WO2022002268A1 - 一种显示屏、显示屏保护膜及电子设备 - Google Patents

一种显示屏、显示屏保护膜及电子设备 Download PDF

Info

Publication number
WO2022002268A1
WO2022002268A1 PCT/CN2021/104357 CN2021104357W WO2022002268A1 WO 2022002268 A1 WO2022002268 A1 WO 2022002268A1 CN 2021104357 W CN2021104357 W CN 2021104357W WO 2022002268 A1 WO2022002268 A1 WO 2022002268A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
microstructure
pixel
sub
display
Prior art date
Application number
PCT/CN2021/104357
Other languages
English (en)
French (fr)
Inventor
祝明
周训平
倪欢
王永祥
赵大春
张敬飞
阮仕彬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022581630A priority Critical patent/JP2023533706A/ja
Priority to EP21832006.7A priority patent/EP4177872A4/en
Publication of WO2022002268A1 publication Critical patent/WO2022002268A1/zh
Priority to US18/149,410 priority patent/US20230244100A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present application relates to the technical field of display screens, and in particular, to a display screen, a display screen protective film and an electronic device.
  • Paper reading is a familiar way of reading, such as reading books, newspapers, manuals, etc. Paper reading relies on ambient light of suitable intensity. The ambient light shines on the surface of the paper and is reflected by the surface of the paper and received by the human eye. Since the ambient light reflected by the paper surface is near-Lambertian reflection (a kind of diffuse reflection), there is no display interference caused by specular reflection, especially when the ambient light is strong, compared with specular reflection, the ambient light reflected by the paper surface Less damage to the human eye and higher comfort.
  • near-Lambertian reflection a kind of diffuse reflection
  • paper-like display has also become one of the development directions of display screens.
  • the so-called paper-like display refers to the targeted design of the display screen to reduce the mirror reflection of the display screen on the ambient light, so that the display screen can also achieve the display effect of paper reading.
  • common paper-like displays mainly include transmissive paper-like displays and reflective paper-like displays. Among them, transmissive paper-like displays do not depend on ambient light, are more flexible in applicable scenarios, and have a more stable use experience. Mainstream way of paper display.
  • the transmissive paper-like display screens are provided with a rough light-emitting surface, so that ambient light can be diffusely reflected on the light-emitting surface, thereby achieving the display effect of a paper-like display.
  • the rough light-emitting surface will cause flash points on the display screen, that is, uneven chromaticity and brightness of the display screen. Therefore, the current transmissive paper-like display screen needs to be further improved.
  • the present application provides a display screen, a display screen protective film and an electronic device, which are beneficial to suppress the flash point of the display screen while realizing the paper-like display.
  • an embodiment of the present application provides a display screen, which mainly includes a display panel and a transmission layer that are stacked in sequence.
  • the display panel can generate display light;
  • the transmission layer can transmit the display light.
  • the transmission layer has a first surface away from the display panel, the first surface includes a plurality of microstructure units, wherein the orthographic projection of each microstructure unit along the thickness direction is located in a pixel area, and the microstructure unit The projected area of is less than or equal to the area of the pixel area.
  • the microstructural unit may be a curved surface.
  • the pixel area may include the area where a sub-pixel in the display panel is located, and other sub-pixels located around the sub-pixel and adjacent to the sub-pixel and the sub-pixel between the sub-pixels. spaced area.
  • the above-mentioned display panel may be an LED display panel, an OLED display panel, an LCD panel, etc., which are not limited in the embodiments of the present application.
  • the orthographic projection of a single microstructure unit is located in one pixel area, and the projected area of the single microstructure unit is less than or equal to the area of the pixel area, that is, the orthographic projection of a single microstructure unit is The projection will only cover part or all of the area where at most one subpixel is located. Since the orthographic projection of a single micro-structure unit will only cover part or all of the area where at most one sub-pixel is located, the micro-structure unit will mainly bend the light generated by the sub-pixel, so that a single micro-structure unit can be avoided to a certain extent. Bend the light produced by different sub-pixels.
  • each micro-structure unit mainly bends the display light of one sub-pixel, which is beneficial to reduce the difference in the degree of light deflection between different sub-pixels, and is further beneficial to optimize the flash point.
  • the orthographic projections of at least two microstructure units are located in a sub-region of the pixel region, and the sub-region includes the region where a sub-pixel is located, and the sub-pixel is adjacent to the sub-region. The space between any sub-pixels of .
  • the orthographic projections of at least two microstructure units are located in the sub-region, and it can also be understood that the maximum size of the microstructure units is not greater than 1/2 pixel pitch. It is found by research that when the maximum size of the microstructure unit exceeds 1/2 pixel period, the speckle area will increase rapidly with the increase of the maximum size of the microstructure unit. When the maximum size of the microstructure unit exceeds the pixel period, the speckle reaches a larger value.
  • the orthographic projections of at least two microstructure units are located in the sub-regions of the pixel area, that is, the maximum size of the microstructure units is not greater than 1/2 pixel period, which is beneficial to The speckle reduction area is controlled in a small range, which is conducive to optimizing the flash point.
  • the height of each micro-structure unit in the first surface is any value in [0.5 ⁇ m, 1.5 ⁇ m], and specifically, the height of each micro-structure unit may be 0.5 ⁇ m or 1.5 ⁇ m. ⁇ m may be any value greater than 0.5 ⁇ m and less than 1.5 ⁇ m.
  • the height of each microstructure unit refers to the distance between the peak point and the valley bottom of the microstructure unit, and the peak point of the microstructure unit refers to the point with the largest distance from the display panel in the microstructure unit.
  • the valley bottom refers to the point where the distance between the center of the microstructure unit and the display panel is the smallest.
  • each microstructure unit in the first surface can also be any value in [1.5 ⁇ m, 4 ⁇ m], specifically, the height of each microstructure unit can be 1.5 ⁇ m, or 4 ⁇ m, or any value greater than 1.5 ⁇ m and less than 4 ⁇ m.
  • the arithmetic average height Ra of the plurality of microstructure units is [0.1 Any value in ⁇ m, 1 ⁇ m].
  • the arithmetic mean height Ra may be 0.1 ⁇ m, 1 ⁇ m, or any value greater than 0.1 ⁇ m and less than 1 ⁇ m.
  • the arithmetic average height Ra of the above-mentioned plurality of microstructural units may also be any value in [0.2 ⁇ m, 0.5 ⁇ m].
  • the arithmetic mean height Ra may be 0.2 ⁇ m, 0.5 ⁇ m, or any value greater than 0.2 ⁇ m and less than 0.5 ⁇ m.
  • the arithmetic mean height Ra represents the arithmetic mean of the absolute values of the vertical distances between the sectional contour lines and the center line of the plurality of microstructure units on the longitudinal section along any direction and thickness direction within any length range, wherein , the center line is a straight line parallel to any direction in the longitudinal section, and the sectional contour lines of the multiple microstructural units and the area of the multiple regions formed by the centerline, respectively, and the sum of the area of each two adjacent microstructural units The sum of the area of the multiple regions formed by the tangent contour line and the center line is the same.
  • the arithmetic average height Ra can reflect the average height of the plurality of microstructural units.
  • specular reflection will occur, which is not conducive to realizing the display effect of a paper-like display.
  • the arithmetic mean height Ra is too large, the sharpness of the display screen will be reduced, and the display contrast will also be reduced under ambient light. Therefore, in the embodiment of the present application, the arithmetic average height Ra can be any value in [0.1 ⁇ m, 1 ⁇ m], which is beneficial to maintain the clarity of the display screen while realizing the paper-like display. Further, when the above-mentioned arithmetic average height Ra can be any value in [0.2 ⁇ m, 0.5 ⁇ m], the paper-like display effect is good, and the definition is also higher.
  • the density of the microstructure units is greater than or equal to 5000/mm 2 .
  • the density of the microstructure units in the first surface is not less than 5000/mm 2 , which is beneficial to prevent specular reflection on the first surface, thereby facilitating the realization of a paper-like display display effect.
  • the arithmetic average height Ra of the plurality of microstructure units is related to the plurality of microstructures.
  • the ratio Ra/Rsm between the average lengths Rsm of the elements of the profile curves of the elements is greater than or equal to 0.5%.
  • the arithmetic mean height Ra represents the arithmetic mean of the absolute values of the vertical distances between the sectional contour lines and the center line of the plurality of microstructure units on the longitudinal section along any direction and thickness direction within any length range, wherein , the center line is a straight line parallel to any direction in the longitudinal section, and the sectional contour lines of the multiple microstructural units and the area of the multiple regions formed by the centerline, respectively, and the sum of the area of each two adjacent microstructural units The sum of the area of the multiple regions formed by the tangent contour line and the center line is the same.
  • the average length Rsm of the contour curve elements represents, on the longitudinal section along any direction and thickness direction, in the range of any length, in the section contour lines of the plurality of microstructure units, the length of the section contour lines of every two adjacent microstructure units.
  • Ra/Rsm the more beneficial it is to suppress the flash point. Therefore, the value of Ra/Rsm in the embodiments of the present application is not less than 0.5%, which is beneficial to further suppress the flash point.
  • the attenuation of the reflected light of the first surface is less than or equal to 5%.
  • the human eye in the middle luminance range luminance 11.89 ⁇ 142.3cd / m 2 the Master visual eye just noticeable difference in luminance and background luminance relationship satisfies the Weber's law, the ratio therebetween is approximately equal to 0.017, That is to say, when the reflection image modulation transfer function is greater than or equal to 0.017, the human eye can perceive the reflection image.
  • the attenuation of the reflected light from the first surface within 1° from the reflection angle is less than 5%, so that the reflection mirror modulation transfer function MTF ⁇ 0.17, so that the user cannot observe the specular reflection, which is beneficial to achieve paper-like display.
  • the attenuation of the reflected light of the first surface is any value in [5%, 10%]. It is difficult for the user to observe the specular reflection, which is beneficial to achieve a paper-like display.
  • the display screen may further include an intermediate layer, the intermediate layer is located between the display panel and the transmission layer, and the intermediate layer is used for scattering display light.
  • an intermediate layer is arranged between the display panel and the transmission layer, and the intermediate layer further improves the degree of scattering of display light on the basis of the first surface, thereby suppressing the flash point problem of the display screen.
  • the intermediate layer can be disposed closer to the display panel, thus helping to reduce the impact on the clarity of the display screen.
  • the intermediate layer may be a newly added layer in the original display screen structure, or may be an existing functional layer in the display screen. That is to say, the intermediate layer can realize other functions besides scattering the display light.
  • the intermediate layer can realize other functions besides scattering the display light.
  • the intermediate layer may include an optical adhesive layer, and the optical adhesive layer can not only bond the display panel and the transmission layer, but also scatter the display light.
  • the intermediate layer may include a laminated first optical adhesive layer, a second optical adhesive layer and a third optical adhesive layer, and the second optical adhesive layer is located on the first optical adhesive layer and the third optical adhesive layer wherein, the second optical adhesive layer includes scattering particles, the first optical adhesive layer is disposed on the surface of the second optical adhesive layer close to the display panel, and the third optical adhesive layer is disposed on the surface of the second optical adhesive layer close to the transmission layer.
  • the optical adhesive layer is a sandwich structure, wherein the second optical adhesive layer can play a function of enhancing scattering, and the first optical adhesive layer and the third optical adhesive layer can maintain the original function of the optical adhesive layer, preventing the Scattering particles affect the adhesion of the optical bondline.
  • the intermediate layer may include a touch layer, and the touch layer can not only generate touch signals, but also scatter display light.
  • the display panel includes an intermediate layer, and the intermediate layer is disposed close to the transmission layer; the intermediate layer is used for scattering display light.
  • the intermediate layer may include a polarizing layer of a display panel.
  • the haze Haze of the intermediate layer is any value in [5%, 40%]. That is to say, the haze of the intermediate layer may be 5%, may be 40%, or may be any value greater than 5% and less than 40%.
  • the haze of the intermediate layer is small, it is not enough to achieve an obvious effect of suppressing the flash point.
  • the haze of the middle layer is large, it will affect the clarity of the display screen.
  • the haze of the intermediate layer is set to any value in [5%, 40%], which can both suppress the flash point problem and maintain the clarity of the display screen.
  • the haze Haze of the intermediate layer may also be any value in [40%, 95%]. That is to say, the haze of the intermediate layer may be 40%, 95%, or any value greater than 40% and less than 95%. This solution can both suppress the flash point problem and maintain the clarity of the display.
  • the intermediate layer may include scattering particles, and the scattering particles may adjust the haze of the intermediate layer.
  • the scattering ability (haze) of the intermediate layer can be adjusted by changing various factors such as the concentration of the scattering particles, the refractive index of the scattering particles, and the size of the scattering particles.
  • the refractive index of scattering particles can be any value in [1.4, 2.5]. That is to say, the refractive index of the scattering particles may be either 1.4, 2.5, or any value greater than 1.4 and less than 2.5.
  • the area of the orthographic projection of the scattering particles along the thickness direction is not greater than the area of the orthographic projection of the microstructure unit along the thickness direction.
  • the scattering particles in the intermediate layer will only bend the light generated by one sub-pixel, and the light bent by the scattering particles will be incident on a corresponding microstructure in the unit. Therefore, different microstructure units can receive similar incident light rays, which is beneficial to further suppress the flash point problem.
  • the transmissive layer may include a cover plate, and a surface of the cover plate away from the display panel may serve as the first surface of the transmissive layer.
  • the transmission layer includes not only a cover plate, but also a coating film, wherein the cover plate is disposed between the display panel and the coating film, one surface of the coating film is fixed to the cover plate, and the other surface of the coating film is the first surface of the transmission layer.
  • the above-mentioned coating film may be an anti-reflection film.
  • the embodiment of the present application further provides a display screen protective film, and the display screen protective film can be attached to the light-emitting surface of the display screen by means of sticking, vacuum adsorption, or the like.
  • the display protective film includes a rough surface.
  • the rough surface may include a plurality of microstructure units, wherein the orthographic projection of each microstructure unit along the thickness direction is located in a pixel area, the projected area of the microstructure unit is less than or equal to the area of the pixel area, and the microstructure unit is a curved surface .
  • the pixel area includes the area where one sub-pixel is located in the display screen, and the area located around the sub-pixel and adjacent to the sub-pixel and the area between the other sub-pixels and the sub-pixel.
  • the display screen of the non-paper-like display can realize the paper-like display, and at the same time, the flash point can be suppressed.
  • the rough surface of the display screen protective film provided by the embodiment of the present application has similar topographical features to the first surface of the transmission layer in the above-mentioned first aspect, and details are not repeated here.
  • the technical effects of the corresponding solutions in the second aspect reference may be made to the technical effects that can be obtained by the corresponding solutions in the first aspect, and the repeated parts will not be described in detail.
  • the orthographic projections of at least two microstructure units are located in sub-regions of the pixel region.
  • the sub-region may include a region where a sub-pixel is located, and a region spaced between the sub-pixel and any adjacent sub-pixel.
  • each microstructure unit is any value in [0.5 ⁇ m, 1.5 ⁇ m], wherein the height of each microstructure unit refers to the distance between the peak point and the valley bottom of the microstructure unit Specifically, the peak point of the microstructure unit refers to the point in the microstructure unit with the largest distance from the display screen, and the valley bottom of the microstructure unit refers to the point in the microstructure unit with the smallest distance from the display screen.
  • the height of the above-mentioned micro-structural unit can be any value in [1.5 ⁇ m, 4 ⁇ m], specifically, the height of each micro-structural unit can be 1.5 ⁇ m, 4 ⁇ m, or greater than 1.5 ⁇ m Any value of ⁇ m and less than 4 ⁇ m.
  • the arithmetic average height Ra of the plurality of microstructure units is [0.1 ⁇ m, 1 ⁇ m ], wherein the arithmetic mean height Ra represents the vertical distance between the sectional contour lines and the center line of the plurality of microstructure units on the longitudinal section along the arbitrary direction and the thickness direction, within an arbitrary length range
  • the arithmetic average height Ra of the above-mentioned plurality of microstructural units may also be any value in [0.2 ⁇ m, 0.5 ⁇ m].
  • the arithmetic mean height Ra may be 0.2 ⁇ m, 0.5 ⁇ m, or any value greater than 0.2 ⁇ m and less than 0.5 ⁇ m.
  • the density of the microstructure units in the rough surface is greater than or equal to 5000/mm 2 .
  • the arithmetic mean height Ra of a plurality of microstructure units and the average length Rsm of the contour curve elements of the plurality of microstructure units are calculated.
  • the ratio Ra/Rsm is greater than or equal to 0.5%; wherein, the meaning of the arithmetic mean height Ra will not be repeated.
  • the average length Rsm of the contour curve elements represents, on the longitudinal section along any direction and thickness direction, in the range of any length, in the section contour lines of the plurality of microstructure units, the length of the section contour lines of every two adjacent microstructure units.
  • the peak point of the cut plane contour line is the point farthest from the display screen in the cut plane contour line.
  • the display screen protective film is an anti-reflection film, which is beneficial to suppress the interference of ambient light on the contrast of the display screen and eliminate the problem of "picture bleaching" caused by diffuse reflection.
  • an embodiment of the present application provides an electronic device, where the electronic device includes the display screen provided in any one of the foregoing first aspects.
  • the electronic device may be a common mobile terminal such as a mobile phone, a tablet computer, or an electronic paper book reader, or may be an electronic device such as a notebook computer, a desktop computer, and a television.
  • an embodiment of the present application provides an electronic device, including a display screen and the display screen protective film provided in the second aspect, wherein the display screen protective film is fixed on the light-emitting surface of the display screen, and the display screen protects The rough side of the membrane is set away from the display screen.
  • the display screen can be a conventional non-paper-like display screen
  • the display screen protective film provided by the embodiment of the present application can be used to enable the display screen of the electronic device to achieve a paper-like display, and at the same time, it can also suppress the display. screen flash.
  • FIG. 1 is a schematic diagram of a side-cut structure of a transmissive display screen
  • FIG. 3 is a schematic structural diagram of a pixel array
  • FIG. 5 is a schematic structural diagram of an OLED display panel
  • 6a is a schematic diagram of the luminance distribution in a monochrome display screen when the first surface of the transmission layer is a smooth plane;
  • Fig. 6b is a schematic diagram of luminance distribution in a monochrome display screen when the first surface of the transmission layer is a rough surface
  • 6c is a schematic diagram of the chromaticity distribution in a monochrome display screen when the first surface of the transmission layer is a smooth plane;
  • 6d is a schematic diagram of the chromaticity distribution in a monochrome display screen when the first surface of the transmission layer is a rough surface;
  • FIG. 7 provides a schematic structural diagram of a display screen according to an embodiment of the present application.
  • FIG. 9 provides a schematic diagram of the correlation between the speckle area and the maximum size of the microstructure unit according to an embodiment of the present application.
  • FIG. 10 is a schematic longitudinal section of a transmission layer provided in an embodiment of the present application.
  • FIG. 11 provides a schematic structural diagram of a specific display screen according to an embodiment of the application.
  • FIG. 12 provides a schematic structural diagram of a specific display screen according to an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like described in the embodiments of the present application mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • the phrases “in one embodiment”, “in some embodiments”, “in other embodiments”, “in other embodiments”, etc. appearing in different places in the embodiments of the present application Not necessarily all reference to the same embodiment, but rather means “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the embodiment of the present application provides a display screen, which can reduce the influence of the display screen's flash point on the display effect while realizing the paper-like display.
  • the display screen provided in the embodiments of the present application can be applied to any electronic device with display function, for example, it can be used as the display screen of common mobile terminals such as mobile phones, tablet computers, or electronic paper book readers, and can also be used as Display screens of electronic devices such as laptops, desktops, and TVs.
  • the display screen provided by the embodiment of the present application may be a transmissive display screen, where "transmissive” can be understood as the display screen capable of generating display light inside and emitting display light from the light emitting surface of the display screen.
  • FIG. 1 it is a schematic diagram of a side-cut structure of a transmissive display screen.
  • the display screen 100 may include a display panel 101 and a transmissive layer 102 , and the transmissive layer 102 and the display panel 101 are laminated.
  • One surface of the transmissive layer 102 is disposed close to the light emitting surface of the display panel 101 , and the other surface of the transmissive layer 102 away from the display panel 101 can be used as the light emitting surface of the display screen 100 .
  • the display panel 101 may emit a display light beam, and the display light beam may be transmitted from the transmissive layer 102, thereby realizing a transmissive display.
  • the display panel 101 and the transmission layer 102 will be further exemplified respectively.
  • LCD liquid crystal display
  • LED light-emitting diode
  • OLED organic light-emitting diodes
  • the display panel 101 may include a light-emitting structure, and the light-emitting structure may generate light when the display panel 101 operates.
  • the display panel 101 may further include other functional layers according to different types of the display panel 101 . These functional layers are combined with the light-emitting structure, so that the display panel 101 can generate display light to realize the display function.
  • the display light can be understood as the light generated by the display panel 101 and used to present a display image. After the display light is received by the human eye, the user can observe the above-mentioned display screen.
  • FIG. 2 the structure of the LCD panel can be shown in FIG. 2 , which mainly includes a backlight unit (BLU) 201, a lower polarizing layer 202, a glass substrate 203, a liquid crystal molecule layer 204, a color light A blocking layer 205 , a glass substrate 206 and an upper polarizing layer 207 .
  • the backlight module 201 is a light-emitting structure of an LCD panel, and is used to generate unpolarized light.
  • the lower polarizing layer 202 can convert the unpolarized light generated by the backlight module 201 into linearly polarized light.
  • the glass substrate 203 and the glass substrate 206 are used to wrap the liquid crystal molecule layer 204 and the color photoresist layer 205 .
  • the arrangement of the liquid crystal molecules in the liquid crystal molecule layer 204 is controllable, and the polarization direction of the light can be changed by changing the arrangement of the liquid crystal molecules.
  • the color photoresist layer 205 includes photoresists arranged in an array, and these photoresists arranged in an array can also be understood as pixel arrays of an LCD panel.
  • the pixel array includes a plurality of pixels arranged in an array, wherein each pixel includes three sub-pixels (photoresist), corresponding to three colors of red, green and blue respectively.
  • the lower polarizing layer 202 and the upper polarizing layer 207 are arranged orthogonally, and the linearly polarized light transmitted by the lower polarizing layer 202 cannot directly transmit the upper polarizing layer 207 . Therefore, the polarization state of the light incident on each sub-pixel can be adjusted through the liquid crystal molecular layer 204 , so as to control the transmission intensity of the light from each sub-pixel from the upper polarizing layer 207 .
  • the liquid crystal molecular layer 204 can keep the polarization state of the light incident on the sub-pixel unchanged, that is, the polarization state of the light transmitted by the lower polarizing layer 202 . Therefore, the light transmitted from the sub-pixels that do not need to emit light cannot continue to be transmitted through the upper polarizing layer 207 , that is, the sub-pixels cannot emit light.
  • the liquid crystal molecular layer 204 can adjust the polarization state (adjust the polarization angle) of the light incident on the sub-pixel.
  • the light with different polarization angles can transmit from the upper polarizing layer 207 with different intensities. Therefore, by adjusting the polarization state of the light entering the sub-pixel, the light-emitting intensity of the sub-pixel can be controlled.
  • the LED display panel mainly includes a substrate 401 , a light-emitting layer 402 and an encapsulation layer 403 that are stacked in sequence.
  • the substrate 401 may carry the light-emitting layer 402 .
  • the light-emitting layer 402 is the light-emitting structure of the LED display panel, which includes a pixel array.
  • the arrangement of the pixel array in the LED display panel is similar to that of the LCD panel, which can also be shown in FIG. 4 .
  • the pixel array of the LED display panel is composed of LEDs corresponding to three colors of red, green and blue, and the pixel array of the LED display panel itself can emit light by electro-luminescence (or photo-induced).
  • the encapsulation layer 403 covers the light emitting layer 402 and can protect the internal structure of the LED display panel.
  • the OLED display panel mainly includes a substrate 501 , a light-emitting layer 502 , an encapsulation layer 503 and a polarizing layer 504 .
  • the functions of the substrate 501, the light-emitting layer 502, and the encapsulation layer 503 can all refer to the LED display panel.
  • the difference is that the light-emitting layer 402 of the LED display panel is composed of LEDs to form a pixel array, while the light-emitting layer 502 of the OLED display panel is composed of OLEDs. array, and other similarities will not be repeated.
  • the OLED display panel may further include a polarizing layer 504, and the polarizing layer 504 can reduce the reflection intensity of the OLED display panel to external ambient light.
  • the transmission layer 102 is disposed close to the light emitting surface of the display panel 101 , wherein the first surface of the transmission layer 102 away from the display panel 101 is a rough surface.
  • the first surface of the transmission layer 102 can also be understood as the light-emitting surface of the transmission layer 102, that is, the surface where the transmission layer 102 transmits light, and it can also be understood as the light-emitting surface of the display screen 100, that is, the surface from which the display screen 100 emits light. .
  • the first surface of the transmissive layer 102 is a rough surface, so the ambient light irradiated on the first surface can be diffusely reflected, so as to achieve a display effect of a paper-like display.
  • the paper surface can have near-Lambertian reflection (a type of diffuse reflection) of ambient light.
  • the so-called Lambertian reflection means that when light enters the reflecting surface, with the incident point as the center, the intensity of the reflected light in all directions in the hemispherical space of the reflecting surface is the same.
  • the reflected light intensity of ambient light in all directions is the same or similar, so it can achieve near-Lambertian reflection, that is, approximate Lambertian reflection diffuse reflection.
  • the first surface of the transmissive layer 102 in the display screen 100 of the paper-like display is usually made as a rough surface, so that the first surface can also diffusely reflect ambient light.
  • the first surface of the transmission layer 102 includes a plurality of microstructure units, and each microstructure unit is a curved surface. When ambient light illuminates the first surface, different microstructure units can reflect ambient light in different directions, thereby realizing diffuse reflection of ambient light.
  • FIG. 6 a is a schematic diagram of luminance distribution in a monochrome display screen in the range of 8 mm ⁇ 8 mm when the first surface of the transmissive layer 102 is a smooth plane.
  • the monochrome display picture may be a display picture of any color among red, green and blue.
  • X is any direction parallel to the display panel 101
  • Y is a direction perpendicular to X. It can be seen from FIG.
  • the display image includes pixel points arranged in an array, and each pixel point corresponds to the light generated by one pixel in the display panel.
  • the first surface of the transmission layer 102 is a smooth plane, the brightness distribution of the display screen is uniform, and the brightness of different pixels is the same or similar.
  • FIG. 6b is a schematic diagram of luminance distribution in a monochrome display screen in the range of 8 mm ⁇ 8 mm when the first surface of the transmissive layer 102 is a rough surface. 6a and 6b, it can be seen that when the first surface of the transmission layer 102 is a rough surface, areas with uneven brightness will appear in the display screen, and some pixels have low brightness, and these areas may also be called speckles. That is to say, the microstructure units on the first surface may cause uneven brightness of the display screen.
  • FIG. 6c is a schematic diagram of chromaticity distribution in a monochrome display screen in the range of 8 mm ⁇ 8 mm when the first surface of the transmission layer 102 is a smooth plane. It can be seen from FIG. 6c that when the first surface of the transmission layer 102 is a smooth plane, the chromaticity distribution of the display screen is uniform, and the chromaticity of different pixels is the same or similar.
  • FIGS. 6d is a schematic diagram of the chromaticity distribution in a monochrome display screen in the range of 8 mm ⁇ 8 mm when the first surface of the transmissive layer 102 is a rough surface. Comparing FIGS. 6c and 6d, it can be seen that when the first surface of the transmission layer 102 is a rough surface, uneven chromaticity may appear in the display screen, and the chromaticity of some pixels is low. That is to say, the microstructure units on the first surface may cause uneven chromaticity of the display image.
  • the phenomenon of uneven brightness and chromaticity of the display screen shown in FIG. 6b and FIG. 6d may also be referred to as a flash point.
  • the reason why flash points appear in the display screen is mainly because when the light generated by any sub-pixel passes through the microstructure unit, the light deflection phenomenon occurs. If a micro-structure unit deflects the light generated by multiple sub-pixels (same color or different colors), due to the inconsistent relative positions between the micro-structure unit and the multiple sub-pixels, the micro-structure unit will cause different sub-pixels.
  • the degree of deflection of the light varies, which in turn leads to a deviation in the ratio of the three primary colors of each pixel, which is reflected in the display screen, that is, the chromaticity and brightness of the display screen are uneven, that is, flash points appear in the display screen.
  • the micro-structure unit A has different relative positions with the blue sub-pixels and the green sub-pixels in the pixel 1, so that the deflection of the light generated by the green sub-pixels by the micro-structure unit A is small. , the degree of deflection of the light generated by the blue sub-pixel is larger, and the ratio of the blue light intensity and the green light intensity in pixel 1 is deviated. When the phenomenon of this ratio deviation is transmitted on the first surface Flash points occur when they are ubiquitous in light.
  • the first surface of the transmission layer 102 is further improved.
  • FIG. 7 a side view of a display screen along the thickness direction provided by an embodiment of the present application is shown.
  • the first surface of the transmission layer 102 provided by the embodiment of the present application includes a plurality of microstructure units, and the microstructure units are curved surfaces.
  • the orthographic projection of each microstructure unit along the thickness direction is located in one pixel area, and the projected area of the microstructure unit is less than or equal to the area of the pixel area.
  • the thickness direction of the display screen 100 may be shown by the arrow in FIG. 7 , and may also be understood as a direction perpendicular to the display panel 101 from the transmissive layer 102 .
  • the top view shape of the microstructure unit in the top view along the thickness direction is the same as the shape of the orthographic projection of the microstructure unit along the thickness direction.
  • FIG. 8 exemplarily shows a top view of the first surface along the thickness direction.
  • the enclosed area formed by each white line represents a microstructure unit.
  • the top shape of the microstructure unit can be either a regular shape or an irregular shape.
  • the top-view shapes of different microstructure units can be the same or different.
  • the microstructure units can be distributed regularly or irregularly on the first surface. This embodiment of the present application does not limit this.
  • the pixel area includes not only the area where a sub-pixel is located in the display panel, but also includes the area around the sub-pixel and other sub-pixels adjacent to the sub-pixel and the area spaced between the sub-pixel.
  • the pixel area can be as shown in FIG. 3, including the area where the sub-pixel A is located, and the sub-pixel A and the surrounding 8 The area separated by adjacent sub-pixels.
  • the orthographic projection of a single microstructure unit is located in a pixel area, and the projected area of a single microstructure unit is less than or equal to the area of the pixel area, that is, the orthographic projection of a single microstructure unit will only cover the part where at most one sub-pixel is located or all areas.
  • the microstructure unit located in the pixel area where the blue sub-pixel is located there are two orthographic projections of micro-structure units located in the pixel area where the blue sub-pixel is located, so these two micro-structure units will mainly bend the blue
  • the light generated by the sub-pixel does not bend or only slightly bends the light generated by the green sub-pixel and the red sub-pixel adjacent to the blue sub-pixel.
  • the microstructure unit located in the pixel area of the red sub-pixel will mainly bend the light generated by the red sub-pixel
  • the micro-structure unit located in the pixel area of the green sub-pixel will mainly bend the green sub-pixel. of light.
  • the micro-structure unit will mainly bend the light generated by the sub-pixel.
  • the intensity ratio of the three primary colors in the pixel is deviated, which leads to the problem of flash point.
  • each microstructure unit will mainly bend light of one color, which is beneficial to reduce the difference in the degree of deflection of light between different sub-pixels, thereby facilitating the optimization of the flash point.
  • an overlapping area may exist between adjacent pixel areas, that is, an interval area between adjacent sub-pixels.
  • the orthographic projection of the micro-structure unit located in the overlapping area may bend the light rays of the adjacent sub-pixels, since the positions of the adjacent sub-pixels relative to the micro-structure unit are approximately symmetrical, the micro-structure unit is relatively symmetric. The degree of bending of the light rays of the adjacent sub-pixels is also similar.
  • the area of the overlapping area between the pixel areas is much smaller than the area of the area where the sub-pixels are located. Therefore, the orthographic projection of the microstructure units located in the overlapping area does not have a significant impact on the light intensity ratio between adjacent sub-pixels.
  • the orthographic projections of at least two microstructure units are located in sub-regions of the pixel region.
  • the sub-region includes a region where a sub-pixel is located, and a region spaced between the sub-pixel and any adjacent sub-pixel.
  • the sub-region of the pixel region where the sub-pixel A is located includes the region where the sub-pixel A is located, and the region a spaced between the sub-pixel A and any adjacent pixel (such as pixel B).
  • the orthographic projections of at least two microstructure units are located in the sub-region, and it can also be understood that the maximum size of the microstructure units is not greater than 1/2 pixel pitch.
  • the size of the microstructure unit can be understood as, in the top view shape of the microstructure unit along the thickness direction, the maximum value of the straight-line distance between two points on the edge of the top view shape.
  • the size of any microstructure unit may be as shown in FIG. 8 . It should be understood that the dimensions of different microstructure units may be the same or different.
  • the maximum size of the microstructure unit refers to the maximum size that each microstructure unit in the first surface can reach, that is, the size of each microstructure unit is smaller than or equal to the maximum size .
  • the pixel period can be understood as the minimum repetition distance of a sub-pixel in the pixel array, where the repetition distance refers to the size of the sub-pixel in a direction parallel to the pixel array, plus the distance between the sub-pixel and any adjacent sub-pixel in this direction. The sum of the distances between. Generally speaking, for the same pixel array, the repeat distance will vary with the above direction.
  • the minimum value of the above repetition distance that is, the minimum repetition distance
  • the pixel period can be as shown in FIG. 3 , which is the size of the subpixel P1 in the y direction plus the subpixel P1 and the subpixel The sum of the spacing between P2.
  • FIG. 9 shows the area of the speckle in the display image and the maximum size of the microstructure unit satisfy the relationship shown in FIG. 9 .
  • the abscissa represents the maximum size of the microstructure unit
  • the ordinate represents the speckle area in the display screen.
  • FIG. 9 shows the display images of the red sub-pixel (R), the green sub-pixel (G), and the blue sub-pixel (B), respectively, and the average display effect (ave) of the three sub-pixels.
  • the display images of the red sub-pixel (R), the green sub-pixel (G), and the blue sub-pixel (B), as well as the average display effect (ave) of the three sub-pixels are all within the maximum size of the microstructure unit.
  • the speckle area increases rapidly with the increase of the maximum size of the microstructure unit.
  • the speckle area in the display screen of the red sub-pixel (R) will decrease with the increase of the maximum size of the microstructure unit, it is not enough to improve the overall display effect, that is, The average display effect (ave) remains at a large value.
  • the orthographic projections of at least two microstructure units are located in the sub-regions of the pixel area, that is, the maximum size of the microstructure units is not greater than 1/2 pixel period, which is beneficial to The speckle reduction area is controlled in a small range, which is conducive to optimizing the flash point.
  • the arithmetic mean height Ra of the plurality of microstructure units is greater than or equal to 0.5%.
  • the arithmetic mean height Ra represents the absolute value of the absolute value of the vertical distance between the sectional contour lines and the center line of the plurality of microstructural units on the longitudinal section along the arbitrary direction and the thickness direction within an arbitrary length range (such as L). Arithmetic mean.
  • the center line is a straight line parallel to the arbitrary direction in the longitudinal section, and the sectional contour lines of the multiple microstructure units and the sum of the areas of the multiple regions formed by the center line respectively, and the sum of each two adjacent microstructures
  • the sum of the areas formed by the tangent contour of the element and the centerline is the same.
  • the longitudinal section of the transmissive layer 102 within the length L of the s direction may be as shown in FIG. 10 .
  • the center line and the tangential contour lines of the three microstructure units constitute a plurality of regions (region S1 to region S6).
  • the regions S1 to S3 are the regions formed by the tangent contour lines of the three microstructure units and the center line respectively, and the region S4 is the tangent plane contour line of the first microstructure unit, the tangent plane contour line of the second microstructure unit and The area formed by the center line, the area S5 is the section contour line of the second microstructure unit, the area composed of the section contour line of the third microstructure unit and the center line, and the area S6 is the section contour line of the third microstructure unit , the area formed by the contour lines and centerlines of the microstructure units adjacent to the third microstructure unit. Moreover, the sum of the areas of the regions S1 to S3 is equal to the sum of the areas of the regions S4 to S6.
  • the arithmetic mean height Ra represents the arithmetic mean of the absolute values of the vertical distances between the tangent contour lines and the center line of the three microstructure units in FIG. 10 , which can reflect the average height of the three microstructure units.
  • the height of each microstructure unit can be understood as the distance between the peak point and the valley bottom of the microstructure unit.
  • the peak point of the microstructure unit may be the point with the largest vertical distance from the display panel 101 in the microstructure unit
  • the valley bottom of the microstructure unit may be understood as the point in the microstructure unit with the smallest vertical distance from the display panel 101 .
  • the average length Rsm of the contour curve elements indicates that on the longitudinal section along any direction and thickness direction, within any length range (such as length L), in the section contour lines of the multiple microstructure units, every two adjacent microstructures
  • the peak point of the contour line of the cut plane can be understood as the point with the largest vertical distance from the display panel 101 in the contour line of the cut plane.
  • the projection length of the line connecting the peak point of the first microstructure unit and the peak point of the second microstructure on the center line is a1
  • the peak point of the second microstructure unit and the third microstructure unit have a projection length a1.
  • the projection length of the line connecting the peak points of the structure on the center line is a2, and the average length Rsm of the contour curve elements can be calculated according to the average value of a1 and a2.
  • the average length Rsm of profile curve elements can characterize the width of multiple microstructure units.
  • Ra/Rsm the more beneficial it is to suppress the flash point. Therefore, the value of Ra/Rsm in the examples of the present application is not less than 0.5%, which is beneficial to further suppress the flash point.
  • the use of the first surface provided by the embodiments of the present application is beneficial to suppress the flash point problem of the display panel 101 while realizing the paper-like display.
  • the first surface in this embodiment of the present application may satisfy at least one of the following conditions:
  • the arithmetic average height Ra of the plurality of microstructure units may be any value in [0.1 ⁇ m, 1 ⁇ m].
  • the arithmetic mean height Ra may be 0.1 ⁇ m, 1 ⁇ m, or any value greater than 0.1 ⁇ m and less than 1 ⁇ m.
  • the arithmetic average height Ra of the above-mentioned plurality of microstructural units may also be any value in [0.2 ⁇ m, 0.5 ⁇ m].
  • the arithmetic mean height Ra may be 0.2 ⁇ m, 0.5 ⁇ m, or any value greater than 0.2 ⁇ m and less than 0.5 ⁇ m.
  • the arithmetic mean height Ra of the above-mentioned microstructural units may be any value such as 0.2 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m, 0.34 ⁇ m, 0.4 ⁇ m or 0.5 ⁇ m.
  • the arithmetic average height Ra may be any value in [0.1 ⁇ m, 1 ⁇ m], which is beneficial to maintain the clarity of the display screen 100 while realizing the paper-like display.
  • the height of a single micro-structural unit may be any value in [0.5 ⁇ m, 1.5 ⁇ m], that is, the height of the micro-structural unit may be 0.5 ⁇ m or 1.5 ⁇ m, or It can be any value greater than 0.5 ⁇ m and less than 1.5 ⁇ m.
  • the height of the above-mentioned microstructure unit may be any value such as 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.2 ⁇ m or 1.5 ⁇ m.
  • each microstructure unit in the first surface can also be any value in [1.5 ⁇ m, 4 ⁇ m], specifically, the height of each microstructure unit can be 1.5 ⁇ m, or 4 ⁇ m, or any value greater than 1.5 ⁇ m and less than 4 ⁇ m.
  • the height of the microstructure unit can be any value of 1.5 ⁇ m, 1.8 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 2.7 ⁇ m, 3 ⁇ m, 3.4 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m or 4 ⁇ m.
  • the density of microstructure units is not less than 5000/mm 2 .
  • the density of the microstructure units in the first surface is not less than 5000/mm 2 , which is beneficial to prevent specular reflection on the first surface, thereby facilitating the realization of a paper-like display display effect.
  • Condition 3 The attenuation of the reflected light from the first surface is less than 5% within a range of 1° deviating from the reflection angle.
  • the intensity of the reflected light is attenuated by less than 5%. It can be understood that if the intensity of the reflected light is attenuated strongly within a range deviated from the reflection angle by 1°, it means that the intensity of the reflected light is mostly concentrated in a range deviated from the reflection angle by 1°. That is, the reflection of ambient light by the first surface is more specular than diffuse.
  • the attenuation of the reflected light from the first surface within a range of 1° from the reflection angle is less than 5%, and the reflection image modulation transfer function (MTF) is less than 0.017.
  • MTF reflection image modulation transfer function
  • the attenuation of the reflected light from the first surface within 1° from the reflection angle is less than 5%, so that the reflection mirror modulation transfer function MTF ⁇ 0.17, so that the user cannot observe the specular reflection, which is beneficial to achieve paper-like display.
  • the attenuation of the reflected light of the first surface within a range of 1° from the reflection angle is any value in [5%, 10%], which is also beneficial to suppress the flash point, so that the user cannot observe it. Specular reflection, which is beneficial to achieve paper-like display.
  • the transmissive layer 102 may include a cover plate 1021 , and the cover plate 1021 may be either a glass cover plate or a flexible cover plate (polymer film material). Not much restriction.
  • One surface of the cover plate 1021 is fixed to the display panel 101 , and the other surface of the cover plate 1021 can be used as the first surface of the transmission layer 102 . That is to say, the light emitting surface of the cover plate 1021 can be used as the first surface of the transmission layer 102 .
  • microstructure units can be prepared on the surface of the cover plate 1021 by at least any of the following methods:
  • Method 1 chemical etching.
  • the cover plate 1021 can be etched by chemical frosting , and the ratio of the frosting powder NH 4 F and NaF can be adjusted to control the size of the micro-structure unit to be 3-20 ⁇ m (the pixel period is not less than 40 ⁇ m), that is, the size of the micro-structure unit is 3-20 ⁇ m.
  • the size may be 3 ⁇ m, 20 ⁇ m, or any value larger than 3 ⁇ m and smaller than 20 ⁇ m.
  • the variation range of the arithmetic mean height Ra is controlled to be 0.01 to 1.0 ⁇ m by adjusting the etching time and the HF concentration.
  • the initial Ra/Rsm for preparing the first surface ranges from 0.5% to 2%, that is, the initial Ra/Rsm can be 0.5%, 2%, or any value greater than 0.5% and less than 2% .
  • the first surface is polished.
  • the Ra/Rsm is further corrected, and the Ra/Rsm is controlled within the range of not more than 1.8% to prevent the Ra/Rsm from being too large and affecting the
  • the clarity of the display screen 100 finally reaches the first surface that meets the requirements of paper-like display and flash point suppression.
  • Method 2 Physical sandblasting.
  • the size of the microstructure unit can be controlled between 3 and 20 ⁇ m by controlling the size of the sand blasting shot (the pixel period is not less than 40 ⁇ m), and the Ra can be controlled by controlling the hardness of the sand blasting shot and the pressure of the compressed air. and Ra/Rsm reach a reasonable range, and then further morphology correction is carried out by polishing, and finally a first surface that meets the requirements of paper-like display and flash point suppression is achieved.
  • Method 3 Spraying. Specifically, inorganic or organic polymer materials can be used to adhere to the surface of the cover plate 1021 away from the display panel 101 to form an uneven surface structure, and the surface morphology can be obtained by selecting different spraying materials and repeating the coating method for many times. Correction to finally achieve a first surface that meets the requirements for paper-like display and suppression of flash point.
  • Method 4 Exposure and developing process. Specifically, photoresist can be applied to the surface of the cover plate 1021 away from the display panel 101 . After baking and curing, post-lithography development is performed using ultraviolet (ultraviolet, uv) light through a photomask with a specific pattern designed according to the desired topography. In a possible implementation manner, the developed photoresist is retained to achieve a surface microstructure unit with a specific morphology, that is, the remaining developed photoresist is used to form the first surface of the transmissive layer 102. microstructural units. In another possible implementation manner, the surface of the developed cover plate 1021 may be chemically etched by adding an etching process to form a first surface with microstructure units, that is, on the surface of the cover plate 1021 Microstructured units in the first surface are formed.
  • the transmission layer 102 not only includes the cover plate 1021 , but also includes a coating film 1022 .
  • One surface of the coating film 1022 is fixed to the cover plate 1021 .
  • the other surface of the coating film 1022 may serve as the first surface of the transmissive layer 102 .
  • the coating 1022 may be an anti-reflection coating, for example, the reflectivity of the coating 1022 to ambient light is less than or equal to 1%.
  • microstructure units can be prepared on the surface of the cover plate 1021 to obtain a first surface that meets the requirements of paper-like display and flash point suppression.
  • Microstructure units can also be prepared on the surface of the coating film 1022 to obtain a first surface that meets the requirements of paper-like display and flash point suppression.
  • the coating film 1022 is prepared on the surface of the cover plate 1021 .
  • the thickness of the coating film 1022 is relatively small, and the influence on the morphology of the microstructure unit can be ignored.
  • the coating film 1022 may also be prepared on the surface (smooth surface) of the cover plate 1021 , and the microstructure units may be prepared on the surface of the coating film 1022 away from the cover plate 1021 .
  • microstructure units can be prepared on the surface of the coating film 1022 by at least any of the following methods:
  • the coating film 1022 is prepared by coating the surface of the cover plate 1021 with a polymer solution. Particles are added to the polymer solution. After the polymer solution is coated and cured, the particles in the polymer solution can protrude from the surface of the coating film 1022, so that microstructure units can be formed on the surface of the coating film 1022.
  • the particle density in solution forms the regulation of Ra, Rsm.
  • the refractive index of the particles can also be adjusted to adjust the haze of the first surface.
  • Mode 2 Coating a coating substrate on the surface of the cover plate 1021, and further coating two immiscible resins on the surface of the coating substrate. Under certain conditions, two immiscible resins are phase-separated to form an uneven surface structure.
  • Method 3 Coating a coating substrate on the surface of the cover plate 1021, performing nano-imprinting on the surface of the coating substrate, and designing a specific imprinting tool to achieve a first surface that meets the requirements of paper-like display and flash point suppression.
  • the display screen may further include an intermediate layer.
  • the intermediate layer may be located between the display panel 101 and the transmission layer 102, and in another possible implementation, the intermediate layer may also be located inside the display panel 101, and the intermediate layer is close to the transmission layer 102 Settings.
  • Case 1 the intermediate layer is located between the display panel 101 and the transmission layer 102 .
  • the display screen 100 further includes an intermediate layer 103 between the display panel 101 and the transmissive layer 102 .
  • the intermediate layer 103 can scatter the display light generated by the display panel 101, thereby further suppressing the flash point problem.
  • an intermediate layer 103 is arranged between the display panel 101 and the transmission layer 102, and the intermediate layer 103 further improves the degree of scattering of display light on the basis of the first surface, thereby suppressing the flickering of the display screen 100. point question. Moreover, compared to the first surface of the transmissive layer 102 , the intermediate layer 103 can be disposed at a position closer to the display panel 101 , thus helping to reduce the impact on the clarity of the display screen 100 .
  • the haze Haze of the intermediate layer 103 may be any value in [5%, 40%]. Specifically, the haze of the intermediate layer may be 5%, may also be 40%, or may be any value greater than 5% and less than 40%. When the haze of the intermediate layer 103 is small, it is insufficient to achieve a significant effect of suppressing the flash point. When the haze of the intermediate layer 103 is large, the clarity of the display screen 100 will be affected. In the embodiment of the present application, the haze of the intermediate layer 103 is set to any value in [5%, 40%], which can both suppress the flash point problem and maintain the clarity of the display screen 100. For example, the haze of the intermediate layer 103 may be 5%, 7%, 8%, 10%, 12%, 15%, 20%, 22%, 23%, 25%, 30%, 33%, 35% , or any value of 40%.
  • the haze Haze of the intermediate layer 103 may also be any value in [40%, 95%]. That is to say, the haze of the intermediate layer may be 40%, 95%, or any value greater than 40% and less than 95%. For example, it can be any value such as 40%, 45%, 50%, 55%, 60%, 67%, 70%, 72%, 78%, 80%, 85%, 90% or 92%, and the solution can take into account Suppresses flash point problems and maintains display clarity.
  • a specific material may be selected for the intermediate layer 103 so that the intermediate layer 103 can scatter the display light.
  • the intermediate layer 103 may include scattering particles, and the scattering particles may be used to adjust the haze of the intermediate layer 103 .
  • the scattering ability (haze) of the intermediate layer 103 can be adjusted by changing various factors such as the concentration of the scattering particles, the refractive index of the scattering particles, and the size of the scattering particles.
  • the refractive index of scattering particles can be any value in [1.4, 2.5]. That is to say, the refractive index of the scattering particles may be either 1.4, 2.5, or any value greater than 1.4 and less than 2.5.
  • the area of the orthographic projection of the scattering particles along the thickness direction is not greater than the area of the orthographic projection of the microstructure unit along the thickness direction.
  • the scattering particles in the intermediate layer 103 will only bend the light generated by one sub-pixel, and the light bent by the scattering particles will be incident on a corresponding micro-pixel. in the structural unit. Therefore, different microstructure units can receive similar incident light rays, which is beneficial to further suppress the flash point problem.
  • the size of the scattering particles needs to be larger than 1 ⁇ m.
  • the intermediate layer 103 shown in FIG. 8 can be directly added to the structure of the existing display screen 100 , or can be implemented on the basis of the original functional layer of the display screen 100 , that is, the intermediate layer 103 is While scattering the display light, other functions can also be achieved.
  • the intermediate layer 103 may include an optical adhesive layer.
  • an optical adhesive layer 1031 is disposed between the display panel 101 and the transmission layer 102 , and the optical adhesive layer 1031 includes scattering particles, which can scatter the display light generated by the display panel 101 . Meanwhile, the optical adhesive layer 1031 can also fix the display panel 101 and the transmission layer 102 . With this implementation, the structure of the display screen 100 is less affected, and the implementation is simple.
  • the optical adhesive layer 1031 may include a first optical adhesive layer 1031-1, a second optical adhesive layer 1031-2 and a third optical adhesive layer 1031-3.
  • the second optical adhesive layer 1031-2 includes the above-mentioned scattering particles, and the first optical adhesive layer 1031-1 and the third optical adhesive layer 1031-3 may be optical adhesive layers of conventional materials.
  • the first optical adhesive layer 1031-1 is disposed on the surface of the second optical adhesive layer 1031-2 close to the display panel 101
  • the third optical adhesive layer 1031-3 is disposed on the surface of the second optical adhesive layer 1031-2 close to the transmission layer 102.
  • the optical adhesive layer 1031 has a sandwich structure, wherein the second optical adhesive layer 1031-2 can play a function of enhancing scattering, and the first optical adhesive layer 1031-1 and the third optical adhesive layer 1031-3 can The original function of the optical adhesive layer 1031 is maintained, and scattering particles are prevented from affecting the bonding effect of the optical adhesive layer 1031 .
  • the display screen 100 may be a touch screen.
  • the intermediate layer 103 may further include a touch layer 1032 that can generate touch signals, so that the display screen 100 can implement a touch function.
  • the touch layer 1032 may include a sensor array, which may sense a user's operation gesture on the surface of the display screen 100 to generate a touch signal.
  • scattering particles may also be added to the touch layer 1032, so that the touch layer 1032 can scatter the display light.
  • the intermediate layer is located inside the display panel 101 and/or the transmission layer 102 .
  • the LCD display panel 101 shown in FIG. 2
  • the OLED display panel 101 shown in FIG. 5
  • the scattering particles can be added in tri-cellulose acetate (TCA) of the polarizing layer to reduce the interference to the original function of the polarizing layer.
  • TCA tri-cellulose acetate
  • the intermediate layer can be provided with scattering particles, but other layer structures located in the display light transmission path can also be provided with scattering particles.
  • scattering particles may also be added to the cover plate 1021 to suppress the flash point problem of the display screen 100 , which will not be described in detail.
  • the display panel 101 may further include a wide viewing angle film layer 208, the wide viewing angle film layer 208 can expand the viewing angle of the display light, so that the spatial distribution of the display light is more similar to the reflected light on the paper surface, In order to further optimize the paper-like display effect.
  • a diffusion sheet can also be provided in the backlight module 201, which can also expand the viewing angle of the display light and optimize the paper-like display effect.
  • disposing the diffusion sheet can also reduce the flash point caused by the interference inside the display panel 101, which is also beneficial to further optimize the flash point.
  • the embodiments of the present application also provide a display screen protective film, which can be attached to the light-emitting surface of the display screen by means of sticking, vacuum adsorption, or the like.
  • the display protective film includes a rough surface.
  • the rough surface may include a plurality of microstructure units, wherein the orthographic projection of each microstructure unit along the thickness direction is located in a pixel area, the projected area of the microstructure unit is less than or equal to the area of the pixel area, and the microstructure unit is a curved surface .
  • the pixel area includes the area where one sub-pixel is located in the display screen, and the area located around the sub-pixel and adjacent to the sub-pixel and the area between the other sub-pixels and the sub-pixel.
  • the display screen of the non-paper-like display can realize the paper-like display, and at the same time, the flash point can be suppressed.
  • the rough surface of the display screen protective film provided by the embodiment of the present application has similar topographical features to the first surface of the above-mentioned transmission layer 102 , and details are not repeated here.
  • the orthographic projections of at least two microstructure units are located in sub-regions of the pixel region.
  • the sub-region may include a region where a sub-pixel is located, and a region spaced between the sub-pixel and any adjacent sub-pixel.
  • the height of each microstructure unit is any value in [0.5 ⁇ m, 1.5 ⁇ m], wherein the height of each microstructure unit refers to the distance between the peak point and the valley bottom of the microstructure unit Specifically, the peak point of the microstructure unit refers to the point in the microstructure unit with the largest distance from the display screen, and the valley bottom of the microstructure unit refers to the point in the microstructure unit with the smallest distance from the display screen.
  • the height of the above-mentioned microstructure unit may be any value such as 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.2 ⁇ m or 1.5 ⁇ m.
  • the height of the above-mentioned micro-structural unit can also be any value in [1.5 ⁇ m, 4 ⁇ m], specifically, the height of each micro-structural unit can be 1.5 ⁇ m, 4 ⁇ m, or greater than Any value between 1.5 ⁇ m and less than 4 ⁇ m.
  • the height of the microstructure unit can be any value of 1.5 ⁇ m, 1.8 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 2.7 ⁇ m, 3 ⁇ m, 3.4 ⁇ m, 3.5 ⁇ m, 3.8 ⁇ m or 4 ⁇ m.
  • the arithmetic average height Ra of the plurality of microstructure units is [0.1 ⁇ m, 1 ⁇ m ], wherein the arithmetic mean height Ra represents the vertical distance between the sectional contour lines and the center line of the plurality of microstructure units on the longitudinal section along the arbitrary direction and the thickness direction, within an arbitrary length range
  • the arithmetic average height Ra of the above-mentioned plurality of microstructural units may also be any value in [0.2 ⁇ m, 0.5 ⁇ m].
  • the arithmetic mean height Ra may be 0.2 ⁇ m, 0.5 ⁇ m, or any value greater than 0.2 ⁇ m and less than 0.5 ⁇ m.
  • the arithmetic mean height Ra of the above-mentioned microstructural units may be any value such as 0.2 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m, 0.34 ⁇ m, 0.4 ⁇ m or 0.5 ⁇ m.
  • the density of the microstructure units in the rough surface is greater than or equal to 5000/mm 2 .
  • the arithmetic mean height Ra of a plurality of microstructure units and the average length Rsm of the contour curve elements of the plurality of microstructure units are calculated.
  • the ratio Ra/Rsm is greater than or equal to 0.5%; wherein, the meaning of the arithmetic mean height Ra will not be repeated.
  • the average length Rsm of the contour curve elements represents, on the longitudinal section along any direction and thickness direction, in the range of any length, in the section contour lines of the plurality of microstructure units, the length of the section contour lines of every two adjacent microstructure units.
  • the peak point of the cut plane contour line is the point farthest from the display screen in the cut plane contour line.
  • the display screen protective film is an anti-reflection film, which is beneficial to suppress the interference of ambient light on the contrast of the display screen and eliminate the problem of "picture bleaching" caused by diffuse reflection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)

Abstract

本申请提供一种显示屏、显示屏保护膜及电子设备,其中,显示屏的透射层具有远离显示面板的第一表面,该第一表面中每个微结构单元沿厚度方向的正投影位于一个像素区域内,且微结构单元的投影面积小于或等于该像素区域的面积。微结构单元可以是曲面,本申请实施例中,像素区域可以包括显示面板中一个子像素所在的区域,以及位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。在上述显示屏中,每个微结构单元主要弯折一个子像素的显示光线,有利于降低不同子像素之间光线偏折程度的差异,进而有利于优化闪点。

Description

一种显示屏、显示屏保护膜及电子设备
相关申请的交叉引用
本申请要求在2020年07月03日提交中国专利局、申请号为202010635326.7、申请名称为“一种显示屏、显示屏保护膜及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示屏技术领域,尤其涉及一种显示屏、显示屏保护膜及电子设备。
背景技术
纸质阅读是一种人们比较熟悉的阅读方式,例如阅读书籍、报纸、手册等。纸质阅读依赖于适宜强度的环境光,环境光照射在纸表面,经纸表面反射后被人眼接收。由于纸表面所反射的环境光为近朗伯反射(一种漫反射),因此没有镜面反射产生的显示干扰,尤其在环境光较强时,相较于镜面反射,纸表面所反射的环境光对人眼的伤害更低,舒适度更高。
有鉴于此,类纸显示也成为显示屏的发展方向之一。所谓类纸显示,也就是对显示屏进行针对性设计,降低显示屏对环境光的镜面反射,使显示屏也可以达到纸质阅读的显示效果。目前常见的类纸显示主要包括透射式类纸显示和反射式类纸显示,其中,透射式类纸显示不依赖于环境光,适用场景更为灵活,使用体验也更为稳定,有望成为未来类纸显示的主流方式。
目前,透射式类纸显示屏多设置有粗糙的出光面,使得环境光可以在出光面发生漫反射,从而达到类纸显示的显示效果。然而,粗糙的出光面又会使显示屏的显示画面出现闪点,即显示画面色度及亮度不均匀。因此,目前的透射式类纸显示屏还有待进一步提高。
发明内容
有鉴于此,本申请提供一种显示屏、显示屏保护膜及电子设备,有利于在实现类纸显示的同时,抑制显示屏的闪点。
第一方面,本申请实施例提供一种显示屏,其主要包括依次层叠设置的显示面板和透射层。其中,显示面板可以产生显示光线;透射层可以透射该显示光线。本申请实施例中,透射层具有远离显示面板的第一表面,该第一表面包括多个微结构单元,其中每个微结构单元沿厚度方向的正投影位于一个像素区域内,且微结构单元的投影面积小于或等于该像素区域的面积。微结构单元可以是曲面,本申请实施例中,像素区域可以包括显示面板中一个子像素所在的区域,以及位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。
示例性的,上述显示面板可以是LED显示面板、OLED显示面板、LCD面板等等,本申请实施例对此并不多做限制。
本申请实施例所提供的显示屏中,单个微结构单元的正投影位于一个像素区域内,且 单个微结构单元的投影面积小于或等于像素区域的面积,也就是说,单个微结构单元的正投影只会覆盖最多一个子像素所在的部分或全部区域。由于单个微结构单元的正投影只会覆盖最多一个子像素所在的部分或全部区域,因此该微结构单元将主要弯折该子像素所产生的光线,从而可以在一定程度上避免单个微结构单元弯折不同子像素产生的光线。由于闪点多是由于每个微结构单元对不同子像素的光线弯折程度不一,使像素中三原色的强度配比出现偏差,进而导致了闪点。因此本申请实施例所提供的显示屏中,每个微结构单元主要弯折一个子像素的显示光线,有利于降低不同子像素之间光线偏折程度的差异,进而有利于优化闪点。
为了进一步抑制闪点,在一种可能的实现方式中,至少有两个微结构单元的正投影位于像素区域的子区域内,子区域包括一个子像素所在的区域,和该子像素与相邻的任一子像素之间间隔的区域。
至少有两个微结构单元的正投影位于子区域内,也可以理解为微结构单元的最大尺寸不大于1/2像素周期(pixel pitch)。经研究发现,当微结构单元的最大尺寸超过1/2像素周期时,散斑面积会随微结构单元的最大尺寸的增大而迅速增大。微结构单元的最大尺寸超过像素周期时,散斑达到较大值。有鉴于此,本申请实施例所提供的显示屏中,至少有两个微结构单元的正投影位于像素区域的子区域内,即微结构单元的最大尺寸不大于1/2像素周期,有利于降散斑面积控制在较小的范围内,从而有利于优化闪点。
一般来说,第一表面中每个微结构单元的高度为[0.5μm,1.5μm]中的任一取值,具体来说,每个微结构单元的高度可以是0.5μm,也可以是1.5μm,还可以是大于0.5μm且小于1.5μm的任一取值。其中,每个微结构单元的高度是指微结构单元的峰点与谷底之间的距离,微结构单元的峰点是指微结构单元中与显示面板之间距离最大的点,微结构单元的谷底是指微结构单元的中与显示面板之间距离最小的点。
进一步的,上述第一表面中每个微结构单元的高度还可以为[1.5μm,4μm]中的任一取值,具体来说,每个微结构单元的高度可以是1.5μm,也可以是4μm,还可以是大于1.5μm且小于4μm的任一取值。
为了提高类纸显示的显示效果,在一种可能的实现方式中,在第一表面中平行于显示面板的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra为[0.1μm,1μm]中的任一取值。具体来说,算术平均高度Ra可以是0.1μm,也可以是1μm,还可以是大于0.1μm且小于1μm的任一取值。
进一步的,上述多个微结构单元的算术平均高度Ra还可以为[0.2μm,0.5μm]中的任一取值。具体来说,算术平均高度Ra可以是0.2μm,也可以是0.5μm,还可以是大于0.2μm且小于0.5μm的任一取值。
其中,算术平均高度Ra表示在沿任意方向和厚度方向的纵切面上,任意长度范围内该多个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,中心线为纵切面中平行于任意方向的直线,且,该多个微结构单元的切面轮廓线分别与中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与中心线构成的多个区域的面积之和相同。
算术平均高度Ra能够反映该多个微结构单元的平均高度情况。当算术平均高度Ra过小时,会产生镜面反射,不利于实现类纸显示的显示效果。当算术平均高度Ra过大时,会降低显示屏的清晰度,在环境光下显示对比度也会下降。因此,本申请实施例中算术平 均高度Ra可以是[0.1μm,1μm]中的任一取值,有利于在实现类纸显示的同时,维持显示屏的清晰度。进一步的,上述算术平均高度Ra可以是[0.2μm,0.5μm]中的任一取值时,类纸显示效果好,且清晰度也更高。
为了提高类纸显示的显示效果,在一种可能的实现方式中,在第一表面内,微结构单元的密度大于或等于5000/mm 2
具体来说,第一表面中任意1mm 2的平面范围内,存在至少5000个微结构单元。可以理解,当第一表面中微结构单元的密度过小时,第一表面也会产生镜面反射,不利于实现类纸显示的显示效果。有鉴于此,本申请实施例中第一表面中微结构单元的密度不小于5000/mm 2,有利于防止第一表面产生镜面反射,从而有利于实现类纸显示的显示效果。
为了进一步抑制闪点,在一种可能的实现方式中,在第一表面中平行于显示面板的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra与该多个微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%。
其中,算术平均高度Ra表示在沿任意方向和厚度方向的纵切面上,任意长度范围内该多个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,中心线为纵切面中平行于任意方向的直线,且,该多个微结构单元的切面轮廓线分别与中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与中心线构成的多个区域的面积之和相同。
轮廓曲线元素的平均长度Rsm表示在沿任意方向和厚度方向的纵切面上,任意长度范围内,该多个微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在中心线上的投影长度的平均值,其中,每个切面轮廓线的峰点为切面轮廓线中距离显示面板最远的点。
经过研究发现,Ra/Rsm越大,越有利于抑制闪点。因此,本申请实施例中Ra/Rsm的取值不小于0.5%,从而有利于进一步抑制闪点。
为了提高类纸显示的显示效果,在一种可能的实现方式中,在偏离反射角1°的范围内,第一表面的反射光的衰减小于或等于5%。经研究发现,人眼在亮度为11.89~142.3cd/m 2的中等亮度范围内,视觉上人眼最小可觉差亮度与背景亮度的关系满足韦伯定律,二者之间的比值约等于0.017,也就说,当反射镜像调制传递函数大于或等于0.017时,人眼便可以察觉到反射镜像。本申请中第一表面的反射光在偏离反射角1°范围内的衰减小于5%,使反射镜像调制传递函数MTF<0.17,使用户观察不到镜面反射,从而有利于达到类纸显示。
此外,另一种可能的实现方式中,在偏离反射角1°的范围内,第一表面的反射光的衰减为[5%,10%]中的任意取值。使用户难以观察到镜面反射,从而有利于达到类纸显示。
为了进一步抑制闪点,在一种可能的实现方式中,显示屏还可以包括中间层,中间层位于显示面板和透射层之间,中间层用于对显示光线进行散射。
经研究发现,当显示光线的散射程度较高时,显示屏的闪点问题会随着显示光线的散射程度的提高而逐渐降低。然而,若过度提高第一表面的散射能力,则会降低显示屏的清晰度。有鉴于此,本申请实施例在显示面板与透射层之间设置中间层,由中间层在第一表面的基础上,进一步提高显示光线的散射程度,从而抑制显示屏的闪点问题。而且,相较于透射层,中间层可以设置在更加靠近显示面板的位置,因此有利于降低对显示屏的清晰度的影响。
需要指出的是,中间层可以是在原有显示屏结构中新增加的层,也可以是显示屏中已有的功能层。也就是说,中间层除了可以实现对显示光线的散射之外,还可以实现其他功能。示例性的:
例如,中间层可以包括光学胶层,光学胶层不仅可以粘接显示面板和透射层,还可以对显示光线进行散射。在一种可能的实现方式中,中间层可以包括层叠的第一光学胶层、第二光学胶层和第三光学胶层,第二光学胶层位于第一光学胶层和第三光学胶层之间;其中,第二光学胶层包括散射粒子,第一光学胶层设置于第二光学胶层靠近显示面板的表面,第三光学胶层设置于第二光学胶层靠近透射层的表面。
采用该实现方式,光学胶层为三明治结构,其中,第二光学胶层可以起到增强散射的功能,第一光学胶层和第三光学胶层则可以保持光学胶层的原有功能,防止散射粒子影响光学胶层的粘合效果。
又例如,中间层可以包括触摸层,触摸层不仅可以产生触控信号,还可以对显示光线进行散射。
在另一种可能的实现方式中,显示面板包括中间层,中间层靠近透射层设置;中间层用于对显示光线进行散射。示例性的,中间层可以包括显示面板的偏光层。
在本申请实施例中,中间层的雾度Haze为[5%,40%]中的任一取值。也就是说,中间层的雾度可以为5%,也可以为40%,还可以为大于5%且小于40%的任一取值。当中间层的雾度较小时,不足以达到明显的抑制闪点的效果。当中间层的雾度较大时,又会影响显示屏的清晰度。本申请实施例将中间层的雾度设置为[5%,40%]中的任一取值,可以兼顾抑制闪点问题和维持显示屏的清晰度。
在本申请实施例中,中间层的雾度Haze还可以为[40%,95%]中的任一取值。也就是说,中间层的雾度可以为40%,也可以为95%,还可以为大于40%且小于95%的任一取值。该方案可以兼顾抑制闪点问题和维持显示屏的清晰度。
示例性的,中间层可以包括散射粒子,散射粒子可以调节中间层的雾度。示例性的,可以通过改变散射粒子的浓度、散射粒子的折射率、散射粒子的尺寸等多方面的因素,以调节中间层的散射能力(雾度)。
一般来说,散射粒子的折射率可以是[1.4,2.5]中的任一取值。也就是说,散射粒子的折射率既可以是1.4,也可以是2.5,还可以是大于1.4且小于2.5的任一取值。
为了进一步抑制闪点问题,在一种可能的实现方式中,散射粒子沿厚度方向的正投影的面积,不大于微结构单元沿厚度方向的正投影的面积。在此情况下,与微结构单元类似,中间层中的散射粒子只会对一个子像素所产生的光线进行弯折,且,该散射粒子所弯折的光线将会入射到对应的一个微结构单元中。因此,可以使不同的微结构单元接收到类似的入射光线,进而有利于进一步抑制闪点问题。
本申请实施例所提供的显示屏中,透射层存在多种可能的实现方式。例如,透射层可以包括盖板,盖板远离显示面板的表面可以作为透射层的第一表面。又例如,透射层不仅包括盖板,还可以包括镀膜,其中,盖板设置于显示面板与镀膜之间,镀膜的一个表面与盖板固定,镀膜的另一个表面为透射层的第一表面。示例性的,上述镀膜可以是减反膜。
第二方面,本申请实施例还提供一种显示屏保护膜,该显示屏保护膜可以通过粘贴、真空吸附等方式贴合在显示屏的出光面。该显示屏保护膜包括粗糙面。该粗糙面可以包括多个微结构单元,其中,每个微结构单元沿厚度方向的正投影位于一个像素区域内,且微 结构单元的投影面积小于或等于像素区域的面积,微结构单元是曲面。本申请实施例中,像素区域包括显示屏中一个子像素所在的区域,和位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。
采用本申请实施例所提供的显示屏保护膜,可以使非类纸显示的显示屏可以能够实现类纸显示,同时,还可以抑制闪点。本申请实施例所提供的显示屏保护膜的粗糙面,具有与上述第一方面中透射层的第一表面类似的形貌特征,具体不再赘述。第二方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
为了进一步抑制闪点,在一种可能的实现方式中,至少有两个微结构单元的正投影位于像素区域的子区域内。其中,子区域可以包括一个子像素所在的区域,以及该子像素与相邻的任一子像素之间间隔的区域。
一般来说,每个微结构单元的高度为[0.5μm,1.5μm]中的任一取值,其中,每个微结构单元的高度是指该微结构单元的峰点与谷底之间的距离,具体来说,微结构单元的峰点是指微结构单元中与显示屏之间距离最大的点,微结构单元的谷底是指微结构单元的中与显示屏之间距离最小的点。
进一步的,上述微结构单元的高度可以为[1.5μm,4μm]中的任一取值,具体来说,每个微结构单元的高度可以是1.5μm,也可以是4μm,还可以是大于1.5μm且小于4μm的任一取值。
为了提高类纸显示效果,在一种可能的实现方式中,在粗糙面中平行于显示屏的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra为[0.1μm,1μm]中的任一取值,其中算术平均高度Ra表示在沿该任意方向和该厚度方向的纵切面上,任意长度范围内该多个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,中心线为纵切面中平行于上述任意方向的直线,且,该多个微结构单元的切面轮廓线分别与中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与中心线构成的多个区域的面积之和相同。
进一步的,上述多个微结构单元的算术平均高度Ra还可以为[0.2μm,0.5μm]中的任一取值。具体来说,算术平均高度Ra可以是0.2μm,也可以是0.5μm,还可以是大于0.2μm且小于0.5μm的任一取值。
为了提高类纸显示效果,在一种可能的实现方式中,在粗糙面内微结构单元的密度大于或等于5000/mm 2
为了进一步抑制闪点,在粗糙面中平行于显示屏的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra与该多个微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%;其中,算术平均高度Ra的含义不再赘述。轮廓曲线元素的平均长度Rsm表示在沿任意方向和厚度方向的纵切面上,任意长度范围内,该多个微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在中心线上的投影长度的平均值,切面轮廓线的峰点为切面轮廓线中距离显示屏最远的点。
在一种可能的实现方式中,显示屏保护膜为减反膜,从而有利于抑制环境光对显示画面的对比度的干扰,消除漫反射带来的“画面漂白”问题。
第三方面,本申请实施例提供一种电子设备,该电子设备包括上述第一方面中任一项所提供的显示屏。示例性的,该电子设备可以是手机、平板电脑或者电纸书阅读器等常见的移动终端,也可以是笔记本电脑、台式电脑、电视机等电子设备。
第四方面,本申请实施例提供一种电子设备,包括显示屏和如上述第二方面所提供的显示屏保护膜,其中,该显示屏保护膜固定在显示屏的出光面,且显示屏保护膜的粗糙面远离显示屏设置。其中,显示屏可以是常规的非类纸显示的显示屏,采用本申请实施例所提供的显示屏保护膜,可以使该电子设备的显示屏也能够达到类纸显示,同时还能够抑制该显示屏的闪点。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种透射式显示屏的侧切结构示意图;
图2为一种LCD面板结构示意图;
图3为一种像素阵列结构示意图;
图4为一种LED显示面板结构示意图;
图5为一种OLED显示面板结构示意图;
图6a为一种在透射层的第一表面为光滑平面时,单色显示画面内的亮度分布示意图;
图6b为一种在透射层的第一表面为粗糙表面时,单色显示画面内的亮度分布示意图;
图6c为一种在透射层的第一表面为光滑平面时,单色显示画面内的色度分布示意图;
图6d为一种在透射层的第一表面为粗糙表面时,单色显示画面内的色度分布示意图;
图7为本申请实施例提供一种显示屏结构示意图;
图8为本申请实施例提供一种沿厚度方向的第一表面的俯视图;
图9为本申请实施例提供一种散斑面积与微结构单元的最大尺寸之间的相关关系示意图;
图10为本申请实施例提供一种透射层的纵切面示意图;
图11为本申请实施例提供一种具体的显示屏结构示意图;
图12为本申请实施例提供一种具体的显示屏结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。需要指出的是,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本申请实施例中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了改善透射式显示屏的类纸显示效果,本申请实施例提供了一种显示屏,可以在实现类纸显示的同时,降低显示屏闪点对显示效果的影响。需要指出的是,本申请实施例所 提供的显示屏可以应用于任意具有显示功能的电子设备,例如可以作为手机、平板电脑或者电纸书阅读器等常见的移动终端的显示屏,也可以作为笔记本电脑、台式电脑、电视机等电子设备的显示屏。
本申请实施例所提供的显示屏可以是透射式显示屏,其中,“透射式”可以理解为显示屏能够在内部产生显示光线,并从显示屏的出光面发射显示光线。例如图1所示,为一种透射式显示屏的侧切结构示意图。由图1可见,显示屏100可以包括显示面板101和透射层102,且透射层102和显示面板101层叠设置。其中,透射层102的一个表面靠近显示面板101的出光面设置,透射层102远离显示面板101的另一个表面可以作为显示屏100的出光面。显示面板101可以发射显示光束,该显示光束可以从透射层102透射,从而实现透射式显示。
接下来,分别对显示面板101和透射层102作进一步的示例性说明。
一、显示面板101
根据发光原理的不同,显示面板101存在多种类型,常见的主要有液晶显示(liquid crystal display,LCD)面板、发光二极管(light-emitting diode,LED)显示面板、有机发光二极管(organic light-emitting diode,OLED)显示面板等。
一般来说,显示面板101可以包括发光结构,发光结构可以在显示面板101工作时产生光线。除发光结构之外,根据显示面板101类型的不同,显示面板101还可以包括其它功能层。这些功能层与发光结构结合,使显示面板101能够产生显示光线,实现显示功能。其中,显示光线可以理解为显示面板101所产生的、用于呈现显示画面的光线。当显示光线被人眼接收后,可以使用户观察到上述显示画面。
以LCD面板为例,LCD面板的结构可以如图2所示,主要包括依次层叠设置的背光模组(backlight unit,BLU)201、下偏光层202、玻璃基板203、液晶分子层204、彩色光阻层205、玻璃基板206和上偏光层207。其中,背光模组201为LCD面板的发光结构,用于产生非偏振光的光线。下偏光层202可以将背光模组201产生的非偏振光转换为线偏振光。
玻璃基板203和玻璃基板206用于包裹液晶分子层204和彩色光阻层205。其中,液晶分子层204中液晶分子的排列方式是可控的,通过改变液晶分子的排列方式,可以改变光线的偏振方向。
彩色光阻层205包括阵列排布的光阻,这些阵列排布的光阻也可以理解为LCD面板的像素阵列。示例性的,如图3所示,像素阵列包括阵列式排布的多个像素,其中,每个像素包括三个子像素(光阻),分别对应红、绿、蓝三种颜色。
下偏光层202与上偏光层207正交设置,由下偏光层202透射的线偏振光无法直接透射上偏光层207。因此可以通过液晶分子层204调整入射各个子像素的光线的偏振状态,从而控制来自各个子像素的光线从上偏光层207的透射强度。
例如,对于无需发光的子像素,液晶分子层204可以保持入射该子像素的光线的偏振状态不变,即为下偏光层202所透射的光线的偏振状态。因此,从无需发光的子像素透射的光线将无法继续从上偏光层207透射,即该子像素无法发光。
而对于需要发光的子像素,液晶分子层204可以调节入射该子像素的光线的偏振状态(调节偏振角)。对于从需要发光的子像素透射的光线,不同偏振角的光线可以从上偏光层207透射的强度不同,因此通过调节入射子像素的光线的偏振状态,便可以控制该子像 素的发光强度。
以LED显示面板为例,如图4所示,LED显示面板主要包括依次层叠设置的基板401、发光层402和封装层403。其中,基板401可以承载发光层402。发光层402为LED显示面板的发光结构,其中包括像素阵列。LED显示面板中像素阵列的排列方式与LCD面板类似,也可以如图4所示。区别在于,LED显示面板的像素阵列由红、绿、蓝三种颜色分别对应的LED构成,LED显示面板的像素阵列本身便可以电致(或光致)发光。封装层403覆盖发光层402,可以保护LED显示面板的内部结构。
OLED显示面板的结构与LED显示面板类似,如图5所示,OLED显示面板主要包括基板501、发光层502、封装层503和偏光层504。其中,基板501、发光层502、封装层503的功能皆可以参考LED显示面板,区别在于LED显示面板的发光层402中由LED构成像素阵列,而OLED显示面板的发光层502中由OLED构成像素阵列,其它相似之处不再赘述。此外,OLED显示面板还可以包括偏光层504,该偏光层504可以降低OLED显示面板对外界的环境光的反射强度。
二、透射层102
如图1所示,透射层102靠近显示面板101的出光面设置,其中,透射层102的远离显示面板101的第一表面为粗糙表面。透射层102的第一表面也可以理解为透射层102的出光面,也就是透射层102透射出光线的表面,还可以理解为显示屏100的出光面,也就是显示屏100发射出光线的表面。
透射层102的第一表面为粗糙表面,因此可以对照射在第一表面的环境光进行漫反射,以达到类纸显示的显示效果。具体来说,在常见的纸质阅读中,纸面可以对环境光进行近朗伯反射(一种漫反射)。所谓朗伯反射,指的是在光线入射反射面时,以入射点为中心,在反射面的半球形空间内各个方向的反射光线的强度相同。对于纸质阅读中,环境光照射纸面时,在纸面上的半球形空间内,环境光在各个方向的反射光线的强度相同或相近,因此可以达到近朗伯反射,即近似朗伯反射的漫反射。
为了达到与纸质阅读相同或相近的显示效果,类纸显示的显示屏100中透射层102的第一表面通常被制作为粗糙表面,使第一表面也可以对环境光进行漫反射。如图1所示,透射层102的第一表面包括多个微结构单元,每个微结构单元皆为曲面。当环境光照射第一表面时,不同的微结构单元可以向不同的方向反射环境光,从而实现对环境光的漫反射。
然而,由于第一表面中的微结构单元在对环境光进行反射时,会对不同子像素的光线产生不同程度的偏折,因此会造成显示屏100的闪点问题。示例性的,图6a为在透射层102的第一表面为光滑平面时,在8mm×8mm范围的单色显示画面内的亮度分布示意图。其中,单色显示画面可以是红、绿、蓝中的任一颜色的显示画面。X为平行于显示面板101的任一方向,Y为垂直于X的方向。由图6a可见,该显示图像包括阵列排布的像素点,每个像素点对应显示面板中一个像素产生的光线。在透射层102的第一表面为光滑平面时,显示画面的亮度分布均匀,不同像素点的亮度相同或相近。
图6b为在透射层102的第一表面为粗糙表面时,在8mm×8mm范围的单色显示画面内的亮度分布示意图。对比图6a和图6b可见,在透射层102的第一表面为粗糙表面时,显示画面中会出现亮度不均匀的区域,部分像素点的亮度较低,这些区域也可以称为散斑。也就是说,第一表面的微结构单元会导致显示画面亮度不均匀。
图6c为在透射层102的第一表面为光滑平面时,在8mm×8mm范围的单色显示画面内的色度分布示意图。由图6c可见,在透射层102的第一表面为光滑平面时,显示画面的色度分布均匀,不同像素点的色度相同或相近。
图6d为在透射层102的第一表面为粗糙表面时,在8mm×8mm范围的单色显示画面内的色度分布示意图。对比图6c和图6d可见,在透射层102的第一表面为粗糙表面时,显示画面中会出现色度不均匀,部分像素点的色度较低。也就是说,第一表面的微结构单元会导致显示画面色度不均匀。
图6b和图6d所示的显示画面亮度和色度不均匀的现象,也可以称为闪点。当第一表面为粗糙表面时,显示画面中之所以会出现闪点,主要是因为当任意子像素产生的光线通过微结构单元时,会发生光线偏折现象。若一个微结构单元会偏折多个子像素(同色或不同色)产生的光线,则由于该微结构单元与多个子像素之间的相对位置不一致,将使得该微结构单元对不同子像素所导致的光线偏折程度不一,进而导致各像素点的三原色的配比产生偏差,反应在显示画面中,便是显示画面的色度和亮度不均匀,即显示画面中出现闪点。
例如图1中,微结构单元A分别与像素1中的蓝色子像素和绿色子像素之间具有不同的相对位置,使得微结构单元A对绿色子像素所产生的光线的偏折程度较小,对蓝色子像素所产生的光线的偏折程度较大,进而使得像素1中蓝色光线强度和绿色光线强度的配比出现偏差,当这种配比偏差的现象在第一表面的透射光线中普遍存在时,便会产生闪点。
有鉴于此,在本申请实施例所提供的显示屏中,进一步对透射层102的第一表面进行了改进。示例性的,如图7所示,为本申请实施例所提供的一种显示屏沿厚度方向的侧切图。如图7所示,本申请实施例所提供的透射层102的第一表面包括多个微结构单元,这些微结构单元为曲面。其中,每个微结构单元沿厚度方向的正投影位于一个像素区域内,且微结构单元的投影面积小于或等于像素区域的面积。
具体来说,显示屏100的厚度方向可以如图7中的箭头所示,也可以理解为从透射层102垂直指向显示面板101的方向。可以理解,在沿厚度方向的俯视图中微结构单元的俯视形状与微结构单元沿厚度方向的正投影的形状相同。示例性的,图8示例性示出了一种沿厚度方向的第一表面的俯视图,如图8所示,每个白色线条构成的封闭区域表示一个微结构单元。在俯视图中,微结构单元的俯视形状既可以是规则形状,也可以是不规则形状。不同微结构单元的俯视形状可以相同,也可以不同。微结构单元在第一表面既可以是规则分别,也可以是不规则分布。本申请实施例对此并不多作限制。
在本申请实施例中,像素区域不仅包括显示面板中一个子像素所在的区域,还包括位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。以图3中的子像素A为例,子像素A周围存在8个相邻子像素,则像素区域可以如图3所示,包括子像素A所在的区域,以及子像素A与周围8个相邻子像素所间隔的区域。
单个微结构单元的正投影位于一个像素区域内,且单个微结构单元的投影面积小于或等于像素区域的面积,也就是说,单个微结构单元的正投影只会覆盖最多一个子像素所在的部分或全部区域。
如图7所示,对于蓝色子像素所在的像素区域,存在两个微结构单元的正投影位于该蓝色子像素所在的像素区域中,因此这两个微结构单元将主要弯折蓝色子像素产生的光线, 不弯折或仅少量弯折与该蓝色子像素相邻的绿色子像素和红色子像素产生的光线。同理,正投影位于红色子像素的像素区域中的微结构单元将主要弯折红色子像素产生的光线,正投影位于绿色子像素的像素区域中的微结构单元将主要弯折绿色子像素产生的光线。
采用该结构,可以在一定程度上避免单个微结构单元弯折不同子像素产生的光线。具体来说,由于单个微结构单元的正投影只会覆盖最多一个子像素所在的部分或全部区域,因此该微结构单元将主要弯折该子像素所产生的光线。正如对图1所示的第一表面的分析,由于一个微结构单元对不同子像素的光线弯折程度不一,使像素中三原色的强度配比出现偏差,进而导致闪点问题。而在图7所示的第一表面,每个微结构单元将主要弯折一种颜色的光线,因此有利于降低不同子像素之间光线偏折程度的差异,进而有利于优化闪点。
需要指出的是,相邻的像素区域之间可以存在交叠区域,也就是相邻子像素之间间隔区域。正投影位于该交叠区域的微结构单元虽然可能会对相邻子像素的光线皆进行弯折,但由于相邻子像素相对于该微结构单元的位置近似对称,因此该微结构单元对相邻子像素的光线的弯折程度也是相近的。而且,像素区域之间的交叠区域的面积远远小于子像素所在的区域面积。因此,正投影位于交叠区域的微结构单元并不会对相邻子像素之间的光线强度配比产生较为显著的影响。
为了进一步抑制闪点,在一种可能的实现方式中,至少有两个微结构单元的正投影位于像素区域的子区域内。其中,该子区域包括一个子像素所在的区域,以及该子像素与相邻的任一子像素之间间隔的区域。
以图3所示的像素阵列为例,子像素A所在的像素区域的子区域包括子像素A所在的区域,以及子像素A与任一相邻像素(如像素B)之间间隔的区域a。至少有两个微结构单元的正投影位于子区域内,也可以理解为微结构单元的最大尺寸不大于1/2像素周期(pixel pitch)。
其中,微结构单元的尺寸可以理解为,沿厚度方向的微结构单元的俯视形状中,俯视形状边缘两点之间直线距离的最大值。示例性的,任一微结构单元的尺寸可以如图8所示。应理解,不同的微结构单元之间的尺寸可以相同,也可以不同。本申请实施例中,微结构单元的最大尺寸指的是第一表面中每个微结构单元的尺寸可以达到的最大值,也就是说,每个微结构单元的尺寸都小于或等于该最大尺寸。
像素周期可以理解为子像素在像素阵列中最小重复距离,其中重复距离指的是在平行于像素阵列的某一方向上,子像素的尺寸,加上在该方向上与任一相邻子像素之间的间距之和。一般来说,对于同一个像素阵列,重复距离会随上述方向的变化而变化。
通常,可以将上述重复距离的最小值,也就是最小重复距离作为像素周期。例如图3中,若在箭头所示的y方向上的重复距离为最小重复距离,则像素周期可以如图3所示,为在y方向上子像素P1的尺寸加上子像素P1与子像素P2之间间距的和值。
经研究发现,显示画面中散斑的面积与微结构单元的最大尺寸满足如图9所示的关系。图9中横坐标表示微结构单元的最大尺寸,纵坐标表示显示画面中的散斑面积。图9分别示出了红色子像素(R)、绿色子像素(G)、蓝色子像素(B)的显示画面,以及三种子像素的平均显示效果(ave)。
由图9可见,红色子像素(R)、绿色子像素(G)、蓝色子像素(B)的显示画面,以及三种子像素的平均显示效果(ave),皆在微结构单元的最大尺寸不大于1/2像素周期时 保持较低的散斑面积。当微结构单元的最大尺寸超过1/2像素周期时,散斑面积会随微结构单元的最大尺寸的增大而迅速增大。微结构单元的最大尺寸超过像素周期时,虽然红色子像素(R)的显示画面中散斑面积会随微结构单元的最大尺寸的增大而降低,但并不足以改善整体的显示效果,即平均显示效果(ave)仍维持在较大值。
有鉴于此,本申请实施例所提供的显示屏中,至少有两个微结构单元的正投影位于像素区域的子区域内,即微结构单元的最大尺寸不大于1/2像素周期,有利于降散斑面积控制在较小的范围内,从而有利于优化闪点。
为了进一步抑制显示屏100的闪点问题,在一种可能的实现方式中,在第一表面中平行于显示面板101的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra与该多个微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%。
其中,算术平均高度Ra表示在沿该任意方向和厚度方向的纵切面上,任意长度范围(如L)内该多个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值。
其中,中心线为纵切面中平行于该任意方向的直线,且,该多个微结构单元的切面轮廓线分别与中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与中心线构成的多个区域的面积之和相同。
例如,沿图8中s方向和图7所示的厚度方向,在s方向的长度L内透射层102的纵切面可以如图10所示。在长度L内共存在三个微结构单元。中心线与三个微结构单元的切面轮廓线构成了多个区域(区域S1至区域S6)。
其中,区域S1至区域S3为三个微结构单元的切面轮廓线分别与中心线构成的区域,区域S4为第一个微结构单元的切面轮廓线、第二个微结构单元的切面轮廓线和中心线构成的区域,区域S5为第二个微结构单元的切面轮廓线、第三个微结构单元的切面轮廓线和中心线构成的区域,区域S6为第三个微结构单元的切面轮廓线、与第三个微结构单元相邻的微结构单元的切面轮廓线和中心线构成的区域。且,区域S1至区域S3的面积之和,等于区域S4至区域S6的面积之和。
算术平均高度Ra表示图10中三个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,能够反映该三个微结构单元的平均高度情况。其中,每个微结构单元的高度可以理解为,微结构单元的峰点与谷底之间的距离。具体来说,微结构单元的峰点可以是微结构单元中距离显示面板101的垂直距离最大的点,微结构单元的谷底则可以理解为微结构单元中距离显示面板101的垂直距离最小的点。
轮廓曲线元素的平均长度Rsm则表示在沿任意方向和厚度方向的纵切面上,任意长度范围(如长度L)内,该多个微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在中心线上的投影长度的平均值。其中,切面轮廓线的峰点可以理解为切面轮廓线中距离显示面板101的垂直距离最大的点。
例如图10中,第一个微结构单元的峰点与第二个微结构的峰点的连线在中心线上的投影长度为a1,第二个微结构单元的峰点与第三个微结构的峰点的连线在中心线上的投影长度为a2,则根据a1和a2的平均值便可以计算得到轮廓曲线元素的平均长度Rsm。轮廓曲线元素的平均长度Rsm可以表征多个微结构单元的宽度情况。
经过研究发现,Ra/Rsm越大,越有利于抑制闪点。因此,本申请实施例中Ra/Rsm的 取值不小于0.5%,从而有利于进一步抑制闪点。
综上所述,采用本申请实施例所提供的第一表面,有利于在实现类纸显示的同时,抑制显示面板101的闪点问题。示例性的,为了达到类纸显示的显示效果,本申请实施例中第一表面可以满足以下至少一个条件:
条件一:第一表面中任意方向的任意长度范围内,多个微结构单元的算术平均高度Ra可以是[0.1μm,1μm]中的任一取值。
算术平均高度Ra的具体定义不再赘述。具体来说,算术平均高度Ra可以为0.1μm,也可以为1μm,还可以为大于0.1μm且小于1μm的任一取值。
进一步的,上述多个微结构单元的算术平均高度Ra还可以为[0.2μm,0.5μm]中的任一取值。具体来说,算术平均高度Ra可以是0.2μm,也可以是0.5μm,还可以是大于0.2μm且小于0.5μm的任一取值。例如,上述微结构单元的算术平均高度Ra可以是0.2μm、0.25μm、0.3μm、0.34μm、0.4μm或者0.5μm等任意取值。
当算术平均高度Ra过小时,会产生镜面反射,不利于实现类纸显示的显示效果。当算术平均高度Ra过大时,会降低显示屏100的清晰度,在环境光下显示对比度也会下降。因此,本申请实施例中算术平均高度Ra可以是[0.1μm,1μm]中的任一取值,有利于在实现类纸显示的同时,维持显示屏100的清晰度。
在一种可能的实现方式中,单个微结构单元的高度可以是[0.5μm,1.5μm]中的任一取值,即微结构单元的高度即可以是0.5μm,也可以是1.5μm,还可以是大于0.5μm且小于1.5μm的任一取值。例如,上述微结构单元的高度可以是0.5μm、0.8μm、1μm、1.2μm或者1.5μm等任意取值。
进一步的,上述第一表面中每个微结构单元的高度还可以为[1.5μm,4μm]中的任一取值,具体来说,每个微结构单元的高度可以是1.5μm,也可以是4μm,还可以是大于1.5μm且小于4μm的任一取值。例如,上述微结构单元的高度可以是1.5μm、1.8μm、2μm、2.5μm、2.7μm、3μm、3.4μm、3.5μm、3.8μm或者4μm等任意取值。
条件二:第一表面中,微结构单元的密度不小于5000/mm 2
具体来说,第一表面中任意1mm 2的平面范围内,存在至少5000个微结构单元。可以理解,当第一表面中微结构单元的密度过小时,第一表面也会产生镜面反射,不利于实现类纸显示的显示效果。有鉴于此,本申请实施例中第一表面中微结构单元的密度不小于5000/mm 2,有利于防止第一表面产生镜面反射,从而有利于实现类纸显示的显示效果。
条件三:第一表面的反射光在偏离反射角1°范围内的衰减小于5%。
具体来说,当环境光照射到第一表面,并被第一表面反射后,在偏离反射角1°的范围内,反射光强度衰减小于5%。可以理解,若在偏离反射角1°的范围内,反射光强度衰减较强,说明反射光的强度大多集中在偏离反射角1°的范围内。也就是说,第一表面对环境光的反射更倾向于镜面反射,而不是漫反射。
相对应的,本申请实施例中第一表面的反射光在偏离反射角1°范围内的衰减小于5%,反射镜像调制传递函数(modulation transfer function,MTF)<0.017。经研究发现,人眼在亮度为11.89~142.3cd/m 2的中等亮度范围内,视觉上人眼最小可觉差亮度与背景亮度的关系满足韦伯定律,二者之间的比值约等于0.017,也就说,当反射镜像调制传递函数大于或等于0.017时,人眼便可以察觉到反射镜像。本申请中第一表面的反射光在偏离反射角1°范围内的衰减小于5%,使反射镜像调制传递函数MTF<0.17,使用户观察不到镜面反 射,从而有利于达到类纸显示。
进一步的,本申请实施例中第一表面的反射光在偏离反射角1°范围内的衰减为[5%,10%]中的任意取值,也有利于抑制闪点,使用户观察不到镜面反射,从而有利于达到类纸显示。
在本申请实施例中,透射层102的具体结构存在多种可能的实现方式。示例性的,如图11所示,透射层102可以包括盖板1021,该盖板1021既可以是玻璃盖板,也可以是柔性盖板(高分子膜材),本申请实施例对此并不多作限制。其中,盖板1021的一个表面与显示面板101固定,盖板1021的另一个表面可以作为透射层102的第一表面。也就是说,盖板1021的出光面可以作为透射层102的第一表面。
示例性的,至少可以通过以下任一种方式在盖板1021的表面制备微结构单元:
方式一:化学蚀刻。具体来说,可以通过化学蒙砂蚀刻盖板1021,通过调整蒙砂粉NH 4F、NaF的比例来控制微结构单元的尺寸为3~20μm(像素周期不小于40μm),即微结构单元的尺寸可以是3μm,也可以是20μm,还可以是大于3μm且小于20μm的任一取值。通过调整刻蚀时间、HF浓度来控制算术平均高度Ra的变化范围为0.01~1.0μm。以及,制备第一表面的初始Ra/Rsm的范围0.5%~2%,即初始Ra/Rsm可以是0.5%,也可以是2%,还可以是大于0.5%且小于2%的任一取值。
在刻蚀之后,对第一表面进行抛光。通过进一步调整抛光时间和抛光液强酸(H 2SO 4)与HF质量分数配比进一步修正Ra/Rsm,将Ra/Rsm控制在不大于1.8%的范围内,以防止Ra/Rsm过大而影响显示屏100的清晰度,最终达到符合类纸显示和抑制闪点要求的第一表面。
方式二:物理喷砂。具体来说,可以通过控制喷砂喷丸的大小来控制微结构单元的尺寸为3~20μm之间(像素周期不小于40μm),通过控制喷砂喷丸的硬度和压缩空气的压力来控制Ra和Ra/Rsm达到合理范围,再通过抛光进行进一步形貌修正,最终达到符合类纸显示和抑制闪点要求的第一表面。
方式三:喷涂。具体来说,可以采用无机或者有机高分子材料附着于盖板1021远离显示面板101的表面,形成不平坦的表面结构,通过选择不同的喷涂材料及多次重复涂布的方式来进行表面形貌修正,最终达到符合类纸显示和抑制闪点要求的第一表面。
方式四:.曝光显影工艺。具体来说,可以通过在盖板1021远离显示面板101的表面涂覆光阻胶。烘烤固化后,通过根据所需形貌设计的特定图案的光罩,使用紫外(ultraviolet,uv)光进行光刻后显影。在一种可能的实现方式中,保留显影后的光阻胶,实现特定形貌的表面微结构单元,也就是说,由保留的显影后的光阻胶形成透射层102的第一表面中的微结构单元。在另一种可能的实现方式中,可以通过增加蚀刻工艺,对显影后的盖板1021的表面进行化学蚀刻,以形成具有微结构单元的第一表面,也就是说,在盖板1021的表面形成第一表面中的微结构单元。
在另一种可能的实现方式中透射层102不仅包括盖板1021,还可以包括镀膜1022。其中,镀膜1022的一个表面与盖板1021固定。在此情况下,镀膜1022的另一个表面可以作为透射层102的第一表面。示例性的,该镀膜1022可以是减反射镀膜,例如,该镀膜1022对环境光的反射率≤1%。通过设置镀膜1022,有利于抑制环境光对显示画面的对比度的干扰,消除漫反射带来的“画面漂白”问题。
在透射层102包括盖板1021和镀膜1022的情况下,既可以通过在盖板1021的表面制备微结构单元,以得到符合类纸显示和抑制闪点要求的第一表面。也可以通过在镀膜1022的表面制备微结构单元,以得到符合类纸显示和抑制闪点要求的第一表面。
具体来说,在一种可能的实现方式中,在盖板1021的表面制备微结构单元后,再在盖板1021的表面制备该镀膜1022。一般来说,镀膜1022的厚度较小,对微结构单元的形貌影响可以忽略不计。
在另一种可能的实现方式中,也可以在盖板1021的表面(光滑表面)制备镀膜1022,并在镀膜1022远离盖板1021的表面制备微结构单元。示例性的,至少可以通过以下任一种方式在镀膜1022的表面制备微结构单元:
方式一:通过在盖板1021的表面涂覆高分子溶液制备镀膜1022。高分子溶液中添加有颗粒,在高分子溶液涂覆固化后,高分子溶液中的颗粒能够突出镀膜1022的表面,从而可以在镀膜1022的表面形成微结构单元,通过控制颗粒大小、镀膜厚度及溶液中的颗粒密度形成对Ra、Rsm的调控。在一种可能的实现方式中,还可以调节颗粒的折射率来调节第一表面的雾度。
方式二:在盖板1021的表面涂覆镀膜基材,在镀膜基材的表面进一步涂覆两种不相溶的树脂。在特定条件下,使两种不相溶的树脂产生相分离,从而形成不平坦表面结构。
方式三:在盖板1021的表面涂覆镀膜基材,在镀膜基材的表面进行纳米压印,通过设计特定的压印磨具实现符合类纸显示和抑制闪点要求的第一表面。
可以理解,相较于在盖板1021的表面制备微结构单元,在镀膜1022的表面制备微结构单元的应用场景更为灵活,更换简单,可靠性要求低,制作工艺选择更多。
为了进一步抑制显示屏的闪点问题,在一种可能的实现方式中显示屏还可以包括中间层。在一种可能的实现方式中,该中间层可以位于显示面板101和透射层102之间,在另一种可能的实现方式中,中间层也可以位于显示面板101内部,且中间层靠近透射层102设置。接下来,分情况进行说明:
情况一:中间层位于显示面板101和透射层102之间。
示例性的,如图12所示,显示屏100还包括位于显示面板101和透射层102之间的中间层103。中间层103可以对显示面板101所产生的显示光线进行散射,从而可以进一步抑制闪点问题。
具体来说,经研究发现,当显示光线的散射程度较高时,显示屏100的闪点问题会随着显示光线的散射程度的提高而逐渐降低。然而,若过度提高第一表面的散射能力,则会降低显示屏100的清晰度。
有鉴于此,本申请实施例在显示面板101与透射层102之间设置中间层103,由中间层103在第一表面的基础上,进一步提高显示光线的散射程度,从而抑制显示屏100的闪点问题。而且,相较于透射层102的第一表面,中间层103可以设置在更加靠近显示面板101的位置,因此有利于降低对显示屏100的清晰度的影响。
示例性的,中间层103的雾度Haze可以为[5%,40%]中的任一取值。具体来说,中间层的雾度可以为5%,也可以为40%,还可以为大于5%且小于40%的任一取值。当中间层103的雾度较小时,不足以达到明显的抑制闪点的效果。当中间层103的雾度较大时,又会影响显示屏100的清晰度。本申请实施例将中间层103的雾度设置为[5%,40%]中的任一 取值,可以兼顾抑制闪点问题和维持显示屏100的清晰度。例如,上述中间层103的雾度Haze可以为5%、7%、8%、10%、12%、15%、20%、22%、23%、25%、30%、33%、35%、或者40%中的任一取值。
在本申请实施例中,中间层103的雾度Haze还可以为[40%,95%]中的任一取值。也就是说,中间层的雾度还可以为40%,也可以为95%,还可以为大于40%且小于95%的任一取值。例如可以为40%、45%、50%、55%、60%、67%、70%、72%、78%、80%、85%、90%或92%等任意取值,该方案可以兼顾抑制闪点问题和维持显示屏的清晰度。
在一种可能的实现方式中,可以为中间层103选取特定材质,使中间层103可以对显示光线进行散射。
在另一种可能的实现方式中,中间层103可以包括散射粒子,该散射粒子可以用于调节中间层103的雾度。示例性的,可以通过改变散射粒子的浓度、散射粒子的折射率、散射粒子的尺寸等多方面的因素,以调节中间层103的散射能力(雾度)。
一般来说,散射粒子的折射率可以是[1.4,2.5]中的任一取值。也就是说,散射粒子的折射率既可以是1.4,也可以是2.5,还可以是大于1.4且小于2.5的任一取值。
为了进一步抑制闪点问题,在一种可能的实现方式中,散射粒子沿厚度方向的正投影的面积,不大于微结构单元沿厚度方向的正投影的面积。在此情况下,与微结构单元类似,中间层103中的散射粒子只会对一个子像素所产生的光线进行弯折,且,该散射粒子所弯折的光线将会入射到对应的一个微结构单元中。因此,可以使不同的微结构单元接收到类似的入射光线,进而有利于进一步抑制闪点问题。一般来说,为了保持散射粒子的散射能力,散射粒子的尺寸需大于1μm。
需要指出的是,图8所示的中间层103可以直接在现有显示屏100的结构中增设,也可以在显示屏100原有的功能层的基础上实现,也就是说,中间层103在对显示光线进行散射的同时,还可以实现其它功能。
例如,中间层103可以包括光学胶层。示例性的,如图7所示,显示面板101和透射层102之间设置有光学胶层1031,光学胶层1031中包括散射粒子,可以对显示面板101产生的显示光线进行散射。同时,光学胶层1031还可以固定显示面板101和透射层102。采用该实现方式,对显示屏100的结构影响较小,实现简单。
在一种可能的实现方式中,如图7所示,光学胶层1031可以包括第一光学胶层1031-1、第二光学胶层1031-2和第三光学胶层1031-3。其中,第二光学胶层1031-2包括上述散射粒子,第一光学胶层1031-1和第三光学胶层1031-3可以是常规材质的光学胶层。第一光学胶层1031-1设置于第二光学胶层1031-2靠近显示面板101的表面,第三光学胶层1031-3设置于第二光学胶层1031-2靠近透射层102的表面。
采用该实现方式,光学胶层1031为三明治结构,其中,第二光学胶层1031-2可以起到增强散射的功能,第一光学胶层1031-1和第三光学胶层1031-3则可以保持光学胶层1031的原有功能,防止散射粒子影响光学胶层1031的粘合效果。
又例如图11所示,显示屏100可以是触摸屏,在此情况下,中间层103还可以包括触摸层1032,该触摸层1032可以产生触控信号,从而使显示屏100可以实现触控功能。示例性的,触摸层1032中可以包括传感器阵列,可以感应用户在显示屏100表面的操作手势,从而产生触控信号。在本申请实施例中,还可以在触摸层1032中添加散射粒子,使触摸层1032可以对显示光线进行散射。
情况二:中间层位于显示面板101和/或透射层102内部。例如,LCD的显示面板101(图2所示)和OLED的显示面板101(图5所示)中皆包括偏光层,该偏光层中便可以设置散射粒子,作为中间层103。示例性的,可以在偏光层的三醋酸纤维(tri-cellulose acetate,TCA)中增加该散射粒子,以降低对偏光层原有功能的干扰。
需要指出的是,本申请实施例中不仅只有中间层可以设置散射粒子,其它位于显示光线透射路径中的层结构也可以设置散射粒子。例如,盖板1021中也可以增加散射粒子,以抑制显示屏100的闪点问题,具体不再赘述。
在一种可能的实现方式中,显示面板101还可以包括广视角膜层208,该广视角膜层208可以扩大显示光线的视场角,使显示光线的空间分布更加类似于纸面反射光线,从而进一步优化类纸显示效果。同理,也可以在背光模组201中设置扩散片,同样可以扩大显示光线的视场角,优化类纸显示效果。而且,设置扩散片还可以减少显示面板101内部干涉产生的闪点,也有利于进一步优化闪点。
基于相同的技术构思,本申请实施例还提供一种显示屏保护膜,该显示屏保护膜可以通过粘贴、真空吸附等方式贴合在显示屏的出光面。该显示屏保护膜包括粗糙面。该粗糙面可以包括多个微结构单元,其中,每个微结构单元沿厚度方向的正投影位于一个像素区域内,且微结构单元的投影面积小于或等于像素区域的面积,微结构单元是曲面。本申请实施例中,像素区域包括显示屏中一个子像素所在的区域,和位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。
采用本申请实施例所提供的显示屏保护膜,可以使非类纸显示的显示屏可以能够实现类纸显示,同时,还可以抑制闪点。本申请实施例所提供的显示屏保护膜的粗糙面,具有与上述透射层102的第一表面类似的形貌特征,具体不再赘述。
为了进一步抑制闪点,在一种可能的实现方式中,至少有两个微结构单元的正投影位于像素区域的子区域内。其中,子区域可以包括一个子像素所在的区域,以及该子像素与相邻的任一子像素之间间隔的区域。
一般来说,每个微结构单元的高度为[0.5μm,1.5μm]中的任一取值,其中,每个微结构单元的高度是指该微结构单元的峰点与谷底之间的距离,具体来说,微结构单元的峰点是指微结构单元中与显示屏之间距离最大的点,微结构单元的谷底是指微结构单元的中与显示屏之间距离最小的点。例如,上述微结构单元的高度可以是0.5μm、0.8μm、1μm、1.2μm或者1.5μm等任意取值。
进一步的,上述微结构单元的高度还可以为[1.5μm,4μm]中的任一取值,具体来说,每个微结构单元的高度可以是1.5μm,也可以是4μm,还可以是大于1.5μm且小于4μm的任一取值。例如,上述微结构单元的高度可以是1.5μm、1.8μm、2μm、2.5μm、2.7μm、3μm、3.4μm、3.5μm、3.8μm或者4μm等任意取值。
为了提高类纸显示效果,在一种可能的实现方式中,在粗糙面中平行于显示屏的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra为[0.1μm,1μm]中的任一取值,其中算术平均高度Ra表示在沿该任意方向和该厚度方向的纵切面上,任意长度范围内该多个微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,中心线为纵切面中平行于上述任意方向的直线,且,该多个微结构单元的切面轮廓线分别与中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与中心线构 成的多个区域的面积之和相同。
进一步的,上述多个微结构单元的算术平均高度Ra还可以为[0.2μm,0.5μm]中的任一取值。具体来说,算术平均高度Ra可以是0.2μm,也可以是0.5μm,还可以是大于0.2μm且小于0.5μm的任一取值。例如,上述微结构单元的算术平均高度Ra可以是0.2μm、0.25μm、0.3μm、0.34μm、0.4μm或者0.5μm等任意取值。
为了提高类纸显示效果,在一种可能的实现方式中,在粗糙面内微结构单元的密度大于或等于5000/mm 2
为了进一步抑制闪点,在粗糙面中平行于显示屏的任意方向上的任意长度范围内,多个微结构单元的算术平均高度Ra与该多个微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%;其中,算术平均高度Ra的含义不再赘述。轮廓曲线元素的平均长度Rsm表示在沿任意方向和厚度方向的纵切面上,任意长度范围内,该多个微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在中心线上的投影长度的平均值,切面轮廓线的峰点为切面轮廓线中距离显示屏最远的点。
在一种可能的实现方式中,显示屏保护膜为减反膜,从而有利于抑制环境光对显示画面的对比度的干扰,消除漫反射带来的“画面漂白”问题。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种显示屏,其特征在于,包括依次层叠设置的显示面板和透射层;
    所述显示面板,用于产生显示光线;
    所述透射层,用于透射所述显示光线,其中,所述透射层具有远离所述显示面板的第一表面,所述第一表面包括多个微结构单元,每个微结构单元沿厚度方向的正投影位于一个像素区域内,且所述微结构单元的投影面积小于或等于所述像素区域的面积,所述微结构单元是曲面,所述像素区域包括所述显示面板中一个子像素所在的区域,和位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。
  2. 根据权利要求1所述的显示屏,其特征在于,至少有两个所述微结构单元的正投影位于所述像素区域的子区域内,所述子区域包括所述一个子像素所在的区域,和该子像素与相邻的任一子像素之间间隔的区域。
  3. 根据权利要求1所述的显示屏,其特征在于,每个微结构单元的高度为[0.5μm,1.5μm]中的任一取值,其中,每个所述微结构单元的高度是指所述微结构单元的峰点与谷底之间的距离,所述微结构单元的峰点是指所述微结构单元中与所述显示面板之间距离最大的点,所述微结构单元的谷底是指所述微结构单元的中与所述显示面板之间距离最小的点。
  4. 根据权利要求1所述的显示屏,其特征在于,每个微结构单元的高度为[1.5μm,4μm]中的任一取值,其中,每个所述微结构单元的高度是指所述微结构单元的峰点与谷底之间的距离,所述微结构单元的峰点是指所述微结构单元中与所述显示面板之间距离最大的点,所述微结构单元的谷底是指所述微结构单元的中与所述显示面板之间距离最小的点。
  5. 根据权利要求1所述的显示屏,其特征在于,在所述第一表面中平行于所述显示面板的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra为[0.1μm,1μm]中的任一取值,所述算术平均高度Ra表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内该多个所述微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,所述中心线为所述纵切面中平行于所述任意方向的直线,且,该多个所述微结构单元的切面轮廓线分别与所述中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与所述中心线构成的多个区域的面积之和相同。
  6. 根据权利要求5所述的显示屏,其特征在于,在所述第一表面中平行于所述显示面板的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra为[0.2μm,0.5μm]中的任一取值。
  7. 根据权利要求1所述的显示屏,其特征在于,在所述第一表面内,所述微结构单元的密度大于或等于5000/mm 2
  8. 根据权利要求1所述的显示屏,其特征在于,在所述第一表面中平行于所述显示面板的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra与该多个所述微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%;
    其中,所述算术平均高度Ra表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内该多个所述微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,所述中心线为所述纵切面中平行于所述任意方向的直线,且,该多个所述微结构单元的切面轮廓线分别与所述中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与所述中心线构成的多个区域的面积之和相同;
    所述轮廓曲线元素的平均长度Rsm表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内,该多个所述微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在所述中心线上的投影长度的平均值,其中,每个所述切面轮廓线的峰点为所述切面轮廓线中距离所述显示面板最远的点。
  9. 根据权利要求1所述的显示屏,其特征在于,在偏离反射角1°的范围内,所述第一表面的反射光的衰减小于或等于5%。
  10. 根据权利要求1所述的显示屏,其特征在于,在偏离反射角1°的范围内,所述第一表面的反射光的衰减为[5%,10%]中的任一取值。
  11. 根据权利要求1至10中任一项所述的显示屏,其特征在于,所述显示屏还包括中间层,所述中间层位于所述显示面板和所述透射层之间,所述中间层用于对所述显示光线进行散射。
  12. 根据权利要求11所述的显示屏,其特征在于,所述中间层包括光学胶层,所示光学胶层用于粘接所述显示面板和所述透射层。
  13. 根据权利要求12所述的显示屏,其特征在于,所述中间层包括层叠的第一光学胶层、第二光学胶层和第三光学胶层,所述第二光学胶层位于所述第一光学胶层和所述第三光学胶层之间;
    其中,所述第二光学胶层包括所述散射粒子,所述第一光学胶层设置于所述第二光学胶层靠近所述显示面板的表面,所述第三光学胶层设置于所述第二光学胶层靠近所述透射层的表面。
  14. 根据权利要求11所述的显示屏,其特征在于,所述中间层包括触摸层,所述触摸层用于产生触控信号。
  15. 根据权利要求1至10中任一项所述的显示屏,其特征在于,所述显示面板包括中间层,所述中间层靠近所述透射层设置;所述中间层用于对所述显示光线进行散射。
  16. 根据权利要求15所述的显示屏,其特征在于,所述中间层包括所述显示面板的偏光层。
  17. 根据权利要求11至16中任一项所述的显示屏,其特征在于,所述中间层的雾度Haze为[5%,40%]中的任一取值。
  18. 根据权利要求11至16中任一项所述的显示屏,其特征在于,所述中间层的雾度Haze为[40%,95%]中的任一取值。
  19. 根据权利要求11至18中任一项所述的显示屏,其特征在于,所述中间层包括散射粒子,所述散射粒子用于调节所述中间层的雾度。
  20. 根据权利要求11至19中任一项所述的显示屏,其特征在于,所述散射粒子沿所述厚度方向的正投影的面积,不大于所述微结构单元沿所述厚度方向的正投影的面积。
  21. 根据权利要求11至20中任一项所述的显示屏,其特征在于,所述散射粒子的折射率为[1.4,2.5]中的任一取值。
  22. 根据权利要求1至21中任一项所述的显示屏,其特征在于,所述透射层包括盖板,所述盖板远离所述显示面板的表面为所述透射层的第一表面。
  23. 根据权利要求1至22中任一项所述的显示屏,其特征在于,所述透射层包括盖板和镀膜,其中,所述盖板设置于所述显示面板与所述镀膜之间;
    所述镀膜的一个表面与所述盖板固定,所述镀膜的另一个表面为所述透射层的第一表 面。
  24. 一种显示屏保护膜,其特征在于,所述显示屏保护膜包括粗糙面;
    所述粗糙面包括多个微结构单元,每个微结构单元沿厚度方向的正投影位于一个像素区域内,且所述微结构单元的投影面积小于或等于所述像素区域的面积,所述微结构单元是曲面,所述像素区域包括所述显示屏中一个子像素所在的区域,和位于该子像素周围且与该子像素相邻的其他子像素与该子像素之间间隔的区域。
  25. 根据权利要求24所述的显示屏保护膜,其特征在于,至少有两个所述微结构单元的正投影位于所述像素区域的子区域内,所述子区域包括所述一个子像素所在的区域,和该子像素与相邻的任一子像素之间间隔的区域。
  26. 根据权利要求24所述的显示屏保护膜,其特征在于,每个微结构单元的高度为[0.5μm,1.5μm]中的任一取值,其中,每个所述微结构单元的高度是指所述微结构单元的峰点与谷底之间的距离,所述微结构单元的峰点是指所述微结构单元中与所述显示屏之间距离最大的点,所述微结构单元的谷底是指所述微结构单元的中与所述显示屏之间距离最小的点。
  27. 根据权利要求24所述的显示屏保护膜,其特征在于,每个微结构单元的高度为[1.5μm,4μm]中的任一取值,其中,每个所述微结构单元的高度是指所述微结构单元的峰点与谷底之间的距离,所述微结构单元的峰点是指所述微结构单元中与所述显示屏之间距离最大的点,所述微结构单元的谷底是指所述微结构单元的中与所述显示屏之间距离最小的点。
  28. 根据权利要求24所述的显示屏保护膜,其特征在于,在所述粗糙面中平行于所述显示屏的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra为[0.1μm,1μm]中的任一取值,所述算术平均高度Ra表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内该多个所述微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,所述中心线为所述纵切面中平行于所述任意方向的直线,且,该多个所述微结构单元的切面轮廓线分别与所述中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与所述中心线构成的多个区域的面积之和相同。
  29. 根据权利要求28所述的显示屏保护膜,其特征在于,在所述粗糙面中平行于所述显示屏的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra为[0.2μm,0.5μm]中的任一取值。
  30. 根据权利要求24所述的显示屏保护膜,其特征在于,在所述粗糙面内,所述微结构单元的密度大于或等于5000/mm 2
  31. 根据权利要求24所述的显示屏保护膜,其特征在于,在所述粗糙面中平行于所述显示屏的任意方向上的任意长度范围内,多个所述微结构单元的算术平均高度Ra与该多个所述微结构单元的轮廓曲线元素的平均长度Rsm之间的比例Ra/Rsm大于或等于0.5%;
    其中,所述算术平均高度Ra表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内该多个所述微结构单元的切面轮廓线与中心线之间的垂直距离的绝对值的算术平均值,其中,所述中心线为所述纵切面中平行于所述任意方向的直线,且,该多个所述微结构单元的切面轮廓线分别与所述中心线构成的多个区域的面积之和,和每两个相邻微结构单元的切面轮廓线与所述中心线构成的多个区域的面积之和相同;
    所述轮廓曲线元素的平均长度Rsm表示在沿所述任意方向和所述厚度方向的纵切面上,所述任意长度范围内,该多个所述微结构单元的切面轮廓线中,每两个相邻微结构单元的切面轮廓线的峰点之间的连线在所述中心线上的投影长度的平均值,所述切面轮廓线的峰点为所述切面轮廓线中距离所述显示屏最远的点。
  32. 一种电子设备,其特征在于,包括如权利要求1至23中任一项所述的显示屏。
  33. 一种电子设备,其特征在于,包括显示屏和如权利要求24~31任一项所述的显示屏保护膜,其中,所述显示屏保护膜固定在所述显示屏的出光面,且所述显示屏保护膜的粗糙面远离所述显示屏设置。
PCT/CN2021/104357 2020-07-03 2021-07-02 一种显示屏、显示屏保护膜及电子设备 WO2022002268A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022581630A JP2023533706A (ja) 2020-07-03 2021-07-02 表示画面、表示画面保護膜、および電子デバイス
EP21832006.7A EP4177872A4 (en) 2020-07-03 2021-07-02 DISPLAY SCREEN, DISPLAY SCREEN PROTECTION FILM AND ELECTRONIC DEVICE
US18/149,410 US20230244100A1 (en) 2020-07-03 2023-01-03 Display Screen, Display Screen Protective Film and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010635326.7A CN113554942B (zh) 2020-07-03 2020-07-03 一种显示屏、显示屏保护膜及电子设备
CN202010635326.7 2020-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/149,410 Continuation US20230244100A1 (en) 2020-07-03 2023-01-03 Display Screen, Display Screen Protective Film and Electronic Device

Publications (1)

Publication Number Publication Date
WO2022002268A1 true WO2022002268A1 (zh) 2022-01-06

Family

ID=78101612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104357 WO2022002268A1 (zh) 2020-07-03 2021-07-02 一种显示屏、显示屏保护膜及电子设备

Country Status (5)

Country Link
US (1) US20230244100A1 (zh)
EP (1) EP4177872A4 (zh)
JP (1) JP2023533706A (zh)
CN (2) CN115691337A (zh)
WO (1) WO2022002268A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118244532A (zh) * 2022-12-23 2024-06-25 群创光电股份有限公司 电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978292A (zh) * 2008-03-27 2011-02-16 夏普株式会社 光学构件、照明装置、显示装置、电视接收装置以及光学构件的制造方法
CN103982827A (zh) * 2014-05-29 2014-08-13 深圳市华星光电技术有限公司 背光模组以及液晶显示器
KR101525972B1 (ko) * 2015-03-04 2015-06-05 전승윤 안티 글레어 커버 글라스 및 이의 제조 방법
CN106842393A (zh) * 2015-12-07 2017-06-13 惠和株式会社 上用光扩散片和背光单元
CN110082848A (zh) * 2018-01-26 2019-08-02 中华映管股份有限公司 彩色滤光片及包括彩色滤光片的液晶显示装置
CN110824802A (zh) * 2019-10-28 2020-02-21 惠州市华星光电技术有限公司 显示面板及显示装置
CN210376735U (zh) * 2019-08-09 2020-04-21 重庆两江联创电子有限公司 Oled显示模组及触控显示面板
CN112125531A (zh) * 2020-08-03 2020-12-25 广州视源电子科技股份有限公司 玻璃盖板及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282255A (ja) * 2002-03-22 2003-10-03 Seiko Epson Corp 表示装置
JP4776150B2 (ja) * 2002-04-24 2011-09-21 大日本印刷株式会社 防眩性フィルム、偏光素子、および画像表示装置
JP2006162730A (ja) * 2004-12-03 2006-06-22 Seiko Epson Corp 電気光学装置および電子機器
CN100549736C (zh) * 2005-02-21 2009-10-14 大日本印刷株式会社 光学层叠体、使用它的偏振板及图像显示装置
JP5997047B2 (ja) * 2009-06-02 2016-09-28 スリーエム イノベイティブ プロパティズ カンパニー マイクロ構造化表面を有するアンチグレアフィルム
JP2011128357A (ja) * 2009-12-17 2011-06-30 Canon Inc 画像表示装置
JP5354691B2 (ja) * 2010-12-10 2013-11-27 日東電工株式会社 粘着層
US9535280B2 (en) * 2011-05-27 2017-01-03 Corning Incorporated Engineered antiglare surface to reduce display sparkle
US9588263B2 (en) * 2012-08-17 2017-03-07 Corning Incorporated Display element having buried scattering anti-glare layer
KR102330361B1 (ko) * 2012-10-10 2021-11-23 코닝 인코포레이티드 감소된 번쩍임 현상을 제공하는 눈부심 방지층을 갖춘 디스플레이 장치
KR102360089B1 (ko) * 2014-08-05 2022-02-09 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조방법
JP6652696B2 (ja) * 2015-01-14 2020-02-26 セントラル硝子株式会社 表示装置用の防眩性ガラス板物品及びその製法
KR20160111089A (ko) * 2015-03-16 2016-09-26 동우 화인켐 주식회사 편광판 및 이를 포함하는 화상 표시 장치
CN117331157A (zh) * 2015-09-11 2024-01-02 日本电气硝子株式会社 显示器用罩部件及其制造方法
CN105938268A (zh) * 2016-07-05 2016-09-14 武汉华星光电技术有限公司 一种具有抗眩功能的液晶显示面板
WO2018207590A1 (ja) * 2017-05-12 2018-11-15 ソニー株式会社 表示装置
JP7067077B2 (ja) * 2018-01-18 2022-05-16 Agc株式会社 ガラス板及び表示装置
CN108490679A (zh) * 2018-03-28 2018-09-04 京东方科技集团股份有限公司 显示装置及其制造方法
CN108898944A (zh) * 2018-06-29 2018-11-27 联想(北京)有限公司 一种电子设备及其制作方法
DE112019004800T5 (de) * 2018-09-25 2021-06-10 Nippon Electric Glass Co., Ltd. Durchsichtiger gegenstand
US11454748B2 (en) * 2018-11-13 2022-09-27 Europtec USA, Inc. Low sparkle articles and display system stacks
CN209619199U (zh) * 2018-12-18 2019-11-12 欧浦登(顺昌)光学有限公司 一种高清晰度无闪烁蚀刻玻璃及应用其的防闪烁防眩高像素显示屏和太阳能电池组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978292A (zh) * 2008-03-27 2011-02-16 夏普株式会社 光学构件、照明装置、显示装置、电视接收装置以及光学构件的制造方法
CN103982827A (zh) * 2014-05-29 2014-08-13 深圳市华星光电技术有限公司 背光模组以及液晶显示器
KR101525972B1 (ko) * 2015-03-04 2015-06-05 전승윤 안티 글레어 커버 글라스 및 이의 제조 방법
CN106842393A (zh) * 2015-12-07 2017-06-13 惠和株式会社 上用光扩散片和背光单元
CN110082848A (zh) * 2018-01-26 2019-08-02 中华映管股份有限公司 彩色滤光片及包括彩色滤光片的液晶显示装置
CN210376735U (zh) * 2019-08-09 2020-04-21 重庆两江联创电子有限公司 Oled显示模组及触控显示面板
CN110824802A (zh) * 2019-10-28 2020-02-21 惠州市华星光电技术有限公司 显示面板及显示装置
CN112125531A (zh) * 2020-08-03 2020-12-25 广州视源电子科技股份有限公司 玻璃盖板及其制备方法

Also Published As

Publication number Publication date
CN115691337A (zh) 2023-02-03
CN113554942B (zh) 2022-11-18
EP4177872A1 (en) 2023-05-10
CN113554942A (zh) 2021-10-26
EP4177872A4 (en) 2023-07-26
JP2023533706A (ja) 2023-08-04
US20230244100A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US7199930B2 (en) Light modulation element
JP5199830B2 (ja) 表示装置
KR101640718B1 (ko) 액정표시장치용 모듈 및 이를 포함하는 액정표시장치
JP2023524022A (ja) タイル状構成要素を有する表示デバイス
CN111051974A (zh) 具有带有直接照明式背光单元的显示器的电子设备
TWI726251B (zh) 顯示模組
JP5399372B2 (ja) 反射型表示パネル及び斯かる表示パネルを製造する方法
CN110928038A (zh) 一种背光模组、显示装置及液晶电视
JP2023512767A (ja) パターン反射体を含むバックライト
US7321407B2 (en) Reflector and liquid crystal display
US20230244100A1 (en) Display Screen, Display Screen Protective Film and Electronic Device
US7248411B2 (en) Optical film with array of microstructures and the light source apparatus utilizing the same
WO2021239124A1 (zh) 显示面板及其制备方法、显示装置
TW202235980A (zh) 顯示裝置及其背光模組
KR100962165B1 (ko) 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치
CN216210335U (zh) 显示装置
US20220149246A1 (en) Light emitting module and method of manufacturing the same and display apparatus having the same
TWI494619B (zh) 液晶顯示裝置
CN113589583A (zh) 显示装置
TW202206908A (zh) 顯示裝置
CN116990897B (zh) 偏光片及其制备方法、显示面板
US20240205383A1 (en) Viewing angle control member and display device including the same
TWI721635B (zh) 顯示裝置之結構
WO2023231112A1 (zh) 背光模组及移动终端
CN116547571A (zh) 自对准背光反射器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832006

Country of ref document: EP

Effective date: 20230202