WO2022004465A1 - 流体撹拌要素を具える熱分解管 - Google Patents

流体撹拌要素を具える熱分解管 Download PDF

Info

Publication number
WO2022004465A1
WO2022004465A1 PCT/JP2021/023412 JP2021023412W WO2022004465A1 WO 2022004465 A1 WO2022004465 A1 WO 2022004465A1 JP 2021023412 W JP2021023412 W JP 2021023412W WO 2022004465 A1 WO2022004465 A1 WO 2022004465A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring element
fluid
inclined surface
pipe
stirring
Prior art date
Application number
PCT/JP2021/023412
Other languages
English (en)
French (fr)
Inventor
基行 松原
国秀 橋本
徹 壽川
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to US17/613,639 priority Critical patent/US20220316814A1/en
Priority to CA3181888A priority patent/CA3181888A1/en
Publication of WO2022004465A1 publication Critical patent/WO2022004465A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0056Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for ovens or furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0059Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for petrochemical plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Definitions

  • the present invention relates to a pyrolysis pipe used in a pyrolysis reactor for producing ethylene or the like, and more specifically, a stirring element that enhances the stirring action of the fluid flowing in the pipe is projected from the inner surface of the pipe. It is related to the pyrolysis tube.
  • a raw material fluid containing a hydrocarbon (naphtha, natural gas, ethane, etc.) is circulated at high speed through an externally heated thermal decomposition tube, and the raw material fluid is heated to the reaction temperature range for thermal decomposition. Is generated by.
  • a ridge having a semicircular or semi-elliptical cross section is formed as a stirring element for the flowing fluid so as to spirally swirl with respect to the pipe axis (see, for example, Patent Document 1). ..
  • the fluid flowing at high speed is agitated by the ridges to promote heat transfer, and is rapidly heated to a high temperature, and the thermal decomposition is completed in a short time. This suppresses the occurrence of over-decomposition and coking due to overheating, and by improving the heat transfer efficiency of the pyrolysis tube, it is possible to lower the heating temperature of the pyrolysis tube and improve the service life of the pyrolysis tube. The effect is brought about.
  • the pyrolysis tube is required to further improve the heat transfer efficiency.
  • the fluid needs to be agitated more by the ridges. Therefore, when the height was increased while keeping the shape of the ridge as it was, the stirring effect was enhanced, but as a result of the narrowing of the fluid flow path, the pressure loss of the fluid increased, and the heat transfer coefficient was improved. It did not lead to an improvement in the yield of the target product.
  • An object of the present invention is to provide a pyrolysis tube in which a stirring element is formed, which can improve a good stirring effect and heat transfer efficiency while preventing an increase in pressure loss of the fluid in the pipe.
  • the pyrolysis tube provided with the stirring element of the present invention is A pyrolysis tube formed with one or more fluid stirring elements protruding inward on the inner surface of a tube having a fluid inlet on one end side and a fluid outlet on the other end side of the tube shaft.
  • the stirring element is formed so that the longitudinal direction is spirally inclined or orthogonal to the pipe axis, and the top thereof is the fluid inlet side or the fluid with respect to the center in the width direction orthogonal to the longitudinal direction. It is eccentric to the exit side.
  • the center of the top of the stirring element is eccentric by 10% or more toward the fluid inlet side or 5% or more toward the fluid outlet side with respect to the center in the width direction of the stirring element.
  • the center of the top of the stirring element is eccentric by 90% or less toward the fluid inlet side or 85% or less toward the fluid outlet side with respect to the center in the width direction of the stirring element.
  • the stirring element has an inlet-side inclined surface on the fluid inlet side and an outlet-side inclined surface on the fluid outlet side across the top portion, and the inlet-side inclined surface and the outlet-side inclined surface have an inclination angle.
  • Can have different configurations.
  • the inlet-side inclined surface and / or the exit-side inclined surface can be convex or concave.
  • the convex or concave inclined surface may have at least one convex or concave portion on the inclined surface.
  • the stirring element can be configured such that the length in the longitudinal direction is longer than the length in the width direction.
  • the top portion has a substantially flat flat surface, and the center of the flat surface in the width direction may be eccentric to the fluid inlet side or the fluid outlet side.
  • the fluid is agitated by the agitating element.
  • the stirring element has a top eccentric to either the fluid inlet side or the fluid outlet side with respect to the center in the width direction.
  • the inclination angle of the stirring element on the fluid inlet side becomes large, so that the resistance of the fluid hitting the stirring element increases and the stirring element is directed toward the tube shaft side which is the center of the pipe.
  • the fluid flows vigorously and the stirring energy of the fluid increases. As a result, the boundary film that is likely to be formed near the inner surface of the pipe is destroyed, and the heat transfer efficiency can be improved.
  • FIG. 1 is a cross-sectional view taken along the tube axis of a pyrolysis tube in which a stirring element according to an embodiment of the present invention is formed.
  • FIG. 2 is a cross-sectional view taken along the tube axis of the pyrolysis tube in which the stirring element is formed in an intermittent spiral shape.
  • FIG. 3 is a cross-sectional view taken along the line XX of FIG. 1, which is a cross-sectional view of a stirring element having an eccentric top on the fluid inlet side, where (a) is a mountain shape and (b) is a flat surface on the top. It is sectional drawing of the stirring element which has.
  • FIG. 4 is a cross-sectional view taken along the line XX of FIG.
  • FIG. 1 is a cross-sectional view of a stirring element whose top is eccentric toward the fluid inlet side.
  • FIG. FIG. 3B is a cross-sectional view of a stirring element having a concave surface, a concave inclined surface on the inlet side, and a convex inclined surface on the exit side.
  • 5A and 5B are cross-sectional views taken along the line XX of FIG. 1, which are cross-sectional views of a stirring element having an eccentric top on the fluid outlet side, where FIG. 5A is a mountain shape and FIG. 5B is a flat surface on the top. It is sectional drawing of the stirring element which has.
  • FIG. 6 is a cross-sectional view taken along the line XX of FIG.
  • FIG. 1 1, and is a cross-sectional view of a stirring element whose top is eccentric toward the fluid outlet side.
  • FIG. FIG. 3B is a cross-sectional view of a stirring element having a concave surface, a concave inclined surface on the inlet side, and a convex inclined surface on the exit side.
  • FIG. 7 is a cross-sectional view taken along the line XX of FIG. 1, and is a cross-sectional view of a stirring element whose top is eccentric toward the fluid outlet side.
  • FIG. Shape, (b) is a cross-sectional view of a stirring element having a concave shape on both the inlet side inclined surface and the outlet side inclined surface.
  • FIG. 8 shows (a) the texture of the stirring element formed in Example 1, and (b) shows a 3D photograph.
  • 9A is a profile graph in the longitudinal direction of the stirring element along the horizontal line of FIG. 8A
  • FIG. 9B is a profile graph of the stirring element in the width direction along the vertical line of FIG. 8A.
  • FIG. 10 is a diagram showing a schematic configuration of the test pyrolysis tube of Example 2.
  • FIG. 11 is a graph showing the pressure loss and heat transfer coefficient of Example 2.
  • 12A is a cross-sectional view of each stirring element of Comparative Example 21 and 22, (b) is Comparative Example 23, and (c) is Comparative Example 24.
  • the pyrolysis tube 10 of the present invention will be described with reference to the drawings.
  • the pyrolyzed pipe 10 shown in the figure is a straight pipe, in general, the pyrolyzed pipes 10 made of straight pipes are connected to each other by a bent bend pipe and deployed in a pyrolysis furnace in a meandering shape. It receives heat from the outside of the pipe and thermally decomposes the fluid flowing inside.
  • FIG. 1 is a cross-sectional view along a pipe axis showing an embodiment of the thermal decomposition pipe 10 of the present invention
  • FIG. 1 is a cross-sectional view of a pipe 10 in which stirring elements 20 are continuously provided in a spiral shape
  • FIG. It is sectional drawing of the tube 10 which provided the element 20 in the form of an intermittent spiral
  • 3 and 4 are enlarged cross-sectional views of the stirring element 20 of the first embodiment along the line XX of FIG. 1
  • FIGS. 5 and 6 are enlarged cross-sectional views of the stirring element 20 of the second embodiment.
  • the pipe 10 has a fluid inlet side 11 on the left side of the paper surface of FIG. 1 and a fluid outlet side 12 on the right side.
  • the tube 10 can be formed from a heat-resistant alloy material, and contains 25Cr-Ni (SCH22), 25Cr-35Ni (SCH24), Incoloy (trade name), or an alloy containing Al: up to 6.0% by mass. It can be exemplified.
  • the material of the pyrolysis tube 10 is not limited to these, and various heat-resistant alloy materials that can withstand a high temperature usage environment and have the required performance can be used.
  • the tube 10 is formed with a stirring element 20 that projects inward from the inner surface. More specifically, the stirring element 20 can have a ridge shape that projects toward the inner surface of the tube.
  • the present invention is characterized in that the top 21 of the stirring element 20 is eccentric to either the fluid inlet side 11 or the fluid outlet side 12.
  • the stirring element 20 has a continuous shape in which the longitudinal direction is inclined in a spiral shape.
  • the angle of inclination of the stirring element 20 from the upstream side to the downstream side with respect to the plane orthogonal to the pipe axis is defined as ⁇
  • the same inclination angle ⁇ shall be set from the upstream side to the downstream side of the pyrolysis pipe 10. It can also be provided by changing the angle ⁇ .
  • the inclination angle ⁇ of the stirring element 20 is preferably 85 ° or less, and preferably 30 ° or less.
  • the inclination angle ⁇ of the stirring element 20 is preferably 15 ° or more.
  • the stirring element 20 may have an intermittent form as shown in FIG. 2 instead of a continuous form. By forming the stirring element 20 in an intermittent form, the stirring effect is slightly reduced, but the pressure loss of the fluid can be greatly reduced.
  • the stirring element 20 has a shape in which the length in the longitudinal direction is longer than the length in the orthogonal width direction. As a result, the fluid can suitably collide with the stirring element 20 in the pipe, and the stirring effect can be enhanced.
  • the distance S between the stirring elements 20 can be about 20-400 mm when the inner diameter of the pipe is 30-150 mm.
  • the stirring element 20 in FIG. 1 has a single spiral shape, but a plurality of spiral shapes may be provided in parallel or at different tilt angles.
  • the height (H1) of the stirring element 20 is about 1 / 60-1 / 10 of the inner diameter of the pipe. If the height (H1) of the stirring element 20 is lower than 1/60 of the inner diameter of the pipe, there is a possibility that the effect of stirring the fluid and generating turbulence cannot be sufficiently exerted. Further, when the height (H1) of the stirring element 20 is higher than 1/10 of the inner diameter of the pipe, the stirring element 20 becomes a flow path resistance, hinders the flow of fluid, increases the pressure loss, and further. The fluid tends to stay on the downstream side of the stirring element 20, and there is a risk of over-decomposition or accumulation of cork. Therefore, the height (H1) of the stirring element 20 is specified as described above.
  • the stirring element 20 can be formed from the same type of heat-resistant alloy material as the above-mentioned pyrolysis tube 10, but is not limited thereto.
  • the stirring element 20 can be efficiently formed as an overlay bead by, for example, a overlay welding method such as powder plasma welding (PTA welding), MIG welding, TIG welding, and laser welding.
  • a overlay welding method such as powder plasma welding (PTA welding), MIG welding, TIG welding, and laser welding.
  • PTA welding powder plasma welding
  • MIG welding MIG welding
  • TIG welding TIG welding
  • laser welding laser welding
  • the pyrolysis tube 10 and the stirring element 20 may be integrally manufactured by extrusion processing, or may be formed by machining such as cutting.
  • the stirring element 20 has a top portion 21 on the fluid inlet side 11 as shown in the cross sections of FIGS. 3 (a), 4 (a), 4 (b), and 7 (b). It is eccentric.
  • the top portion 21 of the stirring element 20 means the highest portion of the stirring element 20 protruding inward from the inner surface of the pipe toward the pipe shaft side. If the stirring element 20 has a mountain shape as shown in FIG. 3A, the apex thereof is the top portion 21, and as shown in FIG. 3B, the top portion 21 of the stirring element 20 has a flat surface 22. Defines the center O'in the width direction of the flat surface 22 as the top 21.
  • the degree of eccentricity of the stirring element 20 with respect to the center O in the width direction is 10% or more, and more preferably 30% or more on the fluid inlet side 11. Further, the upper limit of the degree of eccentricity is preferably 90% or less on the fluid inlet side 11 and more preferably 80% or less.
  • the degree of eccentricity is w / W ⁇ with respect to the distance (w) from the center O in the width direction of the stirring element 20 to the top 21 when the width of the stirring element 20 is 2 W as shown in FIG. 3 (a). It can be specified at 100%.
  • the distance (w) is the distance from the center O in the width direction of the stirring element 20 to the top 21 which is the center O'of the flat surface 22. Is defined as.
  • the degree of eccentricity toward the fluid inlet side 11 with respect to the center O in the width direction of the stirring element 20 is set to have a larger lower limit and upper limit than the degree of eccentricity toward the fluid outlet side 12 shown in the second embodiment.
  • This is the one that is eccentric to the fluid inlet side 11 when comparing the stirring effect by the stirring element 20 whose top 21 is eccentric to the fluid inlet side 11 and the stirring element 20 eccentric to the fluid outlet side 12, and the magnitude of the generated swirling flow.
  • this is because both the stirring effect and the generated swirling flow are large, and it is possible to improve the yield of the target product by making the fluid inlet side 11 largely eccentric.
  • the stirring element 20 may have a shape having an inlet-side inclined surface 23 on the fluid inlet side 11 and an outlet-side inclined surface 24 on the fluid outlet side 12 with the top portion 21 interposed therebetween, with respect to the inner surface of the pipe of the inlet-side inclined surface 23. It is preferable that the inclination angle ⁇ is larger than the inclination angle ⁇ with respect to the inner surface of the pipe of the outlet side inclined surface 24. Specifically, the inclination angle ⁇ is preferably 5 ° or more larger than the inclination angle ⁇ , and more preferably 10 ° or more.
  • the fluid flowing in the pipe hits the steep inlet-side inclined surface 23, the resistance increases, and the fluid flows vigorously toward the pipe shaft side, which is the center of the pipe, and the stirring energy of the fluid can be increased. As a result, the boundary film that is likely to be formed near the inner surface of the pipe is destroyed, and the heat transfer efficiency of the fluid can be improved.
  • the inlet side inclined surface 23 and the exit side inclined surface 24 can have a flat shape.
  • the stirring element When the fluid flows from the fluid inlet side 11 toward the fluid outlet side 12 through the thermal decomposition pipe 10 in which the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, the stirring element is shown by an arrow A in FIG. It is possible to generate a flow that hits the inlet-side inclined surface 23 of 20 and vigorously toward the pipe axis direction, or a flow that goes over the stirring element 20 indicated by the arrow B.
  • the flow of the fluid in the axial direction of the pipe can be suitably agitated in the radial direction of the pipe, the temperature difference of the fluid in the radial direction of the pipe can be reduced, and a uniform temperature rise can be achieved.
  • the flow of the fluid over the stirring element 20 prevents the generation of the boundary film near the inner surface of the pipe, destroys the boundary film, and contributes to the improvement of the heat transfer efficiency.
  • the stirring element 20 is formed spirally with respect to the pipe axis, as shown by an arrow C in FIG. 1, a part of the fluid spirally swirls along the spiral stirring element 20. Therefore, the stirring effect can be enhanced and the heat transfer efficiency can be improved.
  • the inlet side inclined surface 23 and the exit side inclined surface 24 may have a convex shape as shown in FIG. 4 (a) or a concave shape as shown in FIGS. 4 (b) and 7 (b).
  • the stirring element 20 can make the rise of the fluid inlet side 11 steeper, and a part of the hit fluid flows vigorously toward the pipe axis direction. It can be indicated by an arrow D), and suitable stirring can be performed in the radial direction of the tube.
  • the angle of the stirring element 20 in the vicinity of the top portion 21 can be steep by making the inlet side inclined surface 23 concave, the flow of the fluid toward the downstream side when hitting the stirring element 20 (arrow E, The arrow K) can be vigorously accelerated from the middle, and the stirring effect can be enhanced.
  • the exit side inclined surface 24 has a gentle inclination (the horizontal distance (W + w) from the top 21 to the hem is long) and a concave shape (FIG. 4A).
  • the outlet-side inclined surface 24 has a concave shape while having a gentle inclination, so that the stirring element 20 has a steep shape immediately after exceeding the top portion 21. Therefore, the flow of the fluid can be vigorously accelerated (arrow D'), and the fluid accelerated toward the inner surface of the pipe hits the inner surface of the pipe to destroy the boundary film near the inner surface of the pipe, and the heat transfer efficiency can be improved. Further, the flow (D ”) is partially swirled along the concave shape. On the other hand, the exit side inclined surface 24 is gently inclined as shown in FIG.
  • the stirring element 20 in which the top portion 21 is eccentric to the fluid inlet side 11 on the inner surface of the pipe 10, the stirring effect of the fluid is enhanced, the pressure loss of the fluid is prevented from increasing, and the good stirring effect is obtained. Therefore, the heat transfer efficiency can be improved and the yield of the target product can be improved.
  • the fluid since the fluid is configured so that it is difficult to overheat or stay due to suitable agitation, it is possible to suppress the occurrence of caulking due to overdecomposition of the raw material fluid, reduce the decoking work, increase the operating time, and the target product. It is possible to improve the yield of fluid.
  • the top portion 21 of the stirring element 20 is eccentric to the fluid outlet side 12, as shown in the cross section in FIG.
  • the degree of eccentricity of the stirring element 20 with respect to the center O in the width direction of the top portion 21 is 5% or more on the fluid outlet side 12, and more preferably 15% or more.
  • the degree of eccentricity is preferably 85% or less on the fluid outlet side 12, and more preferably 75% or less.
  • the stirring element 20 may have a shape having an inlet-side inclined surface 23 on the fluid inlet side 11 and an outlet-side inclined surface 24 on the fluid outlet side 12 with the top portion 21 interposed therebetween. It is preferable that the inclination angle ⁇ of the exit side inclined surface 24 is larger than the inclination angle ⁇ of the inlet side inclined surface 23. Specifically, the inclination angle ⁇ is preferably 5 ° or more larger than the inclination angle ⁇ , and more preferably 10 ° or more. As a result, the fluid that has passed over the stirring element 20 increases its momentum along the steep outlet-side inclined surface 24, and is struck against the inner surface of the pipe while increasing the stirring energy.
  • the boundary film formed on the fluid outlet side 12 of the stirring element 20 is destroyed, and the heat transfer efficiency can be improved.
  • the inlet side inclined surface 23 and the exit side inclined surface 24 can have a flat shape.
  • the stirring element When the fluid flows from the fluid inlet side 11 toward the fluid outlet side 12 through the thermal decomposition pipe 10 in which the top 21 of the stirring element 20 is eccentric to the fluid outlet side 12, the stirring element is shown by an arrow F in FIG. It is possible to generate a flow that hits the inlet-side inclined surface 23 of 20 and goes in the direction of the pipe axis, or a flow that goes over the stirring element 20 as shown by the arrow G. Since the inlet side inclined surface 23 of the stirring element 20 is gentler than that of the first embodiment, the flow toward the pipe axis direction has a smaller momentum than that of the first embodiment, and therefore, the increase in pressure loss can be suppressed. On the other hand, the momentum of the fluid overcoming the stirring element 20 can be increased.
  • the fluid flow that has passed over the stirring element 20 hits the inner surface of the pipe along the steep outlet-side inclined surface 24, prevents the formation of a boundary film near the inner surface of the pipe, destroys the boundary film, and improves the heat transfer efficiency. Can be made to. also.
  • the stirring element 20 is formed spirally with respect to the pipe axis, as shown by the arrow C in FIG. 1, a part of the fluid becomes a flow spirally swirling along the spiral stirring element 20. The stirring effect can be enhanced to improve the heat transfer efficiency.
  • the inlet side inclined surface 23 and the exit side inclined surface 24 may have a convex shape or a concave shape as shown in FIGS. 6 (a), 6 (b), and 7 (a).
  • 6 and 7 (a) are embodiments in which the top 21 of the stirring element 20 is eccentric to the fluid outlet side 12.
  • the inlet side inclined surface 23 has a convex shape
  • the exit side inclined surface 24 has a concave shape
  • the entrance side inclined surface 23 has a concave shape
  • the exit side inclined surface 24 has a convex shape.
  • both the inlet side inclined surface 23 and the exit side inclined surface 24 have a convex shape.
  • the stirring element 20 can make the rise of the fluid inlet side 11 steeper and hit. A part of the fluid is caused to generate a vigorous flow (arrow H, arrow J) toward the pipe axis direction, and a high stirring effect can be obtained.
  • the stirring element 20 can have a steep angle near the top 21, so that the stirring element 20 hits the stirring element 20 and heads toward the downstream side. The flow of the fluid (arrow I, arrow K) can be vigorously accelerated from the middle, and the stirring effect can be enhanced.
  • the stirring element 20 can have a steep shape immediately after exceeding the top portion 21, so that the fluid flow ( The arrow H') can be accelerated vigorously, and the fluid accelerated toward the inner surface of the pipe hits the inner surface of the pipe and destroys the boundary film near the inner surface of the pipe, so that the heat transfer efficiency can be improved. Further, the flow (H ") is partially swirled along the concave shape.
  • the outlet side inclined surface 24 has a convex shape as shown in FIGS. 6 (b) and 7 (a).
  • the fluid is gently moved along the stirring element 20, and the slope becomes steep toward the inner surface of the pipe at the falling portion, so that the fluid can be applied to the inner surface of the pipe in an accelerated state (arrow). I', J'), the boundary film near the inner surface of the pipe can be suitably destroyed to improve the heat transfer efficiency.
  • the stirring element 20 in which the top portion 21 is eccentric to the fluid outlet side 12 on the inner surface of the pipe 10, the stirring effect of the fluid is enhanced, the pressure loss of the fluid is prevented from increasing, and the good stirring effect is obtained. Therefore, the heat transfer efficiency can be improved and the yield of the target product can be improved.
  • the fluid since the fluid is configured so that it is difficult to overheat or stay due to suitable agitation, it is possible to suppress the occurrence of caulking due to overdecomposition of the raw material fluid, reduce the decoking work, increase the operating time, and the target product. It is possible to improve the yield of fluid.
  • Example 1 The stirring element was formed as an overlay bead by TIG welding on the inner surface of the pipe.
  • FIG. 8 (a) is a texture of the formed stirring element
  • FIG. 8 (b) is a 3D photograph
  • 9 (a) is a profile graph in the longitudinal direction of the stirring element along the horizontal line of FIG. 8 (a)
  • FIG. 9 (b) is a profile graph of the stirring element in the width direction along the vertical line of FIG. 8 (a). Is.
  • the stirring element can be formed in an eccentric shape on the fluid inlet side 11 (upper side of FIG. 8) of the pipe.
  • Example 2 As shown in FIG. 10, the run-up section 31 is provided on the upstream side, and the thermal decomposition pipes 10 of Invention Examples 1 to 10 and the thermal decomposition of Comparative Examples 21 to 24 shown in FIGS. 3 to 7 are thermally decomposed on the downstream side.
  • a test pyrolysis tube 30 connected to the tube was prepared, a fluid was circulated, and the outlet temperature (° C.) and the heat exchange amount (kW) were measured and compared.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, and the inlet side inclined surface 23 and the outlet side inclined surface 24 both have a flat surface without unevenness. It is a tube 10 having.
  • the width (2W) of the stirring element is 8.7 mm, the height (H1) of the top 21 is 2.1 mm, and the eccentricity is 11% toward the fluid outlet side 12.
  • the entrance-side inclined surface 23 of the first aspect of the invention has a gentle inclination, while the exit-side inclined surface 24 has a steeper inclination than the entrance-side inclined surface 23.
  • Invention Example 2 is a pipe 10 having a flat surface 22 in which the top portion 21 of the stirring element 20 is eccentric to the fluid inlet side 11 as shown in FIG. 3 (b).
  • the width (2W) of the stirring element 20 is 8.7 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the width of the flat surface 22 is 1.8 mm
  • the eccentricity is 11% toward the fluid inlet side 11. ..
  • Both the entrance side inclined surface 23 and the exit side inclined surface 24 are flat surfaces without unevenness.
  • the inlet-side inclined surface 23 of the second aspect of the invention has a steeper inclination than the exit-side inclined surface 24, while the exit-side inclined surface 24 has a gentler inclination than the inlet-side inclined surface 23.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, and the pipe has a convex shape on the inlet side inclined surface 23 and a concave shape on the outlet side inclined surface 24. It is 10.
  • the width (2W) of the stirring element is 9.1 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 13% toward the fluid inlet side 11.
  • the inclined surface 23 on the entrance side of the third invention has a steep slope
  • the inclined surface 24 on the exit side has a gentle slope.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, and the pipe has a concave shape on the inlet side inclined surface 23 and a convex shape on the outlet side inclined surface 24. It is 10.
  • the width (2W) of the stirring element is 9.1 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 13% toward the fluid inlet side 11.
  • the inclined surface 23 on the entrance side of the fourth aspect of the invention has a steep slope
  • the inclined surface 24 on the exit side has a gentle slope.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, and the inlet side inclined surface 23 and the outlet side inclined surface 24 both have a flat surface without unevenness. It is a tube 10 having.
  • the width (2W) of the stirring element is 8.7 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 11% toward the fluid outlet side 12.
  • the inclined surface 23 on the entrance side of the fifth aspect of the invention has a gentle inclination
  • the inclined surface 24 on the exit side has a steep inclination.
  • Invention Example 6 is a pipe 10 in which the top portion 21 of the stirring element 20 is eccentric to the fluid outlet side 12 and has a flat surface 22.
  • the width (2W) of the stirring element 20 is 8.7 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the width of the flat surface 22 is 1.8 mm
  • the eccentricity is 11% toward the fluid outlet side 12. ..
  • Both the entrance side inclined surface 23 and the exit side inclined surface 24 are flat surfaces without unevenness.
  • the entrance side inclined surface 23 of Invention Example 2 has a gentle inclination
  • the exit side inclined surface 24 has a steep inclination.
  • the top 21 of the stirring element 20 is eccentric to the fluid outlet side 12, and the pipe has a convex shape on the inlet side inclined surface 23 and a concave shape on the outlet side inclined surface 24. It is 10.
  • the width (2W) of the stirring element is 8.8 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 7% toward the fluid outlet side 12.
  • the inclined surface 23 on the entrance side of the invention example 7 has a gentle inclination
  • the inclined surface 24 on the exit side has a steep inclination.
  • the top 21 of the stirring element 20 is eccentric to the fluid outlet side 12, has a concave shape on the inlet side inclined surface 23 and a convex shape on the outlet side inclined surface 24. It is 10.
  • the width (2W) of the stirring element is 8.8 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 7% toward the fluid outlet side 12.
  • the inclined surface 23 on the entrance side of the invention example 8 has a gentle inclination
  • the inclined surface 24 on the exit side has a steep inclination.
  • the top 21 of the stirring element 20 is eccentric to the fluid outlet side 12, and the inlet side inclined surface 23 and the outlet side inclined surface 24 both have a convex shape. be.
  • the width (2W) of the stirring element is 8.9 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 12% toward the fluid outlet side 12.
  • the inclined surface 23 on the entrance side of the invention example 9 has a gentle inclination
  • the inclined surface 24 on the exit side has a steep inclination.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11, and the inlet side inclined surface 23 and the outlet side inclined surface 24 both have a concave shape.
  • the width (2W) of the stirring element is 8.9 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the eccentricity is 9% toward the fluid inlet side 11.
  • the inclined surface 23 on the inlet side of the invention example 10 has a steep slope
  • the inclined surface 24 on the exit side has a gentle slope.
  • Comparative Example 21 and Comparative Example 22 are pipes 40 in which the top portion 21 of the stirring element 20 is not eccentric and is formed at the center O in the width direction, as shown in FIG. 12 (a).
  • the inlet-side inclined surface 23 and the exit-side inclined surface 24 of Comparative Example 21 and Comparative Example 22 are both convex.
  • the width of the stirring element 20 of Comparative Example 21 is 8.7 mm
  • the height (H1) of the top 21 is 2.1 mm
  • the width of the flat surface 22 is 2.8 mm
  • the width of the stirring element 20 of Comparative Example 22 is 6.6 mm.
  • the height (H1) of the top portion 21 is 1.5 mm
  • the width of the flat surface 22 is 2.0 mm.
  • Comparative Example 23 and Comparative Example 24 are tubes 40 formed at the center O in the width direction without the top 21 of the stirring element 20 being eccentric. Comparative Example 23 and Comparative Example 24 do not form a flat surface 22.
  • the inlet side inclined surface 23 has a concave shape
  • the exit side inclined surface 24 has a convex shape.
  • the inlet side inclined surface has a convex shape
  • the exit side inclined surface 24 has a concave shape.
  • the width (2W) of the stirring element is 8.7 mm
  • the height (H1) of the top 21 is 2.1 mm.
  • the length of the approach section 31 on the upstream side of the test pyrolysis pipe 30 is 1.6 m, and the wall surface is insulated.
  • the same spiral stirring element 20 as the pipe 10 is formed in the approach section 31 connected to the pipe 10.
  • the tube 10 had a length of 0.6 m and was heated so that the wall surface was constant at 1000 ° C.
  • a fluid composed of 70% by weight of ethane and 30% by weight of steam was heated to 700 ° C. and supplied to the test pyrolysis tube 30 having the above configuration so that the inflowing mass flow rate was 0.2104 kg / s. Then, the pressure loss (kPa) and the heat transfer coefficient (h) (W / m2 ⁇ K) of the average of 5 points in the tube 10 were measured. The results are shown in FIG.
  • the invention example has higher heat transfer efficiency than the comparative example.
  • the top 21 of the stirring element 20 is eccentric to the fluid inlet side 11 or the fluid outlet side 12, so that the fluid is agitated appropriately, the temperature difference in the radial direction of the pipe 10 can be reduced, and the temperature is uniform. This is because the temperature rise could be achieved. Further, the flow of the fluid over the stirring element 20 prevents the generation of the boundary film near the inner surface of the pipe, and the destruction of the boundary film also contributes to the improvement of the heat transfer efficiency.
  • the flow in the axial direction of the tube shown in the invention example 10) can be increased, stirring can be appropriately performed in the radial direction of the tube, the temperature difference of the fluid in the radial direction of the tube can be reduced, and a uniform temperature rise can be achieved. It depends on what I was able to do. Further, even if the inclined surface 23 on the inlet side has a gentle inclination, the heat transfer coefficient is improved by forming the convex shape or the concave shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本発明は、管内流体の圧力損失の増大を防ぎつつ、良好な撹拌効果と熱伝達効率を向上できる撹拌要素の形成された熱分解管を提供する。 本発明の撹拌要素を具える熱分解管10は、管軸の一端側に流体入口、他端側に流体出口を有する管の内面に、1又は複数の流体の撹拌要素20を頂部21が内向きに突出するよう形成した熱分解管であって、前記撹拌要素は、前記管軸に対して長手方向が螺旋状に傾斜又は直交するよう形成され、前記長手方向に対して直交する幅方向の中心Oに対し、前記頂部が前記流体入口側11又は前記流体出口側12に偏心している。

Description

流体撹拌要素を具える熱分解管
 本発明は、エチレン等製造用の熱分解反応炉に用いられる熱分解管に関するものであり、より具体的には、管内を流通する流体の撹拌作用を高める撹拌要素が管の内面から突設された熱分解管に関するものである。
 エチレン、プロピレン等のオレフィンは、炭化水素(ナフサ、天然ガス、エタンなど)を含む原料流体を外部から加熱された熱分解管に高速流通させ、原料流体を反応温度域まで加熱して熱分解することにより生成される。
 熱分解反応を効率良く行なうには、高速流通する原料流体を短時間で管の径方向中心部まで熱分解反応温度域に加熱昇温させ、且つ、過加熱をできるだけ回避することが重要である。原料流体の過加熱は、炭化水素類の過度の軽質化(メタン、遊離炭素等の生成)や分解生成物の重縮合反応を招き、目的製品の収率低下が大きくなる。また、コーキング(遊離炭素の管内面への沈積)が助長され、管体の熱伝達係数の低下を招くから、デコーキング作業の実施を頻繁に行なう必要が生じ、操業時間が低下してしまう。
 そこで、熱分解管の内面に、流通流体の撹拌要素として断面が半円形又は半楕円形の突条を管軸に対して螺旋状に旋回するよう形成している(たとえば、特許文献1参照)。高速流通する流体は、突条による撹拌を受けて熱伝達が促進され、急速に昇温加熱されて熱分解は短時間で完結する。これにより、過加熱による過分解やコーキングの発生を抑え、また、熱分解管の熱伝達効率の向上により、熱分解管の加熱温度を低くすることが可能となり、熱分解管の耐用寿命向上の効果がもたらされる。
特開2008-249249号公報
 熱分解管には、さらなる熱伝達効率の向上が求められている。そのためには、流体を突条によってより撹拌させる必要がある。そこで、突条の形状をそのままにして、高さを高くしてみたところ、撹拌効果は高まるが、流体流路が狭くなる結果、流体の圧力損失が増大してしまい、熱伝達率の向上や目的製品の収率向上には繋がらなかった。
 そこで、流体の圧力損失の増大を防ぎつつ、流体の撹拌効果を高めることで、熱伝達効率を向上させて目的製品の収率増加を達成できる熱分解管の開発が求められている。
 本発明は、管内流体の圧力損失の増大を防ぎつつ、良好な撹拌効果と熱伝達効率を向上できる撹拌要素の形成された熱分解管を提供することを目的とする。
 本発明の撹拌要素を具える熱分解管は、
 管軸の一端側に流体入口、他端側に流体出口を有する管の内面に、1又は複数の流体の撹拌要素を頂部が内向きに突出するよう形成した熱分解管であって、
 前記撹拌要素は、前記管軸に対して長手方向が螺旋状に傾斜又は直交するよう形成され、前記長手方向に対して直交する幅方向の中心に対し、前記頂部が前記流体入口側又は前記流体出口側に偏心している。
 前記撹拌要素は、前記頂部の中心が、前記撹拌要素の前記幅方向の中心に対して前記流体入口側に10%以上又は前記流体出口側に5%以上偏心していることが望ましい。
 前記撹拌要素は、前記頂部の中心が、前記撹拌要素の前記幅方向の中心に対して前記流体入口側に90%以下又は前記流体出口側に85%以下偏心していることが望ましい。
 前記撹拌要素は、前記頂部を挟んで、前記流体入口側に入口側傾斜面、前記流体出口側に出口側傾斜面を有しており、前記入口側傾斜面と前記出口側傾斜面は傾斜角度が異なる構成とすることができる。
 前記入口側傾斜面及び/又は前記出口側傾斜面は、凸形状又は凹形状とすることができる。
 前記凸形状又は前記凹形状の傾斜面は、さらに凸部又は凹部を少なくとも1つ以上を前記傾斜面に有する形状とすることができる。
 前記撹拌要素は、前記長手方向の長さが、前記幅方向の長さよりも長い構成とすることができる。
 前記頂部は、略平坦な平坦面を有しており、前記平坦面の幅方向中心は前記流体入口側又は前記流体出口側に偏心した構成とすることができる。
 本発明の熱分解管によれば、流体は、撹拌要素により撹拌を受ける。撹拌要素は、頂部が幅方向中心に対して、流体入口側又は流体出口側の何れかに偏心している。撹拌要素の頂部を流体入口側に偏心させた場合には、撹拌要素は、流体入口側の傾斜角度が大きくなるから、撹拌要素に当たる流体の抵抗が増加し、管中心となる管軸側に向けて勢いよく流体が流れて、流体の撹拌エネルギーが増大する。その結果、管の内面近傍に形成されやすい境膜が破壊されて、熱伝達効率を高めることができる。一方、撹拌要素の頂部を流体出口側に偏心させた場合には、撹拌要素は、流体出口側の傾斜角度が大きくなるから、撹拌要素を超えた流体は、撹拌要素の流体出口側で勢いよく管の内面に叩きつけられる。その結果、撹拌要素の流体出口側に形成される境膜が破壊され、熱伝達効率を高めることができる。何れの場合も、流体の圧力損失の増大を防ぎつつ、良好な撹拌効果により、熱伝達効率の向上を達成でき、目的製品の収率向上や、過分解によるコーキングの発生を抑制できる。
図1は、本発明の一実施形態による撹拌要素を形成した熱分解管の管軸に沿う断面図である。 図2は、撹拌要素を断続的な螺旋状に形成した熱分解管の管軸に沿う断面図である。 図3は、図1の線X-Xに沿う断面図であって、流体入口側に頂部が偏心した撹拌要素の断面図であり、(a)は山型、(b)は頂部に平坦面を有する撹拌要素の断面図である。 図4は、図1の線X-Xに沿う断面図であって、流体入口側に頂部が偏心した撹拌要素の断面図であり、(a)は入口側傾斜面が凸形状、出口側傾斜面が凹形状、(b)は入口側傾斜面が凹形状、出口側傾斜面が凸形状の撹拌要素の断面図である。 図5は、図1の線X-Xに沿う断面図であって、流体出口側に頂部が偏心した撹拌要素の断面図であり、(a)は山型、(b)は頂部に平坦面を有する撹拌要素の断面図である。 図6は、図1の線X-Xに沿う断面図であって、流体出口側に頂部が偏心した撹拌要素の断面図であり、(a)は入口側傾斜面が凸形状、出口側傾斜面が凹形状、(b)は入口側傾斜面が凹形状、出口側傾斜面が凸形状の撹拌要素の断面図である。 図7は、図1の線X-Xに沿う断面図であって、流体出口側に頂部が偏心した撹拌要素の断面図であり、(a)は入口側傾斜面、出口側傾斜面共に凸形状、(b)は入口側傾斜面、出口側傾斜面共に凹形状の撹拌要素の断面図である。 図8は、(a)実施例1にて形成した撹拌要素のテクスチャ、(b)は3D写真を示している。 図9は、(a)が図8(a)の水平線に沿う撹拌要素の長手方向のプロファイルグラフ、(b)が図8(a)の垂直線に沿う撹拌要素の幅方向のプロファイルグラフである。 図10は、実施例2の供試熱分解管の概略構成を示す図である。 図11は、実施例2の圧力損失と熱伝達率を示すグラフである。 図12は、(a)が比較例21、22、(b)が比較例23、(c)が比較例24の各撹拌要素の断面図である。
 以下、本発明の熱分解管10について、図面を参照しながら説明を行なう。なお、図示の熱分解管10は、直管であるが、一般的には、直管からなる熱分解管10同士を屈曲したベンド管で接続し、蛇行した形状として熱分解炉に配備し、管外部から加熱を受けて、内部を流通する流体の熱分解を行なう。
 図1は、本発明の熱分解管10の一実施例を示す管軸に沿う断面図であって、撹拌要素20を螺旋状に連続して設けた管10の断面図、図2は、撹拌要素20を断続的な螺旋状の形態で設けた管10の断面図である。また、図3及び図4は、図1の線X-Xに沿う第1実施形態の撹拌要素20の拡大断面図、図5及び図6は、第2実施形態の撹拌要素20の拡大断面図である。説明の都合上、管10は、図1の紙面左側を流体入口側11、右側を流体出口側12としており、第1実施形態を示す図3及び図4は、撹拌要素20の頂部21が、管10の流体入口側11に偏心し、第2実施形態を示す図5及び図6は、撹拌要素20の頂部21が、管10の流体出口側12に偏心した実施形態を示している。以下では、まず、両実施形態に共通する形態について説明した後、各実施形態について説明を行なう。
 管10は、耐熱合金材料から形成することができ、25Cr-Ni(SCH22)、25Cr-35Ni(SCH24)、インコロイ(商標名)、或いは、Al:6.0質量%を上限として含有する合金を例示できる。もちろん、熱分解管10の材料はこれらに限定されず、高温の使用環境に耐え、要求される性能を具備する種々の耐熱合金材料を使用できる。
 管10には、内面から内向きに突出する撹拌要素20が形成されている。より詳細には、撹拌要素20は、管の内面に向けて突出する突条形状とすることができる。本発明では、撹拌要素20に関し、頂部21が流体入口側11又は流体出口側12の何れかに偏心していることを特徴としている。
 撹拌要素20は、図1では、長手方向が螺旋状に傾斜して連続する形態としている。撹拌要素20は、管軸と直交する面に対して上流側から下流側に向けて傾斜する角度をθとして規定した場合、熱分解管10の上流側から下流側まで同じ傾斜角度θとすることができるし、角度θを変えて設けることもできる。たとえば、撹拌要素20の傾斜角度θは、85°以下とすることが好適であり、30°以下とすることが望ましい。撹拌要素20の傾斜角度θは、15°以上とすることが望ましい。撹拌要素20は、θ=0°として、管軸に直交する形態としても構わない。傾斜角度θが小さ過ぎると撹拌要素20の下流側に淀みが発生し易くなる一方で、小さい程、管軸に対して撹拌要素20の傾きは大きいから、流通する流体の撹拌、乱流発生効果を高めることができる。
 なお、撹拌要素20は、連続する形態ではなく、図2に示すように断続的な形態とすることもできる。撹拌要素20を断続的な形態とすることで、撹拌効果は若干低下するが、流体の圧力損失を大きく低減できる。
 撹拌要素20は、長手方向の長さが、直交する幅方向の長さよりも長い形状とすることが望ましい。これにより、流体が管内で撹拌要素20に好適に衝突し、撹拌効果を高めることができる。
 撹拌要素20同士の間隔S(図1参照)は、管内径が30-150mmの場合、約20-400mmとすることができる。図1の撹拌要素 20は、1条の螺旋形態であるが、複数条の螺旋形態を平行又は傾斜角度を変えて設けることもできる。
 撹拌要素20の高さ(H1)(図3(a)、図5(a)等参照)は、管内径の約1/60-1/10とすることが望ましい。撹拌要素20の高さ(H1)が、管内径の1/60よりも低いと、流体の撹拌、乱流発生効果を十分に発揮できない虞がある。また、撹拌要素20の高さ(H1)が、管内径の1/10よりも高いと、撹拌要素20が流路抵抗となって流体の流通を阻害し、圧力損失が大きくなり、さらには、撹拌要素20の下流側で流体が滞留し易くなり、過分解やコークが堆積してしまう虞がある。故に、撹拌要素20の高さ(H1)を上記のとおり規定した。
 撹拌要素20は、上記した熱分解管10と同種の耐熱合金材料から形成することができるが、これに限定されるものではない。
 撹拌要素20は、たとえば、粉体プラズマ溶接(PTA溶接)、MIG溶接、TIG溶接、レーザー溶接などの肉盛溶接法により、肉盛ビードとして効率的に形成することができる。もちろん、押出加工により熱分解管10と撹拌要素20を一体に作製してもよく、また、切削等の機械加工により形成することもできる。
<第1実施形態>
 第1実施形態では、撹拌要素20は、図3(a)、図4(a)、図4(b)、図7(b)に断面を示すように、その頂部21が流体入口側11に偏心している。本明細書において、撹拌要素20の頂部21とは、撹拌要素20が管内面から管軸側に向けて内向きに突出した最も高い部分をいう。撹拌要素20が、図3(a)に示すような山型であればその頂点が頂部21であり、図3(b)に示すように撹拌要素20の頂部21が平坦面22を有する場合には、平坦面22の幅方向の中心O’を頂部21として規定する。
 頂部21は、撹拌要素20の幅方向の中心Oに対する偏心の度合い、すなわち偏心度が、流体入口側11に10%以上であることが好適であり、30%以上であることがより望ましい。また、偏心度の上限は、流体入口側11に90%以下であることが好適であり、80%以下であることがより望ましい。偏心度は、図3(a)に示すように撹拌要素20の幅を2Wとしたときに、撹拌要素20の幅方向の中心Oから頂部21までの距離(w)に対し、w/W × 100 %で規定することができる。図3(b)に示すように撹拌要素が平坦面22を有する場合には、距離(w)は、撹拌要素20の幅方向中心Oから平坦面22の中心O’である頂部21までの距離として規定される。
 撹拌要素20の幅方向中心Oに対する流体入口側11への偏心度は、第2実施形態で示す流体出口側12への偏心度に比べて、下限及び上限を大きく設定している。これは、頂部21が流体入口側11に偏心した撹拌要素20と流体出口側12に偏心した撹拌要素20による撹拌効果、生ずる旋回流の大きさを比較すると、流体入口側11に偏心させた方が、撹拌効果、生ずる旋回流ともに大きいためであり、流体入口側11に大きく偏心させた方が、目的製品の収率向上を図れることによる。
 撹拌要素20は、頂部21を挟んで、流体入口側11に入口側傾斜面23、流体出口側12に出口側傾斜面24を有する形状とすることができ、入口側傾斜面23の管内面に対する傾斜角度αは、出口側傾斜面24の管内面に対する傾斜角度βよりも大きいことが好適である。具体的には、傾斜角度αは、傾斜角度βよりも5°以上大きいことが望ましく、10°以上がより望ましい。これにより、管内を流通する流体は、急峻な入口側傾斜面23に当たって抵抗が増加し、管中心となる管軸側に向けて勢いよく流れ、流体の撹拌エネルギーを増大させることができる。その結果、管の内面近傍に形成されやすい境膜が破壊されて、流体の熱伝達効率を高めることができる。
 入口側傾斜面23及び出口側傾斜面24は、図3に示すように、平坦な形状とすることができる。
 撹拌要素20の頂部21が流体入口側11に偏心した熱分解管10に、流体入口側11から流体出口側12に向けて流体を流通させると、図3に矢印Aで示すように、撹拌要素20の入口側傾斜面23に当たって勢いよく管軸方向に向かう流れ、或いは、矢印Bで示す撹拌要素20を乗り越える流れを発生させることができる。管軸方向に向かう流体の流れは、管の径方向に好適に撹拌を行なうことができ、管の径方向の流体の温度差を小さくすることができ、均一な温度上昇を達成できる。また、撹拌要素20を乗り越えた流体の流れは、管内面近傍の境膜の発生を阻止し、境膜を破壊して熱伝達効率の向上に寄与する。さらに、撹拌要素20を管軸に対して螺旋状に形成した場合には、図1に矢印Cで示すように、流体の一部は螺旋状の撹拌要素20に沿って螺旋状に旋回する流れとなり、撹拌効果を高めて熱伝達効率の向上を図ることができる。
 なお、入口側傾斜面23及び出口側傾斜面24は、図4(a)に示すように凸形状又は図4(b)、図7(b)に示すように凹形状とすることもできる。入口側傾斜面23を凸形状とすることで、撹拌要素20は、流体入口側11の立ち上がりをより急峻にすることができ、当たった流体の一部を管軸方向に向かう勢いのよい流れ(矢印D)とすることができ、管の径方向に好適な撹拌を行なうことができる。また、入口側傾斜面23を凹形状とすることで、撹拌要素20は、頂部21近傍での角度を急峻にすることができるから、撹拌要素20に当たって下流側に向かう流体の流れ(矢印E、矢印K)を途中から勢いよく加速させることができ、撹拌効果を高めることができる。
 また、出口側傾斜面24を緩やかな傾斜(頂部21から裾までの水平距離(W+w)が長い)且つ凹形状(図4(a))としている。出口側傾斜面24は、緩やかな傾斜でありながら凹形状にすることで、撹拌要素20は、頂部21を超えた直後で急峻な形状になる。従って、流体の流れを勢いよく加速させることができ(矢印D’)、管内面に向けて加速した流体が管内面に当たって管内面近傍の境膜を破壊し、熱伝達効率を高めることができる。また、一部が凹形状に沿って旋回する流れ(D”)となる。一方、出口側傾斜面24を図4(b)に示すように緩やかな傾斜(頂部21から裾までの水平距離(W+w)が長い)且つ凸形状とすることで、頂部21を超えた直後は撹拌要素20に沿ってなだらかに流体を移動させ、立ち下がり部分で管内面に向けて傾斜が急峻になるから、流体を加速状態で管内面に当てることができ(矢印E’)、管内面近傍の境膜を好適に破壊して、熱伝達効率を高めることができる。
 なお、凸形状又は凹形状の入口側傾斜面23及び/又は出口側傾斜面24には、さらに凸部又は凹部を少なくとも1つ以上形成することで、流体に乱流を発生させることができ、さらに撹拌効果を高めることができる。
 上記のように、管10の内面に頂部21が流体入口側11に偏心した撹拌要素20を形成することで、流体の撹拌効果を高め、流体の圧力損失の増大を防ぎつつ、良好な撹拌効果により、熱伝達効率の向上を達成でき、目的製品の収率向上を図ることができる。また、流体が好適な撹拌により過加熱や滞留をし難い構成であるから、原料流体の過分解によるコーキングの発生も抑制でき、デコーキング作業を低減でき操業時間の増大、また、これによる目的製品の収量向上を図ることができる。
<第2実施形態>
 第2実施形態では、撹拌要素20は、図5に断面を示すように、その頂部21が流体出口側12に偏心している。なお、頂部21の規定や下記する偏心度の規定等、第1実施形態で説明した部分については適宜説明を省略する。
 頂部21は、撹拌要素20の幅方向中心Oに対する偏心度が、流体出口側12に5%以上であることが好適であり、15%以上であることがより望ましい。また、偏心度は、流体出口側12に85%以下であることが好適であり、75%以下であることがより望ましい。流体出口側12に頂部21を偏心させることで、入口側傾斜面23を緩やかな傾斜にすることができ、また、出口側傾斜面24を急峻な傾斜にすることができる。そして、これら傾斜面23,24に凹形状、凸形状を形成することで、傾斜角度を増大又は減少させることができ、流体の撹拌効果、熱伝達効率を高めることができる。
 撹拌要素20は、頂部21を挟んで、流体入口側11に入口側傾斜面23、流体出口側12に出口側傾斜面24を有する形状とすることができ、第1実施形態とは逆に、出口側傾斜面24の傾斜角度βが、入口側傾斜面23の傾斜角度αよりも大きいことが好適である。具体的には、傾斜角度βは、傾斜角度αよりも5°以上大きいことが望ましく、10°以上がより望ましい。これにより、撹拌要素20を乗り越えた流体は、急峻な出口側傾斜面24に沿って勢いを増し、撹拌エネルギーを高めたまま管内面に叩きつけられる。その結果、撹拌要素20の流体出口側12に形成される境膜が破壊され、熱伝達効率を高めることができる。何れの場合も、流体の圧力損失の増大を防ぎつつ、良好な撹拌効果により、熱伝達効率の向上を達成でき、目的製品の収率向上や、過分解によるコーキングの発生を抑制できる。
 入口側傾斜面23及び出口側傾斜面24は、図5に示すように、平坦な形状とすることができる。
 撹拌要素20の頂部21が流体出口側12に偏心した熱分解管10に、流体入口側11から流体出口側12に向けて流体を流通させると、図5に矢印Fで示すように、撹拌要素20の入口側傾斜面23に当たって管軸方向に向かう流れ、或いは、矢印Gで示すように撹拌要素20を乗り越える流れを発生させることができる。撹拌要素20は、第1実施形態に比べて入口側傾斜面23が緩やかであるから、管軸方向に向かう流れは第1実施形態に比べて勢いは小さく、故に圧力損失の増大を抑えることができ、一方、撹拌要素20を乗り越える流体の勢いを増大させることができる。そして、撹拌要素20を乗り越えた流体の流れは、急峻な出口側傾斜面24に沿って管内面に当たり、管内面近傍の境膜の発生を阻止し、境膜を破壊して熱伝達効率を向上させることができる。また。撹拌要素20を管軸に対して螺旋状に形成した場合には、図1に矢印Cで示すように、流体の一部は螺旋状の撹拌要素20に沿って螺旋状に旋回する流れとなり、撹拌効果を高めて熱伝達効率の向上を図ることができる。
 なお、入口側傾斜面23及び出口側傾斜面24は、図6(a)、(b)、図7(a)に示すように凸形状又は凹形状とすることもできる。図6、図7(a)は何れも撹拌要素20の頂部21を流体出口側12に偏心させた実施形態である。図6(a)は入口側傾斜面23が凸形状、出口側傾斜面24が凹形状である。図6(b)は入口側傾斜面23が凹形状、出口側傾斜面24が凸形状である。図7(a)は入口側傾斜面23、出口側傾斜面24が共に凸形状である。
 入口側傾斜面23を図6(a)、図7(a)に示すように凸形状とすることで、撹拌要素20は、流体入口側11の立ち上がりをより急峻にすることができ、当たった流体の一部を管軸方向に向かう勢いのよい流れ(矢印H、矢印J)を生じせしめ、高い撹拌効果を得ることができる。入口側傾斜面23を図6(b)に示すように凹形状とすることで、撹拌要素20は、頂部21近傍での角度を急峻にすることができるから、撹拌要素20に当たって下流側に向かう流体の流れ(矢印I、矢印K)を途中から勢いよく加速させることができ、撹拌効果を高めることができる。
 また、出口側傾斜面24を図6(a)に示すように凹形状とすることで、撹拌要素20は、頂部21を超えた直後で急峻な形状とすることができるから、流体の流れ(矢印H’)を勢いよく加速させることができ、管内面に向けて加速した流体が管内面に当たって管内面近傍の境膜を破壊し、熱伝達効率を高めることができる。また、一部が凹形状に沿って旋回する流れ(H”)となる。一方、出口側傾斜面24を図6(b)、図7(a)に示すように凸形状とすることで、頂部21を超えた直後は撹拌要素20に沿ってなだらかに流体を移動させ、立ち下がり部分で管内面に向けて傾斜が急峻になるから、流体を加速状態で管内面に当てることができ(矢印I’、J’)、管内面近傍の境膜を好適に破壊して、熱伝達効率を高めることができる。
 なお、凸形状又は凹形状の入口側傾斜面23及び/又は出口側傾斜面24には、さらに凸部又は凹部を少なくとも1つ以上形成することで、流体に乱流を発生させることができ、さらに撹拌効果を高めることができる。
 上記のように、管10の内面に頂部21が流体出口側12に偏心した撹拌要素20を形成することで、流体の撹拌効果を高め、流体の圧力損失の増大を防ぎつつ、良好な撹拌効果により、熱伝達効率の向上を達成でき、目的製品の収率向上を図ることができる。また、流体が好適な撹拌により過加熱や滞留をし難い構成であるから、原料流体の過分解によるコーキングの発生も抑制でき、デコーキング作業を低減でき操業時間の増大、また、これによる目的製品の収量向上を図ることができる。
 上記実施例の説明は、本発明を説明するためのものであって、請求の範囲に記載の発明を限定し、或は範囲を減縮するように解すべきものではない。又、本発明の各部構成は上記一実施形態に限らず、請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
<実施例1>
 管の内面にTIG溶接により、撹拌要素を肉盛ビードとして形成した。
 図8(a)は、形成された撹拌要素のテクスチャ、図8(b)は3D写真である。また、図9(a)は図8(a)の水平線に沿う撹拌要素の長手方向のプロファイルグラフ、図9(b)は図8(a)の垂直線に沿う撹拌要素の幅方向のプロファイルグラフである。図に示すように、撹拌要素は、管の流体入口側11(図8上側)に偏心した形状に形成できていることがわかる。
<実施例2>
 図10に示すように、上流側に助走区間31を有し、下流側に図3乃至図7に示す発明例1乃至発明例10の熱分解管10、比較例21乃至比較例24の熱分解管を接続した供試熱分解管30を作製し、流体を流通させて出口温度(℃)及び熱交換量(kW)を測定、比較した。
 発明例1は、図3(a)に示すように、撹拌要素20の頂部21が流体入口側11に偏心し、入口側傾斜面23、出口側傾斜面24は共に凹凸のないフラットな面を有する管10である。撹拌要素の幅(2W)は8.7mm、頂部21の高さ(H1)は2.1mm、偏心度は流体出口側12に向けて11%である。発明例1の入口側傾斜面23は緩やかな傾斜、他方、出口側傾斜面24は入口側傾斜面23に比べて急峻な傾斜となっている。
 発明例2は、図3(b)に示すように、撹拌要素20の頂部21が流体入口側11に偏心し、平坦面22を有する管10である。撹拌要素20の幅(2W)は8.7mm、頂部21の高さ(H1)は2.1mm、平坦面22の幅は1.8mm、偏心度は流体入口側11に向けて11%である。入口側傾斜面23、出口側傾斜面24は共に凹凸のないフラットな面である。発明例2の入口側傾斜面23は、出口側傾斜面24に比べて急峻な傾斜、他方、出口側傾斜面24は入口側傾斜面23に比べて緩やかな傾斜となっている。
 発明例3は、図4(a)に示すように、撹拌要素20の頂部21が流体入口側11に偏心し、入口側傾斜面23に凸形状、出口側傾斜面24に凹形状を有する管10である。撹拌要素の幅(2W)は9.1mm、頂部21の高さ(H1)は2.1mm、偏心度は流体入口側11に向けて13%である。発明例3の入口側傾斜面23は急峻な傾斜、出口側傾斜面24は緩やかな傾斜となっている。
 発明例4は、図4(b)に示すように、撹拌要素20の頂部21が流体入口側11に偏心し、入口側傾斜面23に凹形状、出口側傾斜面24に凸形状を有する管10である。撹拌要素の幅(2W)は9.1mm、頂部21の高さ(H1)は2.1mm、偏心度は流体入口側11に向けて13%である。発明例4の入口側傾斜面23は急峻な傾斜、出口側傾斜面24は緩やかな傾斜となっている。
 発明例5は、図5(a)に示すように、撹拌要素20の頂部21が流体入口側11に偏心し、入口側傾斜面23、出口側傾斜面24は共に凹凸のないフラットな面を有する管10である。撹拌要素の幅(2W)は8.7mm、頂部21の高さ(H1)は2.1mm、偏心度は流体出口側12に向けて11%である。発明例5の入口側傾斜面23は緩やかな傾斜、出口側傾斜面24は急峻な傾斜となっている。
 発明例6は、図5(b)に示すように、撹拌要素20の頂部21が流体出口側12に偏心し、平坦面22を有する管10である。撹拌要素20の幅(2W)は8.7mm、頂部21の高さ(H1)は2.1mm、平坦面22の幅は1.8mm、偏心度は流体出口側12に向けて11%である。入口側傾斜面23、出口側傾斜面24は共に凹凸のないフラットな面である。発明例6は、発明例2の入口側傾斜面23は緩やかな傾斜、出口側傾斜面24は急峻な傾斜となっている。
 発明例7は、図6(a)に示すように、撹拌要素20の頂部21が流体出口側12に偏心し、入口側傾斜面23に凸形状、出口側傾斜面24に凹形状を有する管10である。撹拌要素の幅(2W)は8.8mm、頂部21の高さ(H1)は2.1mm、偏心度は流体出口側12に向けて7%である。発明例7の入口側傾斜面23は緩やかな傾斜、出口側傾斜面24は急峻な傾斜となっている。
 発明例8は、図6(b)に示すように、撹拌要素20の頂部21が流体出口側12に偏心し、入口側傾斜面23に凹形状、出口側傾斜面24に凸形状を有する管10である。撹拌要素の幅(2W)は8.8mm、頂部21の高さ(H1)は2.1mm、偏心度は流体出口側12に向けて7%である。発明例8の入口側傾斜面23は緩やかな傾斜、出口側傾斜面24は急峻な傾斜となっている。
 発明例9は、図7(a)に示すように、撹拌要素20の頂部21が流体出口側12に偏心し、入口側傾斜面23、出口側傾斜面24が共に凸形状を有する管10である。撹拌要素の幅(2W)は8.9mm、頂部21の高さ(H1)は2.1mm、偏心度は流体出口側12に向けて12%である。発明例9の入口側傾斜面23は緩やかな傾斜、出口側傾斜面24は急峻な傾斜となっている。
 発明例10は、図7(b)に示すように、撹要素20の頂部21が流体入口側11に偏心し、入口側傾斜面23、出口側傾斜面24が共に凹形状を有する管10である。撹拌要素の幅(2W)は8.9mm、頂部21の高さ(H1)は2.1mm、偏心度は流体入口側11に向けて9%である。発明例10の入口側傾斜面23は急峻な傾斜、出口側傾斜面24は緩やかな傾斜となっている。
 比較例21、比較例22は、図12(a)に示すように、撹拌要素20の頂部21が偏心せず、幅方向中心Oに形成された管40である。比較例21、比較例22の入口側傾斜面23、出口側傾斜面24は共に凸形状である。比較例21の撹拌要素20の幅は8.7mm、頂部21の高さ(H1)は2.1mm、平坦面22の幅は2.8mm、比較例22の撹拌要素20の幅は6.6mm、頂部21の高さ(H1)は1.5mm、平坦面22の幅は2.0mmである。
 比較例23、比較例24も図12(b)、(c)に示すように、撹拌要素20の頂部21が偏心せず、幅方向中心Oに形成された管40である。比較例23、比較例24は平坦面22を形成していない。比較例23は、入口側傾斜面23が凹形状、出口側傾斜面24が凸形状である。また、比較例24は、入口側傾斜面が凸形状、出口側傾斜面24が凹形状である。撹拌要素の幅(2W)は共に8.7mm、頂部21の高さ(H1)は2.1mmである。
 何れも管10に形成される撹拌要素20は、図1に示すように、管軸に対してθ(=30°)傾斜した1条の螺旋形状としている。
 供試熱分解管30の上流側の助走区間31の長さは1.6mであり、壁面断熱を施している。何れの発明例、比較例も、管10と接続される助走区間31に、管10と同じ螺旋状の撹拌要素20を夫々形成している。管10は、長さ0.6mであり、壁面が1000℃一定となるように加熱した。
 上記構成の供試熱分解管30にエタン70重量%、水蒸気30重量%からなる流体を、700℃に昇温し、流入する質量流量は0.2104kg/sとなるように供給した。そして、管10内の5点平均の圧力損失(kPa)と熱伝達率(h)(W/m2・K)と測定した。結果を図11に示す。
 図11を参照すると、発明例1乃至発明例10は何れも、すべての比較例21乃至比較例24に比べて多少圧力損失は増大しているものの、熱伝達率を約10%以上高くできたことがわかる。発明例の圧力損失が、比較例と比べて大きくなった理由は、発明例は、撹拌要素20の頂部21が流体入口側11又は流体出口側12に偏心させたためであり、その結果、偏心のない比較例に比べて、流体の撹拌が高められ、撹拌エネルギーが大きくなったことによる。
 一方で、発明例は、比較例よりも熱伝達効率が高くなっている。これは、撹拌要素20の頂部21が流体入口側11又は流体出口側12に偏心していることで、流体が好適に撹拌され、管10の径方向の温度差を小さくすることができ、均一な温度上昇を達成できたためである。また、撹拌要素20を乗り越えた流体の流れは、管内面近傍の境膜の発生を阻止し、境膜を破壊したことも熱伝達効率の向上に寄与している。
 発明例同士を比べると入口側傾斜面23が急峻な傾斜であるほど圧力損失は高くなるが、熱伝達率も向上できたことがわかる。これは、撹拌要素20について、頂部21を流体入口側11に偏心させることで、入口側傾斜面23を急勾配にできるから、流体は、入口側傾斜面23に当たって、図3(a)、(b)の矢印A(発明例1、2)、図4(a)の矢印D(発明例3)、図4(b)の矢印E(発明例4)、図7(b)の矢印K(発明例10)で示す管軸方向に向かう流れを大きくでき、管の径方向に好適に撹拌を行なうことができ、管の径方向の流体の温度差を小さくして、均一な温度上昇を達成できたことによる。また、入口側傾斜面23が緩やかな傾斜であっても、凸形状又は凹形状とすることで熱伝達率も向上している。
10 熱分解管
20 撹拌要素
21 頂部

Claims (8)

  1.  管軸の一端側に流体入口、他端側に流体出口を有する管の内面に、1又は複数の流体の撹拌要素を頂部が内向きに突出するよう形成した熱分解管であって、
     前記撹拌要素は、前記管軸に対して長手方向が螺旋状に傾斜又は直交するよう形成され、前記長手方向に対して直交する幅方向の中心に対し、前記頂部が前記流体入口側又は前記流体出口側に偏心している、
     撹拌要素を具える熱分解管。
  2.  前記撹拌要素は、前記頂部の中心が、前記撹拌要素の前記幅方向の中心に対して前記流体入口側に10%以上又は前記流体出口側に5%以上偏心している、
     請求項1に記載の撹拌要素を具える熱分解管。
  3.  前記撹拌要素は、前記頂部の中心が、前記撹拌要素の前記幅方向の中心に対して前記流体入口側に90%以下又は前記流体出口側に85%以下偏心している、
     請求項1に記載の撹拌要素を具える熱分解管。
  4.  前記撹拌要素は、前記頂部を挟んで、前記流体入口側に入口側傾斜面、前記流体出口側に出口側傾斜面を有しており、前記入口側傾斜面と前記出口側傾斜面は傾斜角度が異なる、
     請求項1乃至請求項3の何れかに記載の撹拌要素を具える熱分解管。
  5.  前記入口側傾斜面及び/又は前記出口側傾斜面は、凸形状又は凹形状である、
     請求項4に記載の撹拌要素を具える熱分解管。
  6.  前記凸形状又は前記凹形状の傾斜面は、さらに凸部又は凹部を少なくとも1つ以上を前記傾斜面に有する、
     請求項5に記載の撹拌要素を具える熱分解管。
  7.  前記撹拌要素は、前記長手方向の長さが、前記幅方向の長さよりも長い、
     請求項1乃至請求項6の何れかに記載の撹拌要素を具える熱分解管。
  8.  前記頂部は、略平坦な平坦面を有しており、前記平坦面の幅方向中心は前記流体入口側又は前記流体出口側に偏心している、
     請求項1に記載の撹拌要素を具える熱分解管。
PCT/JP2021/023412 2020-06-29 2021-06-21 流体撹拌要素を具える熱分解管 WO2022004465A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/613,639 US20220316814A1 (en) 2020-06-29 2021-06-21 Thermal cracking tube with fluid agitating element
CA3181888A CA3181888A1 (en) 2020-06-29 2021-06-21 Thermal decomposition pipe equipped with fluid stirring element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020111567A JP6868146B1 (ja) 2020-06-29 2020-06-29 流体撹拌要素を具える熱分解管
JP2020-111567 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004465A1 true WO2022004465A1 (ja) 2022-01-06

Family

ID=75801772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023412 WO2022004465A1 (ja) 2020-06-29 2021-06-21 流体撹拌要素を具える熱分解管

Country Status (4)

Country Link
US (1) US20220316814A1 (ja)
JP (1) JP6868146B1 (ja)
CA (1) CA3181888A1 (ja)
WO (1) WO2022004465A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115933A (ja) * 2000-10-10 2002-04-19 Sumitomo Light Metal Ind Ltd 吸収器用伝熱管
US20050045319A1 (en) * 2003-05-26 2005-03-03 Pascal Leterrible Grooved tubes for heat exchangers that use a single-phase fluid
JP2008249249A (ja) * 2007-03-30 2008-10-16 Kubota Corp 熱分解管
EP2230009A1 (en) * 2009-03-17 2010-09-22 Total Petrochemicals Research Feluy Process for quenching the effluent gas of a furnace.
CN102636054A (zh) * 2012-05-04 2012-08-15 哈尔滨工业大学 非对称型缩放式横槽管换热器
JP2019027668A (ja) * 2017-07-28 2019-02-21 三菱日立パワーシステムズ株式会社 伝熱管、ボイラ及び蒸気タービン設備

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162198A (ja) * 1984-01-31 1985-08-23 Toshiba Corp 満液式熱交換器
JPH04100671U (ja) * 1991-01-25 1992-08-31

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115933A (ja) * 2000-10-10 2002-04-19 Sumitomo Light Metal Ind Ltd 吸収器用伝熱管
US20050045319A1 (en) * 2003-05-26 2005-03-03 Pascal Leterrible Grooved tubes for heat exchangers that use a single-phase fluid
JP2008249249A (ja) * 2007-03-30 2008-10-16 Kubota Corp 熱分解管
EP2230009A1 (en) * 2009-03-17 2010-09-22 Total Petrochemicals Research Feluy Process for quenching the effluent gas of a furnace.
CN102636054A (zh) * 2012-05-04 2012-08-15 哈尔滨工业大学 非对称型缩放式横槽管换热器
JP2019027668A (ja) * 2017-07-28 2019-02-21 三菱日立パワーシステムズ株式会社 伝熱管、ボイラ及び蒸気タービン設備

Also Published As

Publication number Publication date
US20220316814A1 (en) 2022-10-06
JP2022010814A (ja) 2022-01-17
CA3181888A1 (en) 2022-01-06
JP6868146B1 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
JP3001181B2 (ja) エチレン製造用反応管
JP4290123B2 (ja) 螺旋状フィン付きクラッキングチューブ
JP4860531B2 (ja) 熱分解管
JP2010150553A (ja) 炭化水素を熱分解する方法とリブ付き管
JP7005538B2 (ja) 分解炉
JP2015083910A (ja) 伝熱管および伝熱管を用いた分解炉
JP5289811B2 (ja) 反応管
WO2022004465A1 (ja) 流体撹拌要素を具える熱分解管
WO2019080887A1 (zh) 强化传热管以及包括其的裂解炉和常减压加热炉
KR20140054727A (ko) 열교환용 나선형 전열관
WO2021132310A1 (ja) 流体撹拌要素を具える熱分解管
JP7510868B2 (ja) 流体撹拌要素を具える熱分解管
JP2021107761A (ja) 流体撹拌要素を具える熱分解管
US5538708A (en) Expansion section as the inlet to the flue in a titanium dioxide process
US11774187B2 (en) Heat transfer fin of fin-tube type heat exchanger
JP2001262159A (ja) クラッキングコイル
US20230019344A1 (en) Internally profiled tubes
WO1996012151A1 (en) Heat transfer tube
JPH11201681A (ja) 熱交換用管
JP2019199984A (ja) 熱交換器
JPH09264683A (ja) 石油化学用フィン付き熱分解反応管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3181888

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834180

Country of ref document: EP

Kind code of ref document: A1