WO2022001975A1 - 车辆转向控制方法、装置及系统 - Google Patents

车辆转向控制方法、装置及系统 Download PDF

Info

Publication number
WO2022001975A1
WO2022001975A1 PCT/CN2021/102817 CN2021102817W WO2022001975A1 WO 2022001975 A1 WO2022001975 A1 WO 2022001975A1 CN 2021102817 W CN2021102817 W CN 2021102817W WO 2022001975 A1 WO2022001975 A1 WO 2022001975A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
rotation angle
vehicle speed
rear wheel
proportional coefficient
Prior art date
Application number
PCT/CN2021/102817
Other languages
English (en)
French (fr)
Inventor
禹真
余景龙
单帅
苗为为
王立军
王君君
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP21832466.3A priority Critical patent/EP4063237A4/en
Publication of WO2022001975A1 publication Critical patent/WO2022001975A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels

Definitions

  • Embodiments of the present application relate to the technical field of vehicle control, for example, to a vehicle steering control method, device, and system.
  • the steering control of the car usually receives the steering angle signal of the steering wheel by the front wheel steering actuator to control the front wheel angle of the car; while the rear wheel steering actuator needs to obtain the vehicle state parameter signal of the whole vehicle, and use the prescribed algorithm to calculate The rear wheel angle is output to drive the rear wheel steering actuator to control the rear wheel angle.
  • a prescribed algorithm is used to calculate the rear wheel angle, focusing on the control of the driver's somatosensory vehicle slip angle during the manipulation process, which requires a large amount of vehicle state information to estimate the vehicle slip angle, and for The input accuracy of the road friction coefficient is high, the system robustness is poor, and the response requirements of the actuator are very high, and the response of the vehicle is not fast enough, which affects the safety of the vehicle.
  • Embodiments of the present application provide a vehicle steering control method, device, and system, so as to improve the safety and reliability of vehicle steering control.
  • an embodiment of the present application provides a vehicle steering control method, including:
  • the vehicle speed signal determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle
  • the rear wheel turning angle is calculated based on the proportional coefficient and the front wheel turning angle.
  • the vehicle speed signal determine a vehicle speed range to which the vehicle speed of the vehicle belongs
  • a proportional coefficient of the front wheel rotation angle and the rear wheel rotation angle is determined according to the vehicle speed range to which the vehicle speed of the vehicle belongs.
  • the vehicle speed range includes a first vehicle speed range, a second vehicle speed range, a third vehicle speed range and a fourth vehicle speed range;
  • the proportional coefficient of the front wheel rotation angle and the rear wheel rotation angle is determined, including:
  • the proportional coefficient of the front wheel rotation angle and the rear wheel rotation angle is determined as the second proportional coefficient k2;
  • the second proportional coefficient k2 is:
  • k2 (-b+(m*a/(K2*L))*V 2 )/(a+(m*b/(K1*L))*V 2 )
  • m is the mass of the vehicle (kg)
  • V is the speed of the vehicle (m/s)
  • a is the distance (m) from the center of gravity of the vehicle to the front axle of the vehicle
  • b is the The distance from the center of gravity of the vehicle to the rear axle of the vehicle (m)
  • K1 is the equivalent cornering stiffness of the front axle of the vehicle (N/rad)
  • K2 is the equivalent cornering stiffness (N/rad) of the rear axle of the vehicle;
  • the proportional coefficient of the front wheel rotation angle and the rear wheel rotation angle is determined as a third proportional coefficient k3;
  • the third proportional coefficient k3 is:
  • k3 (-b+(m*a/(K2*L))*V 2 )/(a+(m*b/(K1*L))*V 2 );
  • the proportional coefficient of the front wheel rotation angle and the rear wheel rotation angle is determined as a fourth proportional coefficient k4; the fourth proportional coefficient k4 is a fixed value.
  • the value range of the vehicle speed V of the vehicle is: 0km/h ⁇ V ⁇ 15km/h;
  • the value range of the vehicle speed V of the vehicle is: 15km/h ⁇ V ⁇ 40km/h;
  • the value range of the vehicle speed V of the vehicle is: 40km/h ⁇ V ⁇ 100km/h;
  • the value range of the vehicle speed V of the vehicle is: V ⁇ 100km/h.
  • the vehicle steering control method further includes:
  • the rear wheel turning angle is corrected.
  • an embodiment of the present application further provides a vehicle steering control device, including:
  • the signal acquisition module is set to acquire the vehicle speed signal and the steering angle signal of the steering wheel
  • a proportional coefficient determination module configured to determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle according to the vehicle speed signal
  • a front wheel turning angle determination module configured to determine the front wheel turning angle according to the turning angle signal of the steering wheel
  • the rear wheel rotation angle calculation module is configured to determine the rear wheel rotation angle according to the proportional coefficient and the front wheel rotation angle.
  • the proportional coefficient determination module includes:
  • a vehicle speed determination unit configured to determine, according to the vehicle speed signal, a vehicle speed range to which the vehicle speed of the vehicle belongs;
  • the proportional coefficient determination unit is configured to determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle according to the speed range to which the speed of the vehicle belongs.
  • the vehicle steering control device further includes:
  • a rack position acquisition module configured to acquire rack position information of the rear wheel of the vehicle
  • an actual rotation angle determination module configured to determine the actual rotation angle of the rear wheel of the vehicle according to the rack position information
  • a rear wheel rotation angle correction module configured to correct the rear wheel rotation angle according to the actual rotation angle.
  • an embodiment of the present application further provides a vehicle steering control system, including: a motor angle control module, a motor vector control module, and the above-mentioned vehicle steering control device;
  • the motor angle control module is configured to output the motor target current to the motor vector control module according to the rear wheel rotation angle determined by the vehicle steering control device;
  • the motor vector control module is configured to drive the motor of the vehicle to rotate according to the target current value of the motor.
  • the vehicle steering control system further includes: a rack position detection module;
  • the rack position detection module is configured to detect the rack position information of the rear wheel of the vehicle, and send it to the vehicle rear wheel steering control device, so that the vehicle steering control device obtains the rack position information Then, the actual rotation angle of the rear wheel of the vehicle is determined according to the rack position information, and the rotation angle of the rear wheel of the vehicle is corrected according to the actual rotation angle.
  • FIG. 1 is a flowchart of a vehicle steering control method provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for determining a proportional coefficient provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a curve of a proportional coefficient K and vehicle speed provided by an embodiment of the present application;
  • FIG. 5 is a structural block diagram of a vehicle steering control device provided by an embodiment of the present application.
  • FIG. 6 is a structural block diagram of another vehicle steering control device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a vehicle steering control system provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a vehicle steering control method provided by an embodiment of the present application. As shown in Figure 1, the vehicle steering control method includes:
  • the speed signal of the vehicle can indicate the current speed of the vehicle; the steering angle signal of the steering wheel is the current rotation angle of the steering wheel. 540°.
  • the vehicle speed signal and the steering angle signal of the steering wheel may be acquired through the controller area network (Controller Area Network, CAN) bus of the entire vehicle.
  • controller area network Controller Area Network, CAN
  • S120 Determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle according to the vehicle speed signal.
  • the front wheels of the vehicle and the rear wheels need to cooperate to realize the steering control of the vehicle.
  • the front wheel steering is usually required to be opposite to the rear wheel steering to enable the vehicle to have a smaller turning radius; while at high speeds, the front wheel steering is required to be the same as the rear wheel steering to reduce the vehicle's yaw rate .
  • the front wheel angle is the parameter that controls the front wheel steering
  • the rear wheel angle is the parameter that controls the rear wheel steering
  • different proportional coefficients k between the front wheel angle and the rear wheel angle can be set. , to meet the steering requirements of the vehicle at different speeds.
  • the steering wheel of the vehicle controls the front wheel steering actuator of the vehicle, and the front wheel steering actuator controls the front wheel rotation angle ⁇ f of the vehicle according to the steering angle signal.
  • the front wheel rotation angle ⁇ f of the vehicle can be estimated from the steering angle signal of the vehicle steering wheel.
  • the maximum rotation angle of the steering wheel is reversed/forward of 540°
  • the corresponding front wheel rotation angle ⁇ f is And the steering wheel is not rotated, that is, when the front wheel rotation angle ⁇ f corresponding to the minimum rotation angle of the steering wheel is 0, there is a one-to-one correspondence between the rotation angle of the steering wheel and the front wheel rotation angle.
  • Front wheel angle if the maximum rotation angle of the steering wheel is reversed/forward of 540°, the corresponding front wheel rotation angle ⁇ f is And the steering wheel is not rotated, that is, when the front wheel rotation angle ⁇ f corresponding to the minimum rotation angle of the steering wheel is 0, there is a one-to-one correspondence between the rotation angle of the steering wheel and the front wheel rotation angle.
  • the front wheel turning angle can be calculated, and the rear wheel turning angle of the vehicle can be calculated.
  • the calculation formula of the rear wheel angle may be:
  • ⁇ r is the rear wheel rotation angle of the vehicle
  • ⁇ f is the front wheel rotation angle determined according to the current steering wheel angle signal of the vehicle
  • k is the proportional coefficient determined according to the current vehicle speed.
  • the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle is determined by the current speed signal of the vehicle, and the front wheel turning angle of the vehicle is determined by the turning angle signal of the steering wheel of the vehicle, so that the front wheel turning angle and the proportional coefficient can be
  • the current rear wheel angle of the vehicle is directly calculated, so that the vehicle has different steering control methods at different vehicle speeds, thereby reducing the turning radius of the vehicle at low speeds and improving the running stability and reliability of the vehicle at high speeds. , thereby increasing the sensitivity of vehicle steering control.
  • the method for determining the proportional coefficient of the front wheel angle and the rear wheel angle of the vehicle includes: determining the vehicle speed range to which the vehicle speed belongs according to the vehicle speed signal; determining the front wheel speed range according to the vehicle speed range to which the vehicle speed belongs. The ratio of the corners to the rear wheel corners.
  • FIG. 2 is a flowchart of a method for determining a proportional coefficient provided by an embodiment of the present application. As shown in FIG. 2, the method for determining the proportional coefficient in the embodiment of the present application includes:
  • S122 Determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle according to the speed range to which the speed of the vehicle belongs.
  • different vehicle speed ranges can be set to correspond to different proportional coefficient calculation methods according to the operating characteristics of the vehicle, so that the vehicle can have higher steering control sensitivity and reliability when driving in the entire vehicle speed range.
  • the speed range to which the current speed of the vehicle belongs can be determined first, and then the calculation method of the proportional coefficient corresponding to the speed range can be obtained according to the speed range to which the vehicle speed belongs, and the front wheel angle of the vehicle at the current speed can be determined. Scale factor with rear wheel turning angle.
  • the vehicle speed range of the vehicle includes the first vehicle speed range, the second vehicle speed range, the third vehicle speed range and the fourth vehicle speed range, the vehicle may have four optional calculation methods for the proportional coefficient.
  • FIG. 3 is a schematic diagram of a curve between a proportional coefficient K and a vehicle speed provided by an embodiment of the present application.
  • the first vehicle speed range may be, for example, 0km/h-15km/h, that is, the vehicle speed signal indicates that the vehicle speed V is: 0km/h ⁇ V ⁇ At 15km/h, it can be considered that the vehicle is parked in or out of the parking space at a low speed.
  • the proportional coefficient of the wheel turning angle is determined as the first proportional coefficient k1, which is a fixed value and is related to the minimum turning radius of the vehicle, namely:
  • K' is a constant
  • R is the minimum turning radius of the vehicle.
  • the second speed range may be, for example, 15km/h-60km/h, that is, when the speed signal of the vehicle shows that the speed V of the vehicle is: 15km/h ⁇ V ⁇ 60km/h, it can be It is considered that the vehicle is in a low-speed driving state, for example, the vehicle is driving on the main road of the city, and the front and rear wheels of the vehicle are also required to rotate in the opposite direction. At this time, considering the handling sensitivity, the ratio of the front wheel angle to the rear wheel angle of the vehicle can be calculated.
  • the coefficient is determined as the second proportional coefficient k2, which is the amount that changes according to the vehicle speed, namely
  • k2 (-b+(m*a/(K2*L))*V 2 )/(a+(m*b/(K1*L))*V 2 )
  • m is the mass of the vehicle (kg)
  • V is the speed of the vehicle (m/s)
  • a is the distance from the center of gravity of the vehicle to the front axle of the vehicle (m)
  • b is the distance from the center of gravity of the vehicle to the rear axle of the vehicle (m)
  • K1 is the vehicle's front axle equivalent cornering stiffness (N/rad)
  • K2 is the vehicle's rear axle equivalent cornering stiffness (N/rad) ).
  • the rear wheel rotation angle ⁇ r determined according to the second proportional coefficient k2 and the front wheel rotation angle ⁇ f is k2* ⁇ f, which can improve the transient response characteristics of the vehicle yaw rate and lateral acceleration, and increase the steering sensitivity.
  • the third speed range can be, for example, 60km/h-100km/h, that is, when the speed signal of the vehicle shows that the speed V of the vehicle is: 60km/h ⁇ V ⁇ 100km/h, it can be
  • the vehicle is considered to be traveling at a moderate speed, such as on a city expressway or highway. At this time, when the vehicle overtakes, merges, or changes lanes, steering control is required, and the rear wheels and the front wheels need to rotate in the same direction, so the driving stability needs to be considered.
  • the proportional coefficient is determined as the third proportional coefficient k3, and the third proportional coefficient k3 is the amount that changes according to the vehicle speed, namely
  • the rear wheel rotation angle ⁇ r determined according to the third proportional coefficient k3 and the front wheel rotation angle ⁇ f is k3* ⁇ f, at this time, the yaw moment can be increased, the yaw response speed can be improved, and the driving stability during obstacle avoidance can be enhanced.
  • the fourth speed range may be greater than or equal to 100km/h, that is, when the speed signal of the vehicle shows that the speed V of the vehicle is: 100km/h ⁇ V, it can be considered that the vehicle is driving at a high speed Status, such as the vehicle is driving on the highway.
  • a high speed Status such as the vehicle is driving on the highway.
  • the proportional coefficient is determined as the fourth proportional coefficient k4, which is a fixed value, which can be determined by debugging according to the actual operation of the vehicle by the response speed and subjective evaluation of the rear wheel steering actuator.
  • the determined proportional coefficients of the front wheel angle and the rear wheel angle are calculated differently, so that the corresponding proportional coefficient can be determined according to the operating conditions of the vehicle to
  • the vehicle has high steering control sensitivity, stability and safety.
  • FIG. 4 is a flowchart of another vehicle steering control method provided by an embodiment of the present application.
  • the vehicle steering control method provided by the embodiment of the present application includes:
  • S220 according to the vehicle speed signal, determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle;
  • the rear wheel steering actuator is driven to move by driving the rear wheel motor according to the rear wheel rotation angle, so as to realize the control of the rear wheel steering.
  • the rear wheel steering actuator includes a rack, and the position of the rack has a corresponding relationship with the actual rotation angle of the rear wheel.
  • the actual rotation angle of the rear wheel of the vehicle By collecting the position information of the rack in the rear wheel steering actuator, the actual rotation angle of the rear wheel of the vehicle can be obtained; by comparing the actual rotation angle of the rear wheel with the rear wheel rotation angle calculated according to the rotation angle of the front wheel and the proportional coefficient, the actual rotation angle of the vehicle can be obtained.
  • the deviation between the rotation angle of the rear wheel and the rotation angle of the rear wheel calculated according to the rotation angle of the front wheel and the proportional coefficient can be added in the subsequent calculation of the rotation angle of the rear wheel, so that the actual rotation angle of the rear wheel matches the expected rotation angle of the rear wheel.
  • the rack position information of the rear wheel of the vehicle is obtained, and the actual rotation angle of the rear wheel of the vehicle is determined according to the rack position information, so as to correct the rotation angle of the rear wheel according to the actual rotation angle, so that the actual rotation angle of the rear wheel can be matched with the expected rotation angle.
  • the rear wheel angle is matched to improve the accuracy, safety and reliability of vehicle steering control.
  • Embodiments of the present application also provide a vehicle steering control device, which is suitable for steering control of passenger cars.
  • the vehicle steering control device can be used to execute the vehicle steering control method provided by the embodiments of the present application, and the device can be implemented by at least one of software and hardware.
  • FIG. 5 is a structural block diagram of a vehicle steering control device provided by an embodiment of the present application. As shown in FIG. 5 , the vehicle steering control device includes a signal acquisition module 51 , a proportional coefficient determination module 52 , a front wheel rotation angle determination module 53 and a rear wheel rotation angle calculation module 54 .
  • the signal acquisition module 52 is set to acquire the vehicle speed signal and the steering angle signal of the steering wheel; the proportional coefficient determination module 52 is set to determine the proportional coefficient of the front wheel turning angle and the rear wheel turning angle of the vehicle according to the vehicle speed signal;
  • the turning angle determination module 53 is configured to determine the front wheel turning angle according to the turning angle signal of the steering wheel; the rear wheel turning angle calculation module 54 is configured to determine the rear wheel turning angle according to the proportional coefficient and the front wheel turning angle.
  • the proportional coefficient of the front wheel turning angle and the rear wheel turning angle signal of the vehicle is determined by the current vehicle speed signal, and the front wheel turning angle of the vehicle is determined from the turning angle signal of the steering wheel of the vehicle, so that the front wheel turning angle and the proportional coefficient can be determined according to the , directly calculate the current rear wheel angle of the vehicle, so that the vehicle has different steering control methods at different vehicle speeds, thereby reducing the turning radius of the vehicle at low speeds and improving the running stability and reliability of the vehicle at high speeds. It can increase the sensitivity of vehicle steering control.
  • FIG. 6 is a structural block diagram of another vehicle steering control device provided by an embodiment of the present application.
  • the proportional coefficient determination module 52 includes a vehicle speed determination unit 521 and a proportional coefficient determination unit 522 .
  • the vehicle speed determination unit 521 is configured to determine the vehicle speed range to which the vehicle speed belongs according to the vehicle speed signal; the proportional coefficient determination unit 522 is configured to determine the front wheel angle and the speed range according to the vehicle speed range to which the vehicle speed belongs.
  • the scaling factor of the rear wheel turning angle is configured to determine the front wheel angle and the speed range according to the vehicle speed range to which the vehicle speed belongs.
  • the vehicle steering control device further includes a rack position acquisition module 55 , an actual rotation angle determination module 56 and a rear wheel rotation angle correction module 57 .
  • the rack position acquisition module 55 is configured to acquire the rack position information of the rear wheels of the vehicle;
  • the actual rotation angle determination module 56 is configured to determine the actual rotation angle of the rear wheels of the vehicle according to the rack position information;
  • the correction module 57 is configured to correct the rear wheel rotation angle according to the actual rotation angle.
  • the vehicle steering control device provided by the embodiment of the present application is used to execute the vehicle steering control method provided by the embodiment of the present application.
  • Embodiments of the present application further provide a vehicle steering control system, which includes a motor angle control module, a motor vector control module, and the vehicle steering control device provided by the embodiments of the present application. Therefore, the vehicle steering control provided by the embodiments of the present application The system has the technical features and beneficial effects of the vehicle steering control device proposed in the embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a vehicle steering control system provided by an embodiment of the present application.
  • the vehicle steering control system includes a motor angle control module 30, a motor vector control module 40, and a vehicle steering control device 50 provided in this embodiment of the present application.
  • the motor angle control module 30 is set to output the motor target current to the motor vector control module 40 according to the rear wheel rotation angle determined by the vehicle steering control device; the motor vector control module 40 is set to drive the motor 60 of the vehicle according to the motor target current value.
  • the rotation makes the motor 60 drive the rear wheel steering actuator 70 to move, thereby controlling the rear wheel steering.
  • the vehicle steering control system further includes a rack position detection module 80; the rack position detection module 80 is configured to detect the rack position information of the rear wheels of the vehicle and send it to the vehicle steering control
  • the device 50 is configured to enable the vehicle steering control device 50 to determine the actual rotation angle of the vehicle rear wheels according to the rack position information after acquiring the rack position information, and to correct the vehicle rear wheel rotation angle according to the actual rotation angle.
  • the rear wheel steering actuator 70 is provided with a rack, and the position of the rack has a corresponding relationship with the actual rotation angle of the rear wheel.
  • the position information of the rack in the rear wheel steering actuator 70 is detected by the rack position detection module 80, and the actual rotation angle of the rear wheels of the vehicle can be obtained, so that the vehicle steering control device 50 can know the actual rotation angle of the vehicle and calculate it according to the rotation angle of the front wheels and the proportional coefficient.
  • the deviation between the calculated rear wheel turning angles can be added in the subsequent calculation of the rear wheel turning angles, so that the actual turning angles of the rear wheels match the expected rear wheel turning angles.
  • the rack position detection module 80 detects the rack position information of the rear wheels of the vehicle, and determines the actual rotation angle of the rear wheels of the vehicle according to the rack position information, so as to correct the rotation angle of the rear wheels according to the actual rotation angle, so as to make the rear wheels
  • the actual turning angle is matched with the predicted rear wheel turning angle to improve the accuracy, safety and reliability of vehicle steering control.
  • the vehicle steering control method, device and system provided by the embodiments of the present application, by acquiring the vehicle speed signal and the steering wheel angle signal, to determine the proportional coefficient of the front wheel angle and the rear wheel angle of the vehicle according to the vehicle speed signal, and according to the steering wheel angle
  • the turning angle signal determines the front wheel turning angle of the vehicle, and then calculates the rear wheel turning angle from the proportional coefficient and the front wheel turning angle.
  • the embodiments of the present application can enable the vehicle to have different steering control modes at different vehicle speeds, thereby reducing the turning radius of the vehicle at low speeds, and improving the running stability and reliability of the vehicle at high speeds, thereby increasing the number of vehicles Steering control sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆转向控制方法、装置及系统,控制方法包括:获取车辆的车速信号和方向盘的转角信号;根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;根据所述方向盘的转角信号确定所述前轮转角;根据所述比例系数和所述前轮转角,计算所述后轮转角,以提高车辆转向控制的安全性和可靠性。

Description

车辆转向控制方法、装置及系统
本申请要求申请日为2020年7月1日、申请号为202010627434.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及汽车控制技术领域,例如涉及一种车辆转向控制方法、装置及系统。
背景技术
当前,汽车的转向控制通常由前轮转向执行器接收方向盘的转角信号,以控制汽车的前轮转角;而后轮转向执行器则需要获取整车的车辆状态参数信号,并采用规定的算法计算得出后轮转角,以驱动后轮转向执行器动作,控制后轮转角。
但是,相关技术中,采用规定的算法计算得出后轮转角,侧重于对驾驶员在操纵过程中体感车辆滑移角的控制,其需要大量的车辆状态信息进行车辆滑移角估算,并对于路面摩擦系数的输入精度需求较高、系统鲁棒性较差、且执行机构响应的要求很高,车辆的响应不够迅速,进而影响车辆安全性。
发明内容
本申请实施例提供了一种车辆转向控制方法、装置及系统,以提高车辆转向控制的安全性和可靠性。
第一方面,本申请实施例提供了一种车辆转向控制方法,包括:
获取车辆的车速信号和方向盘的转角信号;
根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;
根据所述方向盘的转角信号确定所述前轮转角;
根据所述比例系数和所述前轮转角,计算所述后轮转角。
可选的,根据所述车速信号,确定所述前轮转角与所述车辆的后轮转角的 比例系数,包括:
根据所述车速信号,确定所述车辆的车速所属的车速范围;
根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数。
可选的,所述车速范围包括第一车速范围、第二车速范围、第三车速范围和第四车速范围;
根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数,包括:
当所述车辆的车速属于第一车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第一比例系数k1;所述第一比例系数k1=K'*R;其中,K'为常数,R为所述车辆的最小转弯半径;
当所述车辆的车速属于第二车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第二比例系数k2;所述第二比例系数k2为:
k2=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2)
其中,m为所述车辆的质量(kg),V为所述车辆的车速(m/s),a为所述车辆的重心至所述车辆的前轴的距离(m),b为所述车辆的重心至所述车辆的后轴的距离(m),L=a+b且L为轴距(m),K1为所述车辆的前轴等效侧偏刚度(N/rad),K2为所述车辆的后轴等效侧偏刚度(N/rad);
当所述车辆的车速属于第三车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第三比例系数k3;所述第三比例系数k3为:
k3=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2);
当所述车辆的车速属于第四车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第四比例系数k4;所述第四比例系数k4为固定值。
可选的,当所述车辆的车速属于第一车速范围时,所述车辆的车速V的取值范围为:0km/h≤V<15km/h;
当所述车辆的车速属于第二车速范围时,所述车辆的车速V的取值范围为:15km/h≤V<40km/h;
当所述车辆的车速属于第三车速范围时,所述车辆的车速V的取值范围为:40km/h≤V<100km/h;
当所述车辆的车速属于第四车速范围时,所述车辆的车速V的取值范围为:V≥100km/h。
可选的,所述车辆转向控制方法还包括:
获取所述车辆的后轮的齿条位置信息;
根据所述齿条位置信息确定所述车辆后轮的实际转角;
根据所述实际转角,校正所述后轮转角。
第二方面,本申请实施例还提供了一种车辆转向控制装置,包括:
信号获取模块,设置为获取车辆的车速信号和方向盘的转角信号;
比例系数确定模块,设置为根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;
前轮转角确定模块,设置为根据所述方向盘的转角信号确定所述前轮转角;
后轮转角计算模块,设置为根据所述比例系数和所述前轮转角,确定所述后轮转角。
可选的,所述比例系数确定模块包括:
车速确定单元,设置为根据所述车速信号,确定所述车辆的车速所属的车速范围;
比例系数确定单元,设置为根据所述车辆的车速所属的车速范围,确定所 述前轮转角与所述后轮转角的比例系数。
可选的,所述车辆转向控制装置,还包括:
齿条位置获取模块,设置为获取所述车辆的后轮的齿条位置信息;
实际转角确定模块,设置为根据所述齿条位置信息确定所述车辆后轮的实际转角;
后轮转角校正模块,用于根据所述实际转角,校正所述后轮转角。
第三方面,本申请实施例还提供了一种车辆转向控制系统,包括:电机角度控制模块、电机矢量控制模块以及上述车辆转向控制装置;
所述电机角度控制模块设置为根据所述车辆转向控制装置确定的后轮转角,输出电机目标电流至所述电机矢量控制模块;
所述电机矢量控制模块设置为根据所述电机目标电流值,驱动所述车辆的电机进行转动。
可选的,所述车辆转向控制系统还包括:齿条位置检测模块;
所述齿条位置检测模块设置为检测所述车辆的后轮的齿条位置信息,并发送至所述车辆后轮转向控制装置,以使所述车辆转向控制装置在获取所述齿条位置信息后,根据所述齿条位置信息确定所述车辆后轮的实际转角,并根据所述实际转角,校正所述车辆的后轮转角。
附图说明
图1是本申请实施例提供的一种车辆转向控制方法的流程图;
图2是本申请实施例提供的一种确定比例系数的方法的流程图;
图3是本申请实施例提供的一种比例系数K与车速的曲线示意图;
图4是本申请实施例提供的又一种车辆转向控制方法的流程图;
图5是本申请实施例提供的一种车辆转向控制装置的结构框图;
图6是本申请实施例提供的又一种车辆转向控制装置的结构框图;
图7是本申请实施例提供的一种车辆转向控制系统的结构示意图。
具体实施方式
本申请实施例提供了一种车辆转向控制方法,该方法适用于对乘用汽车的转向控制。该方法可以由本申请实施例提供的车辆转向控制装置来执行,该装置可采用软件和硬件中的至少一种方式实现。图1是本申请实施例提供的一种车辆转向控制方法的流程图。如图1所示,该车辆转向控制方法包括:
S110、获取车辆的车速信号和方向盘的转角信号。
车辆的车速信号能够表示车辆当前的行驶速度;方向盘的转角信号是当前方向盘的转动角度,例如方向盘转动半圈时方向盘的转动角度为180°,而当方向盘转动一圈半时方向盘的转动角度为540°。在本申请实施例中,可通过整车的控制器局域网络(Controller Area Network,CAN)总线获取车辆的车速信号和方向盘的转角信号。
S120、根据车速信号,确定车辆的前轮转角与后轮转角的比例系数。
在车辆变道、并道、超车、弯道行驶或转弯时,需要车辆的前轮与后轮配合,实现对车辆转向的控制。其中,在低速下,通常要求前轮转向与后轮转向相反,以能够使车辆具有较小的转弯半径;而在高速下,要求前轮转向与后轮转向相同,以降低车辆的偏航率。由于前轮转角即为控制前轮转向的参数,后轮转角为控制后轮转向的参数,因此在车辆以不同的车速行驶时,可设定不同的前轮转角与后轮转角的比例系数k,以满足不同车速下的车辆转向要求。
S130、根据方向盘的转角信号确定前轮转角。
通常车辆的方向盘会控制车辆的前轮转向执行机构,并由该前轮转向执行机构根据方向盘的转角信号控制车辆的前轮转角σf。此时,可通过车辆方向盘 的转角信号,可以推算出车辆的前轮转角σf。示例性的,若方向盘逆/顺转动的最大转动角度540°对应的前轮转角σf为
Figure PCTCN2021102817-appb-000001
且方向盘未转动,即方向盘的最小转动角度0°对应的前轮转角σf为0时,方向盘的转动角度与前轮转角具有一一对应的关系,由此可根据方向盘的转角信号获知车辆当前的前轮转角。
S140、根据比例系数和前轮转角,计算后轮转角。
由于在低速转弯时需要考虑车辆的转弯半径,而在高速转弯时需要考虑车辆运行的稳定性,因此会根据车辆的速度确定出不同的前轮转角与后轮转角的比例系数,由该比例系数可前轮转角,即可计算出车辆的后轮转角。示例性的,后轮转角的计算公式可以为:
σr=k×σf
其中,σr为车辆的后轮转角,σf为根据车辆当前的方向盘的转角信号确定的前轮转角,k为根据车辆的当前车速确定的比例系数。由此,直接根据车速确定当前的前轮转角与后轮转角的比例系数,以及由方向盘的转角信号确定当前的前轮转角,即可计算出后轮转角,以使车辆的后轮根据后轮转角执行相应的扭转动作。
本实施例通过车辆当前的车速信号确定出车辆的前轮转角与后轮转角的比例系数,以及由车辆的方向盘的转角信号确定出车辆的前轮转角,以能够根据前轮转角和比例系数,直接计算出车辆当前的后轮转角,使得车辆在不同的车速下,具有不同的转向控制方式,从而能够在低速时减小车辆的转弯半径,以及在高速时提高车辆的运行稳定性和可靠性,进而能够增加车辆转向控制的灵敏度。
可选的,根据车速信号,确定前轮转角与车辆的后轮转角的比例系数的方法包括:根据车速信号,确定车辆的车速所属的车速范围;根据车辆的车速所 属的车速范围,确定前轮转角与后轮转角的比例系数。图2是本申请实施例提供的一种确定比例系数的方法的流程图。如图2所示,本申请实施例中确定比例系数的方法包括:
S121、根据车速信号,确定车辆的车速所属的车速范围;
S122、根据车辆的车速所属的车速范围,确定前轮转角与后轮转角的比例系数。
在本申请实施例中,可根据车辆的运行特点,设置不同的车速范围对应不同的比例系数计算方式,以使车辆在整个车速范围下行驶时均能够具有较高的转向控制灵敏度和可靠性。此时,可先确定出车辆当前的车速所属的车速范围,从而根据车辆的车速所属的车速范围,获得该车速范围所对应的比例系数计算方式,即可确定出当前车速下车辆的前轮转角与后轮转角的比例系数。其中,当车辆的车速范围包括第一车速范围、第二车速范围、第三车速范围和第四车速范围时,车辆可具有四个可选的比例系数计算方式。
示例性的,图3是本申请实施例提供的一种比例系数K与车速的曲线示意图。如图3所示,若车辆的车速属于第一车速范围,该第一车速范围例如可以为0km/h-15km/h,即车辆的车速信号显示车辆的车速V为:0km/h≤V<15km/h时,可认为车辆处于低速泊入或泊出停车位的状态,此时考虑车辆操纵的便捷性,需要车辆的前轮与后轮反向转动,可将车辆的前轮转角与后轮转角的比例系数确定为第一比例系数k1,该第一比例系数k1为定值,且其与车辆的最小转弯半径相关,即:
k1=K′*R
其中,K'为常数,R为所述车辆的最小转弯半径。如此,根据第一比例系数k1和前轮转角σf所确定的后轮转角σr为k1*σf,此时车辆的最小转弯直径可减 小10%以上。
若车辆的车速属于第二车速范围,该第二车速范围例如可以为15km/h-60km/h,即车辆的车速信号显示车辆的车速V为:15km/h≤V<60km/h时,可认为车辆处于低速行驶状态,例如车辆行驶于城市的主干道上,同样需要车辆的前轮与后轮反向转动,此时考虑操纵灵敏性,可将车辆的前轮转角与后轮转角的比例系数确定为第二比例系数k2,该第二比例系数k2为根据车速进行变化的量,即
k2=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2)
其中,m为车辆的质量(kg),V为车辆的车速(m/s),a为车辆的重心至车辆的前轴的距离(m),b为车辆的重心至车辆的后轴的距离(m),L=a+b且L为轴距(m),K1为车辆的前轴等效侧偏刚度(N/rad),K2为车辆的后轴等效侧偏刚度(N/rad)。如此,根据第二比例系数k2和前轮转角σf所确定的后轮转角σr为k2*σf,此时能够提高车辆横摆角速度和侧向加速度的瞬态响应特性,增加转向灵敏度。
若车辆的车速属于第三车速范围,该第三车速范围例如可以为60km/h-100km/h,即车辆的车速信号显示车辆的车速V为:60km/h≤V<100km/h时,可认为车辆处于中速行驶状态,例如车辆行驶于城市的快速路或高速公路上。此时,当车辆超车、并道或换道时,需要进行转向控制,且需要后轮与前轮同向转动,由此需要考虑行驶稳定性,可将车辆的前轮转角与后轮转角的比例系数确定为第三比例系数k3,该第三比例系数k3为根据车速进行变化的量,即
k3=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2)
如此,根据第三比例系数k3和前轮转角σf所确定的后轮转角σr为k3*σf, 此时能够增加横摆力矩,提高横摆响应速度,增强避障时的行驶稳定性。
若车辆的车速属于第四车速范围,该第四车速范围例如可以为大于或等于100km/h,即车辆的车速信号显示车辆的车速V为:100km/h≤V时,可认为车辆处于高速行驶状态,例如车辆行驶于高速公路上。此时,当车辆超车、并道或换道时,需要进行转向控制,且需要后轮与前轮同向转动,由此需要考虑行驶稳定性,可将车辆的前轮转角与后轮转角的比例系数确定为第四比例系数k4,该第四比例系数k4为定值,其可由后轮转向执行机构的响应速度和主观评价根据车辆的实际运行情况进行调试确定。
本实施例通过在车辆的车速属于不同的车速范围时,所确定出的前轮转角与后轮转角的比例系数的计算方式不同,从而能够针对车辆运行的工况,确定相应的比例系数,以使车辆具有较高的转向控制灵敏性、稳定性以及安全性。
可选的,在上述实施例的基础上,图4是本申请实施例提供的又一种车辆转向控制方法的流程图。如图4所示,本申请实施例提供的车辆转向控制方法包括:
S210、获取车辆的车速信号和方向盘的转角信号;
S220、根据车速信号,确定车辆的前轮转角与后轮转角的比例系数;
S230、根据方向盘的转角信号确定前轮转角。
S240、根据比例系数和前轮转角,计算后轮转角。
S250、获取车辆的后轮的齿条位置信息;
S260、根据齿条位置信息确定车辆后轮的实际转角;
S270、根据实际转角,校正后轮转角。
当由车辆的车速确定车辆当前的前轮转角与后轮转角的比例系数,以及由方向盘的转角信号确定车辆当前的前轮转角时,可由前轮转角与比例系数计算 出车辆的后轮转角,以根据该后轮转角驱动后轮电机带动后轮转向执行机构进行运动,从而实现对后轮转向的控制。其中,后轮转向执行机构包括齿条,齿条的位置与后轮的实际转角具有对应关系。通过采集后轮转向执行机构中齿条的位置信息,可以获知车辆的后轮实际转角;通过比较该后轮实际转角与根据前轮转角和比例系数计算出的后轮转角,可以获知车辆实际转角与根据前轮转角和比例系数计算出的后轮转角之间的偏差,并在后续计算后轮转角时,可将该偏差加入,以使后轮的实际转角与预计的后轮转角相匹配。
本实施例通过获取车辆的后轮的齿条位置信息,并根据齿条位置信息确定车辆后轮的实际转角,以根据实际转角,校正后轮转角,从而能够使后轮的实际转角与预计的后轮转角相匹配,以提高车辆转向控制的准确度、安全性和可靠性。
本申请实施例还提供了一种车辆转向控制装置,该装置适用于对乘用汽车的转向控制。该车辆转向控制装置可用于执行本申请实施例提供的车辆转向控制方法,该装置可采用软件和硬件中的至少一种方式实现。图5是本申请实施例提供的一种车辆转向控制装置的结构框图。如图5所示,该车辆转向控制装置包括信号获取模块51、比例系数确定模块52、前轮转角确定模块53和后轮转角计算模块54。其中,信号获取模块52设置为获取车辆的车速信号和方向盘的转角信号;比例系数确定模块52设置为根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;前轮转角确定模块53设置为根据所述方向盘的转角信号确定所述前轮转角;后轮转角计算模块54设置为根据所述比例系数和所述前轮转角,确定所述后轮转角。
本实施例通过车辆当前的车速信号确定出车辆的前轮转角与后轮转角信号的比例系数,以及由车辆的方向盘的转角信号确定出车辆的前轮转角,以能够 根据前轮转角和比例系数,直接计算出车辆当前的后轮转角,使得车辆在不同的车速下,具有不同的转向控制方式,从而能够在低速时减小车辆的转弯半径,以及在高速时提高车辆的运行稳定性和可靠性,进而能够增加车辆转向控制的灵敏度。
在上述实施例的基础上,可选的,图6是本申请实施例提供的又一种车辆转向控制装置的结构框图。如图6所示,比例系数确定模块52包括车速确定单元521和比例系数确定单元522。其中,车速确定单元521设置为根据所述车速信号,确定所述车辆的车速所属的车速范围;比例系数确定单元522设置为根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数。
在上述实施例的基础上,可选的,继续参考图6,车辆转向控制装置还包括齿条位置获取模块55、实际转角确定模块56和后轮转角校正模块57。其中,齿条位置获取模块55设置为获取所述车辆的后轮的齿条位置信息;实际转角确定模块56设置为根据所述齿条位置信息确定所述车辆后轮的实际转角;后轮转角校正模块57设置为根据所述实际转角,校正所述后轮转角。
本申请实施例提供的车辆转向控制装置用于执行本申请实施例提供的车辆转向控制方法,其技术原理和产生的技术效果类似,这里不再赘述。
本申请实施例还提供一种车辆转向控制系统,该车辆转向控制系统包括电机角度控制模块、电机矢量控制模块以及本申请实施例提供的车辆转向控制装置,因此本申请实施例提供的车辆转向控制系统具备本申请实施例提的车辆转向控制装置的技术特征及有益效果。
示例性的,图7是本申请实施例提供的一种车辆转向控制系统的结构示意图。如图7所示,该车辆转向控制系统包括电机角度控制模块30、电机矢量控 制模块40以及本申请实施例提供车辆转向控制装置50。其中,电机角度控制模块30设置为根据车辆转向控制装置确定的后轮转角,输出电机目标电流至电机矢量控制模块40;电机矢量控制模块40设置为根据电机目标电流值,驱动车辆的电机60进行转动,使得电机60带动后轮转向执行机构70进行运动,进而控制后轮转向。
可选的,继续参考图7,车辆转向控制系统还包括齿条位置检测模块80;该齿条位置检测模块80设置为检测车辆的后轮的齿条位置信息,并发送至所述车辆转向控制装置50,以使车辆转向控制装置50在获取齿条位置信息后,根据齿条位置信息确定车辆后轮的实际转角,并根据实际转角,校正车辆的后轮转角。其中,后轮转向执行机构70设置有齿条,齿条的位置与后轮的实际转角具有对应关系。通过齿条位置检测模块80检测后轮转向执行机构70中齿条的位置信息,可以获知车辆的后轮实际转角,以使车辆转向控制装置50获知车辆实际转角与根据前轮转角和比例系数计算出的后轮转角之间的偏差,并在后续计算后轮转角时,可将该偏差加入,以使后轮的实际转角与预计的后轮转角相匹配。
本实施例通过齿条位置检测模块80检测车辆的后轮的齿条位置信息,并根据齿条位置信息确定车辆后轮的实际转角,以根据实际转角,校正后轮转角,从而能够使后轮的实际转角与预计的后轮转角相匹配,以提高车辆转向控制的准确度、安全性和可靠性。
本申请实施例提供的车辆转向控制方法、装置及系统,通过获取车辆的车速信号和方向盘的转角信号,以根据车速信号,确定车辆的前轮转角与后轮转角的比例系数,以及根据方向盘的转角信号确定车辆的前轮转角,进而由比例系数和前轮转角,计算出后轮转角。本申请实施例能够使车辆在不同的车速下, 具有不同的转向控制方式,从而能够在低速时减小车辆的转弯半径,以及在高速时提高车辆的运行稳定性和可靠性,进而能够增加车辆转向控制的灵敏度。

Claims (10)

  1. 一种车辆转向控制方法,包括:
    获取车辆的车速信号和方向盘的转角信号;
    根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;
    根据所述方向盘的转角信号确定所述前轮转角;
    根据所述比例系数和所述前轮转角,计算所述后轮转角。
  2. 根据权利要求1所述的车辆转向控制方法,其中,根据所述车速信号,确定所述前轮转角与所述车辆的后轮转角的比例系数,包括:
    根据所述车速信号,确定所述车辆的车速所属的车速范围;
    根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数。
  3. 根据权利要求2所述的车辆转向控制方法,其中,所述车速范围包括第一车速范围、第二车速范围、第三车速范围和第四车速范围;
    根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数,包括:
    当所述车辆的车速属于第一车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第一比例系数k1;所述第一比例系数k1=K'*R;其中,K'为常数,R为所述车辆的最小转弯半径;
    当所述车辆的车速属于第二车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第二比例系数k2;所述第二比例系数k2为:
    k2=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2)
    其中,m为所述车辆的质量(kg),V为所述车辆的车速(m/s),a为所述车辆的重心至所述车辆的前轴的距离(m),b为所述车辆的重心至所述车辆的后轴的距离(m),L=a+b且L为轴距(m),K1为所述车辆的前轴等效侧偏刚度(N/rad), K2为所述车辆的后轴等效侧偏刚度(N/rad);
    当所述车辆的车速属于第三车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第三比例系数k3;所述第三比例系数k3为:
    k3=(-b+(m*a/(K2*L))*V 2)/(a+(m*b/(K1*L))*V 2);
    当所述车辆的车速属于第四车速范围时,将所述前轮转角与所述后轮转角的比例系数确定为第四比例系数k4;所述第四比例系数k4为固定值。
  4. 根据权利要求3所述的车辆转向控制方法,其中:
    当所述车辆的车速属于第一车速范围时,所述车辆的车速V的取值范围为:0km/h≤V<15km/h;
    当所述车辆的车速属于第二车速范围时,所述车辆的车速V的取值范围为:15km/h≤V<40km/h;
    当所述车辆的车速属于第三车速范围时,所述车辆的车速V的取值范围为:40km/h≤V<100km/h;
    当所述车辆的车速属于第四车速范围时,所述车辆的车速V的取值范围为:V≥100km/h。
  5. 根据权利要求1所述的车辆转向控制方法,还包括:
    获取所述车辆的后轮的齿条位置信息;
    根据所述齿条位置信息确定所述车辆后轮的实际转角;
    根据所述实际转角,校正所述后轮转角。
  6. 一种车辆转向控制装置,包括:
    信号获取模块,设置为获取车辆的车速信号和方向盘的转角信号;
    比例系数确定模块,设置为根据所述车速信号,确定所述车辆的前轮转角与后轮转角的比例系数;
    前轮转角确定模块,设置为根据所述方向盘的转角信号确定所述前轮转角;
    后轮转角计算模块,设置为根据所述比例系数和所述前轮转角,确定所述后轮转角。
  7. 根据权利要求6所述的车辆转向控制装置,其中,所述比例系数确定模块包括:
    车速确定单元,设置为根据所述车速信号,确定所述车辆的车速所属的车速范围;
    比例系数确定单元,设置为根据所述车辆的车速所属的车速范围,确定所述前轮转角与所述后轮转角的比例系数。
  8. 根据权利要求6所述的车辆转向控制装置,还包括:
    齿条位置获取模块,设置为获取所述车辆的后轮的齿条位置信息;
    实际转角确定模块,设置为根据所述齿条位置信息确定所述车辆后轮的实际转角;
    后轮转角校正模块,设置为根据所述实际转角,校正所述后轮转角。
  9. 一种车辆转向控制系统,包括:电机角度控制模块、电机矢量控制模块以及权利要求6-7任一项所述的车辆转向控制装置;
    所述电机角度控制模块设置为根据所述车辆转向控制装置确定的后轮转角,输出电机目标电流至所述电机矢量控制模块;
    所述电机矢量控制模块设置为根据所述电机目标电流值,驱动所述车辆的电机进行转动。
  10. 根据权利要求9所述的车辆转向控制系统,还包括:齿条位置检测模块;
    所述齿条位置检测模块设置为检测所述车辆的后轮的齿条位置信息,并发 送至所述车辆转向控制装置,以使所述车辆转向控制装置在获取所述齿条位置信息后,根据所述齿条位置信息确定所述车辆后轮的实际转角,并根据所述实际转角,校正所述车辆的后轮转角。
PCT/CN2021/102817 2020-07-01 2021-06-28 车辆转向控制方法、装置及系统 WO2022001975A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21832466.3A EP4063237A4 (en) 2020-07-01 2021-06-28 METHOD, DEVICE AND SYSTEM FOR VEHICLE STEERING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010627434.XA CN111762261B (zh) 2020-07-01 2020-07-01 车辆转向控制方法、装置及系统
CN202010627434.X 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022001975A1 true WO2022001975A1 (zh) 2022-01-06

Family

ID=72724267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102817 WO2022001975A1 (zh) 2020-07-01 2021-06-28 车辆转向控制方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4063237A4 (zh)
CN (1) CN111762261B (zh)
WO (1) WO2022001975A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111762261B (zh) * 2020-07-01 2021-11-12 中国第一汽车股份有限公司 车辆转向控制方法、装置及系统
CN112644584B (zh) * 2020-12-30 2022-09-30 华人运通(江苏)技术有限公司 一种车辆后轮转向控制系统及方法
CN112706836A (zh) * 2021-01-11 2021-04-27 中国第一汽车股份有限公司 一种基于后轮转向的避障控制系统
CN113060210B (zh) * 2021-05-12 2022-06-17 中国第一汽车股份有限公司 基于四轮独立驱动及后轮转向提升汽车机动性的方法
CN113353074B (zh) * 2021-08-10 2021-10-29 天津所托瑞安汽车科技有限公司 一种车辆控制方法、装置、电子设备和存储介质
CN113665669B (zh) * 2021-09-22 2022-09-02 中国第一汽车股份有限公司 车辆稳定性控制系统及方法
CN113978549B (zh) * 2021-11-22 2023-03-24 东风汽车集团股份有限公司 一种线控低速灵活性调节控制方法和系统
CN114312998B (zh) * 2022-01-14 2023-03-28 中国第一汽车股份有限公司 后轮转向控制方法、装置、控制单元、车辆及存储介质
CN115583287A (zh) * 2022-10-10 2023-01-10 北京汽车集团越野车有限公司 后轮转向控制方法、装置、车辆、设备及存储介质
CN115675636A (zh) * 2022-11-16 2023-02-03 长城汽车股份有限公司 前后轮的控制方法、系统、电子设备、存储介质及车辆
CN117775107B (zh) * 2024-02-28 2024-07-12 中国第一汽车股份有限公司 一种后轮转向控制方法、系统、装置、存储介质以及汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206564A (ja) * 1992-09-04 1994-07-26 Mazda Motor Corp 車両の操舵装置
US6488113B1 (en) * 2001-06-07 2002-12-03 General Motors Corporation Disable control for four wheel steer vehicle
JP2006315514A (ja) * 2005-05-12 2006-11-24 Toyota Motor Corp 車両の操舵制御装置
CN102152808A (zh) * 2011-03-07 2011-08-17 武汉欧塔科汽车设计研究院有限公司 数控机械传输的前后桥转向系统
CN104477237A (zh) * 2014-11-11 2015-04-01 深圳职业技术学院 一种四轮独立转向电动车转向控制方法及系统
CN107416021A (zh) * 2017-06-19 2017-12-01 北京长城华冠汽车科技股份有限公司 车辆的四轮转向控制方法、装置及车辆
US20200130735A1 (en) * 2018-10-25 2020-04-30 Hyundai Motor Company Steering control method and system for rear-wheel steering
CN111762261A (zh) * 2020-07-01 2020-10-13 中国第一汽车股份有限公司 车辆转向控制方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726306B2 (ja) * 1989-04-14 1998-03-11 本田技研工業株式会社 車両の前後輪操舵装置
JPH0338469A (ja) * 1989-07-04 1991-02-19 Honda Motor Co Ltd 前後輪操舵車両における後輪操舵方法
CN101239625B (zh) * 2008-03-10 2011-06-01 江苏大学 一种电机驱动的大客车液压转向系统及其控制转向的方法
CN104443022B (zh) * 2014-11-11 2018-12-11 深圳职业技术学院 一种四轮独立驱动电动汽车稳定性控制方法及系统
CN105015617B (zh) * 2015-07-08 2018-09-11 武汉理工大学 商用车后轮转向控制方法及其装置
CN108819796B (zh) * 2018-05-30 2019-11-19 河北工业大学 双轮毂电机电动汽车的智能转向控制方法
JP2020050133A (ja) * 2018-09-27 2020-04-02 本田技研工業株式会社 四輪操舵車両
CN109353332A (zh) * 2018-11-14 2019-02-19 南京航空航天大学 一种主动后轮转向系统及整车稳定性协调控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206564A (ja) * 1992-09-04 1994-07-26 Mazda Motor Corp 車両の操舵装置
US6488113B1 (en) * 2001-06-07 2002-12-03 General Motors Corporation Disable control for four wheel steer vehicle
JP2006315514A (ja) * 2005-05-12 2006-11-24 Toyota Motor Corp 車両の操舵制御装置
CN102152808A (zh) * 2011-03-07 2011-08-17 武汉欧塔科汽车设计研究院有限公司 数控机械传输的前后桥转向系统
CN104477237A (zh) * 2014-11-11 2015-04-01 深圳职业技术学院 一种四轮独立转向电动车转向控制方法及系统
CN107416021A (zh) * 2017-06-19 2017-12-01 北京长城华冠汽车科技股份有限公司 车辆的四轮转向控制方法、装置及车辆
US20200130735A1 (en) * 2018-10-25 2020-04-30 Hyundai Motor Company Steering control method and system for rear-wheel steering
CN111098916A (zh) * 2018-10-25 2020-05-05 现代自动车株式会社 用于后轮转向的转向控制方法及系统
CN111762261A (zh) * 2020-07-01 2020-10-13 中国第一汽车股份有限公司 车辆转向控制方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063237A4 *

Also Published As

Publication number Publication date
CN111762261A (zh) 2020-10-13
CN111762261B (zh) 2021-11-12
EP4063237A1 (en) 2022-09-28
EP4063237A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2022001975A1 (zh) 车辆转向控制方法、装置及系统
US10640109B2 (en) Travel control device for vehicle
JP4997065B2 (ja) 車両制御装置
WO2023284787A1 (zh) 爬行控制方法、装置、车辆及存储介质
US6745112B2 (en) Method of estimating quantities that represent state of vehicle
CN110893851B (zh) 用于在道路偏离事件中辅助驾驶员的方法和系统
US20200001716A1 (en) Control apparatus of self-driving vehicle
US11505177B2 (en) Control apparatus for vehicle and control method for vehicle
JP2016206976A (ja) 車両の運転支援制御のための先行車軌跡算出装置
JP2001209899A (ja) 車両の不安定な走行状態の検出方法および装置
JPH10239334A (ja) 初期補正係数演算装置
JP6603585B2 (ja) 車両の制御装置及び車両の制御方法
JP2023510401A (ja) 道路の現在の横方向傾斜角度を求めるための方法
CN111959506A (zh) 车辆及车辆编队行驶的控制方法、装置
KR20240078450A (ko) 드리프트 제어 장치 및 제어 방법
CN112319365B (zh) 一种变道预警辅助方法及系统
JP2008087548A (ja) 旋回状態推定装置、自動車、及び旋回状態推定方法
JP3120588B2 (ja) 車両特性変更装置
JP2022021309A (ja) 前方にあるカーブを通過する際に、エゴ・車両の車両運転手をサポートするための方法
JPH10281944A (ja) 車両のタイヤ判定装置
JPH1178933A (ja) 車両の車体横滑り角推定方法及び推定装置
US6792803B2 (en) Method to improve estimation of vehicle longitudinal velocity
US20240175692A1 (en) Determination apparatus and determination method
JP4687487B2 (ja) 車両の駆動力制御装置
WO2024079859A1 (ja) 電動車両の制御方法、及び電動車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021832466

Country of ref document: EP

Effective date: 20220620

NENP Non-entry into the national phase

Ref country code: DE