WO2022002144A1 - 玻片传送装置、玻片传送方法和样本图像分析仪 - Google Patents

玻片传送装置、玻片传送方法和样本图像分析仪 Download PDF

Info

Publication number
WO2022002144A1
WO2022002144A1 PCT/CN2021/103617 CN2021103617W WO2022002144A1 WO 2022002144 A1 WO2022002144 A1 WO 2022002144A1 CN 2021103617 W CN2021103617 W CN 2021103617W WO 2022002144 A1 WO2022002144 A1 WO 2022002144A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
unloading
platform
detection platform
assembly
Prior art date
Application number
PCT/CN2021/103617
Other languages
English (en)
French (fr)
Inventor
周慕昭
姜斌
李乐昌
王东强
苏晓冬
邓文华
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202180044167.6A priority Critical patent/CN115769080A/zh
Publication of WO2022002144A1 publication Critical patent/WO2022002144A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present invention generally relates to the technical field of medical equipment, and more particularly, to a slide transfer device, a slide transfer method and a sample image analyzer.
  • cell morphology analyzer is an instrument and equipment used to analyze cells on smears such as peripheral blood, pathogens, bone marrow, and body fluids.
  • Microscopic slides with sample coatings (hereinafter referred to as sample smears or glass slides) need to be prepared before reading.
  • Its core module is a microscopic camera system (also referred to as an imaging device later), which captures the cells on the sample smear into color images, and distinguishes the types of cells through an intelligent recognition algorithm.
  • the sample smears can be manually pushed and stained manually, or automatically pushed and stained using instruments.
  • the instrument for preparing sample smears is usually called a pusher stainer, which has the functions of sample collection, sample smearing or pushing, and staining and cleaning, so as to realize the preparation of smears.
  • the reader needs to have a sample smear injection module, which can support manual placement of the tested sample smear (glass) to the reader. ; It can also support the automatic transfer of the tested sample smear to the reader by the pusher.
  • the sampling module supports single-chip mode or multi-chip mode, or both.
  • the sample smear transfers the sample smear of the sample injection module (also called the loading mechanism) to the microscope camera module inside the instrument through the input module to complete the shooting and identification of cell images.
  • the sample smear reading is completed, it needs to be transported to the sample recovery or temporary storage module through the output module (also called the unloading mechanism).
  • the sample input and output module is connected to the sample injection module and the sample recovery module, and the sample transport component transports the sample
  • the specimen accepted by the receiving part is transported to the specimen imaging device, and the photographed specimen received by the specimen imaging device is transported to the specimen storage part.
  • the second solution as shown in FIG.
  • the recovery module is integrated, and the sample is returned to the original path after the reading is completed.
  • the sample injection and sample recovery are on one side and connected by the sample input and output modules, so the running speed of the whole machine will be restricted.
  • the samples that have been read will have residual lens oil, as in the second solution above, the same container or holding device is used for sample recovery and injection, resulting in a lot of lens oil accumulated in the container, which will contaminate the lens during reciprocating use. unread samples.
  • the sample input and output module usually adopts the following two ways to input and output the glass slide.
  • One is to use a robot to grip the glass slide and transport the glass slide to the microscope, and then the microscope detects the sample on the glass slide. After the inspection is completed, the robot puts the slide back, and then picks up another slide for inspection.
  • there is a detection platform under the microscope and the push component pushes the glass slide to be detected to the detection platform for detection. After the slide detection is completed, the push component pushes the slide off the platform. Then load the next sample.
  • the above two methods require the process of placing the glass slide under the microscope before the detection and removing the glass slide from the microscope after the detection is completed before and after the detection of the glass slide.
  • the two processes of loading and unloading are carried out separately, which takes a long time and makes the reading speed of the whole machine low.
  • the present application provides a new slide transfer device, a slide transfer method and a sample image analyzer.
  • the slide transfer device comprising:
  • a detection platform having a slide placement position for receiving a slide, the slide carrying a sample for detection
  • a loading mechanism configured to load the glass slide on the glass slide placement position of the detection platform
  • an unloading mechanism configured to unload the glass slide on the glass slide placement position of the detection platform
  • a controller in communication with the loading mechanism and the unloading mechanism and configured to:
  • the loading mechanism is controlled to load the next glass slide to be tested on the slide placement position along the first direction from the input side of the detection platform.
  • the controller is configured to:
  • the loading mechanism is controlled to load the next glass slide to be tested on the slide placement position.
  • the unloading mechanism has a push assembly capable of pushing the tested slide on the slide placement position along the first direction;
  • the controller is configured to control the unloading mechanism to unload the tested glass slide from the slide placement position to the output side of the detection platform along the first direction.
  • the push assembly pushes the tested glass slide to move away from the slide placement position along the first direction until the push assembly together with the tested slide completely passes through the slide placement position.
  • the unloading mechanism further includes a drive assembly and an avoidance assembly, the drive assembly being configured to drive the push assembly along the first direction and a second direction opposite to the first direction at the location. moving back and forth between the input side and the output side, and the avoidance assembly is configured to cause the push assembly to move in the second direction from the output side toward the input side when the drive assembly drives the push assembly to move from the output side toward the input side.
  • the push component does not collide with the next glass slide to be tested in the slide placement position.
  • the avoidance component is constructed to:
  • the driving component drives the pushing component to drive the tested glass slide on the slide placement position to move from the input side to the output side along the first direction, the pushing component is moved relative to the sliding component.
  • the bottom of the slide placement position has a first height
  • the pushing assembly When the driving assembly drives the pushing assembly to move from the output side toward the input side in the second direction, the pushing assembly is made to have a second height relative to the bottom of the slide placement position, wherein , the second height is at least one glass slide thickness higher than the first height.
  • the avoidance assembly includes a swingable member, wherein,
  • the drive assembly is configured to drive the push assembly and the swingable member to and fro between the input side and the output side in a first direction and a second direction opposite to the first direction;
  • the swingable part includes a swinging block and a rotating shaft, the pushing assembly is fixed on the swinging block, and the swinging block is configured to be able to rotate around the rotating shaft and drive the pushing assembly to move in the first position. switching between a height and the second height;
  • the drive assembly is further configured to: drive the push assembly to move along the first direction to push the glass slide to unload from the inspection position of the inspection platform at the first height, and to drive the push assembly to move along the second When the direction moves from the output side to the input side, it does not collide with the next glass slide to be tested in the slide placement position at the second height.
  • the swingable member further includes a limiting member, the limiting member is configured to: when the swinging block drives the pushing assembly to swing to the first height, the pushing assembly is limited to be maintained at the first height. the first height; and when the swing block drives the push assembly to swing to the second height, the push assembly is limited to be maintained at the second height.
  • the unloading mechanism further includes a lifting member and a returning member
  • the lifter is configured to: allow the swingable member to pass without swinging when the swingable member moves in the first direction; and to collide when the swingable member moves in the second direction
  • the lifting member can push the swing block to swing upward, and drive the push assembly to be lifted from the first height to the second height;
  • the return element is configured to: after the swing block moves through the glass slide placement position along the second direction, the swing block can swing downward, and can drive the push assembly from the first slide.
  • the second height returns to the first height.
  • the avoidance assembly includes: a first track and a second track, the position height of the second track is higher than the position height of the first track; a switching mechanism is configured for unloading the glass slide When guiding the push assembly to switch to the first track to be at the first height, and move along the first track from the input side toward the output side to unload the slide on the slide placement position The tested glass slide, and after the unloading is completed, the pushing assembly is guided to switch to the second track to be at the second height, and along the second track is not lower than the glass slide placement position. A glass slide to be tested collides back to the input side.
  • the switching mechanism includes a transmission member connected to the push assembly, the transmission member configured to move along the first track and the second track to cause the push assembly to move along the push assembly.
  • the first track and the second track move.
  • the avoidance assembly is configured to: when the drive assembly drives the push assembly to drive the tested slide on the slide placement position from the input side toward the first direction When the output side moves, the distance between the push assembly in the horizontal direction and the central axis of the slide placement position along the first direction is the first width;
  • the push assembly When the drive assembly drives the push assembly to move from the output side toward the input side in the second direction, the push assembly is horizontally aligned with the central axis of the slide placement position The distance therebetween is a second width, wherein the second width is greater than the first width by at least half the width of the slide.
  • the slide transfer device further includes a buffer device for buffering the slides to be tested; the loading mechanism is used for loading the glass slides to be tested placed on the buffer device on the detection platform slide placement.
  • the slide transfer device further includes an unloading platform for buffering the tested slides, and the unloading mechanism is configured to: unload the tested slides from the slide placement position of the testing platform to the testing platform. on the uninstall platform described above.
  • the sample includes one of blood, body fluid, bone marrow, tissue, and urinary sediment.
  • sample image analyzer comprising:
  • an imaging device comprising a camera and a lens group for photographing a sample in a glass slide on a slide placement position of the detection platform;
  • a slide moving device for moving the slide placed on the slide placement position relative to the imaging device, so that the imaging device captures an image of a specific area of the slide
  • an image analysis device for analyzing the image
  • the aforementioned slide transfer device is used for loading the glass slide to be tested on the detection platform, and for unloading the slide glass located on the glass slide placement position of the detection platform and photographed by the imaging device.
  • the sample image analyzer further includes: an identification device for identifying the identity information of the slide to be tested; a slide gripping device for gripping the slide to be tested from the slide storage container to The identification device, and the slide placement position for clamping the identified slide to be tested to the detection platform, wherein the slide clamping device is a constituent part of the loading mechanism of the slide transfer device.
  • the sample image analyzer further includes: an identification device for identifying the identity information of the slide to be tested; a slide gripping device for gripping the slide to be tested from the slide storage container to The identifying device, and clamping the identified glass slide to be tested to the buffer device; the loading mechanism of the slide transfer device is used for loading the glass slide to be tested from the buffer device to the glass slide of the detection platform place.
  • the slide gripping device is configured to be able to be turned over so that the slide to be tested in a vertical direction gripped by the slide gripping device is turned over to be in a horizontal direction.
  • Another aspect of the present invention provides a method for transporting glass slides, the method for transporting glass slides includes:
  • the controller controls the loading mechanism to load the first glass slide from the input side of the detection platform to the glass slide placement position of the detection platform along a first direction;
  • the controller controls the imaging device to photograph the first glass slide on the glass slide placement position of the detection platform
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction;
  • the controller controls the loading mechanism to load the second slide from the input side of the detection platform to the slide placement position along the first direction.
  • the controller controls the loading mechanism to load the second slide from the input side of the detection platform to the slide placement position along the first direction, including:
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction
  • the controller controls the The loading mechanism loads the second glass slide from the input side of the detection platform to the slide placement position along the first direction.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including:
  • the controller controls the push assembly of the unloading mechanism to push the first glass slide to move away from the slide placement position along the first direction until the push assembly together with the first slide completely passes through the slide Slide placement.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction
  • the The method also includes:
  • the controller controls the driving assembly of the unloading mechanism to drive the pushing assembly of the unloading mechanism to move from the output side toward the input side in the second direction.
  • the method further includes: during the period when the controller controls the drive assembly to drive the push assembly to move from the output side toward the input side in the second direction, the controller controls The avoidance component of the unloading mechanism prevents the push component from colliding with the second glass slide in the glass slide placement position.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including:
  • the controller controls the drive assembly of the unloading mechanism to drive the push assembly to push the first slide on the slide placement position to move from the input side to the output side along the first direction During the period, the avoidance component enables the push component to have a first height relative to the bottom of the slide placement position;
  • the avoidance assembly causes the push assembly to be placed relative to the slide
  • the bottom of the position has a second height so that the push assembly does not collide with the second slide of the slide placement position, wherein the second height is at least one higher than the first height by the second slide The thickness of the slide.
  • the avoidance component enables the push component to have a second height relative to the bottom of the slide placement position, comprising:
  • the controller controls the drive assembly of the unloading mechanism to drive the swingable part of the avoidance assembly to move in the second direction, it collides with the pushing part of the unloading mechanism, so that the pushing part pushes the swingable part of the swingable part.
  • the swing block swings upward;
  • the limiting member of the swingable member restricts the pushing assembly to maintain the second height
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including:
  • the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism to move along the second track;
  • the first switching member When passing through the first switching member of the switching mechanism, the first switching member guides the pushing assembly to switch to the first track to be at the first height;
  • the controller controls the driving component to drive the pushing component to continue to move toward the output side along the first track to push the first slide on the slide placement position when it touches the first slide. A slide is unloaded to the output side.
  • the controller controls the driving component of the unloading mechanism to drive the pushing component of the unloading mechanism to move from the output side toward the input side along the second direction, including:
  • the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism to move from the output side toward the input side along the first track;
  • the second switching member When passing through the second switching member of the switching mechanism, the second switching member guides the pushing assembly to switch to the second track to be at the second height;
  • the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism to return to the input side along the second track without colliding with the next glass slide to be tested in the slide placement position.
  • the method before the controller controls the loading mechanism to load the first slide from the input side of the detection platform to the slide placement position of the detection platform along a first direction, the method includes:
  • the controller controls the slide gripping device to grip the first slide from the slide storage container to the identification device;
  • the controller controls the identification device to scan the identification code on the first glass slide to identify the identity information of the first glass slide;
  • the controller controls the slide gripping device to grip the identified first slide to a buffer device, so that the loading mechanism removes the first slide placed on the buffer device from the buffer device.
  • the input side of the detection platform is loaded on the slide placement position of the detection platform along the first direction.
  • the controller controls the loading mechanism to load the first slide from the input side of the detection platform to the slide placement position of the detection platform along a first direction, including:
  • the controller controls the slide gripping device of the loading mechanism to grip the first slide from the slide storage container to the identification device;
  • the controller controls the identification device to scan the identification code on the first glass slide to identify the identity information of the first glass slide;
  • the controller controls the slide gripping device to load the identified first slide onto the slide placement position of the detection platform.
  • the unloading of the tested slide and the loading of the test slide are located on different sides, especially on both sides of the detection platform, which is beneficial to The layout of the whole machine improves the convenience of user operation.
  • the glass recovery container and the glass storage container are different containers, so it can avoid the mirror oil caused by recycling to the unread slides. Pollution.
  • the input and output are on different sides, it is convenient to unload the tested slide from the detection platform and simultaneously load the next slide to be tested to the detection platform, that is, to realize the synchronization of input and output.
  • sample image analyzer comprising:
  • a detection platform in which a first conveying channel is provided, the first conveying channel has a first bottom for supporting the glass slide and a first side wall for limiting the position of both sides of the glass slide.
  • the first bottom of the first conveying channel is provided with a slide placement position for receiving glass slides, and the first conveying channel has a first output opening on the output side of the detection platform;
  • an image capturing device for capturing an image of the sample in the glass slide located on the glass slide placement position of the detection platform
  • an image analysis device for analyzing the image captured by the image capturing device
  • a loading mechanism configured to load the slide to be loaded into the slide placement position in the first conveying channel from the input side of the detection platform
  • An unloading mechanism configured to push the slide to be unloaded on the slide placement position of the detection platform to move in the first conveying channel in a horizontal first direction, so as to remove the slide to be unloaded from the glass slide
  • the sheet placement position is unloaded to the output side of the inspection platform through the first output opening.
  • sample image analyzer includes:
  • a detection platform in which a first transmission channel is provided, and the first transmission channel communicates with different input sides and output sides of the detection platform;
  • an image capturing device for capturing an image of the sample in the glass slide at the glass slide placement position of the detection platform
  • an image analysis device for analyzing the image captured by the image capturing device
  • an unloading mechanism configured to unload the tested glass slides on the glass slide placement position of the detection platform to the output side of the detection platform through the first conveying channel;
  • a first support member disposed on the output side of the detection platform and used for carrying a glass slide recovery box, the glass slide recovery box being used for recovering the tested glass slides unloaded by the unloading mechanism;
  • a second support member disposed on the input side of the detection platform and used for carrying a glass slide storage box different from the glass slide recovery box, the glass slide storage box is used to store the glass slides to be tested;
  • the loading mechanism is configured to load the glass slide to be tested into the slide placement position in the first conveying channel from the input side of the detection platform.
  • the sample image analyzer includes a detection platform, an image capturing device, an unloading mechanism, and an unloading platform.
  • the detection platform is provided with a first a conveying channel, a slide placement position is arranged in the first conveying channel, and a second conveying channel is arranged in the unloading platform;
  • the slide transport method includes:
  • the detection platform is placed in a shooting state, and in the shooting state, the detection platform is relatively moved relative to the image capturing device, so that the image capturing device can detect the current glass on the slide placement position. filming;
  • the detection platform After the image capturing device finishes capturing the current slide, the detection platform is placed in a loading and unloading state, and the detection platform moves to the loading and unloading position in the loading and unloading state and stops relative to the slide image capturing device In this loading and unloading position, the first conveying channel of the detection platform is aligned with the second conveying channel of the unloading platform, so that the unloading mechanism displaces the current slide on the slide placement position along the horizontal first slide. One direction is unloaded into the second conveying channel of the unloading platform.
  • Fig. 1 shows a block diagram of a conventional slide transfer device
  • Figure 2 shows a block diagram of another conventional slide transfer device
  • FIG. 3 shows a block diagram of a slide transfer device according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram when slide loading and slide unloading are performed at the same time according to an embodiment of the present application
  • FIG. 5 shows a block diagram of a slide transfer device according to another embodiment of the present application.
  • FIG. 7 shows a schematic perspective view of a loading mechanism according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of vertical placement of a glass slide according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of horizontal placement of a glass slide according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a sample injection mode of the loading mechanism according to an embodiment of the present application
  • Fig. 11 is a schematic diagram showing a sample injection mode of the loading mechanism according to another embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a sample injection mode of the loading mechanism according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram showing a sample injection mode of the loading mechanism according to still another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of unloading the glass slide of the unloading mechanism according to an embodiment of the present application
  • Fig. 15 shows a schematic diagram of an unloading glass slide of an unloading mechanism according to another embodiment of the present application
  • FIG. 16 shows a schematic diagram of unloading the glass slide of the unloading mechanism according to still another embodiment of the present application.
  • FIG. 17 shows a schematic diagram of slide loading and slide unloading performed simultaneously in another embodiment of the present application.
  • FIG. 18 shows a schematic diagram of an unloading mechanism according to an embodiment of the present application.
  • Fig. 19 shows a first partial schematic diagram of an unloading mechanism according to an embodiment of the present application.
  • FIG. 20 shows a second partial schematic diagram of the unloading mechanism according to an embodiment of the present application.
  • FIG. 21 shows a schematic diagram when the swing block is in the upper limit position according to an embodiment of the present application.
  • Fig. 22 shows a schematic diagram when the swing block is in the lower limit position according to an embodiment of the present application
  • FIG. 23 shows a schematic diagram when the wobble block is in a critical state according to an embodiment of the present application.
  • Fig. 24 shows a schematic diagram of the lifting member of the unloading mechanism according to an embodiment of the present application
  • Fig. 25 shows a schematic diagram of the swingable part of the unloading mechanism passing through the lifting member in the first direction according to an embodiment of the present application
  • Fig. 26 shows a schematic diagram when the swingable part of the unloading mechanism according to an embodiment of the present application passes through the lifting member in the second direction;
  • Fig. 27 shows a schematic diagram when the swingable part of the unloading mechanism according to an embodiment of the present application swings downward;
  • FIG. 28 shows a schematic diagram of an unloading mechanism according to an embodiment of the present application.
  • FIG. 29 shows a partial schematic diagram of an unloading mechanism according to an embodiment of the present application.
  • Fig. 30 shows a schematic diagram when the transmission component of an embodiment of the present application moves through the first door panel from the input side toward the output side of the detection platform;
  • Fig. 31 shows a schematic diagram of the transmission component moving through the second door panel along the first track toward the output side according to an embodiment of the present application
  • Figure 32 shows a schematic diagram of the transmission component moving from the output side to the input side of the detection platform through the second door panel according to an embodiment of the present application
  • Figure 33 shows a schematic diagram of the transmission component moving from the output side to the input side of the detection platform through the first door panel according to an embodiment of the present application
  • FIG. 34 shows a relative positional relationship diagram between various mechanisms of the unloading mechanism according to an embodiment of the present application
  • Figure 35 shows a schematic perspective view of the transmission component of an embodiment of the present application when it is in an initial position
  • Figure 36 shows a schematic perspective view of the transmission component of an embodiment of the present application when it is in the unloading initial position
  • Fig. 37 shows a perspective view of the transmission component moving from the input side toward the output side of the detection platform through the first door panel according to an embodiment of the present application
  • Fig. 38 is a schematic diagram showing the motion trajectory on the second track when the transmission component of an embodiment of the present application moves from the output side toward the input side of the detection platform;
  • Fig. 39 shows a perspective view of the transmission component moving from the output side of the detection platform toward the input side through the second door panel according to an embodiment of the present application
  • Fig. 40 shows a schematic perspective view of the transmission component moving through the first door panel from the output side of the detection platform toward the input side according to an embodiment of the present application
  • FIG. 41 shows a partial top view of the slide transfer device when the horizontal direction achieves avoidance according to an embodiment of the present application
  • Figure 42 shows a block diagram of a sample image analyzer of an embodiment of the present application.
  • FIG. 43 shows a flowchart of a slide transfer method according to an embodiment of the present application.
  • FIG. 44 shows a schematic diagram of the appearance of a sample image analyzer according to an embodiment of the present application.
  • Figures 45 and 46 illustrate a sample image analyzer of one embodiment of the present application in schematic perspective views from different viewing angles
  • Figure 47 shows a schematic perspective view of a detection platform of an embodiment of the present application.
  • Figure 48 shows a top view of the detection platform of Figure 47;
  • Figure 49 shows a schematic top view of a sample image analyzer according to an embodiment of the present application.
  • Figure 50 shows a schematic perspective view of an unloading platform according to an embodiment of the present application.
  • Figure 51 shows a schematic perspective view of a loading platform of an embodiment of the present application
  • FIG. 52 shows a schematic diagram of loading a glass slide to be tested according to an embodiment of the present application
  • Fig. 53 shows a schematic diagram of synchronous loading and unloading of the loading mechanism and the unloading mechanism according to an embodiment of the present application
  • Figures 54 and 55 show schematic diagrams of unloading slides through a bridge platform according to an embodiment of the present application
  • Figure 56 shows a schematic perspective view of a bridge platform of an embodiment of the present application.
  • Figures 57 and 58 illustrate a slide recovery device according to an embodiment of the present application in schematic perspective views from different perspectives
  • Figure 59 shows a schematic perspective view of a storage box conveying device according to an embodiment of the present application.
  • Figure 60 shows a schematic perspective view of an input assembly and an output assembly of one embodiment of the present application.
  • Figure 61 shows a schematic perspective view of a clamping assembly of one embodiment of the present application.
  • Figure 62 shows a schematic perspective view of a blocking assembly of one embodiment of the present application.
  • Figure 63 shows a schematic perspective view of a lift assembly of an embodiment of the present application.
  • Figure 64 shows a partial cross-sectional view of an input assembly of one embodiment of the present application.
  • Fig. 65 shows a schematic working flow chart of a storage box conveying device according to an embodiment of the present application
  • the slide transfer device comprises: a detection platform with a slide placement position for receiving a glass slide, the glass slide carrying a sample for detection; a loading mechanism, configured to load the glass slide to the detection on the slide placement position of the platform; an unloading mechanism configured to unload the slides on the slide placement position of the detection platform; a controller, connected in communication with the loading mechanism and the unloading mechanism and configured to: control The unloading mechanism unloads the tested slides from the slide placement position to the output side of the detection platform along a first direction; and controls the loading mechanism from the input side of the detection platform along the first direction Load the next slide to be tested on the slide placement position.
  • the loading mechanism of the slide transfer device of the present application loads the glass slide from the input side of the detection platform to the next glass slide to be tested on the slide placement position of the detection platform, and the unloading mechanism loads the tested glass slide from the glass slide
  • the placement position is unloaded to the output side of the detection platform along the first direction, and the input side and the output side are respectively located on different sides of the detection platform, thereby eliminating the position constraints of the two and facilitating the sample image analyzer ( For example, the rational layout of the whole machine, which uses the imaging device to shoot the blood smear at the position of the glass slide on the detection platform), improves the convenience of the user's operation.
  • the slide storage container is a different container, so it is possible to avoid the contamination of unread slides with mirror oil caused by recycling.
  • the input and output are on different sides, it is convenient to unload the tested slide from the detection platform and simultaneously load the next slide to be tested to the detection platform, that is, to realize the synchronization of input and output.
  • the time required for the front and rear slides to be detected up and down the platform can be shortened, and the efficiency of continuous reading per unit time of the reading machine can be improved.
  • the slide transport device 100 includes a detection platform 103 having a slide placement position for receiving a slide that carries a sample for detection.
  • the slide may be composed of a rectangular plate, such as glass, that smears the sample at a generally central portion.
  • the sample can be any sample that needs to be prepared on a glass slide for microscopic observation.
  • the sample can include one of blood, body fluid, bone marrow, tissue and urine sediment.
  • the glass slides coated with blood, body fluids, and bone marrow can be called pathological smears
  • the glass slides bearing tissues for example, can be called pathological slices.
  • the glass slides can be counting pools/counting plates.
  • the identification information of the sample may be printed on the glass slide.
  • the slide placement position may be a specific plane area of the detection platform, or, the slide placement position may also be a groove set in a specific area of the detection platform (the groove can function as a limit), The slide to be tested can be placed in the groove.
  • the detection platform 103 is disposed below the imaging device, so that the imaging device can photograph the sample at the position where the glass slide is placed on the detection platform.
  • the detection platform 103 can also be moved relative to the imaging device under the driving of the driving device, so that the imaging device can capture an image of a specific area in the sample of the slide.
  • the slide transfer device 100 further includes a loading mechanism 102 , an unloading mechanism 104 and a controller 101 , wherein the loading mechanism 102 is configured to load the slides onto the slide placement positions of the detection platform 103 , that is, it acts as a sample input module to load the glass slide to the slide placement position of the detection platform 103, and the unloading mechanism 104 is configured to unload the slide glass on the slide placement position of the detection platform 103, which is usually
  • the controller 101 is communicatively connected to the loading mechanism 104 and the unloading mechanism 102 and is configured to: control the unloading mechanism 104 to remove the tested slide from the glass for the tested slides that have been photographed by the imaging device.
  • the slide placement position is unloaded to the output side of the detection platform 103 along the first direction; and the loading mechanism 102 is controlled to load the next slide to be tested to the detection platform 103 from the input side of the detection platform 103 along the first direction. position on the slide. Since the input side and the output side are located on different sides of the detection platform respectively, the position constraints of the two can be eliminated, which facilitates the rational layout of the whole machine including the slide transfer device, such as a slide reader, and improves the convenience of user operation. On different sides of input and output, different containers must be used for the slide recovery container and the slide storage container, so it is possible to avoid the contamination of unread slides by mirror oil caused by recycling.
  • the loading mechanism 102 and the unloading mechanism 104 are independent of each other, so they can operate at the same time, so that the loading of the slides to be tested and the unloading of the tested slides are performed at the same time, thereby improving the transport efficiency of the slides.
  • the loading mechanism 102 and the unloading mechanism 104 may have respective drive devices, or may have the same drive device.
  • the controller 102 is configured to: control the loading mechanism 102 to unload the next test slide during the control of the unloading mechanism 104 to unload the tested slide from the slide placement position of the test platform Slides are loaded onto the slide holder. That is to say, as shown in FIG. 4 , when the slide loading and slide unloading are carried out at the same time, the unloading mechanism unloads the tested slides 11 from the slide placement position of the detection platform to the output side, for example, to the output side for temporary storage.
  • the slide transfer device When the slide transfer device is applied to the slide reader, it can shorten the time for the front and rear slides to be detected up and down the platform in the case of continuous reading, and improve the reading time. The efficiency of continuous image reading per unit time.
  • the slide transfer device may include a buffer device or a loading platform for buffering the slides to be tested, and the loading mechanism is used for placing the samples to be tested on the buffer device.
  • the slides are loaded into the slide placement position of the detection platform, or, the slide transfer device may include a slide storage container for accommodating the slides to be tested, such as a slide basket or a slide box, etc.
  • the slide to be tested in the slide storage container is directly loaded into the slide placement position of the detection platform.
  • the slide transfer device may include an unloading platform for buffering the tested slides, and the unloading mechanism is configured to remove the tested slides from the slide placement position of the testing platform. Unloading onto the unloading platform, alternatively, the slide transfer device may include a slide retrieval container, such as a slide basket or a slide cassette, etc., the unloading mechanism is configured to remove the tested slides from the glass of the detection platform. The slide placement position is unloaded directly into the slide recovery container.
  • the sample output and input are located on different sides of the detection platform, and the test slide and the tested slide can be placed in different containers, so the contamination of the test slide can be avoided .
  • the slide transfer device includes a detection platform 1, an unloading platform 2, a loading mechanism 4, an unloading mechanism 3, and a loading platform 6, wherein the buffer device of the loading platform 6 is used to buffer the to-be-tested
  • the slides to be tested are placed on the loading platform in advance for waiting, and the loading mechanism 4 is used to load the slides to be tested placed on the buffer device to the slide placement position of the testing platform 1 to pass
  • the imaging device shoots and detects the samples in the glass slide
  • the unloading platform 2 is used for buffering the tested slides
  • the unloading mechanism 3 is configured to unload the tested glass slides from the slide placement position of the detection platform to the unloading platform.
  • the unloading mechanism 3 unloads the tested slides on the glass slide placement position of the detection platform to the unloading platform 2.
  • the loading mechanism 4 Load the next slide to be tested on the loading platform 6 to the slide placement position of the detection platform 1, and the loading mechanism 4 and the unloading mechanism 3 act synchronously to realize the synchronous unloading and loading of the tested slide and the next slide to be tested. Improve reading speed.
  • the loading mechanism 4 includes a sample introduction assembly, such as a push claw 5 and a first drive assembly 41 , and the sample introduction assembly is configured to be placed in a buffer device or a slide storage container
  • the glass slides to be tested in the test are loaded onto the detection platform, and the first drive assembly 41 of the loading mechanism is used to drive the sample introduction assembly, such as the push claw 5, to reciprocate in the first direction and the second direction opposite to the first direction, so as to drive the glass slides.
  • the slides are sent to the slide placement position of the detection platform, for example, the slides are sent from the loading platform 6 on the input side to the slide placement position of the detection platform in the first direction, and after the slides are loaded, they are returned to the second direction. Load the initial position and wait for the next slide to be tested.
  • the first drive assembly 41 may include a motor and a timing belt. When the motor drives the timing belt to move, the timing belt drives the push claw 5 to move.
  • the sample introduction assembly of the loading mechanism 4 can also be implemented by other types of devices for moving the glass slide.
  • the sample introduction component can also be a manipulator, a claw, a push plate, etc., preferably for pushing the glass slide to move horizontally. part.
  • the unloading mechanism 3 has a pushing component, such as a claw 7 , which can push the tested slides on the slide placement position of the detection platform 1 along the first direction, and the unloading mechanism 3 is driven by the second
  • the component driving and pushing component pushes the tested glass slides along the first direction to unload to the unloading platform, and the path between the detection platform and the unloading platform can be an output path along the first direction.
  • the push assembly of the unloading mechanism 3 can also be implemented by other types of devices for moving the slides, for example, the push assembly can also be a manipulator, a push claw, a push plate, etc., preferably a component that pushes the slides to move horizontally.
  • the detection platform 1 is provided with a first conveying channel 110 , the slide placement position is set in the first conveying channel 110 , and the first conveying channel 110 has a first conveying channel 110 oppositely arranged. Input opening 111 and first output opening 112 .
  • the first transfer channel 110 extends linearly and parallel to the first direction X1 and penetrates the input side and the output side of the detection platform.
  • the bottom of the detection platform 1 is configured as a holder for supporting the slides
  • the first conveying channel 110 is configured as a first groove opened in the holder.
  • the first conveying channel 110 may also be defined by two side walls extending upward from the bottom.
  • the slides can be moved, for example, horizontally in the first transport channel.
  • the loading mechanism 4 is configured to push the glass slide 12 to be tested from the input side of the detection platform 1 into the first conveying channel 110 along the first direction X1 through the first input opening 111 until the glass slide 12 to be tested reaches the glass slide 12 .
  • the slide placement position that is, until the glass slide 12 to be tested completely occupies the slide placement position.
  • the unloading mechanism 3 is configured to push the tested glass slide 11 to move along the first direction X1 in the first conveying channel 110 , so as to unload the tested glass slide 11 from the slide placement position to the detection platform through the first output opening 112 . output side.
  • a second conveying channel 201 is provided in the unloading platform 2 disposed on the output side of the detection platform 1 , and the second conveying channel is configured to buffer the tested slides 11 .
  • the second transfer channel 201 has a second input opening 202 .
  • the detection platform 1 and the unloading platform 2 are configured to cooperate when unloading the tested slides 11 , so that the first output opening 112 of the first conveying channel 110 and the second input opening 202 of the second conveying channel 201 are opposite to each other. so that the unloading mechanism 3 can push the tested glass slide 11 along the first direction X from the slide placement position into the second conveying channel 201 through the first output opening 112 and the second input opening 202 .
  • the first conveying channel 110 of the detection platform 1 and the second conveying channel 201 of the unloading platform 2 can be aligned with each other, for example, aligned coaxially with each other and aligned in height
  • the unloading mechanism 3 can push the tested glass slide 11 along the first direction X to move in the channel formed by the first transfer channel 110 and the second transfer channel 201 .
  • the second transfer channel 201 extends linearly.
  • the bottom of the unloading platform 2 is also configured as a holder for supporting glass slides
  • the second conveying channel 201 is configured as a second groove opened in the holder.
  • the second transfer channel 201 may also be defined by two side walls extending upward from the bottom.
  • the second transfer channel 201 may also have a second output opening 203 opposite the second input opening 202 so that the slides in the second transfer channel 201 can be unloaded.
  • a third transport channel 610 is provided in the loading platform 6 disposed on the input side of the detection platform 1 , the third transport channel is configured to buffer the slides 12 to be tested and There is a third output opening 611 .
  • the detection platform 1 and the loading platform 6 are configured to cooperate with each other when loading the glass slide 12 to be tested, so that the first input opening 111 of the first conveying channel 110 and the third output opening 611 of the third conveying channel 610 are paired with each other.
  • the loading mechanism 4 can push the slides 12 to be tested buffered in the third conveying channel 610 into the first conveying channel 110 through the third output opening 611 and the first input opening 111 along the first direction X1, until the The test slide 12 reaches the slide placement position. That is to say, when loading the glass slide 12 to be tested, the first transfer channel 110 of the detection platform 1 and the third transfer channel 610 of the loading platform 6 can be aligned with each other, for example, aligned coaxially with each other and aligned in height, The loading mechanism 4 can push the glass slide 12 to be tested in the channel formed by the first transport channel 110 and the third transport channel 610 along the first direction X to move.
  • the detection platform 1 , the unloading platform 2 and the loading platform 6 are configured to cooperate when unloading the tested slides and loading the tested slides, so that the first conveying channel 110 , the second conveying channel 201 It is simultaneously aligned with the third transfer channel 610 to form a general transfer channel, so that the unloading mechanism 3 and the loading mechanism 4 can simultaneously push the tested glass slide 11 and the test glass slide 12 to move in the general transfer channel along the first direction X1.
  • controller is configured to control the loading mechanism 4 and the unloading mechanism 3 in such a way that the slides 12 to be tested and the tested slides 11 are simultaneously located in the first transport channel 110 for part of the time when they are loaded and when they are unloaded. , as shown in Figure 4.
  • both the unloading mechanism and the loading mechanism can be arranged on the upstream side of the detection platform relative to the position where the slides are placed, making full use of the upstream space, Reducing the occupation of the already crowded downstream space of the detection platform is conducive to reducing the overall size of the sample image analyzer.
  • the glass slides can generally be placed vertically as shown in FIG. 8 and horizontally as shown in FIG. 9 .
  • the slide holding containers such as the slide storage container of the slide to be tested and the slide recovery container of the tested slides
  • the sample feeding method of the loading mechanism 3 and the slide output method of the unloading mechanism 3 are also different.
  • the loading mechanism in the embodiment of the present invention may have various sample injection modes (that is, loading modes), including but not limited to the modes listed below.
  • loading modes that is, loading modes
  • the loading mechanism sample feeding assembly is, for example, a manipulator configured to pick up a slide to be tested and move upward to clamp the slide to be tested from the slide storage container, and
  • the structure is used to flip the manipulator through the flipping mechanism after the slide to be tested completely leaves the slide storage container, so that the side of the slide to be tested held by the manipulator that is smeared with the sample faces up, and then the flipped glass to be tested is turned over.
  • the slides are placed on the slide input module (such as a loading platform), and the loading mechanism loads the slides to be tested placed on the slide input module on the detection platform.
  • the slide input module may not be provided, and the manipulator grips a glass slide to be tested and moves upward to clamp the slide to be tested from the slide storage container, and is configured to be used as the glass slide to be tested. After the slide completely leaves the slide storage container, the manipulator is turned over by the turning mechanism, so that the glass slide to be tested held by the manipulator is facing up with the sample coated side, and then the flipped slide to be tested is directly placed on the detection platform.
  • the slides to be tested in the slide storage container containing the slides to be tested are placed horizontally.
  • the slides are pushed to the slide input module (such as a loading platform), and the loading mechanism loads the test slides placed on the slide input module to the detection platform.
  • the slide input module may not be provided, and the sample feeding component of the loading mechanism is, for example, a push claw to directly push the slide to be tested to the detection platform.
  • the unloading mechanism of the embodiment of the present invention may have various ways of unloading the slides, including but not limited to the following ways.
  • the tested slides need to be placed vertically on the slides for recovery.
  • the manipulator of the unloading device clamps the tested slides unloaded to the slide output module (such as the unloading platform), and turns the manipulator through the flipping mechanism to adjust the tested slides clamped to be vertical.
  • the straight tested slides are placed in the slide recovery container, wherein the tested slides placed in the slide output module can be clamped by a robot from the slide placement position of the detection platform to the slide output module, or, also It may be pushed to the slide output module by a push assembly such as a finger of the unloading mechanism.
  • the receptacle of a slide retrieval/storage module for holding tested slides extends horizontally so that it can only receive horizontal tested slides, the container The slides to be tested are placed horizontally, as shown in Figure 15.
  • the pushing components of the unloading mechanism such as the claws, push the tested slides to the slide output module, and then push the tested slides to the slide recovery/temporary slide.
  • the push component of the unloading mechanism such as a claw, directly pushes the tested slides to the slide recovery/temporary storage module.
  • the unloading mechanism has a push assembly capable of pushing the tested slide on the slide placement position along the first direction; wherein the controller is configured to control the unloading mechanism to When the tested glass slide is unloaded from the glass slide placement position to the output side of the detection platform along the first direction, the push component that controls the unloading mechanism pushes the tested glass slide to move away from the tested glass slide along the first direction.
  • the slide placement position until the push assembly and the tested glass slide completely pass through the slide placement position (or pass over the slide placement position), as shown in FIG.
  • the unloading mechanism of the embodiment of the present invention further includes a driving assembly configured to drive the pushing assembly along the first direction and a second direction opposite to the first direction on the detection platform. It moves back and forth between the input side and the output side of the inspection platform.
  • the unloading mechanism of the embodiment of the present invention further includes an avoidance component, and the avoidance component is configured to go from the output side to the input side when the drive component drives the push component along the second direction.
  • the push assembly When moving, the push assembly does not collide with the next glass to be tested at the slide placement position.
  • the push assembly passes through the slide placement position of the detection platform in the second direction, it can pass through the imaging device such as a lens above the detection platform. It can pass under the glass slide placement position, so as not to collide with the next test glass in the slide placement position, or it can pass from the outside of the next test slide in the slide placement position, so as not to collide with the next test slide in the slide placement position.
  • the slide to be tested collides.
  • the next slide to be tested can be transported to the slide for placement after the push component unloads the read slide and returns to the input side of the detection platform. bit, so you can also not set the avoidance component.
  • the avoidance assembly is configured to: when the drive assembly drives the push assembly to drive the tested glass slide on the slide placement position along the first direction from the input side of the detection platform toward the detection When the output side of the platform moves, the pushing assembly is made to have a first height relative to the bottom of the slide placement position, and when the driving assembly drives the pushing assembly along the second direction from the output side toward the destination.
  • the pushing component When the input side moves, the pushing component is made to have a second height relative to the bottom of the slide placement position, wherein the second height is at least one glass slide thickness higher than the first height, so as to achieve the Avoid the slide to be tested on the slide placement position of the detection platform in the height direction, wherein the slide placement position can be a specific plane area of the detection platform, and the first height and the second height
  • the slide placement position can be a specific plane area of the detection platform, and the first height and the second height
  • the distance from the upper surface of the detection platform, or, the slide placement position can also be a groove set in a specific area of the detection platform (the groove can serve as a limit), and the glass to be tested can be placed in the groove , then the first height and the second height may be the distances from the pushing component of the claw to the bottom surface of the groove, for example.
  • the unloading mechanism 20 includes an avoidance assembly, a drive assembly and a push assembly 23, wherein the avoidance assembly may include a swingable member 22, and the drive assembly is configured to drive the swingable member 22 and the pusher assembly
  • the assembly 23 moves in a first direction and a second direction opposite to the first direction
  • the pushing assembly 23 is configured to push the slides on the slide placement position of the detection platform along the first direction
  • the The glass slide carries a sample for detection
  • the sample can be any sample that needs to be prepared on the glass slide for microscopic observation.
  • the sample can include one or more of blood, bone marrow, tissue and urine sediment.
  • the pushing component 23 can be any component that can push the slide to move.
  • the pushing component 23 can include a claw, a manipulator, and the like.
  • the swingable member 22 may include a swinging block 221 and a rotating shaft 222 on which the pushing assembly 23 is fixed, and the swinging block 221 is configured to be able to rotate around the swinging block 221 .
  • the shaft 222 rotates and drives the push assembly 23 to switch between a first height and a second height higher than the first height, wherein the second height is at least one glass slide thickness higher than the first height , when the push assembly moves in the second direction through the glass slide placement position of the detection platform after the unloading is completed, the push assembly is at the second height, so it will not collide with the glass slide in the detection platform slide placement position, It can smoothly return to the input side and wait for the next slide to be downloaded.
  • the first height and the second height both refer to the height of the push assembly relative to the bottom of the slide placement position of the detection platform, for example, the center of gravity of the push assembly is relatively The height of the bottom of the slide placement position on the detection platform.
  • the push assembly 23 can be fixedly connected to the swing block 221 in any suitable manner, for example, it can be connected to the swing block by screwing, welding, etc., or the swing block 221 can also be integrally formed with the push assembly 23 .
  • the slide placement position can be a specific plane area of the detection platform, the height of the push assembly relative to the bottom of the slide placement position of the detection platform, that is, the height relative to the specific plane area, or the slide placement
  • the position can also be a groove provided in a specific area of the detection platform, and the height of the push assembly relative to the bottom of the slide placement position of the detection platform, that is, the height relative to the bottom of the groove.
  • the unloading mechanism 20 includes a fixing member 21 and a guide rail 24 , and the swing block 221 is mounted on the fixing member 21 through a rotating shaft 222 , optionally, the axis of the rotating shaft 222 It is located in the horizontal plane and is perpendicular to the extending direction of the guide rail 24 .
  • the fixing member 21 is movably installed on the guide rail 24.
  • the guide rail 24 can be a linear guide rail, and the guide rail 24 is provided with a slider.
  • the fixing member 21 is installed on the slider of the guide rail 24, and is driven by the driving component.
  • the fixed member 21 can move back and forth linearly along the guide rail 24 , and further, the swingable components installed on the fixed member 21 can also move back and forth linearly along the guide rail 24 along with the fixed member 21 .
  • the fixing member 21 can be a fixing plate or a fixing block, the bottom of the fixing member 21 can be installed on the slider of the guide rail 24, and the shape of the fixing member 21 can be reasonably set according to the actual device requirements.
  • the driving component can be any driving device capable of driving the swingable member 22 and the pushing component 23 to move in a first direction and a second direction opposite to the first direction.
  • driving The assembly includes a motor 26 and a timing belt 25, the fixing member 21 is connected to the timing belt 25, the motor 26 drives the timing belt 25 to move along the first direction and the second direction, the timing belt 25 Driving the fixing member 21 drives the swingable member 22 and the pushing assembly 23 to move along the first direction and the second direction on the guide rail 24 .
  • the driving assembly is further configured to: when the pushing assembly 23 is driven to move in the first direction, the glass slide is pushed from the input side of the detection platform at the first height to be unloaded from the slide placement position of the detection platform to the output side of the detection platform, and when the pushing assembly is driven to move from the output side toward the input side in the second direction, at the second height, it is not in position with the slide to be placed.
  • Test slide collision in this paper, the output side and the input side of the detection platform are located on opposite sides of the detection platform, so when the drive assembly drives the push assembly to move from the output side to the input side in the second direction, it will pass the detection platform.
  • the push assembly passes through the slide placement position of the detection platform, since the swing block drives the push assembly to swing to the second height, the push assembly is not in contact with the slide placement position at the second height.
  • the slide to be tested collides, therefore, it can smoothly pass through the slide placement position of the detection platform and return to the input side, so as to unload the next slide.
  • the pushing assembly 23 when the swing block 221 swings to the upper limit position through the rotating shaft 222 , the pushing assembly 23 is driven to lift to the second height, and when the swing block 221 swings to the lower limit position through the rotating shaft 222 , The pushing assembly 23 is driven back to the first height.
  • the swingable member 22 further includes a limiting member 28 , and the limiting member 28 is configured to drive the pushing assembly 23 to swing to the first swinging block 221 on the swinging block 221 .
  • the pushing assembly 23 is limited to be maintained at the first height, as shown in FIG.
  • the limiting member 28 includes an elastic member, wherein the swingable member 22 further includes a first fixing pin 271 and a second fixing pin 272 , wherein the elastic member, such as One end of the tension spring is connected to the first fixing pin 271 , the first fixing pin 271 is fixedly mounted on the fixing member 21 , the other end of the elastic member is connected to the second fixing pin 272 , and the second fixing pin 272 Installed on the swing block 221 .
  • the first fixing pin 271 is located above the second fixing pin 272 , for example, the height of the second fixing pin 272 relative to the bottom end of the swing block 221 is higher than that of the first fixing pin 271 relative to the swing block 221 the height of the bottom end.
  • the elastic member includes an extension spring
  • the extension spring is further configured to: when the swing block drives the push assembly 23 to swing to a third height, the axis of the extension spring (such as The dotted line in Figure 23) intersects with the axis of the rotating shaft, and the swing block is in a critical state.
  • the axis of the tension spring and the rotation axis of the swing block are in the same plane, and the axis of the tension spring is in the same plane. It intersects with the axis of the rotating shaft, so that the torque generated by the tension spring is just zero, which is at the theoretical dead center (that is, the critical state). It is stabilized at the upper limit position, so that the push assembly is stabilized at the second height, and when the swing block swings down over the critical state, it will be stabilized at the lower limit position, so that the push assembly is stabilized at the first height.
  • the third height is between the first height and the second height, and when the swing block 221 drives the push assembly 23 to swing to the third height, the rotation shaft 222 is located at the Between the first fixing pin 271 and the second fixing pin 272 , that is, the axis of the rotating shaft intersects the line connecting the first fixing pin 271 and the second fixing pin 272 .
  • the function of the limiting member may also be implemented by a magnetic component
  • the limiting member may include a first magnetic component (not shown), such as a magnet, and the first magnetic component is used to make the swinging The block drives the push assembly to swing to the first height and limits the push assembly to maintain the first height; further, the limiting member may further include a second magnetic member, such as a magnet, the second magnetic The component is used for the swing block to drive the shift claw to swing to the second height position and to limit the shift claw to maintain the second height position, wherein the limiting component may only include a first magnetic component and one of the second magnetic components, for example, the limiting component may also include only the second magnetic component but not the first magnetic component, and the swing block swings to the lower limit position by its own gravity.
  • the first magnetic component when the swing block starts to swing from the upper limit position to the lower limit position, the first magnetic component is arranged adjacent to the lower limit position, for example, arranged on the bottom plate of the unloading mechanism adjacent to the swing block, when the swing block swings to a critical state, Through the magnetic attraction of the first magnetic component to the swing block, the swing block can swing to the lower limit position to drive the push assembly to swing to the first height and limit the push assembly to maintain the first height.
  • the second magnetic member when the swing block starts to swing from the lower limit position to the upper limit position, the second magnetic member is arranged adjacent to the upper limit position, and when the swing block swings to a critical state, the second magnetic member will attract the swing block through the magnetic force, so that the swing block is oscillated.
  • the block can continue to swing to the upper limit position to drive the push assembly to swing to the second height and limit the push assembly to maintain the second height.
  • the unloading mechanism 20 further includes a lifting member, and the lifting member is configured to: when the swingable member moves in the first direction, the swingable member, especially the swinging block, can pass through without swinging, or, when the swingable member moves in the first direction
  • the swinging amplitude of the swingable component such as the swinging block is smaller than the threshold amplitude, which ensures that the lifting amplitude of the pushing assembly is smaller than the thickness of one glass slide, so that the pushing assembly can still push the glass slide to unload to the output side.
  • the lifting member is further configured to: when the swingable member moves in the second direction and collides with the lifting member, the swing block can be pushed to swing upward, and the pushing assembly is driven from the lifting member.
  • the first height is raised to the second height, so that when the push assembly moves from the output side to the input side, it can avoid collision with the glass slide to be tested on the glass slide placement position of the detection platform.
  • the lifting member can be any structure that can realize the above functions.
  • the lifting member includes a one-way stopper 29 , and the fixed end of the one-way stopper 29 is installed on the unloading device through the rotating shaft 292 .
  • the free end of the one-way stopper 29 rests on the bottom plate 211 .
  • the one-way block 29 has a protrusion 291 protruding upward, and the one-way block 29 is configured to: as shown in FIG. 25 , when the swing block 221 passes through the protrusion in the first direction 291, push the one-way stopper 29 to rotate around the rotating shaft 292, for example, rotate a certain angle clockwise.
  • the second fixing pin 272 fixed on the swinging block 221 collides with the protrusion 291 to push the one-way stopper 29 rotates around the rotating shaft 292, so that the free end of the one-way stopper 29 is lifted up and away from the bottom plate, and the position of the protruding part 291 is lowered, so that the second fixing pin passes through, and the push assembly 23 continues to unload the glass slide .
  • the bottom plate 211 of the unloading mechanism 20 mainly plays a supporting role, for example, guide rails, fixing parts, swingable parts and pushing components can be located above it, while components such as motors can be fixed below the bottom plate.
  • the free end of the one-way stopper 29 has a lateral protrusion 293, and the free end of the one-way stopper 29 rests on the bottom plate 211 through the lateral protrusion.
  • the block is integrally formed, or the transverse projection is fixed to the free end by, for example, welding or screwing.
  • the lifting member of the one-way stop 29 can be reset by its own gravity, for example, the center of gravity of the one-way stop can be designed to make After the swing block passes and swings up, it can be reset by its own gravity within the range of its rotation angle, or it can also be automatically reset by a reset member such as a torsion spring or a tension spring, so as to play a one-way blocking role.
  • a reset member such as a torsion spring or a tension spring
  • a limiting member 210 is further provided on the side of the swing block 221 opposite to the pushing assembly 23 , the limiting member 210 is fixed on the fixing member 21 , and the limiting member 210 can be It is fixed on the fixing member 21 by, for example, welding or screwing, or can be integrally formed with the fixing member 21.
  • the limiting member 210 is used to limit the swing when the second fixing pin 272 on the swing block collides with the protruding portion 291.
  • the swing direction of the block is such that it does not swing, or the swing amplitude of the swingable parts such as the swing block is smaller than the threshold amplitude, so as to ensure that the lifting amplitude of the push assembly is less than the thickness of one glass slide, so that the push assembly can still push the slide to unload to the glass slide. output side.
  • the swing block when the swingable member moves along the second direction through the protrusion 291 of the one-way block 29 , the swing block can be pushed to swing upward, specifically, when the swingable member moves through the protrusion 291 of the one-way block 29 in the second direction, the second fixing pin 272 fixed on the swing block collides with the protrusion 291, because the one-way block 29 is free The end is blocked by the bottom plate below it, so that the one-way block 29 will not rotate around the rotating shaft 292, so the protruding part 291 pushes the second fixing pin 272 upward, so as to push the swing block to swing upward.
  • the swing block When the block swings to a critical state, due to the action of the limiting member such as the tension spring or the second magnetic member, the swing block can continue to swing upward to the upper limit position, thereby driving the push assembly to swing to the second height and maintain it at the second height .
  • the axis of the rotating shaft 292 is perpendicular to the first direction and parallel to the bottom plate of the unloading mechanism.
  • the unloading mechanism 20 further includes a return member 212 , and the return member 212 is configured to: when the swing block 221 moves along the second direction and passes through the slide placement After the position is in place, the swing block 221 can be swung downward and the push assembly 23 can be switched from the second height to the first height, so that the push assembly can be used for unloading the next slide.
  • the return member 212 includes a blocking plate, and the blocking plate is configured to: when the rocking block 221 moves to the blocking plate in the second direction, the upper part of the rocking block 221 is struck to cause the The swinging block swings downward, so that the swinging block crosses the critical state downward and swings to the lower limit position, as shown in FIG. 22, thereby driving the push assembly 23 to return to the first height, so that the push assembly can be used for the next Unloading of slides.
  • the unloading mechanism 20 does not need to add additional power, and it executes the push assembly during the unloading process (ie, moving in the first direction) and the return stroke (ie, returning from the output side to the input side in the second direction) through, for example, the swing of the swingable member.
  • the spatial position change of the test platform so as to avoid the glass to be tested in the position of the glass slide of the detection platform during the return trip, to ensure the smooth detection of the glass to be tested, and to facilitate the parallel action of the unloading mechanism and other mechanisms (such as loading devices), Save process time.
  • the unloading mechanism can also be implemented as the structure of the unloading mechanism 30 shown in FIGS. 28 to 40 .
  • the unloading mechanism 30 of the present application includes a push assembly 31 for unloading the glass slide on the glass slide placement position of the detection platform, wherein the glass slide carries the sample for detection, and the
  • the sample can be any sample that needs to be prepared on a glass slide for microscope observation, for example, the sample can include one or more of blood, bone marrow, tissue and urine sediment.
  • the pushing component 31 may be any component capable of pushing the slide to move, for example, the pushing component 31 may include a claw, a manipulator, and the like.
  • the detection platform has an input side and an output side arranged oppositely, wherein the push component unloads the glass slide on the glass slide placement position of the detection platform, that is, the push component pushes the glass slide on the glass slide placement position of the detection platform from the input side of the detection platform.
  • the slides leave the slide placement position and are unloaded to the output side of the detection platform. After unloading, the push assembly needs to return from the output side to the input side to wait for the next slide to be unloaded.
  • the unloading mechanism 30 includes an avoidance assembly, and the avoidance assembly includes a track mechanism, and the track mechanism may include a first track 381 and a second track 382 , wherein the position of the second track 382 The height is higher than the position height of the first rail 381 , that is, the height of the bottom of the second rail 382 relative to the glass slide placement position of the detection platform is higher than that of the first rail 381 relative to the glass slide placement position the height of the bottom.
  • the slide placement position may be a specific plane area of the detection platform, and the heights of the first track 381 and the second track 382 relative to the bottom of the slide placement position of the detection platform, that is, the height relative to the specific plane area , or, the slide placement position can also be a groove set in a specific area of the detection platform, the height of the first track 381 and the second track 382 relative to the bottom of the slide placement position of the detection platform, that is, relative to the bottom of the groove the height of.
  • the avoidance assembly further includes a switching mechanism, and the switching mechanism is configured to guide the pushing assembly to switch to the first track when the slide is unloaded, so that the pushing assembly has a position relative to the bottom of the slide placement position. a first height and move along the first track from the input side of the detection platform toward the output side of the detection platform to unload the slide on the slide placement position, and guide the slide after unloading is completed
  • the push assembly is switched to the second track and has a second height relative to the bottom of the slide placement position, and returns to the output side from the output side without colliding with the next glass slide to be tested in the slide placement position
  • the spatial position change of the push component is performed during the unloading process (that is, moving from the input side of the detection platform to the output side) and the return process (that is, returning from the output side to the input side), so that the push component is in the unloading process.
  • the first height is to unload the glass slide on the glass slide placement position, and the push assembly is at the second height during the return trip, so as to avoid the glass slide to be tested on the glass slide placement position of the detection platform during the return trip, to ensure that the test glass is to be tested.
  • the detection of the sheet is carried out smoothly, and since the detection platform does not need to be avoided during the return process, it is beneficial to realize the parallel action of the unloading mechanism and other mechanisms (eg, the loading mechanism), saving process time.
  • the height difference between the first height and the second height depends on the height difference between the first track and the second track, optionally, the second height is higher than the first height by at least one glass slide thickness, With this arrangement, it can be ensured that when the push assembly is at the second height, it can be positioned above the glass slide where the glass slide is placed, without colliding with the glass slide.
  • the switching mechanism may include a transmission member 36 connected to the push assembly 31 , and the transmission member 36 may be a roller, or Other components that can move along the first track 381 and the second track 382, the transmission component 36 is configured to be able to move along the first track 381 and the second track 382, so that the push assembly 31 can move along the The first rail 381 and the second rail 382 move, so that the push assembly 31 is at a first height when moving along the first rail to unload the slides on the slide placement position, and the push assembly 31 moves along the second track at the second height so as to avoid the slide to be tested on the slide placement position when returning to the input side.
  • it also includes: an up-down moving member for lifting the transmission part 36 and the pushing assembly 31 up and down.
  • an up-down moving member for lifting the transmission part 36 and the pushing assembly 31 up and down. For example, when the transmission part is switched from the first track to the second track, the up-down moving member lifts the The transmission part 36 and the push assembly 31 , and when the transmission part 36 is switched from the second track to the first track, the up-and-down moving member lowers the transmission part 36 and the push assembly 31 .
  • the up-and-down moving member can be any structure capable of lifting the transmission part 36 and the pushing assembly 31 up and down. Installed on the floating part 33, the transmission part 36 is installed on the floating part 33, the floating part 33 is driven by the up and down moving part 35 to move up and down, so as to drive the push assembly 31 and the The transmission member 36 moves up and down.
  • the unloading mechanism 30 further includes a fixed part 34 and a guide rail 37 , and the fixed part 34 is movably connected with the guide rail 37 .
  • the unloading mechanism 30 further includes a drive assembly (not shown), which can be used to drive the fixed part 34 to reciprocate along the guide rail 37, wherein the guide rail 37 can be located below the first rail 381, and the guide rail 37 can It is parallel to the first guide rail 381 , and the first guide rail 381 and the second guide rail 382 are parallel.
  • the driving assembly may be a motor, or may further include a synchronous belt, and the synchronous belt connects the fixed part and the motor, so that the driving assembly can drive the fixed part to move through the synchronous belt.
  • the up-and-down moving member further includes a guide part 32 , the guide part 32 is mounted on the fixed part 34 , and the guide part 32 extends up and down to guide the floating part 33 up and down move.
  • the floating part 33 is located above the fixed part 34 and is connected by a guide part 32.
  • the guide part 32 may include a first guide shaft 321 and a second guide shaft 322, the first guide shaft One end of the shaft 321 penetrates the floating member 33, the other end is fixed on the fixing member 34, one end of the second guide shaft 322 penetrates the floating member 33, and the other end is fixed on the fixing member 34, through
  • the first guide shaft and the second guide shaft limit the degree of freedom of the floating member in the plane direction so that it hardly rotates in the horizontal plane, but can only move up and down along the guide member.
  • the structure of the guide member 32 is only an example, and it can also be implemented by any other suitable structure.
  • the up-and-down moving part 35 includes an elastic part, the elastic part is arranged between the floating part 33 and the fixed part 34 , and the axis of the elastic part is parallel to the axis of the guide part 32
  • the elastic member may be a compression spring, or the elastic member may also be a tension spring.
  • the elastic member is stretched or contracted to drive the floating member 33 to move up and down relative to the fixed member 34 along the guide member 32 .
  • the elastic member is a tension spring or a compression spring
  • the elastic member is sleeved on the guide member, for example, sleeved on the second guide member 322 .
  • the unloading mechanism 30 further includes a drive assembly (not shown), which is used to drive the fixed part 34 to reciprocate along the guide rail 37 , since the floating part 33 is connected with the fixed part 34 , and the transmission part 36 and the push assembly 31 are both mounted on the floating part 33, therefore, the driving assembly drives the floating part 33, the transmission part 36 and the push assembly 31 to reciprocate along the guide rail 37 while driving the fixed part 34 to reciprocate along the guide rail 37.
  • Movement, here, reciprocating motion may mean that the fixed part is driven to move along the guide rail 37 from the input side of the detection platform to the output side of the detection platform during the unloading process, and after the unloading is completed, the fixed part is driven along the guide rail 37 from the detection platform.
  • the output side detects the movement of the input side of the platform.
  • the switching mechanism further includes a first switching member configured to guide the transmission member located on the second track to the first track, so as to drive the push assembly to switch to the first track at the same time.
  • the track that is, the push assembly is driven to switch to move along the first track.
  • the push assembly moves along the first track, it has a first height relative to the bottom of the glass slide placement position of the detection platform, and the push assembly can push the slide at the first height.
  • the slide on the placement position moves away from the slide placement position and is unloaded to the output side of the detection platform.
  • the first switching member may be any structure capable of switching tracks.
  • the first switching member includes a first door panel disposed between the first track and the second track. 383.
  • the first door panel 383 is configured to: when the transmission member moves along the second track 382 and pass the first door panel 383, it can be rotated to open to allow the transmission member to pass through, and when the transmission member moves through the first door panel 383.
  • When moving from the second track to the first track at least part of the passage between the first track and the second track is closed, so as to switch the transmission member located on the second track to the first track.
  • the first door panel 383 is mounted on the first rail 381 or the second rail 382 through a first rotation shaft 384, and the first door panel 383 is configured to be able to rotate about the first
  • the shaft 384 rotates between a first position and a second position, wherein the first door panel is flush with the first track 381 when rotated to the second position, so that the transmission member can pass through the first door panel , and when the first door panel is in the first position, it at least closes a part of the passage between the first track and the second track, so as to be able to guide the conducting member to move toward the first track.
  • the first door panel 383 is further configured to be resettable from the second position to the first position to close at least part of the passage between the first track and the second track
  • the first switching part further includes a first reset part (not shown) for resetting the first door panel 383 from the second position to the first position
  • the first reset part It may be a return member such as a tension spring or a torsion spring.
  • the first door panel 383 can also be kept in a normally closed state under the action of gravity, that is, in the first position, so it can be reset from the second position to the first position under the action of gravity.
  • the switching mechanism further includes a second switching member for switching the transmission member located on the first track to the second track, so that the pushing assembly is at the second height , that is, after the push component pushes the slides to unload to the glass recovery container on the output side of the detection platform or the unloading platform for buffering the tested slides, the push component needs to return from the output side of the detection platform to the input side.
  • the assembly drives the fixed part to the push assembly and the transmission part to move from the output side to the input side along the first track
  • the transmission part is guided by the second switching part to switch to move along the second track, so that the position of the push assembly is raised At the second height, when passing through the glass slide placement position of the detection platform, it does not collide with the glass slide in the slide placement position, and smoothly returns to the input side to wait for the next slide to be unloaded.
  • the second switching member may be any structure capable of realizing track switching.
  • the second switching member includes a second door panel 386 disposed on the first track 381 .
  • the second door panel 386 It is configured to: push the second door panel 386 to close when the transmission member passes the second door panel 386 along the first track 381, that is, the second door panel 386 is flush with the first track 381, and at all When the transmission member moves from the first rail 81 to the second rail 382 , the second door panel 386 is kept in a normally open state, so that the transmission member moves along the second door panel 386 to the second rail 382 .
  • the second door panel 386 is mounted on the first rail via a second rotation axis 385, and the second door panel 386 is configured to be able to rotate about the second rotation axis 385 in the third position and the fourth position. Rotate between positions, wherein the second door panel 386 is flush with the first track 381 when it rotates to the fourth position, and when the second door panel is at the third position, it rotates a predetermined angle below the first track relative to the fourth position, and at the third position In the third position, the passage between the first track and the second track is open to allow the transmission member to move up the second door panel to the second track.
  • the second door panel can be kept in a normally open state under the action of gravity.
  • the second door panel is rotated and closed.
  • the second door panel can be reset by its own gravity. , reset to the third position, or, the second switching part further includes a second reset part (not shown), the second reset part is used to reset the second door panel from the fourth position to the first Three-position, alternatively, the second reset member may be a tension spring or a torsion spring or other suitable reset member.
  • the transmission member 36 moves from the input side of the detection platform to the output side of the detection platform, it first moves along the second track 382 and then moves to the first door panel 383 , at this time the first door panel 383 remains constant. In the closed state, it moves down to the first track 381 along the first door panel 383. During this process, due to the downward force exerted by the first door panel, the floating part compresses the up and down moving part, and moves downward along the guide part.
  • the driving component drives the fixed component to drive the transmission component and the push component to move from the output side of the inspection platform to the input side, so as to return to the initial position on the input side and wait for the next unloading.
  • the transmission component When the 36 moves along the first track 381 and passes through the second door panel 386, the second door panel 386 remains in a normally open state, and the transmission member 36 switches from the first track 381 to the second track 382 under the guidance of the second door panel 386, wherein, in this During the process, the up-and-down moving part pushes the floating part to move upward, thereby raising the height of the push assembly to the second height.
  • the transmission part 36 After the transmission part 36 is switched to the second track 382, it continues to move along the second track 382 under the driving of the drive assembly. Move, when the glass slide passing through the detection platform is placed, since the push component is located above the glass slide at the second height, it will not collide with the glass slide, thus preventing the detection platform from returning to the input side of the detection platform smoothly.
  • the transmission member 36 continues to move through the first door panel 383 along the second track 382, as shown in FIG. 33, the transmission member pushes the first door panel 383 to rotate downwards so that the transmission member 36 can pass through.
  • the track moves to the initial position, stop moving and wait for the next slide to be unloaded.
  • the unloading mechanism of the embodiment of the present invention realizes the unloading of the glass slides through the following process: As shown in FIG. 34 , during the unloading process, the pushing component pushes the glass slides 311 from the detection platform 310 to the glass slide recovery box such as the glass slide recovery box. In the container 312, the transmission member 36 moves in the direction shown by the arrow in Fig. 34 during the whole unloading process. First, the transmission member 36 starts from the initial position 391 and moves from the input side to the output side of the detection platform, as shown in Fig. 35 , when the transmission member 36 is at the initial position, the transmission member 36 is located at the second track 382, and the push assembly 31 is at the second height.
  • the transmission member 36 can pass smoothly, and the push component pushes the glass slide 311 to the unloading end position 393 to unload the glass slide 311 to the glass slide recovery container 312 .
  • the initial position 391 and the unloading start position 392 are located on the input side of the detection platform, and the unloading end position 393 is located on the output side of the detection platform 310 .
  • Fig. 38 shows the movement track of the transmission part 36 on the track.
  • the transmission part 36 moves to the first track or the second track through the slope provided on the second track.
  • the second rail 382 as shown in FIG.
  • the unloading mechanism 30 does not need to add additional power, and realizes the unloading process (that is, moving from the input side to the output side of the inspection platform) and the return stroke (that is, returning from the output side to the input side) through the first track and the second track and the switching mechanism.
  • the space position of the push assembly is changed, the push assembly is placed at the first height to unload the slide on the slide placement position, and the push assembly is placed at the second height during the return trip to avoid it during the return trip.
  • the glass to be tested in the position of the glass slide of the detection platform ensures the smooth detection of the glass to be tested, and since the detection platform does not need to be avoided during the return journey, it is beneficial to realize the parallel action of the unloading mechanism and other mechanisms (such as the loading device), Save process time.
  • the avoidance component of the unloading structure can not only avoid the glass slide in the height direction, but also avoid the glass slide in the width direction, for example, as shown in FIG. 41 .
  • the avoidance assembly of the unloading structure can also be configured to: when the drive assembly drives the push assembly to drive the tested glass slide on the slide placement position to move from the input side to the output side in the first direction, The distance between the pushing assembly in the horizontal direction and the central axis of the slide placement position along the first direction is the first width W1, when the driving assembly drives the pushing assembly along the second When the direction moves from the output side to the input side, the distance between the push assembly in the horizontal direction and the central axis of the glass slide placement position is a second width W2, wherein the first width W2 The second width W2 is greater than the first width W1 by at least half of the width of a slide, or further, the second width W2 is greater than the first width W1 by at least half of the width of the slide placement position, so that the push assembly returns from the output
  • first width and the second width may refer to the vertical distance between the push assembly in the horizontal direction and the central axis of the slide placement position along the first direction.
  • the slide transfer device of the embodiment of the present invention may also have other components, which will not be repeated here.
  • the loading mechanism of the slide transfer device of the present application loads the slides from the input side of the detection platform to the next slide to be tested on the slide placement position of the detection platform, and the unloading mechanism loads the tested slides.
  • Unloading from the slide placement position along the first direction to the output side of the detection platform, the input side and the output side are respectively located on different sides of the detection platform, so as to eliminate the position constraint of the two, and it is convenient for the equipment including the slide transfer device.
  • the rational layout of the whole machine of the reading machine improves the convenience of user operation.
  • the slide recovery container and the slide storage container are different containers, so it can avoid the mirror oil caused by recycling. Contamination of the reading slides.
  • the input and output are on different sides, it is convenient to unload the tested slide from the detection platform and simultaneously load the next slide to be tested to the detection platform, that is, to realize the synchronization of input and output.
  • the time required for the front and rear slides to be detected up and down the platform can be shortened, and the efficiency of continuous reading per unit time of the reading machine can be improved.
  • the sample image analyzer includes the sample unloading device 30 in the previous embodiment. For the description of the sample unloading device 30 This is not repeated here.
  • the sample image analyzer 130 may include, for example, a cell image analysis device, which can be used not only to photograph cells in the sample, but also to photograph crystals in urine sediment, for example.
  • the sample image analyzer 130 includes at least an imaging device 131 , a slide moving device 132 and an image analyzing device 133 .
  • the imaging device 131 includes a camera 1312 and a lens group 1311 and is used for analysing the sample in the slide located at the slide placement position of the detection platform.
  • the slide moving device 132 is used to move the slide relative to the imaging device 131 so that the imaging device 131 captures an image of a specific area of the slide, such as a cell image, wherein
  • the slide moving device 132 may include a detection platform and a driving device, and the driving device is used for driving the detection platform to move, so as to move the slide relative to the imaging device 131 .
  • the image analysis device 133 is used for analyzing the image of the sample in the glass slide, and distinguishing the type of the observed object (for example, cells) in the sample through an intelligent recognition algorithm.
  • the lens group may include a first objective lens, a second objective lens, and an eyepiece.
  • the first objective lens may be, for example, a 10x objective lens
  • the second objective lens may be, for example, a 100x objective lens.
  • the lens group may further include a third objective lens, and the third objective lens may be, for example, a 40x objective lens.
  • the lens group may also include an eyepiece.
  • the sample image analyzer 130 of the embodiment of the present invention further includes a slide transfer device 138 for loading the slide to be tested on the detection platform, and for unloading the slide placed on the detection platform
  • a slide transfer device 138 for loading the slide to be tested on the detection platform, and for unloading the slide placed on the detection platform
  • the glass slides photographed by the imaging device wherein the relevant description of the slide transfer device 130 is referred to the previous description, and will not be repeated here.
  • the sample image analyzer 130 also includes an identification device 134 , a slide gripping device 135 and a slide retrieval device 136 .
  • the identification device 134 is used to identify the identity information of the slide to be tested.
  • the slide gripping device 135 is used to grip the slide to be tested to the identification device 134 from the slide storage container, so that the identification device 134 can be identified.
  • the device 134 identifies the identity information of the slide to be tested, and the slide gripping device 135 is used to grip the identified slide to be tested to the slide placement position of the detection platform, wherein the slide gripping device is the glass slide.
  • Components of the loading mechanism of the sheet conveying device 138 are components of the loading mechanism of the sheet conveying device 138 .
  • the slide gripping device 135 is used to grip the slide to be tested from the slide storage container to the identification device 134, and to grip the identified slide to be tested to the buffer device;
  • the loading mechanism of the sheet conveying device 138 is used for loading the slides to be tested from the buffer device to the slide placement position of the testing platform for testing.
  • the slide retrieval device 136 is used to place the tested slides. Among them, the unloading mechanism of the slide transfer device 138 is used to unload the tested slides to the slide recovery device 136, or unload them to the unloading platform for buffering the tested slides, and then unload them by the glass slides.
  • the slide gripping device 135 grips it to the slide recovery device 136 .
  • the slide gripping device is configured so that the slide to be tested in a vertical orientation, which is gripped by the slide gripping device, can be turned over to a horizontal orientation.
  • a slide gripping device has a gripping part and an inversion mechanism (not shown), and the inversion mechanism is used for flipping the gripping part so that the glass slide to be tested in the vertical direction clamped by the gripping part is turned over
  • the surface of the glass to be tested on which the sample is smeared faces upwards, so that it can be placed on the glass slide placement position or the buffer device of the detection platform.
  • the sample image analyzer 130 further includes a slide basket loading device 137 for loading the slide basket containing the smear to be tested, and the slide gripping device 135 is also used for loading the slide basket loaded on the slide basket loading device 137
  • the glass slide to be tested in is clamped to the identification device 134 for identification information identification.
  • the sample image analyzer also includes an input device (not shown) that may be a device used by a user to input instructions, and may include one or more of a keyboard, trackball, mouse, microphone, touch screen, and the like.
  • an input device may be a device used by a user to input instructions, and may include one or more of a keyboard, trackball, mouse, microphone, touch screen, and the like.
  • the sample image analyzer may further include a display device for displaying information input by the user or information provided to the user and various image user interfaces of the sample analysis device. These image user interfaces may consist of images, texts, icon, video and any combination thereof.
  • the display device can display various visual data output by the processor, such as images captured by the imaging device, etc.
  • the display device can include a display panel.
  • the display panel is configured in the form of a liquid crystal display device (LCD, Liquid Crystal Display), an organic light emitting diode (OLED, Organic Light-Emitting Diode), etc.
  • the sample image analyzer may also include a communication interface (not shown), which may be any communication protocol currently known.
  • the communication interface communicates with the outside world through the network.
  • the sample image analyzer can transmit data with any device connected through the network with a certain communication protocol through the communication interface.
  • the sample image analyzer may also include other functional components, such as a memory, a processor (for example, a CPU, a GPU, or other chips with computing capabilities), etc., which will not be described in detail here.
  • the sample image analyzer according to the embodiment of the present invention includes the aforementioned slide transfer device, it also has the advantages of the aforementioned slide transfer device.
  • the slide transfer device Through the slide transfer device, the loading and unloading of slides can be performed at the same time, and the continuous In the case of reading, the time between the front and rear glass slides up and down the detection platform improves the efficiency of continuous reading per unit time of the sample image analyzer.
  • an embodiment of the present invention further provides a slide transfer method, which is performed based on the aforementioned slide transfer device.
  • the slide transfer method according to the embodiment of the present invention includes the following steps S421 to S424:
  • step S421 the controller controls the loading mechanism to load the first slide from the input side of the detection platform to the slide placement position of the detection platform along the first direction.
  • the loading method reference may be made to the relevant description of the sample injection method of the loading mechanism in the foregoing embodiment, and details are not described herein again.
  • step S422 the controller controls the imaging device to capture an image of the first slide on the slide placement position of the detection platform, and the user observes the observed object in the sample by observing the captured image, such as Cells or crystals in urine sediment, etc.
  • step S423 the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction. After the image of the sample on the first glass slide is photographed, the next glass slide to be tested needs to be photographed. Therefore, the controller controls the unloading mechanism to remove the first glass slide photographed by the imaging device from the slide placement position.
  • the unloading process is unloaded to the output side of the detection platform along the first direction, and the unloading process can be referred to the relevant descriptions in the foregoing embodiments and will not be repeated here.
  • step S424 the controller controls the loading mechanism to load a second slide from the input side of the detection platform to the slide placement position along the first direction.
  • the unloading of the first glass slide and the loading of the second glass slide can be performed asynchronously, for example, step S423 can be performed first, and then step S424 can be performed, that is, after the unloading of the tested glass slide is completed, the next glass to be tested can be loaded.
  • the slide is loaded onto the detection platform, or, step S424 may be executed simultaneously with the execution of step S423, that is, when the controller controls the unloading mechanism to remove the first slide photographed by the imaging device from the slide placement position
  • the controller controls the loading mechanism to load the second glass slide from the input side of the detection platform to the detection platform along the first direction.
  • the slides are placed in the position so that the unloading of the tested slides and the loading of the slides to be tested are carried out synchronously, thereby improving the reading efficiency.
  • the controller controls the unloading mechanism to remove the first slide photographed by the imaging device from the slide placement position along the first slide During the unloading direction to the output side of the detection platform, at the same time the controller controls the loading mechanism to load the second glass slide (that is, the glass slide to be tested) from the input side of the detection platform along the first direction
  • the controller controls the imaging device to take an image of the second slide on the slide placement position of the detection platform, and then the controller controls the unloading mechanism to capture the second slide captured by the imaging device.
  • the glass slide is unloaded from the slide placement position to the output side of the detection platform along the first direction, and the controller controls the loading mechanism to load the third glass slide from the input side of the detection platform along the first direction. Load it onto the slide placement position in one direction, load the slide to be tested while unloading the tested slide in turn, and then take an image of the slide to be tested through the imaging device, and then unload it and then load the slide under test.
  • a slide device to be tested is loaded onto the slide placement position along the first direction from the input side of the detection platform, until all the slides to be tested are photographed and removed from the slide placement position along the first direction.
  • the first direction is unloaded to the output side of the detection platform. Since the unloading of the tested glass slide and the loading of the test glass slide are performed simultaneously, the reading efficiency can be significantly improved.
  • the method further Including: the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism to move from the output side toward the input side in the second direction, so that the push assembly waits to unload the next imaged imaged
  • the measured slides captured by the device such as the second slides that have been captured.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including: The controller controls the push assembly of the unloading mechanism to push the first glass slide to move away from the slide placement position along the first direction until the push assembly together with the first slide completely passes through the glass slide. slide placement (or beyond the slide placement). As shown in FIG. 17 , the tested glass slide 11 has moved away from the glass slide placement position of the detection platform in the first direction under the pushing of the pushing component, until the pushing component together with the tested glass slide 11 completely passes through the detection platform.
  • the push assembly needs to return to the input side of the detection platform along the second direction from the output side (the return stroke of the push assembly).
  • the movement trajectory is shown by the dotted arrow in Figure 17) to wait for unloading the next tested slide, but during the return journey, the next slide 12 to be tested has been loaded on the slide placement position of the detection platform, (e.g. 17 ) or the next slide 12 to be tested is being loaded on the slide placement position of the detection platform (as shown in FIG.
  • the controller controls the drive component of the unloading mechanism to drive the push component of the unloading mechanism
  • the controller controls the loading mechanism to have loaded the second slide from the input side of the detection platform to the input side along the first direction. Therefore, it is necessary to avoid the glass slide to be tested (for example, the second glass slide) on the glass slide placement position of the detection platform during the return trip.
  • the method of the embodiment of the present invention further includes: controlling the controller in the controller During the period when the driving component of the unloading mechanism drives the pushing component of the unloading mechanism to move from the output side toward the input side in the second direction, the controller controls the avoidance component of the unloading mechanism to make the pushing component The assembly does not collide with the second slide in the slide placement position.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including: The controller controls the drive assembly of the unloading mechanism to drive the push assembly to push the first slide on the slide placement position to move from the input side to the output side along the first direction and the avoidance component enables the push component to have a first height relative to the bottom of the glass slide placement position, and the push component can push the first glass slide for unloading when the push component is at the first height.
  • the avoidance assembly causes the push assembly to move relative to the glass
  • the bottom of the slide placement position has a second height, so that the push assembly does not collide with the second slide of the slide placement position, wherein the second height is at least one of the first height higher than the first height.
  • the push component can avoid the glass slide to be tested (such as the second glass slide) on the glass slide placement position of the detection platform in the height direction by the avoidance component, so as to avoid the glass slide of the detection platform in the height direction.
  • the slides to be tested on the slide placement position ensure that the unloading of the tested slides and the loading of the test slides are carried out synchronously, shorten the transportation time, and improve the reading speed of the sample image analyzer.
  • the specific plane area of the platform, then the first height and the second height can be the distance from the push assembly of the claw to the upper surface of the detection platform, or, the slide placement position can also be a groove ( The groove can play a limiting role), the glass slide to be tested can be placed in the groove, and the first height and the second height can be the distance from the push component of the claw to the bottom surface of the groove.
  • the avoidance assembly can make the push assembly have a second height relative to the bottom of the slide placement position by any suitable method, for example, the avoidance assembly enables the push assembly to have a second height relative to the bottom of the slide placement position.
  • the second height includes: when the controller controls the driving component of the unloading mechanism to drive the swingable component of the avoidance component to move in the second direction, it collides with the pushing component of the unloading mechanism, so that the pushing component pushes The swinging block of the swingable part swings upward; when the swinging block of the swingable part drives the pushing assembly to swing to the second height, the limiting part of the swingable part limits the pushing assembly to maintain at the second height.
  • the height of the slide placement position of the push assembly relative to the detection platform is raised by the swing of the swing block, so that when the push assembly moves from the output side to the input side and passes through the slide placement position, it will not be in the same position as the slide placement position.
  • the glass to be tested such as the second glass, collides.
  • the controller controls the drive assembly to drive the push assembly of the unloading mechanism to move from the output side toward the input side along the second direction
  • the push assembly completely passes along the second direction
  • the return piece makes the swing block of the swingable part swing downward and drives the push assembly to move from The second height is switched to the first height, so that the push assembly is maintained at the first height to wait for unloading the next tested slide.
  • the controller controls the unloading mechanism to unload the first glass slide photographed by the imaging device from the slide placement position to the output side of the detection platform along the first direction, including: First, the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism to move along the second track, and the moving direction of the movement is along the first direction; When the first switching part is used, the first switching part guides the pushing assembly to switch to a first track to be at the first height; the controller controls the driving assembly to drive the pushing assembly along the first track. When the track continues to move toward the output side and touches the first glass slide, the first glass slide on the slide placement position is pushed to be unloaded to the output side, and the push assembly is in use through the first switching part. When the tested glass slide is unloaded, it is at the first height, so as to push the tested glass slide to unload at the first height.
  • the controller controlling the driving component of the unloading mechanism to drive the pushing component of the unloading mechanism to move from the output side toward the input side along the second direction includes: the controller controls the unloading The drive assembly of the mechanism drives the push assembly of the unloading mechanism to move from the output side toward the input side along the first track; when passing through the second switching member of the switching mechanism, the second switching member guides the The push assembly is switched to the second track to be at the second height; the controller controls the drive assembly of the unloading mechanism to drive the push assembly of the unloading mechanism along the second track not to contact the glass slide
  • the next slide to be tested in the placement position returns to the input side in a collision, and when the push assembly is at the second height, it is positioned above the second slide when it passes through the slide placement position, so as not to collide with the second slide , it is convenient to realize the unloading of the tested slides and the loading of the slides to be tested synchronously, and improve the reading efficiency.
  • the controller controls the loading mechanism to load the first slide from the input side of the detection platform to the slide placement position of the detection platform along a first direction, including: the controller controls the slide holder The removal device clamps the first glass slide from the slide storage container to the identification device; the controller controls the identification device to scan the identification code on the first glass slide to identify the identity of the first glass slide information; the controller controls the slide gripping device to grip the identified first slide to the buffer device; the controller controls the loading mechanism to place the first slide on the buffer device The first slide is loaded onto the slide placement position of the detection platform along the first direction from the input side of the detection platform.
  • the loading method of the first glass slide is also applicable to the loading of other glass slides to be tested, such as loading the second glass slide.
  • the controller controls the loading mechanism to load the first slide from the input side of the detection platform to the slide placement position of the detection platform along a first direction, including: the controller controls the The slide gripping device of the loading mechanism grips the first slide from the slide storage container to the identification device; the controller controls the identification device to scan the identification code on the first slide to identify the first slide Identity information of the first glass slide; the controller controls the glass slide clamping device to load the identified first glass slide on the glass slide placement position of the detection platform.
  • the loading method of the first glass slide is also applicable to the loading of other glass slides to be tested, such as loading the second glass slide.
  • the input and output of glass slides can be carried out on different sides of the detection platform, thereby eliminating the position constraints of both the unloading mechanism and the loading mechanism, and facilitating the inclusion of the glass slides.
  • the rational layout of the sample image analyzer of the slice transfer device improves the convenience of user operations.
  • the slide recovery container and the slide storage container are different containers, so it can avoid the contamination of the unread slides caused by the mirror oil caused by recycling.
  • the sample image analyzer adopts this slide transfer method, it can shorten the time of continuous reading.
  • the time between the upper and lower detection platforms of the film is improved, and the efficiency of continuous film reading per unit time of the sample image analyzer is improved.
  • an embodiment of the present invention further provides a sample image analyzer 1000 .
  • the sample image analyzer 1000 includes a detection platform 1100 , an image capturing device 1200 , an image analyzing device (not shown), a loading mechanism 1300 and an unloading mechanism 1400 .
  • the sample image analyzer 1000 further includes a housing 1500 in which at least the detection platform 1100 , the image capturing device 1200 , the loading mechanism 1300 and the unloading mechanism 1400 are accommodated.
  • the detection platform 1100 is provided with a first conveying channel 1110, such as a first groove, the first conveying channel has a first bottom 1111 for supporting the glass slide 11 and a The first sidewalls 1112 and 1113 on both sides of the sheet are limited, and the first bottom 1111 of the first conveying channel is provided with a slide placement position 1114 for receiving the slide 11 .
  • the first transfer channel has a first output opening 1116 on the output side of the detection platform.
  • the image capturing device 1200 is used to capture an image of the sample on the glass slide 11 at the slide placement position 1114 of the detection platform.
  • the image capturing device 1200 is fixedly arranged in the sample image analyzer, and the detection platform 1100 is configured to be movable in three dimensions, so that when the sample on the glass slide is imaged, the detection platform can drive the sample fixed on the glass slide.
  • the slide 11 on the placement position 1114 moves, so that the fixedly arranged image capturing device can capture different sample areas on the slide 11 .
  • An image analysis device is used to analyze the images captured by the image capturing device 1200 in order to obtain sample analysis results.
  • the loading mechanism 1300 is configured to load the slides 12 to be loaded (also referred to as slides to be tested or slides to be photographed) into the slide placement positions 1114 in the first conveyance channel 1110 from the input side of the detection platform 1100 .
  • the unloading mechanism 1400 is configured to push the slides 11 to be unloaded (also referred to as the tested slides or the photographed slides) on the slide placement position 1114 of the detection platform along the horizontal second in the first conveying channel 1110. Move in one direction X1 to unload the slide 11 to be unloaded from the slide placement position 1114 to the output side of the detection platform through the first output opening 1116 .
  • the first transmission channel 1110 extends linearly and parallel to the first direction X1.
  • the first transmission channel further has a first input opening 1115 on the input side of the detection platform.
  • the loading mechanism 1300 is configured to push the slides 12 to be loaded into the first transport channel 1110 from the input side of the detection platform 1100 in the first direction X1 through the first input opening 1115 until the slides 12 to be loaded reach the The slide placement position 1114 of the detection platform.
  • the loading mechanism 1300 may also be configured to place the slides 12 to be loaded vertically (top to bottom) onto the slide placement positions 1114 .
  • the loading mechanism 1300 may be configured as a robotic arm.
  • the sample image analyzer 1000 further includes a first driving device (not shown) for driving the detection platform 1100 to switch between the shooting state and the loading and unloading state.
  • the image photographing device 1200 can photograph the slide 11 located on the slide placement position 1114 .
  • the first driving device is configured to drive the detection platform 1100 to move relative to the image photographing device 1200 , for example, three-dimensionally.
  • the first driving device is configured to drive the detection platform 1100 After moving to the loading and unloading position, it stops, so that the loading mechanism 1300 can load the slides 12 on the slide placing position 1114 and/or the unloading mechanism 1400 can unload the slides 11 at the slide placing position 1114 .
  • the sample image analyzer 1000 may further include an unloading platform 1600 disposed on the output side of the detection platform 1100 .
  • a second transport channel 1610 eg a second groove, is provided in the unloading platform, which second transport channel is designed to buffer the slides 11 unloaded from the detection platform 1100 and has a second transport channel for supporting the slides 11 .
  • the bottom 1611 and the second side walls 1612 and 1613 for limiting the position of both sides of the glass slide.
  • the second transfer channel also has a second input opening 1614 .
  • the detection platform and the unloading platform are configured to cooperate when unloading the slides 11 so that the first output opening 1116 of the first transfer channel 1110 and the second input opening 1614 of the second transfer channel 1610 are aligned, thereby unloading
  • the mechanism 1400 is capable of pushing the slides 11 to be unloaded from the slide placement position into the second conveying channel along the first direction X1 through the first output opening 1116 and the second input opening 1614 .
  • the first conveying channel 1110 and the second conveying channel 1610 can be aligned with each other, for example, coaxially aligned with each other and aligned in height, so that unloading
  • the mechanism 1400 can push the slide 11 to be unloaded in the first direction X to move in the channel formed by the first transport channel and the second transport channel.
  • the second transmission channel 1610 extends linearly.
  • the testing platform 1100 in the loading and unloading state of the testing platform 1100, is driven by the first driving device to move to an unloading position in which the first conveying channel 1110 of the testing platform 1100 is in contact with the first conveying channel 1110 of the unloading platform.
  • the two transfer channels 1610 are aligned with each other, so that the slides 11 in the first transfer channel 1110 can be unloaded into the second transfer channel 1610 .
  • the second transfer channel 1610 may also include a second output opening 1618 opposite the second input opening 1614 .
  • the unloading platform 1600 is spaced apart from the inspection platform 1100 by a certain distance.
  • the sample image analyzer 1000 may further include a loading platform 1700 disposed on the input side of the detection platform 1100, in which a third conveying channel 1710, such as the first Three grooves.
  • the third conveying channel 1710 is configured to buffer the slides 12 to be loaded, and has a third bottom 1711 for supporting the slides and third side walls 1712 and 1713 for limiting the two sides of the slides.
  • the third transfer channel also has a third output opening 1714 .
  • the detection platform and the loading platform are configured to cooperate when loading the slides 12 such that the first input opening 1115 of the first transfer channel 1110 and the third output opening 1714 of the third transfer channel 1710 are aligned for loading
  • the mechanism 1300 can push the slides 12 to be loaded buffered in the third transfer channel 1710 into the first transfer channel 1110 through the third output opening 1714 and the first input opening 1115 along the first direction X1, as shown in FIG. 52 .
  • the first transfer channel 1110 and the third transfer channel 1710 can be aligned with each other, eg, coaxially aligned with each other and aligned in height, so that The loading mechanism 1300 can push the slides 12 to be loaded along the first direction X to move in the channel formed by the first transport channel and the third transport channel.
  • the third transmission channel 1710 may extend linearly and extend parallel to the first direction X1.
  • the testing platform 1100 in the loading and unloading state of the testing platform 1100, is driven by the first driving device to move to a loading position in which the first conveying channel 1110 of the testing platform 1100 is in contact with the first conveying channel 1110 of the loading platform.
  • the three transfer lanes 1710 are aligned with each other so that the slides 12 in the third transfer lane 1710 can be loaded into the first transfer lane 1110 .
  • the detection platform 1100 is separated from the loading platform 1700 by a distance that is less than the slide length.
  • the detection platform 1100, the loading platform 1700 and the unloading platform 1600 are configured to cooperate in loading and unloading the slides 12 and 11 such that the first transfer channel 1110, the second transfer channel 1610 and the The third transfer channels 1710 are simultaneously aligned to form a general transfer channel, so that the loading mechanism 1300 and the unloading mechanism 1400 can simultaneously push the slides 12 to be loaded and the slides 11 to be unloaded along the first direction X1 to be at least opposite in the general transfer channel
  • the first bottom moves, as shown in Figure 53.
  • FIG. 53 shows a schematic diagram of a process in which the loading mechanism 1300 and the unloading mechanism 1400 perform loading and unloading synchronously. In this way, the unloading of the glass slide 11 and the loading of the glass slide 12 can be quickly completed at the same time, thereby improving the detection speed of the sample image analyzer.
  • the inspection platform 1100 is driven by the first drive device to move to a loading position or an unloading position (ie, the inspection platform 1100 is placed in a loading and unloading state), in which the first conveying channel 1110 of the inspection platform 1100 is connected to the second conveying channel.
  • the third transfer lane 1710 are aligned at the same time so that the slides 12 in the third transfer lane 1710 can be loaded into the first transfer lane 1110 while the slides 11 in the first transfer lane 1110 can be unloaded into the second transfer lane 1110 in transmission channel 1610.
  • the loading mechanism 1300 and the unloading mechanism 1400 can be configured to cooperate in loading and unloading slides such that the loading and unloading of the slides to be loaded and the unloaded slides are simultaneous for part of the time is located in the first transmission channel 1110 .
  • the simultaneous loading and unloading of the glass slide 12 and the glass slide 11 can be further accelerated.
  • a bridge platform 1800 is further provided between the detection platform 1100 and the unloading platform 1600 .
  • the unloading mechanism 1400 is configured to unload the slides 11 to be unloaded from the first transfer channel 1110 via the bridge platform 1800 into the second transfer channel 1610 along the first direction X1.
  • the unloading mechanism 1400 pushes the slides 11 to be unloaded from the first conveying channel 1110 to the bridging platform 1800 along the first direction X1 ; in FIG. 55 , the unloading mechanism 1400 moves along the first direction X1 .
  • One direction X1 pushes the slide 11 to be unloaded from the bridge platform 1800 into the second transfer channel 1610 .
  • the addition of the bridge platform can make the setting of the unloading platform 1600 more flexible, which is especially beneficial to the recovery of slides which will be described later.
  • a fourth transfer channel 1810 such as a fourth groove, is provided in the bridge platform 1800 .
  • the fourth conveying channel has a fourth bottom 1811 for supporting the glass slide and fourth side walls 1812 and 1813 for limiting the position of both sides of the glass slide.
  • the fourth transfer channel 1810 also has a fourth input opening 1814 and a fourth output opening 1815 which are oppositely disposed.
  • the fourth input opening 1814 faces the detection platform 1100 and the fourth output opening 1815 faces the unloading platform 1600 .
  • the detection platform, the unloading platform, and the bridging platform are configured to cooperate when unloading a slide such that the first output opening 1116 of the first transfer channel 1110 is aligned with the fourth input opening 1814 of the fourth transfer channel 1810 and The fourth output opening 1815 of the fourth conveying channel 1810 is aligned with the second input opening 1614 of the second conveying channel 1610, so that the unloading mechanism 1400 can push the slides 11 to be unloaded from the first conveying channel 1110 through the first direction X1.
  • the four transfer channels 1810 enter into the second transfer channel 1610 .
  • the detection platform, the unloading platform, and the bridging platform are configured to cooperate when unloading the slide such that the first transfer channel 1110 is aligned with the fourth transfer channel 1810 and simultaneously the fourth transfer channel 1810 is aligned with the second transfer channel 1810.
  • the transfer channel 1610 is aligned.
  • the detection platform, unloading platform, and bridging platform are configured to cooperate in unloading the slides such that the first transfer channel 1110 is first aligned with the fourth transfer channel 1810 so that the unloading mechanism 1400 moves along the first One direction X1 pushes the slides 11 to be unloaded from the first transfer channel 1110 into the fourth transfer channel 1810; then the fourth transfer channel 1810 is aligned with the second transfer channel 1610, so that the unloading mechanism 1400 moves the unloading mechanism 1400 along the first direction X1
  • the slides 11 to be unloaded are pushed from the fourth transfer channel 1810 into the second transfer channel 1610 .
  • the bridge platform 1800 is fixedly disposed in the sample image analyzer 1000 .
  • the bridge platform 1800 may also be configured to be movable. At this time, the time-division alignment of the fourth transfer channel 1810 of the bridge platform with the first transfer channel 1110 and the second transfer channel 1610 can be achieved.
  • the detection platform 1100 is separated from the bridge platform 1800 by a distance that is less than the slide length.
  • the bridging platform 1800 and the unloading platform 1600 are separated by a distance that is less than the slide length.
  • the sample image analyzer 1000 may further include a light source 1940 disposed under the detection platform 1100 .
  • the part of the first bottom 1111 of the first conveying channel where the slide placement position 1114 is provided is configured to have a through opening or to be transparent, so that the light emitted by the light source can be irradiated to the glass slide placed at the slide placement position. Chip.
  • the portion of the first bottom 1111 where the slide placement positions 1114 are provided is configured to have a through opening, ie, is configured to be hollow.
  • one end of the first conveying channel 1110 on the side of the first input opening 1115 may have a first vertical guide part 1117 , the first vertical guide part is used for the vertical guide part 1117 .
  • the slides are guided into the first transport channel 1110 in a straight direction.
  • the arrangement of the first vertical guide portion increases the inclination adaptability when the glass slides are loaded, so that the glass slides can be smoothly pushed into the first conveying channel 1110 in the vertical direction. Especially when there is a certain distance between the detection platform and the loading platform, it can be ensured that the glass slides can enter the detection platform suspended from the loading platform.
  • the first vertical guide portion 1117 is configured as a slope provided on the end portion of the first bottom portion 1111 on the side of the first input opening 1115 .
  • first conveying channel 1110 on the side of the first input opening 1115 may have a first horizontal guide portion 1118 .
  • the first horizontal guide portion is used to guide the glass slides in the horizontal direction (here, the width direction of the glass slides) into the first conveying channel.
  • the first horizontal guide can, for example, have a first bevel that is inclined at an acute angle with respect to the longitudinal center axis of the first transport channel 1110 , so that the slides can be guided from the first input opening 1115 to the first transport channel 1110 by means of this first bevel. middle.
  • the first inclined surface is configured to be inclined at an acute angle with respect to the first bottom 1111, so as to provide a vertically downward force to compress the glass slide when the slide glass is guided into the first conveying channel.
  • two first horizontal guide parts 1118 are symmetrically provided on both sides of the first conveying channel, and the two horizontal guiding parts are relative to the longitudinal center axis of the first conveying channel Angled at an acute angle to create a flared shape towards the loading platform.
  • the detection platform may further have a first elastic pressing portion 1119 , such as an elastic sheet.
  • the first elastic pressing portion is used for pressing the glass slide on the slide placement position 1114 in the vertical direction, so as to prevent the glass slide from moving up and down during the photographing process.
  • a vertical guide part 11191 may be provided on the first elastic pressing part 1119, and the vertical guiding part is used to guide the glass slide in the first conveying channel to pass the first elastic pressing part in a vertical direction. Tight part 1119. This can prevent the glass slide from being caught by the first elastic pressing portion when moving in the first conveying channel, so that the glass slide can smoothly move under the first elastic pressing portion.
  • one end of the second transfer channel 1610 on the side of the second input opening 1614 may have a second vertical guide portion 1615 .
  • the second vertical guide portion is used to guide the slides into the second conveying channel in the vertical direction.
  • the provision of the second vertical guide portion 1615 increases the inclination adaptability when the glass slide is unloaded, so that the glass slide can be smoothly pushed into the second conveying channel in the vertical direction.
  • the detection platform or the bridging platform and the unloading platform are at a certain distance, it can be ensured that the glass slides can enter the unloading platform suspended from the detection platform or the bridging platform.
  • the second vertical guide portion 1615 is configured as a slope provided on an end portion of the second bottom portion 1611 on the side of the second input opening 1614 .
  • one end of the second transfer channel on the side of the second input opening may have a second horizontal guide 1616 .
  • the second horizontal guide portion 1616 is used to guide the slides in the horizontal direction (here, the width direction of the slides) into the second conveying channel.
  • the second horizontal guide may for example have a second slope inclined at an acute angle with respect to the longitudinal center axis of the second transport channel in order to guide the slides into the second transport channel.
  • the second inclined surface can be integrally formed on the side walls 1612 and 1613 of the second conveying channel.
  • the unloading platform 1600 may also have a second elastic pressing portion 1617, such as an elastic sheet.
  • the second elastic pressing part is used for pressing the glass slides in the second conveying channel in the vertical direction, so as to prevent the glass slides from swaying when the unloading platform moves.
  • one end of the third transfer passage 1710 on the third output opening 1714 side may have a third horizontal guide portion 1715 .
  • the third horizontal guide portion is used to guide the slides from the third transfer channel into the first transfer channel.
  • the third horizontal guide 1715 may have a third slope inclined at an acute angle with respect to the longitudinal center axis of the third transfer channel, so as to guide the slides into the second transfer channel.
  • the third inclined surface can be integrally formed on the side walls 1712 and 1713 of the third conveying channel.
  • At least a part 1716 of the third side walls 1712 and 1713 of the third transfer channel 1710 is configured to be inclined at an obtuse angle with the third bottom 1711 so that the slides can be guided into the third transfer channel 1710 from top to bottom middle.
  • the third transfer channel 1710 has a blocking portion 1717 at one end opposite to the third output opening 1714 for preventing the slides from being taken out by the robot after being put into the third transfer channel 1710 by the robot.
  • the third conveying channel 1710 also has a third input opening 1718 disposed opposite to the third output opening 1714, and the third input opening 1718 is used for the loading mechanism 1300, especially the push claw 1310 to extend into the third conveying channel , to push the slide in the third transfer channel.
  • a portion of the third bottom portion 1711 close to the third input opening has a notch, and the notch enables the push claw 1310 to move in the third transfer channel to push the slide to move in the third transfer channel.
  • the fourth transfer channel 1810 has a fourth vertical guide 1816 at one end of the fourth input opening side 1814 .
  • the fourth vertical guide portion is used to guide the slides into the fourth conveying channel in a vertical direction.
  • the provision of the fourth vertical guide portion 1816 increases the inclination adaptability when the glass slide is unloaded, so that the glass slide can be smoothly pushed into the fourth conveying channel in the vertical direction. Especially when the bridging platform and the detection platform are separated by a certain distance, it can be ensured that the glass slide can enter the bridging platform in a suspended state from the detection platform.
  • the fourth vertical guide portion 1816 is configured as a slope provided on an end portion of the fourth bottom portion 1811 on the fourth input opening 1814 side.
  • one end of the fourth transfer passage 1810 on the fourth input opening 1814 side has a fourth horizontal guide portion 1817 .
  • the fourth horizontal guide portion 1817 is used to guide the slides in the horizontal direction (here, the width direction of the slides) into the fourth conveying channel.
  • the fourth horizontal guide 1817 may have a fourth slope inclined at an acute angle with respect to the longitudinal center axis of the fourth transfer channel, so as to guide the slides into the fourth transfer channel.
  • the fourth slope can be integrally formed on the fourth side walls 1812 and 1813 of the fourth conveying channel.
  • the fourth conveying channel 1810 is gradually narrowed on the side of the fourth output opening 1815, so as to constrain the position of the glass slide and improve the success rate of the glass slide entering the unloading platform.
  • the loading mechanism 1300 includes a first push assembly 1310 , such as a push jaw and drive assembly 1320 .
  • the first sample push assembly 1310 is configured to push the slides 12 to be loaded placed in the third transfer channel into the first transfer channel of the detection platform
  • the drive assembly 1320 is configured to drive the first sample push assembly 1310 along the first direction X1 and the second direction opposite to the first direction reciprocate, so that the first sample pushing assembly 1310 pushes the slides 12 to be loaded to the slide placement position of the detection platform along the first direction X1, and the loading of the slides 12 is completed.
  • the first sample pushing assembly 1310 returns to the initial position along the second direction to wait for the next slide to be loaded.
  • the driving assembly 1320 may include a motor and a timing belt. When the motor drives the timing belt to move, the timing belt drives the first sample pushing assembly 1310 to move.
  • the unloading mechanism 1400 includes a second push assembly 1410, such as a push jaw.
  • a second push assembly 1410 such as a push jaw.
  • the sample image analyzer 1000 may further include a slide recovery device 1910 for recovering the slides 13 captured by the image capturing device 1200 .
  • the slide recovery device 1910 is provided on the output side of the detection platform and includes a first support member 1911 and a first slide transport mechanism 1912 .
  • the first support member is used to carry, for example, fix the slide recovery box 200 .
  • the first slide transport mechanism is used to transport the slides on the unloading platform 1600 to the slide recovery box 200 located on the first support member.
  • the first slide transport mechanism 1912 includes a second drive device 19125 for driving the unloading platform 1600 to move.
  • the second driving device is configured to drive the unloading platform 1600 to switch between the first state and the second state.
  • the second transfer channel 1610 of the unloading platform 1600 is aligned with the first slide transfer channel 1110 of the detection platform 1100 in the first state.
  • the second transfer channel 1610 of the unloading platform 1600 faces the inspection platform 1100 with its second input opening 1614 in the first state so that either the first transfer channel or the fourth transfer channel can be aligned with the second transfer channel for unloading the first transfer channel 1610.
  • the second conveying path 1610 of the unloading platform is aligned with the slide recovery cassette 200 located at the first support member 1911 in the second state.
  • the second transfer channel 1610 of the unloading platform 1600 in the second state has its second input opening 1614 or the second output opening 1618 toward the slide retrieval cassette 200 located on the first support member, so that in the second channel of the unloading platform The slides 11 can be recovered into the slide recovery box 200 .
  • the second drive 19125 is configured to drive the unloading platform in rotation to switch between the first state and the second state.
  • the second drive device is configured to drive the unloading platform to rotate through 90° when switching between the first state and the second state.
  • the second drive device can also be designed to drive the unloading platform in translation in order to switch between the first state and the second state.
  • the first slide transport mechanism 1912 includes a support plate 19121 , a pushing member 19122 , a vertical driving member 19123 and a horizontal driving member 19124 .
  • the pushing member 19122 is provided on the support plate 19121 so as to be movable horizontally.
  • the unloading platform 1600 is rotatably provided on the support plate 19121.
  • the vertical driving part 19123 is used to drive the supporting plate 19121 to move vertically, so that the second conveying channel of the unloading platform located on the supporting plate is aligned with the corresponding slot of the slide recovery box 200 located on the first supporting part.
  • the horizontal driving part 19124 is used to drive the pushing part 19122 to push the slides 11 on the unloading platform to the slide recovery box 200 located on the first support part 1911 through the second conveying channel 1610 , for example, through the second input opening or the second output opening in the corresponding slot.
  • the first slide transport mechanism is configured to return the push unloading platform 1600 from the second state to the first state after each slide recovery.
  • the sample image analyzer 1000 further includes a slide feed device 1920 .
  • the slide feeding device 1920 is provided on the input side of the detection platform 1100 and includes a second support member 1921 and a second slide conveying mechanism 1922 .
  • the second support member 1921 is used to support the slide storage box 300
  • the second slide transport mechanism 1922 is used to transport the slides located in the slide storage box 300 of the second support member 1921 to the third transfer channel of the loading platform 1700 1710.
  • the second slide transport mechanism 1922 is configured as a three-dimensionally movable manipulator having jaws for gripping the slides to be loaded.
  • the gripping jaws are configured to be able to turn over, so as to transform the gripped slides from a vertical posture to a horizontal posture, so that the gripped slides can be placed into the third transfer channel 1710 in a horizontal posture .
  • a second slide transport mechanism may be used as the loading mechanism 1300 .
  • the loading platform 1700 is configured to be movable horizontally, especially in a horizontal direction perpendicular to the first direction X1.
  • the sample image analyzer 1000 may include a third driving device for driving the loading platform 1700 to move, the third driving device being configured to drive the loading platform 1700 to move between the first position and the second position.
  • the third transport channel of the loading platform 1700 receives the slides transported by the second slide transport mechanism 1922 in the first position, and in the second position with its third output opening 1714 and the first transport The first input opening 1115 of the channel 1110 is aligned.
  • the loading platform 1700 is further provided with a receiving groove 1719 different from the third conveying channel 1710 for receiving the slides.
  • the third driving device is configured to drive the loading platform 1700 to move to a third position, so that the receiving groove 1719 protrudes from the housing 1500 of the sample image analyzer to receive the manually placed slides.
  • an opening is provided in the housing through which the receiving slot 1719 of the loading platform 1700 can protrude.
  • the opening is closed by cover 1510 .
  • the sample image analyzer 1000 also includes a cassette transfer device 1930 for importing and exporting the slide cassettes 300 .
  • the storage box conveyor 1930 may include an input assembly 1931 , an output assembly 1932 , a gripping assembly 1933 and a lifting assembly 1934 .
  • the second support member 1921 is provided on the input assembly 1931 .
  • the input assembly 1931 is configured to receive the slide storage box 300 loaded with the slides to be tested, and transfer the slide storage box 300 to the holding assembly 1933 along the third direction Y1.
  • the third direction Y1 is preferably perpendicular to the first direction X1.
  • the output assembly 1932 is configured to receive an empty slide holder 300 and is positioned below the input assembly.
  • the output assembly is configured to be movable along a fourth direction Y2 opposite to the third direction Y1 to drive the empty slide storage cassette 300 to move along the fourth direction Y2.
  • the holding assembly 1933 is provided for holding the slide storage cassette 300, and is configured to be movable along the third direction Y1 and the fourth direction Y2.
  • the lift assembly 1934 is configured to receive the empty slide storage cassette 300 from the gripping assembly 1933 and transport the slide storage cassette 300 to the output assembly 1932 along a vertical direction Z1, which is perpendicular to the third direction Y1.
  • a device for transporting the slide storage box up and down is provided.
  • the device can input the slide storage box loaded with the glass to be tested through the input component 1931 on the upper layer. After the slides have been inspected, the empty slide storage box is recovered through the output assembly 1932 on the lower level.
  • the cassette transfer device 1930 may further include a blocking component 1935 configured to block the slide cassette 300 on the input component 1931 from moving along the third direction Y1.
  • clamp assembly 1933 is configured to be movable between a first input position and a first output position.
  • the gripper assembly 1933 receives the slide storage cassette 300 conveyed via the input assembly 1931 in the first input position, and outputs the slide storage cassette 300 to the lift assembly 1934 in the first output position.
  • the input assembly 1931 may include a first belt 19311 movable in the third horizontal direction Y1 on which one or more slide storage cassettes 300 can be placed.
  • the first belt 19311 is used to drive the slide storage box 300 placed thereon to move along the third horizontal direction Y1.
  • the input assembly 1931 may also include a first sensor 19312, such as an optocoupler sensor, for sensing the presence or absence of the slide holder 300 on the first belt 19311.
  • the first sensor 19312 senses the existence of the slide storage box 300 on the first belt 19311, the clamping assembly 1933 moves to the first input position, and the first belt 19311 operates to drive the slide storage box 300 along the first input position.
  • the three horizontal directions Y1 are moved into the clamping assembly 1933 in the first input position.
  • the front end 19313 of the input assembly 1931 is exposed outside the housing 1500 of the sample image analyzer, as shown in FIG. 44 . That is, the front end 19313 of the input assembly 1931 is not surrounded by the housing, so that the user can place the slide storage box 300 containing the slides to be tested, such as blood smears, on the first belt 19311 of the input assembly 1931 .
  • the clamping assembly 1933 includes an electromagnet 19331, a clamping block 19332, a magnetic adsorption plate 19333, a compression spring 19334, and a receiving space 19336 for receiving the slide storage box 300, the compression spring Set between the clamping block and the magnetic adsorption plate.
  • the receiving space 19336 is formed by two opposing first side plates 193361, 193362 and a second side plate 193663 connecting the two first side plates. On the side opposite to the second side plate is an entrance into the receiving space.
  • the electromagnet 19331 , the clamping block 19332 , the magnetic adsorption plate 19333 and the compression spring 19334 are mounted on one of the first side plates 193361 .
  • the electromagnet 19331 When the electromagnet 19331 is energized, the electromagnet provides the attraction force to attract the magnetic attraction plate 19333, thereby pulling the clamping block 19332 tight, and the compression spring 19334 is compressed between the clamping block and the magnetic attraction plate. At this time, the slide storage box 300 can enter into the receiving space 19336 of the clamping assembly 1933 .
  • the electromagnet 19331 When the electromagnet 19331 is powered off, that is, when the electromagnet no longer provides a suction force, the compression spring provides a return force to push the clamping block out, thereby clamping the slide storage box 300 in the receiving space 19336 .
  • the clamping block 19332 can also be tightened and loosened electrically or pneumatically.
  • the clamping assembly 1933 further includes a second sensor 19336 , such as a photocoupler sensor, for sensing whether a slide storage box 300 enters the receiving space 19336 .
  • a second sensor 19336 such as a photocoupler sensor
  • the electromagnet 19331 is powered off.
  • the second sensor may be provided on the other first side plate 193362 opposite to the first side plate 193361 on which the electromagnet is installed.
  • the clamping assembly 1933 may further include a third sensor 19337 for sensing whether there is a slide in the slide storage box 300 in the receiving space 19336 .
  • a third sensor 19337 for sensing whether there is a slide in the slide storage box 300 in the receiving space 19336 .
  • the clamping assembly 1933 is kept in the first input position, at this time, for example, the second slide is transported
  • the mechanism 1922 transports the slides to be tested in the slide storage box 300 into the third slide transport channel of the loading platform 1700 in the first position.
  • the clamping assembly 1933 moves from the first input position to the first output position.
  • the third sensor 19337 may be configured as a through-beam optocoupler.
  • the light emitter 193371 and the light receiver 193372 of the through-beam optocoupler may be disposed on the first side plates 193361 and 193362, respectively.
  • the blocking assembly 1935 includes a blocking block 19351 , a depressor 19352 and a spring 19353 that are interconnected with each other. Depressors and springs move the blocking block between blocking and release positions.
  • the blocking block 19351 is used to block the slide storage cassette 300 on the input assembly 1931 from moving in the third horizontal direction Y1 in the blocking position, and is released in the releasing position.
  • the return force of the spring 19353 keeps the blocking block 19351 in the blocking position; and when the pressing member 19352 is under downward pressure, the pressing member 19352 overcomes the return of the spring 19353 The force moves downward, thereby driving the blocking block 19351 connected to it to move downward to the release position, thereby releasing the blocking.
  • the lower pressure member 19352 may be configured as a rotatable roller.
  • blocking assembly 1935 is disposed at rear end 19314 of input assembly 1931 opposite front end 19313 and at the first input position of gripping assembly 1933.
  • the clamping assembly 1933 exerts downward pressure on the pressing member 19352, so that the blocking block 19351 moves downward to the release position, thereby inputting the slides on the assembly 1931
  • the storage box 300 can be moved into the receiving space 19336 of the clamping assembly 1933 along the third horizontal direction Y1.
  • the pressure exerted by the clamping assembly on the pressing member is released, so that the blocking block 19351 moves upward to the blocking position under the action of the returning force of the spring 19353 .
  • the lift assembly 1934 has a carriage 19341 for supporting the slide storage cassette 300 and a moving part 19342 for moving the carriage along the vertical direction Z1.
  • the moving part 19342 comprises a vertical guide in which the carriage 19341 can move in the vertical direction Z1 and in the vertical direction Z2 opposite to the vertical direction Z1, ie in the second input position in the vertical direction move to and from the second output position.
  • the carrier 19341 In the second input position, the carrier 19341 is located in the receiving space 19336 of the clamping assembly 1933 to receive the slide storage box 300 therein; in the second output position, the slide storage box 300 in the carrier 19341 is located in output component 1932.
  • the bracket 19341 may include a plurality of support bars 193441, such as hooks, and a plurality of corresponding passage grooves 193664 are provided in the second side plate 193663 of the clamping assembly 1933, and the passage grooves are used for the support bars Move in the receiving space 19336.
  • the lift assembly 1934 may further have a guide block 19343 for guiding the slide storage box 300 to the second output position when the carriage 19341 moves downward in the vertical direction Z1 to the second output position output component 1932.
  • the output assembly 1932 may include a second belt 19321 movable in the fourth horizontal direction Y2 on which one or more slide storage boxes 300 can be placed.
  • the output assembly 1932 may further include a fourth sensor 19322, such as an optocoupler sensor, for sensing whether a slide storage box 300 is placed on the second belt 19321.
  • the fourth sensor senses that a slide storage box is put in
  • the second belt is activated to drive the slide storage box on it to move to the front end 19323 of the output assembly 1932 .
  • the front end 19323 of the output assembly 1932 is exposed outside the housing 1500 of the sample image analyzer, as shown in FIG. 44 . That is, the front end 19323 of the output assembly 1932 is not surrounded by the housing, so that the user can take out the empty slide storage cassette 300 from the front end 19323 of the output assembly 1932 .
  • the input assembly includes at least one first belt, a first drive pulley, a first driven pulley, and a first motor, the at least one first belt being wound around the first drive pulley and the first driven pulley , the first motor drives the first driving wheel to rotate, and then drives the first driven wheel to rotate through the first belt.
  • At least one boss corresponding to the at least one first belt is formed on the first driving wheel.
  • At least one boss corresponding to the at least one first belt is also formed on the driving pulley, and the first belt is wound on the corresponding bosses of the first driving pulley and the first driven pulley; and/or the output assembly includes at least one The second belt, the second driving wheel, the second driven wheel and the second motor, the at least one second belt is wound on the second driving wheel and the second driven wheel, the second motor drives the second driving wheel to rotate, and then passes The second belt drives the second driven wheel to rotate.
  • At least one boss corresponding to the at least one second belt is formed on the second driving wheel, and the second driven wheel is also formed with the at least one second belt.
  • the second belt is wound on the corresponding bosses of the second driving pulley and the second driven pulley.
  • the input assembly 1931 includes two first belts 19311 , a first driving pulley 19315 , a first driven pulley 19316 and a first motor 19317 .
  • the two first belts 19311 are wound around the first driving wheel 19315 and the first driven wheel 19316.
  • the first motor 19317 drives the first driving wheel 19315 to rotate, and then drives the first driven wheel 19316 to rotate through the first belt 19311.
  • two bosses 193151 are formed on the first driving wheel 19315, and two corresponding bosses (not shown) are also formed on the first driven wheel 19316.
  • a belt 19311 is wound on the bosses of the first driving pulley 19315 and the first driven pulley 19316, so that the two sides of the first belt are not stressed, so that the first belt can be avoided at low cost between the first driving pulley and the first driven pulley. Drift on the wheel.
  • the output assembly 1932 includes two second belts 19321 , a second drive pulley 19324 , a second driven pulley 19325 and a second motor 19326 .
  • the two second belts 19321 are wound around the second driving wheel 19324 and the second driven wheel 19325.
  • the second motor 19326 drives the second driving wheel 19324 to rotate, and then drives the second driven wheel 19325 to rotate through the second belt 19321.
  • two bosses are formed on the second driving wheel, and two corresponding bosses are also formed on the second driven wheel, and the second belt is wound on the bosses of the second driving wheel and the second driven wheel. , so that the two sides of the second belt are not stressed, so that the second belt can be prevented from drifting on the second driving pulley and the second driven pulley at low cost.
  • the width of the boss is less than the width of the belt, eg, the width of the boss is one-half or one-third the width of the belt.
  • step S2000 the slide storage box 300 containing the slides to be tested is placed on the first belt 19311 .
  • step S2002 the presence or absence of the slide storage cassette 300 on the first belt 19311 is detected by the first sensor 19312, for example.
  • the first sensor 19312 for example.
  • step S2004 the clamping assembly 1933 moves toward the first input position, and at this time the clamping assembly 1933 presses down the blocking assembly 1935, so that the blocking block 19351 is in the release position; after the clamping assembly 1933 moves to the first input position, Electromagnet 19331 is energized to pull clamping block 19332 taut.
  • step S2006 the first belt 19311 drives the slide storage box 300 thereon to move into the receiving space 19336 of the clamping assembly 1933 .
  • step S2008 the presence or absence of the slide storage cassette 300 in the receiving space 19336 is detected by the second sensor 19336, for example. If it is detected that the slide storage box 300 exists in the receiving space 19336, then go to step S2010, otherwise go to step S2008.
  • step S2010 when the electromagnet 19331 is powered off, the compression spring 54 provides a restoring force to push out the clamping block 19332, thereby clamping the slide storage box 300 in the receiving space 19336.
  • step S2012 for example, the third sensor 19337 detects whether the slide to be tested exists in the slide storage box 300.
  • step S2014 the clamping assembly 1933 is held in the first input position, and at this time, the slides to be tested in the slide storage box 300 are transported to the loading platform 1700 in the first position by, for example, the second slide transport mechanism 1922. in the third slide transfer channel.
  • step S2016 the clamping assembly 1933 drives the empty slide storage box 300 to move from the first input position to the first output position above the bracket 19341, and the spring 19353 makes the blocking block 19351 in the blocking position.
  • step S2018 the electromagnet 19331 is energized to tighten the clamping block 19332, so that the slide storage box 300 in the receiving space 19336 falls on the bracket 19341 in the second input position.
  • step S2020 the carriage 19341 moves down along the vertical guide rail to the second output position with the empty slide storage box 300.
  • step S2022 the fourth sensor 19322 detects whether or not the slide storage cassette is placed on the second belt 19321. If yes, in step S2024, the second belt 19321 is activated to drive the inserted slide storage box to move away from the bracket until the front end 19323 of the second belt 19321, so that the user can take out the empty slide storage box.
  • the present invention also provides a sample image analyzer, which includes a detection platform 1100 , an image capture device 1200 , an unloading mechanism 1400 , a first support member 1911 , a second support member 1921 and a loading mechanism 1300 .
  • a first transmission channel 1610 is provided in the detection platform, and the first transmission channel communicates the input side and the output side of the detection platform which are different from each other.
  • the image capturing device is used for capturing images of the sample in the glass slide located at the glass slide placement position of the detection platform.
  • the image analysis device is used to analyze the image captured by the image capture device.
  • the unloading mechanism is configured to unload the tested slides on the slide placement position of the detection platform to the output side of the detection platform through the first conveying channel.
  • the first support member is disposed on the output side of the detection platform and is used for carrying a slide recovery box for recovering the tested slides unloaded by the unloading mechanism.
  • the second support member is arranged on the input side of the detection platform and is used for carrying a slide storage box different from the slide recovery box, and the slide storage box is used for storing the glass slides to be tested.
  • the loading mechanism is configured to load the slide to be tested into the slide placement position in the first conveying channel from the input side of the detection platform.
  • the present invention also provides a method for transporting a slide, which is applied to a sample image analyzer.
  • the sample image analyzer includes a detection platform 1100, an image capture device 1200, an unloading mechanism 1400 and an unloading platform 1600.
  • the detection platform 1100 is provided with a first conveying channel 1110, and the first conveying channel 1110 is provided with a slide placement position, A second transfer channel 1610 is provided in the unloading platform 1600 .
  • the slide transport method includes steps S3000 and S3002.
  • step S3000 the detection platform 1100 is placed in a shooting state, and in the shooting state, the detection platform 1100 is moved relative to the image capturing device 1200, so that the image capturing device 1200 can detect the current slide on the slide placement position 11 to shoot.
  • step S3002 is performed.
  • the detection platform 1100 is placed in the loading and unloading state, and the detection platform 1100 is moved to the loading and unloading position in the loading and unloading state, in which the first conveying channel 1110 of the detection platform and the second conveying channel 1610 of the unloading platform are in the loading and unloading position. alignment, so that the unloading mechanism 1400 unloads the current slide 11 on the slide placement position into the second conveying channel 1610 of the unloading platform along the horizontal first direction X1.
  • the sample image analyzer further includes a loading mechanism 1300 and a loading platform 1700.
  • the loading platform 1700 is provided with a third conveying channel 1710 for buffering the slides 12 to be photographed, that is, the slides to be tested.
  • the slide transport method further includes step S3004, in which, in the loading and unloading position, that is, when the detection platform 1100 is located at the loading and unloading position, the first conveying channel 1110 of the detection platform is further connected to the loading platform.
  • the third transfer channel 1710 is aligned, so that the loading mechanism 1300 loads the slides 12 to be photographed in the third transfer channel to the slide placement position in the first transfer channel along the first direction X1.
  • steps S3002 and S3004 are performed simultaneously, that is, in the loading and unloading state, while the unloading mechanism unloads the current slide 11 along the first direction, the loading mechanism loads the slide 12 to be photographed along the first direction.
  • step S3002 includes: in the loading and unloading state, aligning the second transport channel 1610 of the unloading platform 1600 with the first transport channel 1110 of the detection platform 1100 , so that the unloading mechanism unloads the current slide 11 .
  • the slide conveying method further includes step S3006 , in which the second conveying of the unloading platform is performed.
  • the channel 1610 is aligned with the slide recovery box 200 to recover the current slide 11 in the second conveyance channel into the slide recovery box.
  • the slide transport method further includes step S3008 , in which the loading platform 1700 is moved to the slide receiving position so as to receive the slides 12 to be photographed.
  • step S3004 in the loading and unloading state, the loading platform is moved to a slide loading position different from the slide receiving position, so that the first conveying channel 1110 of the detection platform and the third conveying channel 1710 of the loading platform are moved. alignment, so that the loading mechanism 1300 loads the slide 12 to be photographed to the slide placement position.
  • step S3002 includes: the push assembly of the unloading mechanism pushes the current slide 11 to move away from the slide placement position along the first direction until the push assembly and the current slide completely pass through the slide placement position.
  • the slide transport method further includes step S3010, in which the push assembly is made to move in the opposite direction to the first slide.
  • the second direction of the orientation returns to the input side of the detection platform.
  • step S3010 during the return of the push assembly to the input side of the detection platform along the second direction, the push assembly is kept away from the glass slide placement position to avoid the glass slide on the detection platform, so as to prevent the glass to be photographed. Loading of wafers onto the inspection platform creates an obstacle.
  • step S3002 may include making the push assembly a first height or a first width (here, the width may be, for example, the minimum distance from the contact point of the push assembly and the glass slide to the central axis of the first channel) Pushing the current slide to move away from the slide placement position along the first direction, and step S3010 may include returning the push component to the input side of the detection platform along the second direction with a second height or a second width, wherein the second height The second height is greater than the first height or the second width is greater than the first width, especially the second height is at least one glass slide thickness higher than the first height.
  • the pushing assembly is restored from the second height to the first height or from the second width to the first width.
  • the slide transport method further includes step S3012 , in this step: the slide gripping device removes the slide to be photographed from the slide storage box 300 clip into the identification device; the identification device scans the identification code on the glass to be photographed to identify the identity information of the glass to be photographed; the glass holder device clamps the identified glass to be photographed to the third conveying channel of the loading platform , so that the loading mechanism loads the slides to be photographed in the third conveying channel to the slide placement position.
  • the disclosed device may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

提供一种玻片传送装置、玻片传送方法和样本图像分析仪,玻片传送装置(100)包括检测平台(103)、装载机构(102)、卸载机构(104)和控制器(101),检测平台(103)具有用于接纳玻片的玻片放置位,玻片承载用于检测的样本;装载机构(102)构造用于将玻片装载到检测平台(103)的玻片放置位上;卸载机构(104)构造用于卸载检测平台(103)的玻片放置位上的玻片;控制器(101)与装载机构(102)和卸载机构(104)通信连接并且配置用于:控制卸载机构(104)将已测玻片从玻片放置位沿第一方向卸载到检测平台(103)的输出侧;以及控制装载机构(102)从检测平台(103)的输入侧沿第一方向将下一待测玻片装载到玻片放置位上。

Description

玻片传送装置、玻片传送方法和样本图像分析仪
本发明要求于2020年6月30日提交的、申请号为PCT/CN2020/099199、名称为“玻片传送装置、玻片传送方法和样本图像分析仪”的PCT国际专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本发明总地涉及医疗设备技术领域,更具体地涉及一种玻片传送装置、玻片传送方法和样本图像分析仪。
背景技术
阅片机全称“细胞形态分析仪”是用来分析外周血、病原虫,骨髓,体液等涂片上细胞的仪器设备。在阅片之前需要制备具有样本涂层的镜检载玻片(后续简称样本涂片或玻片)。其核心模块是显微摄像系统(后续也称成像装置),将样本涂片上的细胞拍摄成彩色图像,并通过智能识别算法区分细胞的种类。
制作样本涂片可以人工手工推片和染色,或使用仪器设备自动推片并染色。制备样本涂片的仪器通常称作推片染色机,其具有样本采集,样涂抹或推展,及染色与清洗功能,从而实现涂片的制备。
为了兼顾人工手工制片,兼容推片染色机制片自动输送玻片,阅片机需要具有样本涂片进样模块,该模块既可以支持人工放置被测样本涂片(玻片)至阅片机;又可以支持由推片机自动将被测样本涂片传送到阅片机。进样模块支持单片模式也可以是多片模式,亦或是二者兼顾。
样本涂片通过输入模块将进样模块(也称装载机构)的样本涂片输送到仪器内部的显微摄像模块,完成细胞图像的拍摄和识别。当样本涂片阅片完成后,需要通过输出模块(也称卸载机构)输送至样本回收或暂存模块。目前存在以下常用的样本涂片进样和输出的方案,如图1所示,在第一种方案中,样本输入输出模块对接进样模块和样本回收模块,所述标本运送部件将所述标本收入部件接受的标本运送到所述标本摄像装置,将从此标本摄像装置接受的拍摄完毕的标本运送到所述标本收纳部件,在如图2所示的第二种方案中,进样模块和样本回收模块一体化,阅片完成后将样本原路放回。该两种方案因样本进样和样本回收均在一侧,由样本输入输出模块对接,所以会制约整机运行速度。另外,因为阅片完成的样本会有残留镜油,如上述第二种方案中,样本回收和进样用同一容器或盛放装置,导致容器内累计很多镜油,往复循环使用时会污染进样而未阅片的样本。
另外,该样本输入输出模块通常采用以下两种方式进行玻片的输入和输出,一种采用机械手夹取玻片,将玻片运送至显微镜下方,然后显微镜对玻片的样本进行检测。检测完成之后机械手再将玻片放回,然后再拿取另外一片玻片进行检测。另一种方式显微镜下方有检测平台,推送组件将待检测玻片推送至检测平台进行检测。待玻片检测完成之后,推送组件再将玻片推下平台。然后再装载下一个样本。以上两种方式在玻片检测前后均需要检测前将玻片放置到显微镜下以及检测完成后将玻片从显微镜下移走的过程。装载和卸载两个过程分别进行,耗时长,使得整机阅片速度低。
因此,鉴于上述问题的存在,本申请提供一种新的玻片传送装置、玻片传送方法和样本图像分析仪。
发明内容
为了解决上述问题中的至少一个而提出了本发明。具体地,本申请一方面提供一种玻片传送装置,所述玻片传送装置包括:
检测平台,具有用于接纳玻片的玻片放置位,所述玻片承载用于检测的样本;
装载机构,构造用于将所述玻片装载到所述检测平台的玻片放置位上;
卸载机构,构造用于卸载所述检测平台的玻片放置位上的玻片;
控制器,与所述装载机构和所述卸载机构通信连接并且配置用于:
控制所述卸载机构将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧;以及
控制所述装载机构从所述检测平台的输入侧沿所述第一方向将下一待测玻片装载到所述玻片放置位上。
在一个示例,所述控制器配置用于:
在控制所述卸载机构从所述玻片放置位卸载已测玻片期间控制所述装载机构将下一待测玻片装载到所述玻片放置位上。
在一个示例中,所述卸载机构具有能沿所述第一方向推动所述玻片放置位上的已测玻片的推送组件;
其中,所述控制器配置用于在控制所述卸载机构将已测玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧时,控制所述卸载机构的推送组件推动所述已测玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述已测玻片完全经过所述玻片放置位。
在一个示例中,所述卸载机构还包括驱动组件和避让组件,所述驱动组件构造用于驱动所述推送组件沿所述第一方向和反向于所述第一方向的第二方向在所述输入侧与所述输出侧之间来回移动,所述避让组件构造用于当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时使所述推送组件不与玻片放置位的下一待测玻片碰撞。
在一个示例中,所述避让组件构造用于:
在所述驱动组件驱动所述推送组件带动所述玻片放置位上的已测玻片沿所述第一方向从所述输入侧朝向所述输出侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第一高度;
在所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第二高度,其中,所述第二高度比所述第一高度至少高一个玻片的厚度。
在一个示例中,所述避让组件包括可摆动部件,其中,
所述驱动组件构造用于驱动所述推送组件和所述可摆动部件沿第一方向和反向于所述第一方向的第二方向在所述输入侧与所述输出侧之间来回移动;
所述可摆动部件包括摆动块和转动轴,所述推送组件固定在所述摆动块上,所述摆动块构造用于能围绕所述转动轴转动,并能带动所述推送组件在所述第一高度与所述第二高度之间切换;
所述驱动组件还构造用于:驱动所述推送组件沿所述第一方向运动时在所述第一高度推动玻片从检测平台的检测位卸载,以及驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时在所述第二高度不与玻片放置位的下一待测玻片碰撞。
在一个示例中,所述可摆动部件还包括限位部件,所述限位部件构造用于:在所述摆动块带动所述推送组件摆动至所述第一高度时限定所述推送组件维持在所述第一高度;以及在所述摆动块带动所述推送组件摆动至所述第二高度时限定所述推送组件维持在所述第二高度。
在一个示例中,所述卸载机构还包括提位件和回位件,
所述提位件构造用于:当所述可摆动部件沿所述第一方向移动时能够使所述可摆动部件无摆动通过;以及当所述可摆动部件沿所述第二方向移动并碰撞所述提位件时能够推动所述摆动块向上摆动,带动所述推送组件从所述第一高度提升到所述第二高度;
所述回位件构造用于:当所述摆动块沿所述第二方向运动经过所述玻片放置位之后能够使所述摆动块向下摆动,并能带动所述推送组件从所述第二高度回位至所述第一高度。
在一个示例中,所述避让组件包括:第一轨道和第二轨道,所述第二轨道的位置高度高于所述第一轨道的位置高度;切换机构,构造用于在卸载所述玻片时引导所述推送组件切换至所述第一轨道而处于所述第一高度,并沿着所述第一轨道从所述输入侧朝向所述输出侧移动以卸载所述玻片放置位上的所述已测玻片,以及在卸载完成后引导所述推送组件切换至所述第二轨道而处于所述第二高度,并沿着所述第二轨道不与所述玻片放置位的下一待测玻片碰撞地返回所述输入侧。
在一个示例中,所述切换机构包括与所述推送组件连接的传动部件,所述传动部件构造用于沿所述第一轨道和所述第二轨道移动,以使所述推送组件沿所述第一轨道和所述第二轨道移动。
在一个示例中,所述避让组件构造用于:当所述驱动组件驱动所述推送组件带动所述玻片放置位上的已测玻片沿所述第一方向从所述输入侧朝向所述输出侧移动时,使所述推送组件在水平方向上与所述玻片放置位沿所述第一方向的中轴线之间的距离为第一宽度;
当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件在水平方向上与所述玻片放置位的所述中轴线之间的距离为第二宽度,其中,所述第二宽度比第一宽度至少大一个玻片的宽度的一半。
在一个示例中,所述玻片传送装置还包括用于缓存待测玻片的缓存装置;所述装载机构用于将被放置到所述缓存装置上的待测玻片装载到所述检测平台的玻片放置位。
在一个示例中,所述玻片传送装置还包括用于缓存已测玻片的卸载平台,所述卸载机构构造用于:将已测玻片自所述检测平台的玻片放置位卸载到所述卸载平台上。
在一个示例中,所述样本包括血液、体液、骨髓、组织和尿沉渣中的一种。
本发明再一方面提供一种样本图像分析仪,所述样本图像分析仪包括:
成像装置,所述成像装置包括相机和透镜组,用于对位于检测平台的玻片放置位上的玻片中的样本进行拍摄;
玻片移动装置,用于使放置于所述玻片放置位上的玻片相对于所述成像装置移动,以使所述成像装置拍摄所述玻片的特定区域的图像;
图像分析装置,用于对所述图像进行分析;
前述的玻片传送装置,用于向检测平台装载待测的玻片,以及用于卸载位于所述检测平台的玻片放置位上的经所述成像装置拍摄的玻片。
在一个示例中,所述样本图像分析仪还包括:识别装置,用于识别待测玻片的身份信息;玻片夹取装置,用于将待测玻片从玻片收纳容器中夹取到所述识别装置,以及将已识别的待测玻片夹取到检测平台的玻片放置位,其中,所述玻片夹取装置为所述玻片传送装置的装载机构的构成部件。
在一个示例中,所述样本图像分析仪还包括:识别装置,用于识别待测玻片的身份信息;玻片夹取装置,用于将待测玻片从玻片收纳容器中夹取到所述识别装置,以及将已识别的待测玻片夹取至缓存装置;所述玻片传送装置的装载机构用于将待测玻片从所述缓存装置装载到所述检测平台的玻片放置位。
在一个示例中,所述玻片夹取装置构造为能翻转使得所述玻片夹取装置夹取的处于竖直方向的待测玻片翻转为处于水平方向。
本发明再一方面提供一种玻片传送方法,所述玻片传送方法包括:
控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上;
所述控制器控制成像装置对所述检测平台的玻片放置位上的第一玻片进行图像拍摄;
所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧;
所述控制器控制所述装载机构将第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上。
在一个示例中,所述控制器控制所述装载机构将第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,包括:
当所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧时,所述控制器控制所述装载机构将所述第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上。
在一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:
所述控制器控制所述卸载机构的推送组件推动所述第一玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述第一玻片完全经过所述玻片放置位。
在一个示例中,当所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧之后,所述方法还包括:
所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动。
在一个示例中,所述方法还包括:在所述控制器控制所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动期间,所述控制器控制所述卸载机构的避让组件使所述推送组件不与所述玻片放置位的所述第二玻片碰撞。
在一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:
在所述控制器控制所述卸载机构的驱动组件驱动所述推送组件推动所述玻片放置位上的所述第一玻片沿所述第一方向从所述输入侧朝向所述输出侧移动期间,所述避让组件使所述推送组件相对于所述玻片放置位的底部具有第一高度;
在所述控制器控制所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动期间,所述避让组件使所述推送组件相对于所述玻片放置位的底部具有第二高度,使得所述推送组件不与所述玻片放置位的所述第二玻片碰撞,其中,所述第二高度比所述第一高度至少高一个所述第二玻片的厚度。
在一个示例中,所述避让组件使所述推送组件相对于所述玻片放置位的底部具有第二高度,包括:
所述控制器控制所述卸载机构的驱动组件驱动所述避让组件的可摆动部件沿所述第二方向运动时碰撞所述卸载机构的推动部件,使所述推动部件推动所述可摆动部件的摆动块向上摆动;
当所述可摆动部件的摆动块带动所述推送组件摆动至所述第二高度时可摆动部件的限位部件限定所述推送组件维持在所述第二高度;
在所述控制器控制驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动期间,当所述推送组件沿所述第二方向完全经过所述玻片放置位继续沿所述第二方向移动遇到所述卸载机构的回位件时,所述回位件使所述可摆动部件的摆动块向下摆动并带动所述推送组件从所述第二高度切换至所述第一高度。
在一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:
所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿第二轨道移动;
当经过切换机构的第一切换部件时,所述第一切换部件引导所述推送组件切换至第一轨道而处于所述第一高度;
所述控制器控制所述驱动组件驱动所述推送组件沿着所述第一轨道继续朝向所述输出侧移动而碰触所述第一玻片时推动所述玻片放置位上的所述第一玻片卸载至所述输出侧。
在一个示例中,所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组 件沿所述第二方向从所述输出侧朝向所述输入侧移动,包括:
所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿第一轨道从所述输出侧朝向所述输入侧移动;
当经过所述切换机构的第二切换部件时,所述第二切换部件引导所述推送组件切换至所述第二轨道而处于所述第二高度;
所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿着所述第二轨道不与所述玻片放置位的下一待测玻片碰撞地返回所述输入侧。
在一个示例中,所述控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上之前,所述方法包括:
所述控制器控制玻片夹取装置将所述第一玻片从玻片收纳容器中夹取到识别装置;
所述控制器控制所述识别装置扫描所述第一玻片上的标识码以识别所述第一玻片的身份信息;
所述控制器控制所述玻片夹取装置将已识别的所述第一玻片夹取至缓存装置,以便所述装载机构将放置于所述缓存装置上的所述第一玻片从所述检测平台的输入侧沿所述第一方向装载到所述检测平台的玻片放置位上。
在一个示例中,所述控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上,包括:
所述控制器控制所述装载机构的玻片夹取装置将所述第一玻片从玻片收纳容器中夹取到识别装置;
所述控制器控制所述识别装置扫描所述第一玻片上的标识码以识别所述第一玻片的身份信息;
所述控制器控制所述玻片夹取装置将已识别的所述第一玻片装载到所述检测平台的玻片放置位上。
在本发明实施例的玻片传送装置、样本图像分析仪和玻片传送方法中,已测玻片的卸载和待测玻片的装载位于不同侧,尤其是在检测平台的两侧,有利于整机布局,提高用户操作的便捷性,同时由于输入和输出不同侧,玻片回收容器和玻片收纳容器为不同的容器,因此可以避免循环使用导致的镜油对未阅片的玻片的污染。另外,由于输入和输出不同侧,因此可以便于实现从检测平台卸载已测玻片的同时将下一待测玻片装载至检测平台,也即实现输入输出同步,当该玻片传送装置应用于阅片机时,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高阅片机单位时间内连续阅片的效率。
本发明又一方面提供一种样本图像分析仪,所述样本图像分析仪包括:
检测平台,在该检测平台中设有第一传送通道,所述第一传送通道具有用于支撑玻片的第一底部和用于对玻片两侧进行限位的第一侧壁,在所述第一传送通道的第一底部设有用于接纳玻片的玻片放置位,所述第一传送通道在所述检测平台的输出侧具有第一输出开口;
图像拍摄装置,用于对位于检测平台的玻片放置位上的玻片中的样本进行图像拍摄;
图像分析装置,用于对由所述图像拍摄装置拍摄的图像进行分析;
装载机构,构造用于从所述检测平台的输入侧将待装载玻片装载到所述第一传送通道中的玻片放置位;
卸载机构,构造用于推动在所述检测平台的玻片放置位上的待卸载玻片在所述第一传送通道中沿水平的第一方向移动,以便将该待卸载玻片从所述玻片放置位通过所述第一输出开口卸载到所述检测平台的输出侧。
本发明另一方面提供了一种样本图像分析仪,其特征在于,所述样本图像分析仪包括:
检测平台,在该检测平台中设有第一传送通道,所述第一传送通道连通所述检测平台的彼此不同的输入侧和输出侧;
图像拍摄装置,用于对位于检测平台的玻片放置位的玻片中的样本进行图像拍摄;
图像分析装置,用于对由所述图像拍摄装置拍摄的图像进行分析;
卸载机构,构造用于将所述检测平台的玻片放置位上的已测玻片通过所述第一传送通道卸载到所述检测平台的输出侧;
第一支撑部件,设置在所述检测平台的输出侧并且用于承载玻片回收盒,该玻片回收盒用于回收由所述卸载机构卸载的已测玻片;
第二支撑部件,设置在所述检测平台的输入侧并且用于承载不同于玻片回收盒的玻片收纳盒,该玻片收纳盒用于收纳待测玻片;
装载机构,构造用于从所述检测平台的输入侧将待测玻片装载到所述第一传送通道中的玻片放置位。
本发明另一方面又提供了一种玻片运送方法,应用于样本图像分析仪,该样本图像分析仪包括检测平台、图像拍摄装置、卸载机构和卸载平台,在所述检测平台中设有第一传送通道,在所述第一传送通道中设有玻片放置位,在所述卸载平台中设有第二传送通道;
所述玻片运送方法包括:
将所述检测平台置于拍摄状态,在所述拍摄状态下,使所述检测平台相对于所述图像拍摄装置相对运动,从而所述图像拍摄装置对位于所述玻片放置位上的当前玻片进行拍摄;
在所述图像拍摄装置完成对当前玻片的拍摄之后,将所述检测平台置于装卸状态,所述检测平台在所述装卸状态下运动至装卸位置并停止与所述片图像拍摄装置的相对运动,在该装卸位置中所述检测平台的第一传送通道与所述卸载平台的第二传送通道对准,从而所述卸载机构将所述玻片放置位上的当前玻片沿水平的第一方向卸载到所述卸载平台的第二传送通道中。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了一种常规的玻片传送装置的框图;
图2示出了另一种常规的玻片传送装置的框图;
图3示出了本申请一个实施例的玻片传送装置的框图;
图4示出了本申请一个实施例的玻片装载和玻片卸载同时进行时的示意图;
图5示出了本申请另一个实施例的玻片传送装置的框图;
图6示出了本申请一个实施例的玻片传送装置的俯视图;
图7示出了本申请一个实施例的装载机构的立体示意图;
图8示出了本申请一个实施例的玻片竖直放置的示意图;
图9示出了本申请一个实施例的玻片水平放置的示意图;
图10示出了本申请一个实施例的装载机构的进样方式的示意图;
图11示出了本申请另一个实施例的装载机构的进样方式的示意图;
图12示出了本申请再一个实施例的装载机构的进样方式的示意图;
图13示出了本申请又一个实施例的装载机构的进样方式的示意图;
图14示出了本申请一个实施例的卸载机构的卸载玻片的示意图;
图15示出了本申请另一个实施例的卸载机构的卸载玻片的示意图;
图16示出了本申请再一个实施例的卸载机构的卸载玻片的示意图;
图17示出了本申请另一个实施例的玻片装载和玻片卸载同时进行时的示意图;
图18示出了本申请一个实施例的卸载机构的示意图;
图19示出了本申请一个实施例的卸载机构的第一局部示意图;
图20示出了本申请一个实施例的卸载机构的第二局部示意图;
图21示出了本申请一个实施例的摆动块处于上极限位时的示意图;
图22示出了本申请一个实施例的摆动块处于下极限位时的示意图;
图23示出了本申请一个实施例的摆动块处于临界状态时的示意图;
图24示出了本申请一个实施例的卸载机构的提位件处的示意图;
图25示出了本申请一个实施例的卸载机构的可摆动部件沿第一方向经过提位件时的示意图;
图26示出了本申请一个实施例的卸载机构的可摆动部件沿第二方向经过提位件时的示意图;
图27示出了本申请一个实施例的卸载机构的可摆动部件向下摆动时的示意图;
图28示出了本申请一个实施例的卸载机构的示意图;
图29示出了本申请一个实施例的卸载机构的局部示意图;
图30示出了本申请一个实施例的传动部件从检测平台的输入侧朝向输出侧移动经过第一门板时的示意图;
图31示出了本申请一个实施例的传动部件沿第一轨道向输出侧移动经过第二门板的示意图;
图32示出了本申请一个实施例的传动部件从检测平台的输出侧向输入侧移动经过第二门板的示意图;
图33示出了本申请一个实施例的传动部件从检测平台的输出侧向输入侧移动经过第一门板的示意图;
图34示出了本申请一个实施例的卸载机构的各个机构之间的相对位置关系图;
图35示出了本申请一个实施例的传动部件位于初始位置时的立体示意图;
图36示出了本申请一个实施例的传动部件位于卸载起始位时的立体示意图;
图37示出了本申请一个实施例的传动部件从检测平台的输入侧朝向输出侧移动经过第一门板时的立体示意图;
图38示出了本申请一个实施例的传动部件从检测平台的输出侧朝向输入侧移动时在第二轨道上的运动轨迹的示意图;
图39示出了本申请一个实施例的传动部件从检测平台的输出侧朝向输入侧移动经过第二门板时的立体示意图;
图40示出了本申请一个实施例的传动部件从检测平台的输出侧朝向输入侧移动经过第一门板时的立体示意图;
图41示出了本申请一个实施例的水平方向实现避让时玻片传送装置的局部俯视图;
图42示出了本申请一个实施例的样本图像分析仪的框图;
图43示出了本申请一个实施例的玻片传送方法的流程图;
图44示出了本申请一个实施例的样本图像分析仪的外观示意图;
图45和图46以不同视角的示意透视图示出了本申请一个实施例的样本图像分析仪;
图47示出了本申请一个实施例的检测平台的示意透视图;
图48示出图47的检测平台的俯视图;
图49示出了本申请一个实施例的样本图像分析仪的示意俯视图;
图50示出了本申请一个实施例的卸载平台的示意透视图;
图51示出了本申请一个实施例的装载平台的示意透视图;
图52示出了本申请一个实施例的装载待测玻片的示意图;
图53示出本申请一个实施例的装载机构和卸载机构同步进行装载和卸载的示意图;
图54和图55示出了本申请一个实施例的通过桥接平台卸载玻片的示意图;
图56示出了本申请一个实施例的桥接平台的示意透视图;
图57和图58以不同视角的示意透视图示出了本申请一个实施例的玻片回收装置;
图59示出了本申请一个实施例的收纳盒传送装置的示意透视图;
图60示出了本申请一个实施例的输入组件和输出组件的示意透视图;
图61示出了本申请一个实施例的夹持组件的示意透视图;
图62示出了本申请一个实施例的阻挡组件的示意透视图;
图63示出了本申请一个实施例的升降组件的示意透视图;
图64示出了本申请一个实施例的输入组件的局部剖视图;
图65示出了本申请一个实施例的收纳盒传送装置的示意工作流程图;
图66至69示出了本申请不同实施例的玻片传送方法的示意流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
鉴于前述的样本输入模块和样本输出模块由于同侧输入输出,且输入与输出使用同一机械手或推送组件而导致的阅片机整机阅片效率低的问题,本发明提出一种玻片传送装置,该玻片传送装置包括:检测平台,具有用于接纳玻片的玻片放置位,所述玻片承载用于检测的样本;装载机构,构造用于将所述玻片装载到所述检测平台的玻片放置位上;卸载机构,构造用于卸载所述检测平台的玻片放置位上的玻片;控制器,与所述装载机构和所述卸载机构通信连接并且配置用于:控制所述卸载机构将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧;以及控制所述装载机构从所述检测平台的输入侧沿所述第一方向将下一待测玻片装载到所述玻片放置位上。本申请的玻片传送装置的装载机构将玻片从检测平台的输入侧将下一待测玻片装载到检测平台的玻片放置位上,而卸载机构将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧,输入侧和输出侧分别位于检测平台的不同侧,从而消除两者的位置约束,便于包括该玻片传送装置的样本图像分析仪(例如通过成像装置对检测平台的玻片放置位的血涂片进行拍摄的阅片机)的整机合理布局,提高用户操作的便捷性,同时由于输入和输出不同侧,玻片回收容器和玻片收纳容器为不同的容器,因此可以避免循环使用导致的镜油对未阅片的玻片的污染。进一步,由于输入和输出不同侧,因此可以便于实现从检测平台卸载已测玻片的同时将下一待测玻片装载至检测平台,也即实现输入输出同步,当该玻片传送装置应用于阅片机时,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高阅片机单位时间内连续阅片的效率。
为了彻底理解本申请,将在下列的描述中提出详细的结构和方法,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还 可以具有其他实施方式。
具体地,下面结合附图,对本申请的玻片传送装置、样本图像分析仪和玻片传送方法进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
作为示例,如图3所示,该玻片传送装置100包括检测平台103,检测平台103具有用于接纳玻片的玻片放置位,所述玻片承载用于检测的样本。玻片可以由例如玻璃等长方形板材构成,其大体位于中央的部位涂抹样本。样本可以是任意需要制备到玻片上进行显微镜观察的样本,例如样本可以包括血液、体液、骨髓、组织和尿沉渣中的一种。其中,涂抹有例如血液、体液、骨髓的玻片可以称为病理涂片,承载例如组织的玻片可以称为病理切片,样本为尿沉渣时,玻片可以为计数池/计数板。
可选地,玻片上可以印有样本的身份信息(例如试样号、日期、样本的身份信息的条形码等)。该值得注意的是,玻片放置位可以是检测平台的特定平面区域,或者,玻片放置位还可以是设置在检测平台特定区域的凹槽(该凹槽可以起到限位的作用),待测玻片可以放置于该凹槽内。
该检测平台103设置于成像装置的下方,以便于成像装置对检测平台的玻片放置位的样本进行拍摄。在一个示例中,该检测平台103还可以在驱动装置的驱动下相对成像装置移动,以使成像装置拍摄玻片的样本中特定区域的图像。
继续参考图3,玻片传送装置100还包括装载机构102、卸载机构104以及控制器101,其中,装载机构102构造用于将所述玻片装载到所述检测平台103的玻片放置位上,也即其作为样本输入模块,将玻片装载至检测平台103的玻片放置位,而卸载机构104构造用于卸载所述检测平台103的玻片放置位上的玻片,该玻片通常为已经过成像装置拍摄的已测玻片,而控制器101与所述装载机构104和所述卸载机构102通信连接并且配置用于:控制所述卸载机构104将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台103的输出侧;以及控制所述装载机构102从所述检测平台103的输入侧沿所述第一方向将下一待测玻片装载到所述玻片放置位上。由于输入侧和输出侧分别位于检测平台的不同侧,因此能够消除两者的位置约束,便于包括该玻片传送装置的例如阅片机的整机合理布局,提高用户操作的便捷性,同时由于输入和输出不同侧,玻片回收容器和玻片收纳容器必须使用不同的容器,因此可以避免循环使用导致的镜油对未阅片的玻片的污染。
在一个示例中,所述装载机构102与所述卸载机构104彼此独立,因此两者可以同时动作,使待测玻片的装载和已测玻片的卸载同时进行,提高玻片的运送效率。此外,装载机构102和卸载机构104可以具有各自的驱动装置,也可以具有同一个驱动装置。
在一个示例中,如图4所示,控制器102配置用于:在控制所述卸载机构104从检测平台的玻片放置位卸载已测玻片期间控制所述装载机构102将下一待测玻片装载到玻片放置位上。也就是说,如图4所示,玻片装载和玻片卸载同时进行时,卸载机构将已测的玻片11从检测平台的玻片放置位向输出侧卸载,例如卸载至用于暂存已测玻片的卸载平台,或者,直接卸载至玻片回收容器中,在卸载的同时,装载机构将下一待测的玻片12自输入侧向检测平台的玻片放置位装载,从而实现玻片卸载和玻片装置同时进行,提高玻片的运送效率,当该玻片传送装置应用于阅片机时,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高阅片机单位时间内连续阅片的效率。
在一个示例中,如图5所示,玻片传送装置可以包括用于缓存待测玻片的缓存装置或者说装载平台,所述装载机构用于将被放置到所述缓存装置上的待测玻片装载到所述检测平台的玻片放置位,或者,玻片传送装置可以包括用于容纳待测玻片的玻片收纳容器,例如玻片篮或者玻片盒等,所述装载机构用于将玻片收纳容器中的待测玻片直接装载到所述检测平台的玻片放置位。
在一个示例中,如图5所示,玻片传送装置可以包括用于缓存已测玻片的卸载平台,所述卸载机构构造用于将已测玻片自所述检测平台的玻片放置位卸载到所述卸载平台上,或者,玻片传送装置可以包括玻片回收容器,例如玻片篮或者玻片盒等,所述卸载机构构 造用于将已测玻片自所述检测平台的玻片放置位直接卸载到玻片回收容器。
在如5所示的玻片传送装置中,样本输出和输入位于检测平台的不同侧,待测玻片和已测玻片可以放置于不同的容器中,因此,能够避免对待测玻片的污染。
在一个具体示例中,如图6所示,该玻片传送装置包括检测平台1、卸载平台2、装载机构4、卸载机构3、装载平台6,其中装载平台6的缓存装置用于缓存待测玻片,待检测的玻片提前放置到该装载平台上进行等待,装载机构4用于将被放置到缓存装置上的待测玻片装载到所述检测平台1的玻片放置位,以通过成像装置对玻片中的样本进行拍摄和检测,卸载平台2用于缓存已测玻片,卸载机构3构造用于将已测玻片自所述检测平台的玻片放置位卸载到所述卸载平台2上,当玻片放置位的样本检测完成后,卸载机构3将检测平台的玻片放置位上的已测玻片卸载到卸载平台2,同时,在该卸载的过程中,装载机构4将装载平台6上的下一待测玻片装载至检测平台1的玻片放置位,装载机构4和卸载机构3同步动作实现已测玻片和下一待测玻片的同步卸载和装载,提高阅片速度。
在一个示例中,继续如图6和图7所示,装载机构4包括进样组件、例如推爪5和第一驱动组件41,进样组件构造用于将放置于缓存装置或玻片收纳容器中的待测玻片装载至检测平台,装载机构的第一驱动组件41用于驱动进样组件例如推爪5沿第一方向和反向于第一方向的第二方向往复运动,从而将玻片送至检测平台的玻片放置位,例如将玻片从输入侧的装载平台6沿第一方向送至检测平台的玻片放置位,而玻片装载完成后,再沿第二方向回到装载初始位等待装载下一待测玻片。第一驱动组件41可以包括电机和同步带,电机驱动同步带运动的同时,同步带带动推爪5运动。
在其他示例中,装载机构4的进样组件还可以通过其他类型的移动玻片的装置实现,例如,进样组件还可以为机械手、拨爪、推板等,优选是推动玻片水平移动的部件。
在一个示例中,继续如图6,卸载机构3具有能沿第一方向推动检测平台1的玻片放置位上的已测玻片的推送组件,例如拨爪7,卸载机构3通过第二驱动组件驱动推送组件沿第一方向推动已测玻片卸载至卸载平台,可以将检测平台至卸载平台之间的路径为沿第一方向的输出路径。
在其他示例中,卸载机构3的推送组件还可以通过其他类型的移动玻片的装置实现,例如,推送组件还可以为机械手、推爪、推板等,优选是推动玻片水平移动的部件。
在一些实施例中,如图6所示,在检测平台1中设有第一传送通道110,玻片放置位设置在该第一传送通道110中,第一传送通道110具有相对设置的第一输入开口111和第一输出开口112。第一传送通道110直线地且与第一方向X1平行地延伸并且贯穿检测平台的输入侧和输出侧。
在一个示例中,检测平台1的底部被构造为用于支撑玻片的承托件,第一传送通道110被构造为在该承托件中开设的第一凹槽。在其他实施例中,第一传送通道110也可以由从底部向上延伸的两个侧壁限定而成。
在此,玻片能在该第一传送通道中例如水平地运动。例如,装载机构4被构造成,通过第一输入开口111将待测玻片12从检测平台1的输入侧沿第一方向X1推动到第一传送通道110中,直至待测玻片12到达玻片放置位,即直至待测玻片12完全占据玻片放置位。而卸载机构3被构造成推动已测玻片11在第一传送通道110中沿第一方向X1运动,从而将已测玻片11通过第一输出开口112从玻片放置位卸载到检测平台的输出侧。
在一些实施例中,如图6所示,在设置在检测平台1的输出侧的卸载平台2中设有第二传送通道201,该第二传送通道被构造用于缓存已测玻片11。第二传送通道201具有第二输入开口202。此时,检测平台1和卸载平台2被构造成能在卸载已测玻片11时配合作用,使得第一传送通道110的第一输出开口112和第二传送通道201的第二输入开口202对准,从而卸载机构3能沿第一方向X将已测玻片11通过第一输出开口112和第二输入开口202从玻片放置位推动到第二传送通道201中。也就是说,在卸载已测玻片11时,检测平台1的第一传送通道110和卸载平台2的第二传送通道201能够彼此对准,例如彼此 同轴对准并且在高度上对准,使得卸载机构3能沿第一方向X推动已测玻片11在由第一传送通道110和第二传送通道201形成的通道中运动。
在一些实施例中,第二传送通道201直线地延伸。
在一个示例中,卸载平台2的底部同样被构造为用于支撑玻片的承托件,第二传送通道201被构造为在该承托件中开设的第二凹槽。在其他实施例中,第二传送通道201也可以由从底部向上延伸的两个侧壁限定而成。
在一些实施例中,第二传送通道201还可以具有与第二输入开口202相对的第二输出开口203,以便在第二传送通道201中的玻片能够被卸载。
在一些实施例中,如图6所示,在设置在检测平台1的输入侧的装载平台6中设有第三传送通道610,该第三传送通道被构造用于缓存待测玻片12并且具有第三输出开口611。此时,检测平台1和装载平台6被构造成能在装载待测玻片12时配合作用,使得第一传送通道110的第一输入开口111和第三传送通道610的第三输出开口611对准,从而装载机构4能沿第一方向X1将缓存在第三传送通道610中的待测玻片12通过第三输出开口611和第一输入开口111推动到第一传送通道110中,直至待测玻片12到达玻片放置位。也就是说,在装载待测玻片12时,检测平台1的第一传送通道110和装载平台6的第三传送通道610能够彼此对准,例如彼此同轴对准并且在高度上对准,使得装载机构4能沿第一方向X推动待测玻片12在由第一传送通道110和第三传送通道610形成的通道中运动。
在优选的实施例中,检测平台1、卸载平台2和装载平台6被构造成能在卸载已测玻片并装载待测玻片时配合作用,使得第一传送通道110、第二传送通道201和第三传送通道610同时对准以形成总传送通道,从而卸载机构3和装载机构4能沿第一方向X1同时推动已测玻片11和待测玻片12在所述总传送通道中移动。
进一步优选的是,控制器被配置用于这样控制装载机构4和卸载机构3,使得待测玻片12在装载时以及已测玻片11在卸载时在部分时间上同时位于第一传送通道110中,如图4所示。
在图6所示的实施例中,通过形成玻片传送通道以水平推动的方式运输玻片,便于简化运输机构的设计,能够采用简单的使用机械力的推送组件来推动玻片水平移动。此外,通过以推动的方式运送玻片,即以推动方式卸载和装载玻片,能够将卸载机构和装载机构都设置在检测平台相对于玻片放置位的上游一侧,充分利用上游的空间,减少对本已拥挤的检测平台下游空间的占用,有利于减少样本图像分析仪的整机尺寸。
在装载机构4对玻片进行装载和卸载机构3对玻片进行卸载时,玻片通常可以具有如图8所示的竖直放置方式和图9所示的水平放置方式,玻片的放置方式不同,玻片盛放容器(例如待测玻片的玻片收纳容器和已测玻片的玻片回收容器)、装载机构3的进样方式、卸载机构3的玻片输出方式也有所不同。
本发明实施例的装载机构可以具有多种进样方式(也即装载方式),包括但不限于以下所列举的方式,在一个示例中,如图10所示,盛放有待测玻片的玻片收纳容器中的待测玻片竖直放置,装载机构进样组件例如为机械手构造用于夹取一个待测玻片并向上移动将待测玻片从玻片收纳容器中夹出,并构造用于当待测玻片完全离开玻片收纳容器后通过翻转机构翻转机械手,以使机械手所夹持的待测玻片涂抹有样本的一面朝上,再将该翻转后的待测玻片放置于玻片输入模块(例如装载平台),装载机构再将放置于玻片输入模块的待测玻片装载至检测平台,该检测平台可以为显微摄像检测平台,也即用于对待测玻片进行显微摄像的检测平台。或者,如图12所示,也可以不设置玻片输入模块,机械手夹取一个待测玻片并向上移动将待测玻片从玻片收纳容器中夹出,并构造用于当待测玻片完全离开玻片收纳容器后通过翻转机构翻转机械手,以使机械手所夹持的待测玻片涂抹有样本的一面朝上,再将该翻转后的待测玻片直接放置于检测平台。
在另一个示例中,如图11所示,盛放有待测玻片的玻片收纳容器中的待测玻片水平放置,装载机构进样组件例如为推爪,构造用于将一个待测玻片推送至玻片输入模块(例如 装载平台),装载机构再将放置于玻片输入模块的待测玻片装载至检测平台,该检测平台可以为显微摄像检测平台,也即用于对待测玻片进行显微摄像的检测平台。或者,如图13所示,也可以不设置玻片输入模块,装载机构进样组件例如为推爪直接将待测玻片推送至检测平台。
本发明实施例的卸载机构可以具有多种卸载玻片的方式,包括但不限于以下所列举的方式,在一个示例中,如图14所示,已测玻片需要竖直放置于玻片回收容器,则卸载装置的机械手夹取卸载至玻片输出模块(例如卸载平台)的已测玻片,并通过翻转机构翻转机械手,使其夹着的已测玻片调整为竖直,之后将竖直的已测玻片放置于玻片回收容器中,其中放置于玻片输出模块的已测玻片可以是通过机械手从检测平台的玻片放置位夹取到该玻片输出模块,或者,也可以是通过卸载机构的例如拨爪的推送组件推送至玻片输出模块。
在另一个示例中,用于盛放已测玻片的玻片回收/暂存模块(例如玻片回收容器)的收纳槽在水平方向延伸,使得其仅能接收水平的已测玻片,容器中的待测玻片水平放置,如图15所示,卸则载机构的例如拨爪的推送组件推送已测玻片至玻片输出模块,再将已测玻片推送至玻片回收/暂存模块,或者,还可以是如图16所示,卸则载机构的例如拨爪的推送组件直接推送已测玻片至玻片回收/暂存模块。
在一个示例中,所述卸载机构具有能沿所述第一方向推动所述玻片放置位上的已测玻片的推送组件;其中,所述控制器配置用于在控制所述卸载机构将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧时,控制所述卸载机构的推送组件推动所述已测玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述已测玻片完全经过所述玻片放置位(或者越过所述玻片放置位),如图17所示,在推送组件的推动下已测玻片11已经沿第一方向移动离开检测平台的玻片放置位,直至所述推送组件连同所述已测玻片11完全经过检测平台的玻片放置位,当已测玻片11在推送组件的推动下卸载至玻片回收容器或卸载平台时,推送组件需要从输出侧沿第二方向回到检测平台的输入侧(推送组件的回程运动轨迹如图17中的虚线箭头所示),以等待卸载下一已测玻片。在此,本发明实施例的卸载机构还包括驱动组件,所述驱动组件构造用于驱动所述推送组件沿所述第一方向和反向于所述第一方向的第二方向在检测平台的输入侧与检测平台的输出侧之间来回移动。
然而在推送组件的回程过程中,检测平台的玻片放置位已装载下一待测玻片12(如图17所示)或者下一待测玻片12正在被装载到检测平台的玻片放置位上(如图4所示),如果不进行任何避让,推送组件会碰撞下一待测玻片12,而使得检测和玻片运送过程不能顺利进行,甚至损坏待测玻片,因此,鉴于该问题的存在,本发明实施例的卸载机构还包括避让组件,所述避让组件构造用于当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时使所述推送组件不与玻片放置位的下一待测玻片碰撞,例如推送组件沿第二方向经过检测平台的玻片放置位时,其可以从检测平台上方的成像装置例如镜头的下方经过,从而不与玻片放置位的下一待测玻片碰撞,或者,还可以从玻片放置位的下一待测玻片的外侧经过,从而不与玻片放置位的下一待测玻片碰撞。本领域技术人员可以理解,如果对速度要求不高的情况下,可以等推送组件将已阅玻片卸载再回到检测平台的输入侧后,再将下一待测玻片运送到玻片放置位,这样也可以不设置避让组件。
在一个示例中,所述避让组件构造用于:在所述驱动组件驱动所述推送组件带动所述玻片放置位上的已测玻片沿所述第一方向从检测平台的输入侧朝向检测平台的输出侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第一高度,在所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第二高度,其中,所述第二高度比所述第一高度至少高一个玻片的厚度,从而实现在高度方向上避让检测平台的玻片放置位上的待测玻片,其中,玻片放置位可以是检测平台的特定平面区域,则第一高度和第二高度可以为例如拨爪的推送 组件到检测平台的上表面的距离,或者,玻片放置位还可以是设置在检测平台特定区域的凹槽(该凹槽可以起到限位的作用),待测玻片可以放置于该凹槽内,则第一高度和第二高度可以为例如拨爪的推送组件到凹槽底面的距离。
下面,参考图18至图27对本发明实施例中的一种包括避让组件的卸载机构20进行描述。
作为示例,如图18所示,卸载机构20包括避让组件、驱动组件和推送组件23,其中,避让组件可以包括可摆动部件22,驱动组件构造用于驱动所述可摆动部件22和所述推送组件23沿第一方向和反向于所述第一方向的第二方向运动,所述推送组件23构造用于沿所述第一方向推动检测平台的玻片放置位上的玻片,所述玻片承载用于检测的样本,所述样本可以是任意需要制备到玻片上进行显微镜观察的样本,例如样本可以包括血液、骨髓、组织和尿沉渣中的一种或几种。推送组件23可以是任意的能够推动玻片移动的组件,例如推送组件23可以包括拨爪、机械手等。
在一个示例中,如图19所示,可摆动部件22可以包括摆动块221和转动轴222,推送组件23固定在所述摆动块221上,所述摆动块221构造用于能围绕所述转动轴222转动并带动所述推送组件23在第一高度与高于所述第一高度的第二高度之间切换,其中,所述第二高度比所述第一高度至少高一个玻片的厚度,当在卸载完成后推送组件沿第二方向移动经过检测平台的玻片放置位时,推送组件处于所述第二高度,因此,不会和检测平台的玻片放置位的玻片相碰撞,能够顺利回到输入侧等待下载下一玻片,在本文中,第一高度和第二高度均是指的推送组件相对于检测平台的玻片放置位的底部的高度,例如推送组件的重心相对于检测平台的玻片放置位的底部的高度。
推送组件23可以通过任意适合的方式固定连接于摆动块221上,例如,可以通过螺接、焊接等方式连接于摆动块上,或者,摆动块221还可以和推送组件23一体成型。
值得注意的是,玻片放置位可以是检测平台的特定平面区域,推送组件相对于检测平台的玻片放置位的底部的高度,也即相对于该特定平面区域的高度,或者,玻片放置位还可以是设置在检测平台特定区域的凹槽,推送组件相对于检测平台的玻片放置位的底部的高度,也即相对于凹槽的底部的高度。
在一个示例中,如图18和图19所示,卸载机构20包括固定件21和导轨24,摆动块221通过转动轴222安装于所述固定件21上,可选地,转动轴222的轴线位于水平面内且与导轨24的延伸方向垂直。所述固定件21可移动地安装于所述导轨24上,例如导轨24可以为直线导轨,导轨24上设置有滑块,固定件21安装于导轨24的滑块上,在驱动组件的驱动下,可以实现固定件21沿导轨24来回的直线运动,进而也是的安装于固定件21上的可摆动部件等随着固定件21也沿着导轨24来回的直线运动。其中,固定件21可以为固定板或者固定块等结构,该固定件21的底部可以安装于导轨24的滑块上,该固定件21的形状可以根据实际装置需要合理设定。
驱动组件可以是任意能够驱动所述可摆动部件22和所述推送组件23沿第一方向和反向于所述第一方向的第二方向运动的驱动装置,例如,如图18所示,驱动组件包括电机26和同步带25,所述固定件21连接所述同步带25,所述电机26驱动所述同步带25沿所述第一方向和所述第二方向运动,所述同步带25驱动所述固定件21带动可摆动部件22和所述推送组件23在导轨24上沿所述第一方向和所述第二方向运动。
进一步,驱动组件还构造用于:驱动所述推送组件23沿所述第一方向运动时在所述第一高度上自所述检测平台的输入侧推动玻片从检测平台的玻片放置位卸载到所述检测平台的输出侧,以及驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时在所述第二高度上不与所述玻片放置位的待测玻片碰撞,在本文中,检测平台的输出侧和输入侧分别位于检测平台相对的两侧,因此,当驱动组件驱动推送组件沿第二方向从输出侧朝向输入侧移动时会经过检测平台的玻片放置位,而当推送组件经过检测平台的玻片放置位时,由于摆动块带动推送组件摆动至第二高度,在所述第二高度上推送组件不与所 述玻片放置位的待测玻片碰撞,因此,能够顺利经过检测平台的玻片放置位而回到输入侧,以便卸载下一玻片。
在一个示例中,如图21所示,摆动块221通过转动轴222摆动至上极限位置时,带动推送组件23抬起至第二高度,当摆动块221通过转动轴222摆动至下极限位置时,带动推送组件23回到第一高度。
在一个示例中,如图20所示,所述可摆动部件22还包括限位部件28,所述限位部件28构造用于在所述摆动块221带动所述推送组件23摆动至所述第一高度时限定所述推送组件23维持在所述第一高度,如图22所示,以在卸载玻片时使推送组件维持在第一高度而推动玻片移动而从玻片放置位卸载至输出侧,实现对玻片的卸载;以及在所述摆动块221绕转动轴222旋转带动所述推送组件23摆动至所述第二高度时限定所述推送组件23维持在所述第二高度,如图21所示,以在推送组件从输出侧返回输入侧经过玻片放置位时使推送组件的最低端位于玻片放置位的待测玻片的上方,而不会和其发生碰撞,从而避开玻片放置位顺利回到输入侧,等待下一玻片的卸载。
在一个示例中,如图20所示,所述限位部件28包括弹性件,其中,所述可摆动部件22还包括第一固定销271和第二固定销272,其中,所述弹性件例如拉伸弹簧的一端连接第一固定销271,第一固定销271固定安装于所述固定件21上,所述弹性件的另一端连接所述第二固定销272,所述第二固定销272安装于所述摆动块221上。
在一个示例中,第一固定销271位于所述第二固定销272的上方,例如,所述第二固定销272相对于摆动块221的底端的高度高于第一固定销271相对摆动块221的底端的高度。
在一个示例中,所述弹性件包括拉伸弹簧,所述拉伸弹簧还构造用于:在所述摆动块带动所述推送组件23摆动至第三高度时所述拉伸弹簧的轴线(如图23中虚线所示)与所述转动轴的轴线相交,此时摆动块在临界状态,如图23所示,拉伸弹簧的轴线与摆动块的转动轴线处于同一平面,拉伸弹簧的轴线与所述转动轴的轴线相交,使得拉伸弹簧产生的力矩刚好为零,处于理论死点(也即临界状态),摆动块在外力作用下向上摆过临界状态就会在拉伸弹簧拉力下稳定在上极限位,从而使得推送组件稳定在第二高度,当摆动块向下摆过临界状态就会稳定在下极限位,从而使得推送组件稳定在第一高度。
在一个示例中,所述第三高度介于所述第一高度和所述第二高度之间,在所述摆动块221带动所述推送组件23摆动至第三高度时所述转动轴222位于所述第一固定销271与所述第二固定销272之间,也即转动轴的轴线与第一固定销271和第二固定销272的连线相交。
在另一个示例中,还可以通过磁性部件实现限位部件的功能,例如,限位部件可以包括第一磁性部件(未示出),例如磁铁,所述第一磁性部件用于使所述摆动块带动所述推送组件摆动至所述第一高度并限定所述推送组件维持在所述第一高度;进一步,所述限位部件还可以包括第二磁性部件,例如磁铁,所述第二磁性部件用于使所述摆动块带动所述拨爪摆动至所述第二高度位置并限定所述拨爪位置维持在所述第二高度位置,其中,限位部件还可以只包括第一磁性部件和第二磁性部件中的一个,例如,限位部件还可以只包括第二磁性部件,而不包括第一磁性部件,摆动块靠自身重力摆动至下极限位置。
其中,当摆动块开始从上极限位置向下极限位置摆动时,第一磁性部件邻近下极限位置设置,例如设置在卸载机构的底板上邻近摆动块的位置,当摆动块摆动到临界状态时,通过第一磁性部件对摆动块的磁力吸引作用,使得摆动块能够摆动到下极限位置而带动所述推送组件摆动至所述第一高度并限定所述推送组件维持在所述第一高度。
其中,当摆动块开始从下极限位置向上极限位置摆动时,第二磁性部件邻近上极限位置设置,当摆动块摆动到临界状态时,通过第二磁性部件对摆动块的磁力吸引作用,使得摆动块能够继续摆动到上极限位置而带动所述推送组件摆动至所述第二高度并限定所述推送组件维持在所述第二高度。
进一步,卸载机构20还包括提位件,所述提位件构造用于:当可摆动部件沿所述第一方向运动时能够使所述可摆动部件特别是摆动块无摆动通过,或者,使可摆动部件例如摆动块的摆动幅度小于阈值幅度,保证推送组件的抬高幅度小于一个玻片的厚度,从而使推送组件仍然能够推动玻片卸载到输出侧。
在一个示例中,提位件还构造用于:当所述可摆动部件沿所述第二方向运动并碰撞所述提位件时能够推动所述摆动块向上摆动,带动所述推送组件从所述第一高度提升到所述第二高度,以使推送组件从输出侧向输入侧移动时,能够不与检测平台的玻片放置位上的待测玻片碰撞。
提位件可以是任意能够实现上述功能的结构,例如,如图24所示,所述提位件包括单向挡块29,所述单向挡块29的固定端通过旋转轴292安装于卸载机构20的底板211上,所述单向挡块29的自由端搭靠在底板211上。可选地,单向挡块29具有向上凸出的突出部291,所述单向挡块29构造用于:如图25所示,当所述摆动块221沿第一方向经过所述突出部291时推动所述单向挡块29绕所述旋转轴292旋转,例如顺时针旋转一定角度,具体地,固定于摆动块221上的第二固定销272碰撞突出部291从而推动单向挡块29绕所述旋转轴292旋转,使得单向挡块29的自由端向上抬起离开底板,并使突出部291的位置降低,从而使得第二固定销通过,推送组件23继续进行玻片的卸载。
示例性地,卸载机构20的底板211主要起到支撑作用,例如导轨、固定件、可摆动部件和推送组件等均可以位于其上方,而例如电机等部件则可以固定于底板的下方。
在一个示例中,所述单向挡块29的自由端具有横向凸起293,单向挡块29的自由端通过该横向凸起搭靠在底板211上,该横向凸起可以和单向单块一体成型,或者该横向凸起通过例如焊接或者螺接的方式固定于自由端。
当可摆动部件沿第一方向通过该例如单向挡块29的提位件后,例如单向挡块29的提位件可以通过自身重力实现复位,例如可以设计单向挡块的重心,使其在摆动块通过并摆动起来后,在其旋转角度范围内能够靠自身重力复位,或者,也可以通过例如扭簧或拉伸弹簧等复位件实现自动复位,以起到单向阻挡的作用。
在一个示例中,如图24所示,在摆动块221的与所述推送组件23相对的一侧还设置有限位件210,该限位件210固定于固定件21上,限位件210可以通过例如焊接、螺接的方式固定于固定件21上,或者还可以和固定件21一体成型,该限位件210用于当摆动块上的第二固定销272碰撞突出部291使,限定摆动块的摆动方向使其不发生摆动,或者使可摆动部件例如摆动块的摆动幅度小于阈值幅度,保证推送组件的抬高幅度小于一个玻片的厚度,从而使推送组件仍然能够推动玻片卸载到输出侧。
在一个示例中,如图26所示,当所述可摆动部件沿所述第二方向运动经过所述单向挡块29的突出部291时能够推动所述摆动块向上摆动,具体地,当所述可摆动部件沿所述第二方向运动经过所述单向挡块29的突出部291时,固定于摆动块上的第二固定销272碰撞突出部291,由于单向挡块29的自由端受到其下方的底板的阻挡作用,使得单向挡块29不会饶旋转轴292旋转,因此该突出部291给第二固定销272向上推力,从而能够推动所述摆动块向上摆动,当摆动块摆动到临界状态时,由于限位部件例如拉伸弹簧或者第二磁性部件的作用,使得摆动块能够继续向上摆动到上极限位置,从而带动推送组件摆动至第二高度并维持在第二高度。可选地,所述旋转轴292的轴线与第一方向垂直并平行于卸载机构的底板。
在一个示例中,如图27所示,卸载机构20还包括回位件212,所述回位件212构造用于:当所述摆动块221沿所述第二方向运动经过所述玻片放置位之后能够使所述摆动块221向下摆动并带动所述推送组件23从所述第二高度切换至所述第一高度,以使推送组件能够用于下一玻片的卸载。
在一个示例中,回位件212包括阻挡板,所述阻挡板构造用于:当所述摆动块221沿所述第二方向运动到所述阻挡板处时撞击所述摆动块221的上部使所述摆动块向下摆动, 使摆动块向下越过临界状态,摆动到下极限位置,如图22所示,从而带动推送组件23回位到第一高度,以使推送组件能够用于下一玻片的卸载。
卸载机构20其无需增加额外动力,其通过例如可摆动部件的摆动实现卸载过程(也即沿第一方向移动)和回程(也即沿第二方向从输出侧回到输入侧)时执行推送组件的空间位置变化,从而在回程时避让检测平台的玻片放置位的待测玻片,保证对待测玻片的检测顺利进行,并且有利于实现卸载机构和其他机构(例如装载装置)并行动作,节约流程时间。
在另一个示例中,卸载机构还可以实现为如图28至图40所示的卸载机构30的结构。
下面参考图28至图40所示的卸载机构30的结构进行描述。
作为示例,如图28所示,本申请的卸载机构30包括推送组件31,用于卸载检测平台的玻片放置位上的玻片,其中,所述玻片承载用于检测的样本,所述样本可以是任意需要制备到玻片上进行显微镜观察的样本,例如样本可以包括血液、骨髓、组织和尿沉渣中的一种或几种。推送组件31可以是任意的能够推动玻片移动的组件,例如推送组件31可以包括拨爪、机械手等。
检测平台具有相对设置的输入侧和输出侧,其中,推送组件卸载检测平台的玻片放置位上的玻片,也即推送组件自检测平台的输入侧推动检测平台的玻片放置位上的玻片离开玻片放置位而卸载到检测平台的输出侧,推送组件在完成卸载后还需从输出侧返回到输入侧,以等待卸载下一玻片。
在一个示例中,继续如图28所示,卸载机构30包括避让组件,避让组件包括轨道机构,该轨道机构可以包括第一轨道381和第二轨道382,其中,所述第二轨道382的位置高度高于所述第一轨道381的位置高度,也即,其中所述第二轨道382相对检测平台的玻片放置位的底部的高度高于所述第一轨道381相对所述玻片放置位的底部的高度。
值得注意的是,玻片放置位可以是检测平台的特定平面区域,第一轨道381和第二轨道382相对检测平台的玻片放置位的底部的高度,也即相对于该特定平面区域的高度,或者,玻片放置位还可以是设置在检测平台特定区域的凹槽,第一轨道381和第二轨道382相对检测平台的玻片放置位的底部的高度,也即相对于凹槽的底部的高度。
在一个示例中,避让组件还包括切换机构,切换机构构造用于在卸载所述玻片时引导所述推送组件切换至所述第一轨道而使推送组件相对所述玻片放置位的底部具有第一高度,并沿着所述第一轨道从检测平台的输入侧朝向所述检测平台的输出侧移动以卸载所述玻片放置位上的所述玻片,以及在卸载完成后引导所述推送组件切换至所述第二轨道而相对所述玻片放置位的底部具有第二高度,并不与所述玻片放置位的下一待测玻片碰撞地从所述输出侧返回所述输入侧,实现卸载过程(也即从检测平台的输入侧向输出侧移动)和回程(也即从输出侧回到输入侧)时执行推送组件的空间位置变化,在卸载过程中使推送组件处于第一高度以卸载所述玻片放置位上的所述玻片,在回程时使推送组件处于第二高度从而在回程时避让检测平台的玻片放置位的待测玻片,保证对待测玻片的检测顺利进行,并且由于回程过程中不需要检测平台避让,有利于实现卸载机构和其他机构(例如装载机构)并行动作,节约流程时间。
第一高度和第二高度之间的高度差取决于第一轨道和第二轨道之间的高度差,可选地,所述第二高度比所述第一高度高至少一个玻片的厚度,通过这样的设置可以保证推送组件处于第二高度时可以可以位于玻片放置位的玻片的上方,而不会和玻片碰撞。
上述切换机构可以通过任意适合的方式实现,在本发明一个实施例中,如图28所示,切换机构可以包括与所述推送组件31连接的传动部件36,该传动部件36可以是滚轮,或者其他能够沿第一轨道381和第二轨道382移动的部件,所述传动部件构造36用于能够沿所述第一轨道381和所述第二轨道382移动,以使所述推送组件31沿所述第一轨道381和所述第二轨道382移动,从而使推送组件31沿第一轨道移动时处于第一高度从而卸载玻片放置位上的玻片,以及使推送组件31沿第二轨道移动时处于第二高度从而在返回输 入侧时避开玻片放置位上的待测玻片。
在一个示例中,还包括:上下移动构件,用于上下升降所述传动部件36和所述推送组件31,例如,在传动部件从第一轨道切换至第二轨道时,上下移动构件上升所述传动部件36和所述推送组件31,而在传动部件36从第二轨道切换至第一轨道时,上下移动构件下降所述传动部件36和所述推送组件31。
上下移动构件可以为任意能够实现上下升降所述传动部件36和所述推送组件31的结构,在一个示例中,所述上下移动构件可以包括浮动部件33和上下移动部件35,所述推送组件31安装于所述浮动部件33上,所述传动部件36安装于所述浮动部件33上,所述浮动部件33经所述上下移动部件35带动而上下移动,以带动所述推送组件31和所述传动部件36上下移动。
在一个示例中,如图28所示,卸载机构30还包括固定部件34和导轨37,所述固定部件34可移动地与所述导轨37相连。进一步,卸载机构30还包括驱动组件(未示出),该驱动组件可以用于驱动固定部件34沿所述导轨37往复运动,其中,导轨37可以位于第一轨道381的下方,并且导轨37可以和第一导轨381平行,而第一导轨381和第二导轨382平行。可选地,驱动组件可以为电机,或者还可以进一步包括同步带,同步带连接固定部件和电机,从而使得驱动组件能够通过同步带驱动固定部件运动。
进一步,如图28所示,所述上下移动构件还包括导向部件32,所述导向部件32安装于所述固定部件34上,所述导向部件32上下延伸,用于引导所述浮动部件33上下移动。浮动部件33位于所述固定部件34的上方,并且通过导向部件32将两者相连接,在一个示例中,导向部件32可以包括第一导向轴321和第二导向轴322,所述第一导向轴321的一端贯穿所述浮动部件33,另一端固定于所述固定部件34上,所述第二导向轴322的一端贯穿所述浮动部件33,另一端固定于所述固定部件34上,通过第一导向轴和第二导向轴限定浮动部件在平面方向的自由度使其在水平面内几乎不旋转,而使其仅能沿导向部件上下移动。该导向部件32的结构仅作为示例,其还可以通过任意其他适合的结构来实现。
在一个示例中,所述上下移动部件35包括弹性部件,所述弹性部件设置在所述浮动部件33和所述固定部件34之间,所述弹性部件的轴线和所述导向部件32的轴线平行,可选地,弹性部件可以为压缩弹簧,或者,弹性部件还可以为拉伸弹簧,通过弹性部件的拉伸或者收缩,带动浮动部件33沿着导向部件32相对固定部件34上下移动。可选地,弹性部件为拉伸弹簧或者压缩弹簧时,弹性部件套设于导向部件,例如套设于第二导向部件322。
在一个示例中,卸载机构30还包括驱动组件(未示出),该驱动组件用于驱动所述固定部件34沿所述导轨37往复运动,由于浮动部件33和固定部件34连接,而传动部件36和推送组件31均安装于浮动部件33上,因此,驱动组件在驱动固定部件34沿所述导轨37往复运动的同时带动浮动部件33、传动部件36和推送组件31均沿所述导轨37往复运动,在此处,往复运动可以是指卸载过程中驱动固定部件沿导轨37从检测平台的输入侧向检测平台的输出侧运动,而在卸载完成后,驱动固定部件沿导轨37从检测平台的输出侧向检测平台的输入侧运动。
在一个示例中,切换机构还包括第一切换部件,构造用于将位于所述第二轨道的所述传动部件引导至所述第一轨道,以同时带动所述推送组件切换至所述第一轨道,也即带动推送组件切换至沿第一轨道移动,当推送组件沿第一轨道移动时其相对检测平台的玻片放置位的底部具有第一高度,在该第一高度推送组件能够推动片放置位上的玻片移动离开玻片放置位而卸载到检测平台的输出侧。
第一切换部件可以是任意能够起到轨道切换作用的结构,例如,如图29所示,所述第一切换部件包括设置在所述第一轨道和所述第二轨道之间的第一门板383,所述第一门板383构造用于:在所述传动部件沿所述第二轨道382运动经过所述第一门板383时能够旋转打开使所述传动部件穿过,以及在所述传动部件从所述第二轨道向所述第一轨道运动 时至少封闭所述第一轨道和所述第二轨道之间的部分通道,以将位于所述第二轨道的所述传动部件切换至所述第一轨道。在一个示例中,所述第一门板383通过第一旋转轴384安装于所述第一轨道381或所述第二轨道382上,所述第一门板383构造用于能够绕所述第一旋转轴384在第一位置和第二位置之间旋转,其中,所述第一门板旋转至所述第二位置时与所述第一轨道381齐平,以使传动部件能够穿过该第一门板,而当第一门板位于第一位置时其至少封闭所述第一轨道和所述第二轨道之间的部分通道,以能够引导传导部件向第一轨道移动。
在一个示例中,所述第一门板383还构造用于能够从所述第二位置复位至所述第一位置,以至少封闭所述第一轨道和所述第二轨道之间的部分通道,可选地,所述第一切换部件还包括第一复位部件(未示出),用于将所述第一门板383从所述第二位置复位至所述第一位置,该第一复位部件可以是例如拉伸弹簧或者扭簧等复位部件。或者,第一门板383还可以在重力作用下保持常闭状态也即处于第一位置,因此,其可以通过重力作用实现从所述第二位置复位至所述第一位置。
在一个示例中,所述切换机构还包括第二切换部件,用于将位于所述第一轨道的所述传动部件切换至所述第二轨道,以使所述推送组件处于所述第二高度,也即当推送组件推动玻片卸载至检测平台的输出侧的玻片回收容器或者用于缓存已测玻片的卸载平台之后,推送组件需要从检测平台的输出侧回到输入侧,当驱动组件驱动固定部件带到推送组件和传动部件沿第一轨道从输出侧向输入侧移动时,当传动部件经过第二切换部件的引导而切换至沿第二轨道移动,使得推送组件的位置抬高而处于第二高度,从而在经过检测平台的玻片放置位时不与玻片放置位的玻片发生碰撞,顺利回到输入侧等待卸载下一玻片。
第二切换部件可以是任意能够实现轨道切换的结构,如图29所示,例如,所述第二切换部件包括设置在所述第一轨道381上的第二门板386,所述第二门板386构造用于:在所述传动部件沿所述第一轨道381经过所述第二门板386时推动所述第二门板386闭合,也即第二门板386和第一轨道381齐平,以及在所述传动部件从所述第一轨道81向所述第二轨道382运动时所述第二门板386保持常开状态,使所述传动部件沿所述第二门板386运动至所述第二轨道382。可选地,所述第二门板386通过第二旋转轴385安装于所述第一轨道上,所述第二门板386构造用于能够绕所述第二旋转轴385在第三位置和第四位置之间旋转,其中第二门板386旋转至第四位置时与所述第一轨道381齐平,第二门板位于第三位置时其相对第四位置向第一轨道下方旋转预定角度,在第三位置时,第一轨道和第二轨道之间的通道打开,以容许传动部件沿着第二门板向上运动至第二轨道。
第二门板在重力作用下可以保持常开状态,当传动部件沿着第一轨道运动经过该第二门板时,第二门板旋转闭合,在传动部件经过之后,第二门板可以通过自身重力实现复位,复位至第三位置,或者,第二切换部件还包括第二复位部件(未示出),所述第二复位部件用于将所述第二门板从所述第四位置复位至所述第三位置,可选地,第二复位部件可以为拉伸弹簧或者扭簧或者其他适合的复位部件。
如图30所示,当传动部件36从检测平台的输入侧向检测平台的输出侧移动时,其先沿第二轨道382移动当移动到第一门板383时,此时第一门板383保持常闭状态,其沿第一门板383向下移动至第一轨道381,该过程中,由于第一门板施加的向下的力的作用,使得浮动部件压缩上下移动部件,而沿着导向部件向下移动,从而使得推送组件处于第一高度,之后传动部件继续沿着第一轨道381向检测平台的输出侧移动,而推送组件保持第一高度当到达检测平台的玻片放置位时推动玻片离开玻片放置位,当传动部件36沿第一轨道381继续移到至经过第二门板386时,如图31所示,传动部件36推动第二门板386关闭,从而保证推送组件维持在第一高度,以便继续卸载玻片。
当卸载完成之后,驱动组件驱动固定部件带动传动部件和推送组件从检测平台的输出侧向输入侧移动,以回到位于输入侧的初始位置等待下一次卸载,如图32所示,当传动部件36沿第一轨道381运动经过第二门板386时,第二门板386保持常开状态,传动 部件36在第二门板386的引导下从第一轨道381切换至第二轨道382,其中,在该过程中,上下移动部件推动浮动部件向上移动,从而抬高推送组件的高度至第二高度,当传动部件36切换至第二轨道382后,其在驱动组件的驱动下继续沿着第二轨道382移动,当经过检测平台的玻片放置位时,由于推送组件在第二高度其位于玻片的上方,因此其不会和玻片碰撞,从而避让检测平台顺利回到检测平台的输入侧,当传动部件36沿着第二轨道382继续移动经过第一门板383时,如图33所示,传动部件推动第一门板383向下旋转到能够使得传动部件36通过,当传动部件36沿着第二轨道移动到初始位置时,停止移动,等待卸载下一玻片。
本发明实施例的卸载机构通过以下的过程实现对玻片的卸载:如图34所示,卸载过程中,推送组件要将玻片311从检测平台310推动到例如玻片回收盒的玻片回收容器312中,整个卸载过程中传动部件36按照如图34中箭头所示的方向移动,首先,传动部件36从初始位置391出发,从检测平台的输入侧向输出侧移动,如图35所示,传动部件36位于初始位置时,传动部件36位于第二轨道382,此时推送组件31处于第二高度,当传动部件36经过第一门板383后,如图34和图36所示,传动部件36从第二轨道382移动到第一轨道381的卸载起始位392,此时推送组件31相对检测平台的高度降低到第一高度,在驱动组件的驱动下,传动部件36和推送组件31继续沿第一轨道381移动,推送组件31在第一高度推动玻片311离开检测平台的玻片放置位,当传动部件36经过第二门板386时,可自动推动第二门板386到关闭状态(如图37所示),使传动部件36顺利通过,推送组件则将玻片311推动到卸载结束位393,以将玻片311卸载至玻片回收容器312。值得注意的是,初始位置391和卸载起始位392位于检测平台的输入侧,而卸载结束位393则位于检测平台310的输出侧。
当玻片卸载完成后,推送组件31和传动部件36从输出侧回到输入侧,例如从卸载结束位回到初始位置,以准备下一次的卸载动作,其回程的动作过程如下:其中,图38示出了传动部件36在轨道上的运动轨迹,在驱动组件的驱动下,传动部件36在经过常开的第二门板386时,通过设置在第一轨道或者第二轨道上的斜坡运动到第二轨道382,如图39所示,此时在上下移动部件35的作用下,其使得浮动部件带动推送组件31向上移动,从而使得推送组件31处于第二高度,从而避开了和检验平台的干涉;传动部件36运动到常闭的第一门板383时,传动部件36会自动推开第一门板383(如图40),一直沿着第二轨道382运动到初始位置,此时第一门板383也自动关闭。因此,在回程过程中,不需要检验平台避让,有利于实现流程的并行,节约流程时间。
卸载机构30其无需增加额外动力,通过第一轨道和第二轨道以及切换机构实现卸载过程(也即从检测平台的输入侧向输出侧移动)和回程(也即从输出侧回到输入侧)时执行推送组件的空间位置变化,在卸载过程中使推送组件处于第一高度以卸载所述玻片放置位上的所述玻片,在回程时使推送组件处于第二高度从而在回程时避让检测平台的玻片放置位的待测玻片,保证对待测玻片的检测顺利进行,并且由于回程过程中不需要检测平台避让,有利于实现卸载机构和其他机构(例如装载装置)并行动作,节约流程时间。
在其他示例中,卸载结构的避让组件除了能够实现在高度方向避让玻片放置位的玻片之外,还可以在宽度方向实现对玻片放置位的玻片的避让,例如,如图41所示,卸载结构的避让组件还可以构造用于:当所述驱动组件驱动推送组件带动玻片放置位上的已测玻片沿第一方向上从所述输入侧朝向所述输出侧移动时,使所述推送组件在水平方向上与所述玻片放置位沿所述第一方向的中轴线之间的距离为第一宽度W1,当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件在水平方向上与所述玻片放置位的所述中轴线之间的距离为第二宽度W2,其中,所述第二宽度W2比第一宽度W1至少大一个玻片的宽度的一半,或者,进一步第二宽度W2比第一宽度W1大至少一个玻片放置位的宽度的一半,从而使得推送组件从输出侧回到输入侧时当经过玻片放置位时从待测玻片的外侧经过,而不碰撞待测玻片,或者,也可以是横向(也 即玻片的宽度方向)完全避开检测平台,以确保不碰撞待测玻片。值得一提的是,图41中为了对第一宽度W1和第二宽度W2进行解释,将推送组件沿第一方向卸载玻片时以实线的形状进行示意,将推送组件沿第二方向回程时以虚线的形状进行示意,但可以理解的是,该图中示意的推送组件的形状并未意欲对推送组件的具体形状构成限定。
其中,第一宽度和第二宽度可以是指的推送组件在水平方向上与所述玻片放置位沿所述第一方向的中轴线之间的垂直距离。
除了上述的避让方式,还可以通过例如控制检测平台的上下移动或者,横向移动来使得推送组件回程经过检测平台的玻片放置位时不会碰撞下一待测玻片。
值得一提的是,本发明实施例的玻片传送装置除了具有上述机构、平台和组件外,还可以具有其他的组成部件,在此不再一一赘述。
综上所述,本申请的玻片传送装置的装载机构将玻片从检测平台的输入侧将下一待测玻片装载到检测平台的玻片放置位上,而卸载机构将已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧,输入侧和输出侧分别位于检测平台的不同侧,从而消除两者的位置约束,便于包括该玻片传送装置的例如阅片机的整机合理布局,提高用户操作的便捷性,同时由于输入和输出不同侧,玻片回收容器和玻片收纳容器为不同的容器,因此可以避免循环使用导致的镜油对未阅片的玻片的污染。进一步,由于输入和输出不同侧,因此可以便于实现从检测平台卸载已测玻片的同时将下一待测玻片装载至检测平台,也即实现输入输出同步,当该玻片传送装置应用于阅片机时,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高阅片机单位时间内连续阅片的效率。
下面,参考图42,对本发明实施例的样本图像分析仪进行描述,该样本图像分析仪包括前述实施例中的样本卸载装置30,有关样本卸载装置30的描述可以参考前述实施例的描述,在此不再进行赘述。
作为示例,如图42所示,样本图像分析仪130例如可以包括细胞图像分析装置,该细胞图像分析装置不仅可以用于拍摄样本中的细胞,其还可以拍摄例如尿沉渣中的结晶等。
样本图像分析仪130至少包括成像装置131、玻片移动装置132和图像分析装置133,成像装置131包括相机1312和透镜组1311并且用于对位于检测平台的玻片放置位的玻片中的样本进行拍摄,例如拍摄样本中的细胞或者其他被观察物,玻片移动装置132用于使玻片相对于成像装置131运动,以便成像装置131拍摄玻片的特定区域的图像,例如细胞图像,其中玻片移动装置132可以包括检测平台和驱动装置,驱动装置用于驱动检测平台移动,使玻片相对于成像装置131运动。图像分析装置133用于对玻片中样本的图像进行分析,通过智能识别算法区分样本中被观察物(例如细胞)的种类。
在一个示例中,透镜组可以包括第一物镜、第二物镜和目镜。第一物镜例如可以为10倍物镜,第二物镜例如可以为100倍物镜。透镜组还可以包括第三物镜,第三物镜例如可以为40倍物镜。透镜组还可以包括目镜。
在一个示例中,本发明实施例的样本图像分析仪130还包括玻片传送装置138,用于向检测平台装载待测的玻片,以及用于卸载位于所述检测平台的玻片放置位上的经所述成像装置拍摄的玻片,其中玻片传送装置130的有关描述参考前文中的描述在此不再赘述。
样本图像分析仪130还包括识别装置134、玻片夹取装置135和玻片回收装置136。识别装置134用于识别待测玻片的身份信息,在一个示例中,玻片夹取装置135用于将待测玻片从玻片收纳容器中夹取到所述识别装置134,以使识别装置134识别待测玻片的身份信息,以及玻片夹取装置135用于将已识别的待测玻片夹取到检测平台的玻片放置位,其中,玻片夹取装置为所述玻片传送装置138的装载机构的构成部件。在另一个示例中,玻片夹取装置135用于将待测玻片从玻片收纳容器中夹取到所述识别装置134,以及将已识别的待测玻片夹取至缓存装置;玻片传送装置138的装载机构,用于将待测玻片从所述缓存装置装载到所述检测平台的玻片放置位进行检测。
玻片回收装置136用于放置经检测的玻片。其中,玻片传送装置138的卸载机构则用 于卸载经检测的玻片,将其卸载至玻片回收装置136,或者,将其卸载至用于缓存已测玻片的卸载平台,再由玻片夹取装置135将其夹取至玻片回收装置136。
在一个示例中,所述玻片夹取装置构造为能使所述玻片夹取装置夹取的处于竖直方向的待测玻片翻转为处于水平方向。例如玻片夹取装置具有夹取部和翻转机构(未示出),所述翻转机构用于翻转所述夹取部使所述夹取部夹取的处于竖直方向的待测玻片翻转为处于水平方向,进而使所述待测玻片涂抹有样本的表面朝上,以便于将其放置于检测平台的玻片放置位或者缓存装置。
样本图像分析仪130还包括玻片篮装载装置137,用于装载装有待测涂片的玻片篮,玻片夹取装置135还用于将玻片篮装载装置137上装载的玻片篮中的待测玻片夹取到识别装置134进行身份信息识别。
在一个示例中,样本图像分析仪还包括输入装置(未示出)可以是用户用来输入指令的装置,并且可以包括键盘、轨迹球、鼠标、麦克风和触摸屏等中的一个或多个。
本实施例中,样本图像分析仪还可以包括显示装置,用于显示由用户输入的信息或提供给用户的信息以及样本分析装置的各种图像用户接口,这些图像用户接口可以由图像、文本、图标、视频和其任意组合来构成,在本实施例中,显示装置可以显示处理器输出的各种可视化数据,例如成像装置拍摄的图像等,显示装置可包括显示面板,可选的,可以采用液晶显示装置(LCD,Liquid Crystal Display)、有机发光二极管(OLED,Organic Light-Emitting Diode)等形式来配置显示面板。
样本图像分析仪还可以包括通信接口(未示出),通信接口是可以是目前已知的任意通信协议的接口。通信接口通过网络与外界进行通信。样本图像分析仪可以通过通信接口以一定的通信协议,与通过该网连接的任意装置之间传输数据。
样本图像分析仪还可能包括其他的功能部件,例如存储器、处理器(例如CPU、GPU或其它具有运算能力的芯片)等,在此不再对其进行一一赘述。
本发明实施例的样本图像分析仪由于包括前述的玻片传送装置,因此其同样具有前述的玻片传送装置的优点,通过该玻片传送装置可以实现玻片装载和卸载同时进行,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高样本图像分析仪单位时间内连续阅片的效率。
下面,参考图43,本发明实施例还提供一种玻片传送方法,该玻片传送方法基于前述的玻片传送装置来执行。
作为示例,如图43所示,本发明实施例的玻片传送方法包括以下步骤S421至步骤S424:
首先,在步骤S421中,控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上。该装载方式可以参考前述实施例中装载机构的进样方式的相关描述,在此不再进行赘述。
接着,在步骤S422中,控制器控制成像装置对所述检测平台的玻片放置位上的第一玻片进行图像拍摄,用户通过观察所拍摄的图像,来观察样本中的被观察物,例如细胞或者尿沉渣中的结晶等。
接着,在步骤S423中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧。当对拍摄完第一玻片上的样本的图像后,需要对下一待测玻片进行拍摄,因此控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧,该卸载过程可以参考前述实施例中的相关描述在此不做赘述。
接着,在步骤S424中,所述控制器控制所述装载机构将第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上。
可选地,第一玻片的卸载和第二玻片的装载可以异步执行,例如可以先执行步骤S423,再执行步骤S424,也即将已测玻片卸载完成后,再将下一待测玻片装载至检测平台,或者,还可以在步骤S423执行的同时执行步骤S424,也即当所述控制器控制卸载机构将经所述 成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧时,所述控制器控制所述装载机构将所述第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,以使得已测玻片的卸载和待测玻片的装载同步进行,提高阅片效率。
在一个示例中,当需要对多个待测玻片进行检测时,在所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧期间,同时所述控制器控制所述装载机构将第二玻片(也即待测玻片)从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,控制器控制成像装置对所述检测平台的玻片放置位上的第二玻片进行图像拍摄,之后控制器控制卸载机构将经所述成像装置拍摄的第二玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,同时控制器控制所述装载机构将第三玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,依次按照卸载已测玻片的同时装载待测玻片,并再对待测玻片通过成像装置进行图像拍摄之后,再将其卸载的同时再将下一待测玻片装置从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,直到所有的待测玻片被拍摄完并被从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,由于已测玻片的卸载和待测玻片的装载同步进行,可以显著提高阅片效率。
因此,当所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧之后,所述方法还包括:所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动,以使得推送组件等待卸载下一个经成像装置拍摄的已测玻片,例如拍摄完的第二玻片。
在一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:所述控制器控制所述卸载机构的推送组件推动所述第一玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述第一玻片完全经过所述玻片放置位(或者越过所述玻片放置位)。如图17所示,在推送组件的推动下已测玻片11已经沿第一方向移动离开检测平台的玻片放置位,直至所述推送组件连同所述已测玻片11完全经过检测平台的玻片放置位,当已测玻片11在推送组件的推动下卸载至玻片回收容器或卸载平台时,推送组件需要从输出侧沿第二方向回到检测平台的输入侧(推送组件的回程运动轨迹如图17中的虚线箭头所示),以等待卸载下一已测玻片,然而在该回程的过程中,检测平台的玻片放置位已装载下一待测玻片12,(如图17所示)或者下一待测玻片12正在被装载到检测平台的玻片放置位上(如图4所示),如果不进行任何避让,推送组件会碰撞下一待测玻片12,而使得检测和玻片运送过程不能顺利进行,甚至损坏待测玻片,因此对于装载和卸载同步的情况,当所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,所述控制器控制所述装载机构已经将第二玻片从所述检测平台的输入侧沿所述第一方向装载到所述玻片放置位上,因此需要在回程时避让检测平台的玻片放置位上的待测玻片(例如第二玻片),本发明实施例的方法还包括:在所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动期间,所述控制器控制所述卸载机构的避让组件使所述推送组件不与所述玻片放置位的所述第二玻片碰撞。
在一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:在所述控制器控制所述卸载机构的驱动组件驱动所述推送组件推动所述玻片放置位上的所述第一玻片沿所述第一方向从所述输入侧朝向所述输出侧移动期间,所述避让组件使所述推送组件相对于所述玻片放置位的底部具有第一高度,推送组件处于第一高度时能够推动第一玻片进行卸载。进一步,在所述控制器控制所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝 向所述输入侧移动期间,所述避让组件使所述推送组件相对于所述玻片放置位的底部具有第二高度,使所述推送组件不与所述玻片放置位的所述第二玻片碰撞,其中,所述第二高度比所述第一高度至少高一个所述第二玻片的厚度,通过避让组件实现推送组件在高度方向上避让检测平台的玻片放置位上的待测玻片(例如第二玻片),从而实现在高度方向上避让检测平台的玻片放置位上的待测玻片,保证已测玻片的卸载和待测玻片的装载同步进行,缩短运送时间,提高样本图像分析仪的阅片速度,其中,玻片放置位可以是检测平台的特定平面区域,则第一高度和第二高度可以为例如拨爪的推送组件到检测平台的上表面的距离,或者,玻片放置位还可以是设置在检测平台特定区域的凹槽(该凹槽可以起到限位的作用),待测玻片可以放置于该凹槽内,则第一高度和第二高度可以为例如拨爪的推送组件到凹槽底面的距离。
所述避让组件可以通过任意适合的方法使所述推送组件相对于所述玻片放置位的底部具有第二高度,例如,避让组件使所述推送组件相对于所述玻片放置位的底部具有第二高度,包括:所述控制器控制所述卸载机构的驱动组件驱动所述避让组件的可摆动部件沿所述第二方向运动时碰撞所述卸载机构的推动部件,使所述推动部件推动所述可摆动部件的摆动块向上摆动;当所述可摆动部件的摆动块带动所述推送组件摆动至所述第二高度时可摆动部件的限位部件限定所述推送组件维持在所述第二高度,通过摆动块的摆动来抬高推送组件的相对检测平台的玻片放置位的高度,从而当推送组件从输出侧向输入侧移动经过玻片放置位时,不会和玻片放置位的待测玻片例如第二玻片碰撞。
进一步,在所述控制器控制驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动期间,当所述推送组件沿所述第二方向完全经过所述玻片放置位继续沿所述第二方向移动遇到所述卸载机构的回位件时,所述回位件使所述可摆动部件的摆动块向下摆动并带动所述推送组件从所述第二高度切换至所述第一高度,从而推送组件维持在第一高度,以等待卸载下一已测玻片。
在另一个示例中,所述控制器控制卸载机构将经所述成像装置拍摄的第一玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧,包括:首先,所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿第二轨道移动,该移动的移动方向为沿着所述第一方向移动;接着,当经过切换机构的第一切换部件时,所述第一切换部件引导所述推送组件切换至第一轨道而处于所述第一高度;所述控制器控制所述驱动组件驱动所述推送组件沿着所述第一轨道继续朝向所述输出侧移动而碰触所述第一玻片时推动所述玻片放置位上的所述第一玻片卸载至所述输出侧,通过第一切换部件使得推送组件在用于卸载已测玻片时处于第一高度,从而在第一高度下推动已测玻片卸载。
进一步,所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动,包括:所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿第一轨道从所述输出侧朝向所述输入侧移动;当经过所述切换机构的第二切换部件时,所述第二切换部件引导所述推送组件切换至所述第二轨道而处于所述第二高度;所述控制器控制所述卸载机构的驱动组件驱动所述卸载机构的推送组件沿着所述第二轨道不与所述玻片放置位的下一待测玻片碰撞地返回所述输入侧,当推送组件处于第二高度时,当其经过玻片放置位时位于第二玻片的上方,从而不会碰撞第二玻片,便于实现已测玻片的卸载和待测玻片的装载同步进行,提高阅片效率。
在一个示例中,所述控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上,包括:所述控制器控制玻片夹取装置将所述第一玻片从玻片收纳容器中夹取到识别装置;所述控制器控制所述识别装置扫描所述第一玻片上的标识码以识别所述第一玻片的身份信息;所述控制器控制所述玻片夹取装置将已识别的所述第一玻片夹取至缓存装置;所述控制器控制所述装载机构将放置于所述缓存装置上的所述第一玻片从所述检测平台的输入侧沿所述第一方向装载到所述检测平台的玻片放置位上。其中,第一玻片的装载方法也同样适用于对其他待测玻片的装载,例如装载第二玻 片。
在另一个示例中,所述控制器控制装载机构将第一玻片从检测平台的输入侧沿第一方向装载到所述检测平台的玻片放置位上,包括:所述控制器控制所述装载机构的玻片夹取装置将所述第一玻片从玻片收纳容器中夹取到识别装置;所述控制器控制所述识别装置扫描所述第一玻片上的标识码以识别所述第一玻片的身份信息;所述控制器控制所述玻片夹取装置将已识别的所述第一玻片装载到所述检测平台的玻片放置位上。该第一玻片的装载方法也同样适用于对其他待测玻片的装载,例如装载第二玻片。
综上所述,根据本发明实施例的玻片运送方法,其可以其在检测平台的不同侧进行玻片的输入和输出,从而消除卸载机构和装载机构两者的位置约束,便于包括该玻片传送装置的样本图像分析仪(例如通过成像装置对检测平台的玻片放置位的样本进行拍摄的阅片机)的整机合理布局,提高用户操作的便捷性,同时由于输入和输出不同侧,玻片回收容器和玻片收纳容器为不同的容器,因此可以避免循环使用导致的镜油对未阅片的玻片的污染,另外,由于输入和输出不同侧,因此可以便于实现从检测平台卸载已测玻片的同时将下一待测玻片装载至检测平台,也即实现输入输出同步,因此当样本图像分析仪采用该玻片传送方法时,能够缩短连续阅片情况下,前后玻片上下检测平台的时间,提高样本图像分析仪单位时间内连续阅片的效率。
如图44至图46所示,本发明实施例还提供一种样本图像分析仪1000。样本图像分析仪1000包括检测平台1100、图像拍摄装置1200、图像分析装置(未示出)、装载机构1300和卸载机构1400。样本图像分析仪1000还包括壳体1500,至少检测平台1100、图像拍摄装置1200、装载机构1300和卸载机构1400被容纳在所述壳体中。
如图47和图48所示,在检测平台1100中设有第一传送通道1110、例如第一凹槽,该第一传送通道具有用于支撑玻片11的第一底部1111和用于对玻片两侧进行限位的第一侧壁1112、1113,在第一传送通道的第一底部1111设有用于接纳玻片11的玻片放置位1114。第一传送通道在检测平台的输出侧具有第一输出开口1116。
图像拍摄装置1200用于对位于检测平台的玻片放置位1114的玻片11上的样本进行图像拍摄。在一个示例中,图像拍摄装置1200固定地设置在样本图像分析仪中,而检测平台1100构造成可三维运动的,从而在对玻片上的样本进行图像拍摄时,检测平台能带动固定在玻片放置位1114上的玻片11运动,从而固定设置的图像拍摄装置能拍摄玻片11上的不同样本区域。
未示出的图像分析装置用于对由图像拍摄装置1200拍摄的图像进行分析,以便获得样本分析结果。
装载机构1300被构造用于从检测平台1100的输入侧将待装载玻片12(也可以称为待测玻片或待拍摄玻片)装载到第一传送通道1110中的玻片放置位1114。
卸载机构1400被构造用于推动在检测平台的玻片放置位1114上的待卸载玻片11(也可以称为已测玻片或者已拍摄玻片)在第一传送通道1110中沿水平的第一方向X1移动,以便将该待卸载玻片11从玻片放置位1114通过第一输出开口1116卸载到检测平台的输出侧。
在本发明实施例中,第一传送通道1110直线地并且与第一方向X1平行地延伸。
在一些优选的实施例中,第一传送通道在检测平台的输入侧还具有第一输入开口1115。装载机构1300被构造用于从检测平台1100的输入侧将待装载玻片12沿第一方向X1通过第一输入开口1115推动到第一传送通道1110中,直至该待装载玻片12到达所述检测平台的玻片放置位1114。
在备选的实施例中,装载机构1300也可以被构造用于将待装载玻片12竖直地(从上向下)放到玻片放置位1114上。例如,装载机构1300可以构造为机械手。
在一些优选实施例中,样本图像分析仪1000还包括用于驱动检测平台1100在拍摄状态与装卸状态之间切换的第一驱动装置(未示出)。在检测平台的拍摄状态下,图像拍摄 装置1200能对位于玻片放置位1114上的玻片11进行图像拍摄,例如第一驱动装置被构造驱动检测平台1100相对于图像拍摄装置1200运动、例如三维运动(竖直以及水平地运动),以便图像拍摄装置能拍摄固定在检测平台上的玻片11的不同样本区域;在检测平台的装卸状态下,第一驱动装置被构造成在驱动检测平台1100运动至装卸位置后停止,以便装载机构1300能将玻片12装载到玻片放置位1114上和/或卸载机构1400能将位于玻片放置位1114的玻片11卸载。
如图49和图50所示,样本图像分析仪1000还可以包括设置在检测平台1100的输出侧的卸载平台1600。在该卸载平台中设有第二传送通道1610、例如第二凹槽,该第二传送通道被构造用于缓存从检测平台1100卸载的玻片11,并且具有用于支撑玻片11的第二底部1611和用于对玻片两侧进行限位的第二侧壁1612、1613。第二传送通道还具有第二输入开口1614。在此,检测平台和卸载平台被构造成能在卸载玻片11时配合作用,使得第一传送通道1110的第一输出开口1116和第二传送通道1610的第二输入开口1614对准,从而卸载机构1400能沿第一方向X1将待卸载玻片11通过第一输出开口1116和第二输入开口1614从玻片放置位推动到第二传送通道中。也就是说,当检测平台处于装卸状态时,在卸载玻片11时,第一传送通道1110和第二传送通道1610能够彼此对准,例如彼此同轴对准并且在高度上对准,使得卸载机构1400能沿第一方向X推动待卸载玻片11在由第一传送通道和第二传送通道形成的通道中移动。
在本发明实施例中,第二传送通道1610直线地延伸。
在一些实施例中,在检测平台1100的装卸状态下,检测平台1100由第一驱动装置驱动,以便运动至卸载位置,检测平台1100的第一传送通道1110在该卸载位置中与卸载平台的第二传送通道1610彼此对准,从而第一传送通道1110中的玻片11能被卸载至第二传送通道1610中。
在一些实施例中,第二传送通道1610还可以包括与第二输入开口1614相对的第二输出开口1618。
在一些实施例中,当第一传送通道1110和第二传送通道1610对准时,卸载平台1600与检测平台1100间隔开一定的距离。
在一些实施例中,如图49和51所示,样本图像分析仪1000还可以包括设置在检测平台1100的输入侧的装载平台1700,在该装载平台中设有第三传送通道1710、例如第三凹槽。第三传送通道1710被构造用于缓存待装载玻片12,并且具有用于支撑玻片的第三底部1711和用于对玻片两侧进行限位的第三侧壁1712、1713。第三传送通道还具有第三输出开口1714。在此,检测平台和装载平台被构造成能在装载玻片12时配合作用,使得第一传送通道1110的第一输入开口1115和第三传送通道1710的第三输出开口1714对准,从而装载机构1300能沿第一方向X1将缓存在第三传送通道1710中的待装载玻片12通过第三输出开口1714和第一输入开口1115推动到第一传送通道1110中,如图52所示。也就是说,当检测平台1100处于装卸状态时,在装载玻片12时,第一传送通道1110和第三传送通道1710能够彼此对准,例如彼此同轴对准并且在高度上对准,使得装载机构1300能沿第一方向X推动待装载玻片12在由第一传送通道和第三传送通道形成的通道中移动。
在本发明实施例中,第三传送通道1710可以直线地延伸,并且与第一方向X1平行地延伸。
在一些实施例中,在检测平台1100的装卸状态下,检测平台1100由第一驱动装置驱动,以便运动至装载位置,检测平台1100的第一传送通道1110在该装载位置中与装载平台的第三传送通道1710彼此对准,从而第三传送通道1710中的玻片12能被装载至第一传送通道1110中。
在一些实施例中,当第一传送通道1110和第三传送通道1710彼此对准时,检测平台1100与装载平台1700相距一定的距离,该距离小于玻片长度。
在一些优选的实施例中,检测平台1100、装载平台1700和卸载平台1600被构造成能 在装载玻片12和卸载玻片11时配合作用,使得第一传送通道1110、第二传送通道1610和第三传送通道1710同时对准以形成总传送通道,从而装载机构1300和卸载机构1400能同时沿第一方向X1推动待装载玻片12和待卸载玻片11在所述总传送通道中至少相对第一底部移动,如图53所示。图53示出装载机构1300和卸载机构1400同步进行装载和卸载的过程示意图。由此能够快速地同时完成玻片11的卸载和玻片12的装载,进而提高样本图像分析仪的检测速度。
也就是说,当检测平台1100处于装卸状态时,玻片12的装载和玻片11的卸载能够同时进行,此时检测平台1100的卸载位置和装载位置为同一位置。检测平台1100由第一驱动装置驱动,以便运动至装载位置或者说卸载位置(即检测平台1100被置于装卸状态),检测平台1100的第一传送通道1110在该装载位置中与第二传送通道1610和第三传送通道1710同时对准,从而第三传送通道1710中的玻片12能被装载至第一传送通道1110中,同时第一传送通道1110中的玻片11能被卸载至第二传送通道1610中。
在一些实施例中,装载机构1300和卸载机构1400可以被构造能在装载玻片和卸载玻片时配合作用,使得待装载玻片在装载时以及待卸载玻片在卸载时在部分时间上同时位于第一传送通道1110中。由此能够进一步加快玻片12和玻片11的同步装卸载。
如图49和图53所示,在检测平台1100与卸载平台1600之间还设有桥接平台1800。此时,卸载机构1400被构造成,将待卸载玻片11沿第一方向X1从第一传送通道1110经由桥接平台1800卸载到第二传送通道1610中。如图54和图55所示,在图54中,卸载机构1400沿第一方向X1将待卸载玻片11从第一传送通道1110推动至桥接平台1800;在图55中,卸载机构1400沿第一方向X1将待卸载玻片11从桥接平台1800推动到第二传送通道1610中。增加桥接平台能够使得卸载平台1600的设置更加灵活,特别是有利于后续还要描述的玻片回收。
在一些实施例中,如图56所示,在桥接平台1800中设有第四传送通道1810、例如第四凹槽。第四传送通道具有用于支撑玻片的第四底部1811和用于对玻片两侧进行限位的第四侧壁1812、1813。第四传送通道1810还具有相对设置的第四输入开口1814和第四输出开口1815。第四输入开口1814朝向检测平台1100,第四输出开口1815朝向卸载平台1600。在此,检测平台、卸载平台和桥接平台被构造成能在卸载玻片时配合作用,使得第一传送通道1110的第一输出开口1116与第四传送通道1810的第四输入开口1814对准以及第四传送通道1810的第四输出开口1815与第二传送通道1610的第二输入开口1614对准,从而卸载机构1400能沿第一方向X1推动待卸载玻片11从第一传送通道1110经由第四传送通道1810进入到第二传送通道1610中。
在一些实施例中,检测平台、卸载平台和桥接平台被构造成能在卸载玻片时配合作用,使得第一传送通道1110与第四传送通道1810对准并且同时第四传送通道1810与第二传送通道1610对准。
在备选的实施例中,检测平台、卸载平台和桥接平台被构造成能在卸载玻片时配合作用,使得第一传送通道1110先与第四传送通道1810对准,以便卸载机构1400沿第一方向X1将待卸载玻片11从第一传送通道1110推动到第四传送通道1810中;然后使第四传送通道1810与第二传送通道1610对准,以便卸载机构1400沿第一方向X1将待卸载玻片11从第四传送通道1810中推动到第二传送通道1610中。
在优选的实施例中,桥接平台1800固定地设置在样本图像分析仪1000中。
当然,在其他实施中,桥接平台1800也可以构造为可运动的。此时能够实现桥接平台的第四传送通道1810与第一传送通道1110和第二传送通道1610的分时对准。
在一些实施例中,当第一传送通道1110和第四传送通道1810彼此对准时,检测平台1100与桥接平台1800相距一定的距离,该距离小于玻片长度。当第四传送通道1810和第二传送通道1610彼此对准时,桥接平台1800与卸载平台1600相距一定的距离,该距离小于玻片长度。
在一些实施例中,如图46所示,样本图像分析仪1000还可以包括设置在检测平台1100下方的光源1940。在此,第一传送通道的第一底部1111的设有玻片放置位1114的部分构造为具有贯通开口或者构造为透明的,以便所述光源发出的光能够照射到位于玻片放置位的玻片上。在图47所示的实施例中,第一底部1111的设有玻片放置位1114的部分被构造为具有贯通开口、即被构造成中空的。
在一些实施例中,如图47和图48所示,第一传送通道1110在第一输入开口1115侧的一端可以具有第一竖直导向部1117,该第一竖直导向部用于在竖直方向上引导玻片进入第一传送通道1110。第一竖直导向部的设置增加玻片装载时的倾斜适应能力,能够使玻片在竖直方向上被顺利推动到第一传送通道1110中。尤其是当检测平台与装载平台相距一定距离时,能够确保玻片自装载平台悬空地进入检测平台。
在一个具体的示例中,如图47所示,第一竖直导向部1117构造为设置在第一底部1111的在第一输入开口1115侧的端部上的斜面。
备选地或附加地,第一传送通道1110在第一输入开口1115侧的一端可以具有第一水平导向部1118。第一水平导向部用于在水平方向(在此为玻片的宽度方向)上引导玻片进入第一传送通道。第一水平导向部例如可以具有相对于第一传送通道1110的纵向中轴线成锐角倾斜的第一斜面,从而通过该第一斜面能够将玻片从第一输入开口1115引导到第一传送通道1110中。进一步地,该第一斜面被构造成相对于第一底部1111成锐角倾斜,以便在引导玻片进入第一传送通道时提供竖直向下的力来压紧玻片。
在图47和图48所示的实施例中,在第一传送通道的两侧对称地设有两个第一水平导向部1118,这两个水平导向部相对于第一传送通道的纵向中轴线成锐角倾斜,以形成朝向装载平台的喇叭形状。
在图47和图48所示的实施例中,检测平台还可以具有第一弹性压紧部1119、例如弹片。第一弹性压紧部用于在竖直方向上压紧位于玻片放置位上1114的玻片,以防止玻片在拍摄过程中上下窜动。
在一些实施例中,在第一弹性压紧部1119上可以设有竖直导向部11191,该竖直导向部用于在竖直方向上引导玻片在第一传送通道中经过第一弹性压紧部1119。由此能够防止玻片在第一传送通道中移动时被第一弹性压紧部卡住,从而玻片能够顺利在第一弹性压紧部下方移动经过。
在一些实施例中,如图50所示,第二传送通道1610在第二输入开口1614侧的一端可以具有第二竖直导向部1615。第二竖直导向部用于在竖直方向上引导玻片进入第二传送通道。第二竖直导向部1615的设置增加玻片卸载时的倾斜适应能力,能够使玻片在竖直方向上被顺利推动到第二传送通道中。尤其是当检测平台或桥接平台与卸载平台相距一定距离时,能够确保玻片自检测平台或桥接平台悬空地进入卸载平台。
在一个具体的示例中,第二竖直导向部1615构造为设置在第二底部1611的在第二输入开口1614侧的端部上的斜面。
备选地或附加地,第二传送通道在第二输入开口侧的一端可以具有第二水平导向部1616。第二水平导向部1616用于在水平方向(在此为玻片的宽度方向)上引导玻片进入第二传送通道。第二水平导向部例如可以具有相对于第二传送通道的纵向中轴线成锐角倾斜的第二斜面,以便引导玻片进入第二传送通道。第二斜面例如可以一体成型在第二传送通道的侧壁1612、1613上。
在一些实施例中,卸载平台1600还可以具有第二弹性压紧部1617、例如弹片。第二弹性压紧部用于在竖直方向上压紧位于第二传送通道中的玻片,以便防止玻片在卸载平台运动时攒动。
如图51所示,第三传送通道1710在第三输出开口1714侧的一端可以具有第三水平导向部1715。第三水平导向部用于引导玻片从第三传送通道进入第一传送通道。例如,第三水平导向部1715可以具有相对于第三传送通道的纵向中轴线成锐角倾斜的第三斜面, 以便引导玻片进入第二传送通道。第三斜面例如可以一体成型在第三传送通道的侧壁1712、1713上。
优选地,第三传送通道1710的第三侧壁1712和1713的至少一部分1716被构造成与第三底部1711成钝角倾斜,从而玻片能够从上往下被引导放入到第三传送通道1710中。
此外,第三传送通道1710在与第三输出开口1714相对设置的一端具有阻挡部1717,用于防止玻片在被机械手放入第三传送通道1710后被机械手带出。
进一步地,第三传送通道1710还具有与第三输出开口1714相对设置的第三输入开口1718,该第三输入开口1718用于供装载机构1300、尤其是推爪1310伸入第三传送通道中,以推动玻片在第三传送通道中移动。进一步地,在第三底部1711的靠近第三输入开口的部分具有缺口,该缺口使得推爪1310能够在第三传送通道中移动,以推动玻片在第三传送通道中移动。
如图56所示,在一些实施例中,第四传送通道1810在第四输入开口侧1814的一端具有第四竖直导向部1816。第四竖直导向部用于在竖直方向上引导玻片进入第四传送通道。第四竖直导向部1816的设置增加玻片卸载时的倾斜适应能力,能够使玻片在竖直方向上被顺利推动到第四传送通道中。尤其是当桥接平台与检测平台相距一定距离时,能够确保玻片自检测平台悬空地进入桥接平台。
在一个具体的示例中,第四竖直导向部1816构造为设置在第四底部1811的在第四输入开口1814侧的端部上的斜面。
备选地或附加地,第四传送通道1810在第四输入开口1814侧的一端具有第四水平导向部1817。第四水平导向部1817用于在水平方向(在此为玻片的宽度方向)上引导玻片进入第四传送通道。例如,第四水平导向部1817可以具有相对于第四传送通道的纵向中轴线成锐角倾斜的第四斜面,以便引导玻片进入第四传送通道。第四斜面例如可以一体成型在第四传送通道的第四侧壁1812、1813上。
进一步地,第四传送通道1810在第四输出开口1815侧逐渐收窄,以便对玻片的位置进行约束,提高其进入卸载平台的成功率。
在一些实施例中,如图52所示,装载机构1300包括第一推样组件1310、例如推爪和驱动组件1320。第一推样组件1310构造用于将放置于第三传送通道中的待装载玻片12推动到检测平台的第一传送通道中,驱动组件1320用于驱动第一推样组件1310沿第一方向X1和反向于第一方向的第二方向往复运动,从而第一推样组件1310沿第一方向X1将待装载玻片12推送至检测平台的玻片放置位,并且在玻片12装载完成后,第一推样组件1310再沿第二方向回到初始位置,以等待装载下一玻片。驱动组件1320可以包括电机和同步带,电机驱动同步带运动的同时,同步带带动第一推样组件1310运动。
在一些实施例中,如图49和53所示,卸载机构1400包括第二推样组件1410、例如推爪。卸载机构1400的其他实施例的优点可参考上述对卸载机构3、20和30的描述,在此不再赘述。
在一些实施例中,如图46和图54所示,样本图像分析仪1000还可以包括用于回收经图像拍摄装置1200拍摄的玻片13的玻片回收装置1910。玻片回收装置1910设置在检测平台的输出侧并且包括第一支撑部件1911和第一玻片运送机构1912。第一支撑部件用于承载、例如固定玻片回收盒200。第一玻片运送机构用于将卸载平台1600上的玻片运送至位于第一支撑部件的玻片回收盒200中。
在一些实施例中,如图57和图58所示,第一玻片运送机构1912包括用于驱动卸载平台1600运动的第二驱动装置19125。第二驱动装置被构造成驱动卸载平台1600在第一状态与第二状态之间切换。
如图55所示,卸载平台1600的第二传送通道1610在第一状态下对准检测平台1100的第一玻片传送通道1110。例如,卸载平台1600的第二传送通道1610在第一状态下以其第二输入开口1614朝向检测平台1100,从而第一传送通道或者第四传送通道能与第二传 送通道对准,以便卸载第一传送通道中的玻片11。
如图57和图58所示,卸载平台的第二传送通道1610在第二状态下对准位于第一支撑部件1911的玻片回收盒200。例如,卸载平台1600的第二传送通道1610在第二状态下以其第二输入开口1614或者第二输出开口1618朝向位于第一支撑部件的玻片回收盒200,从而卸载平台的第二通道中的玻片11能被回收到玻片回收盒200中。
在一些实施例中,第二驱动装置19125被构造用于驱动卸载平台转动,以便在第一状态与第二状态之间切换。例如,第二驱动装置被构造用于驱动卸载平台在第一状态与第二状态之间切换时转动90°。对此备选地,第二驱动装置也可以被构造用于驱动卸载平台平移,以便在第一状态与第二状态之间切换。
在图57和图58所示的实施例中,第一玻片运送机构1912包括支撑板19121、推送部件19122、竖直驱动部件19123和水平驱动部件19124。推送部件19122可水平运动地设置在支撑板19121上。卸载平台1600可转动地设置在支撑板19121上。竖直驱动部件19123用于驱动支撑板19121竖直运动,以便位于支撑板上的卸载平台的第二传送通道与位于第一支撑部件的玻片回收盒200的相应槽位对齐。水平驱动部件19124用于驱动推送部件19122将卸载平台上的玻片11通过第二传送通道1610、例如通过第二输入开口或者第二输出开口推送到位于第一支撑部件1911的玻片回收盒200的相应槽位中。
优选的,第一玻片运送机构被构造成,在每次回收玻片之后使推卸载平台1600从第二状态返回第一状态。
在一些实施例中,如图45和46所示,样本图像分析仪1000还包括玻片进给装置1920。玻片进给装置1920设置在检测平台1100的输入侧并且包括第二支撑部件1921和第二玻片运送机构1922。第二支撑部件1921用于支撑玻片收纳盒300,第二玻片运送机构1922用于将位于第二支撑部件1921的玻片收纳盒300中的玻片运送至装载平台1700的第三传送通道1710中。
在一个具体的实施例中,第二玻片运送机构1922被构造为可三维运动的机械手,该机械手具有用于夹取待装载玻片的夹爪。优选地,所述夹爪被构造为能够翻转,从而将所夹取的玻片从竖直姿态转变为水平姿态,从而能够将所夹取的玻片以水平姿态放入第三传送通道1710中。
在一些实施例中,第二玻片运送机构可以被用作装载机构1300。
在一些实施例中,装载平台1700被构造为可水平移动的,尤其是能沿与第一方向X1垂直的水平方向移动。在此,样本图像分析仪1000可以包括用于驱动装载平台1700移动的第三驱动装置,该第三驱动装置被构造成驱动装载平台1700在第一位置与第二位置之间移动。其中,装载平台1700的第三传送通道在所述第一位置中接收由第二玻片运送机构1922运送的玻片,而在所述第二位置中以其第三输出开口1714与第一传送通道1110的第一输入开口1115对准。
在一些实施例中,如图51和图52所示,在装载平台1700中还设有用于容纳玻片的不同于第三传送通道1710的容纳槽1719。进一步地,第三驱动装置被构造成能驱动装载平台1700移动至第三位置,使得容纳槽1719从样本图像分析仪的壳体1500中伸出,以接收手动放入的玻片。由此能够实现优先检测手动放入的急诊玻片。
例如,在壳体中设有开口,装载平台1700的容纳槽1719能够从所述开口中伸出。在图44所示的实施例中,所述开口由盖1510封闭。
在一些实施例中,如图45和46所示,样本图像分析仪1000还包括用于输入和输出玻片收纳盒300的收纳盒传送装置1930。
如图59所示,收纳盒传送装置1930可以包括输入组件1931、输出组件1932、夹持组件1933和升降组件1934。其中,第二支撑部件1921设置在输入组件1931上。
输入组件1931设置用于接收装载有待测玻片的玻片收纳盒300,并且沿着第三方向Y1将玻片收纳盒300移送至夹持组件1933。第三方向Y1优选垂直于第一方向X1。
输出组件1932设置用于接收空的玻片收纳盒300并且设置在输入组件的下方。输出组件被构造为能够沿着与第三方向Y1相反的第四方向Y2移动,以带动空的玻片收纳盒300沿第四方向Y2移动。
夹持组件1933设置用于夹持玻片收纳盒300,并且构造为能够沿着第三方向Y1和第四方向Y2移动。
升降组件1934设置用于从夹持组件1933接收空的玻片收纳盒300并且将该玻片收纳盒300沿着垂直于第三方向Y1的竖直方向Z1运送至输出组件1932。
在本发明的实施例中提供了一种上下输送玻片收纳盒的装置,该装置能够通过上层的输入组件1931输入装载有待测玻片的玻片收纳盒,待玻片收纳盒中的玻片被检测完后,通过下层的输出组件1932回收空的玻片收纳盒。由此能够获得占地空间小的优点,有利于仪器小型化。
在图59所示的实施例中,收纳盒传送装置1930还可以包括阻挡组件1935,设置用于阻挡输入组件1931上的玻片收纳盒300沿第三方向Y1移动。
在一些实施例中,夹持组件1933被构造成能在第一输入位置与第一输出位置之间移动。夹持组件1933在第一输入位置中接收经由输入组件1931运送而来的玻片收纳盒300,并且在第一输出位置中将玻片收纳盒300输出给升降组件1934。
在一些实施例中,如图60所示,输入组件1931可以包括可沿第三水平方向Y1运动的第一皮带19311,在该第一皮带上能够放置一个或多个玻片收纳盒300。第一皮带19311用于带动其上放置的玻片收纳盒300沿第三水平方向Y1移动。输入组件1931还可以包括第一传感器19312、例如光耦传感器,用于感应在第一皮带19311上是否存在玻片收纳盒300。例如,当第一传感器19312感应到在第一皮带19311上存在玻片收纳盒300时,夹持组件1933运动至第一输入位置,并且第一皮带19311运转,以带动玻片收纳盒300沿第三水平方向Y1移动至处于第一输入位置的夹持组件1933中。
在一些实施例中,输入组件1931的前端19313暴露在样本图像分析仪的壳体1500之外,如图44所示。即,输入组件1931的前端19313不被壳体包围,从而用户能够将装有待测玻片、例如血涂片的玻片收纳盒300放到输入组件1931的第一皮带19311上。
在一些实施例中,如图61所示,夹持组件1933包括电磁铁19331、夹紧块19332、磁性吸附板19333、压缩弹簧19334和用于接纳玻片收纳盒300的接纳空间19336,压缩弹簧设置在夹紧块与磁性吸附板之间。接纳空间19336由两个相对的第一侧板193361、193362以及将这两个第一侧板连接的第二侧板193663形成。在与第二侧板相对的一侧为进入接纳空间的入口。电磁铁19331、夹紧块19332、磁性吸附板19333和压缩弹簧19334安装在其中一个第一侧板193361上。
当电磁铁19331通电时,电磁铁提供吸附力将磁性吸附板19333吸住,从而将夹紧块19332拉紧,并且压缩弹簧19334在夹紧块与磁性吸附板之间被压缩。此时,玻片收纳盒300能够进入夹持组件1933的接纳空间19336中。当电磁铁19331断电时,即,当电磁铁不再提供吸附力时,压缩弹簧提供回位力将夹紧块顶出,从而将接纳空间19336中的玻片收纳盒300夹紧。
采用具有电磁铁的夹持组件能够获得占用空间小、成本低的优点。
在其他备选的实施例中,取代电磁体和磁性吸附板,也可以采用电动或气动的方式拉紧和松开夹紧块19332。
在如图61所示的实施例中,夹持组件1933还包括第二传感器19336、例如光耦传感器,用于感应是否有玻片收纳盒300进入接纳空间19336中。当第二传感器感应到在接纳空间中存在玻片收纳盒时,给电磁铁19331断电。第二传感器例如可以设置在与安装有电磁铁的第一侧板193361相对的另一第一侧板193362上。
进一步地,夹持组件1933还可以包括第三传感器19337,用于感应在接纳空间19336中的玻片收纳盒300中是否存在玻片。例如,当第三传感器19337感应到在接纳空间19336 中的玻片收纳盒300中仍然存在待测玻片时,夹持组件1933保持在第一输入位置中,此时例如由第二玻片运送机构1922将玻片收纳盒300中的待测玻片运送至处于第一位置的装载平台1700的第三玻片传送通道中。而当第三传感器19337感应到在接纳空间19336中的玻片收纳盒300中不存在待测玻片时,夹持组件1933从第一输入位置移动至第一输出位置。
在一个具体的示例中,第三传感器19337可以构造为对射式光耦。对射式光耦的发光器193371和受光器193372例如可以分别设置在第一侧板193361和193362上。
在一些实施例中,如图62所示,阻挡组件1935包括彼此相互连接的阻挡块19351、下压件19352和弹簧19353。下压件和弹簧使阻挡块在阻挡位置和放行位置之间移动。阻挡块19351在阻挡位置中用于阻挡输入组件1931上的玻片收纳盒300沿第三水平方向Y1移动,而在放行位置中解除所述阻挡。例如,当下压件19352没有受到向下的压力时,弹簧19353的回位力使阻挡块19351处于阻挡位置;而当下压件19352受到向下的压力时,下压件19352克服弹簧19353的回位力向下移动,从而带动与其连接的阻挡块19351向下移动至放行位置,进而解除所述阻挡。
在一个具体的示例中,下压件19352可以被构造为可转动的滚轮。
在一些实施例中,阻挡组件1935设置在输入组件1931的与前端19313对置的后端19314,并且设置在夹持组件1933的第一输入位置处。由此,当夹持组件1933移动至第一输入位置时,夹持组件1933对下压件19352施加向下的压力,使得阻挡块19351向下移动至放行位置,从而输入组件1931上的玻片收纳盒300能沿第三水平方向Y1移动至夹持组件1933的接纳空间19336中。而当夹持组件1933从其第一输入位置移动离开时,夹持组件对下压件施加的压力解除,使得阻挡块19351在弹簧19353的回位力的作用下向上移动至阻挡位置。
在一些实施例中,如图63所示,升降组件1934具有用于支撑玻片收纳盒300的托架19341和使托架沿着竖直方向Z1移动的移动部件19342。移动部件19342包括竖直导轨,托架19341能在该竖直导轨中沿竖直方向Z1和反向于竖直方向Z1的竖直方向Z2移动,即,在竖直方向上在第二输入位置与第二输出位置之间移动。在第二输入位置中,托架19341位于夹持组件1933的接纳空间19336中,以接收其中的玻片收纳盒300;在第二输出位置中,在托架19341中的玻片收纳盒300位于输出组件1932上。
如图63所示,托架19341可以包括多个支撑条193441、例如勾爪,在夹持组件1933的第二侧板193663中设有多个对应的通行槽193664,通行槽用于供支撑条在接纳空间19336中移动。
在一些实施例中,如图60所示,升降组件1934还可以具有导向块19343,用于在托架19341沿竖直方向Z1向下移动到第二输出位置时引导玻片收纳盒300放到输出组件1932上。
在图60所示的实施例中,输出组件1932可以包括可沿第四水平方向Y2运动的第二皮带19321,在该第二皮带上能够放置一个或多个玻片收纳盒300。此外,输出组件1932还可以包括第四传感器19322、例如光耦传感器,用于感测是否有玻片收纳盒300放在第二皮带19321上。当第四传感器感测到有玻片收纳盒放入时,第二皮带启动,以带动其上的玻片收纳盒移动至输出组件1932的前端19323。
在一些实施例中,输出组件1932的前端19323暴露在样本图像分析仪的壳体1500之外,如图44所示。即,输出组件1932的前端19323不被壳体包围,从而用户能够将空的玻片收纳盒300从输出组件1932的前端19323取出。
在一些实施例中,所述输入组件包括至少一条第一皮带、第一主动轮、第一从动轮和第一电机,所述至少一条第一皮带缠绕在第一主动轮和第一从动轮上,第一电机驱动第一主动轮转动,进而通过第一皮带带动第一从动轮转动,在第一主动轮上成型有与所述至少一条第一皮带对应的至少一个凸台,在第一从动轮上同样成型有与所述至少一条第一皮带 对应的至少一个凸台,第一皮带缠绕在第一主动轮和第一从动轮的相应凸台上;和/或所述输出组件包括至少一条第二皮带、第二主动轮、第二从动轮和第二电机,所述至少一条第二皮带缠绕在第二主动轮和第二从动轮上,第二电机驱动第二主动轮转动,进而通过第二皮带带动第二从动轮转动,在第二主动轮上成型有与所述至少一条第二皮带对应的至少一凸台,在第二从动轮上同样成型有与所述至少一条第二皮带对应的至少一凸台,第二皮带缠绕在第二主动轮和第二从动轮的相应凸台上。
在具体的示例中,如图60所示,输入组件1931包括两条第一皮带19311、第一主动轮19315、第一从动轮19316和第一电机19317。两条第一皮带19311缠绕在第一主动轮19315和第一从动轮19316上,第一电机19317驱动第一主动轮19315转动,进而通过第一皮带19311带动第一从动轮19316转动。
在一些实施例中,如图64所示,在第一主动轮19315上成型有两个凸台193151,在第一从动轮19316上同样成型有对应的两个凸台(未示出),第一皮带19311缠绕在第一主动轮19315和第一从动轮19316的凸台上,使得第一皮带的两侧不受力,从而能够低成本地避免第一皮带在第一主动轮和第一从动轮上漂移。
类似地,如图59和60所示,输出组件1932包括两条第二皮带19321、第二主动轮19324、第二从动轮19325和第二电机19326。两条第二皮带19321缠绕在第二主动轮19324和第二从动轮19325上,第二电机19326驱动第二主动轮19324转动,进而通过第二皮带19321带动第二从动轮19325转动。
有利地,在第二主动轮上成型有两个凸台,在第二从动轮上同样成型有对应的两个凸台,第二皮带缠绕在第二主动轮和第二从动轮的凸台上,使得第二皮带的两侧不受力,从而能够低成本地避免第二皮带在第二主动轮和第二从动轮上漂移。
在一些实施例中,凸台的宽度小于皮带的宽度,例如凸台的宽度为皮带的宽度的二分之一或三分之一。
现在结合图65描述图59的收纳盒传送装置1930的一个示例性的工作流程。
如图65所示,在步骤S2000中,将装有待测玻片的玻片收纳盒300放到第一皮带19311上。接着在步骤S2002中,例如由第一传感器19312检测在第一皮带19311上是否存在玻片收纳盒300。当检测到在第一皮带19311存在玻片收纳盒300时,进入步骤S2004,否则继续步骤S2002。在步骤S2004中,夹持组件1933朝向第一输入位置移动,此时夹持组件1933将阻挡组件1935压下,使阻挡块19351处于放行位置;在夹持组件1933移动至第一输入位置后,给电磁铁19331通电,以将夹紧块19332拉紧。然后,在步骤S2006中,第一皮带19311带动其上的玻片收纳盒300移动到夹持组件1933的接纳空间19336中。在步骤S2008中,例如由第二传感器19336检测在接纳空间19336中是否存在玻片收纳盒300。如果检测到在接纳空间19336中存在玻片收纳盒300,则进入步骤S2010,否则继续步骤S2008。在步骤S2010中,给电磁铁19331断电时,压缩弹簧54提供回位力将夹紧块19332顶出,从而将接纳空间19336中的玻片收纳盒300夹紧。接着在步骤S2012中,例如由第三传感器19337检测在玻片收纳盒300中是否存在待测玻片。如果检测到在玻片收纳盒300中存在待测玻片,则进入步骤S2014,否则进入步骤S2016。在步骤S2014中,夹持组件1933保持在第一输入位置中,此时例如由第二玻片运送机构1922将玻片收纳盒300中的待测玻片运送至处于第一位置的装载平台1700的第三玻片传送通道中。在步骤S2016中,夹持组件1933带动空的玻片收纳盒300从第一输入位置移动至托架19341上方的第一输出位置,此时弹簧19353使阻挡块19351处于阻挡位置。接着在步骤S2018中,给电磁铁19331通电,以将夹紧块19332拉紧,从而接纳空间19336中的玻片收纳盒300落在处于第二输入位置的托架19341上。然后,在步骤S2020中,托架19341带着空的玻片收纳盒300沿着竖直导轨向下移动至第二输出位置。在步骤S2022中,例如由第四传感器19322检测在第二皮带19321上是否放入了玻片收纳盒。如果是,则在步骤S2024中,第二皮带19321启动,以带动放入的玻片收纳盒移动离开托架,直至第二皮带19321的前端19323, 从而用户能够取走空的玻片收纳盒。
本发明还提供一种样本图像分析仪,该样本图像分析仪包括检测平台1100、图像拍摄装置1200、卸载机构1400、第一支撑部件1911、第二支撑部件1921和装载机构1300。在检测平台中设有第一传送通道1610,第一传送通道连通检测平台的彼此不同的输入侧和输出侧。图像拍摄装置用于对位于检测平台的玻片放置位的玻片中的样本进行图像拍摄。图像分析装置用于对由所述图像拍摄装置拍摄的图像进行分析。卸载机构构造用于将所述检测平台的玻片放置位上的已测玻片通过所述第一传送通道卸载到所述检测平台的输出侧。第一支撑部件设置在所述检测平台的输出侧并且用于承载玻片回收盒该玻片回收盒用于回收由所述卸载机构卸载的已测玻片。第二支撑部件设置在所述检测平台的输入侧并且用于承载不同于玻片回收盒的玻片收纳盒,该玻片收纳盒用于收纳待测玻片。装载机构构造用于从所述检测平台的输入侧将待测玻片装载到所述第一传送通道中的玻片放置位。
如图66所示,本发明还提供一种玻片运送方法,应用于样本图像分析仪。该样本图像分析仪包括检测平台1100、图像拍摄装置1200、卸载机构1400和卸载平台1600,在检测平台1100中设有第一传送通道1110,在第一传送通道中1110设有玻片放置位,在卸载平台1600中设有第二传送通道1610。
所述玻片运送方法包括步骤S3000和步骤S3002。
在步骤S3000中,将检测平台1100置于拍摄状态,在所述拍摄状态下,使检测平台1100相对于图像拍摄装置1200相对运动,从而图像拍摄装置1200对位于玻片放置位上的当前玻片11进行拍摄。
在图像拍摄装置1200完成对当前玻片的拍摄之后,执行步骤S3002。在该步骤中,将检测平台1100置于装卸状态,检测平台1100在所述装卸状态下运动至装卸位置,在该装卸位置中检测平台的第一传送通道1110与卸载平台的第二传送通道1610对准,从而卸载机构1400将玻片放置位上的当前玻片11沿水平的第一方向X1卸载到卸载平台的第二传送通道1610中。
进一步地,所述样本图像分析仪还包括装载机构1300和装载平台1700,在装载平台1700中设有用于缓存待拍摄玻片12、即待测玻片的第三传送通道1710。所述玻片运送方法还包括步骤S3004,在该步骤中,在所述装卸位置中,即,当检测平台1100位于所述装卸位置时,进一步使检测平台的第一传送通道1110与装载平台的第三传送通道1710对准,从而装载机构1300将第三传送通道中的待拍摄玻片12沿第一方向X1装载到第一传送通道中的玻片放置位。
优选同时执行步骤S3002和步骤S3004,即:在所述装卸状态下,在卸载机构沿第一方向卸载当前玻片11的同时,装载机构沿第一方向状态装载待拍摄玻片12。
在一些实施例中,步骤S3002包括:在所述装卸状态下,使卸载平台1600的第二传送通道1610与检测平台1100的第一传送通道1110对准,以便卸载机构卸载当前玻片11。
进一步地,如图67所示,在卸载机构将当前玻片卸载到卸载平台的第二传送通道之后,所述玻片运送方法还包括步骤S3006,在该步骤中,使卸载平台的第二传送通道1610对准玻片回收盒200,以便将第二传送通道中的当前玻片11回收到玻片回收盒中。
进一步地,如图67所示,在步骤S3004之前,所述玻片运送方法还包括步骤S3008,在该步骤中,使装载平台1700运动至玻片接收位置,以便接收待拍摄玻片12。在步骤S3004中,在所述装卸状态下,使装载平台运动至不同于所述玻片接收位置的玻片装载位置,从而使检测平台的第一传送通道1110与装载平台的第三传送通道1710对准,从而装载机构1300将待拍摄玻片12装载到玻片放置位。
在一些实施例中,步骤S3002包括:卸载机构的推送组件推动当前玻片11沿第一方向移动离开玻片放置位,直至推送组件连同当前玻片完全经过玻片放置位。
进一步地,如图68所示,在卸载机构将当前玻片卸载到第二传送通道中之后,所述玻片运送方法还包括步骤S3010,在该步骤中,使推送组件沿反向于第一方向的第二方向 返回至检测平台的输入侧。
优选地,在步骤S3010中,在使推送组件沿第二方向返回至检测平台的输入侧期间,使推送组件远离玻片放置位,以避让所述检测平台上的玻片,以防止对待拍摄玻片到检测平台上的装载造成阻碍。
在一个具体的示例中,步骤S3002可以包括使所述推送组件以第一高度或第一宽度(宽度在此例如可以为推送组件与玻片的接触点至第一通道的中轴线的最小距离)推动当前玻片沿第一方向移动离开玻片放置位,而步骤S3010可以包括使所述推送组件以第二高度或第二宽度沿第二方向返回至检测平台的输入侧,其中,第二高度大于第一高度或者第二宽度大于第一宽度,尤其是第二高度至少比第一高度高一个玻片的厚度。
在一些实施例中,在推送组件沿第二方向完全经过玻片放置位后,使所述推送组件从所述第二高度恢复至所述第一高度或从所述第二宽度恢复至所述第一宽度。
在一些实施例中,如图69所示,在步骤S3004之前,所述玻片运送方法还包括步骤S3012,在该步骤中:玻片夹取装置将待拍摄玻片从玻片收纳盒300中夹取到识别装置中;识别装置扫描待拍摄玻片上的标识码以识别待拍摄玻片的身份信息;玻片夹取装置将已识别的待拍摄玻片夹取至装载平台的第三传送通道中,以便装载机构将所述第三传送通道中的待拍摄玻片装载到玻片放置位。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知结构和技术,以便不模糊对本说明书的理解。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (58)

  1. 一种玻片传送装置,其特征在于,所述玻片传送装置包括:
    检测平台,具有用于接纳玻片的玻片放置位,所述玻片承载用于检测的样本;
    装载机构,构造用于将玻片装载到所述检测平台的玻片放置位上;
    卸载机构,构造用于卸载所述检测平台的玻片放置位上的玻片;
    控制器,与所述装载机构和所述卸载机构通信连接并且配置用于:
    控制所述卸载机构推动已测玻片从所述玻片放置位沿第一方向卸载到所述检测平台的输出侧;以及
    控制所述装载机构从所述检测平台的输入侧沿所述第一方向将下一待测玻片装载到所述玻片放置位上。
  2. 如权利要求1所述的玻片传送装置,其特征在于,所述装载机构与所述卸载机构彼此独立。
  3. 如权利要求1或2所述的玻片传送装置,其特征在于,所述控制器配置用于:
    在控制所述卸载机构从所述玻片放置位卸载已测玻片期间控制所述装载机构将下一待测玻片装载到所述玻片放置位上。
  4. 如权利要求1至3中任一项所述的玻片传送装置,其特征在于,在所述检测平台中设有第一传送通道,所述玻片放置位设置在所述第一传送通道中,所述第一传送通道具有相对设置的第一输入开口和第一输出开口;
    所述卸载机构被构造成推动已测玻片在所述第一传送通道中沿所述第一方向运动,从而将已测玻片通过所述第一输出开口从所述玻片放置位卸载到所述检测平台的输出侧;
    所述装载机构被构造成,通过所述第一输入开口将待测玻片从所述检测平台的输入侧沿所述第一方向推动到所述第一传送通道中,直至待测玻片到达所述玻片放置位。
  5. 如权利要求4所述的玻片传送装置,其特征在于,所述玻片传送装置还包括设置在所述检测平台的输出侧的卸载平台,在所述卸载平台中设有第二传送通道,所述第二传送通道被构造用于缓存已测玻片,所述第二传送通道具有第二输入开口;
    所述检测平台和所述卸载平台被构造成能在卸载已测玻片时配合作用,使得所述第一传送通道的第一输出开口和所述第二传送通道的第二输入开口对准,从而所述卸载机构能沿所述第一方向将已测玻片通过所述第一输出开口和所述第二输入开口从所述玻片放置位推动到所述第二传送通道中。
  6. 如权利要求4或5所述的玻片传送装置,其特征在于,所述玻片传送装置还包括设置在所述检测平台的输入侧的装载平台,在所述装载平台中设有第三传送通道,所述第三传送通道被构造用于缓存待测玻片,所述第三传送通道具有第三输出开口;
    所述检测平台和所述装载平台被构造成能在装载待测玻片时配合作用,使得所述第一传送通道的第一输入开口和所述第三传送通道的第三输出开口对准,从而所述装载机构能沿所述第一方向将缓存在所述第三传送通道中的待测玻片通过所述第三输出开口和所述第一输入开口推动到所述第一传送通道中。
  7. 如权利要求6所述的玻片传送装置,其特征在于,所述检测平台、所述卸载平台和所述装载平台被构造成能在卸载已测玻片并装载待测玻片时配合作用,使得所述第一传送通道、所述第二传送通道和所述第三传送通道同时对准以形成总传送通道,从而所述卸载机构和所述装载机构能沿所述第一方向同时推动已测玻片和待测玻片在所述总传送通道中移动。
  8. 如权利要求7所述的玻片传送装置,其特征在于,所述控制器配置用于控制所述装载机构和所述卸载机构,使得待测玻片以及已测玻片在部分时间上同时位于所述第一传送通道中。
  9. 如权利要求1至8中任一项所述的玻片传送装置,其特征在于,所述卸载机构具有能沿所述第一方向推动所述玻片放置位上的已测玻片的推送组件;
    其中,所述控制器配置用于在控制所述卸载机构将已测玻片从所述玻片放置位沿所述第一方向卸载到所述检测平台的输出侧时,控制所述卸载机构的推送组件推动所述已测玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述已测玻片完全经过所述玻片放置位。
  10. 如权利要求1至9中任一项所述的玻片传送装置,其特征在于,所述卸载机构还包括驱动组件,所述驱动组件构造用于驱动所述推送组件沿所述第一方向和反向于所述第一方向的第二方向在所述输入侧与所述输出侧之间来回移动。
  11. 如权利要求10所述的玻片传送装置,其特征在于,所述卸载机构还包括避让组件,所述避让组件构造用于当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时使所述推送组件不与玻片放置位的下一待测玻片碰撞。
  12. 如权利要求11所述的玻片传送装置,其特征在于,所述避让组件构造用于:
    在所述驱动组件驱动所述推送组件带动所述玻片放置位上的已测玻片沿所述第一方向从所述输入侧朝向所述输出侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第一高度;
    在所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件相对于所述玻片放置位的底部具有第二高度,其中,所述第二高度比所述第一高度至少高一个玻片的厚度。
  13. 如权利要求12所述的玻片传送装置,其特征在于,所述避让组件包括可摆动部件,其中,
    所述驱动组件构造用于驱动所述推送组件和所述可摆动部件沿第一方向和反向于所述第一方向的第二方向在所述输入侧与所述输出侧之间来回移动;
    所述可摆动部件包括摆动块和转动轴,所述推送组件固定在所述摆动块上,所述摆动块构造用于能围绕所述转动轴转动,并能带动所述推送组件在所述第一高度与所述第二高度之间切换;
    所述驱动组件还构造用于:驱动所述推送组件沿所述第一方向运动时在所述第一高度推动玻片从检测平台的检测位卸载,以及驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时在所述第二高度不与玻片放置位的下一待测玻片碰撞。
  14. 如权利要求13所述的玻片传送装置,其特征在于,所述可摆动部件还包括限位部件,所述限位部件构造用于:
    在所述摆动块带动所述推送组件摆动至所述第一高度时限定所述推送组件维持在所述第一高度;以及
    在所述摆动块带动所述推送组件摆动至所述第二高度时限定所述推送组件维持在所述第二高度。
  15. 如权利要求13所述的玻片传送装置,其特征在于,所述卸载机构还包括提位件和回位件,
    所述提位件构造用于:当所述可摆动部件沿所述第一方向移动时能够使所述可摆动部件无摆动通过;以及当所述可摆动部件沿所述第二方向移动并碰撞所述提位件时能够推动所述摆动块向上摆动,带动所述推送组件从所述第一高度提升到所述第二高度;
    所述回位件构造用于:当所述摆动块沿所述第二方向运动经过所述玻片放置位之后能够使所述摆动块向下摆动,并能带动所述推送组件从所述第二高度回位至所述第一高度。
  16. 如权利要求11所述的玻片传送装置,其特征在于,所述避让组件包括:
    第一轨道和第二轨道,所述第二轨道的位置高度高于所述第一轨道的位置高度;
    切换机构,构造用于在卸载所述玻片时引导所述推送组件切换至所述第一轨道而处于所述第一高度,并沿着所述第一轨道从所述输入侧朝向所述输出侧移动以卸载所述玻片放 置位上的所述已测玻片,以及在卸载完成后引导所述推送组件切换至所述第二轨道而处于所述第二高度,并沿着所述第二轨道不与所述玻片放置位的下一待测玻片碰撞地返回所述输入侧。
  17. 如权利要求16所述的玻片传送装置,其特征在于,所述切换机构包括与所述推送组件连接的传动部件,所述传动部件构造用于沿所述第一轨道和所述第二轨道移动,以使所述推送组件沿所述第一轨道和所述第二轨道移动。
  18. 如权利要求11所述的玻片传送装置,其特征在于,所述避让组件构造用于:当所述驱动组件驱动所述推送组件带动所述玻片放置位上的已测玻片沿所述第一方向从所述输入侧朝向所述输出侧移动时,使所述推送组件在水平方向上与所述玻片放置位沿所述第一方向的中轴线之间的距离为第一宽度;
    当所述驱动组件驱动所述推送组件沿所述第二方向从所述输出侧朝向所述输入侧移动时,使所述推送组件在水平方向上与所述玻片放置位的所述中轴线之间的距离为第二宽度,其中,所述第二宽度比第一宽度至少大一个玻片的宽度的一半。
  19. 一种样本图像分析仪,其特征在于,所述样本图像分析仪包括:
    检测平台,在该检测平台中设有第一传送通道,所述第一传送通道具有用于支撑玻片的第一底部和用于对玻片两侧进行限位的第一侧壁,在所述第一传送通道的第一底部设有用于接纳玻片的玻片放置位,所述第一传送通道在所述检测平台的输出侧具有第一输出开口;
    图像拍摄装置,用于对位于检测平台的玻片放置位上的玻片中的样本进行图像拍摄;
    图像分析装置,用于对由所述图像拍摄装置拍摄的图像进行分析;
    装载机构,构造用于从所述检测平台的输入侧将待装载玻片装载到所述第一传送通道中的玻片放置位;
    卸载机构,构造用于推动在所述检测平台的玻片放置位上的待卸载玻片在所述第一传送通道中沿水平的第一方向移动,以便将该待卸载玻片从所述玻片放置位通过所述第一输出开口卸载到所述检测平台的输出侧。
  20. 如权利要求19所述的样本图像分析仪,其特征在于,所述第一传送通道在所述检测平台的输入侧还具有第一输入开口;
    所述装载机构被构造成,从所述检测平台的输入侧将待装载玻片沿所述第一方向通过所述第一输入开口推动到所述第一传送通道中,直至该待装载玻片到达所述检测平台的玻片放置位。
  21. 如权利要求19或20所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括设置在所述检测平台的输出侧的卸载平台,在所述卸载平台中设有第二传送通道,所述第二传送通道被构造用于缓存从所述检测平台卸载的玻片,并且具有用于支撑玻片的第二底部和用于对玻片两侧进行限位的第二侧壁,所述第二传送通道还具有第二输入开口;
    所述检测平台和所述卸载平台被构造成能在卸载玻片时配合作用,使得所述第一传送通道的第一输出开口和所述第二传送通道的第二输入开口对准,从而所述卸载机构能沿所述第一方向将待卸载玻片通过所述第一输出开口和所述第二输入开口从所述玻片放置位推动到所述第二传送通道中。
  22. 如权利要求19至21中任一项所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括设置在所述检测平台的输入侧的装载平台,在所述装载平台中设有第三传送通道,所述第三传送通道被构造用于缓存待装载玻片,并且具有用于支撑玻片的第三底部和用于对玻片两侧进行限位的第三侧壁,所述第三传送通道还具有第三输出开口;
    所述检测平台和所述装载平台被构造成能在装载玻片时配合作用,使得所述第一传送通道的第一输入开口和所述第三传送通道的第三输出开口对准,从而所述装载机构能沿所述第一方向将缓存在所述第三传送通道中的待装载玻片通过所述第三输出开口和所述第一输入开口推动到所述第一传送通道中。
  23. 如权利要求22所述的样本图像分析仪,其特征在于,所述检测平台、所述装载平台和所述卸载平台被构造成能在装载玻片和卸载玻片时配合作用,使得所述第一传送通道、所述第二传送通道和所述第三传送通道同时对准以形成总传送通道,从而所述装载机构和所述卸载机构能同时沿所述第一方向推动待装载玻片和待卸载玻片在所述总传送通道中至少相对所述第一底部移动。
  24. 如权利要求21至23中任一项所述的样本图像分析仪,其特征在于,在所述检测平台与所述卸载平台之间还设有桥接平台,所述卸载机构被构造成,将待卸载玻片沿所述第一方向从所述第一传送通道经由所述桥接平台卸载到所述第二传送通道中。
  25. 如权利要求24所述的样本图像分析仪,其特征在于,在所述桥接平台中设有第四传送通道,所述第四传送通道具有用于支撑玻片的第四底部和用于对玻片两侧进行限位的第四侧壁,所述第四传送通道还具有相对设置的第四输入开口和第四输出开口;
    所述检测平台、所述卸载平台和所述桥接平台被构造成能在卸载玻片时配合作用,使得所述第一传送通道的第一输出开口与所述第四传送通道的第四输入开口对准以及所述第四传送通道的第四输出开口与所述第二传送通道的第二输入开口对准,从而所述卸载机构能沿所述第一方向推动待卸载玻片从所述第一传送通道经由所述第四传送通道进入到所述第二传送通道中。
  26. 如权利要求19至25中任一项所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括设置在所述检测平台下方的光源;
    所述第一传送通道的第一底部的设有所述玻片放置位的部分构造为具有贯通开口或者构造为透明的,以便所述光源发出的光能够照射到位于所述玻片放置位的玻片上。
  27. 如权利要求20至26中任一项所述的样本图像分析仪,其特征在于,所述第一传送通道在所述第一输入开口侧的一端具有第一竖直导向部,所述第一竖直导向部用于在竖直方向上引导玻片进入所述第一传送通道;和/或
    所述第一传送通道在所述第一输入开口侧的一端具有第一水平导向部,所述第一水平导向部用于在水平方向上引导玻片进入所述第一传送通道。
  28. 如权利要求19至27中任一项所述的样本图像分析仪,其特征在于,所述检测平台还具有第一弹性压紧部,所述第一弹性压紧部用于在竖直方向上压紧位于所述玻片放置位上的玻片。
  29. 如权利要求28所述的样本图像分析仪,其特征在于,在所述第一弹性压紧部上设有竖直导向部,该竖直导向部用于在竖直方向上引导玻片在所述第一传送通道中经过所述第一弹性压紧部。
  30. 如权利要求21至29中任一项所述的样本图像分析仪,其特征在于,所述第二传送通道在所述第二输入开口侧的一端具有第二竖直导向部,所述第二竖直导向部用于在竖直方向上引导玻片进入所述第二传送通道;和/或
    所述第二传送通道在所述第二输入开口侧的一端具有第二水平导向部,所述第二水平导向部用于在水平方向上引导玻片进入所述第二传送通道。
  31. 如权利要求21至30中任一项所述的样本图像分析仪,其特征在于,所述卸载平台还具有第二弹性压紧部,所述第二弹性压紧部用于在竖直方向上压紧位于所述第二传送通道中的玻片。
  32. 如权利要求22至31中任一项所述的样本图像分析仪,其特征在于,所述第三传送通道在所述第三输出开口侧的一端具有第三水平导向部,所述第三水平导向部用于引导玻片从所述第三传送通道进入所述第一传送通道;和/或
    所述第三传送通道的第三侧壁至少部分被构造成与所述第三底部成钝角倾斜;和/或
    所述第三传送通道在与所述第三输出开口相对的一端具有阻挡部。
  33. 如权利要求25至32中任一项所述的样本图像分析仪,其特征在于,所述第四传送通道在所述第四输入开口侧的一端具有第四竖直导向部,所述第四竖直导向部用于在竖 直方向上引导玻片进入所述第四传送通道;和/或
    所述第四传送通道在所述第四输入开口侧的一端具有第四水平导向部,所述第四水平导向部用于在水平方向上引导玻片进入所述第四传送通道。
  34. 如权利要求19至33中任一项所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括用于驱动所述检测平台在拍摄状态与装卸状态之间切换的第一驱动装置;
    在所述检测平台的拍摄状态下,所述第一驱动装置被构造成,驱动所述检测平台相对于所述图像拍摄装置运动,以便所述图像拍摄装置对位于所述玻片放置位上的玻片进行图像拍摄;
    在所述检测平台的装卸状态下,所述第一驱动装置被构造成在驱动所述检测平台运动至装卸位置后停止,以便所述装载机构能将玻片装载到所述玻片放置位上和/或所述卸载机构能将位于所述玻片放置位的玻片卸载。
  35. 如权利要求19至34中任一项所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括用于回收经所述图像拍摄装置拍摄的玻片的玻片回收装置;
    所述玻片回收装置设置在所述检测平台的输出侧并且包括第一支撑部件和第一玻片运送机构,所述第一支撑部件用于承载玻片回收盒,所述第一玻片运送机构用于将所述卸载平台上的玻片运送至位于所述第一支撑部件的玻片回收盒中。
  36. 如权利要求35所述的样本图像分析仪,其特征在于,所述第一玻片运送机构还包括用于驱动所述卸载平台运动第二驱动装置,所述第二驱动装置被构造成驱动所述卸载平台在第一状态与第二状态之间切换,所述卸载平台的第二传送通道在第一状态下对准所述检测平台的第一玻片传送通道并且在第二状态下对准位于所述第一支撑部件的玻片回收盒。
  37. 如权利要求36所述的样本图像分析仪,其特征在于,所述第一玻片运送机构包括支撑板、推送部件、竖直驱动部件和水平驱动部件;
    所述推送部件可水平运动地设置在所述支撑板上,所述卸载平台可转动地设置在所述支撑板上,所述第二驱动装置被构造用于驱动所述卸载平台在所述支撑板上转动;
    所述竖直驱动部件用于驱动所述支撑板竖直运动,以便位于所述支撑板上的卸载平台的第二传送通道与位于所述第一支撑部件的玻片回收盒的相应槽位对齐;
    所述水平驱动部件用于驱动所述推送部件将所述卸载平台上的玻片通过所述第二传送通道推送到位于所述第一支撑部件的玻片回收盒的相应槽位中。
  38. 如权利要求36或37所述的样本图像分析仪,其特征在于,所述第一玻片运送机构被构造成,在每次回收玻片之后使所述卸载平台从所述第二状态返回所述第一状态。
  39. 如权利要求22至38中任一项所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括玻片进给装置,所述玻片进给装置设置在所述检测平台的输入侧并且包括第二支撑部件和第二玻片运送机构,所述第二支撑部件用于承载玻片收纳盒,所述第二玻片运送机构用于将位于所述第二支撑部件的玻片收纳盒中的玻片运送至所述装载平台的第三传送通道中。
  40. 如权利要求39所述的样本图像分析仪,其特征在于,所述样本图像分析仪还包括用于驱动所述装载平台移动的第三驱动装置,所述第三驱动装置被构造成驱动所述装载平台在第一位置与第二位置之间移动,所述装载平台的第三玻片传送通道在所述第一位置中接收由所述第二玻片运送机构运送的玻片,并且在所述第二位置中以其第三输出开口与所述第一传送通道的第一输入开口对准。
  41. 如权利要求40所述的样本图像分析仪,其特征在于,在所述装载平台中还设有用于容纳玻片的不同于所述第三传送通道的容纳槽;
    所述第三驱动装置被进一步构造成驱动所述装载平台移动至第三位置,使得所述容纳槽从所述样本图像分析仪的壳体中伸出,以接收手动放入的玻片。
  42. 如权利要求19至41中任一项所述的样本图像分析仪,其特征在于,所述样本图 像分析仪还包括用于输入和输出玻片收纳盒的收纳盒传送装置,所述收纳盒传送装置包括输入组件、输出组件、夹持组件和升降组件;
    所述输入组件设置用于接收装载有待测玻片的玻片收纳盒,并且沿着第三方向将玻片收纳盒移送至夹持组件,
    所述输出组件设置用于接收空的玻片收纳盒并且设置在输入组件的下方,并且所述输出组件被构造为能够沿着与第三方向相反的第四方向移动,以带动空的玻片收纳盒沿第四方向移动,
    所述夹持组件设置用于夹持玻片收纳盒,并且构造为能够沿着第三方向和第四方向移动;
    所述升降组件设置用于从夹持组件接收空的玻片收纳盒并且将该玻片收纳盒沿着垂直于第三方向的竖直方向运送至输出组件。
  43. 如权利要求42所述的样本图像分析仪,其特征在于,所述收纳盒传送装置还包括阻挡组件,设置用于阻挡输入组件上的玻片收纳盒沿第三方向移动。
  44. 如权利要求42或43所述的样本图像分析仪,其特征在于,所述夹持组件包括电磁铁、夹紧块、磁性吸附板、压缩弹簧和用于接纳玻片收纳盒的接纳空间,压缩弹簧设置在夹紧块与磁性吸附板之间;
    所述电磁铁被构造成,在通电时提供吸附力将磁性吸附板吸住,从而将夹紧块拉紧并且使压缩弹簧在夹紧块与磁性吸附板之间被压缩,从而玻片收纳盒能够进入接纳空间;
    所述压缩弹簧被构造成在所述电磁铁断电时提供回位力将夹紧块顶出,从而将接纳空间中的玻片收纳盒夹紧。
  45. 如权利要求43所述的样本图像分析仪,其特征在于,所述阻挡组件包括彼此相互连接的阻挡块、下压件和弹簧,所述下压件和弹簧使阻挡块在阻挡位置和放行位置之间移动;
    所述阻挡块被构造成,在阻挡位置中用于阻挡输入组件上的玻片收纳盒沿第三水平方向移动,而在放行位置中解除所述阻挡。
  46. 如权利要求42至45中任一项所述的样本图像分析仪,其特征在于,所述输入组件包括至少一条第一皮带、第一主动轮、第一从动轮和第一电机,所述至少一条第一皮带缠绕在第一主动轮和第一从动轮上,第一电机驱动第一主动轮转动,进而通过第一皮带带动第一从动轮转动,在第一主动轮上成型有与所述至少一条第一皮带对应的至少一个凸台,在第一从动轮上同样成型有与所述至少一条第一皮带对应的至少一个凸台,第一皮带缠绕在第一主动轮和第一从动轮的相应凸台上;和/或
    所述输出组件包括至少一条第二皮带、第二主动轮、第二从动轮和第二电机,所述至少一条第二皮带缠绕在第二主动轮和第二从动轮上,第二电机驱动第二主动轮转动,进而通过第二皮带带动第二从动轮转动,在第二主动轮上成型有与所述至少一条第二皮带对应的至少一个凸台,在第二从动轮上同样成型有与所述至少一条第二皮带对应的至少一个凸台,第二皮带缠绕在第二主动轮和第二从动轮的相应凸台上。
  47. 一种样本图像分析仪,其特征在于,所述样本图像分析仪包括:
    检测平台,在该检测平台中设有第一传送通道,所述第一传送通道连通所述检测平台的彼此不同的输入侧和输出侧;
    图像拍摄装置,用于对位于检测平台的玻片放置位的玻片中的样本进行图像拍摄;
    图像分析装置,用于对由所述图像拍摄装置拍摄的图像进行分析;
    卸载机构,构造用于将所述检测平台的玻片放置位上的已测玻片通过所述第一传送通道卸载到所述检测平台的输出侧;
    第一支撑部件,设置在所述检测平台的输出侧并且用于承载玻片回收盒,该玻片回收盒用于回收由所述卸载机构卸载的已测玻片;
    第二支撑部件,设置在所述检测平台的输入侧并且用于承载不同于玻片回收盒的玻片 收纳盒,该玻片收纳盒用于收纳待测玻片;
    装载机构,构造用于从所述检测平台的输入侧将待测玻片装载到所述第一传送通道中的玻片放置位。
  48. 一种玻片运送方法,应用于样本图像分析仪,该样本图像分析仪包括检测平台、图像拍摄装置、卸载机构和卸载平台,在所述检测平台中设有第一传送通道,在所述第一传送通道中设有玻片放置位,在所述卸载平台中设有第二传送通道;
    所述玻片运送方法包括:
    将所述检测平台置于拍摄状态,在所述拍摄状态下,使所述检测平台相对于所述图像拍摄装置相对运动,从而所述图像拍摄装置对位于所述玻片放置位上的当前玻片进行拍摄;
    在所述图像拍摄装置完成对当前玻片的拍摄之后,将所述检测平台置于装卸状态,所述检测平台在所述装卸状态下运动至装卸位置并停止与所述片图像拍摄装置的相对运动,在该装卸位置中所述检测平台的第一传送通道与所述卸载平台的第二传送通道对准,从而所述卸载机构将所述玻片放置位上的当前玻片沿水平的第一方向卸载到所述卸载平台的第二传送通道中。
  49. 如权利要求48所述的玻片运送方法,其特征在于,所述样本图像分析仪还包括装载机构和装载平台,在所述装载平台中设有用于缓存待拍摄玻片的第三传送通道;
    所述玻片运送方法还包括:
    在所述装卸位置中,进一步使所述检测平台的第一传送通道与所述装载平台的第三传送通道对准,从而所述装载机构将所述第三传送通道中的待拍摄玻片沿所述第一方向装载到所述第一传送通道中的玻片放置位。
  50. 如权利要求49所述的玻片运送方法,其特征在于,在所述装卸状态下,在所述卸载机构沿所述第一方向卸载所述当前玻片的同时,所述装载机构沿所述第一方向状态装载所述待拍摄玻片。
  51. 如权利要求48至50中任一项所述的玻片运送方法,其特征在于,在所述装卸状态下,使所述卸载平台的第二传送通道与所述检测平台的第一传送通道对准,以便所述卸载机构卸载当前玻片;
    所述玻片运送方法还包括,在所述卸载机构将所述当前玻片卸载到所述卸载平台的第二传送通道之后,使所述卸载平台的第二传送通道对准玻片回收盒,以便将所述第二传送通道中的当前玻片回收到所述玻片回收盒中。
  52. 如权利要求49至51中任一项所述的玻片运送方法,其特征在于,所述玻片运送方法还包括:使所述装载平台运动至玻片接收位置,以便接收待拍摄玻片;
    在所述装卸状态下,使所述装载平台运动至不同于所述玻片接收位置的玻片装载位置,从而使所述检测平台的第一传送通道与所述装载平台的第三传送通道对准,从而所述装载机构将所述待拍摄玻片装载到所述玻片放置位。
  53. 如权利要求48至52中任一项所述的玻片传送方法,其特征在于,所述卸载机构将所述当前玻片沿所述第一方向卸载到所述第二传送通道中,包括:
    所述卸载机构的推送组件推动所述当前玻片沿所述第一方向移动离开所述玻片放置位,直至所述推送组件连同所述当前玻片完全经过所述玻片放置位。
  54. 如权利要求53所述的玻片传送方法,其特征在于,在所述卸载机构将所述当前玻片卸载到所述第二传送通道中之后,所述玻片传送方法还包括:
    使所述推送组件沿反向于所述第一方向的第二方向返回至所述检测平台的输入侧。
  55. 如权利要求54所述的玻片传送方法,其特征在于,在使所述推送组件沿第二方向返回至所述检测平台的输入侧期间,使所述推送组件远离所述玻片放置位,以避让所述检测平台上的玻片。
  56. 如权利要求55所述的玻片传送方法,其特征在于,所述推送组件推动所述当前玻片沿所述第一方向移动离开所述玻片放置位,包括:
    使所述推送组件以第一高度或第一宽度推动所述当前玻片沿所述第一方向移动离开所述玻片放置位;
    使所述推送组件沿所述第二方向返回至所述检测平台的输入侧,包括:
    使所述推送组件以第二高度或第二宽度沿所述第二方向返回至所述检测平台的输入侧,其中,所述第二高度大于所述第一高度或所述第二宽度大于所述第一宽度。
  57. 如权利要求56所述的玻片传送方法,其特征在于,在所述推送组件沿所述第二方向完全经过所述玻片放置位后,使所述推送组件从所述第二高度恢复至所述第一高度或从所述第二宽度恢复至所述第一宽度。
  58. 如权利要求49所述的玻片传送方法,其特征在于,在所述装载机构将所述第三传送通道中的待拍摄玻片装载到玻片放置位之前,所述方法包括:
    玻片夹取装置将所述待拍摄玻片从玻片收纳盒中夹取到识别装置中;
    所述识别装置扫描所述待拍摄玻片上的标识码以识别所述待拍摄玻片的身份信息;
    所述玻片夹取装置将已识别的所述待拍摄玻片夹取至所述装载平台的第三传送通道中,以便所述装载机构将所述第三传送通道中的待拍摄玻片装载到玻片放置位。
PCT/CN2021/103617 2020-06-30 2021-06-30 玻片传送装置、玻片传送方法和样本图像分析仪 WO2022002144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180044167.6A CN115769080A (zh) 2020-06-30 2021-06-30 玻片传送装置、玻片传送方法和样本图像分析仪

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/099199 WO2022000251A1 (zh) 2020-06-30 2020-06-30 玻片传送装置、玻片传送方法和样本图像分析仪
CNPCT/CN2020/099199 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022002144A1 true WO2022002144A1 (zh) 2022-01-06

Family

ID=79317434

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/099199 WO2022000251A1 (zh) 2020-06-30 2020-06-30 玻片传送装置、玻片传送方法和样本图像分析仪
PCT/CN2021/103617 WO2022002144A1 (zh) 2020-06-30 2021-06-30 玻片传送装置、玻片传送方法和样本图像分析仪

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099199 WO2022000251A1 (zh) 2020-06-30 2020-06-30 玻片传送装置、玻片传送方法和样本图像分析仪

Country Status (2)

Country Link
CN (1) CN115769080A (zh)
WO (2) WO2022000251A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878464B (zh) * 2022-02-28 2024-04-16 北京毅能博科技有限公司 用于细胞形态学自动显微扫描仪的双片双推玻片装卸机构
CN114859067A (zh) * 2022-04-26 2022-08-05 厦门微亚智能科技有限公司 一种膜缺陷检测设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152390A (en) * 1976-12-17 1979-05-01 Eastman Kodak Company Chemical analyzer
US4269803A (en) * 1979-07-02 1981-05-26 Eastman Kodak Company Slide transfer mechanism
US6847481B1 (en) * 2001-10-26 2005-01-25 Ludl Electronics Products, Ltd. Automated slide loader cassette for microscope
CN102368074A (zh) * 2010-06-30 2012-03-07 索尼公司 载玻片存储装置、传送装置和显微镜系统
CN103713144A (zh) * 2012-09-28 2014-04-09 希森美康株式会社 标本运送装置、标本检查系统及标本运送方法
CN103827655A (zh) * 2011-07-22 2014-05-28 罗氏血液诊断股份有限公司 样品运送系统及方法
CN106814200A (zh) * 2016-11-05 2017-06-09 沈阳工业大学 实验检测台及检测方法
CN207557262U (zh) * 2017-07-06 2018-06-29 湖南品胜生物技术有限公司 全自动细胞dna定量分析设备
CN108569516A (zh) * 2017-03-08 2018-09-25 爱威科技股份有限公司 玻片运输装置及推片系统
CN108918523A (zh) * 2018-08-21 2018-11-30 江苏华创高新医疗科技有限公司 病理多靶点智能辅助诊断系统
CN210243508U (zh) * 2019-05-29 2020-04-03 瓜藤科技(深圳)有限公司 全自动显微镜镜检装置
CN111220617A (zh) * 2020-03-27 2020-06-02 江苏迪赛特医疗科技有限公司 一种新型病理切片扫描仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922525B (zh) * 2012-10-24 2015-11-25 宁波江丰生物信息技术有限公司 机械手、玻片自动装卸系统和数字病理切片扫描仪

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152390A (en) * 1976-12-17 1979-05-01 Eastman Kodak Company Chemical analyzer
US4269803A (en) * 1979-07-02 1981-05-26 Eastman Kodak Company Slide transfer mechanism
US6847481B1 (en) * 2001-10-26 2005-01-25 Ludl Electronics Products, Ltd. Automated slide loader cassette for microscope
CN102368074A (zh) * 2010-06-30 2012-03-07 索尼公司 载玻片存储装置、传送装置和显微镜系统
CN103827655A (zh) * 2011-07-22 2014-05-28 罗氏血液诊断股份有限公司 样品运送系统及方法
CN103713144A (zh) * 2012-09-28 2014-04-09 希森美康株式会社 标本运送装置、标本检查系统及标本运送方法
CN106814200A (zh) * 2016-11-05 2017-06-09 沈阳工业大学 实验检测台及检测方法
CN108569516A (zh) * 2017-03-08 2018-09-25 爱威科技股份有限公司 玻片运输装置及推片系统
CN207557262U (zh) * 2017-07-06 2018-06-29 湖南品胜生物技术有限公司 全自动细胞dna定量分析设备
CN108918523A (zh) * 2018-08-21 2018-11-30 江苏华创高新医疗科技有限公司 病理多靶点智能辅助诊断系统
CN210243508U (zh) * 2019-05-29 2020-04-03 瓜藤科技(深圳)有限公司 全自动显微镜镜检装置
CN111220617A (zh) * 2020-03-27 2020-06-02 江苏迪赛特医疗科技有限公司 一种新型病理切片扫描仪

Also Published As

Publication number Publication date
WO2022000251A1 (zh) 2022-01-06
CN115769080A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2022002144A1 (zh) 玻片传送装置、玻片传送方法和样本图像分析仪
US7790107B2 (en) Sample image obtaining apparatus, sample image obtaining system, and method for obtaining sample image
JP5995631B2 (ja) 標本搬送装置、標本検査システムおよび標本搬送方法
JP3068286B2 (ja) 分析装置、分析装置の試験要素支持体及び試験要素の洗浄方法
JP6016560B2 (ja) 標本搬送装置及び標本撮像システム
CN112798804B (zh) 荧光免疫分析设备
JP2007527010A (ja) 自動化された臨床機器のための磁気吸引検体−容器ラック
US9329196B2 (en) Specimen storage device, specimen storing method, and rack
JP5342389B2 (ja) 検体処理装置及び検体の搬送装置
US20230075319A1 (en) Smear transporting apparatus, smear system, and smear preparing apparatus
US10598677B2 (en) Smear transporting apparatus, smear image capture system, and smear analysis system
CN110398605A (zh) 一种血液细胞样本分析系统和分析系统控制方法
CN208868936U (zh) 试剂盒运送装置
JP6009890B2 (ja) 標本搬送装置および標本検査システム
CN107533074B (zh) 一种样本分析装置
CN212964992U (zh) 样本卸载装置和样本分析仪
CN115400821A (zh) 一种试管夹持机械手及封闭式布鲁氏菌检测仪
CN113866436A (zh) 一种细胞分析系统
CN219328800U (zh) 样本图像扫描设备
KR102547184B1 (ko) 생물학적 샘플의 이미지 분석장치
CN212964994U (zh) 样本卸载装置和样本分析仪
CN219320310U (zh) 样本图像扫描设备
CN107703047B (zh) 容器处理系统及试样分析仪
CN116047099A (zh) 样本图像扫描设备
CN114527290A (zh) 一种样本图像分析装置及样本图像分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834461

Country of ref document: EP

Kind code of ref document: A1