WO2022000215A1 - 微流控芯片、转移头及其制作方法、制作系统 - Google Patents
微流控芯片、转移头及其制作方法、制作系统 Download PDFInfo
- Publication number
- WO2022000215A1 WO2022000215A1 PCT/CN2020/099050 CN2020099050W WO2022000215A1 WO 2022000215 A1 WO2022000215 A1 WO 2022000215A1 CN 2020099050 W CN2020099050 W CN 2020099050W WO 2022000215 A1 WO2022000215 A1 WO 2022000215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glue
- outlet
- chip body
- microfluidic
- inlet
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 239000003292 glue Substances 0.000 claims abstract description 338
- 239000000853 adhesive Substances 0.000 claims abstract description 24
- 230000001070 adhesive effect Effects 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims description 81
- 239000000758 substrate Substances 0.000 claims description 52
- 238000010586 diagram Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 20
- 238000009826 distribution Methods 0.000 claims description 18
- 239000000523 sample Substances 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 239000000806 elastomer Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- 238000004401 flow injection analysis Methods 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 238000007711 solidification Methods 0.000 claims 1
- 230000008023 solidification Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 87
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000084 colloidal system Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
Definitions
- the invention relates to the field of semiconductor devices, in particular to a microfluidic chip, a transfer head, a manufacturing method and a manufacturing system thereof.
- Micro Light Emitting Diode (Micro-LED) display technology has the advantages of high brightness, high response speed, low power consumption, long life, etc., and has become a research hotspot in pursuit of a new generation of display technology.
- mass transfer of Micro-LED chips and LED chip bonding processes are required.
- the transfer head is the most frequently used consumable part.
- the transfer head of the micro-LED chip is fabricated by the template method. Since the template is made by silicon etching, the flatness of the sidewall of the etched silicon hole is not good. As a result, the transfer head formed by using the template is in the mold opening stage. The separation of the holes on the silicon substrate has the risk of being difficult to peel off, which leads to a low yield of the transfer head, thereby indirectly increasing the manufacturing cost of the transfer head.
- the purpose of the present application is to provide a microfluidic chip, a transfer head and a manufacturing method thereof, and a manufacturing system, aiming to solve the problem that in the related art, the yield of the transfer head is low, resulting in high manufacturing costs. problem.
- a microfluidic chip comprising:
- At least one glue inlet is formed on at least one surface of the chip body, and the glue inlet communicates with the pipeline for injecting viscous glue into the pipeline;
- At least one glue outlet is formed on at least one surface of the chip body, and the glue outlet is communicated with the pipeline, so that a part of the glue injected into the pipeline can overflow to the surface where the glue outlet is located through the glue outlet, and form naturally.
- Adhesive heads are formed after curing.
- the above chip body can be used to form a transfer head.
- the adhesive head can be formed after natural molding and curing on the surface where the glue outlet is located. It can be seen that when the chip body is used to form the transfer head, the production process is simple and efficient, and the glue liquid flows through the pipe and overflows through the glue outlet to form naturally, and the formed adhesive head has a high degree of smoothness.
- the holes on the silicon substrate are difficult to peel off, which can not only improve the yield of the transfer head, but also improve the production efficiency, thereby reducing the cost of the transfer head in many aspects.
- the present application also proposes a transfer head, the transfer head includes the microfluidic chip as shown above, and also includes the glue injected into the pipeline through the glue inlet, and a part of the glue is solidified in the pipeline, A part of the glue outlet overflows to the surface where the glue outlet is located and then forms naturally, and forms an adhesive head after curing.
- the above-mentioned transfer head forming process is simple and efficient, and there is no problem that the holes on the silicon substrate in the related art are difficult to peel off, the yield of the transfer head can be improved, the cost of the transfer head can be reduced, and the popularization and use of the transfer head can be facilitated.
- the present application also provides a method for fabricating a microfluidic chip, including:
- the first photoresist layer After exposing and developing the first photoresist according to the distribution diagram of the glue inlet and the pipeline, the first photoresist layer is left in the corresponding area of the glue inlet and the pipeline;
- a second substrate layer is arranged on the first substrate layer, and the thickness of the second substrate layer is greater than the thickness of the first photoresist layer and less than or equal to the sum of the thicknesses of the first photoresist layer and the second photoresist layer ;
- the space originally occupied by the first photoresist layer and the second photoresist layer constitutes a glue inlet pipe and a glue outlet.
- the present application also provides a method for making a transfer head, including:
- the glue liquid is controlled from the glue inlet on the chip body, injected into the pipeline, and overflowed to the surface where the glue outlet is located through the glue outlet to form naturally;
- the present application also provides a system for making a transfer head, including: a microfluidic control device, a curing device, a connecting pipe and a container;
- the container is used to hold the glue
- the microfluidic control device includes a microfluidic probe and a microfluidic drive device.
- One end of the microfluidic probe is connected to the liquid outlet of the container through a connecting tube, and the other end is connected to the glue inlet on the chip body; the microfluidic drive device is used to control
- the glue flows into the microfluidic probe from the container through the connecting pipe, and is injected into the pipeline through the glue inlet through the microfluidic probe, and the glue flowing into the pipeline overflows through the glue outlet to the surface where the glue outlet is located and forms naturally;
- the curing equipment is used to cure the glue.
- the above-mentioned transfer head fabrication system has a simple structure and is easy to operate and control. At the same time, when using the fabrication system to form a transfer head on the above-mentioned microfluidic chip, it only needs to perform two steps of glue injection and colloid curing, and the fabrication process is very simple and convenient. , high production efficiency and low cost.
- Fig. 1-1 is a schematic diagram 1 of the structure of the chip body provided by the present invention.
- Figure 1-2 is a schematic diagram of the flow direction of the glue in Figure 1-1;
- 1-3 are schematic diagrams of the second structure of the chip body provided by the present invention.
- 1-4 are schematic diagrams three of the structure of the chip body provided by the present invention.
- FIG. 2 is a schematic diagram 4 of the structure of the chip body provided by the present invention.
- Figure 3-1 is a top view corresponding to Figure 2;
- Figure 3-2 is a bottom view corresponding to Figure 2;
- Figure 3-3 is a bottom view 2 corresponding to Figure 2;
- 3-4 is a schematic diagram 5 of the structure of the chip body provided by the present invention.
- 3-5 are schematic diagrams of the structure of the chip body provided by the present invention 6;
- FIG. 3-6 are schematic diagrams 7 of the structure of the chip body provided by the present invention.
- 3-7 are schematic diagrams of the structure of the chip body provided by the present invention eight;
- 3-8 are schematic diagrams 9 of the structure of the chip body provided by the present invention.
- 3-9 are schematic diagrams of the structure of the chip body provided by the present invention ten;
- 3-10 are schematic diagrams eleven of the structure of the chip body provided by the present invention.
- FIG. 4 is a schematic diagram 12 of the structure of the chip body provided by the present invention.
- FIG. 5 is a schematic flowchart of a method for fabricating a chip body provided by an optional embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a chip body provided by an optional embodiment of the present invention.
- FIG. 7 is a schematic flowchart of a method for manufacturing a transfer head provided by another optional embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a transfer head provided by another optional embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a transfer head manufacturing system provided by another optional embodiment of the present invention.
- the transfer head of the micro-LED chip is fabricated by the template method. Since the template is made by silicon etching, the flatness of the sidewall of the etched silicon hole is not good, so that the transfer head formed by using the template is partially open. In the mold stage, the separation from the holes on the silicon substrate has the risk of being difficult to peel off, resulting in a low yield of the transfer head, thereby indirectly increasing the production cost of the transfer head.
- This embodiment provides a microfluidic chip that can be used to fabricate a transfer head.
- the fabricated transfer head can be used to transfer various micro devices, for example, including but not limited to micro LED chips, which can be but not limited to micro LED chips.
- micro LED chips, mini-LED chips, and the micro-LED chips and mini-LED chips in this embodiment may include, but are not limited to, at least one of flip-chip LED chips, front-mounted LED chips, and vertical LED chips.
- the micro LED chip includes an epitaxial layer and electrodes. This embodiment does not limit the specific structure of the epitaxial layer of the micro LED chip.
- the epitaxial layer of the micro LED chip may include N-type semiconductors, P-type semiconductors and an active layer located between the N-type semiconductor and the P-type semiconductor, the active layer may include a quantum well layer, and may also include other structures.
- the epitaxial layer may further include at least one of a reflective layer and a passivation layer.
- the material and shape of the electrode in this embodiment are also not limited.
- the material of the electrode may include but not limited to Cr, Ni, Al, Ti, Au, Pt, W, Pb, Rh, Sn, Cu, at least one of Ag.
- the microfluidic chip provided in this embodiment includes a chip body, a pipeline distributed in the chip body, and at least one glue inlet formed on at least one surface of the chip body. Inject viscous glue, and at least one glue outlet formed on at least one surface of the chip body, the glue outlet communicates with the pipeline, so that a part of the glue injected into the pipeline overflows to the glue outlet through the glue outlet It forms naturally on the surface it is on, and forms an adhesive head after curing. In this way, when using the microfluidic chip to make a transfer head, it is only necessary to inject viscous glue into the glue inlet on the chip body, so that the glue flows through the pipe in the chip body and finally overflows to the glue outlet through the glue outlet.
- the adhesive head After the surface is naturally formed and cured, the adhesive head can be formed.
- the production process is simple and efficient.
- the glue flows through the pipe and overflows through the glue outlet, and then forms naturally. Because the glue has a certain viscosity, the formation of The adhesive head has a high degree of smoothness, and it is no longer difficult to peel off the holes on the silicon substrate in the related art, which can not only improve the yield of the transfer head, but also improve its production efficiency, so that it can be used from a variety of In terms of reducing the production cost of the transfer head.
- the material of the chip body is not limited, and any material that can achieve the above purpose can be used to form the chip body.
- the material of the chip body can be, but not limited to, polydimethylsilicon oxane, polymethyl methacrylate, or thermoplastic polyurethane elastomer.
- the number and setting positions of the glue outlets, the number and setting positions of the glue inlets, and the distribution positions and shapes of the pipes in the chip body can be flexibly set according to the application scenarios.
- the number of glue inlets can be set to one or more, and the setting position can be set on the surface where the glue inlet is located, or it can be set on a different surface from the surface where the glue inlet is located.
- the number of the glue outlet can also be set to one, or set to multiple according to requirements, and the glue outlet can be arranged on one surface of the chip body, or can be arranged on multiple surfaces of the chip body as required.
- this embodiment is described below with reference to several setting examples.
- the chip body includes a front side, a back side opposite to the front side, and a side surface between the front side and the back side;
- the glue outlet is arranged on the front side of the chip body, and the glue inlet can be arranged on the front side of the chip body, It can also be arranged on other surfaces of the chip body.
- a glue outlet 13 is arranged on the front of the chip body 1
- a glue inlet 12 is arranged on one of the side surfaces of the chip body 1 .
- the direction shown by the arrow in the middle is the direction of injecting glue into the glue inlet.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13 .
- Fig. 1-2 Please refer to Fig. 1-2.
- the surface tension of the glue is used to form a microsphere-shaped adhesive head, and the surface of the formed adhesive head is smooth and has adhesive force.
- a glue outlet 13 is arranged on the front of the chip body 1
- a glue inlet 12 is arranged on the back of the chip body 1 , as shown by the arrows in the figure
- the direction is the direction of injecting the glue into the glue inlet.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13 .
- the pipe 11 can be a straight pipe or a curved pipe, as long as the glue inlet and the glue outlet can be communicated.
- the glue outlet 13 and the glue inlet 12 are arranged on different surfaces of the chip body 1, and only one glue outlet 13 is arranged.
- the transfer head made of the chip body 1 in the above two examples is used. It can be used for the transfer of a single micro-device at a time.
- the glue outlet 13 and the glue inlet 12 can also be arranged on the same surface.
- a glue outlet 13 and a glue inlet 12 are arranged on the front of the chip body 1 , and the direction shown by the arrow in the figure is the direction of injecting glue into the glue inlet.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13 .
- the glue is injected from the glue inlet 12, a part of the glue overflows to the front of the chip body 1 through the glue outlet 13 through the flow direction indicated by the arrow in Fig. 1-3, and then forms naturally, using the surface tension of the glue to form a micro Spherical adhesive head, the surface of the formed adhesive head is smooth and has adhesive force.
- a plurality of glue outlets 13 may also be formed on the front surface of the chip body 1 , and the position distribution of the formed plurality of glue outlets may match the position distribution of the plurality of devices to be adsorbed. Correspondingly; in this way, the transfer of multiple micro-devices at a time can be realized. Correspondingly, the number and position of the glue inlets 12 can also be flexibly set according to application scenarios.
- a plurality of glue outlet ports 13 are provided on the front side of the chip body 1 , and glue inlet ports 12 are provided on two opposite sides of the chip body 1 .
- the direction shown by the arrow in the middle is the direction of injecting glue into the glue inlet 12 .
- the number of the glue inlets 12 provided on each side can be one or more.
- the positions of the glue inlets 12 provided on the two side surfaces can be in a one-to-one correspondence (ie, the glue inlets 12 are arranged symmetrically on the two sides), so as to facilitate the subsequent improvement of the efficiency and uniformity of glue injection.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13 .
- the pipe 11 can be a straight pipe or a curved pipe, as long as the glue inlet 12 and the glue outlet 13 can be communicated.
- the plurality of glue outlets 13 are arranged on the front of the chip body 1, the plurality of glue outlets 13 are arranged.
- the ports 13 may also be arranged in a matrix.
- a plurality of glue outlets provided on the front surface of the chip body 1 are arranged in an array.
- a schematic diagram of the distribution of pipes in the chip body 1 is shown in FIG. 3-2.
- a glue inlet 12 is provided on each of the two opposite sides of the chip body 1, and two The glue inlets 12 provided on the side are symmetrically arranged.
- the plurality of glue outlets 13 are arranged on the front of the chip body 1, the plurality of glue outlets 13 are arranged.
- the ports 13 may also be arranged in a matrix.
- a plurality of glue outlets provided on the front surface of the chip body 1 are arranged in an array.
- a schematic diagram of the distribution of pipes in the chip body 1 is shown in FIG. 3-2.
- a glue inlet 12 is provided on each of the two opposite sides of the chip body 1, and two The glue inlets 12 provided on the side are symmetrically arranged.
- the flow direction of the glue is shown by the arrows in Figure 3-2.
- the glue flows into the pipeline along the pipeline, and a small part of it flows through the pipeline
- the glue outlet such as glue outlet 13 shown in Figure 3-1, forms the adhesive head.
- the main difference compared with Fig. 3-2 is that the four sides of the chip body 1 are provided with glue inlets 12, and optionally , symmetrically arranged relative to the glue inlets 12 on the two sides, of course, asymmetrical arrangement can also be adopted.
- the setup shown in Figure 3-3 can further increase the glue injection efficiency. Therefore, it can be understood that the number and position of the glue inlets 12 in this embodiment can be flexibly set according to application requirements.
- the position of at least one glue inlet can also be set in the junction area of the adjacent side, and a part of the glue inlet located in this area is located on one of the sides. , the other part is on the other side.
- the present state is that the glue inlet is set on the corner where the two sides meet.
- multiple glue inlets may optionally be symmetrically arranged on opposite edges and corners, so as to improve the glue injection efficiency and the uniformity of the glue injected into the pipeline.
- the position of at least one glue inlet can also be set at the intersection area of the adjacent side and the front, or the position of at least one glue inlet can also be set at the intersection of the adjacent side and the back area. , which can be flexibly set according to specific application scenarios.
- At least one glue inlet may also be provided on only one of the sides.
- a plurality of glue outlets 13 are arranged on the front of the chip body 1 , and at least one glue inlet 12 is arranged on one side of the chip body 1 .
- the directions shown by the arrows in the figure are The direction of injecting glue into the glue inlet 12.
- the number of the glue inlets 12 provided on the side surface may be one or more.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13 .
- the pipe 11 can be a straight pipe or a curved pipe, as long as the glue inlet 12 and the glue outlet 13 can be communicated.
- a glue inlet can also be provided on the back of the chip body 1 .
- a plurality of glue outlets 13 are arranged on the front of the chip body 1 , and at least one glue inlet 12 is respectively arranged on the back of the chip body 1 near the two sides, as shown by the arrows in the figure.
- the direction is the direction of injecting glue into the glue inlet 12 .
- the number of the glue inlets 12 provided on each side of the back surface may be one or more.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13, and the shape of the pipe 11 is not limited.
- FIG. 3-6 The main difference from FIG. 3-5 is that the glue inlet 12 is arranged in the middle area of the back of the chip body 1, and each of the glue inlets 12 arranged in the middle area is The number can be one or more, which can be flexibly set according to requirements.
- the glue inlets may also be provided on the back and side surfaces of the chip body 1 at the same time.
- a plurality of glue outlets 13 are arranged on the front of the chip body 1 , and at least one glue inlet 12 is arranged on the back of the chip body 1 near a certain side.
- At least one glue inlet 12 is also provided on one of the side surfaces of the device, and the number of the glue inlet 12 on the back and the glue inlet 12 on the side can be set to be the same or different.
- the direction shown by the arrow in the figure is the direction of injecting the glue into the glue inlet 12 .
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13, and the shape of the pipe 11 is not limited.
- the glue inlet can also be simultaneously provided on the front side of the chip body 1 .
- a plurality of glue outlets 13 are arranged on the front of the chip body 1 , and at least one glue inlet 12 is respectively arranged in two areas on the front of the chip body 1 close to both sides.
- the number of the glue inlets 12 provided in each area may be one or more.
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13, and the shape of the pipe 11 is not limited.
- the main difference from FIG. 3-8 is that the glue inlet 12 is arranged in the middle area of the front side of the chip body 1, and each of the glue inlets 12 arranged in the middle area is The number can be one or more, which can be flexibly set according to requirements.
- the glue inlets may also be provided on the front and side surfaces of the chip body 1 at the same time.
- a plurality of glue outlets 13 are arranged on the front of the chip body 1 , and at least one glue inlet 12 is arranged on the front of the chip body 1 near a certain side.
- At least one glue inlet 12 is also provided on one of the side surfaces of the device, and the number of the glue inlet 12 on the front and the glue inlet 12 on the side can be set to be the same or different.
- the direction shown by the arrow in the figure is the direction of injecting the glue into the glue inlet 12 .
- the pipe 11 in the chip body 1 communicates with the glue inlet 12 and the glue outlet 13, and the shape of the pipe 11 is not limited.
- the glue inlet, the glue outlet, and the arrangement position and shape of the pipes on the chip body 1 can be flexibly set.
- the shape of the chip body 1 can also be flexibly selected, for example, the cross section of the chip body 1 can be rectangular, circular, hexagonal, triangular, oval or other irregular shapes.
- the cross section of the chip body 1 is circular, and a plurality of glue outlets 13 are arranged on the front surface of the chip body 1 .
- the plurality of glue outlets 13 are arranged in an array, and each glue outlet 13
- the position of the micro-devices corresponds to the position of the micro-devices to be transferred on the substrate, that is, the interval between adjacent glue outlets 13 corresponds to the interval between the adjacent micro-devices to be transferred on the substrate.
- the diameter of the pipe and the diameter of the glue outlet in the above examples in this embodiment can also be flexibly set according to requirements, and can be flexibly considered according to the size and weight of the micro-device to be transferred when setting.
- the diameter of the pipe is 50 microns to 100 microns
- the diameter of the glue outlet is 10 microns to 30 microns.
- the diameter of the pipe can be 50 microns
- the diameter of the glue outlet can be 10 microns or 15 microns
- the diameter of the pipe can be 70 microns
- the diameter of the glue outlet can be 15 microns or 20 microns
- the diameter of the pipe can be 90 microns
- the diameter of the glue outlet can be 20 microns or 25 microns
- the diameter of the pipes can be 100 microns
- the diameter of the glue outlet can be 25 microns or 30 microns, etc.
- the shape of the pipe and the shape of the glue outlet in the above examples in this embodiment can also be set flexibly.
- the cross-sectional shape of the pipe may be a rectangle, and the glue outlet may be a square hole.
- the upper end of the overflowing part is slightly round, and the lower end is square.
- the microfluidic chip provided in this embodiment is used to fabricate the transfer head, only two steps of glue injection and curing are required, the fabrication process is simple and convenient, and the efficiency is high, and there is no more difficult holes on the silicon substrate in the related art.
- the occurrence of peeling can not only improve the yield of transfer head production, but also reduce the production cost of transfer head in many aspects.
- microfluidic chip of the above example can be flexibly selected.
- an exemplary manufacturing process of a microfluidic chip is described below as an example. See Figure 5, including:
- S501 Form a first substrate layer.
- the first substrate layer may be formed on a substrate, and the substrate may be, but not limited to, any one of a glass substrate, a sapphire substrate, or a quartz substrate.
- the first substrate layer in this embodiment may be, but not limited to, any one of polydimethylsiloxane, polymethyl methacrylate, or thermoplastic polyurethane elastomer.
- the thickness of the first substrate layer can be set flexibly.
- the material of the first substrate layer can be selected from Dow Corning-184 series polydimethylsiloxane PDMS material, and a glass substrate is basically selected; Dow Corning 184 is cured to form the first substrate layer.
- the colloid used in the first photoresist layer has a photosensitive substance, so that it has photoresist characteristics, that is, after being irradiated by ultraviolet light, the irradiated part will be washed away by the developing solution (that is, positive type photoresist photoresist) After being irradiated with UV light, the unirradiated part will be washed away by the developer, while the irradiated part will remain (ie, negative-tone photoresist).
- the glue inlet and the pipeline distribution diagram can be arranged on the mask plate.
- the first photoresist layer is flush with the side.
- the glue inlets are disposed on two opposite sides of the chip body, and the first photoresist layer is flush with the corresponding two sides.
- the graphics corresponding to the pipeline may be a straight pipeline, an arc-shaped pipeline or a broken-line pipeline.
- the first photoresist layer After exposure and developing treatment, on the first substrate layer, except for the first photo-adhesive layer (corresponding to the pipe and the glue inlet) in the corresponding area where the glue inlet and the pipe are arranged, the first photoresist layer in other areas The photoresist layer is removed,
- S504 Disposing a second photoresist layer on the first photoresist layer.
- a second photoresist layer covering the first photoresist layer can be directly disposed on the first substrate layer, and the thickness of the second photoresist layer can also be flexibly set according to requirements.
- the distribution diagram of the glue outlet in this embodiment can be set on the mask plate. After exposure and development processing, on the first substrate layer, except for the area where the glue outlet is arranged corresponding to the first photoresist layer, the remaining Except for the two photoresist layers, the second photoresist layers in other areas are removed; the second photoresist layer left in the first photoresist layer forms a plurality of photoresist columns corresponding to the photoresist outlets, After the photoresist column is removed, a corresponding glue outlet is formed.
- the size specification of the photoresist column can match the chip size setting.
- the cross-sectional shape of the photoresist column can be rectangular (for example, square).
- the size of the microchip to be transferred is 15 microns * 25 microns.
- the more cross-section of the photoresist cylinder is a square, and the side length of the square (that is, the diameter of the glue outlet) is 20 microns; the size of the microchip to be transferred is 40 microns * 60 microns, and the more cross-section of the photoresist cylinder is
- the side length of the square that is, the diameter of the glue outlet
- the convex structure ie the adhesive head formed by natural molding after the glue overflows from the glue outlet is close to a square at the bottom, and rounded at the top.
- the types and materials of the first photoresist layer and the second photoresist layer in this embodiment can be the same or different, and can be flexibly set according to requirements.
- S506 Disposing a second substrate layer on the first substrate layer, the thickness of the second substrate layer is greater than the thickness of the first photoresist layer, and less than or equal to the thicknesses of the first photoresist layer and the second photoresist layer Sum.
- the materials of the first substrate layer and the second substrate layer in this embodiment can be the same or different, and can be flexibly set according to requirements.
- the thickness of the second substrate layer is greater than the thickness of the first photoresist layer to ensure that the pipeline is finally formed in the chip body, and the thickness of the second substrate layer is less than or equal to the thickness of the first photoresist layer and the second substrate layer.
- the sum of the thicknesses of the photoresist layers ensures that the upper ends of the photoresist pillars are exposed to the second substrate layer, and the corresponding photoresist outlets are formed after being removed.
- the target solution can be selected but not limited to an organic solvent, and the first photoresist layer and the second photoresist layer are cleaned and removed, and the first photoresist layer and the second photoresist layer originally occupied the
- the space constitutes a glue inlet, a pipeline, and a glue outlet.
- FIG. 6 an example of a microfluidic chip is shown in FIG. 6 .
- the chip body 1 is located on the substrate 2 , a plurality of glue outlets 13 are formed on the front of the chip body 1 , and inlets 13 are formed on the opposite sides of the chip body 1 .
- the glue port 12, the pipe in the chip body 1 communicates the glue inlet 12 and the glue outlet 13.
- the method for manufacturing a microfluidic chip provided in this embodiment, it is only necessary to perform two steps of laying a photoresist layer and performing a photolithography process on the first substrate layer in sequence according to the distribution of the glue inlet, the pipeline and the glue outlet. Then, after forming a second substrate layer that leaves the glue outlet and glue inlet and fully covers other areas, the inner photoresist layer can be cleaned off.
- the production process is simple and convenient, and the production efficiency is high. low cost.
- This embodiment provides a transfer head manufactured by, for example, the above-mentioned microfluidic chip.
- the transfer head includes glue liquid injected into the pipe through the glue inlet on the chip body, part of the glue liquid is solidified in the pipe, and part of the glue liquid is cured in the pipe, and part of the glue liquid is discharged through The glue port overflows to the surface where the glue outlet is located and then forms naturally, and forms an adhesive head after curing.
- the material of the glue solution in this embodiment can be flexibly selected.
- the glue solution includes at least one of silicone resin, acrylic resin, and acrylic-modified silicone resin.
- the height of the glue liquid overflowing through the glue outlet to the surface where the glue outlet is located is 10 to 20 microns, and the height of the formed adhesive head is also about 10 to 20 microns.
- the height of the formed adhesive head may be 10 microns, 12 microns, 15 microns, 18 microns, 20 microns and the like.
- this embodiment also provides a method for manufacturing a transfer head, as shown in FIG. 7 , including:
- S701 Control the glue liquid from the glue inlet on the chip body, inject it into the pipeline, and overflow to the surface where the glue outlet is located through the glue outlet through the microfluidic injection control device, and then form naturally.
- S702 curing the glue.
- UV light can be used to irradiate the top of the chip body, and after the glue liquid is cured and formed, an example transfer head structure obtained is shown in FIG. 8, including the chip body 1, self-feeding glue The colloid 2 that is injected into the pipe through the port 12 and is cured in the pipe in the chip body 1, and the adhesive head 21 that is naturally formed after overflowing from the glue outlet and formed after curing. The upper end of the adhesive head 21 is rounded and the lower end is square. .
- This embodiment also provides a manufacturing system for manufacturing a transfer head, including: a microfluidic control device, a curing device, a connecting pipe and a container, wherein,
- the container is used to hold the glue
- the microfluidic control device includes a microfluidic probe and a microfluidic drive device.
- One end of the microfluidic probe is connected to the liquid outlet of the container through a connecting tube, and the other end is connected to the glue inlet on the chip body; the microfluidic drive device is used to control
- the glue flows into the microfluidic probe from the container through the connecting pipe, and is injected into the pipeline through the glue inlet through the microfluidic probe, and the glue flowing into the pipeline overflows through the glue outlet to the surface where the glue outlet is located and forms naturally;
- the microfluidic drive device can be, but not limited to, a peristaltic pump.
- the curing device is used for curing the glue, wherein the curing device can be, but is not limited to, UV irradiation device.
- FIG. 9 an exemplary fabrication system is shown in FIG. 9 , including a container 91 , a connecting tube 92 , a microfluidic driving device 93 , a microfluidic probe 94 , and a chip body 95 to be processed, one surface of the chip body 95 .
- Two glue inlets 951 are formed (the pipes in the chip body 95 and the glue outlet on the chip body 95 are not shown). 91's outlet connection.
- the microfluidic driving device 93 controls the glue in the container 91 to be injected into the glue inlet through the connecting pipe 92 and the microfluidic probe 94.
- the microfluidic driving device 93 can control the glue liquid in the connecting pipe 92, the microfluidic probe 94 and the pipe flow rate, and control the amount of glue injected into the chip body 95 .
- the above-mentioned transfer head manufacturing system has a simple structure and is easy to operate and control.
- the manufacturing system when using the manufacturing system to form a transfer head on the above-mentioned microfluidic chip, it only needs to perform two steps of glue injection and colloid curing, and the manufacturing process is very simple. , convenient, high production efficiency and low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Micromachines (AREA)
Abstract
一种微流控芯片、转移头及其制作方法、制作系统,微流控芯片包括芯片本体(1),在芯片本体(1)内分布的管道(11);在芯片本体(1)的至少一个面上形成的至少一个进胶口(12),进胶口(12)与管道(11)相通,以供向管道(11)内注入具有粘性的胶液,在芯片本体(1)的至少一个面上形成的至少一个出胶口(13),出胶口(13)与管道(11)相通,以供注入管道(11)内的一部分胶液,通过出胶口(13)溢出至出胶口(13)所在的面上自然成型,并在固化后形成粘附头。
Description
本发明涉及半导体器件领域,尤其涉及一种微流控芯片、转移头及其制作方法、制作系统。
微型发光二极管(Micro Light Emitting Diode,Micro-LED)显示技术具有高亮度、高响应速度、低功耗、长寿命等优点,成为人们追求新一代显示技术的研究热点。在制造大、中尺寸的Micro-LED显示器过程中,需要进行Micro-LED芯片的巨量转移和LED芯片键合工艺。在Micro-LED芯片的巨量转移过程中,转移头是使用最为频繁的一个耗材部件。相关技术中,
micro-LED芯片的转移头通过模板法制作,由于模板是采用硅刻蚀制得,刻蚀的硅孔洞侧壁的平整度欠佳,导致利用该模板形成的转移头部分在开模阶段,与硅基板上的孔洞的分离,存在难以剥离的风险,导致转移头的成品率较低,从而间接提升了转移头的制作成本。
因此,如何实现提升转移头制作的成品率从而降低其制作成本是亟需解决的问题。
鉴于上述相关技术的不足,本申请的目的在于提供一种微流控芯片、转移头及其制作方法、制作系统,旨在解决相关技术中,转移头制作的成品率低,导致制作成本高的问题。
一种微流控芯片,包括:
芯片本体;
在芯片本体内分布的管道;
在芯片本体的至少一个面上形成的至少一个进胶口,进胶口与管道相通,以供向管道内注入具有粘性的胶液;
在芯片本体的至少一个面上形成的至少一个出胶口,出胶口与管道相通,以供注入管道内的一部分胶液,通过出胶口溢出至出胶口所在的面上自然成型,并在固化后形成粘附头。
上述芯片本体可用于形成转移头,在利用其形成转移头时,只需要向芯片本体上的进胶口注射具有粘性的胶液,使得胶液流经芯片本体内的管道最终通过出胶口溢出至出胶口所在面上自然成型并并固化后即可形成粘附头。可见利用该芯片本体形成转移头时,制作过程简便且高效,同时胶液流经管道经出胶口溢出自然成型,形成的粘附头具有高度的光滑性,且不再存在相关技术中与在硅基板上的孔洞难以剥离情况发生,既能提升转移头制作的良品率,又能提升其制作效率,从而可从多方面降低转移头的制作成本。
基于同样的发明构思,本申请还提一种转移头,该转移头包括如上所示的微流控芯片,还包括经进胶口注入管道内的胶液,胶液的一部分固化在管道内,一部分经出胶口溢出至出胶口所在的面上后自然成型,并在固化后形成粘附头。
上述转移头形成过程简单且高效,且不再存在相关技术中与在硅基板上的孔洞难以剥离情况,能提升转移头制作的良品率,降低转移头的成本,利于转移头的推广使用。
基于同样的发明构思,本申请还提供一种微流控芯片制作方法,包括:
形成第一底材层;
在第一底材层上形成第一光刻胶层;
根据进胶口及管道分布图对第一光刻胶进行曝光显影处理后,布设进胶口和管道的对应区域留有第一光刻胶层;
在第一光刻胶层之上设置第二光刻胶层;
根据出胶口分布图对第二光刻胶进行曝光显影处理后,布设出胶口的区域留有第二光刻胶层;
在第一底材层上设置第二底材层,第二底材层的厚度大于第一光刻胶层的厚度,小于等于第一光刻胶层和第二光刻胶层的厚度之和;
将第一光刻胶层和第二光刻胶层采用目标溶液洗去后,第一光刻胶层和第二光刻胶层原来占用的空间构成进胶口管道、和出胶口。
上述微流控芯片制作方法中,只需要在第一底材层上根据进胶口、管道以及出胶口的分布,依次进行两次铺设光刻胶层以及进行光刻处理,然后再形成将出胶口和进胶口留出并将其他区域全面覆盖的第二底材层后,对内部的光刻胶层清洗掉即可,制作过程简单、方便,且制作效率高,成本低。
基于同样的发明构思,本申请还提供一种转移头的制作方法,包括:
通过微流注入控制设备,控制胶液从芯片本体上的进胶口,注入管道内,并通过出胶口溢出至出胶口所在的面上自然成型;
对胶液进行固化。
上述转移头的制作方法中,只需要执行注胶和对胶体进行固化两个步骤,制作过程非常简单、便捷,制作效率高,成本低。
基于同样的发明构思,本申请还提供一种转移头的制作系统,包括:微流控制设备、固化设备、连接管及容器;
容器用于盛放胶液;
微流控制设备包括微流探针及微流驱动设备,微流探针一端通过连接管与容器的出液口连接,另一端与芯片本体上的进胶口连接;微流驱动设备用于控制胶液从容器内经连接管流入微流探针,并经微流探针通过进胶口注入管道内,流入管道的胶液通过出胶口溢出至出胶口所在的面上自然成型;
固化设备用于对胶液进行固化。
上述转移头的制作系统结构简单且易操作控制,同时利用该制作系统在上述微流控芯片上形成转移头时,只需要执行注胶和对胶体进行固化两个步骤,制作过程非常简单、便捷,制作效率高,成本低。
图1-1为本发明提供的芯片本体结构示意图一;
图1-2为图1-1中胶液流向示意图;
图1-3为本发明提供的芯片本体结构示意图二;
图1-4为本发明提供的芯片本体结构示意图三;
图2为本发明提供的芯片本体结构示意图四;
图3-1为与图2对应的俯视图;
图3-2为与图2对应的仰视图一;
图3-3为与图2对应的仰视图二;
图3-4为本发明提供的芯片本体结构示意图五;
图3-5为本发明提供的芯片本体结构示意图六;
图3-6为本发明提供的芯片本体结构示意图七;
图3-7为本发明提供的芯片本体结构示意图八;
图3-8为本发明提供的芯片本体结构示意图九;
图3-9为本发明提供的芯片本体结构示意图十;
图3-10为本发明提供的芯片本体结构示意图十一;
图4为本发明提供的芯片本体结构示意图十二;
图5本发明一种可选的实施例提供的芯片本体制作方法流程示意图;
图6为本发明一种可选的实施例提供的芯片本体结构示意图;
图7为本发明另一种可选的实施例提供的转移头制作方法流程示意图;
图8为本发明另一种可选的实施例提供的转移头结构示意图;
图9为本发明另一种可选的实施例提供的转移头制作系统结构示意图;
附图标记说明:
1,95-芯片本体,11-管道,12,951-进胶口,13-出胶口,2-胶液,21-粘附头,3-基板, 91-容器,92-连接管,93-微流驱动设备,94-微流探针。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
相关技术中, micro-LED芯片的转移头通过模板法制作,由于模板是采用硅刻蚀制得,刻蚀的硅孔洞侧壁的平整度欠佳,导致利用该模板形成的转移头部分在开模阶段,与硅基板上的孔洞的分离,存在难以剥离的风险,导致转移头的成品率较低,从而间接提升了转移头的制作成本。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施例提供了一种可用于制作转移头的微流控芯片,所制作的转移头可用于转移各种微型器件,例如包括但不限于微型LED芯片,该微型LED芯片可以为但不限于micro-LED芯片、mini-LED芯片,且本实施例中的micro-LED芯片、mini-LED芯片可以包括但不限于倒装LED芯片、正装LED芯片和垂直LED芯片中的至少一种。一种示例中,微型LED芯片包括外延层和电极,本实施例不限定微型LED芯片的外延层的具体结构,在一种示例中,微型LED芯片的外延层可以包括N型半导体、P型半导体以及位于N型半导体和P型半导体之间的有源层,该有源层可以包括量子阱层,还可以包括其他结构。在另一些示例中,可选地,外延层还可包括反射层、钝化层中的至少一种。本实施例中电极的材质和形状也不做限定,例如一种示例中,电极的材质可包括但不限于Cr,Ni,Al,Ti,Au,Pt,W,Pb,Rh,Sn,Cu,Ag中的至少一种。
本实施例所提供的微流控芯片包括芯片本体,在芯片本体内分布的管道,在芯片本体的至少一个面上形成的至少一个进胶口,进胶口与管道相通,以供向管道内注入具有粘性的胶液,以及在芯片本体的至少一个面上形成的至少一个出胶口,出胶口与管道相通,以供注入管道内的一部分胶液,通过出胶口溢出至出胶口所在的面上后自然成型,并在固化后形成粘附头。这样在利用该微流控芯片制作转移头时,只需要向芯片本体上的进胶口注射具有粘性的胶液,使得胶液流经芯片本体内的管道最终通过出胶口溢出至出胶口所在面上自然成型并并固化后即可形成粘附头,制作过程简便且高效,同时胶液流经管道经出胶口溢出后自然成型,由于该胶液具有一定的粘稠度,所形成的粘附头具有高度的光滑性,且不再存在相关技术中与在硅基板上的孔洞难以剥离情况发生,既能提升转移头制作的良品率,又能提升其制作效率,从而可从多方面降低转移头的制作成本。
本实施例中,对于芯片本体的材质不做限制,任意能达到上述目的的材质都可用于形成上述芯片本体,例如一些应用示例中,该芯片本体的材质可以为但不限于聚二甲基硅氧烷、聚甲基丙烯酸甲酯、或热塑性聚氨酯弹性体。
应当理解的是,本实施例中,对于出胶口的个数,以及设置的位置,进胶口的个数和设置位置,以及芯片本体内管道的分布位置和形状都可以根据应用场景灵活设置。例如进胶口的个数可以设置为1个,也可设置为多个,其设置位置可以为设置于进胶口所在的面上,也可以为设置为与进胶口所在面的不同面上。出胶口的个数也可设置为1个,或根据需求设置为多个,且出胶口可以设置在芯片本体的其中一个面上,也可根据需求设置于芯片本体的多个面上。为了便于理解,本实施例下面结合几种设置示例进行说明。
在本示例中,设芯片本体包括正面,与正面相对的背面,以及位于正面和背面之间的侧面;出胶口设置于芯片本体的正面上,进胶口可设置于芯片本体的正面上,也可设置于芯片本体的其他面上。
例如,一种应用示例中,请参见图1-1所示,在芯片本体1的正面设置有1个出胶口13,在芯片本体1的其中一个侧面上设置有一个进胶口12,图中箭头所示的方向为向进胶口注射胶液的方向。芯片本体1内的管道11连通进胶口12和出胶口13。请参见图1-2所示,从进胶口12注入胶液后,一部分胶液通过图1-2中箭头所示的流向通过出胶口13溢出至芯片本体1的正面后,自然成型,利用胶液的表面张力形成一个微球状的粘附头,形成的粘附头表面呈光滑状且具有粘附力。
另一种应用示例中,请参见图1-3所示,在芯片本体1的正面设置有1个出胶口13,在芯片本体1的背面设置有一个进胶口12,图中箭头所示的方向为向进胶口注射胶液的方向。芯片本体1内的管道11连通进胶口12和出胶口13。管道11可以为一直线管道,也可为弯曲的管道,只要能将进胶口和出胶口连通即可。
上述两个应用示例中的出胶口13和进胶口12设置于芯片本体1不同的面上,且出胶口13仅设置1个,利用上述两个示例中的芯片本体1制作的转移头可用于单次单颗微型器件的转移。当然,出胶口13与进胶口12也可设置于同一面上。例如请参见图1-4所示,在芯片本体1的正面设置有1个出胶口13和一个进胶口12,图中箭头所示的方向为向进胶口注射胶液的方向。芯片本体1内的管道11连通进胶口12和出胶口13。从进胶口12注入胶液后,一部分胶液通过图1-3中箭头所示的流向通过出胶口13溢出至芯片本体1的正面后,自然成型,利用胶液的表面张力形成一个微球状的粘附头,形成的粘附头表面呈光滑状且具有粘附力。
在本实施例的另一些示例中,出胶口13在芯片本体1的正面上也可形成多个,且形成的多个出胶口的位置分布,可与待吸附的多个器件的位置分布相对应;这样可以实现单次多颗微型器件的转移。相应的,进胶口12设置的个数和位置也可根据应用场景灵活设定。
例如,一种应用示例请参见图2所示,该应用示例中,在芯片本体1的正面设置有多个出胶口13,在芯片本体1相对的两个侧面设置有进胶口12,图中箭头所示的方向为向进胶口12注射胶液的方向。其中在每个侧面上设置的进胶口12的个数可以为1个,也可以为多个。且可选地,两个侧面上所设置的进胶口12的位置可一一对应(即在两个侧面上对称设置进胶口12),便于后续提升胶液注入的效率和均匀性。芯片本体1内的管道11连通进胶口12和出胶口13。管道11可以为一直线管道,也可为弯曲的管道,只要能将进胶口12和出胶口13连通即可。
可选地,在一些应用场景中,例如对于待转移微型器件在基板上呈阵列分布的应用场景,当在芯片本体1的正面设置有多个出胶口13时,设置的该多个出胶口13也可呈矩阵排布。例如请参见图3-1所示,在芯片本体1的正面上所设置的多个出胶口呈阵列排布。相应的,芯片本体1内的一种管道分布示意图参见图3-2所示,在图3-2中,在芯片本体1相对的两个侧面上各设置有一个进胶口12,且两个侧面上设置的进胶口12呈对称设置。通过两侧的进胶口注入胶液后,胶液的流向请参见图3-2中的箭头指向所示,胶液顺着管道流入管道各处,且其中的一小部分经于管道连通的出胶口(例如图3-1中所示的出胶口13)形成粘附头。
可选地,在一些应用场景中,例如对于待转移微型器件在基板上呈阵列分布的应用场景,当在芯片本体1的正面设置有多个出胶口13时,设置的该多个出胶口13也可呈矩阵排布。例如请参见图3-1所示,在芯片本体1的正面上所设置的多个出胶口呈阵列排布。相应的,芯片本体1内的一种管道分布示意图参见图3-2所示,在图3-2中,在芯片本体1相对的两个侧面上各设置有一个进胶口12,且两个侧面上设置的进胶口12呈对称设置。通过两侧的进胶口注入胶液后,胶液的流向请参见图3-2中的箭头指向所示,胶液顺着管道流入管道各处,且其中的一小部分经于管道连通的出胶口(例如图3-1中所示的出胶口13)形成粘附头。在另一应用场景中,请参见图3-3所示,其与图3-2相比主要的区别在于,在芯片本体1的四个侧面上都设置有进胶口12,且可选地,相对两个侧面上的进胶口12对称设置,当然也可采用非对称设置。图3-3所示的设置方式可进一步增加胶液注射效率。因此,可以理解的是,本实施例中进胶口12的个数和位置可以根据应用需求灵活设定。
且应当理解的是,在芯片本体1的侧面设置进胶口时,至少一个进胶口的位置还可设置于相邻侧面的交接区域,位于该区域的进胶口的一部分则位于其中一个侧面上,另一个部分则位于另一个侧面上。呈现出的状态则是进胶口设置于两侧面交接的棱角上。设置多个进胶口时,可选地还可在相对的棱角上对称设置,以便于提升胶液注射效率和注入管道内的胶液的均匀度。可选地,在一些应用示例中,至少一个进胶口的位置还可设置于相邻侧面与正面的交接区域,或至少一个进胶口的位置还可设置于相邻侧面与背面的交接区域,具体可根据具体应用场景灵活设置。
在一些应用场景中,在芯片本体1的侧面设置进胶口时,还可仅在其中一个侧面上设置至少一个进胶口。例如请参见图3-4所示,在芯片本体1的正面设置有多个出胶口13,在芯片本体1的其中一个侧面设置有至少一个进胶口12,图中箭头所示的方向为向进胶口12注射胶液的方向。其中在该侧面上设置的进胶口12的个数可以为1个,也可以为多个。芯片本体1内的管道11连通进胶口12和出胶口13。管道11可以为直线管道,也可为弯曲的管道,只要能将进胶口12和出胶口13连通即可。
在另一些应用场景中,还可在芯片本体1的背面设置进胶口。例如请参见图3-5所示,在芯片本体1的正面设置有多个出胶口13,在芯片本体1背面靠近两侧面的区域分别设置有至少一个进胶口12,图中箭头所示的方向为向进胶口12注射胶液的方向。其中在背面每一侧上设置的进胶口12的个数可以为1个,也可以为多个。芯片本体1内的管道11连通进胶口12和出胶口13,管道11的形状可不做限制。又例如,请参见图3-6所示,其与图3-5的主要区别在于,进胶口12设置于芯片本体1背面的中间区域,且在该中间区域设置的进胶口12的个数可以为1个,也可以为多个,具体可根据需求灵活设定。
在本实施例的又一些应用场景中,还可在芯片本体1的背面和侧面同时进胶口。例如请参见图3-7所示,在芯片本体1的正面设置有多个出胶口13,在芯片本体1背面靠近某一侧面的区域设置有至少一个进胶口12,同时在芯片本体1的其中一个侧面上也设置有至少一个进胶口12,背面的进胶口12与侧面的进胶口12的个数可以设置为相同,也可设置为不同。图中箭头所示的方向为向进胶口12注射胶液的方向。芯片本体1内的管道11连通进胶口12和出胶口13,管道11的形状可不做限制。
在本实施例的又一些应用场景中,还可在芯片本体1的正面同时进胶口。例如请参见图3-8所示,在芯片本体1的正面设置有多个出胶口13,在芯片本体1正面靠近两侧面的两个区域分别设置有至少一个进胶口12,其中在正面每一区域上设置的进胶口12的个数可以为1个,也可以为多个。芯片本体1内的管道11连通进胶口12和出胶口13,管道11的形状可不做限制。又例如,请参见图3-9所示,其与图3-8的主要区别在于,进胶口12设置于芯片本体1正面的中间区域,且在该中间区域设置的进胶口12的个数可以为1个,也可以为多个,具体可根据需求灵活设定。
在本实施例的又一些应用场景中,还可在芯片本体1的正面和侧面同时进胶口。例如请参见图3-10所示,在芯片本体1的正面设置有多个出胶口13,在芯片本体1正面靠近某一侧面的区域设置有至少一个进胶口12,同时在芯片本体1的其中一个侧面上也设置有至少一个进胶口12,正面的进胶口12与侧面的进胶口12的个数可以设置为相同,也可设置为不同。图中箭头所示的方向为向进胶口12注射胶液的方向。芯片本体1内的管道11连通进胶口12和出胶口13,管道11的形状也可不做限制。
可见,本实施例中在芯片本体1上进胶口、出胶口以及管道的设置位置、形态等都可灵活设定。在本实施例中芯片本体1的形状也可灵活选用,例如芯片本体1的横截面可以为矩形、圆形、六边形、三角形、椭圆形或其他不规则形状。例如一种示例请参见图4所示,芯片本体1的横截面为圆形,其正面上设置有多个出胶口13,多个出胶口13成阵列排布,且各出胶口13的位置与待转移的微型器件在基板上的位置相对应,也即相邻出胶口13之间的间隔,与基板上待转移的相邻微型器件之间的间隔相对应。
应当理解的是,本实施例中上述各示例中管道的直径以及出胶口的口径也可根据需求灵活设定,在设置时可以根据待转移的微型器件的尺寸、重量等灵活考虑。例如,一些应用示例中,管道的直径为50微米至100微米,出胶口的口径为10微米至30微米。比如,管道的直径可为50微米,出胶口的口径可为10微米或15微米,或管道的直径可为70微米,出胶口的口径可为15微米或20微米,或管道的直径可为90微米,出胶口的口径可为20微米或25微米,或管道的直径可为100微米,出胶口的口径可为25微米或30微米等。
应当理解的是,本实施例中上述各示例中管道的形状和出胶口的形状也可灵活设置。例如,一种示例中,管道的横截面形状可以为矩形,出胶口可为方形孔,例如参见图3-1和图4中所示的出胶口13就为方形孔,胶液经该方形孔溢出自然成型后,溢出的部分上端成微圆形,下端成方形。
本实施例提供的微流控芯片用于制作转移头时,只需执行注胶和固化两个步骤,制作过程简单便捷,效率高,且不再存在相关技术中与在硅基板上的孔洞难以剥离情况发生,既能提升转移头制作的良品率,又能从多方面降低转移头的制作成本。
一种可选的实施例:
应当理解的是,上述示例的微流控芯片的制作方式可以灵活选用。为了便于理解,下面以一种示例的微流控芯片的制作过程进行示例说明。请参见图5所示,包括:
S501:形成第一底材层。
在本实施例中,可以在基板上形成第一底材层,该基板可以为但不限于玻璃基板、蓝宝石基板、或石英基板中的任意一种。本实施例中的第一底材层可以为但不限于包括聚二甲基硅氧烷、聚甲基丙烯酸甲酯、或热塑性聚氨酯弹性体中的任意一种。且第一底材层的厚度可以灵活设置。例如,一种应用示例中,第一底材层的材质可选用道康宁-184系列聚二甲基硅氧烷PDMS材料,基本选用玻璃基板;在玻璃基板上通过旋转镀膜spin
coating道康宁184固化后形成第一底材层。
S502:在第一底材层上形成第一光刻胶层。
本实施例中,第一光刻胶胶层所采用的胶体中具有感光物质,使其具备光阻特性,即受到紫外光照射后,照射部分会被显影液洗去(即正型胶光刻胶)或受到紫外光照射后,未照射部分会被显影液洗去,而照射部分会保留(即负型胶光刻胶)。
S503:根据进胶口及管道分布图对第一光刻胶进行曝光显影处理后,布设进胶口和管道的对应区域留有第一光刻胶层。
本实施例中的进胶口及管道分布图可设置于掩膜板上,当进胶口设置于芯片本体侧面时,则第一光刻胶层与该侧面齐平。一种示例中,假设进胶口设置为芯片本体相对的两个侧面上,第一光刻胶层与对应的两个侧面齐平。本实施例中,进胶口及管道分布图上,对应管道的图形可以为直线管道,弧形管道或折线型管道等。在进行曝光显影处理后,在第一底材层上,除了布设进胶口和管道的对应区域内留有第一光可胶层(对应管道和进胶口)之外,其他区域的第一光刻胶层都被去除,
S504:在第一光刻胶层之上设置第二光刻胶层。
一种示例中,可以直接在第一底材层之上设置将第一光刻胶层覆盖的第二光刻胶层,第二光刻胶层的厚度也可根据需求灵活设置。
S505:根据出胶口分布图对第二光刻胶进行曝光显影处理后,布设出胶口的区域留有第二光刻胶层。
本实施例中的出胶口分布图可设置于掩膜板上,在进行曝光显影处理后,在第一底材层上,除了第一光刻胶层对应布设有出胶口的区域剩余第二光刻胶层外,其他区域的第二光刻胶层都被去除;在第一光刻胶层留下的第二光刻胶层形成多个对应出胶口的光刻胶柱体,该光刻胶柱体去除后则形成对应的出胶口。光刻胶柱体的尺寸规格可匹配芯片尺寸大小的设置,光刻胶柱体的横截面形状可为矩形(例如正方形),例如待转移的微型芯片的尺寸为15微米*25微米,光刻胶柱体的更横截面为选正方形,正方形的边长(即出胶口的口径)为20微米;待转移的微型芯片的尺寸为40微米*60微米,光刻胶柱体的更横截面为选正方形,正方形的边长(即出胶口的口径)为50微米;这样胶液经该出胶口溢出后自然成型形成的凸起结构(即粘附头)下方接近方形,上方偏圆。
本实施例中的第一光刻胶层与第二光刻胶层的类型和材质可以相同,也可不同,可根据需求灵活设置。
S506:在第一底材层上设置第二底材层,第二底材层的厚度大于第一光刻胶层的厚度,小于等于第一光刻胶层和第二光刻胶层的厚度之和。
本实施例中的第一底材层与第二底材层的材质可以相同,也可不同,可根据需求灵活设置。
本实施例中的第二底材层的厚度大于第一光刻胶层的厚度,以保证管道最终形成于芯片本体内,第二底材层的厚度小于等于第一光刻胶层和第二光刻胶层的厚度之和,以保证上述光刻胶柱体的上端露出第二底材层,并在被出去后形成对应的出胶口。
S507:将第一光刻胶层和第二光刻胶层采用目标溶液洗去后,第一光刻胶层和第二光刻胶层原来占用的空间构成进胶口、管道、和出胶口。
例如一种示例中,目标溶液可以选用但不限于有机溶剂,对第一光刻胶层和第二光刻胶层进行清洗去除,第一光刻胶层和第二光刻胶层原来占用的空间构成进胶口、管道、和出胶口。例如一种示例得到的微流控芯片请参见图6所示,芯片本体1位于基板2上,芯片本体1的正面上形成有多个出胶口13,芯片本体1相对的两侧面形成有进胶口12,芯片本体1内的管道将进胶口12和出胶口13连通。
本实施例提供的微流控芯片制作方法中,只需要在第一底材层上根据进胶口、管道以及出胶口的分布,依次进行两次铺设光刻胶层以及进行光刻处理,然后再形成将出胶口和进胶口留出并将其他区域全面覆盖的第二底材层后,对内部的光刻胶层清洗掉即可,制作过程简单、方便,且制作效率高,成本低。
另一种可选的实施例:
本实施例提供了一种例如上述微流控芯片制作得到的转移头,该转移头包括经芯片本体上的进胶口注入管道内的胶液,胶液的一部分固化在管道内,一部分经出胶口溢出至出胶口所在的面上后自然成型,并在固化后形成粘附头。
本实施例中的胶液材质可以灵活选用,例如一种示例中胶液包括有机硅树脂,丙烯酸树脂,丙烯酸改性有机硅树脂中的至少一种。
在本实施例中,胶液经出胶口溢出至出胶口所在的面的高度为10微米至20微米,形成的粘附头的高度也对应在10微米至20微米左右。例如形成的粘附头的高度可为10微米,12微米,15微米,18微米,20微米等。
为了便于理解,本实施例还提供一种转移头的制作方法,请参见图7所示,包括:
S701:通过微流注入控制设备,控制胶液从芯片本体上的进胶口,注入管道内,并通过出胶口溢出至出胶口所在的面上后自然成型。
S702:对胶液进行固化。在一种示例中,可以采用但不限于在芯片本体上方用UV光照射,使胶液固化成型后,得到的一种示例的转移头结构参见图8所示,包括芯片本体1,自进胶口12注入管道并固化于芯片本体1内的管道内的胶体2,以及经出胶口溢出后自然成型并在固化后形成的粘附头21,粘附头21上端偏圆形,下端成方形。
本实施例还提供了一种用于制作转移头的制作系统,包括:微流控制设备、固化设备、连接管及容器,其中,
容器用于盛放胶液;
微流控制设备包括微流探针及微流驱动设备,微流探针一端通过连接管与容器的出液口连接,另一端与芯片本体上的进胶口连接;微流驱动设备用于控制胶液从容器内经连接管流入微流探针,并经微流探针通过进胶口注入所述管道内,流入管道的胶液通过出胶口溢出至出胶口所在的面上自然成型;其中微流驱动设备可采用但不限于蠕动泵。
固化设备用于对胶液进行固化,其中固化设备可采用但不限于UV光照设备。
例如一种示例的制作系统请参见图9所示,包括容器91,连接管92,微流驱动设备93,微流探针94,以及待加工的芯片本体95,芯片本体95其中的一个面上形成有两个进胶口951(芯片本体95内的管道以及芯片本体95上的出胶口未示出),两个进胶口951分别通过两个微流探针94和连接管92与容器91的出液口连接。微流驱动设备93控制容器91内的胶液经由连接管92和微流探针94注入进胶口内,微流驱动设备93可控制胶液在连接管92,微流探针94以及管道内的流速,以及控制注入芯片本体95内的胶液量。
可见,上述转移头的制作系统结构简单且易操作控制,同时利用该制作系统在上述微流控芯片上形成转移头时,只需要执行注胶和对胶体进行固化两个步骤,制作过程非常简单、便捷,制作效率高,成本低。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (14)
- 一种微流控芯片,其特征在于,包括:芯片本体;在所述芯片本体内分布的管道;在所述芯片本体的至少一个面上形成的至少一个进胶口,所述进胶口与所述管道相通,以供向所述管道内注入具有粘性的胶液;在所述芯片本体的至少一个面上形成的至少一个出胶口,所述出胶口与所述管道相通,以供注入所述管道内的一部分胶液,通过所述出胶口溢出至所述出胶口所在的面上自然成型,并在固化后形成粘附头。
- 如权利要求1所述的微流控芯片,其特征在于,所述芯片本体包括正面,与所述正面相对的背面,以及位于所述正面和背面之间的侧面;所述正面上形成有多个所述出胶口,所述多个出胶口的位置分布,与待吸附的多个器件的位置分布相对应。
- 如权利要求2所述的微流控芯片,其特征在于,所述进胶口所在的面,与所述出胶口所在的面为不同的面。
- 如权利要求3所述的微流控芯片,其特征在于,所述正面和背面之间的侧面包括位置相对的两个侧面,所述两个侧面上形成有所述进胶口。
- 如权利要求1-4任一项所述的微流控芯片,其特征在于,所述出胶口为方形孔。
- 如权利要求2-4任一项所述的微流控芯片,其特征在于,所述多个出胶口呈矩阵排布。7. 如权利要求1-4任一项所述的微流控芯片,其特征在于,所述芯片本体的材质包括聚二甲基硅氧烷、聚甲基丙烯酸甲酯、或热塑性聚氨酯弹性体。
- 如权利要求1-4任一项所述的微流控芯片,其特征在于,所述管道的直径为50微米至100微米。
- 如权利要求1-4任一项所述的微流控芯片,其特征在于,所述出胶口的口径为10微米至30微米。
- 一种转移头,其特征在于,所述转移头包括如权利要求1-9任一项所述的微流控芯片,还包括经所述进胶口注入所述管道内的胶液,所述胶液的一部分固化在所述管道内,一部分经所述出胶口溢出至所述出胶口所在的面上后自然成型,并在固化后形成粘附头。
- 如权利要求10所述的转移头,其特征在于,所述胶液包括有机硅树脂,丙烯酸树脂,丙烯酸改性有机硅树脂中的至少一种。
- 如权利要求1-9任一项所述的微流控芯片制作方法,其特征在于,包括:形成第一底材层;在所述第一底材层上形成第一光刻胶层;根据进胶口及管道分布图对所述第一光刻胶进行曝光显影处理后,布设所述进胶口和管道的对应区域留有第一光刻胶层;在所述第一光刻胶层之上设置第二光刻胶层;根据出胶口分布图对所述第二光刻胶进行曝光显影处理后,布设所述出胶口的区域留有第二光刻胶层;在所述第一底材层上设置第二底材层,所述第二底材层的厚度大于所述第一光刻胶层的厚度,小于等于所述第一光刻胶层和第二光刻胶层的厚度之和;将所述第一光刻胶层和第二光刻胶层采用目标溶液洗去后,所述第一光刻胶层和所述第二光刻胶层原来占用的空间构成所述进胶口、管道、和出胶口。
- 一种如权利要求10或11所述的转移头的制作方法,其特征在于,包括:通过微流注入控制设备,控制胶液从所述芯片本体上的所述进胶口,注入所述管道内,并通过所述出胶口溢出至所述出胶口所在的面上自然成型;对所述胶液进行固化。
- 如权利要求13所述的转移头的制作方法,其特征在于,所述胶液通过所述出胶口溢出至所述出胶口所在面上的高度为10微米至20微米。
- 一种如权利要求10或11所述的转移头的制作系统,其特征在于,包括:微流控制设备、固化设备、连接管及容器;所述容器用于盛放胶液;所述微流控制设备包括微流探针及微流驱动设备,所述微流探针一端通过所述连接管与所述容器的出液口连接,另一端与所述芯片本体上的所述进胶口连接;所述微流驱动设备用于控制胶液从所述容器内经所述连接管流入所述微流探针,并经所述微流探针通过所述进胶口注入所述管道内,流入所述管道的所述胶液通过所述出胶口溢出至所述出胶口所在的面上自然成型;所述固化设备用于对所述胶液进行固化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/099050 WO2022000215A1 (zh) | 2020-06-29 | 2020-06-29 | 微流控芯片、转移头及其制作方法、制作系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/099050 WO2022000215A1 (zh) | 2020-06-29 | 2020-06-29 | 微流控芯片、转移头及其制作方法、制作系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022000215A1 true WO2022000215A1 (zh) | 2022-01-06 |
Family
ID=79317848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/099050 WO2022000215A1 (zh) | 2020-06-29 | 2020-06-29 | 微流控芯片、转移头及其制作方法、制作系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022000215A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114464567A (zh) * | 2022-01-26 | 2022-05-10 | Tcl华星光电技术有限公司 | 转移装置及其制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102411060A (zh) * | 2011-12-06 | 2012-04-11 | 东南大学 | 一种具有高深宽比微流道的微流控芯片及其制作方法 |
CN107146769A (zh) * | 2017-05-23 | 2017-09-08 | 深圳市华星光电技术有限公司 | 微发光二极管的转移设备及转移方法 |
CN108962789A (zh) * | 2018-06-25 | 2018-12-07 | 开发晶照明(厦门)有限公司 | 微器件转移方法和微器件转移设备 |
US20190035662A1 (en) * | 2017-07-28 | 2019-01-31 | Innoserv, Inc. | Method and device of batch transferring micro components |
US20190088480A1 (en) * | 2017-09-20 | 2019-03-21 | International Business Machines Corporation | Chip handling and electronic component integration |
CN110212079A (zh) * | 2019-05-17 | 2019-09-06 | 深圳市华星光电半导体显示技术有限公司 | Micro-LED芯片的转移方法及Micro-LED显示面板 |
-
2020
- 2020-06-29 WO PCT/CN2020/099050 patent/WO2022000215A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102411060A (zh) * | 2011-12-06 | 2012-04-11 | 东南大学 | 一种具有高深宽比微流道的微流控芯片及其制作方法 |
CN107146769A (zh) * | 2017-05-23 | 2017-09-08 | 深圳市华星光电技术有限公司 | 微发光二极管的转移设备及转移方法 |
US20190035662A1 (en) * | 2017-07-28 | 2019-01-31 | Innoserv, Inc. | Method and device of batch transferring micro components |
US20190088480A1 (en) * | 2017-09-20 | 2019-03-21 | International Business Machines Corporation | Chip handling and electronic component integration |
CN108962789A (zh) * | 2018-06-25 | 2018-12-07 | 开发晶照明(厦门)有限公司 | 微器件转移方法和微器件转移设备 |
CN110212079A (zh) * | 2019-05-17 | 2019-09-06 | 深圳市华星光电半导体显示技术有限公司 | Micro-LED芯片的转移方法及Micro-LED显示面板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114464567A (zh) * | 2022-01-26 | 2022-05-10 | Tcl华星光电技术有限公司 | 转移装置及其制作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111531528B (zh) | 基于磁驱动柔性薄膜驱动器的尺蠖仿生结构及制造工艺 | |
WO2019095659A1 (zh) | 微元件的巨量转移方法 | |
US20200185452A1 (en) | Manufacturing method of micro light-emitting diode display panel | |
TWI845621B (zh) | 微型顯示器及用於製造微型裝置陣列之方法 | |
CN100562749C (zh) | 一种低通量微阵列生物芯片的制备装置及其制作方法 | |
US20090230174A1 (en) | Self-assembly of elements using microfluidic traps | |
CN102145875B (zh) | 一种聚二甲基硅氧烷微纳流控芯片的制备方法 | |
US10784237B1 (en) | Method for fabricating an emissive display | |
US11421198B2 (en) | Cell capture apparatus | |
WO2022000215A1 (zh) | 微流控芯片、转移头及其制作方法、制作系统 | |
CN108034586A (zh) | 一种用于单细胞捕捉和培养的微流控芯片 | |
TW201816753A (zh) | 電子裝置與其製造方法 | |
CN111987037A (zh) | 一种微型器件转移头及其制造方法 | |
CN109234163A (zh) | 一种高通量肿瘤靶向药物浓度筛选微流控器件 | |
WO2014190629A1 (zh) | 电子纸模组、电子纸显示装置以及电子纸模组制作方法 | |
CN102719359A (zh) | 一种细胞培养装置及其应用 | |
CN108384713A (zh) | 一种细胞迁移用微流控芯片及其制备方法 | |
EP3708531A1 (en) | Microfluidic chip and microfluidic device | |
CN107754870B (zh) | 三维微流控芯片、其制备方法及其应用 | |
CN109718878A (zh) | 极板、微流控芯片及极板的制备方法 | |
CN113937049A (zh) | 微流控芯片及其制作方法、转移头及其制作方法 | |
CN110993577B (zh) | 一种pdms微通道热沉、pdms模具、硅模具及其制备方法 | |
CN100412677C (zh) | 微格法电泳显示器的制备方法 | |
CN116764705A (zh) | 一种可进行细胞分选、粒子捕获等操作的新型数字微流控芯片及其制作方法 | |
CN116493060A (zh) | 一种细胞分离微流控芯片、使用方法和制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942522 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20942522 Country of ref document: EP Kind code of ref document: A1 |