WO2022002494A1 - Installation et procédé de réfrigération d'hydrogène - Google Patents

Installation et procédé de réfrigération d'hydrogène Download PDF

Info

Publication number
WO2022002494A1
WO2022002494A1 PCT/EP2021/064230 EP2021064230W WO2022002494A1 WO 2022002494 A1 WO2022002494 A1 WO 2022002494A1 EP 2021064230 W EP2021064230 W EP 2021064230W WO 2022002494 A1 WO2022002494 A1 WO 2022002494A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
ejector
circuit
gas
working
Prior art date
Application number
PCT/EP2021/064230
Other languages
English (en)
Inventor
Bertille GUENEGO
Patrick Le Bot
Axelle GAERTNER
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CN202180047192.XA priority Critical patent/CN116057342A/zh
Priority to US18/014,284 priority patent/US20230251030A1/en
Priority to KR1020237000024A priority patent/KR20230035309A/ko
Priority to JP2022579134A priority patent/JP2023531232A/ja
Priority to EP21729487.5A priority patent/EP4189309A1/fr
Priority to CA3188205A priority patent/CA3188205A1/fr
Publication of WO2022002494A1 publication Critical patent/WO2022002494A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/60Details about pipelines, i.e. network, for feed or product distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to an installation and a method for the refrigeration of hydrogen.
  • the invention relates more particularly to an installation for refrigeration of hydrogen at cryogenic temperature, and in particular for the liquefaction of hydrogen, comprising a hydrogen circuit to be cooled comprising an upstream end intended to be connected to a source of hydrogen and a downstream end connected to a unit for collecting the cooled and / or liquefied hydrogen, the cooling installation comprising a set of heat exchanger (s) in thermal exchange with the hydrogen circuit to be cooled, the installation comprising a cooling device in thermal exchange with the heat exchanger assembly (s), said cooling device comprising a cycle refrigerator for refrigerating a cycle gas in a working circuit, the cycle gas being the hydrogen, the working circuit of the refrigerator comprising a member for compressing the cycle gas, a member for cooling the cycle gas, a member for expanding the cycle gas comprising enant at least one turbine and one cycle gas reheating member.
  • Liquid hydrogen at very low temperature generates, in the phases of storage and loading of trucks, vaporization gases ("Boil-Off gas") which must be recycled to recover both the hydrogen molecule and the gases. frigories contained in cold gas cases.
  • a known means is to send a sub-cooled liquid into the capacity receiving the liquid produced by the liquefier (storage or semi-trailer).
  • Another solution is to use an ejector to return the vaporization gas to fixed storage.
  • an ejector can be used.
  • Ejectors make it possible to pressurize a low pressure flow (the suction fluid) thanks to the expansion of a high pressure flow (the driving fluid).
  • the hydrogen stream to be cooled can be used as a driving fluid.
  • this use of the pressure of the hydrogen to be cooled decreases the possibilities of cooling (by expansion) of said flow to produce an even colder fluid.
  • An aim of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the installation according to the invention is essentially characterized in that the installation comprising at least one ejector, the admission inlet of which motor fluid is connected, via a set of pipe (s) and valve (s), to the working circuit of the refrigerator downstream of the expansion device, the suction inlet of the ejector being connected to a set of pipe (s) provided with valve (s) having one end intended to be connected to the gas head of at least one mobile tank for transporting liquefied hydrogen, in particular a tank for transporting liquefied hydrogen intended for be filled with liquid hydrogen by the downstream end of the hydrogen circuit, the output of the ejector being connected, via a set of pipe (s) and valve (s), to the working circuit of the refrigerator.
  • embodiments of the invention may include one or more of the following characteristics: the installation comprises several ejectors, the installation comprises at least one liquefied hydrogen transport tank comprising a fluid inlet configured to be removably connected to the downstream end of the hydrogen circuit in order to be filled with cooled hydrogen, the at least one tank comprising a gaseous vaporization gas outlet configured to be removably connected to the suction inlet of the ejector (8) via the assembly of pipe (s) provided with valve (s), the cooling device comprises a pre-cooling member in thermal exchange with a part of the heat exchanger assembly (s), the output flow of the ejector has a pressure between 1.25 bara and 2 bara, and preferably between 1.3 and 1.45 bara, the flow of working fluid is controlled as a function of the outlet pressure of the ejector, said flow being regulated to maintain a constant pressure setpoint at the outlet of the ejector, the working circuit of the refrigerator consists of several heat hangers in series between a hot end of the
  • the invention also relates to a process for refrigerating hydrogen at cryogenic temperature, in particular for liquefying hydrogen, using an installation according to one of any of the above or below features comprising a suction step in the suction inlet of the vaporization gas ejector of a mobile liquefied hydrogen transport tank using as working fluid ejector of the working gas under pressure from the working circuit, the output stream of the ejector being injected into the working circuit.
  • the pressure of the working fluid is between 5 and 10 bara, and preferably between 6 and 7 bara
  • the temperature of the working fluid being between 28 and 35K and preferably between 29.3 and 30K
  • the flow of ejector outlet has a pressure greater than or equal to the pressure of the cycle gas at the coldest level of the working circuit.
  • the invention may also relate to any cooling device or method comprising any combination of the features above or below within the scope of the claims.
  • FIG. 1 which represents a schematic and partial view illustrating an example of the structure and operation of a refrigeration / hydrogen liquefaction installation according to the invention.
  • the installation 1 for refrigeration of hydrogen at cryogenic temperature, and in particular for the liquefaction of hydrogen comprises a circuit 2 of hydrogen to be cooled comprising an upstream end 21 intended to be connected to a source of hydrogen and a downstream end 22 intended to be connected to a unit for collecting the cooled hydrogen (buffer liquid storage 17 and / or tank filling pipe 13).
  • the cooling installation 1 comprises a set of heat exchanger (s) 3, 4 in thermal exchange with the hydrogen circuit 2 to be cooled.
  • the installation 1 comprises a cooling device in thermal exchange with the heat exchanger assembly (s) 3, 4, said cooling device comprising a refrigerator 5 with a cycle of refrigeration of a cycle gas consisting of hydrogen. or containing hydrogen (and / or any other suitable gas, for example helium).
  • At least part of the hydrogen circuit 2, of the exchanger assembly (s) 3, 4 and of the cooling device (its cold part) are preferably housed in a cold box insulated under vacuum.
  • the heat exchangers 3, 4 for the heat of liquefaction and (sub) cooling of the hydrogen are installed in a closed chamber under vacuum. (i.e. at very low pressure).
  • the working circuit of the refrigerator 5 comprises, arranged in series, a member 6 for compressing the cycle gas, a member 3, 4 for cooling the cycle gas, a member 7 for expanding the cycle gas comprising at least one turbine and a member 4, 3 for heating the cycle gas.
  • the compression member 6 comprises for example two compressors in series, the inlets of which are for example at different pressure levels.
  • the exchanger assembly (s) 3, 4 comprises for example two heat exchangers in series, for example counter-current heat exchangers which cool and heat the working fluid simultaneously according to the direction of passage in the circuit of job.
  • the cooling device of the installation 1 can comprise a member 15 for pre-cooling in thermal exchange with a part of the heat exchanger assembly (s) 3, 4, in particular the first exchanger 3 downstream of the compression member 6.
  • This pre-cooling member 15 can use, for example, another refrigerator using, for example, another fluid, for example nitrogen.
  • this pre-cooling member 15 makes it possible to pre-cool the fluid to a temperature between 70 and 100K.
  • the hydrogen refrigerator 5 After this pre-cooling, the hydrogen refrigerator 5 provides additional cooling for the circuit 2 up to the target temperature (hydrogen liquefaction temperature).
  • the working circuit of the refrigerator 5 causes the working fluid to carry out a thermodynamic cycle with a part at relative low pressure (going up from the bottom to the top on the schematic representation) and a part at relative higher pressure (going down from the top to the top). below on the schematic representation).
  • the working fluid (hydrogen) undergoes in particular an expansion in at least one turbine of the expansion member for the production of cold.
  • the installation 1 comprises at least one ejector 8 whose driving fluid inlet inlet is connected, via a set of pipe (s) 9 and valve (s) 10 (in particular isolation valve (s)), to the working circuit of the refrigerator 5 downstream of the expansion member 7, in particular downstream of an expansion turbine.
  • a set of pipe (s) 9 and valve (s) 10 in particular isolation valve (s)
  • the suction inlet of the ejector 8 is connected to a set of pipe (s) 11 provided with valve (s) 12 (in particular with insulation) and having one end which can be connected to the gas overhead of at least one mobile tank 13 for transporting liquefied hydrogen.
  • the suction inlet can be fluidly connected to the gas overhead of a tank 13 for transporting liquefied hydrogen intended to be filled with liquid hydrogen via the downstream end 22 of the circuit 2 of cooled hydrogen from the installation 1.
  • the output of the ejector 8 is connected for its part, via a set of pipe (s) 14 and valve (s) 17, to the working circuit of the refrigerator in order to be able to be reinjected therein.
  • the flow of gas sucked (vaporization gas) from the tanks 13 coming to be connected to the circuit 2 for supplying cooled hydrogen (in particular liquefied) can be for example between 1.01325 and 1.5 bara, and preferably between 1, 15 and 1.3 bara (pressure at the outlet of tank 13 for example).
  • the temperature of this gas can be between saturation and 60K.
  • the flow of driving gas from the ejector 8 used for pressurization is part of the working gas of the hydrogen cooling cycle.
  • This motive gas is gas which has preferably passed through several exchangers and which has been expanded by at least one turbine 7 of the expansion member.
  • this gas used as the motor flow of the ejector 8 is taken at the outlet of the last turbine (if several turbines are in series in the working circuit) and / or from the coldest outlet of the circuit (if several turbines 7 are arranged in parallel in the circuit).
  • the pressure of this driving gas is for example between 5 and 10 bara, and preferably between 6 and 7 bara.
  • the temperature of this motive gas can be for example between 28 and 35K and, preferably between 29.3 and 30K.
  • the gas flow at the outlet of the ejector 8 depends on the performance of the ejector and on the characteristics of the suction flow and of the motor flow.
  • a refrigerator using a refrigeration cycle conventionally subjects a cycle gas (working gas) to a thermodynamic cycle in which the temperature and pressure conditions are determined according to the positions in the cycle.
  • the cycle fluid reaches at a so-called coldest end of the cycle a relatively lowest temperature in the cycle and at determined corresponding pressure conditions.
  • the pressure of the ejector outlet gas stream is at least equal to the pressure of the low pressure working fluid stream of the cooling cycle at its coldest point (of the working circuit), in order to d '' be recycled (injected).
  • This pressure can be for example between 1.25 bara and 2 bara, and preferably between 1.3 and 1.45 bara.
  • the flow has a pressure greater than this pressure of the cycle gas at the coldest end of the cycle.
  • the engine flow rate coming from the outlet of the turbine 7 which passes through the ejector 8 can be controlled as a function of the pressure conditions of the output flow of the ejector 8.
  • the flow rate can in particular be adjusted from so that the pressure set point is constant and slightly higher than the pressure of the low pressure flow of the working fluid in the cooling cycle.
  • the flow rate of the ejector or ejectors 8 depends on the number of tanks 13 (trailers) used and filled at the downstream end 22 of the cooled hydrogen circuit of the installation.
  • the output stream of the ejector 8 must enter the cold box of the liquefier of the installation and be mixed with the low pressure stream of the working fluid of the liquefier cooling cycle. As illustrated, this output stream from the ejector 8 is preferably injected into the working circuit before the return of the working fluid to the compression member 6 (before passing through the exchangers 4, 3 providing heating up to the inlet of the low pressure compressor 6).
  • the mixing (injection) is therefore preferably carried out at the cold end of the last exchanger 4 of the working circuit (above the thermosiphon exchanger if there is one and in the last exchanger 4 in series s' there is no thermosyphon). That is to say that the vaporization gas recovered in the tank 13 is mixed at this point of the working circuit with the possible vaporization gas coming from a fixed storage 16 (if any) and with the gas coming from from the outlet of a thermosyphon (if applicable).
  • the vaporization gas supplied by mobile tanks 13 to be filled with liquid is intermittent because it is linked to the presence of filled trailers 13. Consequently, as illustrated, the ejector (s) 8 should preferably be able to be isolated from the liquefier 8 and from the loading pipes of the trailers 13 by means of a set of isolation valves 10, 12, 17. These valves should be closed when no vaporization gas is to be recovered.
  • ejectors 8 can therefore be arranged and connected in parallel in the installation 1 with respective valves.
  • the recommended number of ejectors 8 is preferably the maximum number of reservoirs 13 that can simultaneously generate vaporization gas at low pressure (which takes place when this or these reservoirs 13 receive liquid from storage 16 through the line 22.
  • a truck can be accommodated in installation 1 without generating these low pressure gases: it may be in the process of being connected, or in the depressurization phase (by generating high pressure vaporization gases which do not require to use the ejector).
  • two or four ejectors can be provided or any other number depending on the installation.
  • valve sets For each ejector 8, the corresponding valve sets must be able to be put into the open or closed position independently, depending on the number of tanks 13 which generate vaporization gas at a given time.
  • This solution makes it possible to recycle a large quantity of vaporization gas streams and to enhance their cold temperature. Compared to current solutions which use the hydrogen flow from circuit 2 to be cooled as the driving gas, this solution makes it possible to save the expansion of this hydrogen flow for a more advantageous use (expansion in a liquid turbine for example) .
  • the invention also makes it possible to reduce the risk of sending impurities to storage 13, because the recovered vaporization gas will be purified again by joining the supply to the installation 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Installation de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprenant un circuit (2) d'hydrogène à refroidir comprenant une extrémité amont destinée à être reliée à une source d'hydrogène et une extrémité aval reliée à un organe de collecte de l'hydrogène refroidi, l'installation (1) de refroidissement comprenant un ensemble d'échangeur(s) (3, 4) de chaleur en échange thermique avec le circuit (2) d'hydrogène à refroidir, l'installation (1) comprenant un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeur(s) (3, 4) de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur (5) à cycle de réfrigération d'un gaz de cycle un tel que l'hydrogène, au moins une partie du circuit (2) d'hydrogène, de l'ensemble d'échangeur(s) (3, 4) et du dispositif de refroidissement étant logés dans une boîte (6) froide isolée sous vide, l'installation (1) comprenant, dans la boîte (6) froide, au moins un éjecteur (8) dont l'entrée d'aspiration est reliée à la phase gazeuse d'une capacité (13) de fluide et dont l'entrée d'admission du fluide moteur est reliée à au moins l'un parmi : le gaz de cycle pressurisé du réfrigérateur (5), de l'hydrogène du circuit (2) d'hydrogène refroidi dans l'ensemble d'échangeur(s) (3, 4) de chaleur.

Description

Installation et procédé de réfrigération d'hydrogène
L'invention concerne une installation et un procédé de réfrigération d'hydrogène
L'invention concerne plus particulièrement une installation de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprenant un circuit d'hydrogène à refroidir comprenant une extrémité amont destinée à être reliée à une source d'hydrogène et une extrémité aval reliée à un organe de collecte de l'hydrogène refroidi et/ou liquéfié, l'installation de refroidissement comprenant un ensemble d'échangeur(s) de chaleur en échange thermique avec le circuit d'hydrogène à refroidir, l'installation comprenant un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeur (s) de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur à cycle de réfrigération d'un gaz de cycle dans un circuit de travail, le gaz de cycle étant l'hydrogène, le circuit de travail du réfrigérateur comprenant un organe de compression du gaz de cycle, un organe de refroidissement du gaz de cycle, un organe de détente du gaz de cycle comprenant au moins une turbine et un organe de réchauffage du gaz de cycle.
Le déploiement du marché de l'hydrogène carburant pour la mobilité va faire générer de grandes capacités de liquéfaction d'hydrogène, pour une logistique sous forme liquide du produit. L'hydrogène liquide à très basses température génère, dans les phases de stockage et de chargement des camions, des gaz de vaporisation (« Boil-Off gas ») qu'il convient de recycler pour recouvrer aussi bien la molécule d'hydrogène que les frigories contenues dans cas gaz froids. Pour cela, un moyen connu est d'envoyer dans la capacité recevant le liquide produit par le liquéfacteur (stockage ou semi-remorque) un liquide sous refroidi. Une autre solution consiste à utiliser un éjecteur pour renvoyer le gaz de vaporisation vers un stockage fixe.
Pour augmenter la pression des gaz de vaporisation provenant du stockage fixe et permettre leur injection dans un liquéfacteur un éjecteur peut être utilisé.
Les éjecteurs permettent de pressuriser un flux à basse pression (le fluide d'aspiration) grâce à la détente d'un flux à haute pression (le fluide moteur).
Le flux d'hydrogène à refroidir peut être utilisé comme un fluide moteur. Cependant, cette utilisation de la pression de l'hydrogène à refroidir diminue les possibilités de refroidissement (par détente) dudit flux pour produire un fluide encore plus froid.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, l'installation selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisée en ce que l'installation comprenant au moins un éjecteur dont l'entrée d'admission du fluide moteur est raccordée, via un ensemble de conduite (s) et de vanne (s), au circuit de travail du réfrigérateur en aval de l'organe de détente, l'entrée d'aspiration de l'éjecteur étant raccordée à un ensemble de conduite (s) munie(s) de vanne(s) ayant une extrémité destinée à être raccordée au ciel gazeux d'au moins un réservoir mobile de transport d'hydrogène liquéfié, notamment un réservoir de transport d'hydrogène liquéfié destiné à être rempli en hydrogène liquide par l'extrémité aval du circuit d'hydrogène, la sortie de l'éjecteur étant raccordée, via un ensemble de conduite (s) et de vanne (s), au circuit de travail du réfrigérateur .
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : l'installation comprend plusieurs éjecteurs, l'installation comprend au moins un réservoir de transport d'hydrogène liquéfié comprenant une entrée de fluide configurée pour être raccordée de façon amovible à l'extrémité aval du circuit d'hydrogène en vue d'être rempli en hydrogène refroidi, le au moins un réservoir comprenant une sortie gazeuse de gaz de vaporisation configurée pour être raccordée de façon amovible à l'entrée d'aspiration de l'éjecteur (8) via l'ensemble de conduite (s) munie(s) de vanne(s), le dispositif de refroidissement comprend un organe de pré refroidissement en échange thermique avec une partie de l'ensemble d'échangeur(s) de chaleur, le flux de sortie de l'éjecteur a une pression comprise entre 1,25 bara et 2 bara, et de préférence entre 1,3 et 1,45 bara, le débit de fluide moteur est contrôlée en fonction de la pression de sortie de l'éjecteur, ledit débit étant régulé pour maintenir une consigne de pression constante à la sortie de 1'éjecteur, le circuit de travail du réfrigérateur comprend plusieurs échangeurs de chaleur en série entre une extrémité chaude du circuit de travail dans laquelle le fluide de travail est à pression relativement haute et une extrémité relativement froide du circuit de travail dans laquelle le fluide est à un pression relativement basse, le flux de sortie de l'éjecteur étant injecté dans le circuit de travail au niveau de l'extrémité froide, le procédé comprend simultanément l'aspiration dans les entrées d'aspiration de plusieurs du gaz de vaporisation de plusieurs réservoirs mobiles de transport d'hydrogène liquéfié en utilisant comme fluide moteur des éjecteurs du gaz de travail sous pression du circuit de travail, les flux de sortie des éjecteurs étant injectés dans le circuit de travail.
L'invention concerne également un procédé de réfrigération d'hydrogène à température cryogénique, notamment de liquéfaction d'hydrogène, utilisant une installation conforme à l'une quelconque des caractéristiques ci-dessus ou ci-dessous, comprenant une étape d'aspiration dans l'entrée d'aspiration de l'éjecteur du gaz de vaporisation d'un réservoir mobile de transport d'hydrogène liquéfié en utilisant comme fluide moteur de l'éjecteur du gaz de travail sous pression du circuit de travail, le flux de sortie de l'éjecteur étant injecté dans le circuit de travail.
Selon d'autres particularités possibles : le gaz de vaporisation aspiré a une pression comprise entre 1,01325 et 1,5 bara, et de préférence compris entre 1,15 et 1,3 bara et une température la température de saturation de l'hydrogène et 60K, la pression du fluide moteur est comprise entre 5 et 10 bara, et de préférence comprise entre 6 et 7 bara, la température du fluide moteur étant comprise entre 28 et 35K et de préférence entre 29,3 et 30K, le flux de sortie de l'éjecteur a une pression supérieure ou égale à la pression du gaz de cycle au niveau de plus froid du circuit de travail.
L'invention peut concerner également tout dispositif ou procédé de refroidissement comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous dans le cadre des revendications .
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence à la :
[Fig. 1] qui représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une installation de réfrigération/liquéfaction d'hydrogène selon 1'invention.
L'installation 1 de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprend un circuit 2 d'hydrogène à refroidir comprenant une extrémité amont 21 destinée à être reliée à une source d'hydrogène et une extrémité aval 22 destinée à être reliée à un organe de collecte de l'hydrogène refroidi (stockage 17 liquide tampon et/ou tuyau de remplissage de réservoirs 13).
L'installation 1 de refroidissement comprend un ensemble d'échangeur (s) 3, 4 de chaleur en échange thermique avec le circuit 2 d'hydrogène à refroidir. L'installation 1 comprend un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeur(s) 3, 4 de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur 5 à cycle de réfrigération d'un gaz de cycle constitué d'hydrogène ou contenant de l'hydrogène (et/ou tout autre gaz approprié, par exemple l'hélium).
Au moins une partie du circuit 2 d'hydrogène, de l'ensemble d'échangeur (s) 3, 4 et du dispositif de refroidissement (sa partie froide) sont de préférence logés dans une boîte froide isolée sous vide. En effet, compte tenu des niveaux de température mis en œuvre (par exemple de l'ordre de 20K) les échangeurs 3, 4 de chaleurs de liquéfaction et de (sous)refroidissement de l'hydrogène sont installés dans une enceinte closes et sous vide (c'est-à-dire à très basse pression) .
Le circuit de travail du réfrigérateur 5 comprend, disposés en série, un organe 6 de compression du gaz de cycle, un organe 3, 4 de refroidissement du gaz de cycle, un organe 7 de détente du gaz de cycle comprenant au moins une turbine et un organe 4, 3 de réchauffage du gaz de cycle.
L'organe 6 de compression comprend par exemple deux compresseurs en série dont les entrées sont par exemple à des niveaux de pression différents.
L'ensemble d'échangeur (s) 3, 4 comprend par exemple deux échangeurs de chaleur en série, par exemple des échangeurs de chaleur à contre-courant qui refroidissent et réchauffent le fluide de travail simultanément selon le sens de passage dans le circuit de travail. Comme illustré, le dispositif de refroidissement de l'installation 1 peut comprendre un organe 15 de pré refroidissement en échange thermique avec une partie de l'ensemble d'échangeur(s) 3, 4 de chaleur, notamment le premier échangeur 3 en aval de l'organe 6 de compression. Cet organe 15 de pré-refroidissement peut utiliser par exemple un autre réfrigérateur utilisant par exemple un autre fluide par exemple de l'azote. Par exemple, cet organe 15 de pré-refroidissement permet de pré-refroidir le fluide à une température comprise entre 70 et 100K.
Après ce pré-refroidissement, le réfrigérateur 5 hydrogène assure un refroidissement supplémentaire du circuit 2 jusqu'à la température cible (température de liquéfaction de l'hydrogène).
Le circuit de travail du réfrigérateur 5 fait réaliser au fluide de travail un cycle thermodynamique avec une partie à relative basse pression (remontant du bas vers le haut sur la représentation schématique) et une partie à relative plus haute pression élevée (descendant du haut vers le bas sur la représentation schématique). Le fluide de travail (hydrogène) subit en particulier une détente dans au moins une turbine de l'organe de détente pour la production de froid.
L'installation 1 comprend au moins un éjecteur 8 dont l'entrée d'admission du fluide moteur est raccordée, via un ensemble de conduite (s) 9 et de vanne (s) 10 (notamment vanne(s) d'isolation), au circuit de travail du réfrigérateur 5 en aval de l'organe 7 de détente notamment en aval d'une turbine de détente .
L'entrée d'aspiration de l'éjecteur 8 est raccordée à un ensemble de conduite(s) 11 munie (s) de vanne (s) 12 (notamment d'isolation) et ayant une extrémité pouvant être raccordée au ciel gazeux d'au moins un réservoir 13 mobile de transport d'hydrogène liquéfié. En particulier, l'entrée d'aspiration peut être reliée fluidiquement au ciel gazeux d'un réservoir 13 de transport d'hydrogène liquéfié destiné à être rempli en hydrogène liquide par l'extrémité aval 22 du circuit 2 d'hydrogène refroidi de l'installation 1.
La sortie de l'éjecteur 8 est raccordée quant à elle, via un ensemble de conduite(s) 14 et de vanne(s) 17, au circuit de travail du réfrigérateur pour pouvoir y être réinjecté.
Le flux de gaz aspiré (gaz de vaporisation) des réservoirs 13 venant se raccorder au circuit 2 de fourniture d'hydrogène refroidi (liquéfié notamment) peut être compris par exemple entre 1,01325 et 1,5 bara, et de préférence entre 1,15 et 1,3 bara (pression à la sortie du réservoir 13 par exemple). La température de ce gaz peut être comprise entre la saturation et 60K.
Le flux de gaz moteur de l'éjecteur 8 utilisé pour la pressurisation est une partie du gaz de travail du cycle de refroidissement à hydrogène. Ce gaz moteur est du gaz ayant de préférence traversé plusieurs échangeurs et a qui été détendu par au moins une turbine 7 de l'organe de détente.
Idéalement, ce gaz utilisé comme flux moteur de l'éjecteur 8 est prélevé à la sortie de la dernière turbine (si plusieurs turbines sont en série dans le circuit de travail) et/ou de la sortie la plus froide du circuit (si plusieurs turbines 7 sont disposées en parallèle dans le circuit).
La pression de ce gaz moteur est par exemple comprise entre 5 et 10 bara, et de préférence comprise entre 6 et 7 bara. La température de ce gaz moteur peut être comprise par exemple entre 28 et 35K et, de préférence entre 29,3 et 30K.
Le flux de gaz à la sortie de l'éjecteur 8 dépend des performances de l'éjecteur et des caractéristiques du flux d'aspiration et du flux moteur. Un réfrigérateur utilisant un cycle de réfrigération fait classiquement subir à un gaz de cycle (gaz de travail) un cycle thermodynamique dans lequel les conditions de température et de pression sont déterminées selon les positions dans le cycle. En particulier, le fluide de cycle atteint à une extrémité dite la plus froide du cycle une température relativement la plus basse dans le cycle et à des conditions de pression correspondantes déterminées.
De préférence, la pression du flux de gaz de sortie de l'éjecteur est au moins égale à la pression du flux de fluide de travail à basse pression du cycle de refroidissement à son point (du circuit de travail) le plus froid, afin d'être recyclé (injecté). Cette pression peut être comprise par exemple entre 1,25 bara et 2 bara, et de préférence entre 1,3 et 1,45 bara.
C'est-à-dire que, en sortie de l'éjecteur, le flux possède une pression supérieure à cette pression du gaz de cycle à l'extrémité la plus froide du cycle.
Pour cela, le débit de flux moteur provenant de la sortie de la turbine 7 qui passe par l'éjecteur 8 peut être contrôlé en fonction des conditions de pression du flux de sortie de l'éjecteur 8. Le débit peut en particulier être réglé de manière à ce que le point de consigne de la pression soit constant et légèrement supérieur à la pression du flux basse pression du fluide de travail dans le cycle de refroidissement.
Bien entendu, le débit du ou des éjecteurs 8 dépend du nombre réservoirs 13 (remorques) utilisées et remplies à l'extrémité aval 22 du circuit d'd'hydrogène refroidi de l'installation.
Le flux de sortie de l'éjecteur 8 doit entrer dans la boîte froide du liquéfacteur de l'installation et être mélangé au flux basse pression du fluide de travail du cycle de refroidissement du liquéfacteur. Comme illustré, ce flux de sortie de l'éjecteur 8 est injecté de préférence dans le circuit de travail avant le retour du fluide de travail vers l'organe 6 de compression (avant le passage dans les échangeurs 4, 3 assurant un réchauffage jusqu'à l'entrée du compresseur 6 basse pression).
Le mélange (injection) est donc de préférence effectué à l'extrémité froide du dernier échangeur 4 du circuit de travail (au-dessus de l'échangeur à thermosiphon s'il y en a un et dans le dernier échangeur 4 en série s'il n'y a pas de thermosiphon). C'est-à-dire que le gaz de vaporisation récupéré dans le réservoir 13 est mélangé à cet endroit du circuit de travail avec l'éventuel gaz de vaporisation provenant d'un stockage 16 fixe (le cas échéant) et avec le gaz provenant de la sortie d'un thermosiphon (le cas échéant).
Le gaz de vaporisation fourni par des réservoirs 13 mobiles à remplir de liquide est intermittent car il est lié à la présence de remorques 13 remplies. Par conséquent, comme illustré, le ou les éjecteurs 8 doivent de préférence pouvoir être isolés du liquéfacteur 8 et des tuyaux de chargement des remorques 13 grâce à un ensemble de vannes 10, 12, 17 d'isolation. Ces vannes devraient être fermées lorsqu'aucun gaz de vaporisation n'est à récupérer .
Plusieurs réservoirs 13 peuvent être remplis simultanément dans l'installation. Ceci implique que le débit de gaz de vaporisation à récupérer peut être très variable. Cependant, les éjecteurs 8 n'ont pas un fonctionnement optimal pour de grandes plages de débit (la plage de variation acceptable pour le débit d'entrée d'un éjecteur est d'environ 75 % à 100 %).
Ainsi, comme illustré plusieurs (notamment deux ou plus) éjecteurs 8 peuvent donc être agencés et raccordés en parallèle dans l'installation 1 avec des vannes respectives. Le nombre d'éjecteurs 8 recommandé est de préférence le nombre maximum de réservoirs 13 pouvant générer simultanément du gaz de vaporisation à basse pression (ce qui a lieu lorsque ce ou ces réservoirs 13 reçoivent du liquide du stockage 16 par la ligne 22. En effet, un camion peut être accueilli dans l'installation 1 sans générer ces gaz basse pression : il peut être en train d'être connecté, ou en phase de dépressurisation (en générant des gaz de vaporisation à haute pression ne nécessitant pas d'utiliser l'éjecteur). Par exemple deux ou quatre éjecteurs peuvent être prévus ou tout autre nombre en fonction de 1'installation.
Pour chaque éjecteur 8, les ensembles de vannes correspondants doivent pouvoir être mises en position d'ouverture ou de fermeture indépendamment, en fonction du nombre de réservoirs 13 qui génèrent du gaz de vaporisation à un moment donné. L'illustration schématique un seul réservoir 13 est raccordé et l'installation comprend deux éjecteurs 8 dont l'un est isolé (vannes fermées en noir) et un seul est utilisé (vannes ouvertes en blanc).
Cette solution permet de recycler une grande quantité de flux de gaz de vaporisation et de valoriser leur température froide. Par rapport aux solutions courantes qui utilisent le flux d'hydrogène du circuit 2 à refroidir comme gaz moteur, cette solution permet d'économiser la détente de ce flux d'hydrogène pour une utilisation plus avantageuse (détente dans une turbine à liquide par exemple).
L'invention permet de plus de réduire le risque d'envoyer des impuretés au stockage 13, car le gaz de vaporisation récupéré sera à nouveau purifié en rejoignant l'alimentation de l'installation 1.

Claims

REVENDICATIONS
1. Installation de réfrigération d'hydrogène à température cryogénique, et notamment pour la liquéfaction d'hydrogène, comprenant un circuit (2) d'hydrogène à refroidir comprenant une extrémité amont (21) destinée à être reliée à une source d'hydrogène et une extrémité aval (22) reliée à un organe de collecte de l'hydrogène refroidi et/ou liquéfié, l'installation (1) de refroidissement comprenant un ensemble d'échangeur(s) (3, 4) de chaleur en échange thermique avec le circuit (2) d'hydrogène à refroidir, l'installation (1) comprenant un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeur(s) (3, 4) de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur (5) à cycle de réfrigération d'un gaz de cycle dans un circuit de travail, le gaz de cycle étant l'hydrogène, le circuit de travail du réfrigérateur (5) comprenant un organe (6) de compression du gaz de cycle, un organe (3, 4) de refroidissement du gaz de cycle, un organe (7) de détente du gaz de cycle comprenant au moins une turbine et un organe (4, 3) de réchauffage du gaz de cycle, l'installation (1) comprenant au moins un éjecteur (8) dont l'entrée d'admission du fluide moteur est raccordée, via un ensemble de conduite(s) (9) et de vanne(s) (10), au circuit de travail du réfrigérateur (5) en aval de l'organe (7) de détente, l'entrée d'aspiration de l'éjecteur (8) étant raccordée à un ensemble de conduite(s) (11) munie(s) de vanne(s) (12) ayant une extrémité destinée à être raccordée au ciel gazeux d'au moins un réservoir (13) mobile de transport d'hydrogène liquéfié, notamment un réservoir (13) de transport d'hydrogène liquéfié destiné à être rempli en hydrogène liquide par l'extrémité aval (22) du circuit (2) d'hydrogène, la sortie de l'éjecteur (8) étant raccordée, via un ensemble de conduite(s) (14) et de vanne (s) (16), au circuit de travail du réfrigérateur.
2. Installation selon la revendication 1, caractérisée en ce qu'elle comprend plusieurs éjecteurs (8).
3. Installation selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend au moins un réservoir (13) de transport d'hydrogène liquéfié comprenant une entrée de fluide configurée pour être raccordée de façon amovible à l'extrémité aval (22) du circuit (2) d'hydrogène en vue d'être rempli en hydrogène refroidi, le au moins un réservoir (13) comprenant une sortie gazeuse de gaz de vaporisation configurée pour être raccordée de façon amovible à l'entrée d'aspiration de l'éjecteur (8) via l'ensemble de conduite(s) (11) munie(s) de vanne(s).
4. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le dispositif de refroidissement comprend un organe (15) de pré-refroidissement en échange thermique avec une partie de l'ensemble d'échangeur(s) (3, 4) de chaleur.
5. Procédé de réfrigération d'hydrogène à température cryogénique, notamment de liquéfaction d'hydrogène, utilisant une installation conforme à l'une quelconque des revendications 1 à 4, comprenant une étape d'aspiration dans l'entrée d'aspiration de l'éjecteur (8) du gaz de vaporisation d'un réservoir (13) mobile de transport d'hydrogène liquéfié en utilisant comme fluide moteur de l'éjecteur (8) du gaz de travail sous pression du circuit de travail, le flux de sortie de l'éjecteur (8) étant injecté dans le circuit de travail.
6. Procédé selon la revendication 5, caractérisé en ce que le gaz de vaporisation aspiré a une pression comprise entre 1,01325 et 1,5 bara, et de préférence compris entre 1,15 et 1,3 bara et une température comprise entre la température de saturation de l'hydrogène et 60K.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce que la pression du fluide moteur est comprise entre 5 et 10 bara, et de préférence comprise entre 6 et 7 bara, la température du fluide moteur étant comprise entre 28 et 35K et de préférence entre 29,3 et 30K.
8. Procédé selon l'une quelconque des revendication 5 à 7, caractérisé en ce que le flux de sortie de l'éjecteur (8) a une pression supérieure ou égale à la pression du gaz de cycle au niveau le plus froid du circuit de travail.
9. Procédé selon l'une quelconque des revendication 5 à 8, caractérisé en ce que le flux de sortie de l'éjecteur (8) a une pression comprise entre 1,25 bara et 2 bara, et de préférence entre 1,3 et 1,45 bara.
10. Procédé selon l'une quelconque des revendication 5 à 9, caractérisé en ce que le débit de fluide moteur est contrôlée en fonction de la pression de sortie de l'éjecteur (8), ledit débit étant régulé pour maintenir une consigne de pression constante à la sortie de l'éjecteur (8).
11. Procédé selon l'une quelconque des revendication 5 à 10, caractérisé en ce que le circuit de travail du réfrigérateur (5) comprend plusieurs échangeurs (3, 4) de chaleur en série entre une extrémité chaude du circuit de travail dans laquelle le fluide de travail est à pression relativement haute et une extrémité relativement froide du circuit de travail dans laquelle le fluide est à un pression relativement basse, le flux de sortie de l'éjecteur (8) étant injecté dans le circuit de travail au niveau de l'extrémité froide.
12. Procédé selon l'une quelconque des revendications 5 à 11, caractérisé en ce qu'il comprend simultanément l'aspiration dans les entrées d'aspiration de plusieurs (8) du gaz de vaporisation de plusieurs réservoirs (13) mobiles de transport d'hydrogène liquéfié en utilisant comme fluide moteur des éjecteurs (8) du gaz de travail sous pression du circuit de travail, les flux de sortie des éjecteurs (8) étant injectés dans le circuit de travail.
PCT/EP2021/064230 2020-07-03 2021-05-27 Installation et procédé de réfrigération d'hydrogène WO2022002494A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180047192.XA CN116057342A (zh) 2020-07-03 2021-05-27 用于氢气制冷的设施和方法
US18/014,284 US20230251030A1 (en) 2020-07-03 2021-05-27 Facility and method for hydrogen refrigeration
KR1020237000024A KR20230035309A (ko) 2020-07-03 2021-05-27 수소 냉동을 위한 시설 및 방법
JP2022579134A JP2023531232A (ja) 2020-07-03 2021-05-27 水素冷却のための設備及び方法
EP21729487.5A EP4189309A1 (fr) 2020-07-03 2021-05-27 Installation et procédé de réfrigération d'hydrogène
CA3188205A CA3188205A1 (fr) 2020-07-03 2021-05-27 Installation et procede de refrigeration d'hydrogene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007081A FR3112198B1 (fr) 2020-07-03 2020-07-03 Installation et procédé de réfrigération d’hydrogène
FRFR2007081 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022002494A1 true WO2022002494A1 (fr) 2022-01-06

Family

ID=72709593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/064230 WO2022002494A1 (fr) 2020-07-03 2021-05-27 Installation et procédé de réfrigération d'hydrogène

Country Status (8)

Country Link
US (1) US20230251030A1 (fr)
EP (1) EP4189309A1 (fr)
JP (1) JP2023531232A (fr)
KR (1) KR20230035309A (fr)
CN (1) CN116057342A (fr)
CA (1) CA3188205A1 (fr)
FR (1) FR3112198B1 (fr)
WO (1) WO2022002494A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138194A1 (fr) * 2022-07-21 2024-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de liquéfaction d’hydrogène
FR3145032A1 (fr) * 2023-01-16 2024-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation et procédé de liquéfaction d'un flux de fluide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662786A1 (fr) * 1990-05-31 1991-12-06 Linde Ag Procede pour la liquefaction des gaz, notamment pour la liquefaction et l'epuration de l'helium.
JP2017003185A (ja) * 2015-06-09 2017-01-05 株式会社Ihi 気体液化装置
CN108562111A (zh) * 2018-05-28 2018-09-21 张家港富瑞氢能装备有限公司 氢气液化预冷装置
EP3650741A1 (fr) * 2018-11-12 2020-05-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de stockage et de distribution d'hydrogène liquéfié

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2662786A1 (fr) * 1990-05-31 1991-12-06 Linde Ag Procede pour la liquefaction des gaz, notamment pour la liquefaction et l'epuration de l'helium.
JP2017003185A (ja) * 2015-06-09 2017-01-05 株式会社Ihi 気体液化装置
CN108562111A (zh) * 2018-05-28 2018-09-21 张家港富瑞氢能装备有限公司 氢气液化预冷装置
EP3650741A1 (fr) * 2018-11-12 2020-05-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de stockage et de distribution d'hydrogène liquéfié

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRACHA M ET AL: "Large-scale hydrogen liquefaction in Germany", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 19, no. 1, 1 January 1994 (1994-01-01), pages 53 - 59, XP025666892, ISSN: 0360-3199, [retrieved on 19940101], DOI: 10.1016/0360-3199(94)90177-5 *

Also Published As

Publication number Publication date
FR3112198A1 (fr) 2022-01-07
KR20230035309A (ko) 2023-03-13
FR3112198B1 (fr) 2022-07-22
EP4189309A1 (fr) 2023-06-07
JP2023531232A (ja) 2023-07-21
CN116057342A (zh) 2023-05-02
CA3188205A1 (fr) 2022-01-06
US20230251030A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
FR3066257B1 (fr) Pompe a chaleur cryogenique et son utilisation pour le traitement de gaz liquefie
JP2018517608A (ja) 船舶
WO2022002494A1 (fr) Installation et procédé de réfrigération d'hydrogène
JP2018528114A (ja) エンジンを備えた船舶
WO2014013158A2 (fr) Procédé de liquéfaction de gaz naturel avec changement de phase
KR100747372B1 (ko) 증발가스의 재액화 장치 및 재액화 방법
FR2886719A1 (fr) Procede de refrigeration d'une charge thermique
KR101670872B1 (ko) 선박용 엔진의 연료공급 시스템 및 방법
EP2959242B1 (fr) Station d'abaissement de pression d'un gaz et de liquéfaction du gaz
FR2803851A1 (fr) Procede de liquefaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
KR102034477B1 (ko) 천연가스 액화장치 및 액화방법, 그리고 천연가스 액화장치를 포함하는 천연가스 충전소
JP6837049B2 (ja) エンジンを備えた船舶
WO2019215403A1 (fr) Procédé et installation de stockage et de distribution d'hydrogène liquéfié
JP2018517606A (ja) 船舶
WO2023280549A1 (fr) Installation et procédé de liquéfaction d'hydrogène.
JP6422086B1 (ja) 蒸発ガス再液化システム及び蒸発ガス再液化方法
JP2024535276A (ja) 蒸発ガス再液化システム及びそれを含む船舶
FR3133075A1 (fr) Système de refroidissement cryogénique
KR100747371B1 (ko) 증발가스 재액화 장치 및 그 장착 방법
KR102034476B1 (ko) 질소를 함유하는 천연가스 액화장치 및 액화방법, 그리고 천연가스 액화장치를 포함하는 천연가스 충전소
KR20180092118A (ko) 선박용 엔진의 연료 공급 시스템 및 방법
KR102473946B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
WO2020109607A1 (fr) Dispositif de generation de gaz sous forme gazeuse a partir de gaz liquefie
WO2024017549A1 (fr) Installation et procédé de liquéfaction d'hydrogène
FR3101407A1 (fr) Fluide réfrigérant destiné à un circuit de fluide réfrigérant d’un système de traitement de gaz naturel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022579134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3188205

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021729487

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21729487

Country of ref document: EP

Kind code of ref document: A1