WO2022001477A1 - 一种人工介质透镜制作方法及其人工介质透镜 - Google Patents

一种人工介质透镜制作方法及其人工介质透镜 Download PDF

Info

Publication number
WO2022001477A1
WO2022001477A1 PCT/CN2021/095359 CN2021095359W WO2022001477A1 WO 2022001477 A1 WO2022001477 A1 WO 2022001477A1 CN 2021095359 W CN2021095359 W CN 2021095359W WO 2022001477 A1 WO2022001477 A1 WO 2022001477A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric constant
ceramic
artificial
composite
lens
Prior art date
Application number
PCT/CN2021/095359
Other languages
English (en)
French (fr)
Inventor
吕晨熙
黄卫
Original Assignee
北京高信达通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京高信达通信科技股份有限公司 filed Critical 北京高信达通信科技股份有限公司
Priority to US17/928,020 priority Critical patent/US20230253716A1/en
Priority to EP21833169.2A priority patent/EP4175071A1/en
Publication of WO2022001477A1 publication Critical patent/WO2022001477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/10Refracting or diffracting devices, e.g. lens, prism comprising three-dimensional array of impedance discontinuities, e.g. holes in conductive surfaces or conductive discs forming artificial dielectric

Definitions

  • the present invention relates to the field of antennas, in particular to a method for manufacturing an artificial medium lens and an artificial medium lens thereof.
  • the dielectric lens is a component used in the communication antenna.
  • the traditional Lunberg sphere antenna is made by two processes: punching and foaming.
  • the punching method is difficult for technicians, and the foaming method has a low dielectric constant.
  • Other antennas processed by special materials the material density is high.
  • Patent application 201711122204.2 proposes a low-density artificial dielectric multilayer cylindrical lens, which is composed of n concentric layers, each of which contains a low dielectric constant base material and a high dielectric constant, low specific gravity additive material,
  • the base material is a lightweight foam material, generally plastic.
  • the invention provides a method for manufacturing an artificial medium lens and the artificial medium lens, and solves the problems of poor consistency of existing antenna parameters, large scattering and more interference in two-way communication.
  • the present invention is realized as follows:
  • an embodiment of the present invention provides a method for manufacturing an artificial dielectric lens, comprising the following steps: printing a ceramic slurry on a substrate, generating a printed pattern, curing the printed pattern into a ceramic dry film at a temperature, and mixing the printed pattern into a ceramic dry film.
  • the base materials together form a composite board; the material and/or concentration of the ceramic powder in the ceramic slurry used are adjusted correspondingly at different positions of the printed pattern, so that the dielectric constant of the composite board made after adjustment meets the artificial requirements.
  • the preset dielectric constant of the dielectric lens is distributed on the plane; the centers of the plurality of adjusted composite plates are aligned to form a composite body, and the composite body includes the artificial dielectric lens.
  • the ceramic slurry contains at least one ceramic powder, and the dielectric constant of the ceramic dry film can be changed by adjusting the ratio of ceramic powders of different materials.
  • the method further comprises: adjusting the thickness of the ceramic dry film, so that the dielectric constant of the composite plate made after adjustment satisfies the preset dielectric constant plane distribution of the artificial dielectric lens.
  • the preset dielectric constant plane distribution of the artificial dielectric lens is 2.05-1
  • the preset dielectric constant plane distribution is the projection of the preset dielectric constant spatial distribution on a horizontal or vertical plane
  • the preset dielectric constant plane distribution is The spatial distribution of permittivity is concentric spheres or concentric columns.
  • the printed graphics are circular or rectangular.
  • the printed pattern is a concentric circle or a rectangle with the same center position
  • the dielectric constant of the center circle or rectangle is adjusted by selecting high dielectric constant ceramic powders of different materials, and each circle or rectangle of the outer layer passes through Select different concentrations of ceramic paste to adjust the dielectric constant.
  • the substrate is a low dielectric constant substrate covered with glue and/or covered with an ultra-thin cellulose film.
  • the method further comprises: adding a certain proportion of resin and dispersant to the ceramic slurry, the content of the resin is 5-20%, and the concentration of the dispersant is 0.1%-0.5%.
  • the preparation method of the ceramic dry film is as follows: the ceramic slurry is solidified and formed at 70° C., the temperature is continued to rise to the melting point of the substrate, and a ceramic dry layer is formed on the surface of the substrate.
  • an embodiment of the present invention also provides an artificial dielectric lens, which is manufactured by the above method, comprising: an artificial dielectric lens in the composite body, which is composed of a plurality of composite plates aligned at the center; the composite plate is composed of a ceramic dry film and a The substrate is composed of a ceramic slurry that is printed on the substrate to generate a printed pattern, and the printed pattern is cured by heating to form a ceramic dry film.
  • the beneficial effects of the present invention include: the artificial dielectric lens provided by the present invention, the ceramic paste printing technology enables the dielectric constant to be distributed arbitrarily, and the dielectric constant can be precisely changed by adjusting the type of ceramic powder material and the concentration of the paste, so that the artificial dielectric lens of the present invention can be The dielectric constant distribution is stable and the accurate antenna parameters are consistent.
  • Fig. 1 is a kind of artificial medium lens manufacturing method process flow embodiment
  • Fig. 2 is a kind of equivalent dielectric constant distribution embodiment
  • Figure 3(a) is a ceramic slurry of an embodiment of an artificial dielectric lens composite plate
  • Figure 3 (b) is a composite board of an artificial dielectric lens composite board embodiment
  • Fig. 4 (a) is the cylindrical lens of the first artificial medium cylindrical lens embodiment
  • Fig. 4 (b) is the composite plate of the first artificial medium cylindrical lens embodiment
  • Fig. 5 (a) is the cylindrical lens of the second artificial medium cylindrical lens embodiment
  • Fig. 5(b) is a composite plate of the second artificial medium cylindrical lens embodiment.
  • the composite plate in the printed ceramic body artificial dielectric lens of the present invention includes a base material and a ceramic dry film
  • the dielectric constant of the composite plate can be adjusted by adjusting the thickness of the ceramic dry film, and by adjusting the concentration of the ceramic slurry and/or Or ceramic powder materials can adjust the dielectric constant of the ceramic dry film, and the dielectric constant of the ceramic dry film can be changed by using a variety of ceramic powders.
  • the electrical constant is stable and accurate; secondly, in the present invention, the composite plates are overlapped in parallel to form a composite body, and the composite body contains an artificial dielectric lens that satisfies the spatial distribution of the dielectric constant and satisfies the preset distribution, so that the dielectric constant distribution of the artificial dielectric lens is stable and the antenna is stable.
  • the orientation map is more regular.
  • FIG. 1 is an example of a method for manufacturing an artificial dielectric lens, which can be used to manufacture a dielectric cylindrical lens or a dielectric spherical lens with an accurate and uniform dielectric constant distribution.
  • a method for manufacturing an artificial dielectric lens includes the following steps :
  • Step 101 printing a ceramic slurry on a substrate to generate a printed pattern, heating up to solidify the printed pattern into a ceramic dry film, and forming a composite board together with the substrate.
  • the substrate is a low dielectric constant substrate, which can be covered with glue and/or covered with an ultra-thin cellulose film.
  • the ceramic powder material is preferably high dielectric constant ceramic powder, and the dielectric constants of various types of ceramic powders are as follows: aluminosilicate 4-7, alumina 8-9, silicon carbide 9-10, titanium dioxide, Titanate: 15-10000, due to the high dielectric constant of titanate ceramic powder, titanate ceramic powder, such as barium titanate and calcium titanate, can be selected in the present invention.
  • ceramic powder materials there may be one or more ceramic powder materials in the application of the present invention, and optimally, two types of ceramic powders with different types of materials are used.
  • the dielectric constants in the present application are all relative dielectric constants, and the equivalent dielectric constant is to replace the non-uniformly distributed dielectric constant with the uniformly distributed equivalent dielectric constant.
  • the equivalent permittivity in is the relative permittivity.
  • the ceramic slurry is configured by adding the ceramic powder to carbon nanotubes.
  • An example of the ceramic slurry is to take carbon nanotubes and ceramic powder (such as silicon carbide powder), The solid content ratio of the two ranges from 2:98 to 5:95; the carbon nanotubes are prepared into a carbon nanotube aqueous solution with a concentration of 3% to 10%; the carbon nanotube aqueous solution is ball-milled to make a ball-milled carbon nanotube aqueous solution; The silicon powder is put into the carbon nanotube aqueous solution, and ball-milled to form a silicon carbide mixed slurry, which is the ceramic slurry in the embodiment of the present invention.
  • the ceramic slurry made with this formula is not easy to dry and crack.
  • a resin and a dispersant may be added to the ceramic slurry, the resin and the dispersant are both organic chemical solvents, and the resin and the dispersant occupy a certain proportion in the aqueous solution of the ceramic slurry
  • the resin is ethylene glycol diglycidyl ether (EGDE)
  • the dispersant is ammonium polyacrylate
  • the content of the resin is fixed at 5-20%
  • the concentration of the dispersant is 0.1%- 0.5%.
  • step 101 the step of curing the ceramic into a ceramic dry film is performed at a temperature above 50 degrees Celsius (preferably, 70 degrees Celsius), so that the organic monomers in the ceramic slurry are cross-linked, and the temperature of the ceramic slurry is continued to rise and heat preservation until the ceramic dry film is obtained.
  • a temperature above 50 degrees Celsius preferably, 70 degrees Celsius
  • step 101 the printed pattern is heated to solidify into a ceramic dry film or a ceramic blank, which together with the base material constitutes a composite board.
  • step 101 there are one or more printed patterns, when there is one printed pattern, it can be a circle or a rectangle, and when there are multiple printed patterns, it can be concentric circles or the same center position rectangle.
  • the surface of the printed pattern is transiently heated to the melting point of the substrate, and a ceramic drying layer is formed on the surface of the substrate.
  • the surface of the printed graphic is transiently heated to the melting point of the substrate using a hot press, and the high temperature holding time is ⁇ 0.5 seconds. During this transient heating process, the other parts of the substrate other than the printed pattern surface do not heat up.
  • Step 102 correspondingly adjust the material type and/or concentration of the ceramic powder in the ceramic slurry used at different positions of the printed pattern, so that the dielectric constant of the composite board made after adjustment meets the preset requirements of the artificial dielectric lens. Set the dielectric constant plane distribution.
  • step 102 in order to make the equivalent dielectric constant of the artificial dielectric lens finally produced meet the preset value, it is necessary to change the material type of ceramic powder and/or the concentration of ceramic slurry, where the concentration of ceramic slurry refers to The mass concentration of ceramic powder in the ceramic slurry.
  • the equivalent permittivity distribution of the artificial dielectric lens is a spatial distribution, which is a preset permittivity spatial distribution.
  • the equivalent permittivity distribution of the artificial medium lens is a concentric column distribution
  • the equivalent permittivity distribution of the artificial medium lens is a concentric spherical distribution.
  • the preset dielectric constant plane distribution is a projection of the preset dielectric constant spatial distribution on a horizontal or vertical plane, and the preset dielectric constant spatial distribution is projected in a composite board installation manner to obtain a preset Dielectric constant planar distribution.
  • the predetermined planar distribution of dielectric constant is the horizontal projection of the spatial distribution of the predetermined dielectric constant, and the composite body is obtained by installing the composite plate horizontally.
  • the preset dielectric constant plane distribution is a vertical projection of the preset dielectric constant spatial distribution.
  • the thickness of the base material and the ceramic dry film can be preliminarily determined according to the preset dielectric constant plane distribution, so as to further estimate the dielectric constant of the ceramic dry film.
  • the dielectric constant of the ceramic dry film Constant select appropriate ceramic powder and design appropriate ceramic slurry concentration.
  • step 102 in order to make the dielectric constant of the composite board meet the preset dielectric constant plane distribution of the artificial dielectric lens, it is necessary to adjust the material of the ceramic powder in the ceramic slurry to be used at different positions of the printed pattern. and/or concentration.
  • the principle of adjusting the ceramic slurry to change the equivalent dielectric constant of the composite board is that under the condition that the quality of the printed ceramic slurry per unit area is the same, when the concentration of the ceramic slurry is different, the dry matter quality is different, so the film thickness after curing is different, making the ceramic slurry different.
  • the equivalent dielectric constant of the composite board composed of dry film + substrate is different.
  • the principle of adjusting the type of ceramic powder to change the equivalent dielectric constant of the composite board is that under the conditions of the same concentration and quality of the printed ceramic paste per unit area, the film thickness after curing is the same, and the dry matter dielectric constant is different, then the ceramic dry film + base.
  • the equivalent dielectric constants of composite panels composed of different materials are different.
  • the printed pattern is a concentric circle or a rectangle with the same center position, and the dielectric constant of the center circle or rectangle is adjusted by selecting ceramic powders with high dielectric constant of different materials, which can effectively reduce the thickness of the core layer,
  • the dielectric constant of each circle or rectangle of the outer layer can be adjusted by selecting different concentrations of ceramic slurries to achieve precise control of the dielectric constant.
  • the method further includes: adjusting the thickness of the ceramic dry film, so that the dielectric constant of the composite plate made after adjustment satisfies the preset dielectric constant plane distribution of the artificial dielectric lens.
  • the thickness of the ceramic dry film can be achieved by local repeated printing, which can change the equivalent dielectric constant of the composite board (substrate + ceramic dry film).
  • step 102 in order to make the ceramic slurry of the same concentration have different dielectric constants, preferably, at least two kinds of ceramic powders are used, and different dielectric constants are obtained by adjusting the ratio.
  • step 102 the method for changing the equivalent dielectric constant of the composite board may also be at least one of the following:
  • the dielectric constant of the ceramic dry film can be changed, thereby changing the equivalent dielectric constant of the composite board, for example, changing the two ceramic powders.
  • the equivalent dielectric constant of the composite board (substrate + ceramic dry film) can be changed by changing the density of discrete points in the printed pattern.
  • the equivalent permittivity of the composite board can be further finely adjusted.
  • the equivalent permittivity is lower than that of the flat-coated pattern; when When the density of discrete points is reduced or the area of discrete points is reduced, the equivalent dielectric constant is further reduced due to the increase of voids.
  • Step 103 Align the centers of the adjusted composite plates to form a composite body, and the composite body includes the artificial medium lens.
  • a plurality of composite boards with different adjusted printed patterns may be overlapped to form a composite body, or a plurality of composite boards with the same adjusted printed patterns may be stacked to form a composite body.
  • the difference of the printed patterns means that the concentration of the ceramic slurry is different, or the thickness of the printed pattern is different, or the composition of the ceramic slurry of the printed pattern is different, so that different positions of the dielectric composite board are formed.
  • the equivalent permittivity of forms the desired distribution.
  • step 103 the composite body after the combination of the plurality of composite plates has an equivalent dielectric constant of concentric spherical distribution or concentric cylindrical distribution.
  • the embodiment of the present invention provides a method for manufacturing an artificial medium cylindrical lens or a dielectric ball lens, the dielectric constant distribution is 2.05-1, the height of the medium cylindrical lens manufactured according to the method of the present invention is 20-70 cm, and the diameter is 20-90 cm; The diameter of the dielectric ball lens manufactured according to the method of the present invention is 20-90 cm.
  • the above distribution is discretized along the horizontal or vertical direction to form a series of centrally symmetric concentric circles; the printed pattern is a series of concentric circles according to the above distribution, so that the equivalent dielectric constant of the composite board at the printed pattern satisfies the above distribution, forming Composite board; N-layer composite boards are combined, and the center of the printed graphics of each composite board is aligned to form a composite body, and the composite body contains an artificial medium ball lens.
  • the embodiment of the present invention can realize an artificial dielectric lens with accurate and stable dielectric constant distribution, stable antenna pattern, simple manufacturing process, convenient processing and production, and strong practicability.
  • FIG. 2 is the equivalent dielectric constant distribution of an embodiment of an artificial dielectric lens composite panel, which is the dielectric constant of a composite panel of a lens body with a 6-step equivalent dielectric constant distribution, which can be used as a dielectric cylindrical lens or a dielectric sphere projection The preset dielectric constant plane distribution.
  • Figure 2 can be used to represent the relationship between the position of the printed graphic and the plane distribution of the preset dielectric constant of the composite board.
  • the abscissa is the radial position, which is the distance between the point on the printed graphic and the center of the printed graphic.
  • the abscissa is the distance between the point on the printed graphic and the center of the circle along the radial direction
  • the ordinate is the value of the equivalent dielectric constant.
  • the equivalent dielectric constant of the composite board is distributed at 2. ⁇ 1.
  • the maximum value is 1.85 and the minimum value is 1.08.
  • the radial range of each composite plate along the radial direction is 0-47.7 mm
  • the equivalent dielectric constant is 1.85
  • the radial range is 47.7-78.2 mm
  • the equivalent dielectric constant is 1.6
  • the radial range is 78.2 ⁇ 104.2mm
  • the equivalent dielectric constant is 1.45
  • the radial range is 104.2 ⁇ 128.4mm
  • the equivalent dielectric constant is 1.3
  • the radial range is 128.4 ⁇ 156.6mm
  • the equivalent dielectric constant is 1.15
  • the radial range is 156.6 ⁇ 180.1mm
  • the equivalent dielectric constant is 1.08.
  • the measurement of the equivalent dielectric constant includes: the designed dielectric constant of each layer in the artificial dielectric lens, as the target equivalent dielectric constant of the composite board, according to the thickness of the ceramic dry film and the thickness of the substrate, Estimate the target dielectric constant of the ceramic dry film (dry matter); use a dielectric constant tester to test the dielectric constant of each initial composite board, adjust the concentration of ceramic slurry and the type of ceramic powder material, so that the produced composite board conforms to the composite board.
  • the target dielectric constant of the board is determined, so the required ceramic slurry concentration and ceramic powder material type are determined; according to the selected ceramic slurry concentration and ceramic powder type, a printed pattern is formed on the surface of the substrate, and the composite board is tested according to step 101.
  • Equivalent dielectric constant is determined, so the required ceramic slurry concentration and ceramic powder material type are determined; according to the selected ceramic slurry concentration and ceramic powder type, a printed pattern is formed on the surface of the substrate, and the composite board is tested according to step 101. Equivalent dielectric constant.
  • the printed patterns are concentric circles
  • the equivalent dielectric constant distribution of the composite board is in accordance with Fig. 2
  • the thickness of the substrate is 2 mm
  • the dielectric constant of the dry matter (ceramic powder) is 9.85
  • the slurry concentration is 80%
  • the thickness of the ceramic dry film is 0.2mm.
  • the concentration of the ceramic slurry obtained according to the radial position and the equivalent dielectric constant in Figure 2 is the same as that of the ceramic slurry.
  • the dry film thicknesses are listed in Table 1 below.
  • Table 1 An example of composite board parameters for a concentric circle printed graphic
  • the printed patterns are concentric circles
  • the equivalent dielectric constant distribution of the composite board is in accordance with Fig. 2
  • the thickness of the substrate is 4 mm
  • the dielectric constant of the dry matter (ceramic powder) and the ceramic The slurry concentration is adjusted. Under the condition that the slurry concentration is 80%, the thickness of the ceramic dry film is 0.2mm. Under the condition of the same quality of ceramic slurry per unit area, the ceramic obtained according to the radial position and equivalent dielectric constant in Figure 2
  • the slurry concentration and ceramic dry film thickness are shown in Table 2 below.
  • the embodiment of the present invention provides the equivalent dielectric constant distribution of the composite board and the two composition modes of the composite board.
  • a composite board that satisfies the preset dielectric constant distribution can be produced.
  • the composite plate of the embodiment of the present invention can be used to manufacture an artificial medium cylindrical lens or an artificial medium spherical lens.
  • Fig. 3(a) is a ceramic slurry of an embodiment of an artificial dielectric lens composite plate
  • Fig. 3(b) is a composite plate of an embodiment of an artificial dielectric lens composite plate, which can be used to make a dielectric cylindrical lens or a dielectric ball lens. composite board.
  • FIG. 3( a ) includes: a ceramic slurry 34 and a substrate 32 , and the ceramic slurry is used for making a ceramic dry film.
  • the composite board is composed of a ceramic dry film and a base material, the ceramic slurry is printed on the base material to generate a printed pattern, and the printed pattern is cured into a ceramic dry film by heating up.
  • the substrate is a low dielectric constant substrate, such as sponge foam paper or flexible foam plastic, and a ceramic dry film forms a multi-layer composite material for adjusting the equivalent dielectric constant.
  • the material of the sponge foam paper is, for example, polystyrene, polyvinyl chloride, polyethylene; most preferably, EPE material is used.
  • the thickness of the sponge foam paper is 0.5 to 5 mm.
  • the printed pattern is three concentric circles, from the center to the surface, the ceramic slurry concentrations are ⁇ 1 , ⁇ 2 , ⁇ 3 respectively , and ⁇ 1 > ⁇ 2 > ⁇ 3 , thus The dielectric constant of the fabricated ceramic dry film decreases from the center to the surface.
  • FIG. 3( b ) is a composite board.
  • the composite board 3 includes a ceramic dry film 31 , a base material 32 , and a cellulose film 33 , which can be used to make an artificial medium lens.
  • the composite board is composed of a ceramic dry film and a base material, the ceramic slurry is printed on the base material to generate a printed pattern, and the printed pattern is cured into a ceramic dry film by heating up.
  • the substrate is a low dielectric constant substrate, such as sponge foam paper or flexible foam plastic, and a ceramic dry film forms a multi-layer composite material for adjusting the equivalent dielectric constant.
  • the material of the sponge foam paper is, for example, polystyrene, polyvinyl chloride, polyethylene; most preferably, EPE material is used.
  • the thickness of the sponge foam paper is 0.5 to 5 mm.
  • the substrate is coated and/or covered with an ultra-thin cellulose film to improve print quality.
  • the dielectric constants of the cellulose film and the substrate are the same, and the dielectric constants of the ceramic dry film from the center to the surface are ⁇ 1 , ⁇ 2 , ⁇ 3 respectively , and ⁇ 1 > ⁇ 2 > ⁇ 3 , the equivalent permittivity of the composite plate thus made decreases from the center to the surface.
  • the embodiments of the present invention provide ceramic dry films with different dielectric constants. Changing the concentration of the ceramic slurry can change the dielectric constant of the ceramic dry film, thereby changing the equivalent dielectric constant of the composite plate, and further changing the dielectric constant of the composite body.
  • the method of changing the slurry concentration to change the equivalent dielectric constant of the composite board is precisely controlled, and the obtained dielectric constant distribution is stable.
  • Fig. 4(a) is a cylindrical lens of an embodiment of the first artificial medium cylindrical lens
  • Fig. 4(b) is a composite plate of an embodiment of the first artificial medium cylindrical lens, as an embodiment of the present invention
  • FIG. 4( b ) provides an artificial medium cylindrical lens, specifically: an artificial medium lens 2 is arranged in the composite body 1 , which is composed of a plurality of composite plates 3 aligned at the center.
  • the composite board is composed of a ceramic dry film and a base material, the ceramic slurry is printed on the base material to generate a printed pattern, and the printed pattern is cured into a ceramic dry film by heating up.
  • the equivalent dielectric constant of the artificial dielectric lens is distributed in a concentric column shape, and the composite body is formed by combining horizontal composite plates.
  • the equivalent dielectric constant along the radial direction is the preset dielectric constant plane distribution of the artificial dielectric lens.
  • the printed pattern is a series of concentric circles, so that the equivalent dielectric constant of the composite board at the printed pattern satisfies the distribution from ⁇ 1 to ⁇ M decreasing, forming a horizontal composite board; as shown in Figure 4 ( a), N layers of horizontal composite boards are combined in the vertical direction, and the printed patterns of each composite board are aligned to form a composite body, and the composite body contains an artificial medium cylindrical lens.
  • the dielectric constant in the vertical direction is constant
  • the dielectric constant in the horizontal direction decreases from the center to the surface
  • the composite plate is vertically installed to obtain the composite body
  • the planar distribution is the horizontal projection of the spatial distribution of the preset permittivity.
  • Fig. 5(a) is a cylindrical lens of a second artificial medium cylindrical lens embodiment
  • Fig. 5(b) is a composite plate of a second artificial medium cylindrical lens embodiment, as an embodiment of the present invention
  • FIG. 5( b ) provides an artificial medium cylindrical lens, specifically: an artificial medium lens 2 is provided in the composite body 1 , which is composed of a plurality of composite plates 3 aligned at the center.
  • the composite board is composed of a ceramic dry film and a base material, the ceramic slurry is printed on the base material to generate a printed pattern, and the printed pattern is cured into a ceramic dry film by heating up.
  • the equivalent dielectric constant of the artificial dielectric lens is distributed in a concentric column shape, and the composite body is formed by combining vertical composite plates.
  • the dielectric constant in the vertical direction is constant
  • the dielectric constant in the horizontal direction decreases from the center to the surface
  • the composite plate is horizontally installed to obtain the composite body
  • the planar distribution is the vertical projection of the spatial distribution of the preset permittivity.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

一种人工介质透镜制作方法,包含以下步骤:在基材(32)上印刷陶瓷浆料,产生印制图形,升温将印制图形固化为陶瓷干膜(31),与基材(32)共同构成复合板(3)(101);在印制图形的不同位置相应调整使用的陶瓷浆料中陶瓷粉的材料和或浓度,使调整后制成的复合板(3)的介电常数满足人工介质透镜的预设介电常数平面分布(102);将多个调整后制成的复合板(3)中心对齐,构成复合体,复合体包含人工介质透镜(103)。该方法实现了介电常数稳定分布的人工介质透镜,解决了现有天线参数一致性差,散射较大,双向通信干扰较多的问题。

Description

一种人工介质透镜制作方法及其人工介质透镜
本申请要求于2020年06月28日提交中国国家知识产权局、申请号为202010597009.0、发明名称为“一种人工介质透镜制作方法及其人工介质透镜”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线领域,尤其涉及人工介质透镜制作方法及其人工介质透镜。
背景技术
介质透镜是在通信天线中使用的部件,传统龙伯球天线通过打孔和发泡两种工艺制作,打孔方式技工难度大,发泡方式介电常数较低,其他通过特种材料加工的天线,材料密度较大。专利申请201711122204.2提出的一种密度较低的人工介质多层圆柱透镜,由n个同心层构成,每个同心层中包含低介电常数的基材和高介电常数、低比重的添加材料,基材为轻型发泡材料,普遍为塑料,在塑料生产中加入不同类型或数量的添加材料,将使工艺变复杂;如果将添加物播撒在基材表面,则不容易控制均匀性,分布在基材表面的添加材料的颗粒还会造成散射,对电磁性能产生影响。
发明内容
本发明提供人工介质透镜制作方法及其人工介质透镜,解决现有天线参数一致性差,散射较大,双向通信干扰较多的问题。
为解决上述问题,本发明是这样实现的:
第一方面,本发明实施例提供一种人工介质透镜制作方法,包含以下步骤:在基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜,与所述基材共同构成复合板;在所述印制图形的不同位置相应调整使用的所述陶瓷浆料中陶瓷粉的材料和/或浓度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布;将多个调整后制成的复合板中心对齐,构成复合体,所述复合体包含所述人工介质透镜。
优选地,所述陶瓷浆料包含至少一种陶瓷粉,调整不同材料陶瓷粉的比例 改变所述陶瓷干膜的介电常数。
优选地,所述方法还包含:调整所述陶瓷干膜的厚度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布。
优选地,所述人工介质透镜的预设介电常数平面分布为2.05~1,所述预设介电常数平面分布为预设介电常数空间分布在水平或垂直平面的投影,所述预设介电常数空间分布为同心球或同心柱状。
优选地,所述印制图形为圆形或矩形。
优选地,所述印制图形为同心圆或中心位置相同的矩形,中心的圆形或矩形通过选用不同材料的高介电常数的陶瓷粉调整介电常数,外层的各圆形或矩形通过选用不同浓度的陶瓷浆料调整介电常数。
优选地,所述基材为低介电常数基材,覆胶和/或覆盖超薄纤维素膜。
优选地,所述方法还包含:在所述陶瓷浆料中加入一定比例的树脂和分散剂,所述树脂的含量为5~20%,所述分散剂的浓度为0.1%~0.5%。
优选地,所述陶瓷干膜的制作方法为:将所述陶瓷浆料在70℃下固化成型,继续升温至所述基材的熔点,在所述基材表面形成陶瓷干化层。
第二方面,本发明实施例还提供一种人工介质透镜,使用上述方法制作而成,包含:复合体内有人工介质透镜,由多个复合板中心对齐组成;所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜。
本发明有益效果包括:本发明提供的人工介质透镜,陶瓷浆料印刷技术使得介电常数可任意分布,通过调整陶瓷粉材料类型和浆料浓度可精确改变介电常数,使得本发明人工介质透镜介电常数分布稳定、准确天线参数一致性好。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为一种人工介质透镜制作方法流程实施例;
图2为一种等效介电常数分布实施例;
图3(a)为一种人工介质透镜复合板实施例的陶瓷浆料;
图3(b)为一种人工介质透镜复合板实施例的复合板;
图4(a)为第一人工介质圆柱透镜实施例的圆柱透镜;
图4(b)为第一人工介质圆柱透镜实施例的复合板;
图5(a)为第二人工介质圆柱透镜实施例的圆柱透镜;
图5(b)为第二人工介质圆柱透镜实施例的复合板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明创新点如下:第一,本发明印刷陶瓷体人工介质透镜中复合板包含基材和陶瓷干膜,通过调节陶瓷干膜厚度可调整复合板介电常数,通过调整陶瓷浆料浓度和/或陶瓷粉材料可调整陶瓷干膜的介电常数,通过使用多种陶瓷粉可改变陶瓷干膜的介电常数,因此,采用本发明陶瓷浆料印刷技术可实现介电常数任意分布,使得介电常数稳定、准确;第二,本发明将复合板平行重叠构成复合体,复合体中包含满足介电常数空间分布满足预设分布的人工介质透镜,使得人工介质透镜介电常数分布稳定,天线方向图更规则。
图1为一种人工介质透镜制作方法流程实施例,可用于制作介电常数分布准确、均匀的介质圆柱透镜或介质球透镜,作为本发明实施例,一种人工介质透镜制作方法,包含以下步骤:
步骤101,在基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜,与所述基材共同构成复合板。
在步骤101中,所述基材为低介电常数基材,可覆胶和/或覆盖超薄纤维素膜。
在步骤101中,陶瓷粉材料优选为高介电常数陶瓷粉,常用各种类陶瓷粉介电常数如下:铝硅酸盐4~7,氧化铝8~9,碳化硅9~10,二氧化钛、钛酸盐:15~10000,由于钛酸盐陶瓷粉介电常数较高,本发明可选用钛酸盐陶瓷粉,例如,钛酸钡、钛酸钙。
需要说明的是,本发明申请中的陶瓷粉材料可以为一个或多个,最优地,采用两种材料种类不同的陶瓷粉。
还需说明的是,在本发明申请中的介电常数均为相对介电常数,等效介电常数是将非均匀分布的介电常数用均匀分布的等效介电常数代替,本发明申请中的等效介电常数为相对介电常数。
在步骤101中,优选地,所述陶瓷浆料由所述陶瓷粉加入碳纳米管配置而成,所述陶瓷浆料的制作举例为,取碳纳米管和陶瓷粉(例如碳化硅粉),二者固体成份比例范围为2:98到5:95;将碳纳米管配制成浓度3%~10%的碳纳米管水溶液;将碳纳米管水溶液球磨,制成球磨碳纳米管水溶液;将碳化硅粉投入所述碳纳米管水溶液,球磨制成碳化硅混合浆料,即为本发明实施例中的陶瓷浆料。采用此配方制作的陶瓷浆料不容易干裂。
在步骤101中,进一步地,可在陶瓷浆料中加入树脂和分散剂,所述树脂和分散剂均为有机化学溶剂,所述树脂和所述分散剂在陶瓷浆料的水溶液中占一定的比例,例如,所述树脂为乙二醇二缩水甘油醚(EGDE),所述分散剂为聚丙烯酸铵,所述树脂的含量固定为5~20%,所述分散剂的浓度为0.1%~0.5%。加入树脂和分散剂可增加陶瓷浆料附着性,减少陶瓷干膜与印制平面的脱离和陶瓷干膜表面的裂纹,同时改善成型件的拉伸强度。
在步骤101中,陶瓷固化为陶瓷干膜的步骤是在50摄氏度以上(优选地,70摄氏度)条件下进行的,以便所述陶瓷浆料中的有机单体交联,将陶瓷浆料继续升温、保温,直至得到所述陶瓷干膜。
在步骤101中,升温将所述印制图形固化为陶瓷干膜或陶瓷坯体,与基材共同构成复合板。
在步骤101中,所述印制图形为一个或多个,所述印制图形为一个时,可以是圆形或矩形,所述印制图形为多个时,可以是同心圆或中心位置相同的矩形。
固化后,为增加陶瓷浆料附着性,优选地,印制图形表面瞬态升温至基材熔点,在基材表面形成陶瓷干化层。例如,使用热压机将印制图形表面瞬态升温至基材熔点,高温保持时间<0.5秒。在此瞬态升温过程中,基材除印制图形表面外的其他部分不升温。
步骤102,在所述印制图形的不同位置相应调整使用的所述陶瓷浆料中陶 瓷粉的材料种类和/或浓度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布。
在步骤102中,为使最终制作而成的人工介质透镜的等效介电常数满足预先设定的数值,需改变陶瓷粉的材料种类和/或陶瓷浆料浓度,这里陶瓷浆料浓度是指陶瓷浆料中陶瓷粉的质量浓度。
在步骤102中,人工介质透镜的等效介电常数分布为空间分布,为预设介电常数空间分布。当人工介质透镜为介质圆柱透镜时,人工介质透镜的等效介电常数分布为同心柱分布,当人工介质透镜为介质球透镜时,人工介质透镜的等效介电常数分布为同心球分布。
在步骤102中,所述预设介电常数平面分布是将预设介电常数空间分布在水平或垂直平面的投影,根据所述预设介电常数空间分布按复合板安装方式投影得到预设介电常数平面分布。例如,所述复合板垂直安装得到所述复合体,则所述预设介电常数平面分布是预设介电常数空间分布的水平投影,所述复合板水平安装得到所述复合体,则所述预设介电常数平面分布是预设介电常数空间分布的垂直投影。
在步骤102中,根据所述预设介电常数平面分布可初步确定所述基材、陶瓷干膜的厚度,从而进一步估算得到陶瓷干膜的介电常数,根据所述陶瓷干膜的介电常数,选用合适的陶瓷粉并设计合适的陶瓷浆料浓度。
在步骤102中,为使复合板的介电常数满足人工介质透镜的预设介电常数平面分布,需在所述印制图形的不同位置相应调整使用的所述陶瓷浆料中陶瓷粉的材料和/或浓度。
调整陶瓷浆料改变复合板等效介电常数的原理为,在单位面积印刷陶瓷浆料质量相同的条件下,陶瓷浆料浓度不同时,干物质质量不同,因此固化后膜厚不同,使得陶瓷干膜+基材组成的复合板等效介电常数不同。
调整陶瓷粉种类改变复合板等效介电常数的原理为,在单位面积印刷陶瓷浆料浓度和质量相同的条件下,固化后膜厚相同,干物质介电常数不同,则陶瓷干膜+基材组成的复合板等效介电常数不同。
在步骤102中,所述印制图形为同心圆或中心位置相同的矩形,中心的圆形或矩形通过选用不同材料的高介电常数的陶瓷粉调整介电常数,可有效减少核心层厚度,外层的各圆形或矩形通过选用不同浓度的陶瓷浆料调整介电常 数,可实现介电常数的精准控制。
在步骤102中,所述方法还包含:调整所述陶瓷干膜的厚度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布。
例如,通过局部多次重复印刷实现陶瓷干膜增厚,可改变复合板(基材+陶瓷干膜)的等效介电常数。
在步骤102中,为了使相同浓度的陶瓷浆料具有不同的介电常数,优选地,至少使用2种陶瓷粉,通过调整比例获得不同的介电常数。
在步骤102中,改变复合板等效介电常数的方法还可以为以下至少一种:
第一,改变不同类型的陶瓷粉的比例,由此制成陶瓷浆料,可使陶瓷干膜的介电常数改变,从而改变复合板的等效介电常数,例如,改变两种陶瓷粉的比例;第二,通过印制图形中离散点的密度变化,可改变复合板(基材+陶瓷干膜)的等效介电常数。当印制图形为离散点构成时,能够进一步精细地调整复合板等效介电常数,均匀分布的离散点中存在均匀分布的空隙时,等效介电常数小于平涂印制图形时;当离散点密度减小、或离散点面积减小时,由于空隙加大,等效介电常数进一步减小。
步骤103,将多个调整后的复合板中心对齐,构成复合体,所述复合体包含所述人工介质透镜。
在步骤103中,可将多个调整后的印制图形不同的复合板重叠,构成复合体,也可将多个调整后的印制图形相同的复合板重叠,构成复合体。
在步骤103中,所述印制图形不同,是指陶瓷浆料浓度不同,或所述印制图形的厚度不同,或所述印制图形的陶瓷浆料成分不同,使介电复合板不同位置的等效介电常数形成想要的分布。
在步骤103中,多个复合板组合后的复合体,等效介电常数为同心球分布,或同心柱状分布。
本发明实施例提供一种人工介质圆柱透镜或介质球透镜制作方法,介电常数分布为2.05~1,按照本发明方法制作而成的介质圆柱透镜高度为20~70cm,直径为20~90cm;按照本发明方法制作而成的介质球透镜直径为20~90cm。
例如,制作人工介质球透镜时,将球状的介电常数分布离散为M个值,沿径向的等效介电常数ε n(n=1~M)从ε 1到ε M逐渐降低,具体在2.05~1.00之间变化,最大值优选为2,最小值优选为1(空气相对介电常数)。
将以上分布沿水平或垂直方向离散化,形成一系列中心对称同心圆图形组合;按照以上分布印制图形为一系列同心圆,使印制图形处复合板等效介电常数满足以上分布,形成复合板;将N层复合板组合,每个复合板的印制图形中心对齐,组成复合体,复合体内包含一人工介质球透镜。
本发明实施例可实现介电常数分布准确、稳定的人工介质透镜,且天线方向图稳定,制作工艺简单,便于加工生产、实用性强。
图2为一种人工介质透镜复合板实施例的等效介电常数分布,为一种6台阶等效介电常数分布的透镜体的复合板介电常数,可作为介质圆柱透镜或介质球投影的预设介电常数平面分布。
图2可用于表示印制图形的位置与复合板预设介电常数平面分布的关系,横坐标为径向位置,为印制图形上的点与印制图形中心的距离,当印制图形为同心圆时,横坐标为印制图形上的点沿半径方向与圆心的距离,纵坐标为等效介电常数的数值,在本发明实施例中,复合板等效介电常数分布在2.~1.,例如,最大值为1.85,最小值为1.08。
在本发明实施例中,每一张复合板沿半径方向的径向范围为0~47.7mm、等效介电常数为1.85,径向范围为47.7~78.2mm、等效介电常数为1.6,径向范围为78.2~104.2mm、等效介电常数为1.45,径向范围为104.2~128.4mm、等效介电常数为1.3,径向范围为128.4~156.6mm、等效介电常数为1.15,径向范围为156.6~180.1mm、等效介电常数为1.08。
在本发明实施例中,等效介电常数的测量包含:人工介质透镜中各层设计的介电常数,作为复合板的目标等效介电常数,根据陶瓷干膜膜厚度和基材厚度,估算陶瓷干膜(干物质)的目标介电常数;使用介电常数测试仪测试各初制复合板的介电常数,调整陶瓷浆料浓度、陶瓷粉材料类型,使制成的复合板符合复合板目标介电常数,因此确定符合要求的陶瓷浆料浓度和陶瓷粉材料类型;按照选定的陶瓷浆料浓度和陶瓷粉类型,在基材表面形成印制图形,按照步骤101复合板,测试等效介电常数。
在本发明实施例中,例如,所述印制图形为同心圆,复合板的等效介电常数分布符合图2,选用基材厚度为2mm,干物质(陶瓷粉)介电常数为9.85,在浆料浓度为80%条件下,形成陶瓷干膜厚度0.2mm,在单位面积陶瓷浆料质量相同的条件下,根据图2径向位置、等效介电常数得到的陶瓷浆料浓度与 陶瓷干膜厚度如下表1。
表1一种同心圆印制图形的复合板参数举例
径向位置mm 复合板等效介电常数 陶瓷浆料浓度% 陶瓷干膜厚度mm
0~47.7 1.85 80.00 0.2000
47.7~78.2 1.6 57.66 0.1442
78.2~104.2 1.45 44.26 0.1107
104.2~128.4 1.3 30.86 0.0772
128.4~155.6 1.15 17.46 0.0437
155.6~180.1 1.08 11.21 0.0280
在本发明实施例中,再例如,所述印制图形为同心圆,复合板的等效介电常数分布符合图2,选用基材厚度为4mm,干物质(陶瓷粉)介电常数和陶瓷浆料浓度调整,在浆料浓度为80%条件下,形成陶瓷干膜厚度0.2mm,在单位面积陶瓷浆料质量相同的条件下,根据图2径向位置、等效介电常数得到的陶瓷浆料浓度与陶瓷干膜厚度如下表2。
表2另一种复合板参数举例
Figure PCTCN2021095359-appb-000001
本发明实施例提供了复合板的等效介电常数分布和复合板的两种组成方式,通过调整陶瓷粉的材料和/或陶瓷浆料浓度可制作满足预设介电常数分布的复合板,本发明实施例的复合板可用来制作人工介质圆柱透镜或人工介质球透镜。
图3(a)为一种人工介质透镜复合板实施例的陶瓷浆料;图3(b)为一种人工介质透镜复合板实施例的复合板,可用于制作介质圆柱透镜或介质球透镜的复合板。
图3(a)包含:陶瓷浆料34、基材32,所述陶瓷浆料用于制作陶瓷干膜。
所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜。
在本发明实施例中,所述基材为低介电常数基材,例如海绵发泡纸,或软质泡沫塑料,与陶瓷干膜构成多层复合材料,用来调整等效介电常数。海绵发泡纸的材料例如使用聚苯乙烯、聚氯乙烯、聚乙烯;最佳地,使用EPE材料。海绵发泡纸的厚度为0.5~5mm。
在本发明实施例中,所述印制图形为3个同心圆,由中心到表面,陶瓷浆料浓度分别为ρ 1、ρ 2、ρ 3,且ρ 1>ρ 2>ρ 3,由此制成的陶瓷干膜的介电常数由中心到表面递减。
图3(b)为一种复合板,所述复合板3,包含:陶瓷干膜31、基材32、纤维素膜33,可用于制作人工介质透镜。
所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜。
在本发明实施例中,所述基材为低介电常数基材,例如海绵发泡纸,或软质泡沫塑料,与陶瓷干膜构成多层复合材料,用来调整等效介电常数。海绵发泡纸的材料例如使用聚苯乙烯、聚氯乙烯、聚乙烯;最佳地,使用EPE材料。海绵发泡纸的厚度为0.5~5mm。优选地,基材覆胶和/或覆盖超薄纤维素膜,提高印刷质量。
在本发明实施例中,所述纤维素膜与所述基材的介电常数相同,所述陶瓷干膜由中心到表面介电常数分别为ε 1、ε 2、ε 3,且ε 1>ε 2>ε 3,由此制成的复合板的等效介电常数从中心到表面递减。
本发明实施例提供了介电常数不同的陶瓷干膜,改变陶瓷浆料浓度可以改变陶瓷干膜的介电常数,从而改变复合板的等效介电常数,进一步改变复合体的介电常数,改变浆料浓度从而改变复合板等效介电常数的方式控制精确、得到的介电常数分布稳定。
图4(a)为第一人工介质圆柱透镜实施例的圆柱透镜,图4(b)为第一人工介质圆柱透镜实施例的复合板,作为本发明实施例,
图4(b)提供了一种人工介质圆柱透镜,具体地:复合体1内有人工介质透镜2,由多个复合板3中心对齐组成。
所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜。
在本发明实施例中,人工介质透镜的等效介电常数成同心柱状分布,复合体由水平复合板组合而成。
在本发明实施例中,将圆柱的介电常数分布离散为M个值,沿径向的等效介电常数ε n(n=1~M)从ε 1到ε M逐渐降低,具体在2.00~1.00之间变化,最大值优选为2,最小值优选为1(空气相对介电常数),沿圆柱高度方向介电常数不变。
需要说明的是,沿径向的等效介电常数即为人工介质透镜的预设介电常数平面分布。
按照所述预设介电常数平面分布印制图形为一系列同心圆,使印制图形处复合板等效介电常数满足分布从ε 1到ε M递减,形成水平复合板;如图4(a),将N层水平复合板在垂直方向上组合,每个复合板的印制图形对齐,组成复合体,复合体内包含人工介质圆柱透镜。
本发明实施例提供的人工介质圆柱透镜,垂直方向介电常数不变,水平方向介电常数从中心到表面递减,所述复合板垂直安装得到所述复合体,则所述预设介电常数平面分布是预设介电常数空间分布的水平投影。
图5(a)为第二人工介质圆柱透镜实施例的圆柱透镜,图5(b)为第二人工介质圆柱透镜实施例的复合板,作为本发明实施例,
图5(b)提供了一种人工介质圆柱透镜,具体地:复合体1内有人工介质透镜2,由多个复合板3中心对齐组成。
所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印 制图形,升温将所述印制图形固化为陶瓷干膜。
在本发明实施例中,人工介质透镜的等效介电常数成同心柱状分布,复合体由垂直复合板组合而成。
在本发明实施例中,将圆柱的介电常数分布离散为M个值,沿径向的等效介电常数ε n(n=1~M)从ε 1到ε M逐渐降低,具体在2.00~1.00之间变化,最大值优选为2,最小值优选为1(空气相对介电常数),沿圆柱高度方向介电常数不变。
按照预设介电常数平面分布在垂直方向离散,形成一系列中心对称柱状等介电常数图形组合;在基材上印制一系列中心对称柱状等介电常数印制图形,形成垂直复合板;如图5(a),将N层垂直复合板在水平方向上组合,每个复合板的印制图形中心对齐,组成复合体,复合体内包含人工介质圆柱透镜。
本发明实施例提供的人工介质圆柱透镜,垂直方向介电常数不变,水平方向介电常数从中心到表面递减,所述复合板水平安装得到所述复合体,则所述预设介电常数平面分布是预设介电常数空间分布的垂直投影。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (10)

  1. 一种人工介质透镜制作方法,其特征在于,包含以下步骤:
    在基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜,与所述基材共同构成复合板;所述陶瓷浆料由陶瓷粉加入碳纳米管水溶液配制而成;所述基材为低介电常数基材;
    在所述印制图形的不同位置相应调整使用的所述陶瓷浆料中陶瓷粉的材料和/或浓度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布;所述预设介电常数平面分布为预设介电常数空间分布在水平或垂直平面的投影,所述预设介电常数空间分布为同心球或同心柱状;
    将多个调整后的复合板中心对齐,构成复合体,所述复合体包含所述人工介质透镜。
  2. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述陶瓷浆料包含至少一种陶瓷粉,调整不同材料陶瓷粉的比例改变所述陶瓷干膜的介电常数。
  3. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述方法还包含:
    调整所述陶瓷干膜的厚度,使调整后制成的复合板的介电常数满足人工介质透镜的预设介电常数平面分布。
  4. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述人工介质透镜的预设介电常数平面分布为2.05~1。
  5. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述印制图形为圆形或矩形。
  6. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述印制图形为同心圆或中心位置相同的矩形,中心的圆形或矩形通过选用不同材料的高介电常数的陶瓷粉调整介电常数,外层的各圆形或矩形通过选用不同浓度的陶瓷浆料调整介电常数。
  7. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述基材为覆胶和/或覆盖超薄纤维素膜。
  8. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述方法还包含:在所述陶瓷浆料中加入一定比例的树脂和分散剂,所述树脂的含量为5~20%,所述分散剂的浓度为0.1%~0.5%。
  9. 如权利要求1所述的人工介质透镜制作方法,其特征在于,所述陶瓷干膜的制作方法为:将所述陶瓷浆料在70℃下固化成型,继续升温至所述基材的熔点,在所述基材表面形成陶瓷干化层。
  10. 一种人工介质透镜,使用权利要求1~9任一项所述方法制作而成,其特征在于,包含:
    复合体内有人工介质透镜,由多个复合板中心对齐组成;
    所述复合板由陶瓷干膜与基材组成,在所述基材上印刷陶瓷浆料,产生印制图形,升温将所述印制图形固化为陶瓷干膜。
PCT/CN2021/095359 2020-06-28 2021-05-23 一种人工介质透镜制作方法及其人工介质透镜 WO2022001477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/928,020 US20230253716A1 (en) 2020-06-28 2021-05-23 Fabrication method of artificial dielectric lens and artificial dielectric lens thereof
EP21833169.2A EP4175071A1 (en) 2020-06-28 2021-05-23 Artificial dielectric lens fabrication method and artificial dielectric lens thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010597009.0 2020-06-28
CN202010597009.0A CN111799566B (zh) 2020-06-28 2020-06-28 一种人工介质透镜制作方法及其人工介质透镜

Publications (1)

Publication Number Publication Date
WO2022001477A1 true WO2022001477A1 (zh) 2022-01-06

Family

ID=72803758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095359 WO2022001477A1 (zh) 2020-06-28 2021-05-23 一种人工介质透镜制作方法及其人工介质透镜

Country Status (4)

Country Link
US (1) US20230253716A1 (zh)
EP (1) EP4175071A1 (zh)
CN (1) CN111799566B (zh)
WO (1) WO2022001477A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799566B (zh) * 2020-06-28 2021-06-15 北京高信达通信科技股份有限公司 一种人工介质透镜制作方法及其人工介质透镜
CN113612032A (zh) * 2021-07-23 2021-11-05 北京高信达通信科技股份有限公司 一种人工介质复合体、人工介质透镜和制造方法
CN114639967B (zh) * 2022-03-25 2023-09-26 深圳市南斗星科技有限公司 复合型人工介质透镜天线及制作方法
CN114639969B (zh) * 2022-05-19 2022-08-26 西安海天天线科技股份有限公司 5G massive MIMO人工介质透镜天线及其人工介质透镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258505A (ja) * 1985-11-15 1987-11-11 Nozomi Hasebe 電波レンズ
JPH09191212A (ja) * 1996-01-09 1997-07-22 Murata Mfg Co Ltd 誘電体レンズおよびその製造方法
EP0786825A1 (en) * 1996-01-18 1997-07-30 Murata Manufacturing Co., Ltd. Dielectric lens apparatus
EP1253668A1 (en) * 2001-04-23 2002-10-30 Murata Manufacturing Co., Ltd. Dielectric lens using a plurality of dielectric sheets on top of each other and injection molding manufacturing method of the same
CN111262042A (zh) * 2020-01-17 2020-06-09 西安海天天线科技股份有限公司 一种人工介质多层柱状透镜制造方法
CN111799566A (zh) * 2020-06-28 2020-10-20 北京高信达通信科技股份有限公司 一种人工介质透镜制作方法及其人工介质透镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258505A (ja) * 1985-11-15 1987-11-11 Nozomi Hasebe 電波レンズ
JPH09191212A (ja) * 1996-01-09 1997-07-22 Murata Mfg Co Ltd 誘電体レンズおよびその製造方法
EP0786825A1 (en) * 1996-01-18 1997-07-30 Murata Manufacturing Co., Ltd. Dielectric lens apparatus
EP1253668A1 (en) * 2001-04-23 2002-10-30 Murata Manufacturing Co., Ltd. Dielectric lens using a plurality of dielectric sheets on top of each other and injection molding manufacturing method of the same
CN111262042A (zh) * 2020-01-17 2020-06-09 西安海天天线科技股份有限公司 一种人工介质多层柱状透镜制造方法
CN111799566A (zh) * 2020-06-28 2020-10-20 北京高信达通信科技股份有限公司 一种人工介质透镜制作方法及其人工介质透镜

Also Published As

Publication number Publication date
CN111799566B (zh) 2021-06-15
EP4175071A1 (en) 2023-05-03
CN111799566A (zh) 2020-10-20
US20230253716A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2022001477A1 (zh) 一种人工介质透镜制作方法及其人工介质透镜
CN110079088B (zh) 聚酰亚胺前体溶液、成型体及成型体的制造方法
WO2022001476A1 (zh) 介质圆柱透镜及介质膜、介质圆柱透镜制作方法
US20200053920A1 (en) High-dielectric-loss composites for electromagnetic interference (emi) applications
CN110684477B (zh) 一种复合结构绝缘胶膜及其制备方法
CN104002523A (zh) 一种阻燃碳纤维预浸料及制备方法
US11490510B2 (en) Ceramic and polymer composite, methods of making, and uses thereof
US7618553B2 (en) Insulating material for printed circuit board
CN112736485B (zh) 一种发泡龙勃透镜及其制备工艺
KR20220005454A (ko) 판형 복합 재료
CN105632591A (zh) 一种导电浆料及其制备与应用
KR101618093B1 (ko) 도전막 형성을 위한 유연 기판용 전도성 페이스트 조성물 및 이의 제조방법
US6749899B2 (en) Method for producing prepreg, prepreg, metal clad laminate and printed wiring board
US20220177375A1 (en) Composite body
CN113801437B (zh) 一种吸波环氧树脂、吸波环氧树脂复材及其制备方法
TWI771826B (zh) 一種磁介電樹脂組成物及其應用
CN111799106A (zh) 平面电容的制作方法及制作装置
US20220250994A1 (en) Method for producing composite body
KR101527376B1 (ko) 다층 구조 방열필름 및 이의 제조 방법
JP2004311326A (ja) フィラー、シート状成形体および積層体
JP2004124066A (ja) 高誘電体組成物
CN115449325B (zh) 电子浆料、绝缘胶膜及其应用
KR20160133934A (ko) 웨이퍼 히팅장치
CN117534446A (zh) 一种氧化铝多孔陶瓷膏料及其制备方法和增材制造成形方法
CN114891418A (zh) 一种防静电石墨烯涂料及其应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833169

Country of ref document: EP

Effective date: 20230130