WO2022004142A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2022004142A1
WO2022004142A1 PCT/JP2021/018041 JP2021018041W WO2022004142A1 WO 2022004142 A1 WO2022004142 A1 WO 2022004142A1 JP 2021018041 W JP2021018041 W JP 2021018041W WO 2022004142 A1 WO2022004142 A1 WO 2022004142A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
film transistor
thin film
electrically connected
noise
Prior art date
Application number
PCT/JP2021/018041
Other languages
English (en)
French (fr)
Inventor
亮 身深
浩志 鬼橋
俊輔 若松
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Priority to KR1020227044387A priority Critical patent/KR20230011413A/ko
Priority to CN202180044496.0A priority patent/CN115917364A/zh
Priority to EP21833596.6A priority patent/EP4177643A4/en
Publication of WO2022004142A1 publication Critical patent/WO2022004142A1/ja
Priority to US18/066,483 priority patent/US20230137069A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/618Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources

Definitions

  • the embodiment of the present invention relates to a radiation detector.
  • An example of a radiation detector is an X-ray detector.
  • the X-ray detector is provided with, for example, an array substrate having a plurality of photoelectric conversion units and a scintillator provided on the plurality of photoelectric conversion units to convert X-rays into fluorescence.
  • the photoelectric conversion unit is provided with a photoelectric conversion element that converts fluorescence from a scintillator into a signal charge, a thin film transistor that switches between storage and emission of signal charges, a storage capacitor that stores signal charges, and the like.
  • the X-ray detector constitutes an X-ray image as follows. First, the incident of X-rays is recognized by the signal input from the outside. Next, after the lapse of a predetermined time, the thin film transistor of the photoelectric conversion unit to be read is turned on, and the accumulated signal charge is read out as an image data signal. Then, an X-ray image is formed based on the value of the image data signal read out for each photoelectric conversion unit.
  • the value of the image data signal read out for each photoelectric conversion unit includes a value corresponding to the X-ray dose and a value corresponding to the noise. Therefore, when composing an X-ray image, offset processing (offset correction) is performed in which a value corresponding to noise is subtracted from the value of the image data signal read out by each photoelectric conversion unit.
  • the noise is roughly divided into random noise and horizontal pulling noise.
  • Random noise is generated evenly distributed throughout the X-ray image.
  • the horizontal pulling noise appears in a streak in the horizontal or vertical direction. Therefore, the horizontal pulling noise becomes more noticeable than the random pulling noise, and it is required to reduce the horizontal pulling noise.
  • a technique has been proposed in which a plurality of noise detection units that do not generate signal charges when X-rays are incident are provided and the horizontal pulling noise is detected by the plurality of noise detection units.
  • the plurality of noise detection units are provided side by side outside the region (effective pixel region) in which the plurality of photoelectric conversion units are provided.
  • the problem to be solved by the present invention is to provide a radiation detector capable of detecting noise and suppressing an increase in the size of the radiation detector.
  • the radiation detector includes a plurality of control lines extending in a first direction, a plurality of data lines extending in a second direction orthogonal to the first direction, the plurality of control lines, and the plurality of control lines.
  • Each of the plurality of photoelectric conversion units has a first thin film transistor electrically connected to the corresponding control line and the corresponding data line, and an electrode electrically connected to the first thin film transistor.
  • Each of the plurality of noise detection units includes a second thin film transistor electrically connected to the corresponding control line and the corresponding data line, and a capacitive unit electrically connected to the second thin film transistor. ,have. In at least one of the first direction and the second direction, the length of the capacitive portion is shorter than the length of the electrode.
  • (A) and (b) are schematic plan views for exemplifying the arrangement of the region provided with a plurality of noise detection units. It is a schematic plan view for exemplifying the arrangement of the noise detection part which concerns on other embodiment. It is a schematic plan view for exemplifying the arrangement of the noise detection part which concerns on other embodiment. (A) and (b) are schematic plan views for exemplifying the arrangement of the area 203.
  • the radiation detector according to the present embodiment can be applied to various types of radiation such as ⁇ -rays in addition to X-rays.
  • ⁇ -rays in addition to X-rays.
  • X-rays as a typical example of radiation will be described. Therefore, by replacing "X-ray" in the following embodiment with "other radiation”, it can be applied to other radiation.
  • the X-ray detector 1 illustrated below is an X-ray plane sensor that detects an X-ray image that is a radiographic image.
  • the X-ray detector 1 can be used for general medical treatment, for example, but its use is not limited.
  • FIG. 1 is a schematic perspective view for exemplifying the X-ray detector 1.
  • the bias lines 2c3 and the like are omitted.
  • FIG. 2 is a block diagram of the X-ray detector 1.
  • FIG. 3 is a circuit diagram of the array board 2. As shown in FIGS. 1 to 3, the X-ray detector 1 is provided with an array substrate 2, a signal processing circuit 3, an image configuration circuit 4, and a scintillator 5.
  • the array substrate 2 converts the fluorescence (visible light) converted from X-rays by the scintillator 5 into an electric signal.
  • the array substrate 2 has a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a bias line 2c3, and a noise detection unit 2g.
  • the number of the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, the bias line 2c3, the noise detection unit 2g, and the like are not limited to those illustrated.
  • the substrate 2a has a plate shape and is made of a translucent material such as non-alkali glass.
  • a plurality of photoelectric conversion units 2b are provided on one surface of the substrate 2a.
  • the photoelectric conversion unit 2b has a rectangular shape, and is provided in each of a plurality of regions defined by a plurality of control lines 2c1 and a plurality of data lines 2c2.
  • the plurality of photoelectric conversion units 2b are arranged in a matrix.
  • One photoelectric conversion unit 2b corresponds to one pixel in the X-ray image.
  • Each of the plurality of photoelectric conversion units 2b is provided with a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 (corresponding to an example of the first thin film transistor) which is a switching element.
  • TFT thin film transistor
  • a storage capacitor 2b3 for accumulating the signal charge converted in the photoelectric conversion element 2b1 can be provided.
  • the storage capacitor 2b3 has, for example, a rectangular flat plate shape and can be provided under each thin film transistor 2b2. However, depending on the capacity of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
  • the thin film transistor 2b2 switches the charge accumulation and emission generated by the fluorescence incident on the photoelectric conversion element 2b1.
  • the thin film transistor 2b2 has a gate electrode 2b2a, a drain electrode 2b2b, and a source electrode 2b2c.
  • the gate electrode 2b2a of the thin film transistor 2b2 is electrically connected to the corresponding control line 2c1.
  • the drain electrode 2b2b of the thin film transistor 2b2 is electrically connected to the corresponding data line 2c2.
  • the source electrode 2b2c of the thin film transistor 2b2 is electrically connected to the corresponding photoelectric conversion element 2b1 (electrode 2b1b) and the storage capacitor 2b3. Further, the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 are electrically connected to the corresponding bias line 2c3. That is, the thin film transistor 2b2 is electrically connected to the corresponding control line 2c1 and the corresponding data line 2c2.
  • the electrode 2b1b on the substrate 2a side of the photoelectric conversion element 2b1 is electrically connected to the thin film transistor 2b2 (see FIGS. 7 and 8).
  • a plurality of control lines 2c1 are provided in parallel with each other at predetermined intervals.
  • the control line 2c1 extends, for example, in the row direction (corresponding to an example of the first direction).
  • One control line 2c1 is electrically connected to one of a plurality of wiring pads 2d1 provided near the peripheral edge of the substrate 2a.
  • One of the plurality of wirings provided on the flexible printed circuit board 2e1 is electrically connected to one wiring pad 2d1.
  • the other ends of the plurality of wirings provided on the flexible printed board 2e1 are electrically connected to the control circuit 31 provided on the signal processing circuit 3.
  • a plurality of data lines 2c2 are provided in parallel with each other at predetermined intervals.
  • the data line 2c2 extends, for example, in a column direction (corresponding to an example of the second direction) orthogonal to the row direction.
  • One data line 2c2 is electrically connected to one of a plurality of wiring pads 2d2 provided near the peripheral edge of the substrate 2a.
  • One of the plurality of wirings provided on the flexible printed circuit board 2e2 is electrically connected to one wiring pad 2d2.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e2 are electrically connected to the signal detection circuit 32 provided on the signal processing circuit 3.
  • the bias line 2c3 is provided between the data line 2c2 and the data line 2c2 in parallel with the data line 2c2.
  • a bias power supply (not shown) is electrically connected to the bias line 2c3.
  • a bias power supply (not shown) can be provided in, for example, a signal processing circuit 3.
  • the bias line 2c3 is not always necessary, and may be provided as needed. When the bias line 2c3 is not provided, the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 are electrically connected to the ground instead of the bias line 2c3.
  • control line 2c1, the data line 2c2, and the bias line 2c3 can be formed by using, for example, a low resistance metal such as aluminum or chromium.
  • the protective layer 2f covers the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the bias line 2c3.
  • the protective layer 2f contains, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin material.
  • a plurality of noise detection units 2g are provided.
  • the plurality of noise detection units 2g are provided side by side outside the region (effective pixel region) in which the plurality of photoelectric conversion units 2b are provided.
  • the plurality of noise detection units 2g are arranged along at least one of the control line 2c1 and the data line 2c2.
  • a plurality of noise detection units 2g can be provided side by side along the data line 2c2.
  • the plurality of noise detection units 2g may be provided side by side along the control line 2c1, for example.
  • the plurality of noise detection units 2g may be provided side by side along the control line 2c1 and the data line 2c2, for example.
  • a plurality of noise detection units 2g are provided on one outer side of the effective pixel area, but are provided on two outer sides, three outer sides, and four outer sides of the effective pixel area. May be.
  • Each of the plurality of noise detection units 2g is provided with a capacitance unit 2g1 and a thin film transistor 2b2 (corresponding to an example of the second thin film transistor).
  • the thin film transistor 2b2 is electrically connected to the corresponding control line 2c1 and the corresponding data line 2c2.
  • the capacitance portion 2g1 is electrically connected to the thin film transistor 2b2.
  • the storage capacitor 2b3 When the storage capacitor 2b3 is provided in the photoelectric conversion unit 2b, the storage capacitor 2b3 may be provided in the noise detection unit 2g.
  • the storage capacitor 2b3 can be provided, for example, under the capacitance portion 2g1.
  • the capacitive portion 2g1 can be formed of, for example, a conductive material such as a metal.
  • the capacitive portion 2g1 is formed of a conductive material, even if the fluorescence generated by the scintillator 5 is incident on the capacitive portion 2g1, almost no signal charge is generated.
  • the capacitance portion 2g1 can be formed of, for example, the same material as the electrode 2b1b of the photoelectric conversion element 2b1.
  • the capacitance portion 2g1 can be formed by using, for example, a low resistance metal such as aluminum or chromium.
  • the gate electrode 2b2a of the thin film transistor 2b2 provided in the noise detection unit 2g is electrically connected to the corresponding control line 2c1.
  • the drain electrode 2b2b of the thin film transistor 2b2 is electrically connected to the corresponding data line 2c2.
  • the source electrode 2b2c of the thin film transistor 2b2 is electrically connected to the corresponding capacitance portion 2g1 and the storage capacitor 2b3. The details of the noise detection unit 2g will be described later.
  • the signal processing circuit 3 is provided on the side of the array substrate 2 opposite to the scintillator 5 side. As shown in FIG. 2, the signal processing circuit 3 is provided with a control circuit 31 and a signal detection circuit 32.
  • the control circuit 31 switches between an on state and an off state of the thin film transistor 2b2.
  • the control circuit 31 has a plurality of gate drivers 31a and a row selection circuit 31b.
  • the control signal S1 is input to the row selection circuit 31b from the image configuration circuit 4 or the like.
  • the row selection circuit 31b inputs the control signal S1 to the corresponding gate driver 31a according to the scanning direction of the X-ray image.
  • the gate driver 31a inputs the control signal S1 to the corresponding control line 2c1.
  • control circuit 31 sequentially inputs the control signal S1 for each control line 2c1 via the flexible printed circuit board 2e1.
  • the control signal S1 input to the control line 2c1 turns on the thin film transistor 2b2 provided in the photoelectric conversion unit 2b, and the signal charge (image data signal S2) from the storage capacitor 2b3 can be received.
  • the signal detection circuit 32 reads out the image data signal S2 from the storage capacitor 2b3 via the data line 2c2 and the flexible printed substrate 2e2 according to the sampling signal from the image configuration circuit 4 when the thin film transistor 2b2 is in the ON state.
  • the image data signal S2 can be read out as follows. First, the thin film transistor 2b2 is sequentially turned on by the control circuit 31. When the thin film transistor 2b2 is turned on, a constant charge is accumulated in the storage capacitor 2b3 via the bias line 2c3. Next, the thin film transistor 2b2 is turned off. When irradiated with X-rays, the scintillator 5 converts the X-rays into fluorescence.
  • the control circuit 31 sequentially turns on the thin film transistor 2b2.
  • the signal detection circuit 32 reads out the reduced charge (image data signal S2) stored in each storage capacitor 2b3 according to the sampling signal via the data line 2c2. Further, the signal detection circuit 32 reads out the noise current (noise signal N) from the noise detection unit 2g via the data line 2c2 and the flexible printed substrate 2e2 when the thin film transistor 2b2 is in the off state.
  • the image configuration circuit 4 is electrically connected to the signal detection circuit 32 via the wiring 4a.
  • the image configuration circuit 4 may be integrated with the signal processing circuit 3, or may wirelessly perform data communication with the signal detection circuit 32.
  • the image configuration circuit 4 receives the read image data signal S2, sequentially amplifies the received image data signal S2, and converts the amplified image data signal S2 (analog signal) into a digital signal. Then, the image composition circuit 4 constructs an X-ray image based on the image data signal S2 converted into a digital signal.
  • the configured X-ray image data is output from the image configuration circuit 4 to an external device.
  • the scintillator 5 is provided on a region provided with a plurality of photoelectric conversion units 2b, and converts incident X-rays into fluorescence.
  • the scintillator 5 is provided so as to cover the effective pixel region on the substrate 2a.
  • the scintillator 5 can be formed using, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or the like. In this case, if the scintillator 5 is formed by using a vacuum vapor deposition method or the like, the scintillator 5 composed of an aggregate of a plurality of columnar crystals is formed.
  • the scintillator 5 can also be formed by using, for example, gadolinium acid sulfide (Gd 2 O 2 S) or the like. In this case, a square columnar scintillator 5 can be provided for each photoelectric conversion unit 2b.
  • Gd 2 O 2 S gadolinium acid sulfide
  • a reflective layer (not shown) can be provided so as to cover the surface side (incident surface side of X-rays) of the scintillator 5. Further, in order to suppress deterioration of the characteristics of the scintillator 5 and the characteristics of the reflective layer (not shown) due to water vapor contained in the air, a moisture-proof body (not shown) that covers the scintillator 5 and the reflective layer (not shown) can be provided.
  • the noise that appears in the X-ray image is roughly divided into random noise and horizontal pulling noise. Random noise is uniformly distributed throughout the X-ray image and therefore does not have a specific pattern or contour.
  • the horizontal pulling noise appears in a streak pattern in the horizontal direction or the vertical direction of the X-ray image. In this case, since the X-ray image is viewed by humans, the horizontal noise having a pattern or contour has a greater influence on the quality of the X-ray image than the random noise having no pattern or contour. Therefore, in the X-ray detector, it is required to reduce the horizontal pulling noise.
  • the source of the horizontal pulling noise is mainly the control circuit 31.
  • noise generated in the control circuit 31 or noise in the power supply line for driving the control circuit 31 may invade the control line 2c1.
  • a thin film transistor 2b2 is electrically connected between the control line 2c1 and the data line 2c2. Therefore, if the thin film transistor 2b2 is in the off state, it is considered that noise does not enter the data line 2c2 from the control line 2c1.
  • the photoelectric conversion element 2b1 is arranged in the vicinity of the thin film transistor 2b2.
  • a line capacitance (stray capacitance) is generated between the electrode 2b1b of the photoelectric conversion element 2b1 and the thin film transistor 2b2, and noise may enter from the control line 2c1 to the data line 2c2 due to electrostatic coupling.
  • noise enters the data line 2c2 from the control line 2c1, horizontal pulling noise is generated.
  • the noise generated in the control circuit 31 or the power line is reduced, the horizontal pulling noise can be reduced.
  • the structure of the X-ray detector 1 becomes complicated, which leads to an increase in price. Therefore, in general, a plurality of noise detection units for detecting horizontal pulling noise are provided, and a value corresponding to the detected horizontal pulling noise is subtracted from the value of the image data signal S2 output from each photoelectric conversion unit 2b. Offset processing is performed.
  • the photoelectric conversion element 2b1 provided in the photoelectric conversion unit 2b includes a semiconductor layer 2b1a having a pn junction or a pin structure and an electrode 2b1b provided on the substrate 2a side of the semiconductor layer 2b1a.
  • the electrode 2b1b is electrically connected to the source electrode 2b2c of the thin film transistor 2b2.
  • the noise detection unit 102g is not provided with the semiconductor layer 2b1a.
  • the noise detection unit 102g is provided with an electrode 2b1b, a thin film transistor 2b2, and a storage capacitor 2b3. Since the noise detection unit 102g is not provided with the semiconductor layer 2b1a, the output from the noise detection unit 102g does not include the value corresponding to the X-ray dose, but includes the value corresponding to the noise. There is. Therefore, if the value output from the noise detection unit 102g is subtracted from the value of the image data signal S2 output from each photoelectric conversion unit 2b, an X-ray image in which horizontal noise is suppressed can be obtained.
  • the value used for the offset processing can be an average value of the values output from the plurality of noise detection units 102g.
  • the plurality of noise detection units 102g are provided side by side outside the effective pixel area.
  • the plurality of noise detection units 102g may be provided side by side in the direction in which the data line 2c2 extends.
  • the plurality of noise detection units 102g may be provided side by side in the direction in which the control line 2c1 extends.
  • the data line 2c2 may be provided side by side in the extending direction and the control line 2c1 in the extending direction.
  • FIG. 6 is a schematic plan view for exemplifying the arrangement of the region 202 provided with the plurality of noise detection units 102g.
  • the region 202 provided with the plurality of noise detection units 102g is provided outside the effective pixel region 201.
  • one region 202 is provided on each side of the effective pixel region 201. Therefore, the X-ray detector becomes larger by the amount that the area 202 is provided.
  • the region 202 is not the region where the X-ray detector 1 is photographed, it can be reduced if the lateral pulling noise can be detected. Therefore, in the X-ray detector 1 according to the present embodiment, the region 202 is made smaller.
  • FIGS. 7 and 8 are schematic plan views for illustrating the noise detection unit 2g according to the present embodiment.
  • the bias line 2c3 is omitted.
  • the noise detection unit 2g is provided with a capacitance unit 2g1, a thin film transistor 2b2, and a storage capacitor 2b3. Since the semiconductor layer 2b1a is not provided in the capacitance unit 2g1, the output from the noise detection unit 2g does not include a value corresponding to the X-ray dose, but includes a value corresponding to the noise. ..
  • the line capacitance between the capacitance portion 2g1 and the thin film transistor 2b2 is about the same as the line capacitance between the electrode 2b1b and the thin film transistor 2b2, it is possible to detect an appropriate value of horizontal noise. can.
  • the dimensions S3 and S4 between the capacitance portion 2g1 and the thin film transistor 2b2 are the same as the dimensions S1 and S2 between the electrode 2b1b and the thin film transistor 2b2, respectively.
  • the gap size between the thin film transistor 2b2 provided in the noise detection unit 2g and the capacitance part 2g1 is substantially the same as the gap size between the thin film transistor 2b2 provided in the photoelectric conversion unit 2b and the electrode 2b1b. do it. It should be noted that substantially the same means allowing a difference in the degree of manufacturing error.
  • the material of the capacitance portion 2g1 is the same as the material of the electrode 2b1b. It is preferable that the thickness of the capacitance portion 2g1 is about the same as the thickness of the electrodes 2b1b. Further, the lengths of the sides 2g1a and 2g1b of the capacitive portion 2g1 facing the thin film transistor 2b2 may be about the same as the lengths of the sides 2b2d and 2b2e of the electrode 2b1b facing the thin film transistor 2b2. preferable. However, the position of the side 2g1c facing the side 2g1a of the capacitance portion 2g1 and the position of the side 2g1d facing the side 2g1b have little influence on the line capacitance.
  • the length Lg1 of the capacitance unit 2g1 in the direction orthogonal to the direction in which the data line 2c2 extends is set to the electrode 2b1b.
  • the length of the data line 2c2 can be shorter than the length Lb1 in the direction orthogonal to the extending direction.
  • the length Lg2 of the capacitance unit 2g1 in the direction orthogonal to the direction in which the control line 2c1 extends is set to the electrode 2b1b.
  • the length of the control line 2c1 can be made shorter than the length Lb2 in the direction orthogonal to the extending direction.
  • the length Lg1 or the length Lg2 is shortened is illustrated, but the length Lg1 and the length Lg2 can also be shortened. That is, the length of the capacitive portion 2g1 is shorter than the length of the electrode 2b1b in at least one of the direction in which the control line 2c1 extends and the direction in which the data line 2c2 extends.
  • the capacitance portion 2g1 may be formed by cutting out a part of the electrode 2b1b. By doing so, since the plurality of capacitance portions 2g1 and the plurality of electrodes 2b1b can be formed in the same process, it is possible to improve the productivity and reduce the manufacturing cost.
  • FIGS. 9A and 9 (b) are schematic plan views for exemplifying the arrangement of the region 203 provided with the plurality of noise detection units 2g.
  • the area 203 provided with the plurality of noise detection units 2g can be provided outside the effective pixel area 201.
  • FIG. 9A shows a case illustrated in FIG. 7, that is, a case where a plurality of noise detection units 2g are arranged along the data line 2c2.
  • one region 203 provided with the plurality of noise detection units 2g is provided on both sides of the effective pixel region 201. be able to.
  • FIG. 9B is an example in FIG. 8, that is, a case where a plurality of noise detection units 2g are arranged along the control line 2c1.
  • one region 203 provided with the plurality of noise detection units 2g is provided on both sides of the effective pixel region 201. be able to.
  • the X-ray detector 1 becomes larger by the amount provided with the region 203.
  • the length Lg1 of the capacitance portion 2g1 in the direction orthogonal to the direction in which the data line 2c2 extends is larger than the length Lb1 in the direction orthogonal to the direction in which the data line 2c2 extends of the electrode 2b1b. It's getting shorter. Therefore, the region 203 can be made smaller than the region 202 according to the comparative example.
  • the X-ray detector 1 becomes larger by the amount provided with the region 203.
  • the length Lg2 of the capacitance portion 2g1 in the direction orthogonal to the direction in which the control line 2c1 extends is larger than the length Lb2 in the direction orthogonal to the direction in which the control line 2c1 extends of the electrode 2b1b. It's getting shorter. Therefore, the region 203 can be made smaller than the region 202 according to the comparative example.
  • one region 203 may be provided on both sides of the effective pixel region 201 in the direction in which the plurality of data lines 2c2 are lined up and in the direction in which the plurality of control lines 2c1 are lined up. That is, the area 203 may be provided so as to surround the effective pixel area 201. Even in such a case, the region 203 can be made smaller than the region 202 according to the comparative example. As described above, the area 203 can be provided in at least one of the effective pixel areas 201.
  • the value used for the offset processing can be the average value of the values output from the plurality of noise detection units 2g. Therefore, if the number of the noise detection units 2g is increased, the noise can be detected with high accuracy, and the accuracy of removing the horizontal pulling noise can be improved. In this case, if the number of regions 203 is large, the number of noise detection units 2g can be increased.
  • the region 203 can be made smaller than the region 202 according to the comparative example. Therefore, even if the number of regions 203 is increased, it is possible to suppress an increase in the size of the X-ray detector 1.
  • the number and arrangement of the regions 203 can be appropriately determined according to the specifications of the X-ray detector 1 and the like.
  • the X-ray detector 1 As described above, if the X-ray detector 1 according to the present embodiment is used, horizontal pulling noise can be detected. Further, the region 203 provided with the plurality of noise detection units 2g can be made smaller. Therefore, noise can be detected and the size of the X-ray detector 1 can be suppressed from increasing.
  • the value used for the offset processing can be the average value of the values output from the plurality of noise detection units 2g. Therefore, if the number of the noise detection units 2g is increased, the noise can be detected with high accuracy, and the accuracy of removing the horizontal pulling noise can be improved.
  • a plurality of noise detection units 2g can be electrically connected to each of the plurality of data lines 2c2.
  • a plurality of noise detection units 2g can be electrically connected to each of the plurality of control lines 2c1. That is, a plurality of regions 203 can be provided side by side. By doing so, the number of the noise detection units 2g can be increased, so that the noise can be detected with high accuracy, and the accuracy of removing the horizontal pulling noise can be improved.
  • FIGS. 10 and 11 are schematic plan views for exemplifying the arrangement of the noise detection unit 2g according to another embodiment.
  • the bias line 2c3 is omitted.
  • 12 (a) and 12 (b) are schematic plan views for exemplifying the arrangement of the region 203.
  • a plurality of noise detection units 2g can be electrically connected to each of the two data lines 2c2.
  • two regions 203 can be provided on both sides of the effective pixel region 201 in the direction in which the plurality of data lines 2c2 are lined up.
  • two regions 203 may be provided on one side of the effective pixel region 201.
  • a plurality of noise detection units 2g can be electrically connected to each of the two control lines 2c1.
  • two regions 203 can be provided on both sides of the effective pixel region 201 in the direction in which the plurality of control lines 2c1 are lined up.
  • two regions 203 may be provided on one side of the effective pixel region 201.
  • two areas 203 may be provided on both sides of the effective pixel area 201 in the direction in which the plurality of data lines 2c2 are lined up and in the direction in which the plurality of control lines 2c1 are lined up. That is, the area 203 can be doubly provided so as to surround the effective pixel area 201. Although the case where two areas 203 are provided in at least one of the effective pixel areas 201 is illustrated, three or more areas 203 can be provided.
  • the thin film transistor 2b2 (second thin film transistor) provided in the plurality of noise detection units 2g is electrically connected to the outside of the region (effective pixel region 201) in which the plurality of photoelectric conversion units 2b are provided.
  • a plurality of data lines 2c2 can be arranged side by side adjacent to each other in the first direction.
  • the thin film transistor 2b2 (second thin film transistor) provided in the plurality of noise detection units 2g is electrically connected to the outside of the region (effective pixel region 201) in which the plurality of photoelectric conversion units 2b are provided.
  • a plurality of control lines 2c1 can be arranged side by side adjacent to each other in the second direction.
  • the region 203 can be made smaller than the region 202 according to the comparative example. Therefore, even if the number of regions 203 is increased, it is possible to suppress an increase in the size of the X-ray detector 1.
  • the number and arrangement of the regions 203 can be appropriately determined according to the specifications of the X-ray detector 1 and the like.

Abstract

実施形態に係る放射線検出器は、第1の方向に延びる複数の制御ラインと、前記第1の方向に直交する第2の方向に延びる複数のデータラインと、前記複数の制御ラインと、前記複数のデータラインと、により画された複数の領域のそれぞれに設けられた光電変換部と、前記複数の光電変換部が設けられた領域の外側に並べて設けられた複数のノイズ検出部と、前記複数の光電変換部が設けられた領域の上に設けられたシンチレータと、を備えている。 前記複数の光電変換部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第1の薄膜トランジスタと、前記第1の薄膜トランジスタと電気的に接続された電極を有する光電変換素子と、を有している。 前記複数のノイズ検出部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第2の薄膜トランジスタと、前記第2の薄膜トランジスタと電気的に接続された容量部と、を有している。 前記第1の方向および前記第2の方向の少なくともいずれかの方向において、前記容量部の長さは、前記電極の長さよりも短い。

Description

放射線検出器
 本発明の実施形態は、放射線検出器に関する。
 放射線検出器の一例にX線検出器がある。X線検出器には、例えば、複数の光電変換部を有するアレイ基板と、複数の光電変換部の上に設けられX線を蛍光に変換するシンチレータとが設けられている。また、光電変換部には、シンチレータからの蛍光を信号電荷に変換する光電変換素子、信号電荷の蓄積および放出のスイッチングを行う薄膜トランジスタ、信号電荷を蓄積する蓄積キャパシタなどが設けられている。
 一般的には、X線検出器は、以下のようにしてX線画像を構成する。まず、外部から入力された信号によりX線の入射を認識する。次に、予め定められた時間の経過後に、読み出しを行う光電変換部の薄膜トランジスタをオン状態にして、蓄積された信号電荷を画像データ信号として読み出す。そして、各光電変換部毎に読み出された画像データ信号の値に基づいてX線画像を構成する。
 ところが、各光電変換部毎に読み出された画像データ信号の値には、X線の線量に応じた値と、ノイズに応じた値が含まれている。そのため、X線画像を構成する際には、各光電変換部毎に読み出された画像データ信号の値からノイズに応じた値を差し引く、オフセット処理(オフセット補正)が行われる。
 この場合、ノイズには大きく分けて、ランダムノイズと横引きノイズがある。ランダムノイズは、X線画像の全体に一様に分布して発生する。一方、横引きノイズは横方向もしくは縦方向に筋状に現われる。そのため、横引きノイズの方がランダムノイズよりも目立ちやすくなるので、横引きノイズの低減が求められる。
 この様な横引きノイズの低減を図るために、X線の入射時に信号電荷を発生しないノイズ検出部を複数設け、複数のノイズ検出部により横引きノイズを検出する技術が提案されている。一般的に、複数のノイズ検出部は、複数の光電変換部が設けられた領域(有効画素領域)の外側に並べて設けられる。
 ここで、近年においては、X線検出器の小型化が求められている。ところが、有効画素領域の外側に、ノイズ検出部が複数設けられた領域があると、X線検出器のサイズが大きくなるという問題がある。
 そこで、ノイズを検出することができ、且つ、X線検出器のサイズが大きくなるのを抑制することができる技術の開発が望まれていた。
特開2011-97452号公報
 本発明が解決しようとする課題は、ノイズを検出することができ、且つ、放射線検出器のサイズが大きくなるのを抑制することができる放射線検出器を提供することである。
 実施形態に係る放射線検出器は、第1の方向に延びる複数の制御ラインと、前記第1の方向に直交する第2の方向に延びる複数のデータラインと、前記複数の制御ラインと、前記複数のデータラインと、により画された複数の領域のそれぞれに設けられた光電変換部と、前記複数の光電変換部が設けられた領域の外側に並べて設けられた複数のノイズ検出部と、前記複数の光電変換部が設けられた領域の上に設けられたシンチレータと、を備えている。
 前記複数の光電変換部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第1の薄膜トランジスタと、前記第1の薄膜トランジスタと電気的に接続された電極を有する光電変換素子と、を有している。
 前記複数のノイズ検出部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第2の薄膜トランジスタと、前記第2の薄膜トランジスタと電気的に接続された容量部と、を有している。
 前記第1の方向および前記第2の方向の少なくともいずれかの方向において、前記容量部の長さは、前記電極の長さよりも短い。
X線検出器を例示するための模式斜視図である。 X線検出器のブロック図である。 アレイ基板の回路図である。 比較例に係るノイズ検出部を例示するための模式平面図である。 比較例に係るノイズ検出部を例示するための模式平面図である。 複数のノイズ検出部が設けられた領域の配置を例示するための模式平面図である。 本実施の形態に係るノイズ検出部を例示するための模式平面図である。 本実施の形態に係るノイズ検出部を例示するための模式平面図である。 (a)、(b)は、複数のノイズ検出部が設けられた領域の配置を例示するための模式平面図である。 他の実施形態に係るノイズ検出部の配置を例示するための模式平面図である。 他の実施形態に係るノイズ検出部の配置を例示するための模式平面図である。 (a)、(b)は、領域203の配置を例示するための模式平面図である。
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
 本実施の形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。
 以下に例示をするX線検出器1は、放射線画像であるX線画像を検出するX線平面センサである。
 X線検出器1は、例えば、一般医療などに用いることができるが、用途に限定はない。
 図1は、X線検出器1を例示するための模式斜視図である。
 なお、図1においては、バイアスライン2c3などを省いて描いている。
 図2は、X線検出器1のブロック図である。
 図3は、アレイ基板2の回路図である。
 図1~図3に示すように、X線検出器1には、アレイ基板2、信号処理回路3、画像構成回路4、およびシンチレータ5が設けられている。
 アレイ基板2は、シンチレータ5によりX線から変換された蛍光(可視光)を電気信号に変換する。
 アレイ基板2は、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、バイアスライン2c3、および、ノイズ検出部2gを有する。
 なお、光電変換部2b、制御ライン2c1、データライン2c2、バイアスライン2c3、およびノイズ検出部2gの数などは例示をしたものに限定されるわけではない。
 基板2aは、板状を呈し、無アルカリガラスなどの透光性材料から形成されている。
 光電変換部2bは、基板2aの一方の表面に複数設けられている。
 光電変換部2bは、矩形状を呈し、複数の制御ライン2c1と、複数のデータライン2c2と、により画された複数の領域のそれぞれに設けられている。複数の光電変換部2bは、マトリクス状に並べられている。
 なお、1つの光電変換部2bは、X線画像における1つの画素(pixel)に対応する。
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、スイッチング素子である薄膜トランジスタ(TFT;Thin Film Transistor)2b2(第1の薄膜トランジスタの一例に相当する)が設けられている。
 また、図3に示すように、光電変換素子2b1において変換した信号電荷を蓄積する蓄積キャパシタ2b3を設けることができる。蓄積キャパシタ2b3は、例えば、矩形平板状を呈し、各薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタ2b3を兼ねることができる。
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。
 薄膜トランジスタ2b2は、蛍光が光電変換素子2b1に入射することで生じた電荷の蓄積および放出のスイッチングを行う。薄膜トランジスタ2b2は、ゲート電極2b2a、ドレイン電極2b2b及びソース電極2b2cを有している。薄膜トランジスタ2b2のゲート電極2b2aは、対応する制御ライン2c1と電気的に接続される。薄膜トランジスタ2b2のドレイン電極2b2bは、対応するデータライン2c2と電気的に接続される。薄膜トランジスタ2b2のソース電極2b2cは、対応する光電変換素子2b1(電極2b1b)と蓄積キャパシタ2b3とに電気的に接続される。また、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、対応するバイアスライン2c3と電気的に接続される。
 すなわち、薄膜トランジスタ2b2は、対応する制御ライン2c1と対応するデータライン2c2とに電気的に接続されている。光電変換素子2b1の基板2a側の電極2b1bは、薄膜トランジスタ2b2と電気的に接続されている(図7、図8を参照)。
 制御ライン2c1は、所定の間隔を開けて互いに平行に複数設けられている。制御ライン2c1は、例えば、行方向(第1の方向の一例に相当する)に延びている。
 1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッド2d1のうちの1つと電気的に接続されている。1つの配線パッド2d1には、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、信号処理回路3に設けられた制御回路31と電気的に接続されている。
 データライン2c2は、所定の間隔を開けて互いに平行に複数設けられている。データライン2c2は、例えば、行方向に直交する列方向(第2の方向の一例に相当する)に延びている。
 1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッド2d2のうちの1つと電気的に接続されている。1つの配線パッド2d2には、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つが電気的に接続されている。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、信号処理回路3に設けられた信号検出回路32と電気的に接続されている。
 バイアスライン2c3は、データライン2c2とデータライン2c2との間に、データライン2c2と平行に設けられている。
 バイアスライン2c3には、図示しないバイアス電源が電気的に接続されている。図示しないバイアス電源は、例えば、信号処理回路3などに設けることができる。
 なお、バイアスライン2c3は、必ずしも必要ではなく、必要に応じて設けるようにすればよい。バイアスライン2c3が設けられない場合には、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、バイアスライン2c3に代えてグランドに電気的に接続される。
 制御ライン2c1、データライン2c2、およびバイアスライン2c3は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
 保護層2fは、光電変換部2b、制御ライン2c1、データライン2c2、およびバイアスライン2c3を覆っている。
 保護層2fは、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂材料の少なくとも1種を含む。
 図3に示すように、ノイズ検出部2gは、複数設けられている。複数のノイズ検出部2gは、複数の光電変換部2bが設けられた領域(有効画素領域)の外側に並べて設けられている。複数のノイズ検出部2gは、制御ライン2c1およびデータライン2c2の少なくともいずれかに沿って並んでいる。例えば、図3に示すように、複数のノイズ検出部2gは、データライン2c2に沿って並べて設けることができる。この場合、複数のノイズ検出部2gは、例えば、制御ライン2c1に沿って並べて設けることもできる。複数のノイズ検出部2gは、例えば、制御ライン2c1およびデータライン2c2に沿って並べて設けることもできる。
 図3に例示をしたものは、複数のノイズ検出部2gが、有効画素領域の一方の外側に設けられているが、有効画素領域の二方の外側、三方の外側、四方の外側に設けられていてもよい。
 複数のノイズ検出部2gのそれぞれには、容量部2g1、薄膜トランジスタ2b2(第2の薄膜トランジスタの一例に相当する)が設けられている。薄膜トランジスタ2b2は、対応する制御ライン2c1と対応するデータライン2c2とに電気的に接続されている。容量部2g1は薄膜トランジスタ2b2と電気的に接続されている。
 なお、光電変換部2bに蓄積キャパシタ2b3が設けられる場合には、ノイズ検出部2gに蓄積キャパシタ2b3を設けることもできる。蓄積キャパシタ2b3は、例えば、容量部2g1の下に設けることができる。
 容量部2g1は、例えば、金属などの導電性材料から形成することができる。容量部2g1が導電性材料から形成されていれば、シンチレータ5で発生した蛍光が容量部2g1に入射したとしても信号電荷の発生はほとんどない。容量部2g1は、例えば、光電変換素子2b1の電極2b1bと同じ材料から形成することができる。容量部2g1は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
 ノイズ検出部2gに設けられた薄膜トランジスタ2b2のゲート電極2b2aは、対応する制御ライン2c1と電気的に接続される。薄膜トランジスタ2b2のドレイン電極2b2bは、対応するデータライン2c2と電気的に接続される。薄膜トランジスタ2b2のソース電極2b2cは、対応する容量部2g1と蓄積キャパシタ2b3とに電気的に接続される。
 なお、ノイズ検出部2gに関する詳細は後述する。
 信号処理回路3は、アレイ基板2の、シンチレータ5側とは反対側に設けられている。 図2に示すように、信号処理回路3には、制御回路31と、信号検出回路32とが設けられている。
 制御回路31は、薄膜トランジスタ2b2のオン状態とオフ状態を切り替える。
 制御回路31は、複数のゲートドライバ31aと行選択回路31bとを有する。
 行選択回路31bには、画像構成回路4などから制御信号S1が入力される。行選択回路31bは、X線画像の走査方向に従って、対応するゲートドライバ31aに制御信号S1を入力する。
 ゲートドライバ31aは、対応する制御ライン2c1に制御信号S1を入力する。
 例えば、制御回路31は、フレキシブルプリント基板2e1を介して、制御信号S1を各制御ライン2c1毎に順次入力する。
 制御ライン2c1に入力された制御信号S1により、光電変換部2bに設けられた薄膜トランジスタ2b2がオン状態となり、蓄積キャパシタ2b3からの信号電荷(画像データ信号S2)が受信できるようになる。
 信号検出回路32は、薄膜トランジスタ2b2がオン状態の時に、画像構成回路4からのサンプリング信号に従って、データライン2c2およびフレキシブルプリント基板2e2を介して蓄積キャパシタ2b3から画像データ信号S2を読み出す。
 例えば、画像データ信号S2は、以下のようにして読み出すことができる。
 まず、制御回路31によって薄膜トランジスタ2b2が順次オン状態となる。薄膜トランジスタ2b2がオン状態となることで、バイアスライン2c3を介して一定の電荷が蓄積キャパシタ2b3に蓄積される。次に、薄膜トランジスタ2b2をオフ状態にする。X線が照射されると、シンチレータ5によりX線が蛍光に変換される。蛍光が光電変換素子2b1に入射すると、光電効果によって電荷(電子およびホール)が発生し、発生した電荷と、蓄積キャパシタ2b3に蓄積されている電荷(異種電荷)とが結合して蓄積されている電荷が減少する。次に、制御回路31は、薄膜トランジスタ2b2を順次オン状態にする。信号検出回路32は、サンプリング信号に従って各蓄積キャパシタ2b3に蓄積されている減少した電荷(画像データ信号S2)をデータライン2c2を介して読み出す。
 また、信号検出回路32は、薄膜トランジスタ2b2がオフ状態の時に、データライン2c2およびフレキシブルプリント基板2e2を介してノイズ検出部2gからのノイズ電流(ノイズ信号N)を読み出す。
 画像構成回路4は、配線4aを介して、信号検出回路32と電気的に接続されている。なお、画像構成回路4は、信号処理回路3と一体化されていてもよいし、無線により信号検出回路32とデータ通信を行うようにしてもよい。
 画像構成回路4は、読み出された画像データ信号S2を受信し、受信した画像データ信号S2を順次増幅し、増幅された画像データ信号S2(アナログ信号)をデジタル信号に変換する。そして、画像構成回路4は、デジタル信号に変換された画像データ信号S2に基づいて、X線画像を構成する。構成されたX線画像のデータは、画像構成回路4から外部の機器に向けて出力される。
 シンチレータ5は、複数の光電変換部2bが設けられた領域の上に設けられ、入射するX線を蛍光に変換する。シンチレータ5は、基板2a上の有効画素領域を覆うように設けられている。
 シンチレータ5は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、あるいはヨウ化ナトリウム(NaI):タリウム(Tl)などを用いて形成することができる。この場合、真空蒸着法などを用いて、シンチレータ5を形成すれば、複数の柱状結晶の集合体からなるシンチレータ5が形成される。
 また、シンチレータ5は、例えば、酸硫化ガドリニウム(GdS)などを用いて形成することもできる。この場合、各光電変換部2bごとに四角柱状のシンチレータ5を設けることができる。
 その他、蛍光の利用効率を高めて感度特性を改善するために、シンチレータ5の表面側(X線の入射面側)を覆うように図示しない反射層を設けることができる。
 また、空気中に含まれる水蒸気により、シンチレータ5の特性と図示しない反射層の特性が劣化するのを抑制するために、シンチレータ5と図示しない反射層を覆う図示しない防湿体を設けることができる。
 次に、ノイズ検出部2gについてさらに説明する。
 X線画像に現れるノイズには、大きく分けてランダムノイズと横引きノイズがある。ランダムノイズは、X線画像の全体に一様に分布して発生するため、特定の模様や輪郭を持たない。これに対して、横引きノイズは、X線画像の横方向もしくは縦方向に筋状に現われる。この場合、X線画像は人間が見るものであるため、模様や輪郭のないランダムノイズよりも、模様や輪郭を有する横引きノイズの方がX線画像の品質に与える影響が大きい。そのため、X線検出器においては、横引きノイズの低減が求められる。
 横引きノイズの発生源は、主に、制御回路31であると考えられている。例えば、制御回路31において発生したノイズや、制御回路31を駆動するための電源線のノイズが制御ライン2c1に侵入する場合がある。制御ライン2c1とデータライン2c2との間には、薄膜トランジスタ2b2が電気的に接続されている。そのため、薄膜トランジスタ2b2がオフ状態となっていれば、制御ライン2c1からデータライン2c2にノイズが侵入しないとも考えられる。ところが、薄膜トランジスタ2b2の近傍には光電変換素子2b1が配置されている。そのため、光電変換素子2b1の電極2b1bと、薄膜トランジスタ2b2との間に線間容量(浮遊容量)が発生し、静電結合により、制御ライン2c1からデータライン2c2にノイズが侵入する場合がある。制御ライン2c1からデータライン2c2にノイズが侵入すると、横引きノイズが発生する。
 この場合、制御回路31や電源線において発生するノイズを減らせば、横引きノイズを低減させることができる。しかしながら、この様なノイズ対策を講じれば、X線検出器1の構造が複雑となり、高価格化を招くことになる。
 そのため、一般的には、横引きノイズを検出するノイズ検出部を複数設け、各光電変換部2bから出力された画像データ信号S2の値から、検出された横引きノイズに応じた値を差し引く、オフセット処理が行われる。
 図4および図5は、比較例に係るノイズ検出部102gを例示するための模式平面図である。
 なお、図4および図5においては、バイアスライン2c3を省いて描いている。
 図4および図5に示すように、光電変換部2bに設けられた光電変換素子2b1は、pn接合またはpin構造を有する半導体層2b1aと、半導体層2b1aの基板2a側に設けられた電極2b1bを有する。電極2b1bは、薄膜トランジスタ2b2のソース電極2b2cと電気的に接続されている。
 ノイズ検出部102gには半導体層2b1aが設けられていない。すなわち、ノイズ検出部102gには、電極2b1b、薄膜トランジスタ2b2、および蓄積キャパシタ2b3が設けられている。ノイズ検出部102gには半導体層2b1aが設けられていないので、ノイズ検出部102gからの出力には、X線の線量に応じた値が含まれておらず、ノイズに応じた値が含まれている。
 そのため、各光電変換部2bから出力された画像データ信号S2の値から、ノイズ検出部102gから出力された値を差し引けば、横引きノイズが抑制されたX線画像を得ることができる。なお、オフセット処理に用いる値は、複数のノイズ検出部102gから出力された値の平均値とすることができる。
 ここで、近年においては、X線検出器1の小型化が求められている。この場合、複数の光電変換部2bが設けられた有効画素領域は、X線検出器1の撮影を行う領域であるため小さくすることは困難である。
 また、複数のノイズ検出部102gは、有効画素領域の外側に並べて設けられる。例えば、図4に示すように、複数のノイズ検出部102gは、データライン2c2が延びる方向に並べて設けられる場合がある。図5に示すように、複数のノイズ検出部102gは、制御ライン2c1が延びる方向に並べて設けられる場合がある。また、データライン2c2が延びる方向、および制御ライン2c1が延びる方向に並べて設けられる場合もある。
 図6は、複数のノイズ検出部102gが設けられた領域202の配置を例示するための模式平面図である。
 図6に示すように、複数のノイズ検出部102gが設けられた領域202は、有効画素領域201の外側に設けられている。図6に例示をしたものの場合には、有効画素領域201の両側に領域202が1つずつ設けられている。
 そのため、領域202が設けられた分だけX線検出器が大きくなることになる。
 ここで、領域202は、X線検出器1の撮影を行う領域ではないので、横引きノイズの検出ができるのであれば小さくすることは可能である。
 そこで、本実施の形態に係るX線検出器1においては、領域202が小さくなるようにしている。
 図7および図8は、本実施の形態に係るノイズ検出部2gを例示するための模式平面図である。
 なお、図7および図8においては、バイアスライン2c3を省いて描いている。
 図7および図8に示すように、ノイズ検出部2gには、容量部2g1、薄膜トランジスタ2b2、および蓄積キャパシタ2b3が設けられている。容量部2g1には半導体層2b1aが設けられていないので、ノイズ検出部2gからの出力には、X線の線量に応じた値が含まれておらず、ノイズに応じた値が含まれている。
 前述したように、光電変換素子2b1の電極2b1bと、薄膜トランジスタ2b2との間に線間容量が発生すると、静電結合により、制御ライン2c1からデータライン2c2にノイズが侵入する。
 そのため、容量部2g1と、薄膜トランジスタ2b2との間の線間容量が、電極2b1bと、薄膜トランジスタ2b2との間の線間容量と同程度となれば、適切な値の横引きノイズを検出することができる。
 同程度の線間容量が発生するようにするためには、容量部2g1と、薄膜トランジスタ2b2との間の寸法S3、S4が、電極2b1bと、薄膜トランジスタ2b2との間の寸法S1、S2とそれぞれ同じ程度となるようにすればよい。
 すなわち、ノイズ検出部2gに設けられた薄膜トランジスタ2b2と容量部2g1との間の隙間寸法は、光電変換部2bに設けられた薄膜トランジスタ2b2と電極2b1bとの間の隙間寸法と略同一となるようにすればよい。なお、略同一とは製造誤差程度の違いを許容することである。
 この場合、容量部2g1の材料は、電極2b1bの材料と同じにすることが好ましい。 容量部2g1の厚みは、電極2b1bの厚みと同程度となるようにすることが好ましい。
 また、容量部2g1の、薄膜トランジスタ2b2と対峙する側の辺2g1a、2g1bの長さは、電極2b1bの、薄膜トランジスタ2b2と対峙する側の辺2b2d、2b2eの長さと同程度となるようにすることが好ましい。
 ただし、容量部2g1の辺2g1aと対峙する辺2g1cの位置や、辺2g1bと対峙する辺2g1dの位置は、線間容量に与える影響が少ない。
 そのため、図7に示すように、複数のノイズ検出部2gをデータライン2c2に沿って並べる場合には、容量部2g1の、データライン2c2が延びる方向と直交する方向の長さLg1を、電極2b1bの、データライン2c2が延びる方向と直交する方向の長さLb1よりも短くすることができる。
 また、図8に示すように、複数のノイズ検出部2gを制御ライン2c1に沿って並べる場合には、容量部2g1の、制御ライン2c1が延びる方向と直交する方向の長さLg2を、電極2b1bの、制御ライン2c1が延びる方向と直交する方向の長さLb2よりも短くすることができる。
 なお、以上においては、長さLg1または長さLg2を短くする場合を例示したが、長さLg1および長さLg2を短くすることもできる。
 すなわち、制御ライン2c1が延びる方向、および、データライン2c2が延びる方向の少なくともいずれかの方向において、容量部2g1の長さは、電極2b1bの長さよりも短くなっている。
 容量部2g1は、電極2b1bの一部を切り欠いたものとしてもよい。この様にすれば、複数の容量部2g1と、複数の電極2b1bを同一の工程で形成することができるので、生産性の向上と製造コストの低減を図ることができる。
 図9(a)、(b)は、複数のノイズ検出部2gが設けられた領域203の配置を例示するための模式平面図である。
 図9(a)、(b)に示すように、複数のノイズ検出部2gが設けられた領域203は、有効画素領域201の外側に設けることができる。
 例えば、図9(a)は、図7に例示をした場合、すなわち、複数のノイズ検出部2gがデータライン2c2に沿って並べられている場合である。この場合、例えば、図9(a)に示すように、複数のデータライン2c2が並ぶ方向において、複数のノイズ検出部2gが設けられた領域203は、有効画素領域201の両側に1つずつ設けることができる。
 例えば、図9(b)は、図8に例示をした場合、すなわち、複数のノイズ検出部2gが制御ライン2c1に沿って並べられている場合である。この場合、例えば、図9(b)に示すように、複数の制御ライン2c1が並ぶ方向において、複数のノイズ検出部2gが設けられた領域203は、有効画素領域201の両側に1つずつ設けることができる。
 この様にすると、図9(a)に示すように、領域203が設けられた分だけX線検出器1が大きくなることになる。しかしながら、図7に示すように、容量部2g1の、データライン2c2が延びる方向と直交する方向の長さLg1が、電極2b1bの、データライン2c2が延びる方向と直交する方向の長さLb1よりも短くなっている。そのため、領域203は、比較例に係る領域202よりも小さくすることができる。
 また、図9(b)に示すように、領域203が設けられた分だけX線検出器1が大きくなることになる。しかしながら、図8に示すように、容量部2g1の、制御ライン2c1が延びる方向と直交する方向の長さLg2が、電極2b1bの、制御ライン2c1が延びる方向と直交する方向の長さLb2よりも短くなっている。そのため、領域203は、比較例に係る領域202よりも小さくすることができる。
 なお、複数のデータライン2c2が並ぶ方向、または、複数の制御ライン2c1が並ぶ方向において、有効画素領域201の片側に領域203を1つずつ設けることもできる。
 この様にすれば、ノイズを検出することができ、且つ、X線検出器1のサイズが大きくなるのをさらに抑制することができる。
 また、複数のデータライン2c2が並ぶ方向、および複数の制御ライン2c1が並ぶ方向において、有効画素領域201の両側に領域203を1つずつ設けることもできる。すなわち、有効画素領域201を囲む様に領域203を設けることもできる。この様な場合にも、領域203は、比較例に係る領域202よりも小さくすることができる。
 以上に説明したように、有効画素領域201の少なくとも一方に領域203を設けることができる。
 前述したように、オフセット処理に用いる値は、複数のノイズ検出部2gから出力された値の平均値とすることができる。そのため、ノイズ検出部2gの数を多くすれば、ノイズを精度良く検出することができ、ひいては横引きノイズの除去の精度を向上させることができる。この場合、領域203の数が多くなれば、ノイズ検出部2gの数を多くすることができる。
 ただし、領域203の数が増えれば、その分だけX線検出器1が大きくなることになる。しかしながら、前述したように、領域203は、比較例に係る領域202よりも小さくすることができる。そのため、領域203の数を増やしたとしてもX線検出器1のサイズが大きくなるのを抑制することができる。領域203の数や配置は、X線検出器1の仕様などに応じて適宜決定することができる。
 以上に説明したように、本実施の形態に係るX線検出器1とすれば、横引きノイズを検出することができる。また、複数のノイズ検出部2gが設けられた領域203を小さくすることができる。そのため、ノイズを検出することができ、且つ、X線検出器1のサイズが大きくなるのを抑制することができる。
 ここで、前述したように、オフセット処理に用いる値は、複数のノイズ検出部2gから出力された値の平均値とすることができる。そのため、ノイズ検出部2gの数を多くすれば、ノイズを精度良く検出することができ、ひいては横引きノイズの除去の精度を向上させることができる。
 例えば、複数のデータライン2c2のそれぞれに、複数のノイズ検出部2gを電気的に接続することができる。例えば、複数の制御ライン2c1のそれぞれに、複数のノイズ検出部2gを電気的に接続することができる。すなわち、複数の領域203を並べて設けることができる。この様にすれば、ノイズ検出部2gの数を多くすることができるので、ノイズを精度良く検出することができ、ひいては横引きノイズの除去の精度を向上させることができる。
 図10および図11は、他の実施形態に係るノイズ検出部2gの配置を例示するための模式平面図である。
 なお、図10および図11においては、バイアスライン2c3を省いて描いている。
 図12(a)、(b)は、領域203の配置を例示するための模式平面図である。
 図10に示すように、例えば、2本のデータライン2c2のそれぞれに、複数のノイズ検出部2gを電気的に接続することができる。この場合、例えば、図12(a)に示すように、複数のデータライン2c2が並ぶ方向において、有効画素領域201の両側に領域203を2つずつ設けることができる。なお、例えば、複数のデータライン2c2が並ぶ方向において、有効画素領域201の片側に領域203を2つ設けることもできる。
 図11に示すように、例えば、2本の制御ライン2c1のそれぞれに、複数のノイズ検出部2gを電気的に接続することができる。この場合、例えば、図12(b)に示すように、複数の制御ライン2c1が並ぶ方向において、有効画素領域201の両側に領域203を2つずつ設けることができる。なお、例えば、複数の制御ライン2c1が並ぶ方向において、有効画素領域201の片側に領域203を2つ設けることもできる。
 なお、複数のデータライン2c2が並ぶ方向、および複数の制御ライン2c1が並ぶ方向において、有効画素領域201の両側に領域203を2つずつ設けることもできる。すなわち、有効画素領域201を囲む様に領域203を2重に設けることができる。
 なお、有効画素領域201の少なくとも一方に領域203を2つ設ける場合を例示したが、領域203を3つ以上設けることができる。
 例えば、複数の光電変換部2bが設けられた領域(有効画素領域201)の外側には、複数のノイズ検出部2gに設けられた薄膜トランジスタ2b2(第2の薄膜トランジスタ)が電気的に接続される、複数のデータライン2c2が第1の方向に隣接して並べて設けられるようにすることができる。
 例えば、複数の光電変換部2bが設けられた領域(有効画素領域201)の外側には、複数のノイズ検出部2gに設けられた薄膜トランジスタ2b2(第2の薄膜トランジスタ)が電気的に接続される、複数の制御ライン2c1が第2の方向に隣接して並べて設けられるようにすることができる。
 ただし、領域203の数が増えれば、その分だけX線検出器1が大きくなることになる。しかしながら、前述したように、領域203は、比較例に係る領域202よりも小さくすることができる。そのため、領域203の数を増やしたとしてもX線検出器1のサイズが大きくなるのを抑制することができる。領域203の数や配置は、X線検出器1の仕様などに応じて適宜決定することができる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
 1    X線検出器
 2    アレイ基板
 2a   基板
 2b   光電変換部
 2b1  光電変換素子
 2b1a 半導体層
 2b1b 電極
 2b2  薄膜トランジスタ
 2c1  制御ライン
 2c2  データライン
 2g   ノイズ検出部
 2g1  容量部
 3    信号処理回路
 4    画像構成回路
 5    シンチレータ
 31   制御回路
 32   信号検出回路

Claims (7)

  1.  第1の方向に延びる複数の制御ラインと、
     前記第1の方向に直交する第2の方向に延びる複数のデータラインと、
     前記複数の制御ラインと、前記複数のデータラインと、により画された複数の領域のそれぞれに設けられた光電変換部と、
     前記複数の光電変換部が設けられた領域の外側に並べて設けられた複数のノイズ検出部と、
     前記複数の光電変換部が設けられた領域の上に設けられたシンチレータと、
     を備え、
     前記複数の光電変換部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第1の薄膜トランジスタと、前記第1の薄膜トランジスタと電気的に接続された電極を有する光電変換素子と、を有し、
     前記複数のノイズ検出部のそれぞれは、対応する前記制御ラインと対応する前記データラインとに電気的に接続された第2の薄膜トランジスタと、前記第2の薄膜トランジスタと電気的に接続された容量部と、を有し、
     前記第1の方向および前記第2の方向の少なくともいずれかの方向において、前記容量部の長さは、前記電極の長さよりも短い放射線検出器。
  2.  前記複数の光電変換部が設けられた領域の外側には、複数の前記第2の薄膜トランジスタが電気的に接続される、複数の前記データラインが前記第1の方向に隣接して並べて設けられている請求項1記載の放射線検出器。
  3.  前記複数の光電変換部が設けられた領域の外側には、複数の前記第2の薄膜トランジスタが電気的に接続される、複数の前記制御ラインが前記第2の方向に隣接して並べて設けられている請求項1または2に記載の放射線検出器。
  4.  前記第2の薄膜トランジスタと前記容量部との間の隙間寸法は、前記第1の薄膜トランジスタと前記電極との間の隙間寸法と略同一である請求項1~3のいずれか1つに記載の放射線検出器。
  5.  前記容量部は、前記電極と同じ材料を含んでいる請求項1~4のいずれか1つに記載の放射線検出器。
  6.  前記複数のノイズ検出部は、前記データラインに沿って並べて設けられ、
     前記容量部の前記第1の方向の長さは、前記電極の前記第1の方向の長さよりも短い請求項1~5のいずれか1つに記載の放射線検出器。
  7.  前記複数のノイズ検出部は、前記制御ラインに沿って並べて設けられ、
     前記容量部の前記第2の方向の長さは、前記電極の前記第2の方向の長さよりも短い請求項1~6のいずれか1つに記載の放射線検出器。
PCT/JP2021/018041 2020-07-01 2021-05-12 放射線検出器 WO2022004142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227044387A KR20230011413A (ko) 2020-07-01 2021-05-12 방사선 검출기
CN202180044496.0A CN115917364A (zh) 2020-07-01 2021-05-12 放射线检测器
EP21833596.6A EP4177643A4 (en) 2020-07-01 2021-05-12 RADIATION DETECTOR
US18/066,483 US20230137069A1 (en) 2020-07-01 2022-12-15 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-113832 2020-07-01
JP2020113832A JP2022012182A (ja) 2020-07-01 2020-07-01 放射線検出器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/066,483 Continuation US20230137069A1 (en) 2020-07-01 2022-12-15 Radiation detector

Publications (1)

Publication Number Publication Date
WO2022004142A1 true WO2022004142A1 (ja) 2022-01-06

Family

ID=79315234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018041 WO2022004142A1 (ja) 2020-07-01 2021-05-12 放射線検出器

Country Status (7)

Country Link
US (1) US20230137069A1 (ja)
EP (1) EP4177643A4 (ja)
JP (1) JP2022012182A (ja)
KR (1) KR20230011413A (ja)
CN (1) CN115917364A (ja)
TW (1) TWI782535B (ja)
WO (1) WO2022004142A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057535A (ja) * 1993-12-27 2007-03-08 Canon Inc 変換装置およびx線検出システム
JP2009141439A (ja) * 2007-12-03 2009-06-25 Canon Inc 放射線撮像装置、その駆動方法及びプログラム
JP2011097452A (ja) 2009-10-30 2011-05-12 Toshiba Corp 放射線検出器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056382A (ja) * 1999-06-07 2001-02-27 Toshiba Corp 放射線検出器及び放射線診断装置
JP5406473B2 (ja) * 2007-07-19 2014-02-05 キヤノン株式会社 放射線検出装置
JP4719201B2 (ja) * 2007-09-25 2011-07-06 浜松ホトニクス株式会社 固体撮像装置
US8384041B2 (en) * 2010-07-21 2013-02-26 Carestream Health, Inc. Digital radiographic imaging arrays with reduced noise
JP5886793B2 (ja) * 2013-06-11 2016-03-16 浜松ホトニクス株式会社 固体撮像装置
US10462391B2 (en) * 2015-08-14 2019-10-29 Kla-Tencor Corporation Dark-field inspection using a low-noise sensor
JP2017192090A (ja) * 2016-04-15 2017-10-19 東芝電子管デバイス株式会社 放射線検出器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057535A (ja) * 1993-12-27 2007-03-08 Canon Inc 変換装置およびx線検出システム
JP2009141439A (ja) * 2007-12-03 2009-06-25 Canon Inc 放射線撮像装置、その駆動方法及びプログラム
JP2011097452A (ja) 2009-10-30 2011-05-12 Toshiba Corp 放射線検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177643A4

Also Published As

Publication number Publication date
TWI782535B (zh) 2022-11-01
CN115917364A (zh) 2023-04-04
KR20230011413A (ko) 2023-01-20
JP2022012182A (ja) 2022-01-17
EP4177643A4 (en) 2024-03-27
EP4177643A1 (en) 2023-05-10
US20230137069A1 (en) 2023-05-04
TW202202872A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
US8680472B2 (en) Radiation detecting apparatus and radiation imaging system
US7804071B2 (en) Image detection device
US10156643B2 (en) Radiation detector
JP2010245078A (ja) 光電変換装置、エックス線撮像装置
WO2022004142A1 (ja) 放射線検出器
KR101973170B1 (ko) 방사선 검출기
WO2022079936A1 (ja) 放射線検出器
WO2018030068A1 (ja) 放射線検出器
JP2023169517A (ja) 放射線検出器
WO2020202889A1 (ja) 放射線検出器
JP6404661B2 (ja) 放射線検出器用アレイ基板、および放射線検出器
JP7061420B2 (ja) 放射線検出器
WO2022244276A1 (ja) 放射線検出器
JP7236916B2 (ja) 放射線検出器
JP2020081325A (ja) 放射線検出器
JP2020068358A (ja) 放射線検出器
JP2019012774A (ja) 放射線検出器
JP2006054232A (ja) X線検出器およびその製造方法
JP2019161614A (ja) 放射線検出器
JP2017187340A (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044387

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833596

Country of ref document: EP

Effective date: 20230201