WO2022001685A1 - 光波导结构及制造方法、光波导模块、光交换设备及系统 - Google Patents

光波导结构及制造方法、光波导模块、光交换设备及系统 Download PDF

Info

Publication number
WO2022001685A1
WO2022001685A1 PCT/CN2021/100734 CN2021100734W WO2022001685A1 WO 2022001685 A1 WO2022001685 A1 WO 2022001685A1 CN 2021100734 W CN2021100734 W CN 2021100734W WO 2022001685 A1 WO2022001685 A1 WO 2022001685A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical
channel
waveguides
waveguide
Prior art date
Application number
PCT/CN2021/100734
Other languages
English (en)
French (fr)
Inventor
周敏
赵臻青
孙春
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21833665.9A priority Critical patent/EP4163685A4/en
Publication of WO2022001685A1 publication Critical patent/WO2022001685A1/zh
Priority to US18/148,879 priority patent/US20230152516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch

Definitions

  • the present application relates to the field of optical communication, and in particular, to an optical waveguide structure and a manufacturing method, an optical waveguide module, an optical switching device and a system.
  • An optical waveguide is a medium device that guides light waves to propagate in it, also known as a medium optical waveguide.
  • the optical waveguide structure includes an optical waveguide and at least two optical switches arranged in a matrix. Each optical switch has 4 ports, and the 4 ports are 2 ⁇ 2 The 4 ports of each optical switch are respectively connected with the ports of other optical switches, the input ports or output ports of the optical waveguide structure through the optical waveguide, so Many optical waveguide crossings can be generated in the plane where at least two optical waveguides are located.
  • the optical waveguide structure is called the same-layer crossing optical waveguide. Through the use of the same-layer crossing optical waveguide, the optical waveguide communication of multiple input ports and multiple output ports can be realized. , thereby improving the integration of the optical waveguide structure.
  • the optical signal transmission between different optical waveguides is realized through the same-layer crossed optical waveguides, and the crosstalk between the optical waveguides is introduced by the crossing of the optical waveguides, resulting in a large insertion loss of the optical waveguide structure.
  • Embodiments of the present application provide an optical waveguide structure and a manufacturing method, an optical waveguide module, an optical switching device and a system.
  • the technical solution is as follows:
  • an optical waveguide structure comprising: at least two optical waveguides arranged in layers, the at least two optical waveguides include a first optical waveguide and a second optical waveguide, the first optical waveguide and the second optical waveguide Located on different layers; a first optical waveguide channel is arranged between the first optical waveguide and the second optical waveguide, and two ends of the first optical waveguide channel are respectively physically connected to the first optical waveguide and the second optical waveguide.
  • the first optical waveguide channel is physically connected to two optical waveguides located in different layers, respectively, so as to realize the transmission of optical signals between different optical waveguides and reduce the use of the same-layer cross-type optical waveguide. , reducing the intersection of optical waveguides on the same layer, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide structure can be effectively ensured, and the miniaturization of the optical waveguide structure can be realized.
  • the first optical waveguide and the second optical waveguide are physically connected through the first optical waveguide channel, and no evanescent field is used for optical signal transmission.
  • the first optical waveguide channel is a physical channel, and the first optical waveguide channel realizes optical signal transmission between the first optical waveguide and the second optical waveguide through total reflection.
  • a dielectric layer is disposed between the first optical waveguide and the second optical waveguide, the first optical waveguide channel is located in the dielectric layer, and the medium
  • the refractive index of the layer is less than the refractive index of the first optical waveguide channel.
  • efficient transmission of optical signals in the first optical waveguide and the second optical waveguide is achieved.
  • the difference between the refractive index of the first optical waveguide channel and the refractive index of the first optical waveguide is in the range of 0.5% to 50%, and/or the refractive index of the first optical waveguide channel and the second optical waveguide The range of the difference in refractive index is 0.5% to 50%. In this way, the optical signal transmission between the first optical waveguide and the second optical waveguide is facilitated through the first optical waveguide channel, and the transmission and insertion loss of the optical signal is reduced.
  • the first optical waveguide channel is a channel formed by ion doping the dielectric layer.
  • the optical waveguide structure is a hardware product having a physical structure, for example, the optical waveguide structure can be an optical chip.
  • the first optical waveguide channel realizes optical signal transmission between the first optical waveguide and the second optical waveguide through total reflection.
  • the first optical waveguide is located on the upper layer of the second optical waveguide; the optical waveguide structure further includes: an optical switch connected to the first optical waveguide, the optical switch is used for selecting optical signals so that the optical signal is transmitted along the first optical waveguide or along the second optical waveguide.
  • the optical switch is connected with the first optical waveguide on the upper layer, which facilitates the manufacture of the optical switch.
  • the optical waveguide structure includes at least two optical switches, the number of optical switches connected to the first optical waveguide is the same as the number of first optical waveguide channels connected to the first optical waveguide, and the number of the optical switches connected to the first optical waveguide is the same as the number of first optical waveguide channels connected to the first optical waveguide.
  • the first optical waveguide channels connected by an optical waveguide and the optical switches on the first optical waveguide are alternately arranged one by one.
  • the optical waveguide structure includes at least two second optical waveguides, and the number of the second optical waveguides is the same as the number of the first optical waveguide channels.
  • the optical switch is a waveguide type optical switch, which is a 1 ⁇ 2 optical switch. In this way, the routing on the two paths can be realized through the optical switch.
  • the first region of the first optical waveguide and the second region of the second optical waveguide are parallel to the first optical waveguide and the second optical waveguide.
  • the projections on one plane overlap, and the first optical waveguide channel connects the first region and the second region, that is, the positive direction of one of the two optical waveguides on the other optical waveguide along the stacking direction of the two optical waveguides.
  • the projection and the other optical waveguide have an overlapping area, and the orthographic projection of the first optical waveguide channel on the other optical waveguide along the stacking direction of the two optical waveguides is located in the overlapping area.
  • the first optical waveguide channel is located in the overlapping range of the first optical waveguide and the second optical waveguide in the stacking direction.
  • the ion gun can form the first optical waveguide without using a large inclination angle.
  • An optical waveguide channel reducing the complexity of the manufacturing process.
  • the at least two optical waveguides further include a third optical waveguide, the third optical waveguide and the first optical waveguide and the second optical waveguide are located at different layers respectively, the third optical waveguide and A second optical waveguide channel is disposed between the second optical waveguides, and two ends of the second optical waveguide channel between the third optical waveguide and the second optical waveguide are respectively connected to the second optical waveguide and the third optical waveguide. physical connection.
  • the thickness of the gap between the first optical waveguide and the second optical waveguide ranges from 500 nm to 5 um. In this way, the fabrication of the first optical waveguide channel is facilitated.
  • the length or width of the cross section of the first optical waveguide channel ranges from 500 nm to 5 um, and the cross section is perpendicular to the stacking direction of the first optical waveguide and the second optical waveguide. In this way, the fabrication of the first optical waveguide channel is facilitated.
  • the angle formed by the extending direction of the first optical waveguide channel and the plane where any one of the connected optical waveguides is located ranges from 45° to 135°. In this way, on the one hand, the manufacture of the first optical waveguide channel is facilitated, and on the other hand, the effective total reflection of the optical signal in the first optical waveguide channel can be realized.
  • an optical waveguide module in a second aspect, can be an optical chip, or a collection of multiple optical chips.
  • the optical waveguide module includes: a wavelength combiner and demultiplexer, a first branch on-off wave structure, and a connector and at least two optical waveguide structures, the optical waveguide structures may be the optical waveguide structures described in any one of the first aspect.
  • Each of the optical waveguide structures includes at least two optical waveguides arranged in layers, the at least two optical waveguides include a first optical waveguide and a second optical waveguide, the first optical waveguide and the second optical waveguide are located in different layers, the first optical waveguide A first optical waveguide channel is arranged between the optical waveguide and the second optical waveguide, and both ends of the first optical waveguide channel are respectively physically connected to the first optical waveguide and the second optical waveguide; the wave combiner has a line port and at least two first optical waveguide connection ports, the at least two first optical waveguide connection ports of the wave combiner and demultiplexer are respectively connected with the first ends of the first optical waveguides of the at least two optical waveguide structures; the first branch The on/off wave structure has a first branch port and at least two second optical waveguide connection ports, and the at least two second optical waveguide connection ports of the first branch on/off wave structure are respectively connected with the first branch of the at least two optical waveguide structures.
  • the second end of an optical waveguide is connected, and the first branch port is used for uploading or downloading optical signals;
  • the connector has a line through port and at least two third optical waveguide connection ports, and at least two third optical waveguide connection ports of the connector are provided.
  • the optical waveguide connection ports are respectively connected with the second ends of a second optical waveguide of each of the at least two optical waveguide structures, and the line pass-through port is configured to be connected with a line pass-through port of another optical waveguide module.
  • the number of the first optical waveguide connection ports, the number of the second optical waveguide connection ports, and the number of the third optical waveguide connection ports are all the same as the number of the optical waveguide structures.
  • the first optical waveguide channel is physically connected to two optical waveguides located on different layers, so as to realize the direct hop transmission of optical signals between different optical waveguides and reduce the number of identical optical waveguides.
  • the use of layer-crossing optical waveguides reduces the crossing of optical waveguides in the same layer, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide module can be effectively ensured, and the miniaturization of the optical waveguide module can be realized.
  • the connector can pass through the optical signal of the line wavelength with the connector of another optical waveguide module through the line pass-through port, and realize the pass-through function of the line wavelength of the optical switching device.
  • the optical signal of the local wavelength is uploaded through the tributary port, or the optical signal of the line wavelength is downloaded. In this way, the basic functions of the optical switching device can be realized.
  • each of the optical waveguide structures further includes: n fourth optical waveguides, the fourth optical waveguides and the first optical waveguides are located in different layers, and between the first optical waveguide and each of the fourth optical waveguides A third optical waveguide channel is provided, one end of the third optical waveguide channel is connected to the first optical waveguide, and the other end is connected to a first end of the fourth optical waveguide.
  • the n is a positive integer; wherein, the nth The four optical waveguides are located on the same layer, which facilitates the manufacture of n fourth optical waveguides.
  • the optical waveguide module further includes m second branch add/drop structures, the second branch add/drop structures have a second branch port and a fourth optical waveguide connection port, the m th The fourth optical waveguide connection ports of the two branch on/off wave structures are respectively connected to the second ends of one fourth optical waveguide of each of the at least two optical waveguide structures, and the second branch port is used for uploading or Download light signals.
  • the extending directions of the first optical waveguide and the second optical waveguide in each of the optical waveguide structures are perpendicular, and the extending directions of the n fourth optical waveguides are parallel.
  • the connector is a multi-core connector, a multiplexer and a demultiplexer, a parallel optical fiber plug-in interface for connecting with an optical fiber cable, or an optical fiber ferrule for connecting with an optical fiber array.
  • the first branch add/drop structure and/or the second branch add/drop structure is a combiner/demultiplexer.
  • any one of the first branch on/off structure and the second branch on/off structure is a cascaded optical switch with 2N first ports and one second port structure, N is a positive integer; the branch drop-wave structure is configured to control the connection between the second port and one of the 2 N first ports based on the logic control instruction after receiving the logic control instruction. connected, disconnected from other first ports.
  • the branch add/drop structure the add/drop of the optical signal can be controlled by the logic control command, and the manufacturing cost of the optical waveguide module is further reduced.
  • the logic control instruction includes N bits. The N bits occupy less storage space and have less communication overhead.
  • an optical switching device including: a communication structure, the communication structure includes two optical waveguide modules according to any one of the second aspect, the two optical waveguide modules are connected through respective line through ports, and the two optical waveguide modules are The line ports of the optical waveguide module are respectively connected with lines in different directions.
  • the optical switching device includes two groups of the communication structures, and the optical signal transmission directions of the lines connected by the line ports of the two groups of the communication structures are opposite.
  • the optical switching device provided in the embodiment of the present application is physically connected to two optical waveguides located at different layers through the first optical waveguide channel, and thus, compared with FOADM and WSS, insertion loss is effectively reduced.
  • one optical waveguide module in each communication structure can input the optical signal of the line wavelength through the wavelength combiner and demultiplexer, and output the optical signal of the line wavelength that passes through the other optical waveguide module through the line through port, and the other optical waveguide module passes through the optical signal of the line wavelength.
  • the line pass-through port inputs the optical signal of the line wavelength, and outputs the optical signal of the line wavelength through the wavelength combiner and demultiplexer, thereby realizing the transmission of the optical signal of the line wavelength in one direction.
  • each optical waveguide module in the communication structure also supports the uploading of the optical signal of the local wavelength, or the downloading of the optical signal of the line wavelength.
  • each optical waveguide structure includes at least one optical switch, so as to realize the routing of the optical signal, without the need to calibrate the wavelength corresponding to the branch port, and realize colorless wave add/drop.
  • the optical switching device includes two communication structures, the transmission of optical signals of line wavelengths in two directions can be realized. In this way, all functions of the optical switching device can be realized through a simple structure.
  • an optical waveguide system comprising: at least two optical switching devices according to any one of the third aspect, the at least two optical switching devices are connected by optical fibers.
  • each optical switching device since the optical switching device is physically connected to two optical waveguides located on different layers through the first optical waveguide channel, the insertion loss is effectively reduced compared to FOADM and WSS.
  • each optical switching device realizes colorless adding and dropping, and the optical switching device has high applicability, realizes the normalization of devices, and reduces the storage cost.
  • a fifth aspect provides a method for manufacturing an optical waveguide structure for manufacturing the optical waveguide structure according to the first aspect, the method comprising: a first optical waveguide and a second optical waveguide located at different layers in the at least two optical waveguides A first optical waveguide channel is formed between the optical waveguides, and two ends of the first optical waveguide channel are respectively physically connected to the first optical waveguide and the second optical waveguide.
  • the first optical waveguide channel is physically connected to two optical waveguides located in different layers, so as to realize the transmission of optical signals between different optical waveguides, and reduce the cross-type light in the same layer.
  • the use of waveguides reduces the crossing of optical waveguides on the same layer, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide structure can be effectively ensured, and the miniaturization of the optical waveguide structure can be realized.
  • the method further includes: after each layer of optical waveguides is formed on the base substrate, forming a dielectric layer, wherein the first optical waveguide channel between the two optical waveguides is located in the two optical waveguides In the medium layer in between, the refractive index of the medium layer is smaller than the refractive index of the first optical waveguide channel.
  • forming a first optical waveguide channel between the first optical waveguide and the second optical waveguide in different layers in the at least two optical waveguides includes: passing the first optical waveguide and the second optical waveguide between the first optical waveguide and the second optical waveguide.
  • the intervening dielectric layer is ion-doped to form the first optical waveguide channel.
  • the first optical waveguide and the second optical waveguide include a first optical waveguide and a second optical waveguide, and the first optical waveguide is far away from the base substrate relative to the second optical waveguide;
  • the process of forming the first optical waveguide channel by ion doping the dielectric layer between the first optical waveguide and the second optical waveguide includes: after forming the first optical waveguide, setting a mask on the first optical waveguide On the side of the optical waveguide away from the base substrate, the mask has a hollow area; the part exposed from the hollow area of the mask through the first optical waveguide is between the first optical waveguide and the second optical waveguide
  • the dielectric layer is ion-doped to form the first optical waveguide channel between the first optical waveguide and the second optical waveguide.
  • the first optical waveguide is far from the base substrate relative to the second optical waveguide; the dielectric layer between the first optical waveguide and the second optical waveguide is ion-doped
  • the process of forming the first optical waveguide channel includes: after forming the first optical waveguide, arranging a mask on the side of the base substrate away from the second optical waveguide, the mask has a hollow area; The portion of the base substrate exposed from the hollowed-out region of the mask is ion-doped to the dielectric layer between the first optical waveguide and the second optical waveguide, so that the dielectric layer between the first optical waveguide and the second optical waveguide is ion-doped.
  • the first optical waveguide channel is formed therebetween.
  • the method further includes: forming an optical switch connected to the first optical waveguide on the base substrate.
  • a sixth aspect there is provided a branch structure of the vertical wave, the wave structure having upper and lower leg 2 N first ports, a cascade structure of the second optical switch ports, N is a positive integer; the vertical branch wave structure It is configured to, after receiving the logic control instruction, control the connection between the second port and one of the 2 N first ports to be turned on, and the connection with the other first ports to be disconnected based on the logic control instruction.
  • the branch add/drop structure By adopting the branch add/drop structure, the add/drop of the optical signal can be controlled by the logic control command, and the manufacturing cost of the optical waveguide module is further reduced.
  • the logic control instruction includes N bits. The N bits occupy less storage space and have less communication overhead.
  • the branch on/off wave structure can be applied to an optical waveguide module.
  • the waveguide channel provided by the embodiment of the present application is physically connected to the first optical waveguide and the second optical waveguide located in different layers through the first optical waveguide channel, and compared with FOADM and WSS, insertion loss is effectively reduced.
  • the optical waveguide module inputs the optical signal of the line wavelength through the wavelength combiner and demultiplexer, outputs the optical signal of the line wavelength passed through with another optical waveguide module through the line through port, (or receives the optical signal passed through by another optical waveguide module through the line through port.
  • the optical signal of the line wavelength, the optical signal of the line wavelength is output through the wavelength combiner and demultiplexer)
  • the uploading of the optical signal of the local wavelength or the downloading of the optical signal of the line wavelength can be carried out through the first branch on and off the wave structure, which is realized in one direction. optical signal transmission at the line wavelength.
  • each optical waveguide structure includes at least one optical switch, so as to realize the routing of the optical signal, without the need to calibrate the wavelength corresponding to the branch port, and realize colorless wave add/drop.
  • the optical signal of a set of wavelengths input by the line port in the optical waveguide module after being separated by the multiplexer and demultiplexer, can output the optical signal of the wavelength through the line through the connector, or can pass the first branch on and off the wave structure or the second.
  • the branch add/drop structure outputs the optical signal of the branch wavelength.
  • the wavelength in the entire optical waveguide module does not need to be calibrated, and a colorless wavelength pass-through and local download can be achieved through a simple structure.
  • the optical switching device includes two communication structures, the transmission of optical signals of line wavelengths in two directions can be realized. In this way, all functions of the optical switching device can be realized through a simple structure.
  • FIG. 1 is a schematic structural diagram of a schematic same-layer cross-type optical waveguide provided by the related art
  • FIG. 2 is a schematic diagram of an optical waveguide structure provided by an exemplary embodiment of the present application.
  • 3A is a schematic diagram of another optical waveguide structure provided by an exemplary embodiment of the present application.
  • FIG. 3B is a schematic diagram of another optical waveguide structure provided by an exemplary embodiment of the present application.
  • FIGS. 4 and 5 are schematic top views of two schematic optical waveguide structures provided by an exemplary embodiment of the present application, respectively;
  • FIG. 6 is an enlarged schematic view of the overlapping region W of the optical waveguide structure in FIGS. 4 and 5;
  • FIG. 7 is a schematic diagram of still another optical waveguide structure provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optical waveguide structure provided by another exemplary embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic top views of two optical waveguide structures in which the optical switches are 1 ⁇ 2 optical switches, respectively, according to an exemplary embodiment of the present application;
  • FIG. 11 is a schematic diagram of a specific structure of the optical waveguide structure shown in FIG. 10;
  • FIG. 12 is a schematic diagram of a schematic optical waveguide structure provided with at least two optical switches provided by an exemplary embodiment of the present application;
  • FIG. 13A is a schematic diagram of an optical waveguide structure provided by another exemplary embodiment of the present application.
  • FIG. 13B is a schematic diagram of another optical waveguide structure provided by another exemplary embodiment of the present application.
  • FIG. 14 is a schematic diagram of a metropolitan area network provided by an exemplary embodiment of the present application.
  • FIG. 15 is a schematic diagram of an optical waveguide module provided by an exemplary embodiment of the present application.
  • FIG. 16 is a schematic diagram of another optical waveguide module provided by an exemplary embodiment of the present application.
  • 17 to 19 are schematic diagrams of a 1 ⁇ 8 cascaded optical switch structure, a 1 ⁇ 32 cascaded optical switch structure and a 1 ⁇ 64 cascaded optical switch structure, respectively;
  • FIG. 20 is a schematic diagram of an optical switching device provided by an exemplary embodiment of the present application.
  • 21 to 25 are schematic diagrams of several communication structures provided by the embodiments of the present application respectively;
  • FIG. 26 is a schematic structural diagram of another optical switching device provided by an exemplary embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of still another optical switching device provided by an exemplary embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of an optical waveguide system provided by an exemplary embodiment of the present application.
  • FIG. 29 is a schematic flowchart of a method for manufacturing an optical waveguide structure provided by an exemplary embodiment of the present application.
  • FIG. 30 is a schematic flowchart of another method for manufacturing an optical waveguide structure provided by an exemplary embodiment of the present application.
  • FIG. 31 is a schematic diagram of a manufacturing process of a first optical waveguide channel provided by an exemplary embodiment of the present application.
  • FIG. 32 is a schematic diagram of a manufacturing process of another first optical waveguide channel provided by an exemplary embodiment of the present application.
  • FIG. 33 is a schematic diagram of a manufacturing process of still another first optical waveguide channel provided by an exemplary embodiment of the present application.
  • FIG. 1 is a schematic diagram of an optical waveguide structure.
  • the optical waveguide structure includes an optical waveguide and at least two optical waveguides arranged in a matrix.
  • An optical switch the optical waveguide structure realizes the transmission of optical signals between different optical waveguides located on the same plane through at least two optical switches and at least two intersecting optical waveguides, which is called a same-layer intersecting optical waveguide.
  • the crosstalk between the optical waveguides is introduced by the crossing of the optical waveguides, resulting in a large insertion loss of the optical waveguide structure.
  • FIG. 2 is a schematic structural diagram of an optical waveguide provided by an exemplary embodiment of the present application.
  • the optical waveguide includes: at least two optical waveguides arranged in layers.
  • the at least two optical waveguides include a first optical waveguide 11a and a second optical waveguide 11b, the first optical waveguide 11a and the second optical waveguide 11b are located in different layers, and a first optical waveguide 11a and the second optical waveguide 11b are disposed between the first optical waveguide 11a and the second optical waveguide 11b.
  • first optical waveguide channel 12 two ends of the first optical waveguide channel 12 are respectively physically connected to the first optical waveguide 11a and the second optical waveguide 11b.
  • first optical waveguide 11a and the second optical waveguide 11b are located on different layers means that the plane where the first optical waveguide 11a is located (the plane is the manufacturing plane of the optical waveguide) and the plane where the second optical waveguide 11b is located are not coplanar, and the The plane of the first optical waveguide 11a and the plane of the second optical waveguide 11b are generally parallel. If the first optical waveguide 11a and the second optical waveguide 11b are fabricated on the base substrate, the distances between them are different from the base substrate.
  • the so-called physical connection in the embodiments of the present application can be understood as the physical connection formed between two optical waveguides by using the first optical waveguide channel, that is, the two ends of the first optical waveguide channel are connected to the two optical waveguides.
  • the waveguide is directly connected.
  • the first optical waveguide channel 12 acts as a bridge for the first optical waveguide 11a and the second optical waveguide 11b, and realizes the physical connection between the first optical waveguide 11a and the second optical waveguide 11b, so that the first optical waveguide 11a and the second optical waveguide 11b are connected.
  • the cross-layer transmission of optical signals is realized between the two optical waveguides 11b, that is, the optical signals transmitted on the first optical waveguide 11a can be transmitted along the first optical waveguide channel 12 to the second optical waveguide 11b; the second optical waveguide 11b
  • the optical signal transmitted above can also be transmitted to the second optical waveguide 11a along the first optical waveguide channel 12 .
  • the first optical waveguide channel 12 may also be referred to as a bridged optical waveguide channel.
  • the transmission insertion loss of the optical signal in the first optical waveguide channel is close to the transmission insertion loss of the optical signal in a common optical waveguide.
  • the first optical waveguide channel is physically connected to two optical waveguides located in different layers, respectively, so as to realize the transmission of optical signals between the optical waveguides in different layers, and reduce the cross-type optical waveguide in the same layer. It can reduce the crossing of optical waveguides on the same layer, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide structure can be effectively ensured, and the miniaturization of the optical waveguide structure can be realized.
  • different optical waveguides can use evanescent fields to realize the transmission of optical signals.
  • Evanescent fields are also called evanescent waves, evanescent waves or evanescent waves.
  • the evanescent field refers to an electromagnetic wave generated at the interface between two different media due to the mutual coupling of two media. The amplitude of the evanescent field attenuates as the depth along the vertical direction to the interface increases. .
  • the first optical waveguide 11a and the second optical waveguide 11b in FIG. 2 are physically connected through the first optical waveguide channel 12, and no evanescent field is used for optical signal transmission.
  • the first optical waveguide channel 12 is a physical channel, and the first optical waveguide channel 12 carries out the optical signal between the first optical waveguide 11 a and the second optical waveguide 11 b connected inside the first optical waveguide channel through total reflection. transmission.
  • FIG. 3A is a schematic diagram of another optical waveguide structure provided by an exemplary embodiment of the present application.
  • the stacking direction y of the first optical waveguide 11a and the second optical waveguide 11b ie, the stacking direction of the first optical waveguide 11a and the second optical waveguide 11b, which is generally perpendicular to the first optical waveguide 11a or the second optical waveguide 11b
  • the plane where the two optical waveguides 11b are located a dielectric layer 13 is disposed between the first optical waveguide 11a and the second optical waveguide 11b, the first optical waveguide channel 12 is located in the dielectric layer 13, and the refractive index of the dielectric layer 13 is smaller than that of the first optical waveguide The refractive index of the channel 12 , so as to achieve total reflection of the optical signal in the first optical waveguide channel 12 .
  • the refractive index of the dielectric layer 13 is also smaller than the refractive index of the first optical waveguide 11a and the second optical waveguide 11b, so that the effective optical signal in the first optical waveguide 11a and the second optical waveguide 11b can be effectively realized. transmission.
  • the difference between the refractive index of the first optical waveguide channel and the refractive index of the first optical waveguide ranges from 0.5% to 50%, and/or the refractive index of the first optical waveguide channel is different from the refractive index of the second optical waveguide channel.
  • the range of the difference in the refractive index of the optical waveguide is 0.5% to 50%.
  • the index of refraction or the difference of the index of refraction can be expressed as a ratio of the index of refraction or the difference of the index of refraction to the index of refraction 1 of a vacuum, it can be expressed as a percentage. In this way, the optical signal transmission between the first optical waveguide and the second optical waveguide is facilitated through the first optical waveguide channel, and the transmission and insertion loss of the optical signal is reduced.
  • the thickness of the gap d between the two optical waveguides ranges from 500 nm (nanometer) to 5 um (micrometer). Then, the thickness of the dielectric layer 13 ranges from 500 nm to 5 ⁇ m. In this way, the fabrication of the first optical waveguide channel is facilitated.
  • FIG. 3B is a schematic diagram of yet another optical waveguide structure provided by an exemplary embodiment of the present application.
  • the angle range formed by the extending direction of the first optical waveguide channel 12 and the plane of any connected optical waveguide is: 45° ⁇ 135°.
  • the manufacture of the first optical waveguide channel 12 is facilitated, and on the other hand, the effective total reflection of the optical signal in the first optical waveguide channel 12 can be realized.
  • FIG. 3B is a schematic diagram of yet another optical waveguide structure provided by an exemplary embodiment of the present application.
  • the angle range formed by the extending direction of the first optical waveguide channel 12 and the plane of any connected optical waveguide (the first optical waveguide 11a or the second optical waveguide 11b shown in FIG. 1 , FIG. 3A or FIG. 3B ) is: 45° ⁇ 135°.
  • the angle ⁇ formed between the plane where the first optical waveguide channel 12 is located and the plane where the first optical waveguide 11a is connected is in the range of 45° to 135°, and the plane where the first optical waveguide channel 12 is located is connected to the The angle ⁇ formed by the plane where the second optical waveguide 11b is located ranges from 45° to 135°.
  • the optical waveguide in the optical waveguide structure 10 generally extends along a straight line in the plane where it is located, and in rare cases extends along a folded line, which facilitates the fabrication of the optical waveguide structure and improves the integration of the optical waveguide structure.
  • the first optical waveguide channel 12 extends along a straight line, which facilitates the manufacture of the first optical waveguide channel and reduces the complexity of the manufacturing process.
  • the extending direction of the first optical waveguide channel 12 is connected obliquely to the plane where any one of the connected optical waveguides is located, so that the efficiency of total reflection can be improved and the effective transmission of optical signals can be realized.
  • the first optical waveguide channel 12 may be an ion doping channel, which is a channel formed by ion doping the dielectric layer 13 .
  • the matrix (ie, substrate) of the first optical waveguide channel 12 and the matrix of the dielectric layer 13 have the same lattice atomic arrangement structure, for example, both are hexahedral or octahedral.
  • the first optical waveguide channel 12 does not change the arrangement structure of lattice atoms relative to the dielectric layer 13, but only replaces at least part of the atoms.
  • FIG. 4 and FIG. 5 are schematic top views of two schematic optical waveguide structures provided by the embodiment of the present application, respectively, as shown in FIGS. 4 and 5 .
  • the aforementioned lamination direction y is a direction perpendicular to the paper surface in FIG. 4 and FIG. 5 .
  • the first region of the first optical waveguide 11a and the second region of the second optical waveguide 11b are in a plane parallel to the first optical waveguide and the second optical waveguide (ie, the plane parallel to the paper surface in FIG. 4 and FIG. 5 ) the projections overlap (which may be all or part of the overlap), and the first optical waveguide channel connects the first region and the second region.
  • the overlapping area W ie, the shaded area in FIGS.
  • the projection of the first area and the second area in a plane parallel to the first optical waveguide and the second optical waveguide is the projection of the first optical waveguide channel 12 in a plane parallel to the first optical waveguide and the second optical waveguide is located in the overlapping area W.
  • the first optical waveguide channel 12 is located in the overlapping range of the first optical waveguide 11a and the second optical waveguide 11b in the stacking direction, and when ion doping is performed through the dielectric layer, the ion gun does not need to adopt a large inclination angle That is, the first optical waveguide channel can be formed, thereby reducing the complexity of the manufacturing process.
  • the extending directions of the first optical waveguide and the second optical waveguide are parallel to the first optical waveguide channel, which facilitates the transmission of optical signals in the first optical waveguide or the second optical waveguide through the first optical waveguide channel.
  • FIG. 6 is an enlarged schematic view of the overlapping region W of the optical waveguide structures in FIGS. 4 and 5 .
  • the length h1 or width h2 of the cross section of the first optical waveguide 12 ranges from 500 nm to 5 um, and the cross section is perpendicular to the stacking direction of the first optical waveguide 11 a and the second optical waveguide 11 b.
  • the shape of the aforementioned cross section may be a rectangle or a circle, and FIG. 6 is only a schematic illustration, and does not limit the shape of the cross section of the first optical waveguide channel.
  • the optical waveguide structure 10 is a hardware product, which has a physical structure.
  • the optical waveguide structure 10 may be an optical chip.
  • FIG. 7 is a schematic diagram of still another optical waveguide structure provided by an exemplary embodiment of the present application.
  • the optical waveguide structure 10 further includes a base substrate 14 on which the aforementioned at least two optical waveguides 11 , the first optical waveguide channel 12 and the dielectric layer 13 are located.
  • the manufacturing material of the base substrate can be silicon dioxide, silicon, silicon nitride or sapphire.
  • the optical waveguide structure 10 may further include an optical switch, and the optical switch is used to control the transmission direction of the optical signal and realize the routing of the optical signal.
  • FIG. 8 is a schematic diagram of an optical waveguide structure provided by another exemplary embodiment of the present application. As shown in Fig. 8, the optical waveguide structure 10 further includes: an optical switch 15 connected to the first optical waveguide 11a. The optical switch 15 is used for routing the optical signal, so that the optical signal is transmitted along the first optical waveguide 11a or transmitted along the second optical waveguide 11b.
  • the first optical waveguide 11a is located on the upper layer of the second optical waveguide 11b, wherein, the first optical waveguide 11a is located on the upper layer of the second optical waveguide 11b, which means that when the optical waveguide structure 10 is actually used, the first optical waveguide 11a is opposite to the first optical waveguide 11a.
  • the second optical waveguide 11b is located on the side away from the base substrate 14; disposing the optical switch 15 on the upper optical waveguide facilitates the manufacture of the optical switch and the control of the optical switch. As shown in FIG.
  • the optical signal transmitted along the first optical waveguide 11a can be transmitted down to the second optical waveguide 11b through the optical switch 15 and the first optical waveguide channel 12 in sequence; or, the light transmitted along the second optical waveguide 11b
  • the signal can be transmitted upward to the first optical waveguide 11a through the optical switch 15 and the first optical waveguide channel 12 in sequence.
  • the optical switch provided by the embodiment of the present application may be a 1 ⁇ 2 optical switch (ie, an optical switch having one input port and two output ports).
  • the aforementioned optical switch is a waveguide type optical switch (also referred to as a waveguide optical switch).
  • the waveguide type optical switch is an optical switch that changes the optical path by changing the refractive index of the waveguide by using electro-optic effect, magneto-optic effect, acousto-optic effect or thermo-optic effect.
  • FIG. 9 and FIG. 10 are schematic top views of two types of optical waveguide structures in which the optical switch 15 is a 1 ⁇ 2 optical switch, respectively, provided in this embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic top views of two types of optical waveguide structures in which the optical switch 15 is a 1 ⁇ 2 optical switch, respectively, provided in this embodiment of the present application.
  • the 1 ⁇ 2 optical switch of the optical waveguide structure in FIG. 11 is a waveguide type optical switch that uses electro-optic effect to change the refractive index of the waveguide.
  • 9 to 11 assume that the optical signal of the optical waveguide structure is input along the signal transmission direction x, and is divided into a main circuit and a branch circuit through the optical switch 15. Optionally, the extension directions of the main circuit and the branch circuit are different.
  • the first optical waveguide 11a includes a first optical waveguide main path a1 and a first optical waveguide branch a2, and the first optical waveguide branch a2 passes through the first optical waveguide channel 12 and the second optical waveguide 11b
  • the optical switch 15 includes an electrode 151 arranged on the first optical waveguide main circuit a1 and an electrode 152 arranged on the first optical waveguide branch a2, and the optical switch 15 is controlled by the electrode 151 and the electrode 152.
  • the voltage loaded on 152 realizes the adjustment of the refractive index of the optical signal in the first optical waveguide, thereby realizing the routing in the first optical waveguide main circuit a1 and the first optical waveguide branch a2.
  • the optical signal transmitted from the first optical waveguide main path a1 is selected to continue to be transmitted along the first optical waveguide main path a1 (ie, the direction from left to right in FIG. 9 )
  • the optical signal transmitted from the first optical waveguide branch a2 is selected to be transmitted along the second optical waveguide 11 b through the first optical waveguide channel 12 . Since the optical path is reversible, if the optical signal in the optical waveguide structure is transmitted in a direction opposite to the aforementioned signal transmission direction x (ie, the direction from right to left in FIG. 9 ).
  • the optical signal transmitted from the first optical waveguide main path a1 is selected to continue to transmit along the first optical waveguide main path a1 through the optical switch 15, and the optical signal transmitted from the second optical waveguide 11b is selected to pass through the first optical waveguide branch path a2 in turn.
  • the sum optical switch 15 is transmitted along the first optical waveguide main path a1.
  • FIG. 12 is a schematic diagram of a schematic optical waveguide structure 10 provided with at least two optical switches provided in an embodiment of the present application.
  • FIG. 12 assumes that there are two optical switches 15 in the optical waveguide structure, but the number of optical switches is not limited.
  • the number of optical switches connected to the first optical waveguide 11a is the same as the number of the first optical waveguide channels connected to the first optical waveguide 11a, and the first optical waveguide channels 12 connected to the first optical waveguide 11a are the same as the The optical switches 15 on the optical waveguide 11a are alternately arranged one by one. In this way, multi-level routing of the layer where the first optical waveguide 11a is located can be implemented, and each optical switch 15 corresponds to one routing level.
  • the optical waveguide structure 10 includes at least two second optical waveguides 11 b , and the number of the second optical waveguides 11 b is the same as the number of the first optical waveguide channels 12 .
  • Fig. 12 assumes that the optical switch 15 is a 1 ⁇ 2 optical switch.
  • the optical signal of the optical switch 15 can be controlled to be transmitted along different paths, thereby realizing the transmission of the optical signal. route. For example, through the two optical switches 15, the optical signal can be controlled to transmit along the main circuit, branch 1 or branch 2.
  • the number and arrangement position of the optical switches in the optical waveguide structure are different.
  • an optical switch 15 is disposed before each first optical waveguide channel 12.
  • the optical signal transmission direction x in the first optical waveguide 11a refers to the first optical waveguide main path The transmission direction of the optical signal of a1.
  • an optical switch 15 is disposed after each first optical waveguide channel 12 .
  • the at least two optical waveguides 11 include two optical waveguides located in different layers.
  • the at least two optical waveguides 11 may further include a third optical waveguide 11c.
  • the third optical waveguide 11c, the first optical waveguide 11a, and the second optical waveguide 11b are located in different layers, respectively.
  • FIG. 13A and FIG. 13B are schematic diagrams of two types of optical waveguide structures respectively provided by another exemplary embodiment of the present application. In an optional manner, as shown in FIG.
  • a second optical waveguide channel 16 is provided between the third optical waveguide 11c and the second optical waveguide 11b, and between the third optical waveguide 11c and the second optical waveguide 11b Two ends of the second optical waveguide channel 16 are respectively physically connected to the second optical waveguide 11b and the third optical waveguide 11c.
  • the second optical waveguide 11b and the third optical waveguide 11c and the structures located between the second optical waveguide 11b and the third optical waveguide 11c along the stacking direction y, such as the second optical waveguide channel 16, the dielectric layer and/or the optical switch Etc. can refer to the first optical waveguide 11a and the second optical waveguide 11b and the structure between the first optical waveguide 11a and the second optical waveguide 11b in the stacking direction y.
  • a second optical waveguide channel 16 is provided between the third optical waveguide 11c and the first optical waveguide 11a, and the second optical waveguide between the third optical waveguide 11c and the first optical waveguide 11a Both ends of the channel 16 are physically connected to the third optical waveguide 11c and the first optical waveguide 11a, respectively.
  • the first optical waveguide 11a and the third optical waveguide 11c and the structures located between the first optical waveguide 11a and the third optical waveguide 11c in the lamination direction y can all refer to the first optical waveguide 11a and the second optical waveguide 11b and the structure between the first optical waveguide 11a and the second optical waveguide 11b along the stacking direction y.
  • the transmission of optical signals in more layers of optical waveguides can be realized.
  • Fig. 13B is illustrated by taking at least two optical waveguides including k-layer optical waveguides, and k ⁇ 3 as an example, an optical waveguide channel is set between every two adjacent optical waveguides, and two ends of the optical waveguide channel are respectively connected to two adjacent optical waveguides.
  • the waveguide is physically connected.
  • the optical waveguide structure 10 can be divided into a plurality of groups of substructures R, each group of The substructure R includes two optical waveguides and an optical waveguide channel, and each two groups of adjacent substructures multiplex an optical waveguide, or, each two adjacent substructures do not have overlapping optical waveguides (that is, no optical waveguides are performed. reuse).
  • the structures of different groups of substructures may be the same or different. For the specific structure of each group of substructures, reference may be made to the first optical waveguide 11a and the second optical waveguide 11b in any of the aforementioned FIGS.
  • the optical switches and the like can all refer to the first optical waveguide 11a and the second optical waveguide 11b and the structure between the first optical waveguide 11a and the second optical waveguide 11b along the stacking direction y.
  • detailed descriptions of each group of substructures are omitted.
  • the extending directions of the first optical waveguides in different groups of substructures R may be parallel, and the extending directions of the second optical waveguides may be parallel.
  • the positional relationship of at least two optical waveguides can also be adjusted according to the actual application scenario.
  • the at least two optical waveguides may further include optical waveguides located in the same layer; and/or, optical waveguide channels are provided between non-adjacent optical waveguides. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application. Therefore, this embodiment of the present application will not describe it again.
  • the structure of the optical chip is introduced only by taking the optical waveguide, the optical waveguide channel, the medium layer and/or the optical switch formed on the base substrate of the optical chip as an example.
  • other components may also be formed on the base substrate of the optical waveguide structure, and the optical waveguide structure may further include a package structure, which is not limited in the embodiments of the present application.
  • FIG. 14 is a schematic diagram of a metropolitan area network provided by an exemplary embodiment of the present application.
  • a metropolitan area network also known as a metropolitan access optical network, includes at least two access sites.
  • Figure 14 assumes that the metropolitan area network includes three access sites, namely access sites A, B, and C, from the access computer room. The output optical signal is input to the access computer room through access sites A, B and C to form a metropolitan area network ring network.
  • Each access site supports optical signal transmission in both directions.
  • the two directions are opposite.
  • Figure 14 assumes that the two directions are the west direction w and the east direction e, respectively, and these two directions belong to the line direction, that is, the direction on the ring network in the metropolitan area network.
  • Each access site itself is also connected to the local communication equipment of the site, the local communication equipment belonging to the local communication system.
  • the first type is line wavelength, which is mainly transmitted in the access fiber ring shown in Figure 14; the second type is local wavelength, which is used in each connection. It is transmitted in the local communication system of the entry point, and there is a unified external exit at the access site.
  • the line wavelength and the local wavelength can be converted to each other through the site optical layer shown in Figure 14.
  • the dotted box G in FIG. 14 is an enlarged schematic diagram of the optical layer of the site of the access site C, wherein six different wavelength transmission modes are schematically drawn.
  • the six wavelength transmission modes are: "1" represents the optical signal of the line wavelength in the west direction w is transmitted to the east direction e through the site optical layer of the access site; "2" represents the optical signal of the line wavelength in the east direction e through the connection Inbound site optical layer transmission to westbound w.
  • "1" and "2" means that the optical signal of the line wavelength directly passes through the optical layer of the site of the access site.
  • the optical signal only passes through the access site, and is not downloaded (also called drop wave) into the local communication system, that is, It is the optical signal that is transparently transmitted at the access site.
  • "3" indicates that the optical signal of the line wavelength in the west direction w is downloaded to the local through the site optical layer of the access site, and enters the local communication system, thereby realizing the conversion of the line wavelength to the local wavelength.
  • "4" indicates that the optical signal of the local wavelength in the local communication system is uploaded (also called upload or wave up) to the west direction w through the site optical layer of the access site, which is the conversion of the local wavelength to the line wavelength.
  • optical waveguide module For an access site, it is the core capability requirement of the optical layer of the site to realize pass-through and download of the optical signal of the line wavelength and upload of the optical signal of the local wavelength.
  • This embodiment of the present application provides an optical waveguide module, which can be applied to any access site in FIG. 14 or other optical switching devices.
  • the optical waveguide module supports the pass-through and download of the optical signal of the line wavelength, and the upload of the optical signal of the local wavelength.
  • the optical waveguide module may be an optical chip or a collection of multiple optical chips.
  • FIG. 15 is a schematic diagram of an optical waveguide module provided by an exemplary embodiment of the present application.
  • the optical waveguide module 30 includes: a wavelength combiner 31 , a first branch on/off wave structure 32 , a connector 33 and at least two optical waveguide structures 34 .
  • Each optical waveguide structure 34 includes at least two optical waveguides arranged in layers, the at least two including a first optical waveguide 11a and a second optical waveguide 11b, the first optical waveguide 11a and the second optical waveguide 11b are located in different layers, the first optical waveguide 11a and the second optical waveguide 11b
  • a first optical waveguide channel 12 is disposed between an optical waveguide 11a and a second optical waveguide 11b, and both ends of the first optical waveguide channel 12 are physically connected to the first optical waveguide 11a and the second optical waveguide 11b, respectively.
  • the first end d1 of the optical waveguide 11b is connected to the first optical waveguide channel 12 .
  • the optical switch 15 is schematically represented by black dots, and the optical waveguide channel, such as the aforementioned first optical waveguide channel 12 , is represented by white dots.
  • the optical waveguide channel such as the aforementioned first optical waveguide channel 12
  • white dots are examples of white dots.
  • the wavelength combiner 31 has line ports and at least two first optical waveguide connection ports, and the at least two first optical waveguide connection ports of the wavelength combiner 31 are respectively connected with the first optical waveguide 11a of the at least two optical waveguide structures. One end is connected to q1.
  • the line port of the multiplexer/demultiplexer 31 is used for inputting an optical signal on the line side, or outputting an optical signal to the line side.
  • the wave combiner and demultiplexer is an Arrayed Waveguide Grating (AWG).
  • the first branch on/off wave structure 32 has a first branch port and at least two second optical waveguide connection ports, and the at least two second optical waveguide connection ports of the first branch on/off wave structure 32 are respectively connected with the at least two optical waveguides
  • the second end q2 of the first optical waveguide 11a of the structure is connected, and the first branch port is used for uploading or downloading optical signals.
  • the connector 33 has a line through port and at least two third optical waveguide connection ports, and the at least two third optical waveguide connection ports of the connector 33 are respectively connected with one second of each optical waveguide structure 34 in the at least two optical waveguide structures.
  • the second end d2 of the optical waveguide 11b is connected, and the line through port is configured to be connected with the line through port of another optical waveguide module.
  • the line wavelength pass-through function of the optical switching device ie, the transparent transmission function of the line wavelength
  • the first end and the second end of an optical waveguide refer to opposite ends along the extending direction of the optical waveguide. If the optical waveguide includes a main optical waveguide and a branched optical waveguide, the first end and the second end refer to opposite ends of the main optical waveguide in the extending direction.
  • the number of first optical waveguide connection ports, the number of second optical waveguide connection ports, and the number of third optical waveguide connection ports are all the same as the number of optical waveguide structures, that is, in the optical waveguide module, the first optical waveguide
  • the waveguide connection ports are in one-to-one correspondence with the optical waveguide structures
  • the second optical waveguide connection ports are in one-to-one correspondence with the optical waveguide structures.
  • FIG. 15 assumes that each optical waveguide structure 34 includes a first optical waveguide and a second optical waveguide, but the number of the optical waveguides is not limited.
  • the first optical waveguide channel is physically connected to two optical waveguides located in different layers, respectively, so as to realize the transmission of optical signals between the optical waveguides of different layers.
  • Straight-hop transmission reduces the use of cross-type optical waveguides in the same layer, and reduces the crossover of optical waveguides in the same layer, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide module can be effectively ensured, and the miniaturization of the optical waveguide module can be realized.
  • the connector can pass through the optical signal of the line wavelength with the connector of another optical waveguide module through the line pass-through port, and realize the pass-through function of the line wavelength of the optical switching device.
  • the optical signal of the local wavelength is uploaded through the tributary port, or the optical signal of the line wavelength is downloaded. In this way, the basic functions of the optical switching device can be realized.
  • FIG. 16 is a schematic diagram of another optical waveguide module 30 provided by an exemplary embodiment of the present application.
  • each optical waveguide structure 34 further includes: n fourth optical waveguides 11d, the fourth optical waveguides 11d and the first optical waveguides 11a are located at different layers, and the first optical waveguides 11d are located at different layers.
  • a third optical waveguide channel 17 is disposed between 11a and each fourth optical waveguide 11d. One end of the third optical waveguide channel 17 is connected to the first optical waveguide 11a, and the other end is connected to the first end p1 of a fourth optical waveguide 11d. connection, n is a positive integer.
  • each optical waveguide structure the structures between the n fourth optical waveguides 11d and the first optical waveguides 11a, such as the third optical waveguide channel, the dielectric layer and/or the optical switch, etc., may refer to the first optical waveguide.
  • the number of the fourth optical waveguides 11d is the same as the number of the third optical waveguide channels 17 .
  • the optical waveguide module 30 may further include m second branch on/off wave structures 35 , and the second branch on/off wave structures 35 have a second branch port and a fourth optical waveguide
  • the connection ports, the fourth optical waveguide connection ports of the m second branch on/off wave structures 35 are respectively connected to the second end p2 of a fourth optical waveguide 11d of each of the at least two optical waveguide structures 34 .
  • the second tributary port is used to upload or download optical signals.
  • the number of the fourth optical waveguide connection ports is the same as the number of the optical waveguide structures 34 , that is, the fourth optical waveguide connection ports are in one-to-one correspondence with the optical waveguide structures.
  • first branch on/off wave structure 32 and the second branch on/off wave structure 35 may be the same, which is convenient for manufacture and ensures effective uploading and downloading of optical signals on the branch side.
  • FIG. 16 takes FIG. 16 as an example to schematically illustrate an optical signal transmission process of an optical waveguide module provided by an embodiment of the present application.
  • Fig. 16 assumes that the optical signal is input from the line port and passes through the multiplexer and demultiplexer.
  • the optical waveguide module includes T optical waveguide structures, where T is an integer greater than 1.
  • the optical switch connected to the first optical waveguide 11a The number of 15 is the same as the number of the optical waveguide channels (including the first optical waveguide channel 12 and the third optical waveguide channel 17) connected to the first optical waveguide 11a, and the optical waveguide channels connected to the first optical waveguide 11a are connected to the first optical waveguide
  • the optical switches 15 are arranged alternately one by one, and along the direction of optical signal transmission, an optical switch 15 is set before each optical waveguide channel, and the optical switch 15 is a 1 ⁇ 2 optical switch.
  • the optical signal is input from the line port, and is divided into T wavelength optical signals transmitted by the T wavelength transmission channels corresponding to the first optical waveguides 11a of the T optical waveguide structures through the wavelength combiner and demultiplexer.
  • the optical signal of the wavelength, along the transmission direction of the optical signal for example, the direction from left to right in FIG. 16
  • the optical signal is divided into two optical signals again after passing through each optical switch connected to the first optical waveguide 11a , one way continues to transmit along the extending direction of the first optical waveguide 11a (that is, transmits along the direction from left to right in FIG.
  • the optical waveguide 11b or another way, is transmitted through the third optical waveguide channel 17 to the fourth optical waveguide 11d in a layer different from the first optical waveguide 11a for further transmission (ie, transmission along the top-to-bottom direction in FIG. 16 ).
  • the optical signal of each wavelength passes through each optical switch, it can be controlled to select which of the two channels to transmit. Since the optical path is reversible, the reverse optical signal transmission process will not be repeated in this embodiment of the present application.
  • the optical signal transmitted from the second optical waveguide 11b can directly cross other optical waveguides to reach the connector 33, so as to be output through the line through port of the connector 33, and the optical signal transmitted from the fourth optical waveguide 11d can directly cross other optical waveguides to arrive
  • the second branch adds and drops the wave structure 35, so that the output is output through the branch port of the second branch on and off the wave structure 35. Therefore, the second optical waveguide 11b and the fourth optical waveguide 11d can be called straight-hop waveguides.
  • the second optical waveguide 11b and the fourth optical waveguide 11d can respectively pass through only one optical waveguide channel, directly skip at least two intersections, and go directly to the optical path exit, avoiding crosstalk insertion loss between the optical waveguides, therefore, the second optical waveguide
  • the penetration insertion loss of each optical waveguide in 11b and the fourth optical waveguide 11d is close to the penetration insertion loss of a single-layer non-crossing waveguide, which effectively reduces the transmission and insertion loss of optical signals.
  • each of the T optical waveguide structures 34 includes a first optical waveguide 11a, a second optical waveguide 11b and n fourth optical waveguides 11d
  • each first optical waveguide 11d 11a has n+1 optical switches
  • the connector 33 is respectively connected to the second end of a second optical waveguide 11b of the T optical waveguide structures 34 through the third optical waveguide connection port
  • the third optical waveguide of the connector 33 is connected
  • There are at least T ports; each second branch on/off wave structure 25 is respectively connected to the second end p2 of one fourth optical waveguide 11d in the T optical waveguide structures 34 through the fourth optical waveguide connection port, and each second There are at least T third optical waveguide connection ports of the branch on/off wave structure 25 .
  • the i-th optical switch on the first optical waveguide is called the i-th level optical switch, and 1 ⁇ i ⁇ n+1.
  • the first optical waveguide channel after the first-level optical switch of each optical waveguide structure 34 in the T optical waveguide structures 34 (ie, the first optical waveguide in the figure)
  • the second optical waveguide connected to the channel 12) is connected to the connector 33, so that the insertion loss of the optical signal passing through the line can be reduced;
  • the fourth optical waveguide 11d to which 17 is connected is connected to the same second branch on/off wave structure.
  • the fourth optical waveguides connected to the first optical waveguide channels after the second to n+1th stages of optical switches are connected to the first to nth second branch on/off wave structures 34 in a one-to-one correspondence.
  • each optical waveguide channel (such as the first optical waveguide channel 12 Or the third optical waveguide channel 17) is provided with an optical switch 15, and each optical switch 15 is a 1 ⁇ 2 optical switch as an example to draw as an example, but in actual implementation, the first optical waveguide in the optical waveguide module, the third optical waveguide
  • the positions of the second optical waveguide, the fourth optical waveguide, and the optical switch can be adjusted according to specific application scenarios, and the embodiment of the present application does not limit the type, arrangement, and quantity of the optical switches.
  • the structure of the optical waveguide structure 34 may refer to the optical waveguide structure shown in any of the foregoing FIG. 9 to FIG. 11 .
  • the n fourth optical waveguides 11d are located on the same layer, which is convenient for manufacture and also for connection with the second branch on/off wave structure.
  • the structures of the first branch on/off wave structure 32 and the second branch on/off wave structure 35 are the same or different. When the two structures are the same, it is convenient to manufacture in the optical waveguide module, thereby reducing the manufacturing complexity.
  • the extending directions of the first optical waveguide 11a and the second optical waveguide 11b are perpendicular, and the extending directions of the n fourth optical waveguides 11d are parallel.
  • the optical waveguide module can be fabricated in a smaller area, and the integration degree can be improved.
  • the at least two optical waveguides also satisfy at least one of the following: the extending directions of the first optical waveguides 11a in the respective optical waveguides are parallel, the extending directions of the second optical waveguides 11b in the respective optical waveguides are parallel, and the extending directions of the second optical waveguides 11b in the respective optical waveguides are parallel.
  • the extending direction of the fourth optical waveguide 11d is parallel. In this way, the integration degree of the optical waveguide module can be further improved.
  • the extending directions of the first optical waveguides 11a in the at least two optical waveguide structures 34 are parallel, and the extending directions of the second optical waveguides 11b in the at least two optical waveguide structures 34 are parallel, so that the optical waveguide can be further improved.
  • the level of integration of the module may be located in each optical waveguide structure, the second optical waveguide 11b and the fourth optical waveguide 11d may be located in the same layer, or may be located in different layers, respectively. When the two are located in the same layer, it is convenient to manufacture.
  • the arrangement of the n fourth optical waveguides 11d and the second optical waveguides 11b may be equivalent to the arrangement of the n+1 second optical waveguides 11b shown in FIG. 12 .
  • the connector 33 in the optical waveguide module may be implemented in various manners.
  • the embodiments of the present application take the following optional implementation manners as examples for description:
  • the connector 33 is a multi-core connector.
  • the connector 33 is a wave combiner and splitter.
  • the wavelength combiner and demultiplexer is an AWG
  • the line through port of the connector can be connected to a line of optical fibers
  • the line through port of the connector of another optical waveguide module is connected to the line through port of the other optical waveguide module.
  • the connector can aggregate the optical signals of the optical waveguides connected through the third optical waveguide connection port into the optical signals transmitted on the optical fiber, so as to realize the connection with the connector of another optical waveguide module.
  • the connector is AWG
  • the line through ports of the two optical waveguide modules can be connected by only one optical fiber, the structure is simple, and the manufacturing cost is low.
  • the connector 33 is a parallel optical fiber plug-in interface (Multiple-fiber Push-on/pull-off, MPO) for connecting with an optical cable.
  • MPO Multiple-fiber Push-on/pull-off
  • the MPO includes at least two optical fiber interfaces, each optical fiber interface is a line pass-through interface, the optical cable includes at least two optical fibers, and each optical fiber is pluggably connected to an optical fiber interface.
  • Each third optical waveguide connection port on the MPO corresponds to an optical fiber interface, and the optical signal of the optical waveguide connected to each third optical waveguide connection port is transmitted to the optical fiber connected to the optical fiber interface through the corresponding optical fiber interface.
  • a connector for optical fiber transmission to another optical waveguide module When the connector is an MPO, the line-through ports of the two optical waveguide modules are connected by an optical cable (including multiple optical fibers), and the insertion loss of optical signal transmission is smaller than that of using AWG as the connector.
  • the connector 33 is an optical fiber ferrule for connecting with the optical fiber array.
  • each connector 33 includes at least two optical fiber ferrules, each optical fiber ferrule has a third optical waveguide connection port and a line pass-through interface, the optical fiber array includes at least two optical fibers, and each optical fiber is connected to an optical fiber ferrule connect.
  • the optical signal of the optical waveguide connected to the third optical waveguide connection port of each optical fiber ferrule is transmitted through the optical fiber ferrule to the optical fiber connected to the line through port of the optical fiber ferrule, and then transmitted from the optical fiber to another optical waveguide module connector.
  • the connector is an optical fiber ferrule
  • the line through ports of the two optical waveguide modules are connected through the optical fiber array, and the optical fibers in the optical fiber array of the two optical waveguide modules are connected one-to-one.
  • the optical signal using AWG as the connector Transmission insertion loss is smaller.
  • branch add/drop structure such as the first branch add/drop structure 32 and/or the second branch add/drop structure 35
  • first branch add/drop structure 32 and/or the second branch add/drop structure 35 may be implemented in various manners.
  • the embodiments of the present application take the following optional implementation manners as examples for description:
  • the branch add/drop structure is a combiner/demultiplexer.
  • the branch add/drop structure is an AWG.
  • AWG is used to aggregate the optical waveguide signals received by the multi-channel optical waveguide connection ports into one branch port.
  • Each branch port can realize free and non-blocking wave add and drop of one or at least two wavelengths, effectively realizing the optical waveguide module.
  • the wave structure having upper and lower leg 2 N first ports (also referred to as shunt port), a second port (also known as the common port) cascade structure of the optical switch, N being A positive integer, which is the number of switching stages of the add/drop structure of the branch.
  • the branch add/drop structure is also called M-way cascaded optical switch structure or 1 ⁇ M cascaded optical switch structure, and M-way refers to the cascaded optical switch
  • M types of paths for optical signals to pass through that is, 2 N paths are available, but M paths are actually used
  • M is an integer greater than 1.
  • the branch add/drop structure is the first branch add/drop structure
  • the first port is the second optical waveguide connection port
  • the second port is the first branch port.
  • the branch add/drop structure is the second branch add/drop structure
  • the first port is the fourth optical waveguide connection port
  • the second port is the second branch port.
  • the tributary add/drop structure is configured to control the connection between the second port and one of the 2 N first ports to be turned on, and the connection to the other first ports to be disconnected based on the logic control command after receiving the logic control command. open. In this way, one path in the branch add/drop structure is turned on, and the other paths are turned off.
  • the branch add/drop structure supports the passage of only one wavelength of optical signals, or the passage of optical signals of different wavelengths in time intervals (that is, only one wavelength of optical signals passes at a certain moment). By adopting the branch add/drop structure, the add/drop of the optical signal can be controlled by the logic control command, and the manufacturing cost of the optical waveguide module is further reduced.
  • M satisfies: 2 N-1 ⁇ M ⁇ 2 N .
  • the cascaded optical switch structure includes N-level switches, and each level of switches includes at least one switch.
  • each switch has two lower-level switches, that is, two lower-level branches, and each switch in the N-th level switch has two lower-level branches, which are respectively two first ports.
  • the aforementioned logic control instruction includes N bits, through which the M types of paths can be indicated respectively in a binary manner, the N bits occupy less storage space and have less communication overhead.
  • FIGS. 17 to 19 are schematic diagrams of a 1 ⁇ 8 cascaded optical switch structure, a 1 ⁇ 32 cascaded optical switch structure, and a 1 ⁇ 64 cascaded optical switch structure, respectively.
  • the number of switch stages of the 1 ⁇ 8 cascaded optical switch structure is 3, including one second port and eight first ports.
  • the logical control instruction is 111 to indicate that the connection between the second port A and the first port B is turned on, and the connection between the second port A and other first ports is disconnected; the logical control instruction is 110 to indicate that the second port A is connected to the first port.
  • connection of port C is turned on, and the connection between the second port A and other first ports is disconnected; the logic control instruction is 000 to indicate that the connection between the second port A and the first port D is turned on, and the second port A is connected with other first ports. connection is disconnected.
  • the number of switch stages of the 1 ⁇ 32 cascaded optical switch structure is 5, including one second port and 32 first ports.
  • the logic control instruction is 11001 to indicate that the connection between the second port E and the first port F is turned on, and the connection between the second port E and other first ports is disconnected; the logic control instruction is 01011 to indicate that the second port E is connected to the first port.
  • the connection of the port G is turned on, and the connection between the second port E and the other first ports is disconnected.
  • the number of switch stages of the 1 ⁇ 64 cascaded optical switch structure is 6, including one second port and 64 first ports.
  • the logic control instruction is 011000 to indicate that the connection between the second port H and the first port I is turned on, and the connection between the second port H and other first ports is disconnected.
  • optical waveguide structure 34 includes two optical waveguides, a first optical waveguide channel, and an optical switch located in different layers for illustration.
  • optical waveguide structure 34 may also include structures such as dielectric layers.
  • a static optical add/drop multiplexer (Fixed Optical Add/Drop Multiplexer, FOADM) is used to realize the function of the optical layer of the optical switching equipment.
  • FOADM Fiber Optical Add/Drop Multiplexer
  • wavelength calibration is required for all channels of tributary ports in FOADM, that is, the ports are colored, and each specific type of FOADM can only upload and download the corresponding calibrated wavelengths, resulting in many types of FOADM boards and high storage costs. Difficulty in operation and maintenance. For example, for an optical switching device that can transmit 120 wavelengths, if it supports 4 tributary ports for uploading optical signals and 4 tributary ports for downloading optical signals, the site needs to set up FOADM boards with 30 calibrated wavelengths.
  • WSS Wavelength Selective Switching
  • ROADM Reconfigurable Optical Add/drop Multiplexer
  • the optical waveguide module provided by the embodiment of the present application is physically connected to two optical waveguides located at different layers through the first optical waveguide channel, and thus, compared with FOADM and WSS, insertion loss is effectively reduced.
  • the optical signal of the line wavelength is input through the wavelength combiner and demultiplexer, and the optical signal of the line wavelength passed through with another optical waveguide module is output through the line pass-through port, (or the line wavelength passed through by another optical waveguide module is received through the line pass-through port.
  • the optical signal, the optical signal of the line wavelength is output through the wavelength combiner and demultiplexer)
  • the optical signal of the local wavelength can be uploaded or the optical signal of the line wavelength can be downloaded through the first branch on-off structure to realize the line wavelength in one direction. optical signal transmission.
  • each optical waveguide structure includes at least one optical switch, so as to realize the routing of the optical signal, without the need to calibrate the wavelength corresponding to the branch port, and realize colorless wave add/drop.
  • the optical signal of the line-penetrating wavelength can be output through the connector, or the optical signal of the wavelength can be added or dropped through the first branch or the second branch.
  • the branch add/drop structure outputs the optical signal of the branch wavelength.
  • the wavelength in the entire optical waveguide module does not need to be calibrated, and a colorless wavelength pass-through and local download can be achieved through a simple structure.
  • FIG. 20 is a schematic diagram of an optical switching device 40 provided by an exemplary embodiment of the present application.
  • the optical switching device may be an access site, as shown in FIG. 20 , including:
  • the communication structure 41 includes two optical waveguide modules 411, the two optical waveguide modules 411 are connected through respective line through ports, and the line ports of the two optical waveguide modules 411 are respectively connected with lines in different directions.
  • the structure of each optical waveguide module 411 may refer to the structure of the aforementioned optical waveguide module 30 .
  • the branch port of the branch add/drop structure eg, the first branch add/drop structure or the second branch add/drop structure
  • the branch port of the branch add/drop structure of another optical waveguide module 411 is a drop port, used for downloading optical signals Signal.
  • FIG. 21 to FIG. 25 are schematic diagrams of several communication structures provided by embodiments of the present application, respectively.
  • 21 to 25 are schematic diagrams of a communication structure in which the connectors are: a combiner/demultiplexer, an AWG, an optical cable with MPO, and an optical fiber array with an optical fiber ferrule.
  • the connectors of the two optical waveguide modules in Figure 21 are multi-core connectors, which are respectively the multi-core connector 1 and the multi-core connector 2, and the line through ports of the multi-core connector 1 and the multi-core connector 2 are connected;
  • Figure 22 The connectors of the two optical waveguide modules are wave combiners and splitters, which are wave combiner 1 and wave combiner 2 respectively.
  • wave combiner 1 is AWG0
  • the demultiplexer 2 is AWG1
  • the line penetration interfaces of AWG0 and AWG1 are connected by optical fibers
  • the connectors of the two optical waveguide modules in Figure 24 are multi-core connectors connected to optical cables, which are MPO-a and MPO-b, MPO respectively.
  • the line through ports of -a and MPO-b are connected by optical cables; the connectors of the two optical waveguide modules in Figure 25 are optical fiber ferrules (not marked in Figure 25) connected to the optical fiber array, and the two optical waveguide modules are connected to the optical fiber.
  • the fiber array 1 and the fiber array 2 connected by the ferrule are connected in one-to-one correspondence.
  • the multiplexers and demultiplexers connecting the two optical waveguide modules to the lines are AWG-a and AWG-b, respectively, and the upper and lower wave structures of the first branch and the second branch are both AWG , wherein, the line port of AWG-a is the optical signal inlet (in) of the line, the line port of AWG-b is the optical signal outlet (out), and the second branch of each optical waveguide module
  • the wave structure includes AWG2 to AWG4 , the first branch on and off the wave structure is AWG5, wherein, the branch ports of AWG2 to AWG5 in the optical waveguide module where AWG-a is located (including the first branch port of AWG2 to AWG4, and the second branch port of AWG5) They are down wave ports DM1 to DM4, branch ports of AWG2 to AWG5 in the optical waveguide module where AWG-b is located (including the first branch port of AWG2 to AWG4 and the second branch port of AWG5) They are the add wave ports AM4 to
  • FIG. 26 is a schematic structural diagram of another optical switching device provided by an exemplary embodiment of the present application.
  • the optical switching device 40 includes two sets of communication structures 41 , and the optical signal transmission directions of the lines connected by the line ports of the two sets of communication structures 41 are opposite.
  • the aforementioned optical switching device 40 may further include a controller for controlling the transmission direction of the optical signal and implementing the routing of the optical signal.
  • the controller is connected to the optical switch in the optical switching device 40, and performs routing control by controlling the optical switch.
  • the branch on/off wave structure in the optical switching device is a cascaded optical switch structure (for example, the cascaded optical switch structure shown in FIG. 17 to FIG.
  • the controller can also generate logic control instructions to control the cascaded optical switches. structure is controlled.
  • the controller is integrated on the optical chip or disposed outside the optical chip.
  • the optical switching device 40 may be an integral chip, or a chip set formed by connecting at least two chips.
  • FIG. 27 is a schematic structural diagram of an optical switching device 40 provided by an embodiment of the present application. As shown in FIG. 27 , it is assumed that the optical switching device includes four communication structures, which are communication structures 41a to 41d respectively.
  • the communication module 41a and the communication module 41b support the optical signal transmission in the west direction w; the communication module 41c and the communication module 41d support the optical signal transmission in the east direction e.
  • the line port of the wavelength combiner and demultiplexer of the communication module 41a inputs the optical signal of the west direction w
  • the wavelength combiner and demultiplexer of the communication module 41b outputs the optical signal of the east direction e
  • the line port of the multiplexer/demultiplexer of the communication module 41c inputs the optical signal of the east direction e
  • the multiplexer/demultiplexer of the communication module 41d outputs the optical signal of the west direction w
  • the line through ports of the communication module 41c and the communication module 41d are interconnected .
  • the m second branch ports of the second branch on/off structure of the communication module 41a and one first branch port of the first branch on/off structure, and the m second branch ports of the communication module 41c The first branch port of the branch add/drop structure and the second branch port of the first branch add/drop structure form 2m+2 branch ports for downloading line wavelengths; the mth branch port of the communication module 41b
  • a first tributary port of the first tributary add/drop structure constitutes 2m+2 tributary ports for uploading local wavelengths.
  • Figure 27 assumes that the connector is a combiner or a multi-core connector, and it is assumed that the upper and lower wave structures of the first branch and the second branch are both wave combiners and demultiplexers, but the connectors and branches are not connected to the wave.
  • the specific implementation of the structure is limited.
  • the optical switch is not drawn in FIG. 27 , and the position and structure of the optical switch may refer to the foregoing embodiments.
  • the optical switching device provided by this embodiment of the present application has the line wavelength pass-through function of the west direction w and the east direction e on the line side, and at the same time, free and non-blocking wave add and drop of all wavelengths can be realized between the two line directions and the local device, so that it is possible to construct An optical waveguide system with a simple structure, for example, the optical waveguide system is an optical transmission network, such as a wavelength division network or a metropolitan area network.
  • the optical switching device provided in the embodiment of the present application is physically connected to two optical waveguides located at different layers through the first optical waveguide channel, and thus, compared with FOADM and WSS, insertion loss is effectively reduced.
  • one optical waveguide module in each communication structure can input the optical signal of the line wavelength through the wavelength combiner and demultiplexer, and output the optical signal of the line wavelength that passes through the other optical waveguide module through the line through port, and the other optical waveguide module passes through the optical signal of the line wavelength.
  • the line pass-through port inputs the optical signal of the line wavelength, and outputs the optical signal of the line wavelength through the wavelength combiner and demultiplexer, thereby realizing the transmission of the optical signal of the line wavelength in one direction.
  • each optical waveguide module in the communication structure also supports the uploading of the optical signal of the local wavelength, or the downloading of the optical signal of the line wavelength.
  • each optical waveguide structure includes at least one optical switch, so as to realize the routing of the optical signal, without the need to calibrate the wavelength corresponding to the branch port, and realize colorless wave add/drop.
  • the optical switching device includes two communication structures, the transmission of optical signals of line wavelengths in two directions can be realized. In this way, all functions of the optical switching device can be realized through a simple structure.
  • the optical switching device provided by the embodiment of the present application does not make any difference in the number of wavelengths, the wavelength direction and the wavelength combination in the lines to and from the optical switching device within the applicable scope of the optical waveguide system.
  • the optical waveguide system is adapted to the C-band 120-wave DWDM (Dense Wavelength Division Multiplexing, DWDM) fiber, as long as the line wavelength is within the C-band 120-wave range, no matter the number of wavelengths, the wavelength The direction and wavelength combination mode can be changed at will, and the optical switching device does not require hardware changes and configuration), which can effectively improve the flexibility of the optical switching device, reduce operation and maintenance costs, and speed up deployment efficiency.
  • the optical switching equipment satisfies colorless adding and dropping, one type of optical switching equipment can be applied to the entire ring network, which improves the applicability of the optical switching equipment, realizes the normalization of components, and reduces the storage cost.
  • FIG. 28 is a schematic structural diagram of an optical waveguide system 50 provided by an exemplary embodiment of the present application.
  • the optical waveguide system includes: at least two optical switching devices 51, and the at least two optical switching devices 51 are connected by optical fibers.
  • At least one optical switching device 51 may adopt the structure of the optical switching device provided in this embodiment of the present application, and for the structure, refer to the aforementioned optical switching device 40 .
  • each optical switching device in the optical waveguide system can adopt the structure of the aforementioned optical switching device 40 .
  • the optical waveguide system may be the ring network structure shown in FIG. 14 , for example, it may be a wavelength division network or a metropolitan area network.
  • each optical switching device since the optical switching device is physically connected to two optical waveguides located at different layers through the first optical waveguide channel, the insertion loss is effectively reduced compared to FOADM and WSS.
  • each optical switching device realizes colorless adding and dropping, and the optical switching device has high applicability, realizes the normalization of devices, and reduces the storage cost.
  • FIG. 29 is a schematic flowchart of a method for manufacturing an optical waveguide structure provided by an exemplary embodiment of the present application. As shown in FIG. 29 , the method includes:
  • a first optical waveguide channel is formed between the first optical waveguide and the second optical waveguide located in different layers in the at least two optical waveguides, and two ends of the first optical waveguide channel are respectively connected to the first optical waveguide and the second optical waveguide.
  • the waveguide is physically connected.
  • the manufacturing method of the optical waveguide structure provided by the embodiment of the present application through the first optical waveguide channel is respectively physically connected to the two optical waveguides located in different layers, so as to realize the transmission of optical signals between the optical waveguides of different layers,
  • the use of cross-type optical waveguides in the same layer is reduced, and the crossover of optical waveguides in the same layer is reduced, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide structure can be effectively ensured, and the miniaturization of the optical waveguide structure can be realized.
  • FIG. 30 is a schematic flowchart of another method for manufacturing an optical waveguide structure provided by an exemplary embodiment of the present application. As shown in FIG. 30 , the method includes:
  • the manufacturing process of each layer of the optical waveguide may refer to adopting a silicon photonics process or a PLC manufacturing process.
  • f is a positive integer
  • the f-th layer of optical waveguides includes at least one optical waveguide.
  • the manufacturing process of the f-th layer optical waveguide includes: forming an optical waveguide material layer on a base substrate by deposition, coating or sputtering process; and performing a patterning process on the optical waveguide material layer to obtain the f-th layer optical waveguide.
  • the one-time patterning process includes photoresist coating, exposure, development, etching and photoresist stripping.
  • the first optical waveguide channel between the two optical waveguides is located in a dielectric layer between the two optical waveguides, and the refractive index of the dielectric layer is smaller than the refractive index of the first optical waveguide channel.
  • a layer of dielectric layer may be formed by deposition, coating or sputtering process.
  • the first optical waveguide channel may be formed by ion doping the dielectric layer between the first optical waveguide and the second optical waveguide.
  • the ion doping process can be implemented in multiple ways, and the embodiments of the present application are described by taking the following optional examples as examples:
  • the first optical waveguide is far from the base substrate relative to the second optical waveguide; the first optical waveguide channel may be formed by performing ion doping on the side where the first optical waveguide is located.
  • the process includes: after the first optical waveguide is formed, a mask is arranged on the side of the first optical waveguide away from the substrate, the mask has a hollow area, and the ion doping process can be avoided by covering the mask Influence on the non-doped region of the first optical waveguide (ie, the region covered by the region other than the reticle hollow region).
  • the mask can be a photoresist mask or a metal mask.
  • FIG. 31 is a schematic diagram of a manufacturing process of a first optical waveguide channel provided by an exemplary embodiment of the present application. As shown in FIG. 31, FIG. 31 assumes that the second optical waveguide 11b, the dielectric layer 13 and the first optical waveguide 11a are sequentially formed on the base substrate 14, and the mask 8 is set at a position of the first optical waveguide 11a away from the base substrate.
  • FIG. 32 is a schematic diagram of a manufacturing process of another first optical waveguide channel provided by an exemplary embodiment of the present application, and FIG. 32 shows the first optical waveguide channel. Schematic structure during the formation of the waveguide channel 12 . After that, the reticle 8 is removed. The optical waveguide structure forming the first optical waveguide channel 12 is shown in FIG. 8 .
  • the first optical waveguide is far from the base substrate relative to the second optical waveguide; the first optical waveguide channel may be formed by performing ion doping on the side where the second optical waveguide is located.
  • the process includes: after forming the first optical waveguide, disposing a mask on the side of the base substrate away from the second optical waveguide, the mask having a hollow area; exposing from the hollow area of the mask through the base substrate The part of ion-doping is performed on the dielectric layer between the first optical waveguide and the second optical waveguide, so as to form a first optical waveguide channel between the two optical waveguides.
  • FIG. 33 is a schematic diagram of a manufacturing process of still another first optical waveguide channel provided by an exemplary embodiment of the present application.
  • FIG. 33 assumes that the second optical waveguide 11b, the dielectric layer 13 and the first optical waveguide 11a are sequentially formed on the base substrate 14, and the mask 8 is disposed on the base substrate 14 away from the second optical waveguide 11b.
  • the part of the base substrate 14 is exposed from the hollow area 81 of the mask, and the part of the base substrate 14 exposed from the hollow area of the mask is irradiated with an ion gun , the ion gun is used to accelerate the ions generated by the ion source to form a high-speed ion beam, and the ion beam enters the base substrate 14, the second optical waveguide 11b and the dielectric layer 13 in turn through the exposed part.
  • the first optical waveguide channel 12 is formed in the dielectric layer 13 of the waveguide 11a and the second optical waveguide 11b. After that, the reticle 8 is removed.
  • the optical waveguide structure forming the first optical waveguide channel 12 is shown in FIG. 8 .
  • the first optical waveguide channel formed by the ion doping process provided by the foregoing two optional examples is an ion doping channel.
  • the matrix of the first optical waveguide channel 12 and the matrix of the dielectric layer 13 are The lattice atomic arrangement structure is consistent, such as hexahedron or octahedron.
  • the first optical waveguide channel 12 does not change the arrangement structure of lattice atoms relative to the dielectric layer 13, but only replaces at least part of the atoms.
  • FIG. 33 schematically illustrates the aforementioned ion doping process by taking the ion gun irradiating the mask from below as an example.
  • the second optical waveguide 11b, The dielectric layer 13 and the base substrate 14 of the first optical waveguide 11a are turned over, and the overturned base substrate 14 is located above, and then a mask 8 is set on the side of the base substrate 14 away from the second optical waveguide 11b, and the process is carried out.
  • the base substrate 14 on which the second optical waveguide 11b, the dielectric layer 13 and the first optical waveguide 11a are formed is turned over again so that the base substrate 14 is located below.
  • the ion gun irradiates the mask from above to perform ion doping, and the operation is simpler.
  • the hollow area of the mask when setting the mask, along the stacking direction of the first optical waveguide and the second optical waveguide, the hollow area of the mask may be located in the overlapping area of the first optical waveguide and the second optical waveguide ( 4 and 5), in this way, the orthographic projection of the first optical waveguide channel 12 on the substrate is located in the orthographic projection of the hollow region of the mask on the substrate, which is convenient for ion doping Execution of miscellaneous processes.
  • processes such as annealing may also be performed to improve the stability of the first optical waveguide channel.
  • the aforementioned manufacturing method of the optical waveguide structure further includes a process of chip packaging.
  • the fabrication process of the other two optical waveguides in different layers and the first optical waveguide channel between them in the optical waveguide structure reference may be made to the aforementioned first optical waveguide, second optical waveguide, and the first optical waveguide between them. The manufacturing process of the channel is not repeated in this embodiment of the present application.
  • the manufacturing method of the optical waveguide structure provided by the embodiment of the present application through the first optical waveguide channel is respectively physically connected to the two optical waveguides located in different layers, so as to realize the transmission of optical signals between the optical waveguides of different layers,
  • the use of cross-type optical waveguides in the same layer is reduced, and the crossover of optical waveguides in the same layer is reduced, thereby reducing the insertion loss of optical signal transmission and improving the transmission quality of optical signals.
  • the optical waveguides of the optical waveguide structure are arranged in layers, they are no longer limited to one plane, the integration degree of the optical waveguide structure can be effectively ensured, and the miniaturization of the optical waveguide structure can be realized.
  • the two optical waveguides are located in different layers, which means that the two optical waveguides are not coplanar. The vertical distances between the two are different from the same plane, for example, the same plane is the surface of the base substrate.
  • the optical waveguide manufacturing process error due to the influence of the optical waveguide manufacturing process error, it may not be able to achieve strict verticality, parallelism, etc., and there may also be errors in size.
  • the parallelism, verticality, and size described in the embodiments of the present application are roughly vertical, parallel and Rough dimensions, for example, in the embodiments of the present application, the vertical angle may be 87 degrees, 88 degrees, 91 degrees, 93 degrees, etc., and the parallel angle may be 2 degrees, 3 degrees, 5 degrees, and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种光波导结构(10)及制造方法、光波导模块(30)、光交换设备(40)及光波导系统(50),属于光通信领域。光波导结构(10)包括:层叠设置的至少两个光波导;至少两个光波导中位于不同层的两个光波导之间设置有第一光波导通道(12),第一光波导通道(12)的两端分别与两个光波导物理连接。光波导结构(10)及制造方法、光波导模块(30)、光交换设备(40)及光波导系统(50),能够减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。

Description

光波导结构及制造方法、光波导模块、光交换设备及系统
本申请要求于2020年7月3日提交、申请号为202010637223.4、申请名称为“光波导结构及制造方法、光波导模块、光交换设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,特别涉及一种光波导结构及制造方法、光波导模块、光交换设备及系统。
背景技术
光波导(optical waveguide)是引导光波在其中传播的介质装置,又称介质光波导。
目前提出了一种基于波导光交换技术的光波导结构,该光波导结构包括光波导以及矩阵状排列的至少两个光开关,每个光开关具有4个端口,该4个端口以2×2的方式呈“X”形交叉连接,因此也称为交叉型光开关,每个光开关的4个端口分别通过光波导与其他光开关的端口、光波导结构的输入端口或输出端口连接,如此可以在至少两个光波导所在平面产生众多光波导交叉,该光波导结构称为同层交叉型光波导,通过同层交叉型光波导的使用,实现多输入端口以及多输出端口的光波导通信,从而提高光波导结构的集成度。
但是前述光波导结构,由于通过同层交叉型光波导实现不同光波导之间光信号的传输,而光波导的交叉引入了光波导间的串扰,导致该光波导结构的插损较大。
发明内容
本申请实施例提供了一种光波导结构及制造方法、光波导模块、光交换设备及系统。该技术方案如下:
一方面,提供了一种光波导结构,包括:层叠设置的至少两个光波导,该至少两个光波导包括第一光波导和第二光波导,该第一光波导和该第二光波导位于不同层;该第一光波导和第二光波导之间设置有第一光波导通道,该第一光波导通道的两端分别与该第一光波导和该第二光波导物理连接。
本申请实施例提供的光波导结构,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同光波导之间的光信号的传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导结构的集成度,实现光波导结构的小型化。
本申请实施例中,第一光波导和第二光波导之间通过第一光波导通道物理连接,不采用倏逝场进行光信号传输。该第一光波导通道是一个实体通道,该第一光波导通道通过全反射实现第一光波导和第二光波导之间的光信号传输。
可选地,沿该第一光波导和第二光波导的层叠方向,该第一光波导和第二光波导之间设 置有介质层,该第一光波导通道位于该介质层中,该介质层的折射率小于该第一光波导通道的折射率。如此实现第一光波导和第二光波导中光信号的有效传输。可选地,第一光波导通道的折射率与第一光波导的折射率的差值的范围均为0.5%~50%,和/或,第一光波导通道的折射率与第二光波导的折射率的差值的范围为0.5%~50%。如此便于通过第一光波导通道进行第一光波导以及第二光波导之间的光信号的传输,减少光信号的传输插损。
本申请实施例中,该第一光波导通道为通过对该介质层进行离子掺杂形成的通道。该光波导结构是一种硬件产品,其具有物理结构,示例的,光波导结构可以为光芯片。该第一光波导通道通过全反射实现第一光波导和第二光波导之间的光信号传输。
在一种可选示例中,该第一光波导位于该第二光波导的上层;该光波导结构还包括:与该第一光波导连接的光开关,该光开关用于进行光信号的选路,使得光信号沿该第一光波导传输或沿该第二光波导传输。光开关与位于上层的第一光波导连接,便于光开关的制造。
在一种可选示例中,光波导结构包括至少两个光开关,该第一光波导上连接的光开关的数量与该第一光波导上连接的第一光波导通道的数量相同,该第一光波导连接的第一光波导通道与该第一光波导上的光开关一一交替排列。示例的,光波导结构包括至少两个第二光波导,第二光波导的数量与第一光波导通道的数量相同。可选地,该光开关为波导型光开关,其为1×2光开关。如此可以通过光开关实现两个路径上的选路。
示例的,沿该第一光波导和该第二光波的导层叠方向,该第一光波导的第一区域和第二光波导的第二区域在平行于第一光波导和第二光波导的一个平面上的投影重叠,第一光波导通道连接第一区域和第二区域,也即是该两个光波导中一个光波导沿该两个光波导的层叠方向在另一个光波导上的正投影与该另一个光波导存在重叠区域,该第一光波导通道沿该两个光波导的层叠方向在该另一光波导上的正投影位于该重叠区域中。如此,第一光波导通道处于第一光波导和第二光波导在该层叠方向上的交叠范围内,通过介质层进行离子掺杂时,离子枪无需采用较大的倾角即可形成该第一光波导通道,降低制造工艺复杂度。
在一种可选实现方式中,该至少两个光波导还包括第三光波导,该第三光波导和该第一光波导、该第二光波导分别位于不同层,该第三光波导和该第二光波导之间设置有第二光波导通道,该第三光波导和该第二光波导之间的第二光波导通道的两端分别与该第二光波导和该第三光波导物理连接。通过设置前述第三光波导,以及分别与第二光波导、第三光波导物理连接的第二光波导通道,可以实现光信号在更多层中的传输。
在一种可选实现方式中,该第一光波导和第二光波导之间的间隙的厚度范围为500nm~5um。如此,便于第一光波导通道的制造。可选地,该第一光波导通道的横截面的长度或宽度的范围为500nm~5um,该横截面垂直于该第一光波导和第二光波导的层叠方向。如此,便于第一光波导通道的制造。
在一种可选实现方式中,该第一光波导通道的延伸方向与所连接的任意一个光波导所在平面所成的角度范围为45°~135°。如此,一方面便于第一光波导通道的制造,另一方面,可以实现光信号在第一光波导通道中的有效全反射。
第二方面,提供一种光波导模块,示例的,其可以为一个光芯片,或者多个光芯片的集合,该光波导模块包括:合分波器、第一支路上下波结构、连接器和至少两个光波导结构,该光波导结构可以为如第一方面任一所述的光波导结构。
每个该光波导结构包括层叠设置的至少两个光波导,至少两个光波导包括第一光波导和 第二光波导,该第一光波导和该第二光波导位于不同层,该第一光波导和第二光波导之间设置有第一光波导通道,该第一光波导通道的两端分别与该第一光波导和该第二光波导物理连接;该合分波器具有线路端口和至少两个第一光波导连接端口,该合分波器的至少两个第一光波导连接端口分别与该至少两个光波导结构的第一光波导的第一端连接;该第一支路上下波结构具有第一支路端口和至少两个第二光波导连接端口,该第一支路上下波结构的至少两个第二光波导连接端口分别与该至少两个光波导结构的第一光波导的第二端连接,该第一支路端口用于上传或下载光信号;该连接器具有线路穿通端口和至少两个第三光波导连接端口,该连接器的至少两个第三光波导连接端口分别与该至少两个光波导结构中每个光波导结构的一个第二光波导的第二端连接,该线路穿通端口被配置为与另一光波导模块的线路穿通端口连接。光波导模块中,第一光波导连接端口的数量、第二光波导连接端口的数量、第三光波导连接端口的数量均与光波导结构的数量相同。
本申请实施例提供的光波导模块,光波导结构中,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同光波导之间的光信号的直跳传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导模块的集成度,实现光波导模块的小型化。在此基础上,连接器可以通过线路穿通端口实现与另一光波导模块的连接器的线路波长的光信号的穿通,实现光交换设备的线路波长的穿通功能,第一支路上下波结构可以通过支路端口进行本地波长的光信号的上传,或线路波长的光信号的下载。如此可以实现光交换设备的基本功能。
可选地,每个该光波导结构还包括:n个第四光波导,该第四光波导与该第一光波导位于不同层,该第一光波导和每个该第四光波导之间设置有第三光波导通道,该第三光波导通道的一端与该第一光波导连接,另一端和一个该第四光波导的第一端连接该n为正整数;其中,该n个第四光波导位于同一层,如此便于n个第四光波导的制造。
在一种可选示例中,该光波导模块还包括m个第二支路上下波结构,该第二支路上下波结构具有第二支路端口和第四光波导连接端口,该m个第二支路上下波结构的第四光波导连接端口分别与该至少两个光波导结构中每个光波导结构的一个第四光波导的第二端连接,该第二支路端口用于上传或下载光信号。光波导模块中,第四光波导连接端口的数量与光波导结构的数量相同。示例的,m=n。
在一种可选实现方式中,每个该光波导结构中第一光波导和第二光波导的延伸方向垂直,该n个第四光波导的延伸方向平行。在另一种可选实现方式中,该连接器为多芯连接器、合分波器、用于与光缆连接的并行光纤插拔接口或用于与光纤阵列连接的光纤插芯。
在一种示例中,该第一支路上下波结构和/或第二支路上下波结构为合分波器。在另一种示例中,该第一支路上下波结构和第二支路上下波结构中的任意一个支路上下波结构为具有2 N个第一端口,一个第二端口的级联光开关结构,N为正整数;该支路上下波结构被配置为在接收到逻辑控制指令后,基于该逻辑控制指令控制该第二端口与2 N个第一端口中的一个第一端口的连接导通,与其他第一端口的连接断开。采用该支路上下波结构可以通过逻辑控制指令控制光信号的上下波,光波导模块的制造成本进一步降低。可选地,该逻辑控制指令包括N个比特位。该N个比特位占用的存储空间较少,通信开销较少。
第三方面,提供一种光交换设备,包括:通信结构,该通信结构包括两个如第二方面任 一该的光波导模块,两个该光波导模块通过各自的线路穿通端口连接,两个该光波导模块的线路端口分别与不同方向的线路连接。可选地,该光交换设备包括两组该通信结构,两组该通信结构的线路端口连接的线路的光信号传输方向相反。
本申请实施例提供的光交换设备,由于通过第一光波导通道分别与位于不同层的两个光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,每个通信结构中的一个光波导模块可以通过合分波器输入线路波长的光信号,通过线路穿通端口输出与另一光波导模块穿通的线路波长的光信号,另一个光波导模块通过线路穿通端口输入线路波长的光信号,通过合分波器输出线路波长的光信号,从而实现在一个方向上的线路波长的光信号传输。并且该通信结构中每个光波导模块的支路端口还支持本地波长的光信号的上传,或线路波长的光信号的下载。进一步的,通过在光波导模块中设置光开关,例如每个光波导结构包括至少一个光开关,从而实现光信号的选路,无需标定支路端口所对应的波长,实现无色上下波。当光交换设备包括两个通信结构,可以实现两个方向的线路波长的光信号的传输。如此通过简单的结构即可实现光交换设备的全部功能。
第四方面,提供一种光波导系统,包括:至少两个如第三方面任一该的光交换设备,该至少两个光交换设备通过光纤连接。
本申请实施例提供的光波导系统,由于光交换设备中,通过第一光波导通道分别与位于不同层的两个光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,每个光交换设备实现无色上下波,光交换设备的适用性较高,实现了器件的归一化,降低仓储成本。
第五方面,提供一种光波导结构的制造方法,用于制造如第一方面该的光波导结构,该方法包括:在该至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,该第一光波导通道的两端分别与该第一光波导和该第二光波导物理连接。
本申请实施例提供的光波导结构的制造方法,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同光波导之间的光信号的传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导结构的集成度,实现光波导结构的小型化。
可选地,该方法还包括:在该衬底基板上每形成一层光波导后,形成一层介质层,其中,该两个光波导之间的第一光波导通道位于该两个光波导之间的介质层中,该介质层的折射率小于该第一光波导通道的折射率。
可选地,该在该至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,包括:通过对该第一光波导和第二光波导之间的介质层进行离子掺杂形成该第一光波导通道。
在一种可选实现方式中,该第一光波导和第二光波导包括第一光波导和第二光波导,该第一光波导相对于该第二光波导远离该衬底基板;该通过对该第一光波导和第二光波导之间的介质层进行离子掺杂形成该第一光波导通道的过程,包括:在形成该第一光波导后,将掩膜版设置在该第一光波导远离该衬底基板的一面上,该掩膜版具有镂空区域;通过该第一光波导从该掩膜版的镂空区域露出的部分对该第一光波导与该第二光波导之间的介质层进行离子掺杂,以在该第一光波导和第二光波导之间形成该第一光波导通道。
在另一种可选实现方式中,该第一光波导相对于该第二光波导远离该衬底基板;该通过 对该第一光波导和第二光波导之间的介质层进行离子掺杂形成该第一光波导通道的过程,包括:在形成该第一光波导后,将掩膜版设置在该衬底基板远离该第二光波导的一面上,该掩膜版具有镂空区域;通过该衬底基板从该掩膜版的镂空区域露出的部分对该第一光波导与该第二光波导之间的介质层进行离子掺杂,以在该第一光波导和第二光波导之间形成该第一光波导通道。
可选地,该方法还包括:在该衬底基板上形成与该第一光波导连接的光开关。
第六方面,提供一种支路上下波结构,该支路上下波结构为具有2 N个第一端口,一个第二端口的级联光开关结构,N为正整数;该支路上下波结构被配置为在接收到逻辑控制指令后,基于该逻辑控制指令控制该第二端口与2 N个第一端口中的一个第一端口的连接导通,与其他第一端口的连接断开。采用该支路上下波结构可以通过逻辑控制指令控制光信号的上下波,光波导模块的制造成本进一步降低。可选地,该逻辑控制指令包括N个比特位。该N个比特位占用的存储空间较少,通信开销较少。示例的,该支路上下波结构可以应用于光波导模块中。
本申请实施例提供的波导通道,由于通过第一光波导通道分别与位于不同层的第一光波导和第二光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,光波导模块通过合分波器输入线路波长的光信号,通过线路穿通端口输出与另一光波导模块穿通的线路波长的光信号,(或者通过线路穿通端口接收另一光波导模块穿通的线路波长的光信号,通过合分波器输出线路波长的光信号)通过第一支路上下波结构可以进行本地波长的光信号的上传,或线路波长的光信号的下载,实现在一个方向上的线路波长的光信号传输。进一步的,通过在光波导模块中设置光开关,例如每个光波导结构包括至少一个光开关,从而实现光信号的选路,无需标定支路端口所对应的波长,实现无色上下波。
并且,光波导模块中线路端口输入的一组波长的光信号,经过合分波器分开后,可以通过连接器输出线路穿通波长的光信号,也可以通过第一支路上下波结构或第二支路上下波结构输出支路波长的光信号。整个光波导模块中的波长无需标定,通过简单的结构即可实现无色化的波长穿通与本地下载。当光交换设备包括两个通信结构,可以实现两个方向的线路波长的光信号的传输。如此通过简单的结构即可实现光交换设备的全部功能。
附图说明
图1是相关技术提供的一种示意性的同层交叉型光波导的结构示意图;
图2是本申请一示意性实施例提供的一种光波导结构示意图;
图3A是本申请一示意性实施例提供的另一种光波导结构示意图;
图3B是本申请一示意性实施例提供的又一种光波导结构示意图;
图4和图5分别是本申请一示意性实施例提供的两种示意性的光波导结构的俯视示意图;
图6是图4和图5中的光波导结构的重叠区域W的放大示意图;
图7是本申请一示意性实施例提供的再一种光波导结构示意图;
图8是本申请另一示意性实施例提供的一种光波导结构示意图;
图9和图10分别为本申请一示意性实施例提供的两种光开关为1×2光开关的光波导结构的俯视示意图;
图11为图10所示的光波导结构的具体结构示意图;
图12是本申请一示意性实施例提供的一种示意性的设置有至少两个光开关的光波导结构的示意图;
图13A是本申请又一示意性实施例提供的一种光波导结构示意图;
图13B是本申请又一示意性实施例提供的另一种光波导结构示意图;
图14是本申请一示意性实施例提供的一种城域网的示意图;
图15是本申请一示意性实施例提供的一种光波导模块的示意图;
图16是本申请一示意性实施例提供的另一种光波导模块的示意图;
图17至图19分别为1×8级联光开关结构、1×32级联光开关结构和1×64级联光开关结构的示意图;
图20是本申请一示意性实施例提供的一种光交换设备的示意图;
图21至图25分别为本申请实施例提供的几种通信结构的示意图;
图26是本申请一示意性实施例提供的另一种光交换设备的结构示意图;
图27是本申请一示意性实施例提供的又一种光交换设备的结构示意图;
图28是本申请一示意性实施例提供的一种光波导系统的结构示意图;
图29是本申请一示意性实施例提供的一种光波导结构的制造方法的流程示意图;
图30是本申请一示意性实施例提供的另一种光波导结构的制造方法的流程示意图;
图31是本申请一示意性实施例提供的一种第一光波导通道的制造过程示意图;
图32是本申请一示意性实施例提供的另一种第一光波导通道的制造过程示意图;
图33是本申请一示意性实施例提供的又一种第一光波导通道的制造过程示意图。
具体实施方式
为使本申请的原理和技术方案更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光通信技术的发展,光波导的研究也成为目前光通信领域的一个重要课题。传统的光波导主要为平面光波导(Planar Lightwave Circuit,PLC),即光波导位于一个平面内。基于此,目前提出了一种基于波导光交换技术的光波导结构,如图1所示,图1为一种光波导结构的示意图,该光波导结构包括光波导以及矩阵状排列的至少两个光开关,该光波导结构通过至少两个光开关以及至少两个交叉的光波导实现位于同一平面的不同光波导之间的光信号的传输,称为同层交叉型光波导。但是由于通过同层交叉型光波导实现不同光波导之间光信号的传输,而光波导的交叉引入了光波导间的串扰,导致光波导结构的插损较大。
本申请实施例提供一种光波导结构10,可以有效减少光波导结构的插损。图2是本申请一示意性实施例提供的一种光波导结构示意图,如图2所示,该光波导包括:层叠设置的至少两个光波导。至少两个光波导包括第一光波导11a和第二光波导11b,第一光波导11a和第二光波导11b位于不同层,第一光波导11a和第二光波导11b之间设置有第一光波导通道12,第一光波导通道12的两端分别与第一光波导11a和第二光波导11b物理连接。其中,第一光波导11a和第二光波导11b位于不同层指的是第一光波导11a所在平面(该平面是光波导的制造平面)和第二光波导11b所在平面不共面,并且第一光波导11a所在平面和第二光波导11b所在平面通常平行,若第一光波导11a和第二光波导11b制造于衬底基板上时,两 者与衬底基板之间的距离不同。
如图2所示,本申请实施例中所谓的物理连接,可以理解为利用第一光波导通道在两个光波导之间形成的实体连接,即第一光波导通道的两端与两个光波导直接连接。第一光波导通道12起到对第一光波导11a和第二光波导11b的桥接作用,实现对第一光波导11a和第二光波导11b的实体连接,从而在第一光波导11a和第二光波导11b之间实现光信号的跨层传输,也即是第一光波导11a上传输的光信号可以沿着第一光波导通道12传输至第二光波导11b上;第二光波导11b上传输的光信号也可以沿着第一光波导通道12传输至第二光波导11a上。该第一光波导通道12也可以称为桥接光波导通道。本申请实施例中,光信号在该第一光波导通道中的传输插损接近于光信号在普通的光波导中的传输插损。
本申请实施例提供的光波导结构,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同层光波导之间的光信号的传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导结构的集成度,实现光波导结构的小型化。
相关技术中,不同的光波导可以采用倏逝场实现光信号的传输。倏逝场也称倏逝波、消逝波或衰逝波。倏逝场指的是两个介质由于相互的耦合,在两种不同介质的分界面上产生的一种电磁波,倏逝场的幅值随着沿与分界面垂直方向的深度的增大而衰减。本申请实施例中,图2中的第一光波导11a和第二光波导11b之间通过第一光波导通道12物理连接,不采用倏逝场进行光信号传输。该第一光波导通道12是一个实体通道,该第一光波导通道12通过全反射在该第一光波导通道内部进行所连接的第一光波导11a和第二光波导11b之间的光信号传输。
图3A是本申请一示意性实施例提供的另一种光波导结构示意图。如图3A所示,沿第一光波导11a和第二光波导11b的层叠方向y(即第一光波导11a和第二光波导11b的叠加方向,其通常垂直于第一光波导11a或第二光波导11b所在平面),第一光波导11a和第二光波导11b之间设置有介质层13,第一光波导通道12位于介质层13中,介质层13的折射率小于第一光波导通道12的折射率,如此以实现第一光波导通道12中光信号的全反射。本申请实施例在实际实现时,介质层13的折射率也小于第一光波导11a和第二光波导11b的折射率,如此实现第一光波导11a和第二光波导11b中光信号的有效传输。在本申请实施例中,第一光波导通道的折射率与第一光波导的折射率的差值的范围为0.5%~50%,和/或,第一光波导通道的折射率与第二光波导的折射率的差值的范围为0.5%~50%。由于折射率或折射率的差值的表示方式可以将折射率或折射率的差值与真空的折射率1作比值,因此可以用百分比表示。如此便于通过第一光波导通道进行第一光波导以及第二光波导之间的光信号的传输,减少光信号的传输插损。如图3A所示,两个光波导之间的间隙d的厚度范围为500nm(纳米)~5um(微米)。则介质层13的厚度范围为500nm~5um。如此,便于第一光波导通道的制造。
图3B是本申请一示意性实施例提供的又一种光波导结构示意图。第一光波导通道12的延伸方向与所连接的任意一个光波导(如图1、图3A或图3B所示的第一光波导11a或第二光波导11b)所在平面所成的角度范围为45°~135°。如此,一方面便于第一光波导通道12的制造,另一方面,可以实现光信号在第一光波导通道12中的有效全反射。例如,图3B中,第一光波导通道12所在平面与所连接的第一光波导11a所在平面所成的角度 α的范围为45°~135°,第一光波导通道12所在平面与所连接的第二光波导11b所在平面所成的角度β的范围为45°~135°。值得说明的是,光波导结构10中的光波导在其所在平面内通常沿直线延伸,少数情况下沿折线延伸,如此便于光波导结构的制造,提高光波导结构的集成度。第一光波导通道12沿直线延伸,如此便于第一光波导通道的制造,减少制造工艺复杂度。在一种可选示例中,第一光波导通道12的延伸方向与所连接的任意一个光波导所在平面倾斜连接,如此可以提高全反射的效率,实现光信号的有效传输。
本申请实施例中,第一光波导通道12可以为离子掺杂通道,其为通过对介质层13进行离子掺杂所形成的通道。该离子掺杂过程可以参考后续方法实施例的过程。该第一光波导通道12的基质(即基材,substrate)和介质层13的基质的晶格原子排布结构是一致的,例如均为六面体或八面体。该第一光波导通道12相对于介质层13,不改变晶格原子排布结构,只取代了至少部分原子。
若在第一光波导11a和第二光波导11b的层叠方向y上,第一光波导11a和第二光波导11b不存在交叠,则在制造第一光波导通道时,需要离子枪采用较大的角度进行离子掺杂,才能实现制造得到的第一光波导通道的两端分别与第一光波导11a和第二光波导11b物理连接。如此容易产生连接失效的情况。本申请实施例提供一种光波导结构,可以减少该连接失效情况的产生,图4和图5分别是本申请实施例提供的两种示意性的光波导结构的俯视示意图,如图4和图5所示,前述层叠方向y在图4和图5中为垂直纸面的方向。沿第一光波导11a和第二光波导11b的层叠方向,第一光波导11a的第一区域和第二光波导11b的第二区域在平行于第一光波导和第二光波导的一个平面(即图4和图5中平行于纸面的平面)上的投影重叠(可以为全部重叠或部分重叠),第一光波导通道连接该第一区域和第二区域。参考图4和图5,假设重叠区域W(即图4和图5中的阴影区域)为该第一区域和第二区域在平行于第一光波导和第二光波导的一个平面内的投影,则该第一光波导通道12在平行于第一光波导和第二光波导的一个平面内的投影位于该重叠区域W中。这样一来,第一光波导通道12处于第一光波导11a和第二光波导11b在该层叠方向上的交叠范围内,通过介质层进行离子掺杂时,离子枪无需采用较大的倾角即可形成该第一光波导通道,降低制造工艺复杂度。图5中,第一光波导和第二光波导在与第一光波导通道连接处的延伸方向平行,如此便于光信号通过第一光波导通道在第一光波导或第二光波导中传输。
图6是图4和图5中的光波导结构的重叠区域W的放大示意图。如图6所示,第一光波导通道12的横截面的长度h1或宽度h2的范围为500nm~5um,横截面垂直于第一光波导11a和第二光波导11b的层叠方向。需要说明的是,前述横截面的形状可以为矩形或圆形,图6只是示意性说明,并不对第一光波导通道的横截面形状进行限定。
在本申请实施例中,光波导结构10是一种硬件产品,其具有物理结构,示例的,光波导结构10可以为光芯片。图7是本申请一示意性实施例提供的再一种光波导结构示意图。如图7所示,光波导结构10还包括衬底基板14,前述至少两个光波导11、第一光波导通道12和介质层13均位于衬底基板14上。该衬底基板的制造材料可以为二氧化硅、硅、氮化硅或蓝宝石等。
本申请实施例中,该光波导结构10还可以包括光开关(optical switch),该光开光用于进行光信号传输方向的控制,实现光信号的选路。图8是本申请另一示意性实施例提供的一种光波导结构示意图。如图8所示,该光波导结构10还包括:与第一光波导11a连接的光 开关15。该光开关15用于进行光信号的选路,使得光信号沿第一光波导11a传输或沿第二光波导11b传输。图8中第一光波导11a位于第二光波导11b的上层,其中,第一光波导11a位于第二光波导11b的上层指的是光波导结构10在实际使用时,第一光波导11a相对于第二光波导11b位于远离衬底基板14的一侧;将光开关15设置在上层的光波导上便于光开关的制造,以及对光开关的控制。如图8所示,沿第一光波导11a传输的光信号依次经过光开关15以及第一光波导通道12可以向下传输至第二光波导11b;或者,沿第二光波导11b传输的光信号依次经过光开关15以及第一光波导通道12可以向上传输至第一光波导11a。
本申请实施例提供的光开关可以为1×2光开关(即具有一个输入端口和两个输出端口的光开关)。例如,前述光开关为波导型光开关(也称波导光开关)。波导型光开关为采用电光效应、磁光效应、声光效应或热光效应等改变波导折射率使光路发生变化的光开关。示例的,图9和图10分别为本申请实施例提供的两种光开关15为1×2光开关的光波导结构的俯视示意图。图11为图10所示的光波导结构的具体结构示意图,图11中的光波导结构的1×2光开关为一采用电光效应改变波导折射率的波导型光开关。图9至图11假设光波导结构的光信号沿信号传输方向x输入,经过光开关15分成主路和支路,可选地,主路和支路的延伸方向不同。
图9至图11中,第一光波导11a包括第一光波导主路a1和第一光波导支路a2,该第一光波导支路a2通过第一光波导通道12与第二光波导11b连接,如图11所示,该光开关15包括设置在第一光波导主路a1上的电极151和设置在第一光波导支路a2上的电极152,光开关15通过控制电极151和电极152上加载的电压,实现对第一光波导中光信号的折射率的调整,从而实现在第一光波导主路a1和第一光波导支路a2中的选路。其中,假设光信号的传输方向为信号传输方向x,则选择从第一光波导主路a1传输的光信号继续沿第一光波导主路a1传输(即图9中从左向右的方向),选择从第一光波导支路a2传输的光信号通过第一光波导通道12沿第二光波导11b传输。由于光路是可逆的,若光波导结构中的光信号沿与前述信号传输方向x相反的方向传输(即图9中从右向左的方向)。则选择从第一光波导主路a1传输的光信号经过光开关15继续沿第一光波导主路a1传输,选择从第二光波导11b传输的光信号依次经过和第一光波导支路a2和光开关15沿第一光波导主路a1传输。图9所示的光波导结构中光开关15的结构也可以参考图11中光波导结构中的光开关15的结构,本申请实施例对此不做赘述。
图12是本申请实施例提供的一种示意性的设置有至少两个光开关的光波导结构10的示意图。图12假设光波导结构中有2个光开关15,但并不对光开关的数量进行限制。图12中,第一光波导11a上连接的光开关的数量与第一光波导11a上连接的第一光波导通道的数量相同,第一光波导11a连接的第一光波导通道12与第一光波导11a上的光开关15一一交替排列。如此可以实现第一光波导11a所在层的多级选路,每个光开关15对应一个选路级别。示例的,光波导结构10包括至少两个第二光波导11b,第二光波导11b的数量与第一光波导通道12的数量相同。图12假设光开关15为1×2光开关,通过控制光开关15的光信号从光开关的不同输出端口输出,可以控制第一光波导11a的光信号沿不同路径传输,从而实现光信号的选路。例如,通过两个光开关15,可以控制光信号沿主路、支路1或支路2传输。
在不同的光信号传输场景中,光波导结构中的光开关的数量与设置位置不同。示例的,如图12所示,沿第一光波导11a中光信号传输方向x,每个第一光波导通道12之前设置一 个光开关15。值得说明的是,当第一光波导11a包括第一光波导主路a1和第一光波导支路a2时,该第一光波导11a中光信号传输方向x指的是第一光波导主路a1的光信号传输方向。示例的,若光信号沿第一光波导11a中光信号传输方向x的反方向传输,可以视为每个第一光波导通道12之后设置一个光开关15。
本申请前述实施例以至少两个光波导11包括位于不同层的两个光波导为例。实际实现时,该至少两个光波导11还可以包括第三光波导11c。第三光波导11c和第一光波导11a、第二光波导11b分别位于不同层。图13A和图13B是本申请又一示意性实施例分别提供的两种光波导结构示意图。在一种可选方式中,如图13A所示,第三光波导11c和第二光波导11b之间设置有第二光波导通道16,该第三光波导11c和第二光波导11b之间的第二光波导通道16的两端分别与第二光波导11b和第三光波导11c物理连接。第二光波导11b和第三光波导11c以及沿该层叠方向y上位于第二光波导11b和第三光波导11c之间的结构,如第二光波导通道16、介质层和/或光开关等均可以参考第一光波导11a和第二光波导11b以及沿该层叠方向y上位于第一光波导11a和第二光波导11b之间的结构。在另一种可选方式中,第三光波导11c和第一光波导11a之间设置有第二光波导通道16,该第三光波导11c和第一光波导11a之间的第二光波导通道16的两端分别与第三光波导11c和第一光波导11a物理连接。例如,第一光波导11a和第三光波导11c以及沿该层叠方向y上位于第一光波导11a和第三光波导11c之间的结构,如第二光波导通道、介质层和/或光开关等均可以参考第一光波导11a和第二光波导11b以及沿该层叠方向y上位于第一光波导11a和第二光波导11b之间的结构。通过设置前述第三光波导,以及与第三光波导物理连接的第二光波导通道,可以实现光信号在更多层光波导中的传输。
图13B以至少两个光波导包括k层光波导,k≥3为例进行说明,每两个相邻光波导之间设置有光波导通道,光波导通道的两端分别与两个相邻光波导物理连接。图13B中,沿至少两个光波导的层叠方向y(其与第一波导11a和第二光波导11b的层叠方向相同),可以将该光波导结构10划分为多组子结构R,每组子结构R包括两个光波导以及一个光波导通道,每两组相邻的子结构复用一个光波导,或者,每两组相邻的子结不存在重合的光波导(即不进行光波导的复用)。其中,不同组子结构的结构可以相同也可以不同。每组子结构的具体结构可以参考前述图2至图12中任一图中的第一光波导11a和第二光波导11b以及沿至少两个光波导的层叠方向y上位于第一光波导11a和第二光波导11b之间的结构,如第一光波导通道、介质层和/或光开关等。例如,第二光波导11b和第三光波导11c以及沿该层叠方向y上位于第二光波导11b和第三光波导11c之间的结构,如第二光波导通道16、介质层和/或光开关等均可以参考第一光波导11a和第二光波导11b以及沿该层叠方向y上位于第一光波导11a和第二光波导11b之间的结构。本申请实施例对每组子结构不再赘述。不同组子结构R中的第一光波导的延伸方向可以平行,第二光波导的延伸方向可以平行。
本申请实施例在实际实现时,前述光波导结构中,至少两个光波导的位置关系还可以根据实际应用场景进行调整。例如,该至少两个光波导中还可以包括位于同一层的光波导;和/或,不相邻的光波导之间设置有光波导通道。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。因此本申请实施例对此不再赘述。
前述实施例中,当光波导结构为光芯片时,仅以光芯片的衬底基板上形成光波导、光波 导通道、介质层和/或光开关为例,对光芯片的结构进行介绍,本申请实施例在实际实现时,该光波导结构的衬底基板上还可以形成其他元器件,且光波导结构还可以包括封装结构,本申请实施例对此不做限定。
本申请实施例提供的光波导结构,可以应用于多种光通信场景中。示例的,该光波导结构可以应用于光传输网络,例如波分网或城域网。图14是本申请一示意性实施例提供的一种城域网的示意图。为了便于读者理解,本申请实施例以图14为例,对城域网进行介绍。城域网,也称城域接入光网络,其包括至少两个接入站点,图14假设城域网包括3个接入站点,分别为接入站点A、B和C,从接入机房输出的光信号经过接入站点A、B和C输入至接入机房,以形成城域网环网。每个接入站点支持两个方向的光信号传输。该两个方向相反。图14假设该两个方向分别为西向w和东向e,这两个方向都属于线路方向,也即是城域网中环网上的方向。每个接入站点本身也联结该站点的本地的通信设备,该本地的通信设备属于本地的通信系统。
城域网中传输的光信号存在两类波长,第一类是线路波长,这部分波长主要在图14所示的接入光纤环中传输;第二类是本地波长,这部分波长在各个接入点的本地的通信系统中传输,在接入站点处有统一的对外出口。
其中,线路波长和本地波长可以通过图14中所示的站点光层互相转换。图14的虚线框G为接入站点C的站点光层的放大示意图,其中,示意性地绘制了6种不同的波长传输方式。该6种波长传输方式分别为:“1”代表西向w的线路波长的光信号通过接入站点的站点光层传输到东向e;“2”代表东向e的线路波长的光信号通过接入站点的站点光层传输到西向w。“1”和“2”是线路波长的光信号在接入站点的站点光层直接穿通,光信号只是经过接入站点,并没有下载(也称下波)进入本地的通信系统中,也即是光信号在接入站点进行了透传。“3”表示西向w的线路波长的光信号经过接入站点的站点光层下载到本地,进入本地的通信系统,由此实现了线路波长向本地波长的转换。“4”表示本地的通信系统中的本地波长的光信号经过接入站点的站点光层上传(也称上载或上波)到西向w,是本地波长向线路波长的转换。“5”表示东向e的线路波长经过接入站点的站点光层下载到本地,进入本地的通信系统,是线路波长向本地波长的转换。“6”表示本地的通信系统中的波长经过接入站点的站点光层上传到东向e,是本地波长向线路波长的转换。
对于接入站点,实现线路波长的光信号的穿通(pass-through)和下载,以及本地波长的光信号的上传是站点光层的核心能力需求。本申请实施例提供一种光波导模块,其可以应用于图14中的任一接入站点或其他光交换设备中。该光波导模块支持线路波长的光信号的穿通和下载,以及本地波长的光信号的上传。示例的,该光波导模块可以为光芯片或者多个光芯片的集合。
图15是本申请一示意性实施例提供的一种光波导模块的示意图。如图15所示,该光波导模块30包括:合分波器31、第一支路上下波结构32、连接器33和至少两个光波导结构34。每个光波导结构34包括层叠设置的至少两个光波导,该至少两个包括第一光波导11a和第二光波导11b,第一光波导11a和第二光波导11b导位于不同层,第一光波导11a和第二光波导11b之间设置有第一光波导通道12,第一光波导通道12的两端分别与第一光波导11a和第二光波导11b物理连接,其中,第二光波导11b的第一端d1与第一光波导通道12连接。 图15中示意性地以黑色圆点表示光开关15,以白色圆点表示光波导通道,如前述第一光波导通道12。任一光波导结构34的结构可以参考前述实施例中的光波导结构10的结构,本申请实施例对此不再赘述。
合分波器31具有线路端口和至少两个第一光波导连接端口,合分波器31的至少两个第一光波导连接端口分别与至少两个光波导结构的第一光波导11a的第一端q1连接。合分波器31的线路端口用于输入线路侧的光信号,或向线路侧输出光信号。例如,该合分波器为波导阵列光栅(Arrayed Waveguide Grating,AWG)。
第一支路上下波结构32具有第一支路端口和至少两个第二光波导连接端口,第一支路上下波结构32的至少两个第二光波导连接端口分别与至少两个光波导结构的第一光波导11a的第二端q2连接,第一支路端口用于上传或下载光信号。
连接器33具有线路穿通端口和至少两个第三光波导连接端口,连接器33的至少两个第三光波导连接端口分别与至少两个光波导结构中每个光波导结构34的一个第二光波导11b的第二端d2连接,线路穿通端口被配置为与另一光波导模块的线路穿通端口连接。如此可以实现光交换设备的线路波长穿通功能(即线路波长的透传功能)。在本申请实施例中,一个光波导的第一端和第二端指的是沿该光波导的延伸方向相对的两端。若该光波导包括光波导主路和光波导支路,该第一端和第二端指的是光波导主路的延伸方向相对的两端。
其中,第一光波导连接端口的数量、第二光波导连接端口的数量、第三光波导连接端口的数量均与光波导结构的数量相同,也即是,该光波导模块中,第一光波导连接端口与光波导结构一一对应,且第二光波导连接端口光波导结构一一对应。图15假设每个光波导结构34包括一个第一光波导和一个第二光波导,但并不对光波导的数量进行限制。
综上所述,本申请实施例提供的光波导模块,光波导结构中,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同层光波导之间的光信号的直跳传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导模块的集成度,实现光波导模块的小型化。在此基础上,连接器可以通过线路穿通端口实现与另一光波导模块的连接器的线路波长的光信号的穿通,实现光交换设备的线路波长的穿通功能,第一支路上下波结构可以通过支路端口进行本地波长的光信号的上传,或线路波长的光信号的下载。如此可以实现光交换设备的基本功能。
图16是本申请一示意性实施例提供的另一种光波导模块30的示意图。在一种可选示例中,如图16所示,每个光波导结构34还包括:n个第四光波导11d,第四光波导11d与第一光波导11a位于不同层,第一光波导11a和每个第四光波导11d之间设置有第三光波导通道17,第三光波导通道17的一端与第一光波导11a连接,另一端和一个第四光波导11d的第一端p1连接,n为正整数。值得说明的是,每个光波导结构中,n个第四光波导11d与第一光波导11a之间的结构,如第三光波导通道、介质层和/或光开关等均可以参考第一光波导11a和第二光波导11b以及沿该层叠方向y上位于第一光波导11a和第二光波导11b之间的结构。示例的,第四光波导11d的数量与第三光波导通道17的数量相同。
在本申请实施例中,如图16所示,光波导模块30还可以包括m个第二支路上下波结构35,第二支路上下波结构35具有第二支路端口和第四光波导连接端口,m个第二支路上下波结构35的第四光波导连接端口分别与至少两个光波导结构34中每个光波导结构34的一个 第四光波导11d的第二端p2连接。第二支路端口用于上传或下载光信号。该光波导模块中,第四光波导连接端口的数量与光波导结构34的数量相同,也即是第四光波导连接端口与光波导结构一一对应。图16中相关附图标记的解释可以参考图15,本申请实施例对此不做赘述。前述第一支路上下波结构32和第二支路上下波结构35的结构可以相同,如此便于制造,且保证支路侧的光信号的有效上载和下载。
图16中以m=n为例进行说明书,也即是每个光波导结构34包括的n个第四光波导11d与m个第二支路上下波结构35一一对应。在实际实现时,第二支路上下波结构的数量还有其他实现方式,本申请实施例对此不做限定。
下面以图16为例,对本申请实施例提供的一种光波导模块的光信号传输过程进行示意性说明。图16假设光信号从线路端口输入,经过合分波器,光波导模块包括T个光波导结构,T为大于1的整数,每个光波导结构中,第一光波导11a上连接的光开关15的数量与第一光波导11a上连接的光波导通道(包括第一光波导通道12和第三光波导通道17)的数量相同,第一光波导11a连接的光波导通道与第一光波导上的光开关15一一交替排列,且沿光信号传输的方向,每个光波导通道之前设置一个光开关15,该光开关15为1×2光开关。如图16所示,光信号从线路端口输入,通过合分波器分成与T个光波导结构的第一光波导11a对应的T个波长传输通道传输的T路波长的光信号,对于每一路波长的光信号,沿该光信号的传输方向(例如图16中为从左到右的方向),该光信号在经过第一光波导11a所连接的每个光开关后再次分成两路光信号,一路沿第一光波导11a的延伸方向继续传输(即沿图16中从左到右的方向传输),另一路通过第一光波导通道12传输至与第一光波导11a不同层的第二光波导11b,或者,另一路通过第三光波导通道17传输至与第一光波导11a不同层的第四光波导11d中继续传输(即沿图16中从上到下的方向传输)。每一路波长的光信号,在经过每一个光开关时,可以被控制选择在该两路中的哪路中传输。由于光路是可逆的,本申请实施例对反向的光信号传输过程不再赘述。
从第二光波导11b传输的光信号可以直接越过其他光波导到达连接器33,从而通过连接器33的线路穿通端口输出,从第四光波导11d中传输的光信号可以直接越过其他光波导到达第二支路上下波结构35,从而通过第二支路上下波结构35的支路端口输出,因此第二光波导11b和第四光波导11d可以称为直跳波导。由于第二光波导11b和第四光波导11d分别能够仅通过一个光波导通道,直接跳过至少两个交叉口,直达光路出口,避免了光波导间的串扰插损,因此,第二光波导11b和第四光波导11d中每个光波导的穿通插损与单层无交叉波导的穿通插损接近,有效降低了光信号的传输插损。
如图16所示,假设T个光波导结构34中每个光波导结构34包括一个第一光波导11a,一个第二光波导11b和n个第四光波导11d,则每个第一光波导11a上具有n+1个光开关,连接器33通过第三光波导连接端口分别与T个光波导结构34的一个第二光波导11b的第二端连接,连接器33的第三光波导连接端口至少有T个;每个第二支路上下波结构25通过第四光波导连接端口分别与T个光波导结构34中的一个第四光波导11d的第二端p2连接,每个第二支路上下波结构25的第三光波导连接端口至少有T个。对于每个光波导结构34,假设沿光信号传播的方向,第一光波导上第i个光开关称为第i级光开关,1≤i≤n+1。则在本申请实施例中,沿光信号传播的方向,T个光波导结构34中每个光波导结构34的第1级光开关后的首个光波导通道(即图中的第一光波导通道12)所连接的第二光波导连接连接器33, 如此可以实现线路穿通的光信号的插损较小;T个光波导结构34中的同一级光开关后的首个第三光波导通道17所连接的第四光波导11d连接相同的第二支路上下波结构。示例的,第2至第n+1级光开关后的首个光波导通道所连接的第四光波导与第1至第n个第二支路上下波结构34一一对应连接。
值得说明的是,为了便于读者理解,图15和图16中假设每个光波导结构34中,沿第一光波导11a的光信号传输方向,每个光波导通道(如第一光波导通道12或第三光波导通道17)之前设置有一个光开关15,且每个光开关15为1×2光开关为例进行绘制,但并实际实现时,光波导模块中的第一光波导、第二光波导、第四光波导和光开关的位置可以根据具体的应用场景调整,本申请实施例不对光开关的类型、排布方式和数量进行限定。示例的,该光波导结构34的结构可以参考前述图9至图11任一所示的光波导结构。
在一种可选示例中,n个第四光波导11d位于同一层,如此便于制造,也便于与第二支路上下波结构连接。第一支路上下波结构32和第二支路上下波结构35的结构相同或不同,当两者结构相同时,便于在光波导模块中的制造,从而减少制造复杂度。
示例的,每个光波导结构中第一光波导11a和第二光波导11b的延伸方向垂直,n个第四光波导11d的延伸方向平行。如此可以实现光波导模块在较小面积内的制造,提高集成度。示例的,至少两个光波导还满足以下至少一种:各个光波导中的第一光波导11a的延伸方向平行,各个光波导中的第二光波导11b的延伸方向平行,各个光波导中的第四光波导11d的延伸方向平行。如此,可以进一步提高光波导模块的集成度。
本申请实施例中,至少两个光波导结构34中的第一光波导11a的延伸方向平行,至少两个光波导结构34中的第二光波导11b的延伸方向平行,如此可以进一步提高光波导模块的集成度。可选地,每个光波导结构中,第二光波导11b和第四光波导11d可以位于同一层,也可以分别位于不同层,两者位于同一层时,便于制造。当n个第四光波导11d位于同一层时,n个第四光波导11d和第二光波导11b的布置方式可以相当于n+1个图12所示的第二光波导11b的布置方式。
在本申请实施例中,光波导模块中的连接器33可以有多种实现方式。本申请实施例以以下几种可选实现方式为例进行说明:
在第一种可选实现方式中,连接器33为多芯连接器。
在第二种可选实现方式中,连接器33为合分波器。示例的,该合分波器为AWG,该连接器的线路穿通端口可以与一路光纤连接,通过该一路光纤与另一光波导模块的连接器的线路穿通端口连接。该连接器可以将通过第三光波导连接端口所连接的光波导的光信号汇聚成该一路光纤上传输的光信号,从而实现与另一光波导模块的连接器的联结。连接器为AWG时,两个光波导模块的线路穿通端口可以仅用一根光纤就实现连接,结构简单,制造成本低。
在第三种可选实现方式中,连接器33为用于与光缆连接的并行光纤插拔接口(Multiple-fiber Push-on/pull-off,MPO)。其中,MPO包括至少两个光纤接口,每个光纤接口即为一个线路穿通接口,该光缆包括至少两个光纤,每个光纤与一个光纤接口可插拔连接。MPO上每个第三光波导连接端口与一个光纤接口对应,每个第三光波导连接端口所连接的光波导的光信号通过对应的光纤接口传输至该光纤接口所连接的光纤上,由该光纤传输至另一光波导模块的连接器。连接器为MPO时,两个光波导模块的线路穿通端口用一根光缆(包括多根光纤)实现连接,相较于采用AWG作为连接器的光信号传输插损更小。
在第四种可选实现方式中,连接器33为用于与光纤阵列连接的光纤插芯。其中,每个连接器33包括至少两个光纤插芯,每个光纤插芯具有一个第三光波导连接端口和一个线路穿通接口,光纤阵列包括至少两个光纤,每个光纤与一个光纤插芯连接。每个光纤插芯的第三光波导连接端口所连接的光波导的光信号通过该光纤插芯传输至该光纤插芯的线路穿通端口所连接的光纤上,由该光纤传输至另一光波导模块的连接器。连接器为光纤插芯时,两个光波导模块的线路穿通端口通过光纤阵列实现连接,两个光波导模块的光纤阵列中的光纤一一对应连接,相较于采用AWG作为连接器的光信号传输插损更小。
在本申请实施例中,前述支路上下波结构,如第一支路上下波结构32和/或第二支路上下波结构35,可以有多种实现方式。本申请实施例以以下几种可选实现方式为例进行说明:
在第一种可选实现方式中,支路上下波结构为合分波器。
在第二种可选实现方式中,支路上下波结构为AWG。支路侧采用AWG将多路光波导连接端口接收的光波导信号汇聚到一个支路端口,每个支路端口可以实现1个或至少两个波长的自由无阻塞上下波,有效实现光波导模块的光信号的无色上下波。其中,若该支路上下波结构为第一支路上下波结构,前述支路端口为第一支路端口;若该支路上下波结构为第二支路上下波结构,前述支路端口为第二支路端口。
在第三种可选实现方式中,支路上下波结构为具有2 N个第一端口(也称分路端口),一个第二端口(也称公共端口)的级联光开关结构,N为正整数,其为该支路上下波结构的开关级数。若任选其中的M个第一端口进行使用,则该支路上下波结构也称M路的级联光开关结构或1×M级联光开关结构,M路指的是该级联光开关结构中供光信号通过的路径共M种(即可用2 N路,但实际使用了M路),M为大于1的整数。其中,若该支路上下波结构为第一支路上下波结构,前述第一端口为第二光波导连接端口,第二端口即为前述第一支路端口。若该支路上下波结构为第二支路上下波结构,前述第一端口为第四光波导连接端口,第二端口即为前述第二支路端口。
支路上下波结构被配置为在接收到逻辑控制指令后,基于逻辑控制指令控制第二端口与2 N个第一端口中的一个第一端口的连接导通,与其他第一端口的连接断开。如此,支路上下波结构中的一个路径导通,其他路径关闭。该支路上下波结构支持仅有一种波长的光信号通过,或者不同波长的光信号分时段通过(即某一时刻仅有一种波长的光信号通过)。采用该支路上下波结构可以通过逻辑控制指令控制光信号的上下波,光波导模块的制造成本进一步降低。
可选地,M满足:2 N-1<M≤2 N。如此,级联光开关结构的结构类似于一个二叉树结构,该级联光开关结构包括N级开关,每级开关包括至少一个开关,按照该N级开关中开关数量由小到大的顺序,前N-1级开关中,每个开关具有两个下级开关,即两个下级分支,第N级开关中每个开关具有两个下级分支,分别为两个第一端口。对应的,前述逻辑控制指令包括N个比特位,通过该N个比特位可以采用二进制的方式分别指示该M种路径,该N个比特位占用的存储空间较少,通信开销较少。例如,2 N-1<M<2 N,如1×12级联光开关结构,N=4;如1×20级联光开关结构,N=5;如1×40级联光开关结构,N=6。
又例如,M=2 N,图17至图19分别为1×8级联光开关结构、1×32级联光开关结构和1×64级联光开关结构的示意图。如图17至图19所示,其中,1×8级联光开关结构的开关级数为3,包括一个第二端口和8个第一端口。示例的,逻辑控制指令为111指示第二端口A与 第一端口B的连接导通,第二端口A与其他第一端口的连接断开;逻辑控制指令为110指示第二端口A与第一端口C的连接导通,第二端口A与其他第一端口的连接断开;逻辑控制指令为000指示第二端口A与第一端口D的连接导通,第二端口A与其他第一端口的连接断开。1×32级联光开关结构的开关级数为5,包括一个第二端口和32个第一端口。示例的,逻辑控制指令为11001指示第二端口E与第一端口F的连接导通,第二端口E与其他第一端口的连接断开;逻辑控制指令为01011指示第二端口E与第一端口G的连接导通,第二端口E与其他第一端口的连接断开。1×64级联光开关结构的开关级数为6,包括一个第二端口和64个第一端口。示例的,逻辑控制指令为011000指示第二端口H与第一端口I的连接导通,第二端口H与其他第一端口的连接断开。
值得说明的是,前述光波导模块中,仅以光波导结构34包括位于不同层的两个光波导、第一光波导通道以及光开关为例进行说明,实际实现时,前述光波导模块中至少一个光波导结构34还可以包括介质层等结构。
传统的光交换设备(如接入站点)中,采用静态光分插复用器(Fixed Optical Add/Drop Multiplexer,FOADM)来实现光交换设备光层的功能。但是,FOADM中支路端口的所有通道需要进行波长标定,即端口是有色的,每个特定型号的FOADM只能上传和下载相应的标定的波长,导致FOADM的单板类型多,仓储成本高,运维困难。例如,对于可传输120种波长的一个光交换设备,若支持4个上传光信号的支路端口以及4个下载光信号的支路端口,该站点需要设置30种标定波长的FOADM单板。
相关技术中,还提出将骨干网可重构光分插复用(Reconfigurable Optical Add/drop Multiplexer,ROADM)系统中的波长选择开关(Wavelength Selective Switching,WSS)技术应用到光交换设备中。但是,由于WSS制造复杂,成本高,难以在光交换设备中大规模使用。
本申请实施例提供的光波导模块,由于通过第一光波导通道分别与位于不同层的两个光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,通过合分波器输入线路波长的光信号,通过线路穿通端口输出与另一光波导模块穿通的线路波长的光信号,(或者通过线路穿通端口接收另一光波导模块穿通的线路波长的光信号,通过合分波器输出线路波长的光信号)通过第一支路上下波结构可以进行本地波长的光信号的上传,或线路波长的光信号的下载,实现在一个方向上的线路波长的光信号传输。进一步的,通过在光波导模块中设置光开关,例如每个光波导结构包括至少一个光开关,从而实现光信号的选路,无需标定支路端口所对应的波长,实现无色上下波。
如图16所示,线路端口输入的一组波长的光信号,经过合分波器分开后,可以通过连接器输出线路穿通波长的光信号,也可以通过第一支路上下波结构或第二支路上下波结构输出支路波长的光信号。整个光波导模块中的波长无需标定,通过简单的结构即可实现无色化的波长穿通与本地下载。
图20是本申请一示意性实施例提供的一种光交换设备40的示意图,该光交换设备可以为接入站点,如图20所示,包括:
通信结构41,该通信结构41包括两个光波导模块411,两个光波导模块411通过各自的 线路穿通端口连接,两个光波导模块411的线路端口分别与不同方向(direction)的线路连接。例如两个线路端口分别连接西向w和东向e的线路。每个光波导模块411的结构可以参考前述光波导模块30的结构。可选地,该两个光波导模块411中的一个光波导模块411的支路上下波结构(如第一支路上下波结构或第二支路上下波结构)的支路端口为上波端口,用于上传光信号,另一光波导模块411的支路上下波结构(如第一支路上下波结构或第二支路上下波结构)的支路端口为下波端口,用于下载光信号。
本申请实施例中,通信结构41中的两个光波导模块的连接器的实现方式不同,两个光波导模块的连接方式也不同。图21至图25分别为本申请实施例提供的几种通信结构的示意图。图21至图25分别为连接器为:合分波器、AWG、带有MPO的光缆和带有光纤插芯的光纤阵列的通信结构的示意图。图21中两个光波导模块的连接器为多芯连接器,分别为多芯连接器1和多芯连接器2,多芯连接器1和多芯连接器2的线路穿通端口连接;图22中两个光波导模块的连接器为合分波器,分别为合分波器1和合分波器2,可选地,如图23所示,图23假设合分波器1为AWG0,合分波器2为AWG1,AWG0和AWG1的线路穿通接口通过光纤连接;图24中两个光波导模块的连接器为与光缆连接的多芯连接器,分别为MPO-a和MPO-b,MPO-a和MPO-b的线路穿通端口通过光缆连接;图25中两个光波导模块的连接器为与光纤阵列连接的光纤插芯(图25中未标示),两个光波导模块中与光纤插芯连接的光纤阵列1和光纤阵列2的一一对应连接。在图21至图25中,假设两个光波导模块与线路连接的合分波器分别为AWG-a和AWG-b,第一支路上下波结构和第二支路上下波结构均为AWG,其中,AWG-a的线路端口为线路的光信号入口(in),AWG-b的线路端口为光信号出口(out),每个光波导模块的第二支路上下波结构包括AWG2至AWG4,第一支路上下波结构为AWG5,其中,AWG-a所在光波导模块中的AWG2至AWG5的支路端口(包括AWG2至AWG4的第一支路端口,以及AWG5的第二支路端口)分别为下波(down wave)端口DM1至DM4,AWG-b所在光波导模块中的AWG2至AWG5的支路端口(包括AWG2至AWG4的第一支路端口,以及AWG5的第二支路端口)分别为上波(add wave)端口AM4至AM1。需要说明的是,图21和图25中的结构只是示意性说明,本申请实施例并不限定支路上下波结构以及与线路连接的合分波器的结构以及数量。
图26是本申请一示意性实施例提供的另一种光交换设备的结构示意图。如图26所示,光交换设备40包括两组通信结构41,两组通信结构41的线路端口连接的线路的光信号传输方向相反。可选地,前述光交换设备40还可以包括控制器,用于进行光信号传输方向的控制,实现光信号的选路。该控制器与光交换设备40中的光开关连接,通过控制光开关来进行选路控制。当光交换设备中的支路上下波结构为级联光开关结构(例如图17至图19所示的级联光开关结构),该控制器还可以生成逻辑控制指令,以对级联光开关结构进行控制。当光波导模块30为光芯片时,该控制器集成在光芯片上或设置在光芯片外部。该光交换设备40可以为一个整体的芯片,或者至少两个芯片连接形成的芯片集合。
图27是本申请实施例提供的一种光交换设备40的结构示意图,如图27所示,假设该光交换设备包括4个通信结构,分别是通信结构41a至41d,其中,在线路侧,通信模块41a和通信模块41b支持西向w的光信号传输;通信模块41c和通信模块41d支持东向e的光信号传输。其中,通信模块41a的合分波器的线路端口输入西向w的光信号,通信模块41b的合分波器输出东向e的光信号,通信模块41a和通信模块41b的连接器的线路穿通端口互连; 通信模块41c的合分波器的线路端口输入东向e的光信号,通信模块41d的合分波器输出西向w的光信号,通信模块41c和通信模块41d的线路穿通端口互连。在支路侧,通信模块41a的m个第二支路上下波结构的第二支路端口以及1个第一支路上下波结构的第一支路端口,以及通信模块41c的m个第二支路上下波结构的第一支路端口以及1个第一支路上下波结构的第二支路端口,组成2m+2个用于下载线路波长的支路端口;通信模块41b的m个第二支路上下波结构的第二支路端口以及1个第一支路上下波结构的第一支路端口,以及通信模块41d的m个第二支路上下波结构的第二支路端口以及1个第一支路上下波结构的第一支路端口,组成2m+2个用于上传本地波长的支路端口。其中,图27假设连接器为合分器或多芯连接器,假设第一支路上下波结构和第二支路上下波结构均为合分波器,但是并不对连接器和支路上下波结构的具体实现方式进行限定。需要说明的是,图27未绘制光开关,光开关的位置和结构可以参考前述实施例。
本申请实施例提供的光交换设备,线路侧具有西向w和东向e的线路波长穿通功能,同时两个线路方向与本地设备之间可以实现所有波长的自由无阻塞上下波,由此可以构建结构简单的光波导系统,例如该光波导系统为光传输网络,如波分网络或城域网等。
本申请实施例提供的光交换设备,由于通过第一光波导通道分别与位于不同层的两个光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,每个通信结构中的一个光波导模块可以通过合分波器输入线路波长的光信号,通过线路穿通端口输出与另一光波导模块穿通的线路波长的光信号,另一个光波导模块通过线路穿通端口输入线路波长的光信号,通过合分波器输出线路波长的光信号,从而实现在一个方向上的线路波长的光信号传输。并且该通信结构中每个光波导模块的支路端口还支持本地波长的光信号的上传,或线路波长的光信号的下载。进一步的,通过在光波导模块中设置光开关,例如每个光波导结构包括至少一个光开关,从而实现光信号的选路,无需标定支路端口所对应的波长,实现无色上下波。当光交换设备包括两个通信结构,可以实现两个方向的线路波长的光信号的传输。如此通过简单的结构即可实现光交换设备的全部功能。
相比于设置有FOADM的光交换设备,本申请实施例提供的光交换设备对满足光波导系统适用范围内的往返于光交换设备的线路中的波长数量、波长方向和波长组合方式均不做限制(比如光波导系统适配C波段120波的密集型光波复用(DWDM:Dense Wavelength Division Multiplexing,DWDM)光纤,则线路波长只要在该C波段120波的范围内,则无论波长数量、波长方向和波长组合方式等随意变化,该光交换设备均无需做硬件更改和配置),如此可以有效提升光交换设备的灵活性,降低运维成本,加速部署效率。此外,由于光交换设备满足无色上下波,则一种类型的光交换设备可以适用于整个环网中,提高了光交换设备的适用性,实现了器件的归一化,降低仓储成本。
图28是本申请一示意性实施例提供的一种光波导系统50的结构示意图。如图28所示,该光波导系统包括:至少两个光交换设备51,至少两个光交换设备51通过光纤连接。至少一个光交换设备51可以采用本申请实施例提供的光交换设备的结构,其结构参考前述光交换设备40。可选地,该光波导系统中的每个光交换设备都可以采用前述光交换设备40的结构。示例的,该光波导系统可以为图14所示的环网结构,例如,其可以为波分网或城域网。
本申请实施例提供的光波导系统,由于光交换设备中,通过第一光波导通道分别与位于 不同层的两个光波导物理连接,相较于FOADM和WSS,插损有效降低。并且,每个光交换设备实现无色上下波,光交换设备的适用性较高,实现了器件的归一化,降低仓储成本。
图29是本申请一示意性实施例提供的一种光波导结构的制造方法的流程示意图,如图29所示,包括:
S601、在衬底基板上形成层叠的至少两个光波导。
S602、在至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,该第一光波导通道的两端分别与第一光波导和第二光波导物理连接。
综上所述,本申请实施例提供的光波导结构的制造方法,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同层光波导之间的光信号的传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导结构的集成度,实现光波导结构的小型化。
图30是本申请一示意性实施例提供的另一种光波导结构的制造方法的流程示意图,如图30所示,包括:
S701、在衬底基板上形成层叠的至少两个光波导。
其中,每层光波导的制造工艺可以参考采用硅光工艺或PLC制造工艺。示例的,以在衬底基板上形成第f层光波导为例,f为正整数,第f层光波导包括至少一个光波导。该第f层光波导的制造过程包括:在衬底基板上采用沉积、涂覆或溅射工艺形成光波导材料层;对光波导材料层执行一次构图工艺得到该第f层光波导。该一次构图工艺包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。
S702、在衬底基板上每形成一层光波导后,形成一层介质层。
其中,两个光波导之间的第一光波导通道位于两个光波导之间的介质层中,介质层的折射率小于第一光波导通道的折射率。在衬底基板上每形成一层光波导后,可以采用沉积、涂覆或溅射工艺形成一层介质层。
S703、在至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,该第一光波导通道的两端分别与第一光波导和第二光波导物理连接。
本申请实施例中,可以通过对第一光波导和第二光波导之间的介质层进行离子掺杂形成第一光波导通道。该离子掺杂的过程可以有多种实现方式,本申请实施例以以下几种可选示例为例进行说明:
在第一种可选示例中,第一光波导相对于第二光波导远离衬底基板;可以通过在第一光波导所在侧进行离子掺杂形成第一光波导通道。该过程包括:在形成第一光波导后,将掩膜版设置在第一光波导远离衬底基板的一面上,该掩膜版具有镂空区域,通过掩膜版的覆盖可以避免离子掺杂过程对第一光波导非掺杂区域(即掩膜版镂空区域之外的区域所覆盖处)的影响。示例的,该掩膜版可以为光刻胶掩膜版或金属掩膜版。通过第一光波导从掩膜版的镂空区域露出的部分对第一光波导与第二光波导之间的介质层进行离子掺杂,以在两个光波导之间形成第一光波导通道。图31是本申请一示意性实施例提供的一种第一光波导通道的制造过程示意图。如图31所示,图31假设衬底基板14上依次形成了第二光波导11b、介质层13 和第一光波导11a,掩膜版8设置在第一光波导11a远离衬底基板的一侧,即图31的上方,设置掩膜版8后,第一光波导11a的部分从掩膜版的镂空区域81露出,采用离子枪照射第一光波导11a从掩膜版的镂空区域露出的部分,该离子枪用于将离子源产生的离子经加速后形成高速离子束,该离子束通过该露出的部分依次进入第一光波导11a和介质层13中,在第一光波导11a和第二光波导11b的介质层13中形成第一光波导通道12,图32是本申请一示意性实施例提供的另一种第一光波导通道的制造过程示意图,图32显示了该第一光波导通道12形成过程中的示意结构。之后,移除掩膜版8。形成第一光波导通道12的光波导结构如图8所示。
在第二种可选示例中,第一光波导相对于第二光波导远离衬底基板;可以通过在第二光波导所在侧进行离子掺杂形成第一光波导通道。该过程包括:在形成第一光波导后,将掩膜版设置在衬底基板远离第二光波导的一面上,该掩膜版具有镂空区域;通过衬底基板从掩膜版的镂空区域露出的部分对第一光波导与第二光波导之间的介质层进行离子掺杂,以在两个光波导之间形成第一光波导通道。图33是本申请一示意性实施例提供的又一种第一光波导通道的制造过程示意图。如图33所示,图33假设衬底基板14上依次形成了第二光波导11b、介质层13和第一光波导11a,掩膜版8设置在衬底基板14远离第二光波导11b的一侧,即图33的下方,设置掩膜版8后,衬底基板14的部分从掩膜版的镂空区域81露出,采用离子枪照射衬底基板14从掩膜版的镂空区域露出的部分,该离子枪用于将离子源产生的离子经加速后形成高速离子束,该离子束通过该露出的部分依次进入衬底基板14、第二光波导11b和介质层13中,在第一光波导11a和第二光波导11b的介质层13中形成第一光波导通道12。之后,移除掩膜版8。形成第一光波导通道12的光波导结构如图8所示。
通过前述两种可选示例所提供的离子掺杂工艺形成的第一光波导通道为离子掺杂通道,如图8所示,该第一光波导通道12的基质和介质层13的基质的晶格原子排布结构是一致的,例如均为六面体或八面体。该第一光波导通道12相对于介质层13,不改变晶格原子排布结构,只取代了至少部分原子。
值得说明的是,图33是以离子枪从下方照射掩膜版为例对前述离子掺杂过程进行示意性说明,本申请实施例在实际实现时,还可以将形成有第二光波导11b、介质层13和第一光波导11a的衬底基板14翻转,翻转后的衬底基板14位于上方,然后再在衬底基板14远离第二光波导11b的一侧设置掩膜版8,并进行离子束的照射,在完成离子掺杂后,再次将形成有第二光波导11b、介质层13和第一光波导11a的衬底基板14翻转,使得衬底基板14位于下方。如此,离子枪从上方照射掩膜版进行离子掺杂,操作更为简便。
前述两种可选示例中,在设置掩膜版时,沿第一光波导和第二光波导的层叠方向,掩膜版的镂空区域可以位于第一光波导和第二光波导的重叠区域(如图4和图5中的阴影区域)内,如此,该第一光波导通道12在衬底基板上的正投影位于掩膜版的镂空区域在该衬底基板的正投影内,便于离子掺杂工艺的执行。
本申请实施例中,在每两层光波导之间进行离子掺杂形成第一光波导通道的过程可以参考前述两种可选示例中,在第一光波导和第二光波导之间进行离子掺杂形成第一光波导通道的过程。
在形成第一光波导通道后,还可以执行退火等工艺来提高第一光波导通道的稳定性。
S704、在衬底基板上形成与第一光波导连接的光开关。
在衬底基板上形成与第一光波导连接的光开关的过程可以参考相关技术,本申请实施例对此不做赘述。
值得说明的是,当光波导结构为光芯片时,前述光波导结构的制造方法还包括芯片封装的过程。光波导结构中的其他位于不同层的两个光波导以及两者之间的第一光波导通道的制造过程可以参考前述第一光波导、第二光波导以及两者之间的第一光波导通道的制造过程,本申请实施例对此不再赘述。
需要说明的是,本申请实施例提供的光波导结构的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的光波导结构的制造方法,通过第一光波导通道分别与位于不同层的两个光波导物理连接,实现不同层光波导之间的光信号的传输,减少同层交叉型光波导的使用,减少光波导在同一层的交叉,从而减少光信号传输的插损,提高光信号的传输质量。并且,由于光波导结构的光波导层叠设置,不再局限于一个平面中,可以有效保证光波导结构的集成度,实现光波导结构的小型化。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法的具体步骤,可以参考前述装置实施例中的对应过程,在此不再赘述。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。术语“至少一个”表示一个或至少两个。在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少两个”指两个或两个以上,除非另有明确的限定。“A参考B”,指的是A与B相同,或者A在B的基础上进行简单变形。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。两个光波导位于不同层,指的是两个光波导不共面。两者距离同一平面的垂直距离不同,例如该同一平面为衬底基板所在面。
实际应用中,受光波导制造工艺误差的影响,可能无法达到严格的垂直、平行等,并且尺寸也可能会存在误差,本申请实施例所述的平行、垂直、尺寸等为大致的垂直、平行以及大致的尺寸,例如,本申请实施例中的垂直可以是夹角为87度、88度、91度、93度等等,平行可以是夹角为2度、3度、5等等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种光波导结构,其特征在于,包括:
    层叠设置的至少两个光波导,所述至少两个光波导包括第一光波导和第二光波导,所述第一光波导和所述第二光波导位于不同层;
    所述第一光波导和第二光波导之间设置有第一光波导通道,所述第一光波导通道的两端分别与所述第一光波导和所述第二光波导物理连接。
  2. 根据权利要求1所述的光波导结构,其特征在于,沿所述第一光波导和所述第二光波导的层叠方向,所述第一光波导和所述第二光波导之间设置有介质层,所述第一光波导通道位于所述介质层中,所述介质层的折射率小于所述第一光波导通道的折射率。
  3. 根据权利要求1或2所述的光波导结构,其特征在于,所述第一光波导通道为离子掺杂通道。
  4. 根据权利要求1至3任一所述的光波导结构,其特征在于,所述第一光波导通道的折射率与所述第一光波导的折射率的差值的范围为0.5%~50%,和/或,所述第一光波导通道的折射率与所述第二光波导的折射率的差值的范围为0.5%~50%。
  5. 根据权利要求1至4任一所述的光波导结构,其特征在于,所述光波导结构为光芯片。
  6. 根据权利要求1至5任一所述的光波导结构,其特征在于,所述第一光波导通道通过全反射实现所述第一光波导和所述第二光波导之间的光信号传输。
  7. 根据权利要求1至6任一所述的光波导结构,其特征在于,所述第一光波导位于所述第二光波导的上层;所述光波导结构还包括:
    与所述第一光波导连接的光开关,所述光开关用于进行光信号的选路,使得所述光信号沿所述第一光波导传输或沿所述第二光波导传输。
  8. 根据权利要求7所述的光波导结构,其特征在于,所述光波导结构包括至少两个光开关,所述第一光波导上连接的光开关的数量与所述第一光波导上连接的第一光波导通道的数量相同,所述第一光波导连接的第一光波导通道与所述第一光波导上的光开关一一交替排列。
  9. 根据权利要求8所述的光波导结构,其特征在于,所述光波导结构包括至少两个第二光波导,所述第二光波导的数量与所述第一光波导通道的数量相同。
  10. 根据权利要求1至9任一所述的光波导结构,其特征在于,沿所述第一光波导和所述第二光波的层叠方向,所述第一光波导的第一区域和所述第二光波导的第二区域在平行于第一光波导和第二光波导的一个平面上的投影重叠,所述第一光波导通道连接所述第一区域和所述第二区域。
  11. 根据权利要求1至10任一所述的光波导结构,其特征在于,所述至少两个光波导还包括第三光波导,所述第三光波导和所述第一光波导、所述第二光波导分别位于不同层,所述第三光波导和所述第二光波导之间设置有第二光波导通道,所述第二光波导通道的两端分别与所述第二光波导和所述第三光波导物理连接。
  12. 根据权利要求1至11任一所述的光波导结构,其特征在于,所述第一光波导和第二光波导之间的间隙的厚度范围为500nm~5um。
  13. 根据权利要求1至12任一所述的光波导结构,其特征在于,所述第一光波导通道的横截面的长度或宽度的范围为500nm~5um,所述横截面垂直于所述第一光波导和所述第二光波导的层叠方向。
  14. 根据权利要求1至13任一所述的光波导结构,其特征在于,所述第一光波导通道的延伸方向与所连接的任意一个光波导所在平面所成的角度范围为45°~135°。
  15. 一种光波导模块,其特征在于,包括:合分波器、第一支路上下波结构、连接器和至少两个如权利要求1至14任一所述的光波导结构,
    所述合分波器具有线路端口和至少两个第一光波导连接端口,所述合分波器的至少两个第一光波导连接端口分别与所述至少两个光波导结构的第一光波导的第一端连接;
    所述第一支路上下波结构具有第一支路端口和至少两个第二光波导连接端口,所述第一支路上下波结构的至少两个第二光波导连接端口分别与所述至少两个光波导结构的第一光波导的第二端连接,所述第一支路端口用于上传或下载光信号;
    所述连接器具有线路穿通端口和至少两个第三光波导连接端口,所述连接器的至少两个第三光波导连接端口分别与所述至少两个光波导结构中每个光波导结构的一个第二光波导的第二端连接,所述线路穿通端口被配置为与另一光波导模块的线路穿通端口连接,所述第一光波导连接端口的数量、所述第二光波导连接端口的数量、所述第三光波导连接端口的数量均与所述光波导结构的数量相同。
  16. 根据权利要求15所述的光波导模块,其特征在于,每个所述光波导结构还包括:n个第四光波导,所述第四光波导与所述第一光波导位于不同层,所述第一光波导和每个所述第四光波导之间设置有第三光波导通道,所述第三光波导通道的一端与所述第一光波导连接,另一端和一个所述第四光波导的第一端连接,所述n为正整数。
  17. 根据权利要求16所述的光波导模块,其特征在于,
    所述光波导模块还包括m个第二支路上下波结构,所述第二支路上下波结构具有第二支路端口和第四光波导连接端口,所述m个第二支路上下波结构的第四光波导连接端口分别与所述至少两个光波导结构中每个光波导结构的一个第四光波导的第二端连接,所述第二支路端口用于上传或下载光信号,所述第四光波导连接端口的数量与所述光波导结构的数量相同。
  18. 根据权利要求16或17所述的光波导模块,其特征在于,每个所述光波导结构中第一光波导和第二光波导的延伸方向垂直,所述n个第四光波导的延伸方向平行。
  19. 根据权利要求15至18任一所述的光波导模块,其特征在于,所述连接器为多芯连接器、合分波器、用于与光缆连接的并行光纤插拔接口或用于与光纤阵列连接的光纤插芯。
  20. 根据权利要求17所述的光波导模块,其特征在于,所述第一支路上下波结构和/或第二支路上下波结构为合分波器。
  21. 根据权利要求17所述的光波导模块,其特征在于,所述第一支路上下波结构和第二支路上下波结构中的任意一个支路上下波结构为具有2 N个第一端口,一个第二端口的级联光开关结构,N为正整数;
    所述支路上下波结构被配置为在接收到逻辑控制指令后,基于所述逻辑控制指令控制所述第二端口与2 N个第一端口中的一个第一端口的连接导通,与其他第一端口的连接断开。
  22. 根据权利要求21所述的光波导模块,其特征在于,所述逻辑控制指令包括N个比特位。
  23. 一种光交换设备,其特征在于,包括:
    通信结构,所述通信结构包括两个如权利要求15至22任一所述的光波导模块,两个所述光波导模块通过各自的线路穿通端口连接,两个所述光波导模块的线路端口分别与不同方向的线路连接。
  24. 根据权利要求23所述的光交换设备,其特征在于,所述光交换设备包括两组所述通信结构,两组所述通信结构的线路端口连接的线路的光信号传输方向相反。
  25. 一种光波导系统,其特征在于,包括:至少两个如权利要求23或24所述的光交换设备,所述至少两个光交换设备通过光纤连接。
  26. 一种光波导结构的制造方法,其特征在于,包括:
    在衬底基板上形成层叠的至少两个光波导;
    在所述至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,所述第一光波导通道的两端分别与所述第一光波导和所述第二光波导物理连接。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    在所述衬底基板上每形成一层光波导后,形成一层介质层,其中,所述第一光波导和所述第二光波导之间的第一光波导通道位于所述第一光波导和所述第二光波导之间的介质层中,所述介质层的折射率小于所述第一光波导通道的折射率。
  28. 根据权利要求27所述的方法,其特征在于,所述在所述至少两个光波导中位于不同层的第一光波导和第二光波导之间形成第一光波导通道,包括:
    通过对所述第一光波导和所述第二光波导之间的介质层进行离子掺杂形成所述第一光波导通道。
  29. 根据权利要求28所述的方法,其特征在于,所述第一光波导相对于所述第二光波导远离所述衬底基板;所述通过对所述第一光波导和所述第二光波导之间的介质层进行离子掺杂形成所述第一光波导通道,包括:
    在形成所述第一光波导后,将掩膜版设置在所述第一光波导远离所述衬底基板的一面上,所述掩膜版具有镂空区域;
    通过所述第一光波导从所述掩膜版的镂空区域露出的部分对所述第一光波导与所述第二光波导之间的介质层进行离子掺杂,以在所述第一光波导和所述第二光波导之间形成所述第一光波导通道。
  30. 根据权利要求28所述的方法,其特征在于,所述第一光波导相对于所述第二光波导远离所述衬底基板;所述通过对所述第一光波导和所述第二光波导之间的介质层进行离子掺杂形成所述第一光波导通道,包括:
    在形成所述第一光波导后,将掩膜版设置在所述衬底基板远离所述第二光波导的一面上,所述掩膜版具有镂空区域;
    通过所述衬底基板从所述掩膜版的镂空区域露出的部分对所述第一光波导与所述第二光波导之间的介质层进行离子掺杂,以在所述第一光波导和所述第二光波导之间形成所述第一光波导通道。
  31. 根据权利要求29或30所述的方法,其特征在于,所述方法还包括:
    在所述衬底基板上形成与所述第一光波导连接的光开关。
PCT/CN2021/100734 2020-07-03 2021-06-17 光波导结构及制造方法、光波导模块、光交换设备及系统 WO2022001685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833665.9A EP4163685A4 (en) 2020-07-03 2021-06-17 OPTICAL WAVEGUIDE STRUCTURE AND MANUFACTURING METHOD, OPTICAL WAVEGUIDE MODULE, OPTICAL SWITCHING DEVICE AND SYSTEM
US18/148,879 US20230152516A1 (en) 2020-07-03 2022-12-30 Optical Waveguide Structure and Manufacturing Method, Optical Waveguide Module, Optical Switching Device, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010637223.4 2020-07-03
CN202010637223.4A CN113885130B (zh) 2020-07-03 2020-07-03 光波导结构及制造方法、光波导模块、光交换设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,879 Continuation US20230152516A1 (en) 2020-07-03 2022-12-30 Optical Waveguide Structure and Manufacturing Method, Optical Waveguide Module, Optical Switching Device, and System

Publications (1)

Publication Number Publication Date
WO2022001685A1 true WO2022001685A1 (zh) 2022-01-06

Family

ID=79013349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100734 WO2022001685A1 (zh) 2020-07-03 2021-06-17 光波导结构及制造方法、光波导模块、光交换设备及系统

Country Status (4)

Country Link
US (1) US20230152516A1 (zh)
EP (1) EP4163685A4 (zh)
CN (1) CN113885130B (zh)
WO (1) WO2022001685A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818986A (en) * 1996-10-15 1998-10-06 Asawa; Charles K. Angular Bragg reflection planar channel waveguide wavelength demultiplexer
US6385376B1 (en) * 1998-10-30 2002-05-07 The Regents Of The University Of California Fused vertical coupler for switches, filters and other electro-optic devices
CN2500036Y (zh) * 2001-09-14 2002-07-10 华中科技大学 光分叉复用器件
CN110568552A (zh) * 2019-07-24 2019-12-13 浙江大学 一种大规模阵列交叉波导重组分离结构及其设计方法
CN112925057A (zh) * 2019-12-06 2021-06-08 中国科学院上海微系统与信息技术研究所 三维集成层间光互联结构及形成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917980A (en) * 1992-03-06 1999-06-29 Fujitsu Limited Optical circuit device, its manufacturing process and a multilayer optical circuit using said optical circuit device
WO2003014010A1 (en) * 2001-08-08 2003-02-20 Jsr Corporation Three-dimensional opto-electronic micro-system
CN2611937Y (zh) * 2003-04-11 2004-04-14 中国科学院上海光学精密机械研究所 40×40波长无阻塞光开关
US20050047708A1 (en) * 2003-08-26 2005-03-03 Kelvin Ma Optical interconnect and method for making the same
CN108061937A (zh) * 2017-12-22 2018-05-22 中国科学院半导体研究所 一种用于链路交换的多模光开关结构
CN110568560B (zh) * 2019-07-24 2021-06-15 浙江大学 一种基于Benes结构且具有均衡损耗的大规模光开关拓扑阵列芯片实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818986A (en) * 1996-10-15 1998-10-06 Asawa; Charles K. Angular Bragg reflection planar channel waveguide wavelength demultiplexer
US6385376B1 (en) * 1998-10-30 2002-05-07 The Regents Of The University Of California Fused vertical coupler for switches, filters and other electro-optic devices
CN2500036Y (zh) * 2001-09-14 2002-07-10 华中科技大学 光分叉复用器件
CN110568552A (zh) * 2019-07-24 2019-12-13 浙江大学 一种大规模阵列交叉波导重组分离结构及其设计方法
CN112925057A (zh) * 2019-12-06 2021-06-08 中国科学院上海微系统与信息技术研究所 三维集成层间光互联结构及形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIMURA TETSUZO, TSUKADA SATOSHI, KAWAKAMI SHINJI, ARAI YUKIHIRO, KUROKAWA HIROAKI, ASAMA KUNIHIKO: "Three-dimensional micro-optical switching system (3D-MOSS) architecture", PROCEEDINGS OF SPIE, SPIE, 1000 20TH ST. BELLINGHAM WA 98225-6705 USA, vol. 4653, 7 June 2002 (2002-06-07), 1000 20th St. Bellingham WA 98225-6705 USA , XP055885384, ISSN: 0277-786X, ISBN: 978-1-5106-4548-6, DOI: 10.1117/12.469635 *

Also Published As

Publication number Publication date
CN113885130B (zh) 2023-02-03
EP4163685A4 (en) 2023-11-15
US20230152516A1 (en) 2023-05-18
CN113885130A (zh) 2022-01-04
EP4163685A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
EP1237040B1 (en) Integrated optical elements
US6501875B2 (en) Mach-Zehnder inteferometers and applications based on evanescent coupling through side-polished fiber coupling ports
US6490391B1 (en) Devices based on fibers engaged to substrates with grooves
US6556746B1 (en) Integrated fiber devices based on Mach-Zehnder interferometers and evanescent optical coupling
US6625349B2 (en) Evanescent optical coupling between a waveguide formed on a substrate and a side-polished fiber
KR20150032753A (ko) 코어 선택 광 스위치
WO2007123157A1 (ja) 波長群光分波器、波長群光合波器、および波長群光選択スイッチ
JP4705067B2 (ja) 三次元交差導波路
US6865310B2 (en) Multi-layer thin film optical waveguide switch
CN108292017A (zh) 使用不对称1x2元件的大规模光学开关
US6956987B2 (en) Planar lightwave wavelength blocker devices using micromachines
US6597833B1 (en) Wavelength-division multiplexers and demultiplexers based on mach-zehnder interferometers and evanescent coupling
WO2019108833A1 (en) Wafer-scale-integrated silicon-photonics-based optical switching system and method of forming
US9654851B2 (en) Optical cross-connect device
US7006729B2 (en) Optical components having reduced insertion loss
WO2022001685A1 (zh) 光波导结构及制造方法、光波导模块、光交换设备及系统
JP6630098B2 (ja) 光信号処理装置
WO2021227660A1 (zh) 光交换装置、重定向方法、可重构光分插复用器及系统
WO2014049942A1 (ja) スイッチ装置
US10254625B2 (en) Optical signal processing device
JP6491563B2 (ja) 光クロスコネクト装置
JP2015043018A (ja) 光信号処理装置
CN114924357B (zh) 一种基于级联马赫-曾德干涉仪结构的波分复用光延时线
JP4634815B2 (ja) 光フィルタ
TW201321811A (zh) 光開關

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021833665

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE