06-21 복합 안료, 그것을 포함하는 열가소성 수지 조성물, 및 성형체
US18/012,880 US20230257590A1 (en) 2020-07-02 2021-06-21 Composite pigment, thermoplastic resin composition containing same, and molded body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-115084 2020-07-02
JP2020115083 2020-07-02
JP2020115084 2020-07-02
JP2020-115083 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022004468A1 true WO2022004468A1 (ja) 2022-01-06

Family

ID=79316211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023442 WO2022004468A1 (ja) 2020-07-02 2021-06-21 複合顔料、それを含む熱可塑性樹脂組成物、および成形体

Country Status (6)

Country Link
US (1) US20230257590A1 (ja)
EP (1) EP4177312A1 (ja)
JP (1) JPWO2022004468A1 (ja)
KR (1) KR20230031305A (ja)
CN (1) CN115996993A (ja)
WO (1) WO2022004468A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041692A1 (ja) * 2012-09-14 2014-03-20 東洋アルミニウム株式会社 着色金属顔料およびその製造方法
WO2014050893A1 (ja) 2012-09-27 2014-04-03 東洋アルミニウム株式会社 着色メタリック顔料および着色物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69623947T2 (de) * 1995-04-21 2003-06-05 Toshiba Silicone Beschichtungsharzmasse
JP3481360B2 (ja) * 1995-07-27 2003-12-22 東洋アルミニウム株式会社 表面処理着色顔料、着色基体粒子およびその製造方法
JP4553844B2 (ja) * 2003-07-18 2010-09-29 東洋アルミニウム株式会社 フレーク顔料、それを含む塗料および粉体塗料、それに用いるフレーク粒子の表面処理剤
JP5068170B2 (ja) * 2005-10-13 2012-11-07 東洋アルミニウム株式会社 被覆金属顔料およびその製造方法、ならびにそれを含む塗料組成物
CN100465235C (zh) * 2006-11-24 2009-03-04 华南理工大学 一种包覆型铝粉颜料的制备方法
JP5527753B2 (ja) * 2009-05-25 2014-06-25 東洋アルミニウム株式会社 表面被覆メタリック顔料、それを含む水性塗料およびそれが塗布された塗装物
VN38913A1 (en) * 2011-10-31 2014-08-25 Nippon Fine Coatings Inc Chromate-free precoated metal sheet with metallic appearance and water-based coating composition for use in manufacturing same
JP2013226814A (ja) * 2012-03-30 2013-11-07 Faltec Co Ltd 軋み音を防止する塗膜が形成されたプラスチック成形体
JP5418716B1 (ja) * 2012-08-01 2014-02-19 ダイキン工業株式会社 調理器具
JP6140586B2 (ja) * 2013-02-22 2017-05-31 株式会社神戸製鋼所 水系樹脂塗膜積層金属板
JP6059574B2 (ja) * 2013-03-26 2017-01-11 東洋アルミニウム株式会社 下地隠蔽塗料および塗装物
JP6157619B2 (ja) * 2013-06-27 2017-07-05 キヤノン株式会社 画像形成装置及びプロセスカートリッジ
JP6268009B2 (ja) * 2014-03-19 2018-01-24 東洋アルミニウム株式会社 被覆顔料
JP6222502B2 (ja) * 2016-05-31 2017-11-01 セイコーエプソン株式会社 インクジェット記録用光硬化型インク組成物
US10273371B2 (en) * 2016-07-25 2019-04-30 Basf Coatings Gmbh Method of forming a slurry of encapsulated pigment for an aqueous topcoat coating composition
CN109415576B (zh) * 2016-09-06 2022-02-25 Dic株式会社 树脂被覆无机或金属颜料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041692A1 (ja) * 2012-09-14 2014-03-20 東洋アルミニウム株式会社 着色金属顔料およびその製造方法
WO2014050893A1 (ja) 2012-09-27 2014-04-03 東洋アルミニウム株式会社 着色メタリック顔料および着色物

Also Published As

Publication number Publication date
CN115996993A (zh) 2023-04-21
JPWO2022004468A1 (ja) 2022-01-06
KR20230031305A (ko) 2023-03-07
US20230257590A1 (en) 2023-08-17
EP4177312A1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
KR101285519B1 (ko) 피복 금속 안료 및 그 제조 방법, 그리고 그것을 함유하는도료 조성물
EP2436738B1 (en) Surface-coated metallic pigment, water-based coating comprising same and article coated therewith
US5944886A (en) Colored aluminium pigments and the preparation process thereof
KR101925175B1 (ko) 착색 금속 안료 및 그 제조 방법
EP0755986A2 (en) Surface-treated colour pigment, coloured substrate particles and production process thereof
JP6956642B2 (ja) 酸化鉄で被覆された赤色の一次干渉色を有するアルミニウムフレークの被覆における使用
US10150846B2 (en) Colored metallic pigment and colored article
US9914846B2 (en) Use of modified effect pigments in radiation-curable coating compositions
WO2006090431A1 (ja) 着色フレーク顔料およびこれを含有する塗料組成物
JP2005255984A (ja) 着色フレーク顔料およびこれを含有する塗料組成物
JP2020535240A (ja) 67°〜78°の範囲の色相(h15)および90以上の彩度(c*15)を有する金色の効果顔料
JP3481360B2 (ja) 表面処理着色顔料、着色基体粒子およびその製造方法
JP5759764B2 (ja) 着色金属顔料およびその製造方法
WO2022004468A1 (ja) 複合顔料、それを含む熱可塑性樹脂組成物、および成形体
JP2002256151A (ja) 熱可塑性樹脂組成物及びその成形体
JP3481372B2 (ja) 表面処理着色顔料、着色基体粒子およびその製造方法
JP5779384B2 (ja) 着色剤
KR20130028457A (ko) 분산 안정성이 우수한 나노 입자 형태의 무기계 세라믹 코팅 조성물 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533881

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237002594

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021831902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021831902

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE