CN102636054A - 非对称型缩放式横槽管换热器 - Google Patents

非对称型缩放式横槽管换热器 Download PDF

Info

Publication number
CN102636054A
CN102636054A CN2012101369156A CN201210136915A CN102636054A CN 102636054 A CN102636054 A CN 102636054A CN 2012101369156 A CN2012101369156 A CN 2012101369156A CN 201210136915 A CN201210136915 A CN 201210136915A CN 102636054 A CN102636054 A CN 102636054A
Authority
CN
China
Prior art keywords
asymmetric
translot
pipe
pantographic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101369156A
Other languages
English (en)
Inventor
李炳熙
付崇彬
韩怀志
何玉荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2012101369156A priority Critical patent/CN102636054A/zh
Publication of CN102636054A publication Critical patent/CN102636054A/zh
Pending legal-status Critical Current

Links

Images

Abstract

非对称型缩放式横槽管换热器,它涉及一种横槽管换热器,具体涉及一种非对称型缩放式横槽管换热器,属于热交换工艺装备技术领域,以解决现有的横槽管换热器存在综合传热效率低以及无法适用于气-汽换热中的问题,每个换热管均为非对称型缩放式横槽管,所述非对称型缩放式横槽管内侧壁位于去流侧的圆弧面的曲率半径小于非对称型缩放式横槽管内侧壁位于来流侧的圆弧面的曲率半径,非对称型缩放式横槽管上环状槽的开口宽度为6mm至10mm,非对称型缩放式横槽管上环状槽的凸棱高度为0.6mm至1.1mm,非对称型缩放式横槽管的壁厚为2mm至3mm。本发明适用于工业领域,尤其适用于气-汽换热中。

Description

非对称型缩放式横槽管换热器
技术领域
本发明涉及一种横槽管换热器,具体涉及一种非对称型缩放式横槽管换热器,属于热交换工艺装备技术领域。
背景技术
自70年代能源危机爆发以来,能源消耗量也随之增加,对传统换热器设备强化研究逐渐兴起,换热器的强化传热就是力求使换热器在单位时间内,单位传热面积传递的热量达到最多,应用强化传热技术的目的是力图以最经济(体积小、重量轻、成本低)的换热器来传递规定的热量,这就要求所研制的换热器,尽可能地节省资金、能源和减少金属消耗及所占的空间。目前管壳式换热器的研究主要集中在两个方面:一是针对壳程,主要对传统管壳式换热器壳程管束的支撑结构进行创新设计,研发新的换热器。例如,弓形折流板支撑、折流杆式支撑、螺旋折流板支撑、空心环网板支撑、旋流网板支撑和管子自支撑等类型;二是针对管程,对传统管壳式换热器的换热元件采取强化措施,用各种异型管替代光管。现在应用较多的是螺旋槽管、横槽管、波节管、波纹管、缩放管、内翅管、菱形翅片管、花瓣形翅片管和表面多孔管等。
横槽管是一种特殊形状的缩放管,是以普通圆管为管呸,通过专用机床对管子的滚轧使得管子的外壁面形成一条条与轴线相垂直的环状槽,而内壁面则成为相应的一个个横向凸棱,形成由光管段和横向环状槽(或凸棱)交替变化的横槽型通道。
横槽管是在1974年由苏联的加里宁最早提出并在化工机械厂生产,上世纪80年代末中国开始进行横槽管的研究,其强化换热的机理是:当流体流经横向凸棱时,在管壁附近形成轴向涡流,这种涡流增加了边界层的扰动,使边界层分离,使边界层减薄,从而有利于热量的传递,当涡流快消失时,流体又经过下一个横向凸棱,这祥不断产生轴向涡流,从而具有连续、稳定的强化作用;另外直线光管段起着积累能量的作用,是不可缺少的,两者互相促进,大大提高了换热系数,因此,根据市场需要,这种高效换热管应用在很多行业中,例如:煤气站汽化、电厂首战、油田输油管道加热、储藏设备制冷、海水热交换等。
虽然流体在管程和壳程流动时横槽管的阻力比光管有一定程度的增加,但是现有横槽管的槽圆弧半径均为对称型,流动死区大,流动阻力较大,而且横槽管外壁面环状槽的开口宽度较窄,使得壳程流体流过环状槽时会在环状槽内积留一部分流体,流动死区大,容易产生结垢,这种结构仍然存在综合传热效率低的问题。
目前为止,传统的横槽管换热器还没有应用在高压的气-汽换热中,比如核电站乏汽和水蒸气之间换热就属于典型的气-汽换热,核电站所用换热器管内流体为高温高压的氦气(温度450℃,压力3MPa),管外流体为高温高压水蒸气(温度280℃,压力7MPa),气-汽换热一般是在高温高压环境下运行,由于横槽管周期性的环状槽,导致局部的应力集中比较大,尤其是管外部压力大于内部压力时,应力集中更为明显,抗压能力较差。传统的横槽管换热器并不适用在气-汽换热中,传统的横槽管仅可以承受温度低于200℃,压力低于1.6MPa的工作环境。
综上,现有的横槽管换热器存在综合换热效率低,无法适用于高温高压的气-汽换热中的问题。
发明内容
本发明的目的是为解决现有的横槽管换热器存在综合传热效率低以及无法适用于气-汽换热中的问题,进而提供一种非对称型缩放式横槽管换热器。
本发明为解决上述问题采取的技术方案是:本发明的非对称型缩放式横槽管换热器包括外壳、冷介质进口管、冷介质出口管、热介质进口管、热介质出口管、两个管板、第一封头、第二封头、水平隔板、多个折流板和多个换热管,外壳的两端内壁上各安装有一个管板,外壳的一侧端面上安装有第一封头,外壳的另一侧端面上安装有第二封头,外壳的顶部设置有热介质进口管,外壳的底部设置有热介质出口管,第一封头内设置有水平隔板,第一封头的顶部设置有冷介质进口管,第一封头的底部设置有冷介质出口管,外壳的内部沿竖向设置有多个折流板,多个换热管水平置于外壳内,换热管两端中的一端穿设在一个管板的管板孔内,另一端穿设在另一个管板的管板孔内;每个换热管均为非对称型缩放式横槽管,所述非对称型缩放式横槽管内侧壁位于去流侧的圆弧面的曲率半径小于非对称型缩放式横槽管内侧壁位于来流侧的圆弧面的曲率半径,非对称型缩放式横槽管上环状槽的开口宽度为6mm至10mm,非对称型缩放式横槽管上环状槽的凸棱高度为0.6mm至1.1mm,非对称型缩放式横槽管的壁厚为2mm至3mm。
本发明的有益效果是:
一、本发明的横槽管内侧壁位于去流侧的圆弧面的曲率半径小于横槽管内侧壁位于来流侧的圆弧面的曲率半径,相比对称型横槽管,具有渐缩急扩的缩放特性,能够减小流动死区,减小流动阻力,并且去流侧的圆弧面和来流侧的圆弧面相切连接,曲面连接平滑,能够使流体流动平滑,减小流动阻力,不易产生结垢,提高了综合传热效率;
二、本发明的横槽管上环状槽的开口宽度为6mm至10mm,减少了环状槽内所积留的流体,减少流动阻力,不易产生结垢,与对称型横槽管相比,换热量基本不变的情况下,大大减少了流动阻力损失,提高了综合换热效率;
三、本发明的横槽管上环状槽的凸棱高度为0.6mm至1.1mm,横槽管的壁厚为2mm至3mm,使得横槽管能够承受高温高压的工作环境,不仅适用于中、低压工况,也适用于高温高压的气-汽换热工况下。
附图说明
图1是本发明的非对称型缩放式横槽管换热器整体结构主剖视图(图中箭头表示介质走向),图2是非对称型缩放式横槽管的主剖视图,图3是非对称型缩放式横槽管的半剖视图,图4是图3的A处放大图,图5是多个非对称型缩放式横槽管的位置关系图。
具体实施方式
具体实施方式一:结合图1-图4说明本实施方式,本实施方式的非对称型缩放式横槽管换热器包括外壳1、冷介质进口管2、冷介质出口管3、热介质进口管4、热介质出口管5、两个管板6、第一封头7、第二封头10、水平隔板11、多个折流板8和多个换热管9,外壳1的两端内壁上各安装有一个管板6,外壳1的一侧端面上安装有第一封头7,外壳1的另一侧端面上安装有第二封头10,外壳1的顶部设置有热介质进口管4,外壳1的底部设置有热介质出口管5,第一封头7内设置有水平隔板11,第一封头7的顶部设置有冷介质进口管2,第一封头7的底部设置有冷介质出口管3,外壳1的内部沿竖向设置有多个折流板8,多个换热管9水平置于外壳1内,换热管9两端中的一端穿设在一个管板6的管板孔6-1内,另一端穿设在另一个管板6的管板孔6-1内;每个换热管9均为非对称型缩放式横槽管,所述非对称型缩放式横槽管内侧壁位于去流侧的圆弧面的曲率半径r小于非对称型缩放式横槽管内侧壁位于来流侧的圆弧面的曲率半径R,非对称型缩放式横槽管上环状槽的开口宽度W为6mm至10mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm至1.1mm,非对称型缩放式横槽管的壁厚δ为2mm至3mm。
本实施方式中去流侧的圆弧面和来流侧的圆弧面相切连接,曲面连接平滑,去流侧的圆弧面对应的水平开口宽度为2mm,来流侧的圆弧面对应的水平开口宽度为4mm至8mm。
具体实施方式二:结合图1-图3说明本实施方式,本实施方式的非对称型缩放式横槽管采用碳钢或合金钢制成。如此设置,便于加工成型,而且成本低,使用寿命长。其它组成和连接关系与具体实施方式一相同。
具体实施方式三:结合图2和图3说明本实施方式,本实施方式的非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为5mm至15mm。如此设置,光管段长度适中,而且环状槽的数量适宜,机床对管子的滚轧加工成本相对较低,也有利于管程综合传热效率增加。其它组成和连接关系与具体实施方式一或二相同。
具体实施方式四:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为6mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为5mm。如此设置,光管段的长度减少,换热量有所增加,阻力损失有所降低,但综合传热效率有一定程度的增加,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了10.91%,管程综合传热效率是1.18;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.3%。其它组成和连接关系与具体实施方式三相同。
具体实施方式五:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为10mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为5mm。如此设置,换热量虽有所减少,但开口宽度增加,减少了环状槽内所积留的流体,减少流动阻力,阻力损失有所降低,综合传热效率有一定程度的增加,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了6.97%,管程综合传热效率是1.22;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.45%。其它组成和连接关系与具体实施方式三相同。
具体实施方式六:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为8mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为10mm。如此设置,换热量虽有所减少,但开口宽度增加,减少了环状槽内所积留的流体,减少流动阻力,阻力损失有所降低,同时,光管段的长度增加,环状槽(或凸棱)的数量减少,综合传热效率有大幅度的增加,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了7.13%,管程综合传热效率是1.34;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.88%。其它组成和连接关系与具体实施方式三相同。
具体实施方式七:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为8mm,非对称型缩放式横槽管上环状槽的凸棱高度e为1.1mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为10mm。如此设置,凸棱的高度增加,流体流经横向凸棱时,在管内壁附近形成轴向涡流,增加了边界层的扰动,使边界层分离,使换热量明显增加,但流动阻力增大,综合传热效率有一定程度减少,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了20.16%,管程综合传热效率是1.12;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.08%。其它组成和连接关系与具体实施方式三相同。
具体实施方式八:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为6mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为15mm。如此设置,换热量有一定程度的减少,但流动阻力明显减少,综合传热效率有一定程度增加,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了7.04%,管程综合传热效率是1.29;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.7%。其它组成和连接关系与具体实施方式三相同。
具体实施方式九:结合图2-图5说明本实施方式,本实施方式的非对称型缩放式横槽管上环状槽的开口宽度W为10mm,非对称型缩放式横槽管上环状槽的凸棱高度e为0.6mm,非对称型缩放式横槽管的壁厚δ为2.5mm,相邻两个非对称型缩放式横槽管间距tp为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度P为15mm。如此设置,换热量虽有明显减少,但开口宽度增加,减少了环状槽内所积留的流体,减少流动阻力,阻力损失大幅减少,同时,光管段的长度增加,环状槽(或凸棱)的数量减少,综合传热效率有一定程度的增加,本实施方式的非对称型缩放式横槽管与光管比较,管程换热量提高了5.19%,管程综合传热效率是1.27;本实施方式的非对称型缩放式横槽管与对称型横槽管比较,管程综合传热效率提高了4.63%。其它组成和连接关系与具体实施方式三相同。

Claims (9)

1.非对称型缩放式横槽管换热器,它包括外壳(1)、冷介质进口管(2)、冷介质出口管(3)、热介质进口管(4)、热介质出口管(5)、两个管板(6)、第一封头(7)、第二封头(10)、水平隔板(11)、多个折流板(8)和多个换热管(9),外壳(1)的两端内壁上各安装有一个管板(6),外壳(1)的一侧端面上安装有第一封头(7),外壳(1)的另一侧端面上安装有第二封头(10),外壳(1)的顶部设置有热介质进口管(4),外壳(1)的底部设置有热介质出口管(5),第一封头(7)内设置有水平隔板(11),第一封头(7)的顶部设置有冷介质进口管(2),第一封头(7)的底部设置有冷介质出口管(3),外壳(1)的内部沿竖向设置有多个折流板(8),多个换热管(9)水平置于外壳(1)内,换热管(9)两端中的一端穿设在一个管板(6)的管板孔(6-1)内,另一端穿设在另一个管板(6)的管板孔(6-1)内;其特征在于:每个换热管(9)均为非对称型缩放式横槽管,所述非对称型缩放式横槽管内侧壁位于去流侧的圆弧面的曲率半径(r)小于非对称型缩放式横槽管内侧壁位于来流侧的圆弧面的曲率半径(R),非对称型缩放式横槽管上环状槽的开口宽度(W)为6mm至10mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm至1.1mm,非对称型缩放式横槽管的壁厚(δ)为2mm至3mm。
2.根据权利要求1所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管采用碳钢或合金钢制成。
3.根据权利要求1或2所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为5mm至15mm。
4.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为6mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为5mm。
5.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为10mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为5mm。
6.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为8mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为10mm。
7.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为8mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为1.1mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为10mm。
8.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为6mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为15mm。
9.根据权利要求3所述的非对称型缩放式横槽管换热器,其特征在于:非对称型缩放式横槽管上环状槽的开口宽度(W)为10mm,非对称型缩放式横槽管上环状槽的凸棱高度(e)为0.6mm,非对称型缩放式横槽管的壁厚(δ)为2.5mm,相邻两个非对称型缩放式横槽管间距(tp)为37.5mm,非对称型缩放式横槽管上相邻两个环状槽之间的光管段的长度(P)为15mm。
CN2012101369156A 2012-05-04 2012-05-04 非对称型缩放式横槽管换热器 Pending CN102636054A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101369156A CN102636054A (zh) 2012-05-04 2012-05-04 非对称型缩放式横槽管换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101369156A CN102636054A (zh) 2012-05-04 2012-05-04 非对称型缩放式横槽管换热器

Publications (1)

Publication Number Publication Date
CN102636054A true CN102636054A (zh) 2012-08-15

Family

ID=46620545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101369156A Pending CN102636054A (zh) 2012-05-04 2012-05-04 非对称型缩放式横槽管换热器

Country Status (1)

Country Link
CN (1) CN102636054A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411454A (zh) * 2013-08-29 2013-11-27 哈尔滨工业大学 一种外凸式波节管错位布置的管式换热器
CN104019693A (zh) * 2014-05-16 2014-09-03 江苏嘉泰蒸发结晶设备有限公司 管箱焊接结构及制造方法
WO2022004465A1 (ja) * 2020-06-29 2022-01-06 株式会社クボタ 流体撹拌要素を具える熱分解管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2524196Y (zh) * 2001-11-22 2002-12-04 兰州兴业材料保护有限公司 高效阳极保护管壳式浓硫酸冷却器
CN201429348Y (zh) * 2009-07-07 2010-03-24 淄博万昌化工设备有限公司 一种波纹管换热器
CN201926339U (zh) * 2010-12-29 2011-08-10 中冶焦耐(大连)工程技术有限公司 一种氨气冷却器
CN102278907A (zh) * 2011-05-16 2011-12-14 哈尔滨工业大学 外凸式非对称型波节管换热器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2524196Y (zh) * 2001-11-22 2002-12-04 兰州兴业材料保护有限公司 高效阳极保护管壳式浓硫酸冷却器
CN201429348Y (zh) * 2009-07-07 2010-03-24 淄博万昌化工设备有限公司 一种波纹管换热器
CN201926339U (zh) * 2010-12-29 2011-08-10 中冶焦耐(大连)工程技术有限公司 一种氨气冷却器
CN102278907A (zh) * 2011-05-16 2011-12-14 哈尔滨工业大学 外凸式非对称型波节管换热器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411454A (zh) * 2013-08-29 2013-11-27 哈尔滨工业大学 一种外凸式波节管错位布置的管式换热器
CN104019693A (zh) * 2014-05-16 2014-09-03 江苏嘉泰蒸发结晶设备有限公司 管箱焊接结构及制造方法
CN104019693B (zh) * 2014-05-16 2015-12-09 江苏嘉泰蒸发结晶设备有限公司 管箱焊接结构及制造方法
WO2022004465A1 (ja) * 2020-06-29 2022-01-06 株式会社クボタ 流体撹拌要素を具える熱分解管
JP2022010814A (ja) * 2020-06-29 2022-01-17 株式会社クボタ 流体撹拌要素を具える熱分解管

Similar Documents

Publication Publication Date Title
CN102278907B (zh) 外凸式非对称型波节管换热器
CN101504261B (zh) 一种纵向流一体式翅片管
CN201517899U (zh) 一种管壳式换热器
CN102620587B (zh) 一种管壳式脉动热管换热器
CN101349514B (zh) 一种内外翅片插管式高温换热器
CN109405589B (zh) 一种双管程独立换热的球形换热器
CN103411454A (zh) 一种外凸式波节管错位布置的管式换热器
CN103063058A (zh) 一种新型卧式冷却器
CN102636054A (zh) 非对称型缩放式横槽管换热器
CN1140764C (zh) 缩放管全逆流双壳程轴流式换热器及其换热方法
CN102252539A (zh) 一种管壳式换热器
RU2386096C2 (ru) Сотовый теплообменник с закруткой потока
CN201945095U (zh) 一种螺旋折流板支撑双面强化管管束干式蒸发器
CN201754044U (zh) 波纹管热网加热器
CN111336841A (zh) 一种围叠式微通道换热器
CN104279895A (zh) 螺旋流道换热器
CN113218218A (zh) 一种铜铝复合材料内外翅片管换热器
CN210426197U (zh) 编织填料式超高温超高压换热器
CN112665438A (zh) 一种适用于同轴气流的组合式多级高效换热器
CN206300521U (zh) 一种t形翅片管式换热器
CN112179172A (zh) 一种冷热流体同层布置的盘板式扩散焊紧凑换热器
CN217900584U (zh) 一种螺旋式换热器
CN100480607C (zh) 满液型滚压强化管束蒸发换热器
CN101975522A (zh) 高效换热器
CN218329422U (zh) 一种用于加氢装置中热高分气的热回收系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120815