WO2022000164A1 - 距离探测设备及可移动平台 - Google Patents

距离探测设备及可移动平台 Download PDF

Info

Publication number
WO2022000164A1
WO2022000164A1 PCT/CN2020/098813 CN2020098813W WO2022000164A1 WO 2022000164 A1 WO2022000164 A1 WO 2022000164A1 CN 2020098813 W CN2020098813 W CN 2020098813W WO 2022000164 A1 WO2022000164 A1 WO 2022000164A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
housing
detection device
distance detection
scanning
Prior art date
Application number
PCT/CN2020/098813
Other languages
English (en)
French (fr)
Inventor
张泽政
吴阳阳
刘祥
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/098813 priority Critical patent/WO2022000164A1/zh
Priority to CN202080006841.7A priority patent/CN114127508A/zh
Publication of WO2022000164A1 publication Critical patent/WO2022000164A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the present application relates to the technical field of laser ranging, and in particular, to a distance detection device and a movable platform.
  • the scanning module is one of the core functional components of the lidar.
  • the scanning module drives the optical components through the motor to enable the radar to scan and measure different points in space to form 2D or 3D point cloud images.
  • the high-speed rotation of the motor of the scanning module will cause the scanning module to vibrate, and the external vibration and shock will be transmitted to the scanning module through the lidar housing, which will also cause the scanning module to vibrate. No matter what causes the scanning module to vibrate, it will affect the optical path of the lidar, causing the lidar to generate random angle errors and random ranging errors, thus affecting the ranging performance of the lidar.
  • the scanning module is subjected to a large external impact such as a drop, the structure of the scanning module will be deformed and damaged, and in severe cases, the lidar will fail completely.
  • Embodiments of the present application provide a distance detection device and a movable platform.
  • Embodiments of the present application provide a distance detection device.
  • the distance detection device includes a casing, a scanning module and at least one pair of flexible connection components.
  • the housing is formed with a accommodating cavity, and the scanning module is accommodated in the accommodating cavity.
  • the scanning module includes a scanning casing, an optical element located in the scanning casing, and a driver located in the scanning casing and used to drive the optical element to move, and the driver includes a drive for driving the optical element to rotate.
  • rotor The scanning housing is connected to the housing through at least one pair of the flexible connecting assemblies, two of the flexible connecting assemblies in the same pair are respectively arranged at opposite corners of the scanning housing, and the diagonal connections are The lines lie in a plane perpendicular to the axis of rotation of the rotor.
  • Embodiments of the present application provide a distance detection device.
  • the distance detection device includes a casing, a scanning module and a vibration damping module.
  • the housing is formed with a accommodating cavity, and the scanning module is accommodated in the accommodating cavity.
  • the scanning module includes a scanning casing, an optical element located in the scanning casing, and a driver located in the scanning casing and used to drive the optical element to move.
  • the driver includes a rotor for driving the optical element to rotate.
  • the vibration damping module includes at least two flexible connection components, and the scanning module is connected to the housing through the vibration damping module. The distance between the main axis of stiffness of the vibration damping module and the main axis of inertia of the scanning module is within a second preset range.
  • Embodiments of the present application provide a distance detection device.
  • the distance detection device includes a casing, a scanning module and at least one pair of flexible connection components.
  • the housing is formed with a accommodating cavity, and the scanning module is accommodated in the accommodating cavity.
  • the scanning module includes a scanning casing, an optical element located in the scanning casing, and a driver located in the scanning casing and used to drive the optical element to move.
  • the driver includes a rotor for driving the optical element to rotate.
  • the scan housing is connected to the housing through at least one pair of the flexible connecting assemblies. The vertical distances from the centroid of the scanning module to the connecting line of the two flexible connection components in the same pair are all within a third predetermined range.
  • Embodiments of the present application provide a distance detection device.
  • the distance detection device includes a casing, a scanning module and at least one pair of flexible connection components.
  • the housing is formed with a accommodating cavity, and the scanning module is accommodated in the accommodating cavity.
  • the scanning module includes a scanning casing, an optical element located in the scanning casing, and a driver located in the scanning casing and used to drive the optical element to move.
  • the driver includes a rotor for driving the optical element to rotate.
  • the scanning housing is connected to the housing through at least one pair of the flexible connecting assemblies, and the two flexible connecting assemblies in the same pair are symmetrical about the rotational axis of the rotor.
  • the embodiments of the present application provide a movable platform.
  • the movable platform includes a movable platform body and the distance detection device described in any one of the above embodiments.
  • the distance detection device is mounted on the movable platform body.
  • the distance detection device and the movable platform provided by the present application connect the scanning housing and the outer shell through a flexible connection assembly.
  • this connection structure can reduce the size and mass of the distance detection device, and make the distance detection device compact in structure;
  • the flexible connection component can play the role of buffering and damping, so as to improve the vibration damping performance inside the scanning module, thereby ensuring the ranging performance of the distance detection equipment;
  • the flexible connection component can also play a role of buffering and damping, improving the external impact resistance of the distance detection device, thereby ensuring the distance measurement performance of the distance detection device.
  • FIG. 1 is a schematic three-dimensional structure diagram of a distance detection device according to some embodiments of the present application.
  • Fig. 2 is a partial perspective exploded schematic view of the distance detection device in Fig. 1;
  • 3 is a schematic diagram of the ranging principle of the distance detection device according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of a circuit structure in a ranging module of a distance detecting device according to some embodiments of the present application.
  • FIG. 5 is a schematic diagram of the ranging principle of the distance detection device according to some embodiments of the present application.
  • FIG. 6 is a schematic three-dimensional structural diagram of a scanning module and a flexible connecting assembly according to some embodiments of the present application.
  • FIG. 7 is a schematic exploded perspective view of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • Fig. 8 is a schematic cross-sectional view of the distance detection device along line VIII-VIII in Fig. 1;
  • Fig. 9 is the enlarged schematic diagram at the distance detection device IX in Fig. 8;
  • FIG. 10 is a schematic cross-sectional view of the distance detection device according to some embodiments of the present application along the same cross-sectional line as line VIII-VIII in FIG. 1;
  • FIG. 11 is a schematic cross-sectional view of the distance detection device according to some embodiments of the present application along the same cross-sectional line as line VIII-VIII in FIG. 1;
  • FIG. 12 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 15 is a schematic exploded perspective view of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 16 is a schematic exploded perspective view of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • 17 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 18 is a schematic exploded perspective view of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 19 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • 20 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • 21 is a schematic structural diagram of a scanning module and a flexible connection assembly according to some embodiments of the present application.
  • FIG. 22 is a schematic structural diagram of a movable platform according to an embodiment of the present application.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary get in touch with.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • an embodiment of the present application provides a distance detection device 100 , and the distance detection device 100 can be used to measure the distance between the probe 200 and the distance detection device 100 and the distance between the probe 200 and the distance detection device 100 orientation.
  • the distance detection device 100 may comprise a radar, such as a lidar.
  • the distance detection device 100 can be used to sense external environmental information, such as distance information, bearing information, reflection intensity information, speed information, etc. of environmental objects.
  • the distance detection device 100 can measure the time of light propagation between the distance detection device 100 and the detected object 200, that is, the time-of-flight (TOF) of light, to detect the detection object 200 to the distance detection.
  • TOF time-of-flight
  • the distance detection device 100 can also detect the distance from the probe 200 to the distance detection device 100 through other techniques, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement method, which is not limited here.
  • the distance and orientation detected by the distance detection device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance detection device 100 may include a transmitting circuit 320 , a receiving circuit 351 , a sampling circuit 352 and an arithmetic circuit 353 .
  • the transmit circuit 320 may transmit a sequence of optical pulses (eg, a sequence of laser pulses).
  • the receiving circuit 351 can receive the optical pulse sequence reflected by the object to be detected 200 , perform photoelectric conversion on the optical pulse sequence to obtain an electrical signal, and then process the electrical signal and output it to the sampling circuit 352 .
  • the sampling circuit 352 can sample the electrical signal to obtain a sampling result.
  • the arithmetic circuit 353 may determine the distance between the distance detection device 100 and the detected object 200 based on the sampling result of the sampling circuit 352 .
  • the distance detection device 100 may further include a control circuit 354, and the control circuit 354 may control other circuits, for example, may control the working time of each circuit and/or set parameters for each circuit.
  • the distance detection device 100 shown in FIG. 4 includes a transmitting circuit 320, a receiving circuit 351, a sampling circuit 352 and an arithmetic circuit 353, the embodiment of the present application is not limited to this.
  • the number of any one of the circuits 351 , the sampling circuits 352 , and the arithmetic circuits 353 may be at least two.
  • the distance detection device 100 includes a housing 10 , a scanning module 20 , and at least one pair of flexible connection components 40 .
  • the distance detection device 100 may further include at least one flexible pad 50 , optionally , the distance detection device 100 may further include a distance measurement module 30 .
  • Both the scanning module 20 and the ranging module 30 are accommodated in the casing 10 .
  • the ranging module 30 is used for transmitting laser pulses to the scanning module 20, and the scanning module 20 is used for changing the transmission direction of the laser pulses and then emitting.
  • the distance module 30 is used to determine the distance between the probe 200 and the distance detection device 100 according to the reflected laser pulses.
  • the circuit structure in FIG. 4 is located in the ranging module 30 .
  • the flexible connection assembly 40 is used to connect the scanning module 20 with the housing 10 , and there is a gap between the scanning module 20 and the housing 10 to provide a vibration space for the scanning module 20 .
  • the flexible pad 50 is disposed between the housing 10 and the scanning module 20 to provide buffering for the scanning module 20 .
  • the housing 10 is made of a thermally conductive material, for example, the housing 10 may be made of a thermally conductive metal such as copper, aluminum, or the like, or the housing 10 may be made of a thermally conductive non-metallic material such as a thermally conductive plastic.
  • the housing 10 is formed with a receiving cavity 14 .
  • the containment cavity 14 has an opening to project the laser pulses outward.
  • the accommodating cavity 14 formed by the housing 10 is sealed, and the sealed accommodating cavity 14 has a solid light-transmitting area to project the laser pulses outward through the light-transmitting area.
  • the scanning module 20 , the ranging module 30 , the flexible connecting assembly 40 and the flexible pad 50 are all disposed in the receiving cavity 14 .
  • the housing 10 includes a cover 11 , a middle case 12 and a base 13 .
  • the cover 11 and the base 13 are located on opposite sides of the outer shell 10
  • the middle shell 12 is disposed between the cover 11 and the base 13
  • the cover 11 , the middle shell 12 and the base 13 together form a receiving cavity 14 .
  • the cover body 11 has a plate-like structure. Specifically, the cover body 11 may have a rectangular plate-like structure, a pentagonal plate-like structure, a hexagonal plate-like structure, or the like, which is not limited herein.
  • the cover body 11 is provided with a plurality of first installation holes 111 penetrating therethrough, and the plurality of first installation holes 111 are evenly distributed on the periphery of the cover body 11 .
  • the base 13 has a plate-like structure. Specifically, the base 13 may have a rectangular plate-like structure, a pentagonal plate-like structure, a hexagonal plate-like structure, etc., which is not limited herein.
  • the base 13 is provided with a plurality of through second installation holes 131 , and the plurality of second installation holes 131 are evenly distributed on the periphery of the base 13 .
  • the middle shell 12 includes a middle shell body 123 and a flange 124 .
  • the middle shell body 123 includes a plurality of middle shell side walls 1230 .
  • the cover body 11 is combined with the tops 1235 of the plurality of middle case side walls 1230 , and is detachably connected to the tops 1235 of the plurality of middle case side walls 1230 .
  • the base 13 is combined with the bottoms 1236 of the plurality of middle case side walls 1230 , and is detachably connected to the bottoms 1236 of the plurality of middle case side walls 1230 .
  • the number of the middle case side walls 1230 may be two, three, four, etc. In the embodiment shown in FIG.
  • the number of the middle shell side walls 1230 is four, and the four middle shell side walls 1230 are respectively the first side wall 1231 , the second side wall 1232 , the third side wall 1233 and the fourth side Wall 1234.
  • the first side wall 1231, the third side wall 1233, the second side wall 1232 and the fourth side wall 1234 are connected end to end in sequence.
  • 1233 and the fourth side wall 1234 are disposed opposite to each other, and the third side wall 1233 and the fourth side wall 1234 are respectively connected to the first side wall 1231 and the second side wall 1232 .
  • the third sidewall 1233 is formed with a light-transmitting area 12331 , and an area of the third sidewall 1233 other than the light-transmitting area 12331 is a non-light-transmitting area 12332 .
  • the light-transmitting area 12331 is used for the ranging signal sent by the distance detecting device 100 to pass through.
  • the light-transmitting area 12331 may be a through hole or a solid structure.
  • the light-transmitting area 12331 can be made of materials with high light transmittance such as plastic, resin, glass, etc., while the non-light-transmitting area 12332 can be made of copper, aluminum, etc.
  • the light-transmitting area 12331 can be made of thermally conductive plastic, which not only meets the light-transmitting requirement, but also the heat-dissipating requirement.
  • the tops 1235 of the plurality of middle case side walls 1230 are provided with a plurality of first combining holes 12351 , and the plurality of first combining holes 12351 are evenly distributed at the peripheral positions of the tops 1235 of the middle case side walls 1230 .
  • the plurality of first combining holes 12351 correspond to the plurality of first mounting holes 111
  • the locking member extends into the first mounting holes 111 and locks in the corresponding first combining holes 12351 , thereby realizing the cover body 11 Removably mounted on the tops 1235 of the plurality of mid-shell side walls 1230 through a plurality of locking pieces.
  • the bottoms 1236 of the plurality of middle case side walls 1230 are provided with a plurality of second combining holes (not shown), and the plurality of second combining holes are evenly distributed at the peripheral positions of the bottoms 1236 of the middle case side walls 1230 .
  • the plurality of second combining holes correspond to the plurality of second mounting holes 131, and the locking member (not shown) extends into the second mounting holes 131 and locks in the corresponding second combining holes, so that the base 13 can pass through multiple holes.
  • a locking member is detachably mounted on the bottom 1236 of the plurality of middle case side walls 1230 .
  • the detachable connection structure of the cover body 11 and the middle shell 12, and the detachable connection structure of the base 13 and the middle shell 12 can facilitate the installation of the scanning module 20 and the distance measuring module 30 into the casing 10, and can also scan the scanning module.
  • the module 20 and the ranging module 30 are taken out from the casing 10 to perform maintenance on the scanning module 20 or the ranging module 30 .
  • the combination of the cover body 11 and the middle shell 12 can be realized by any one or more combinations of snapping, gluing or welding, etc.
  • the combination of the base 13 and the middle shell 12 It can also be realized by any one or a combination of ways such as snap-fit, gluing or welding.
  • the number of flanges 124 includes at least one pair, for example, the number of flanges 124 may be one pair, two pairs, three pairs or even more pairs.
  • One flange 124 of each pair of flanges 124 extends from the inner side surface 1237 at the bottom 1236 of the first side wall 1231 toward the receiving cavity 14 , and the other flange 124 of each pair of flanges 124 extends from the second side wall 1232
  • the inner side surface 1237 at the top 1235 of the device extends toward the receiving cavity 14 .
  • Each flange 124 defines at least one through flange mounting hole 1241 , and the flange mounting hole 1241 corresponds to the flexible connection assembly 40 .
  • the housing 10 further includes at least one inner side 15.
  • the housing 10 includes four inner sides 15, which are a first inner side 151, a second inner side 152, a third inner side 153, and the fourth inner side 154 .
  • the first inner side 151 is the inner side of the first side wall 1231
  • the second inner side 152 is the inner side of the cover body 11 close to the receiving cavity 14
  • the third inner side 153 is the inner side of the third side wall 1233
  • the fourth inner side surface 154 is the inner side surface of the base 13 close to the receiving cavity 14 .
  • the scanning module 20 and the ranging module 30 are accommodated in the accommodating cavity 14 .
  • the ranging module 30 is used to transmit laser pulses to the scanning module 20
  • the scanning module 20 is used to change the transmission direction of the laser pulses and then emit the laser pulses
  • the laser pulses reflected by the detection object 200 pass through the scanning module 20 and then enter the ranging module 30
  • the ranging module 30 is used to determine the distance between the probe 200 and the distance detecting device 100 according to the reflected laser pulse.
  • the scanning module 20 includes a scanning housing 21 , a driver 22 , an optical element 23 , and a controller 24 .
  • the driver 22 is used to drive the optical element 23 to move, so as to change the transmission direction of the laser light passing through the optical element 23 .
  • the optical element 23 may be a lens, a mirror, a prism, a grating, an Optical Phased Array or any combination of the above optical elements.
  • the driver 22 can drive the optical element 23 to rotate, vibrate, move cyclically along a predetermined track, or move back and forth along a predetermined track, which is not limited herein.
  • the driver 22 may include a stator 221 and a rotor 222, and the stator 221 may be used to drive the rotor 222 to rotate around a rotating shaft 26 (shown in FIG. 6 ).
  • the scan housing 21 includes a scan housing top wall 211 , a scan housing bottom wall 212 , and a plurality of outer side surfaces 215 .
  • the top wall 211 of the scan housing and the bottom wall 212 of the scan housing are located on opposite sides of the scan housing 21 , the top wall 211 of the scan housing is located on the side of the scan housing 21 close to the cover 11 , and the bottom wall of the scan housing 211
  • the wall 212 is located on the side of the scan housing 21 close to the base 13 .
  • the top wall 211 of the scan casing and the bottom wall 212 of the scan casing are provided with a plurality of connection holes 210 , and the plurality of connection holes 210 correspond to the plurality of flange mounting holes 1241 on the flange 124 .
  • the number of outer sides 215 may be four, six, eight, and the like. In the embodiment shown in FIG. 7 , the number of the outer side surfaces 215 is four, and the four outer side surfaces 215 correspond to the four inner side surfaces 15 on the housing 10 respectively.
  • the four outer sides 215 are respectively a first outer side 2151 , a second outer side 2152 , a third outer side 2153 , and a fourth outer side 2154 .
  • the first outer side 2151 , the second outer side 2152 , the third outer side 2153 , and the fourth outer side 2154 are connected end to end in sequence, the first outer side 2151 is opposite to the first inner side 151 at intervals, and the second outer side 2152 is opposite to the first outer side 2152 .
  • the two inner side surfaces 152 are spaced and opposed to each other, the third outer side surface 2153 is spaced and opposed to the third inner side surface 153 , and the fourth outer side surface 2154 is spaced and opposed to the fourth inner side surface 154 .
  • the scanning housing 21 is also provided with an inner cavity 218 , and the driver 22 , the optical element 23 , and the controller 24 are all arranged in the inner cavity 218 .
  • the scan housing 21 is a one-piece structure, and the inner cavity 218 penetrates from one side of the one-piece structure to the opposite side. At this time, a receiving groove 217 is opened on the outer side surface 215 of the scan housing 21 .
  • the scan housing 21 may include a first housing 213 and a second housing 214 .
  • the first casing 213 and the second casing 214 are axially juxtaposed, the first casing 213 defines a first sub-cavity 2130, the second casing 214 defines a second sub-cavity 2140, and the first casing 213 and the The two housings 214 are combined so that the first sub-cavity 2130 communicates with the second sub-cavity 2140 to form the inner cavity 218 .
  • the combination of the first housing 213 and the second housing 214 may be any one or more of connection methods such as threading, snap-fit, adhesive bonding, and welding.
  • a first sub-accommodating groove 2171 is formed on the outer side surface 215 of the first casing 213
  • a second sub-accommodating groove 2172 is formed on the outer side surface 215 of the second casing 214
  • the first sub-accommodating groove 2171 and the second sub-accommodating groove 2172 are formed.
  • the grooves 2172 communicate with each other and together form the receiving groove 217 .
  • the scanning housing 21 is a structure in which the first housing 213 and the second housing 214 are combined, which can facilitate the installation and removal of the components arranged in the inner cavity 218 .
  • At least one pair of flexible connecting elements 40 is connected to the scanning housing 21 and the housing 10 .
  • the two flexible connecting assemblies 40 in the same pair are respectively disposed on the opposite corners of the scanning housing 21 , and the line connecting the diagonals of the scanning housing 21 is located in a plane perpendicular to the rotation axis 26 of the rotor 222 . Since the flexible connection components 40 are disposed on the opposite corners of the scan casing 21 instead of between the scan casing 21 and the inner side surface 1237 of the outer side wall 123 of the middle casing 12 , the scan casing 21 and the middle casing 12 can be reduced in size. The distance between the inner side 1237 of the outer side wall 123. Therefore, the flexible connection components 40 are disposed on the opposite corners of the scanning housing 21 , which can reduce the lateral size of the scanning module 20 , thereby reducing the size and mass of the distance detection device 100 .
  • FIGS. and flexible connection assembly 40 are simplified representations.
  • the three-dimensional structure schematic diagram shown in FIG. 2 corresponds to the simplified image shown in FIG. 12
  • the three-dimensional structure corresponding to the simplified images shown in FIGS. 13 and 14 is the same as the three-dimensional structure schematic diagram shown in FIG. 2 and FIG. 6 except for the flexible connector. Except for the different positions, the other structures are the same.
  • the relative positional relationship between the same pair of flexible connecting components 40 and the rotating shaft 26 shown in FIGS. 13 and 14 is referred to the positional relationship of other components in FIG. 2 .
  • the diagonal corners of the scan housing 21 may be two non-adjacent corners on any surface of the scan housing 21, for example, as shown in Figure 12, Figure 14, and Figures 19 to 21; the diagonal corners of the scan housing 21 may also be Two corners that are respectively located on the upper and lower bottom surfaces of the scan housing 21 but not on the same side (for example, FIG. 17 ); the diagonal corners are not limited to the top corners of the scan housing 21 , but can also be set on the side of the scan housing 21 (eg Figure 13). Taking FIG. 12 as an example, the line connecting the diagonals of the scan housing 21 is defined as a diagonal line 60 .
  • the two flexible connecting assemblies 40 in the same pair are respectively disposed at both ends of the diagonal line 60 of the scanning housing 21 , and the diagonal line 60 is located in a plane perpendicular to the rotation axis 26 .
  • the number of pairs of flexible connection components 40 is equal to the number of diagonal lines 60 .
  • two flexible connecting assemblies 40 in the same pair are respectively disposed on the opposite corners of the scanning housing 21 , the diagonal lines 60 are perpendicular to the rotating shaft 26 and the The distance is within the first preset range.
  • the distance between the diagonal 60 and the rotating shaft 26 is 0, that is, the diagonal 60 and the rotating shaft 26 are located in the same plane; for another example, the distance between the diagonal 60 and the rotating shaft 26 is 0.1 cm, that is, the diagonal 60 and the rotor are in the same plane.
  • the rotating shafts 26 of the 222 are located in different planes, but the spatial positional relationship between the two is perpendicular to each other.
  • the diagonal line 60 may be a line connecting corresponding positions of two flexible connection components 40 in the same pair, and the corresponding position may be each flexible connection
  • the distance detection device 100 includes a first pair of flexible connection components 43
  • the first pair of flexible connection components 43 includes a first flexible connection component 431 and a second flexible connection component 432 .
  • the first flexible connection component 431 is connected to the flange 124 of the middle case 12 near the cover 11 and the top wall 211 of the scan case
  • the second flexible connection component 432 is connected to the flange 124 of the middle case 12 near the base 13 and the scan case Bottom wall 212.
  • the diagonal line 60 may be a line connecting the center of the first flexible connecting element 431 and the center of the second flexible connecting element 432 .
  • the distance between the diagonal line 60 and the axis of rotation 26 of the rotor 222 is within a first predetermined range.
  • each flexible connecting component 40 includes a flexible connecting member 41 and a fastener 42 .
  • the diagonal line 60 may be a line connecting the centers of the two flexible connecting members 41 in the same pair of flexible connecting assemblies 40 , and the distance between the diagonal line 60 and the rotating shaft 26 is also within the first preset range.
  • the diagonal line 60 may also be a line connecting the centers of the two fasteners 42 in the same pair of flexible connecting assemblies 40, and the distance between the diagonal line 60 and the rotating shaft 26 is also the first predetermined line. within the setting range.
  • the diagonal line 60 may also be a line connecting the center of each pair of flexible connecting components 40 and the housing 10 , that is, two flexible connecting components in the same pair
  • the distance detection device 100 includes a first pair of flexible connection components 43
  • the first pair of flexible connection components 43 includes a first flexible connection component 431 and a second flexible connection component 432 .
  • the first flexible connection assembly 431 and the second flexible connection assembly 432 are respectively disposed on two opposite corners of the scan housing 21 , and the first flexible connection assembly 431 passes through the flange mounting holes 1241 on the flange 124 close to the cover body 11 .
  • connection hole 210 on the top wall 211 of the scan shell to realize the connection between the top wall 211 of the scan shell and the flange 124 of the middle shell 12 close to the cover 11 .
  • the second flexible connecting component 432 passes through the flange mounting hole 1241 on the flange 124 close to the base 13 and the connecting hole 210 on the bottom wall 212 of the scan housing, so as to realize the proximity of the bottom wall 212 of the scan housing and the middle housing 12 Connection between flanges 124 of base 13 .
  • the diagonal line 60 may be a line connecting the center near the flange mounting hole 1241 on the flange 124 of the cover 11 and the center near the flange mounting hole 1241 on the flange 124 of the base 13 .
  • the distance between the diagonal line 60 and the rotating shaft 26 is also within the first preset range.
  • the distance detection device 100 includes multiple pairs of flexible connection elements 40 , and the diagonal lines 60 corresponding to the multiple pairs of flexible connection elements 40 are parallel to each other.
  • the distances between the plurality of diagonal lines 60 corresponding to the plurality of pairs of flexible connection components 40 and the rotating shaft 26 are all within the first preset range.
  • the distances between the plurality of diagonal lines 60 corresponding to the plurality of pairs of flexible connection assemblies 40 and the rotating shaft 26 may be 0, that is, the distances between the plurality of diagonal lines 60 corresponding to the plurality of pairs of flexible connecting assemblies 40 and the rotating shaft 26 are all zero. in the same plane.
  • the distance detection device 100 includes a first pair of flexible connecting components 43 and a second pair of flexible connecting components 44
  • the first pair of flexible connecting components 43 includes a first flexible connecting component 431 and a second flexible connecting component 432
  • the second pair of flexible connecting components 43 The connection component 44 includes a third flexible connection component 441 and a fourth flexible connection component 442 .
  • the first flexible connecting component 431 and the third flexible connecting component 441 are both used for connecting the top wall 211 of the scan housing and the housing 10
  • the second flexible connecting component 432 and the fourth flexible connecting component 442 are both used for connecting the bottom wall 212 of the scan housing with housing 10.
  • the diagonal lines 60 corresponding to the first pair of flexible connecting elements 43 and the diagonal lines 60 corresponding to the second pair of flexible connecting elements 44 are parallel to each other, and the two diagonal lines 60 are located in the same direction as the rotating shaft 26 in plane.
  • the flexible connection assembly 40 is in the configuration of four diagonally diagonal points on the outside of the scanning housing 21, the displacement (ie translation) and rotation of the scanning module 20 in the three-dimensional coordinate system in the three directions of X, Y, and Z can be solved.
  • the translational acceleration of the scanning module 20 will not cause the rotational acceleration, and the rotational acceleration will not cause the translational acceleration of the scanning module 20 either.
  • the flexible connection assembly 40 can greatly reduce the impact of the vibration on the scanning module 20 when the casing 10 is subjected to vibration due to external force, thereby improving the external impact resistance of the distance detection device 100 .
  • the flexible connection assembly 40 can also play a role of buffering and damping vibrations generated by the rotation of the rotor 222 inside the scanning module 20 , so as to improve the vibration damping performance inside the scanning module 20 .
  • the diagonally arranged structural design of the flexible connection assembly 40 does not require the provision of flanges on the scanning module 20 in a direction perpendicular to the rotating shaft 26 and parallel to the inner side surface 15 of the cover body 11 , which can reduce the size of the scanning module 20 . size, so that the size and size of the distance detection apparatus 100 can be reduced.
  • the distance detection device 100 includes two pairs of flexible connecting elements 40 , and two diagonal lines 60 corresponding to the two pairs of flexible connecting elements 40 intersect and are located on the same plane .
  • the distance detection device 100 includes a first pair of flexible connecting components 43 and a second pair of flexible connecting components 44
  • the first pair of flexible connecting components 43 includes a first flexible connecting component 431 and a second flexible connecting component 432
  • the connection component 44 includes a third flexible connection component 441 and a fourth flexible connection component 442 .
  • the first flexible connection assembly 431 is disposed on the first side 2111 of the top wall 211 of the scan casing
  • the third flexible connection assembly 441 is disposed on the second side 2112 of the top wall 211 of the scan casing opposite to the first side 2111
  • the first flexible Both the connecting component 431 and the third flexible connecting component 441 are used to connect the top wall 211 of the scan housing and the housing 10 .
  • the second flexible connection assembly 432 is disposed on the second side 2122 of the bottom wall 212 of the scan casing
  • the fourth flexible connection assembly 442 is disposed on the first side 2121 of the bottom wall 212 of the scan casing opposite to the second side 2122
  • the second flexible Both the connecting component 432 and the fourth flexible connecting component 442 are used to connect the bottom wall 212 of the scan housing and the housing 10 .
  • a diagonal line 61 formed by the first pair of flexible connection elements 43 intersects with a diagonal line 62 formed by the second pair of flexible connection elements 44 , and the two diagonal lines 61 and 62 are located in the same plane.
  • the distance detection device 100 includes multiple pairs of flexible connecting elements 40 , and the multiple diagonal lines 60 corresponding to the multiple pairs of flexible connecting elements 40 include multiple first direction A diagonal line 61 and a plurality of second diagonal lines 62 having a second direction, and the first direction is different from the second direction.
  • the plurality of first diagonal lines 61 are parallel and all lie in a first plane
  • the plurality of second diagonal lines 62 are parallel and all lie in a second plane
  • the first plane and the second plane intersect.
  • the distances between the plurality of first diagonal lines 61 and the rotating shaft 26 are all within the first preset range
  • the distances between the multiple second diagonal lines 62 and the rotating shaft 26 are all within the first preset range.
  • the distances between the plurality of first diagonals 61 and the rotating shaft 26 may be 0, and the distances between the plurality of second diagonals 62 and the rotating shaft 26 may be 0, that is, the plurality of first diagonals Both the line 61 and the rotation axis 26 are located in the first plane, and the plurality of second diagonal lines 62 and the rotation axis 26 are located in the second plane.
  • the distance detection device 100 includes a first pair of flexible connection components 43 , a second pair of flexible connection components 44 , a third pair of flexible connection components 45 and a fourth pair of flexible connection components 46 .
  • the first pair of flexible connecting elements 43 includes a first flexible connecting element 431 and a second flexible connecting element 432.
  • the second pair of flexible connecting elements 44 includes a third flexible connecting element 441 and a fourth flexible connecting element 442 .
  • the third pair of flexible connecting elements 45 includes a fifth flexible connecting element 451 and a sixth flexible connecting element 452 .
  • the fourth pair of flexible connecting elements 46 includes a seventh flexible connecting element 461 and an eighth flexible connecting element 462 .
  • the first flexible connection assembly 431 and the third flexible connection assembly 441 are disposed on the first side 2111 of the top wall 211 of the scan housing, and the fifth flexible connection assembly 451 and the seventh flexible connection assembly 461 are disposed on the On the second side 2112 opposite to one side 2111 , the first flexible connection component 431 , the third flexible connection component 441 , the fifth flexible connection component 451 and the seventh flexible connection component 461 are all used to connect the top wall 211 of the scan housing and the housing 10 .
  • the second flexible connection assembly 432 and the fourth flexible connection assembly 442 are disposed on the second side 2122 of the bottom wall 212 of the scan casing, and the sixth flexible connection assembly 452 and the eighth flexible connection assembly 462 are disposed on the bottom wall 212 of the scan casing.
  • the second side 2122 is opposite to the first side 2121.
  • the second flexible connection component 432 , the fourth flexible connection component 442 , the sixth flexible connection component 452 and the eighth flexible connection component 462 are all used to connect the scan housing bottom wall 212 and the housing 10 .
  • the two first diagonal lines 61 formed by the first pair of flexible connecting elements 43 and the second pair of flexible connecting elements 44 are parallel to each other and lie in the first plane with the rotating shaft 26 .
  • the two second diagonals 62 formed by the third pair of flexible connecting elements 45 and the fourth pair of flexible connecting elements 46 are parallel to each other and located in the second plane with the rotating shaft 26 . Since multiple pairs of flexible connection components 40 are added to the scanning module 20, the stability of the connection between the scanning module 20 and the housing 10 can be increased, and the vibration reduction performance can be improved.
  • each cross section of the scanning module 20 along the vertical axis 26 may include a first diagonal line 61 and a second diagonal line 62 , that is, the first diagonal line 61 In the same plane as the second diagonal 62 .
  • the flexible connecting component 40 connects the scanning housing 21 and the housing 10 .
  • the flexible connection assembly 40 allows a gap between the scanning module 20 and the housing 10 to provide a vibration space for the scanning module 20, so that the vibration of the housing 10 will not affect the scanning module 20, and the vibration generated by the rotor 222 of the scanning module 20 itself will not be affected.
  • the distance detection module 100 will be affected, thereby improving the performance of the distance detection module 100 .
  • the flexible connecting component 40 includes a flexible connecting member 41 and a fastener 42 .
  • the flexible connecting member 41 and the housing 10 are connected with the scanning housing 21 by the fastener 42 , and more specifically, the flexible connecting member 41 and the flange 124 are connected with the scanning housing 21 by the fastener 42 .
  • the flexible connector 41 is arranged between the housing 10 and the scanning housing 21 , specifically, one flexible connector 41 in each pair of flexible connecting components 40 is located between the top wall 211 of the scanning housing and the cover 11 ; the other flexible connector 41 is The connecting member 41 is located between the bottom wall 212 of the scanning housing and the base 13 .
  • Each flexible connecting member 41 includes a flexible first supporting portion 411 , a flexible second supporting portion 412 and a flexible connecting portion 413 .
  • the first support portion 411 and the second support portion 412 are respectively connected at opposite ends of the connection portion 413 .
  • the flexible connecting member 41 defines a through hole 414 penetrating through the first supporting portion 411 , the connecting portion 413 and the second supporting portion 412 .
  • the connecting portion 413 penetrates through the flange mounting hole 1241 on the flange 124 , and the first supporting portion 411 and the second supporting portion 412 are located on the flange 124 respectively.
  • the opposite sides of the scanning module 20 are in contact with the flanges 124, and the fasteners 42 pass through the through holes 414 and are combined with the connecting holes 210 on the bottom wall 212 of the scanning housing to connect the scanning module 20 with one of the flanges 124.
  • the first support The part 411 is located between the flange 124 and the base 13, and the opposite surface of the first support part 411 is in contact with the flange 124; the second support part 412 is located between the flange 124 and the scanning housing 21, and the second support part 412 The opposite surfaces of the support portion 412 are in contact with the flange 124 and the scan housing 21 respectively.
  • the other connecting member 41 and the other fastener 42 of the same pair of flexible connecting components 40 can also be connected to the other flange 124 by referring to the above-mentioned manner, and details are not described herein again.
  • the cross section of the flexible connecting member 41 taken by the plane passing through the axis of the through hole 414 is "I"-shaped.
  • the flexible connecting member 41 may be made of at least one material selected from the group consisting of damping silicone rubber, silicone rubber, damping rubber, butyl rubber, EPDM rubber, nitrile rubber, polyvinyl chloride nitrile rubber and fluorine rubber.
  • the flexible connecting member 41 may be made of only silicone rubber; or the flexible connecting member 41 may be jointly made of silicon rubber and damping rubber; or the flexible connecting member 41 may be jointly made of silicon rubber, damping rubber and butyl rubber . No matter which one or more of the above-mentioned materials the flexible connector 41 is made of, its Shore hardness should be within [10HA, 30HA].
  • the Shore hardness of the flexible connector 41 may be 10HA, 12.5HA, 15HA, 20HA, 25HA, 30HA, or the like. Therefore, while the flexible connecting member 41 can buffer and reduce vibration, it has a certain connection strength and is not easily broken, thereby ensuring the stability of the connection.
  • At least one flexible pad 50 is disposed in the gap between the scanning housing 21 and the housing 10 .
  • the number of the flexible pads 50 may be one or more.
  • the scanning module 20 will have a large displacement.
  • the flexible pad 50 is disposed between the outer side 215 of the scanning housing 21 and the inner side 15 of the housing 10 . It is compressed to achieve a buffer effect and improve the impact resistance of the scanning module 20 .
  • the flexible pad 50 is provided on the outer side surface 215 of the scan housing 21 , and at least one flexible pad 50 is provided on at least one outer side surface 215 of the scan housing 21 , and the flexible pad 50 is connected to the housing.
  • the inner side 15 of 10 is opposite.
  • the flexible pad 50 can be mounted on the outer side 215 by any one or more of gluing, screwing, welding, and snap-fitting.
  • a flexible pad 50 is provided on each of the four outer sides 215 of the scanning housing 21 , the flexible pad 50 is opposite to the inner side 15 of the housing 10 , and when the flexible pad 50 is not compressed, The distance between the side of the flexible pad 50 away from the scanning module 20 and the corresponding inner side surface 15 of the housing 10 is smaller than the displacement of the housing 10 caused by the first impact force. That is to say, when the impact force on the casing 10 is greater than or equal to the first impact force, the casing 10 will contact the flexible pad 50, and the flexible pad 50 is compressed to reduce the impact of the impact force on the scanning module 20 on the casing 10, thereby To achieve a buffer effect.
  • the flexible pad 50 is sandwiched between the housing 10 and the scanning module 20 to provide a vibration reduction space for the scanning module 20, the vibration of the scanning module 20 is prevented from being transmitted to the housing 10, thereby realizing the vibration reduction function.
  • the distance between the side of the flexible pad 50 away from the scanning module 20 and the inner side surface 15 of the corresponding housing 10 is smaller than the displacement of the housing 10 caused by the first impact force, And it is larger than the displacement generated by the second impact force received by the casing 10 .
  • the impact force on the casing 10 is less than the second impact force, the flexible pad 50 does not contact the casing 10 , that is, the flexible pad 50 does not function, and the distance detection device 100 only realizes the vibration damping function by the flexible connection assembly 40 .
  • the flexible pad 50 When the impact force on the housing 10 is greater than the second impact force and less than the first impact force, the flexible pad 50 is in contact with the housing 10 and the flexible pad 50 is compressed to provide buffering and vibration reduction for the scanning module 20 , while the first impact force of the flexible connecting member 41 is The first support portion 411 and the second support portion 412 are not completely compressed and can still provide a vibration damping function for the scanning module 20 . That is to say, when the impact force on the casing 10 is greater than the second impact force and less than the first impact force, the distance detection device 100 realizes the vibration damping function by the flexible pad 50 and the flexible connecting member 41 together.
  • the first impact force on the housing 10 is greater than the first impact force
  • the first support portion 411 and the second support portion 412 of the flexible connection assembly 40 are completely compressed and cannot provide vibration reduction for the scanning module 20 .
  • the distance detection device 100 The vibration damping function is achieved only by the flexible pad 50 .
  • the first impact force is greater than or equal to fifty times the gravity of the scanning module 20 itself; the second impact force is about thirty times the gravity of the scanning module 20 itself. It can be understood that the first impact force and the third impact force are The specific value of the second impact force can be set according to the scanning module and the actual application scenario, which is not limited in this application.
  • the flexible pad 50 may be made of at least one material selected from the group consisting of damping silicone rubber, silicone rubber, damping rubber, butyl rubber, EPDM rubber, nitrile rubber, polyvinyl chloride nitrile rubber and fluororubber become.
  • the flexible pad 50 can be made of only silicone rubber; or the flexible pad 50 can be made of silicone rubber and damping rubber; or the flexible pad 50 can be made of silicone rubber, damping rubber and butyl rubber. No matter which one or more of the above-mentioned materials the flexible pad 50 is made of, its Shore hardness should be within the range of [40HA, 60HA].
  • the Shore hardness of the flexible pad 50 may be 40HA, 45HA, 48.6HA, 50HA, 55HA, 60HA, or the like. Therefore, the flexible pad 50 has a certain hardness while being capable of buffering and damping vibration, and can resist impact without being damaged.
  • the flexible pad 50 is arranged on the outer side 215 in the following cases: (1) A part of the outer side 215 is provided with the flexible pad 50 , and each outer side 215 of the partial outer side 215 is One flexible pad 50 is provided, that is, only one flexible pad 50 is provided on each of the outer side surfaces 215 , and no flexible pad 50 is provided on the rest of the outer side surfaces 215 .
  • the second outer side 2152 and the fourth outer side 2154 are each provided with a flexible pad 50 , and neither the first outer side 2151 nor the third outer side 2153 is provided with the flexible pad 50 .
  • a part of the outer side surface 215 is provided with a flexible pad 50, and each outer side surface 215 of the part of the outer side surface 215 is provided with a plurality of flexible pads 50, that is, only a part of the outer side surface 215 is provided with a plurality of flexible pads 50
  • the pad 50 is not provided with the flexible pad 50 on the outer side surface 215 of the remaining part.
  • the second outer side 2152 and the fourth outer side 2154 are respectively provided with a plurality of flexible pads 50 , and neither the first outer side 2151 nor the third outer side 2153 is provided with the flexible pads 50 .
  • a part of the outer side surface 215 is provided with a flexible pad 50 , and a sub-part of the outer side surface 215 of the part of the outer side surface 215 is provided with a plurality of flexible pads 50 , and the remaining sub-part outer side surfaces of the part of the outer side surface 215 215 are provided with a flexible pad 50 .
  • a flexible pad 50 is provided on the second outer side 2152 , multiple flexible pads 50 are provided on the fourth outer side 2154 , and neither the first outer side 2151 nor the third outer side 2153 is provided with the flexible pad 50 .
  • the four outer sides 215 are provided with flexible pads 50 , and only one flexible pad 50 is provided on part of the outer side surfaces, and a plurality of flexible pads 50 are provided on the other part of the outer side surfaces 215 .
  • one flexible pad 50 is provided on each of the first outer side surface 2151 and the third outer side surface 2153 , and a plurality of flexible pads 50 are respectively provided on the second outer side surface 2152 and the fourth outer side surface 2154 .
  • a plurality of flexible pads 50 are provided on each of the four outer side surfaces 215 .
  • the heights of the multiple flexible pads 50 are the same. In this way, the heights of the plurality of flexible pads 50 on the same outer side 215 are all the same.
  • the outer casing 10 and the plurality of flexible pads will have the same height.
  • the interaction force between the spacers 50 is relatively uniform, so as to prevent the casing 10 from tilting due to uneven force.
  • the scanning module 20 may further include an electronic device 25 , and the electronic device 25 may be, for example, a capacitor, a resistor, an inductor, a sensor, or the like.
  • Electronics 25 are mounted on one or more outer sides 215 of scan housing 21 .
  • the height of the flexible pad 50 is higher than that of the electronic device 25 , that is, the height of the electronic device 25 is lower than that of the flexible pad 50 .
  • the casing 10 Since the height of the flexible pad 50 is higher than the height of the electronic device 25, when the casing 10 is pressed towards the scanning module 20 by an external force, the casing 10 will be pressed to the flexible pad 50 first but not to the electronic device 25, thereby protecting the The electronic device 25 ensures that the electronic device 25 is not damaged.
  • the outer side surface 215 of the scanning housing 21 has an arc-shaped curved surface structure
  • the flexible pad 50 disposed thereon has an arc-shaped structure matching with the curved surface of the outer side surface 215 .
  • the outer side surface 215 of the scanning housing 21 includes a relatively complete plane area 216 formed by cutting out a part of the convex structure in a relatively complete outwardly convex arc shape, and the flexible pad 50 is arranged on the plane area 216.
  • the planar area 216 has a rectangular structure
  • the flexible pad 50 also has a rectangular structure.
  • the plane area 216 formed by cutting off part of the outer surface 215 of the scanning housing 21 can reduce the size and mass of the scanning module 20 , thereby reducing the size and mass of the distance detection device 100 .
  • a receiving groove 217 is defined in the plane area 216 , and the flexible pad 50 is disposed in the receiving groove 217 .
  • the accommodating grooves 217 limit the installation position of the flexible pad 50 on the outer side surface 215 , that is, the accommodating grooves 217 can reduce the installation difficulty of the flexible pad 50 .
  • the scanning housing 21 includes a first housing 213 and a second housing 214 .
  • the plane area 216 is composed of a sub-plane area on the first casing 213 and a sub-plane area on the second casing 214.
  • the sub-plane area of the first casing 213 is provided with a first sub-accommodating groove 2171, and the second casing
  • a second sub-accommodating groove 2172 is defined in the sub-plane area of 214 .
  • the first sub-accommodating groove 2171 and the second sub-accommodating groove 2172 communicate with each other and together form a receiving groove 217 .
  • the scanning module 20 will have a large displacement. Since the embodiment of the present application is provided with at least one outer side surface 215 of the scanning housing 21 at least one The flexible pad 50 can prevent the casing 10 from directly colliding with the scanning module 20 , and at the same time, the flexible pad 50 can be compressed to reduce the size of the external impact force transmitted to the scanning module 20 to achieve a buffer effect, thereby improving the impact resistance of the scanning module 20 .
  • the flexible pad 50 may also be disposed on the inner side 15 of the casing 10 , and at least one flexible pad 50 is disposed on at least one inner side 15 of the casing 10 .
  • the flexible pad 50 is connected to the scanning casing.
  • the outer sides 215 of 21 are opposite.
  • the flexible pad 50 can be installed on the inner side 15 by any one or more of gluing, screwing, welding, and snap-fitting. At this time, the material and hardness of the flexible pad 50 are the same as those described above, and will not be repeated here.
  • the distance detection device 100 includes four flexible pads 50, and the four flexible pads 50 are respectively disposed on the first inner side 151, the second inner side 152, the third inner side 153, and on the fourth inner side 154 .
  • the flexible pad 50 When the flexible pad 50 is not compressed, the distance between the side of the flexible pad 50 away from the casing 10 and the outer side surface 215 of the scan housing 21 is smaller than the displacement of the casing 10 caused by the first impact force. That is to say, when the impact force on the casing 10 is greater than the first impact force, the scanning module 20 will first contact the flexible pad 50, and the flexible pad 50 is compressed to reduce the impact of the impact force on the casing 10 on the scanning module 20, thereby To achieve a buffer effect.
  • the flexible pad 50 since the flexible pad 50 is sandwiched between the housing 10 and the scanning module 20 to provide a vibration reduction space for the scanning module 20, the vibration of the scanning module 20 is prevented from being transmitted to the housing 10, thereby realizing the vibration reduction function.
  • the distance between the side of the flexible pad 50 away from the casing 10 and the corresponding outer side surface 215 of the scanning module 20 is smaller than the displacement of the casing 10 caused by the first impact force, And it is larger than the displacement generated by the second impact force received by the casing 10 .
  • the impact force on the housing 10 is less than the second impact force, the flexible pad 50 does not contact the scanning module 20 , that is, the flexible pad 50 does not function, and the distance detection device 100 only realizes the vibration damping function by the flexible connection assembly 40 .
  • the flexible pad 50 When the impact force on the housing 10 is greater than the second impact force and less than the first impact force, the flexible pad 50 is in contact with the scanning module 20 and the flexible pad 50 is compressed to provide buffering and vibration reduction for the scanning module 20 , while the The first support portion 411 and the second support portion 412 are not completely compressed and can still provide a vibration reduction function for the scanning module 20 . That is to say, when the impact force on the casing 10 is greater than the second impact force and less than the first impact force, the distance detection device 100 realizes the vibration damping function by the flexible pad 50 and the flexible connecting member 41 together.
  • the first support portion 411 and the second support portion 412 of the flexible connection assembly 40 are completely compressed and cannot provide vibration damping for the scanning module 20 .
  • the vibration damping function is realized by the flexible pad 50 .
  • the flexible pads 50 are arranged on the inner side 15 in the following cases: (1) A part of the inner side 15 is provided with a flexible pad 50 , and each inner side 15 of the inner side 15 of the part is provided with a flexible pad 50 . Each is provided with a flexible pad 50 , that is, only a part of the inner side surface 15 is provided with a flexible pad 50 , and the remaining part of the inner side surface 15 is not provided with a flexible pad 50 . For example, among the four inner sides 15 of the housing 10 , a flexible pad 50 is provided on each of the two inner sides 15 , and no flexible pad 50 is provided on the remaining two inner sides 15 .
  • a part of the inner side surface 15 is provided with a flexible pad 50, and each outer side surface 215 of the part of the inner side surface 15 is provided with a plurality of flexible pads 50, that is, only the inner side surface 15 is provided with a plurality of flexible pads 50, no flexible pad 50 is provided on the inner side surface 15 of the remaining part.
  • two inner sides 15 are respectively provided with a plurality of flexible pads 50 , and the other two inner sides 15 are not provided with flexible pads 50 .
  • a part of the inner side surface 15 is provided with a flexible pad 50, and a sub-section of the inner side surface 15 of the part of the inner side surface 15 is provided with a plurality of flexible pads 50, and the remaining sub-part inner side surfaces of the inner side surface 15 15 is provided with a flexible pad 50 .
  • one of the inner sides 15 is provided with only one flexible pad 50
  • one inner side 15 is provided with a plurality of flexible pads 50
  • the remaining two inner sides 15 are not provided with flexible pads 50.
  • the four inner sides 15 are provided with flexible pads 50 , and only one flexible pad 50 is provided on part of the inner side 15 , and multiple flexible pads 50 are provided on the other part of the inner side 15215 .
  • two flexible pads 50 are provided on each of the two inner sides 15 , and a plurality of flexible pads 50 are respectively provided on the other two inner sides 15 .
  • a plurality of flexible pads 50 are provided on each of the four inner side surfaces 15 .
  • the ranging module 30 is rigidly fixed in the housing 10 , that is, accommodated in the receiving cavity 14 .
  • the ranging module 30 is disposed opposite to the scanning module 20 with a gap therebetween.
  • the ranging module 30 includes a ranging housing 31 , a light source 32 , an optical path changing element 33 , a collimating element 34 , and a detector 35 .
  • the ranging module 30 may adopt a coaxial optical path, that is, the laser beam emitted by the ranging module 30 and the reflected laser beam share at least part of the optical path in the ranging module 30 .
  • the distance-measuring module 30 may also adopt an off-axis optical path, that is, the light beam emitted by the distance-measuring module 30 and the reflected light beam are respectively transmitted along different optical paths in the detection device.
  • the light source 32 includes the transmit circuit 320 shown in FIG. 4 .
  • the detector 35 includes the receiving circuit 351, the sampling circuit 352, and the arithmetic circuit 353 shown in FIG. 4, or further includes the control circuit 354 shown in FIG.
  • the light source 32 the optical path changing element 33 , the collimating element 34 , and the detector 35 are described below by using the first coaxial optical path in the ranging module 30 .
  • the light source 32 is mounted on the ranging housing 31 .
  • the light source 32 can be used to emit a laser pulse sequence.
  • the laser beam emitted by the light source 32 is a narrow bandwidth beam with a wavelength outside the visible light range.
  • the laser pulse sequence emitted by the light source 32 can enter the scanning housing 21 .
  • the light source 32 may include a laser diode (Laser diode) through which laser light is emitted at the nanosecond level.
  • the laser pulses emitted by the light source 32 have a duration of 10 ns.
  • the collimating element 34 is disposed on the light exit light path of the light source 32, and is used for collimating the laser beam emitted from the light source 32, that is, collimating the laser beam emitted by the light source 32 into parallel light.
  • the collimating element 34 is installed in the ranging housing 31 and is located near one end of the scanning module 20 . More specifically, the collimating element 34 is located between the light source 32 and the scanning module 20 .
  • Collimating element 34 also serves to converge at least a portion of the return light reflected by probe 200 .
  • the collimating element 34 may be a collimating lens or other element capable of collimating the light beam.
  • the collimating element 34 is coated with an anti-reflection coating, which can increase the intensity of the transmitted light beam.
  • the optical path changing element 33 is installed in the distance measuring housing 31 and arranged on the light exit light path of the light source 32 , and is used to change the light path of the laser beam emitted by the light source 32 .
  • the optical path changing element 33 is located on the side of the collimating element 34 opposite to the scanning module 20 .
  • the light path changing element 33 may be a mirror or a half mirror and a half mirror, and the light path changing element 33 includes a reflective surface 332 opposite to the light source 32 .
  • the optical path changing element 33 is a small reflecting mirror, which can change the optical path direction of the laser beam emitted by the light source 32 by 90 degrees or other angles.
  • the detector 35 is installed in the ranging housing 31, the detector 35 is located at one end of the ranging housing 31 away from the scanning module 20, the detector 35 and the light source 32 are placed on the same side of the collimating element 34, wherein the detector 35 Directly opposite the collimating element 34, a detector 35 is used to convert at least part of the return light passing through the collimating element 34 into an electrical signal.
  • the light source 32 emits a laser pulse, and the laser pulse is collimated by the collimating element 34 after changing the optical path direction (which can be changed by 90 degrees or changing other angles) through the optical path changing element 33.
  • the collimated laser pulse After the transmission direction is changed by the optical element 23 , it is emitted and projected onto the detector 200 . After the laser pulse reflected by the detector 200 passes through the optical element 23 , at least a part of the returned light is collected by the collimating element 34 to the detector 35 .
  • the detector 35 converts at least part of the return light passing through the collimating element 34 into electrical signal pulses, the laser pulse reception time being determined by the distance detection device 100 by the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance detection device 100 can calculate the flight time by using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the probe 200 to the distance detection device 100 .
  • the light source 32 , the optical path changing element 33 , the collimating element 34 , and the detector 35 are described below by using the second off-axis optical path in the distance measuring module 30 .
  • the structure and position of the collimating element 34 are the same as those of the collimating element 34 in the first type of coaxial optical path, the difference is that the optical path changing element 33 is a large reflecting mirror, and the large reflecting mirror includes a reflective mirror. Surface 332, and a light-passing hole is opened in the middle of the large mirror.
  • the detector 35 and the light source 32 are still placed on the same side of the collimating element 34.
  • the positions of the detector 35 and the light source 32 in the off-axis optical path are interchanged, that is, in the off-axis optical path Among them, the light source 32 is directly opposite the collimating element 34 , the detector 35 is opposite to the reflecting surface 332 , and the optical path changing element 33 is located between the light source 32 and the collimating element 34 .
  • the light source 32 emits a laser pulse
  • the laser pulse passes through the light-passing hole of the optical path changing element 33 and is collimated by the collimating element 34
  • the collimated laser pulse is transmitted by the prism 23 after changing the transmission direction and then exits.
  • Projected on the probe 200 after the laser pulses reflected by the probe 200 pass through the optical element 23 , at least a part of the returned light is condensed by the collimator 34 onto the reflection surface 332 of the optical path changing element 33 .
  • the reflective surface 332 reflects at least a part of the return light to the detector 35, and the detector 35 converts the reflected at least part of the return light into an electrical signal pulse, and the distance detection device 100 passes the rising edge time of the electrical signal pulse and/or Or the falling edge time determines the laser pulse reception time. In this way, the distance detection device 100 can calculate the flight time by using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the probe 200 to the distance detection device 100 .
  • the size of the optical path changing element 33 is relatively large, which can cover the entire field of view of the light source 32, and the return light is directly reflected by the optical path changing element 33 to the detector 35, which avoids the optical path changing element 33 itself affecting the return light path.
  • the occlusion increases the intensity of the returning light that can be detected by the detector 35 and improves the ranging accuracy.
  • the present application further provides a distance detection device 100
  • the distance detection device 100 includes a housing 10 , a scanning module 20 and a vibration damping module 70 .
  • the housing 10 is formed with a accommodating cavity 14
  • the scanning module 20 is accommodated in the accommodating cavity 14 .
  • the vibration damping module 70 includes at least two flexible connection components 40
  • the scanning module 20 is connected to the housing 10 through the vibration damping module 70
  • the distance between the stiffness main axis of the vibration damping module 70 and the inertia main axis of the scanning module 20 is at a second preset value.
  • the second preset range can be set according to the actual situation, and the distance between the inertial main axis of the scanning module 20 and the stiffness main axis of the damping module 70 can be the distance between the dots of the inertial main axis and the stiffness main axis.
  • the second preset range can be any value between 0.01 cm and 1 cm, which is not limited in this application.
  • the distance between the main axis of stiffness of the vibration reduction module 70 and the main axis of inertia of the scanning module 20 can also be the main axis of inertia and the main axis of stiffness
  • the deviation angle between the main axes, at this time, the second preset range is an angle, for example, the second preset range may be any value between 0.1° and 5°.
  • the distance between the main axis of stiffness of the damping module 70 and the main axis of inertia of the scanning module 20 is equal to 0, that is, the main axis of stiffness of the damping module 70 coincides with the main axis of inertia of the scanning module 20 .
  • the displacement and rotation of the scanning module 20 in the three-dimensional coordinate system in the X, Y, and Z directions can be performed. Decoupling, that is, the translational acceleration of the scanning module 20 will not cause the rotational acceleration, and the rotational acceleration will not cause the translational acceleration of the scanning module 20, so when the scanning module is subjected to the impact force, the shock absorption module 70 can weaken the impact force Impact on Scan Module 20.
  • the distance between the main axis of stiffness of the damping module 70 and the main axis of inertia of the scanning module 20 is equal to 0, that is, when the main axis of stiffness of the damping module 70 is coincident with the main axis of inertia of the scanning module 20 , the damping module 70 is opposite to the scanning module 20 .
  • the decoupling effect of the displacement and rotation in the three directions of X, Y, and Z is better. Therefore, the shock absorption module 70 can better reduce the impact of the impact force on the scanning module 20, that is, the reduction of the shock absorption module 70. The shock effect is stronger.
  • FIG. 15 other structures and connection methods of the distance detection device 100 shown in FIG. 15 are the same as those of the distance detection device 100 of the foregoing embodiments, and will not be repeated here.
  • the inertial main axis of the scanning module 20 refers to: in a space coordinate system, the three inertial products of the scanning module 20 (the inertial product refers to the mass of each particle or mass unit in the scanning module 20 and its mutual relationship to the two If the sum of the products of the distances of the vertical planes) is zero, the common coordinate axis is the inertial main axis of the scanning module 20 .
  • the stiffness spindle of the damping module 70 refers to an elastic system composed of three mutually orthogonal coordinate axes on the damping system, so that the stiffness coupling term between any two axes is zero, then these coordinate axes are called the damping system Stiffness spindle.
  • the main axis of inertia of the scanning module 20 may be determined first, so as to determine the main axis of stiffness of the damping module 70 according to the relationship between the main axis of inertia and the main axis of stiffness, and then determine the position of the damping module 70 .
  • the inertial main axis of the scanning module 20 can be modeled to determine that after the vibration reduction module 70 is arranged at a certain position of the scanning module 20, the stiffness main axis of the vibration reduction module 70 can be made to coincide with the inertial main axis,
  • the flexible connecting assembly 40 is arranged according to the determined position of the rigid major axis, so that the rigid major axis of the damping module 70 composed of the multiple flexible connecting assemblies 40 coincides with the inertial major axis of the scanning module 20 .
  • the scanning module 20 not only includes a scanning casing, an optical element located in the scanning casing, and a driver located in the scanning casing and used to drive the optical element to move
  • the driver includes a rotor for driving the optical element to rotate
  • the components connected with the scanning module 20 for example, electronic devices arranged outside or inside the scanning module 20
  • the main body of the inertial main shaft includes but not limited to the scanning module 20, and all inertial main shafts including the main body of the scanning module belong to the protection scope of the present application.
  • the present application further provides a distance detection device 100 , the distance detection device 100 includes a housing 10 , a scanning module 20 and at least a pair of flexible connection components 40 .
  • the housing 10 is formed with a accommodating cavity 14, the scanning module 20 is accommodated in the accommodating cavity 14, the scanning module 20 is connected with the housing 10 through at least one pair of flexible connecting components 40, and the center of mass O of the scanning module 20 is connected to two flexible connections in the same pair
  • the vertical distances of the connecting lines of the components 40 are all within the third preset range. In particular, the vertical distance from the centroid O of the scanning module 20 to the line connecting the two flexible connecting assemblies 40 in the same pair is 0, that is, the connecting lines of the same pair of flexible connecting assemblies 40 all pass through the centroid O of the scanning module 20 .
  • the distance detection device 100 includes a plurality of pairs of flexible connection components 40, the connecting lines of the plurality of pairs of flexible connection components 40 intersect at an intersection, and the distance between the intersection and the center of mass O of the scanning module 20 is within the third preset within the setting range.
  • the distance between the intersections of the lines of the multiple pairs of flexible connecting components 40 and the centroid O of the scanning module 20 is equal to 0, that is, the intersections of the connecting lines of the multiple pairs of flexible connecting components 40 coincide with the centroid O of the scanning module 20 .
  • the distance detection device 100 includes a first flexible connecting component 43 and a second pair of flexible connecting components 44
  • the first pair of flexible connecting components 43 includes a first flexible connecting component 431 and a second flexible connecting component Component 432
  • the second pair of flexible connecting components 44 includes a third flexible connecting component 441 and a fourth flexible connecting component 442 .
  • the line connecting the first flexible connecting component 431 and the second flexible connecting component 432 and the connecting line connecting the third flexible connecting component 441 and the fourth flexible connecting component 442 intersect at the intersection point P, which coincides with the center of mass O.
  • the displacement and rotation of the scanning module 20 in the three-dimensional coordinate system in the X, Y, and Z directions can be decoupled, that is, the horizontal plane of the scanning module 20 can be decoupled.
  • the dynamic acceleration will not cause the rotational acceleration, and the rotational acceleration will not cause the translational acceleration of the scanning module 20 .
  • other structures and connection methods of the distance detection device 100 shown in FIG. 16 may be the same as those of the distance detection device 100 of the foregoing embodiments, and will not be repeated here.
  • the present application further provides a distance detection device 100 .
  • the distance detection device 100 includes a housing 10 , a scanning module 20 and at least a pair of flexible connection components 40 .
  • the housing 10 is formed with a accommodating cavity 14 , and the scanning module 20 is accommodated in the accommodating cavity 14 .
  • the scanning module 20 includes a scanning housing 21 , a driver 22 , an optical element 23 , and a controller 24 .
  • the driver 22 includes a stator 221 and a rotor 222 , and the stator 221 can be used to drive the rotor 222 to rotate around the rotating shaft 26 .
  • the scanning housing 21 is connected to the housing 10 through at least one pair of flexible connecting assemblies 40 , and the two flexible connecting assemblies 40 in the same pair are symmetrical about the rotation axis 26 of the rotor 222 . It should be noted that other structures and connection methods of the distance detection device 100 shown in FIG. 18 may be the same as those of the distance detection device 100 of the foregoing embodiments, and will not be repeated here.
  • the distance detection device 100 includes a first flexible connecting element 43 and a second pair of flexible connecting elements 44
  • the first pair of flexible connecting elements 43 includes a first flexible connecting element 431 and a second flexible connecting element 432
  • the second pair of flexible connecting components 44 includes a third flexible connecting component 441 and a fourth flexible connecting component 442
  • the first flexible connection component 431 and the second flexible connection component 432 are symmetrical with respect to the rotation axis 26
  • the third flexible connection component 441 and the fourth flexible connection component 442 are symmetrical with respect to the rotation axis 26 .
  • the displacement and rotation of the scanning module 20 in the three-dimensional coordinate system in the X, Y, and Z directions can be decoupled, that is, the translational acceleration of the scanning module 20 is not A rotational acceleration will be caused, and the rotational acceleration will not cause a translational acceleration of the scanning module 20 .
  • the distance detection device 100 includes at least two pairs of flexible connecting assemblies 40 , and the connecting lines of the flexible connecting assemblies 40 in different pairs are in the same plane as the rotating shaft 26 of the rotor 222 .
  • the distance detection device 100 includes a first flexible connecting component 43 and a second pair of flexible connecting components 44
  • the first pair of flexible connecting components 43 includes a first flexible connecting component 431 and a second flexible connecting component Component 432
  • the second pair of flexible connecting components 44 includes a third flexible connecting component 441 and a fourth flexible connecting component 442 .
  • connection line between the first flexible connection element 431 and the third connection element 441 is the first connection line 81
  • connection line between the second flexible connection element 432 and the fourth connection element 442 is the second connection line 82
  • the first connection line 81 , the second connection line 82 and the rotating shaft 26 are in the same plane.
  • connection line between the first flexible connection element 431 and the fourth connection element 442 is the third connection line 83
  • connection line between the second flexible connection element 432 and the third connection element 441 is the fourth connection line 84 .
  • the third connection line 83 , the fourth connection line 84 and the rotating shaft 26 are in the same plane.
  • connection lines of the flexible connecting components 40 in different alignments are in the same plane as the rotating shaft 26 of the rotor 222 , the displacement and rotation of the scanning module 20 in the three directions of X, Y, and Z in the three-dimensional coordinate system can be decoupled, that is, The translational acceleration of the scanning module 20 will not cause the rotational acceleration, and the rotational acceleration will not cause the translational acceleration of the scanning module 20 .
  • the distance detection device 100 when the distance detection device 100 includes two pairs of flexible connecting assemblies 40 , the distance between the plane where each pair of flexible connecting assemblies 40 is located and the parameter M of the scanning module 20 is equal.
  • the parameter of the scanning module 20 may be any one of the centroid, center, or center of gravity of the scanning module 20 .
  • the distance detection device 100 includes a scanning module 20 , a first flexible connection component 43 and a second pair of flexible connection components 44 , and the first pair of flexible connection components 43 includes a first flexible connection component 431 and The second flexible connecting element 432 and the second pair of flexible connecting elements 44 include a third flexible connecting element 441 and a fourth flexible connecting element 442 .
  • the distance between the plane where the first flexible connecting component 431 and the second flexible connecting component 432 are located and the parameter M of the scanning module 20 is D1
  • the distance detection device 100 when the distance detection device 100 includes two pairs of flexible connecting assemblies 40 , the distance between the plane where each pair of flexible connecting assemblies 40 is located and the center point N of the rotating shaft 26 of the rotor 222 is equal.
  • the distance detection device 100 includes the scanning module 20 , the first flexible connecting component 43 and the second pair of flexible connecting components 44 , and the first pair of flexible connecting components 43 includes the first flexible connecting component 431 and The second flexible connecting element 432 and the second pair of flexible connecting elements 44 include a third flexible connecting element 441 and a fourth flexible connecting element 442 .
  • the distance between the plane where the first flexible connecting component 431 and the second flexible connecting component 432 are located and the center point N of the rotating shaft 26 of the rotor 222 is D3
  • the distance between the third flexible connecting component 441 and the fourth flexible connecting component 442 is The distance between the plane and the center point N of the rotating shaft 26 of the rotor 222
  • an embodiment of the present application further provides a movable platform 1000 .
  • the movable platform 1000 includes a movable platform body 300 and the distance detection device 100 of any of the above embodiments.
  • the movable platform 1000 may be an unmanned aerial vehicle, an unmanned vehicle, an unmanned ship, a robot, an armored combat vehicle, or the like.
  • a movable platform 1000 may be configured with one or more distance detection devices 100 .
  • the distance detection device 100 can be used to detect the environment around the movable platform 1000, so that the movable platform 1000 can further perform operations such as obstacle avoidance and trajectory selection according to the surrounding environment.
  • the distance detection device 100 can be arranged in the front of the movable platform 1000. or the upper part, which is not limited in this application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include at least one of said features. In the description of the present application, “plurality” means at least two, such as two, three, unless expressly and specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种距离探测设备(100)及可移动平台(1000)。距离探测设备(100)包括壳体(10)、扫描模块(20)及至少一对柔性连接组件(40)。扫描模块(20)收容在外壳(10)形成的收容腔(14)内,扫描模块(20)中的扫描壳体(21)通过至少一对柔性连接组件(40)与外壳(10)连接,同一对中的柔性连接组件(40)分别设置在扫描壳体(21)的对角,对角的连线位于垂直于转子(221)的转轴(26)的平面内。

Description

距离探测设备及可移动平台 技术领域
本申请涉及激光测距技术领域,特别涉及一种距离探测设备及可移动平台。
背景技术
扫描模块是激光雷达的核心功能元件之一,扫描模块通过电机带动光学组件让雷达实现对空间中不同点的扫描测距,以形成2D或3D点云图。
扫描模块的电机高速旋转会使得扫描模块产生振动,外界振动及冲击通过激光雷达外壳传递至扫描模块,也会使得扫描模块产生振动。无论是哪种原因使得扫描模块产生振动,都会影响激光激光雷达的光路,使激光雷达产生角度随机误差和测距随机误差,从而影响激光雷达的测距性能。当扫描模块受到跌落等较大外界冲击时,会导致扫描模块结构变形、破损,严重时会导致激光雷达完全失效。
发明内容
本申请的实施方式提供了一种距离探测设备及可移动平台。
本申请实施方式提供一种距离探测设备。所述距离探测设备包括外壳、扫描模块及至少一对柔性连接组件。所述外壳形成有收容腔,所述扫描模块收容在所述收容腔内。所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子。所述扫描壳体通过至少一对所述柔性连接组件连接在所述外壳上,同一对中的两个所述柔性连接组件分别设置在所述扫描壳体的对角,所述对角的连线位于垂直于所述转子的转轴的平面内。
本申请实施方式提供一种距离探测设备。所述距离探测设备包括外壳、扫描模块及减振模块。所述外壳形成有收容腔,所述扫描模块收容在所述收容腔内。所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器。所述驱动器包括用于带动所述光学元件转动的转子。所述减振模块包括至少两个柔性连接组件,所述扫描模块通过所述减振模块与所述外壳连接。所述减振模块的刚度主轴与所述扫描模块的惯性主轴之间的距离在第二预设范围内。
本申请实施方式提供一种距离探测设备。所述距离探测设备包括外壳、扫描模块及至少一对柔性连接组件。所述外壳形成有收容腔,所述扫描模块收容在所述收容腔内。所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器。所述驱动器包括用于带动所述光学元件转动的转子。所述扫描壳体通过至少一对所述柔性连接组件与所述外壳连接。所述扫描模块的质心到同一对中的两个所述柔性连接组件的连线的垂直距离均在第三预定范围内。
本申请实施方式提供一种距离探测设备。所述距离探测设备包括外壳、扫描模块及至少一对柔性连接组件。所述外壳形成有收容腔,所述扫描模块收容在所述收容腔内。所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器。所述驱动器包括用于带动所述光学元件转动的转子。所述扫描壳体通过至少一对所述柔性连接组件连接在所述外壳上,同一对中的两个所述柔性连接组件关于所述转子的转轴对称。
本申请实施方式提供一种可移动平台。所述可移动平台包括可移动平台本体及上述任意一实施方式所述的距离探测设备。所述距离探测设备安装在所述可移动平台本体上。
本申请提供的距离探测设备及可移动平台通过柔性连接组件将扫描壳体与外壳连接,一方面,此种连接结构能减小距离探测设备的尺寸及质量,使得距离探测设备的结构紧凑;另一方面,在扫描模块内部发生振动时,柔性连接组件能起到缓冲减振的作用,以提高扫描模块内部的减振性能,从而保证距离探测设备的测距性能;再一方面,在距离探测设备被外力冲击时,柔性连接组件同样能起到缓冲减振的作用,提高距离探测设备对外的抗冲击性能,从而保证距离探测设备的测距性能。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的距离探测设备的立体结构示意图;
图2是图1中距离探测设备的部分立体分解示意图;
图3是本申请某些实施方式的距离探测设备的测距原理示意图;
图4是本申请某些实施方式的距离探测设备的测距模块内电路结构的示意图;
图5是本申请某些实施方式的距离探测设备的测距原理示意图;
图6是本申请某些实施方式的扫描模块及柔性连接组件的立体结构示意图;
图7是本申请某些实施方式的扫描模块及柔性连接组件的立体分解示意图;
图8是图1中距离探测设备沿VIII-VIII线的剖面示意图;
图9是图8中距离探测设备IX处的放大示意图;
图10是本申请某些实施方式的距离探测设备沿与图1中VIII-VIII线相同的截面线的剖面示意图;
图11是本申请某些实施方式的距离探测设备沿与图1中VIII-VIII线相同的截面线的剖面示意图;
图12是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图13是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图14是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图15是本申请某些实施方式的扫描模块及柔性连接组件的立体分解示意图;
图16是本申请某些实施方式的扫描模块及柔性连接组件的立体分解示意图;
图17是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图18是本申请某些实施方式的扫描模块及柔性连接组件的立体分解示意图;
图19是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图20是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图21是本申请某些实施方式的扫描模块及柔性连接组件的结构示意图;
图22是本申请实施方式的一种可移动平台的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1及图3,本申请实施方式提供一种距离探测设备100,该距离探测设备100可以用来测量探测物200到距离探测设备100之间的距离以及探测物200相对距离探测设备100的方位。在一个实施例中,距离探测设备100可以包括雷达,例如激光雷达。在一个实施方式中,距离探测设备100可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,距离探测设备100可以通过测量距离探测设备100和探测物200之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物200到距离探测设备100的距离。或者,距离探测设备100也可以通过其他技术来探测探测物200到距离探测设备100的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。距离探测设备100探测到的距离和方位可以用于遥感、避障、 测绘、建模、导航等。
为了便于理解,以下将结合图1、图3和图4所示的距离探测设备100对测距的工作流程进行举例描述,以下仅是示例性的,并不对本申请构成限制。
距离探测设备100可以包括发射电路320、接收电路351、采样电路352和运算电路353。
发射电路320可以发射光脉冲序列(例如激光脉冲序列)。接收电路351可以接收经过被探测物200反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路352。采样电路352可以对电信号进行采样,以获取采样结果。运算电路353可以基于采样电路352的采样结果,以确定距离探测设备100与被探测物200之间的距离。
可选地,该距离探测设备100还可以包括控制电路354,该控制电路354可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图4示出的距离探测设备100中包括一个发射电路320、一个接收电路351、一个采样电路352和一个运算电路353,但是本申请实施例并不限于此,发射电路320、接收电路351、采样电路352、运算电路353中的任一种电路的数量也可以是至少两个。
上面对距离探测设备100的电路结构的一种实现方式进行了描述,下面将结合各个附图对距离探测设备100的结构的一些示例进行描述。
请参阅图1至图4,该距离探测设备100包括外壳10、扫描模块20、至少一对柔性连接组件40,可选地,该距离探测设备100还可以包括至少一个柔性垫50,可选地,该距离探测设备100还可以包括测距模块30。扫描模块20和测距模块30均收容在外壳10内。测距模块30用于向扫描模块20发射激光脉冲,扫描模块20用于改变激光脉冲的传输方向后出射,经探测物200反射回的激光脉冲经过扫描模块20后入射至测距模块30,测距模块30用于根据反射回的激光脉冲确定探测物200与距离探测设备100之间的距离。在一个示例中,图4中的电路结构位于测距模块30中。柔性连接组件40用于将扫描模块20与外壳10连接,扫描模块20与外壳10之间具有间隙以为扫描模块20提供振动空间。柔性垫50设置在外壳10与扫描模块20之间,为扫描模块20提供缓冲。
外壳10由导热材料制成,例如,外壳10可由诸如铜、铝等导热金属制成,或者,外壳10可由诸如导热塑料等导热非金属材料制成。外壳10形成有收容腔14。在一个例子中,收容腔14具有一个开口以向外投射激光脉冲。在另一个例子中,外壳10形成的收容腔14为密封的,该密封的收容腔14具有实体的透光区以通过透光区向外投射激光脉冲。扫描模块20、测距模块30、柔性连接组件40及柔性垫50均设置在收容腔14内。
在一个实施例中,请参阅图1及图2,外壳10包括盖体11、中壳12及基座13。盖体11及基座13位于外壳10的相背两侧,中壳12设置在盖体11与基座13之间,盖体11、中壳12及基座13共同围成收容腔14。
盖体11呈板状结构。具体地,盖体11可以呈矩形板状结构、五边形板状结构、六边形板状结构等,在此不作限制。盖体11开设有多个贯穿的第一安装孔111,多个第一安装孔111均匀分布在盖体11的周缘位置。
基座13呈板状结构,具体地,基座13可以呈矩形板状结构、五边形板状结构、六边形板状结构等,在此不作限制。基座13开设有多个贯穿的第二安装孔131,多个第二安装孔131均匀分布在基座13的周缘位置。
中壳12包括中壳本体123及凸缘124。
中壳本体123包括多个中壳侧壁1230。盖体11与多个中壳侧壁1230的顶部1235结合,并能够拆卸地与多个中壳侧壁1230的顶部1235连接。基座13与多个中壳侧壁1230的底部1236结合,并能够拆卸地与多个中壳侧壁1230的底部1236连接。中壳侧壁1230的个数可以是两个、三个、四个等。图2所示实施例中,中壳侧壁1230的个数为四个,四个中壳侧壁1230分别为第一侧壁1231、第二侧壁1232、第三侧壁1233及第四侧壁1234。第一侧壁1231、第三侧壁1233、第二侧壁1232及第四侧壁1234依次首尾相接,具体地,第一侧壁1231与第二侧壁1232相背设置,第三侧壁1233与第四侧壁1234相背设置,且第三侧壁1233与第四侧壁1234分别连接第一侧壁1231与第二侧壁1232。第三侧壁1233形成有透光区12331,第三侧壁1233除透光区12331之外的区域为非透光区12332。透光区12331用于供距离 探测设备100发出的测距信号穿过。透光区12331可以为通孔或实体结构。当透光区12331为实体结构时,透光区12331可以由塑料、树脂、玻璃等透光率较高的材料制成,而非透光区12332可以由铜、铝等导热性良好且透光率较低的金属制成。其中,较佳地,透光区12331可采用导热塑料,既满足了透光需求,又能满足散热需求。
多个中壳侧壁1230的顶部1235开设有多个第一结合孔12351,多个第一结合孔12351均匀分布在中壳侧壁1230的顶部1235的周缘位置。多个第一结合孔12351与多个第一安装孔111对应,锁紧件(图未示)伸入第一安装孔111并锁合在对应的第一结合孔12351内,从而实现盖体11通过多个锁紧件可拆卸地安装在多个中壳侧壁1230的顶部1235。多个中壳侧壁1230的底部1236开设有多个第二结合孔(图未示),多个第二结合孔均匀分布在中壳侧壁1230的底部1236的周缘位置。多个第二结合孔与多个第二安装孔131对应,锁紧件(图未示)伸入第二安装孔131并锁合在对应的第二结合孔内,从而实现基座13通过多个锁紧件可拆卸地安装在多个中壳侧壁1230的底部1236。盖体11与中壳12的可拆卸连接的结构、及基座13与中壳12的可拆卸连接的结构可以方便从安装扫描模块20及测距模块30进外壳10内,也能方面将扫描模块20及测距模块30从外壳10内取出,以对扫描模块20或测距模块30进行维修。在其他实施方式中,盖体11与中壳12的结合可通过卡合、胶接或焊接等任意一种或多种方式相组合的方式实现,同样地,基座13与中壳12的结合也可通过卡合、胶接或焊接等任意一种或多种方式相组合的方式实现。
凸缘124的数量包括至少一对,示例地,凸缘124的数量可以是一对、两对、三对甚至更多对。每对凸缘124中的一个凸缘124从第一侧壁1231的底部1236处的内侧面1237朝收容腔14内延伸,每对凸缘124中的另一个凸缘124从第二侧壁1232的顶部1235处的内侧面1237朝收容腔14内延伸。每个凸缘124均开设有至少一个贯穿的凸缘安装孔1241,凸缘安装孔1241与柔性连接组件40对应。
请参阅图8,外壳10还包括至少一个内侧面15,在一个实施例中,外壳10包括四个内侧面15,分别为第一内侧面151、第二内侧面152、第三内侧面153、及第四内侧面154。具体地,第一内侧面151为第一侧壁1231的内侧面,第二内侧面152为盖体11的靠近收容腔14的内侧面,第三内侧面153为第三侧壁1233的内侧面,第四内侧面154为基座13的靠近收容腔14的内侧面。
请参阅图2及图3,扫描模块20和测距模块30收容在收容腔14内。其中,测距模块30用于向扫描模块20发射激光脉冲,扫描模块20用于改变激光脉冲的传输方向后出射,经探测物200反射回的激光脉冲经过扫描模块20后入射至测距模块30,测距模块30用于根据反射回的激光脉冲确定探测物200与距离探测设备100之间的距离。
请继续参阅图2及图3,扫描模块20包括扫描壳体21、驱动器22、光学元件23、控制器24,驱动器22、光学元件23、控制器24均设置在扫描壳体21内。其中,驱动器22用于驱动光学元件23运动,以改变经过光学元件23的激光的传输方向。光学元件23可以是透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。驱动器22可以驱动光学元件23转动、振动、沿预定轨迹循环移动或者沿预定轨迹来回移动,在此不做限制。驱动器22可包括定子221及转子222,定子221可用于驱动转子222绕转轴26(图6示)转动,可以理解,该转轴26可以是实体的转轴26,也可以是虚拟的转轴26。
请一并参阅图6至图8,扫描壳体21包括扫描壳体顶壁211、扫描壳体底壁212、及多个外侧面215。其中,扫描壳体顶壁211和扫描壳体底壁212位于扫描壳体21的相背两侧,扫描壳体顶壁211位于扫描壳体21的靠近盖体11的一侧,扫描壳体底壁212位于扫描壳体21的靠近基座13的一侧。扫描壳体顶壁211及扫描壳体底壁212上均开设有多个连接孔210,且多个连接孔210与凸缘124上的多个凸缘安装孔1241相对应。外侧面215的数量可以是四个、六个、八个等等。图7所示实施例中,外侧面215的数量为四个,四个外侧面215分别与外壳10上的四个内侧面15相对应。具体地,四个外侧面215分别为第一外侧面2151、第二外侧面2152、第三外侧面2153、及第四外侧面2154。第一外侧面2151、第二外侧面2152、第三外侧面2153、及第四外侧面2154依次首尾相接,第一外侧面2151与第一内侧面151间隔相对,第二外侧面2152与第二内侧面152间隔相对,第三外侧面2153与第三内侧面153间隔相对、及第四外侧面2154与第四内侧面154间隔相对。
扫描壳体21还开设有内腔218,驱动器22、光学元件23、控制器24均设置在内腔218内。在一个 例子中,扫描壳体21为一个一体结构,该内腔218从该一体结构的一侧贯穿至相背的另一侧。此时,扫描壳体21的外侧面215开设有收容槽217。在另一个实施方式中,如图7所示,扫描壳体21可包括第一壳体213及第二壳体214。第一壳体213及第二壳体214轴向并列,第一壳体213开设有第一子内腔2130,第二壳体214开设有第二子内腔2140,第一壳体213与第二壳体214结合,使得第一子内腔2130与第二子内腔2140连通以形成内腔218。第一壳体213与第二壳体214的结合方式可以是螺纹、卡合、胶接及焊接等连接方式中的任意一种或多种。此时,第一壳体213的外侧面215开设有第一子收容槽2171,第二壳体214的外侧面215开设有第二子收容槽2172,第一子收容槽2171及第二子收容槽2172连通并共同围成收容槽217。扫描壳体21为第一壳体213与第二壳体214相结合的结构,可以方便设置在内腔218中的元件的安装及拆卸。
请继续一并参阅图6至图8,至少一对柔性连接组件40连接扫描壳体21与外壳10。同一对中的两个柔性连接组件40分别设置在扫描壳体21的对角上,并且扫描壳体21对角的连线位于垂直于转子222的转轴26的平面内。由于柔性连接组件40设置在扫描壳体21的对角上,而不是设置在扫描壳体21与中壳12的外侧壁123的内侧面1237之间,能够减小扫描壳体21与中壳12的外侧壁123的内侧面1237之间的距离。因此,柔性连接组件40设置在扫描壳体21的对角上,能够减小了扫描模块20的横向尺寸,从而减小距离探测设备100的尺寸及质量。
需要说明的是,为了方便说明设置同一对柔性连接组件40与转轴26之间的相对位置关系,本文如图12至图14、图17、及图19至图21所示,对扫描壳体21及柔性连接组件40进行了简化表示。图2所示的立体结构示意图与图12所示的简化图像相对应,图13及图14所示的简化图像对应的立体结构与图2及图6所示的立体结构示意图除柔性连接件的位置不同之外,其他结构相同。下文中,为了方面说明,图13及图14所示的设置同一对柔性连接组件40与转轴26之间的相对位置关系,引用图2中其他元件的位置关系。
扫描壳体21的对角可以是扫描壳体21上任意一个表面上不相邻的两个角,例如,图12、图14及图19至图21;扫描壳体21的对角也可以是分别位于扫描壳体21上下底面且不在同一侧的两个角(例如图17);对角不局限与设置在扫描壳体21的顶角上,也可以设置在扫描壳体21的侧边上(例如图13)。以图12为例,扫描壳体21的对角的连线定义为对角线60。也即是说,同一对中的两个柔性连接组件40分别设置在扫描壳体21的对角线60的两端,且对角线60位于垂直于转轴26的平面内。其中,柔性连接组件40的对数与对角线60的数量相等。
请参阅图6和图12,在一个实施例中,同一对中的两个柔性连接组件40分别设置在扫描壳体21的对角上,对角线60与转轴26垂直且两者之间的距离在第一预设范围内。例如,对角线60与转轴26的距离为0,即对角线60与转轴26位于同一平面内;再例如,对角线60与转轴26的距离为0.1cm,即对角线60与转子222的转轴26位于不同平面内,但是两者的空间位置关系相互垂直。
请参阅图2、图6和图12,在一个实施例中,对角线60可以是同一对中的两个柔性连接组件40的相对应位置的连线,相对应位置可以为每个柔性连接组件的中心,或每个柔性连接组件的顶部,或每个柔性连接组件的底部,可选地,每个柔性连接组件的形状和结构相同,相对应位置可以为每个柔性连接组件的相同部位的连线。示例地,距离探测设备100包括第一对柔性连接组件43,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432。第一柔性连接组件431连接中壳12的靠近盖体11的凸缘124及扫描壳体顶壁211,第二柔性连接组件432连接中壳12的靠近基座13的凸缘124及扫描壳体底壁212。对角线60可为第一柔性连接组件431的中心与第二柔性连接组件432的中心的连线。对角线60与转子222转轴26之间的距离在第一预设范围内。
请参阅图2、图7和图12,在一个实施例中,每个柔性连接组件40包括柔性连接件41及紧固件42。对角线60可以是同一对柔性连接组件40中的两个柔性连接件41的中心的连线,对角线60与转轴26之间的距离也在第一预设范围内。在另一个实施方式中,对角线60也可以是同一对柔性连接组件40中的两个紧固件42的中心的连线,对角线60与转轴26之间的距离也在第一预设范围内。
请参阅图2、图6和图12,在一个实施例中,对角线60还可以是每对柔性连接组件40与外壳10连接处的中心的连线,即同一对中两个柔性连接组件40所对应的凸缘安装孔1241的中心的连线。示例地,距离探测设备100包括第一对柔性连接组件43,第一对柔性连接组件43包括第一柔性连接组件431 及第二柔性连接组件432。第一柔性连接组件431及第二柔性连接组件432分别设置在扫描壳体21的两个对角上,第一柔性连接组件431穿过靠近盖体11的凸缘124上的凸缘安装孔1241及于扫描壳体顶壁211上的连接孔210,以实现扫描壳体顶壁211与中壳12的靠近盖体11的凸缘124之间的连接。第二柔性连接组件432穿过靠近基座13的凸缘124上的凸缘安装孔1241及扫描壳体底壁212上的连接孔210,以实现扫描壳体底壁212与中壳12的靠近基座13的凸缘124之间的连接。此时,对角线60可为靠近盖体11的凸缘124上的凸缘安装孔1241的中心与靠近基座13的凸缘124上的凸缘安装孔1241的中心的连线。对角线60与转轴26之间的距离也在第一预设范围内。
请继续参阅图2、图6、及图12,在一个实施例中,距离探测设备100包括多对柔性连接组件40,且多对柔性连接组件40对应的多条对角线60相互平行。与多对柔性连接组件40对应的多条对角线60与转轴26之间的距离均在第一预设范围内。特别地,与多对柔性连接组件40对应的多条对角线60与转轴26之间的距离均可以为0,即与多对柔性连接组件40对应的多条对角线60与转轴26均位于同一平面内。
具体地,距离探测设备100包括第一对柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。第一柔性连接组件431及第三柔性连接组件441均用于连接扫描壳体顶壁211与外壳10;第二柔性连接组件432及第四柔性连接组件442均用于连接扫描壳体底壁212与外壳10。其中,与第一对柔性连接组件43相对应的对角线60及与第二对柔性连接组件44相对应的对角线60相互平行,且这两条对角线60均与转轴26位于同一平面内。
由于柔性连接组件40在扫描壳体21外侧呈斜对角四点的构型,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移(即平动)及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。即,一方面,柔性连接组件40能够大大减小当外壳10因外力冲击受到振动时该振动对扫描模块20的影响,提高距离探测设备100对外的抗冲击性能。另一方面,柔性连接组件40还能够对扫描模块20内部的转子222转动产生的振动起到缓冲减振的作用,以提高扫描模块20内部的减振性能。再一方面,柔性连接组件40对角设置的结构设计无需再在扫描模块20的与转轴26垂直且与盖体11的内侧面15平行的方向上设置凸缘,能够减小扫描模块20的及尺寸,从而可以减小距离探测设备100的及尺寸。
请一并参阅图2及图13,在一个实施例中,距离探测设备100包括两对柔性连接组件40,且与两对柔性连接组件40相对应的两条对角线60相交并位于同一平面。具体地,距离探测设备100包括第一对柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。第一柔性连接组件431设置在扫描壳体顶壁211的第一侧2111,第三柔性连接组件441设置在扫描壳体顶壁211的与第一侧2111相对的第二侧2112,第一柔性连接组件431及第三柔性连接组件441均用于连接扫描壳体顶壁211与外壳10。第二柔性连接组件432设置在扫描壳体底壁212的第二侧2122,第四柔性连接组件442设置在扫描壳体底壁212的与第二侧2122相对的第一侧2121,第二柔性连接组件432及第四柔性连接组件442均用于连接扫描壳体底壁212与外壳10。第一对柔性连接组件43形成的对角线61与第二对柔性连接组件44形成的对角线62相交,且两条对角线61、62位于同一平面内。
请参阅图2及图14,在一个实施例中,距离探测设备100包括多对柔性连接组件40,且多对柔性连接组件40对应的多条对角线60包括多条具有第一方向的第一对角线61及多条具有第二方向的第二对角线62,且第一方向与第二方向不相同。多条第一对角线61平行并且均位于第一平面内,多条第二对角线62平行并且均位于第二平面内,第一平面与第二平面相交。多条第一对角线61与转轴26之间的距离均在第一预设范围内,多条第二对角线62与转轴26之间的距离均在第一预设范围内。特别地,多条第一对角线61与转轴26之间的距离可以均为0,多条第二对角线62与转轴26之间的距离可以均为0,即多条第一对角线61与转轴26均位于第一平面内,多条第二对角线62与转轴26均位于第二平面内。
更具体地,距离探测设备100包括第一对柔性连接组件43、第二对柔性连接组件44、第三对柔性连接组件45及第四对柔性连接组件46。第一对柔性连接组件43包括第一柔性连接组件431及第二柔性 连接组件432。第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。第三对柔性连接组件45包括第五柔性连接组件451及第六柔性连接组件452。第四对柔性连接组件46包括第七柔性连接组件461及第八柔性连接组件462。第一柔性连接组件431与第三柔性连接组件441设置在扫描壳体顶壁211的第一侧2111,第五柔性连接组件451与第七柔性连接组件461设置扫描壳体顶壁211的与第一侧2111相对的第二侧2112,第一柔性连接组件431、第三柔性连接组件441、第五柔性连接组件451及第七柔性连接组件461均用于连接扫描壳体顶壁211与外壳10。第二柔性连接组件432与第四柔性连接组件442设置在扫描壳体底壁212的第二侧2122,第六柔性连接组件452与第八柔性连接组件462设置在扫描壳体底壁212的与第二侧2122相对的第一侧2121上。第二柔性连接组件432、第四柔性连接组件442、第六柔性连接组件452及第八柔性连接组件462均用于连接扫描壳体底壁212与外壳10。第一对柔性连接组件43及第二对柔性连接组件44形成的两条第一对角线61彼此平行且与转轴26位于第一平面内。第三对柔性连接组件45及第四对柔性连接组件46形成的两条第二对角线62彼此平行且与转轴26位于第二平面内。由于在扫描模块20上增加了多对柔性连接组件40,能够增加扫描模块20与外壳10连接的稳定性,并能提升减振性能。
需要说明的是,在本申请一些实施例中,扫描模块20沿垂直转轴26的每个横截面内可均包括第一对角线61及第二对角线62,即第一对角线61与第二对角线62在同一平面内。
请一并参阅图7、图8及图9,柔性连接组件40连接扫描壳体21与外壳10。柔性连接组件40使得扫描模块20与外壳10之间具有间隙以为扫描模块20提供振动空间,以使外壳10受到的振动不会影响到扫描模块20,扫描模块20自身的转子222产生的振动也不会影响到距离探测模组100,从而提高距离探测模组100的性能。具体地,柔性连接组件40包括柔性连接件41及紧固件42。柔性连接件41及外壳10通过紧固件42与扫描壳体21连接,更具体地,柔性连接件41及凸缘124通过紧固件42与扫描壳体21连接。
柔性连接件41设置在外壳10及扫描壳体21之间,具体地,每一对柔性连接组件40中的一个柔性连接件41位于扫描壳体顶壁211及盖体11之间;另一个柔性连接件41位于扫描壳体底壁212及基座13之间。每个柔性连接件41均包括柔性的第一支撑部411、柔性的第二支撑部412及柔性的连接部413。第一支撑部411和第二支撑部412分别连接在连接部413的相对两端。柔性连接件41开设有贯穿第一支撑部411、连接部413及第二支撑部412的贯穿孔414。以每对柔性连接组件40中连接扫描壳体底壁212与靠近基座13一侧的凸缘124的柔性连接件41为例进行说明。具体地,一对柔性连接组件40的一个连接件41中,连接部413穿设在凸缘124上的凸缘安装孔1241内,第一支撑部411及第二支撑部412分别位于凸缘124的相背两侧并与凸缘124抵触,紧固件42穿过贯穿孔414并与扫描壳体底壁212上的连接孔210结合以将扫描模块20与一个凸缘124连接,第一支撑部411位于凸缘124与基座13之间,并且第一支撑部411相背的一个表面与凸缘124抵触;第二支撑部412位于凸缘124与扫描壳体21之间,并且第二支撑部412相背的两个表面分别与凸缘124及扫描壳体21抵触。同一对柔性连接组件40的另一个连接件41及另一个紧固件42与将扫描模块20也可参照上述方式与另一个凸缘124连接,在此不再赘述。本实施方式中,柔性连接件41的被经过贯穿孔414的轴线的面所截得的截面呈“工”字形。
柔性连接件41可以由阻尼硅橡胶、硅橡胶、阻尼橡胶、丁基橡胶、三元乙丙橡胶、丁腈橡胶、聚氯乙烯丁腈橡胶及氟橡胶中的至少一种材料制成。例如,柔性连接件41可以是仅由硅橡胶制成;或柔性连接件41是由硅橡胶及阻尼橡胶共同制成;或柔性连接件41是由硅橡胶、阻尼橡胶及丁基橡胶共同制成。无论柔性连接件41由上述的哪一种或多种材料制成,其邵氏硬度都应在[10HA,30HA]之内。示例地,柔性连接件41的邵氏硬度可以是10HA、12.5HA、15HA、20HA、25HA、30HA等。由此,柔性连接件41在能起到缓冲减振的同时,具有一定连接强度,不容易断裂,从而保证连接的稳定。
请参阅图6至图10,至少一个柔性垫50设置在扫描壳体21与外壳10之间的间隙内。柔性垫50的个数可为一个或多个。当距离探测模组100受到跌落等较大外部冲击时,扫描模块20会产生较大的位移,此时设置在扫描壳体21的外侧面215与外壳10的内侧面15之间的柔性垫50被压缩以实现缓冲效果,提高扫描模块20的抗冲击性能。
请参阅图8,在一些实施例中,柔性垫50设置在扫描壳体21的外侧面215上,扫描壳体21的至少 一个外侧面215上设置有至少一个柔性垫50,柔性垫50与外壳10的内侧面15相对。柔性垫50可通过胶合、螺纹连接、焊接、及卡接方式中的任意一种或多种安装在外侧面215上。
具体地,请继续参阅图8,扫描壳体21的四个外侧面215上均设置有一个柔性垫50,柔性垫50与外壳10的内侧面15相对,且柔性垫50在未被压缩时,柔性垫50的远离扫描模块20的一面与对应的外壳10的内侧面15之间的距离小于外壳10受到第一冲击力产生的位移。也即是说,当外壳10受到的冲击力大于或等于第一冲击力时,外壳10会与柔性垫50接触,柔性垫50压缩以降低外壳10受到的冲击力对扫描模块20的影响,从而实现缓冲效果。另外,由于柔性垫50夹持在外壳10与扫描模块20之间以为扫描模块20提供减振空间,避免扫描模块20自身振动传递至外壳10,从而实现减振功能。
在一个实施例中,柔性垫50在未被压缩时,柔性垫50的远离扫描模块20的一面与对应的外壳10的内侧面15之间的距离小于外壳10受到第一冲击力产生的位移,并且大于外壳10受到的第二冲击力产生的位移。具体地,当外壳10受到的冲击力小于第二冲击力时,柔性垫50与外壳10不接触,即柔性垫50不发挥作用,距离探测设备100仅由柔性连接组件40实现减振功能。当外壳10受到的冲击力大于第二冲击力且小于第一冲击力时,柔性垫50与外壳10接触并且柔性垫50被压缩以为扫描模块20提供缓冲及减振,同时柔性连接件41的第一支撑部411及第二支撑部412未被完全压缩仍可为扫描模块20提供减振功能。也即是说,当外壳10受到的冲击力大于第二冲击力且小于第一冲击力时,距离探测设备100由柔性垫50及柔性连接件41共同实现减振功能。当外壳10受到的冲击力大于第一冲击力时,柔性连接组件40的第一支撑部411及第二支撑部412被完全压缩并不能提供为扫描模块20提供减振,此时距离探测设备100仅由柔性垫50实现减振功能。在本实施例中,第一冲击力大于或等于扫描模块20自身重力的五十倍;第二冲击力大约为扫描模块20自身重力的三十倍,可以理解的是,第一冲击力和第二冲击力的具体数值可以依据扫描模块以及实际应用场景而设置,本申请对此不作限制。
需要说明的是,柔性垫50可以由阻尼硅橡胶、硅橡胶、阻尼橡胶、丁基橡胶、三元乙丙橡胶、丁腈橡胶、聚氯乙烯丁腈橡胶及氟橡胶中的至少一种材料制成。例如,柔性垫50可以是仅由硅橡胶制成;或柔性垫50可以由硅橡胶及阻尼橡胶共同制成;或柔性垫50可以由硅橡胶、阻尼橡胶及丁基橡胶共同制成。无论柔性垫50由上述的哪一种或多种材料制成,其邵氏硬度都应在[40HA,60HA]范围之内。示例地,柔性垫50的邵氏硬度可以是40HA、45HA、48.6HA、50HA、55HA、60HA等。由此,柔性垫50在能起到缓冲减振的同时,具有一定硬度,能够抗冲击而不被损坏。
在一些实施例中,柔性垫50设置在外侧面215上还有如下几种情况:(1)部分外侧面215上设置有柔性垫50,且该部分外侧面215中的每个外侧面215上均设置有一个柔性垫50,即仅有部分外侧面215上各自设置有一个柔性垫50,其余部分外侧面215上均没有设置柔性垫50。例如,第二外侧面2152与第四外侧面2154上各自设置有一个柔性垫50,第一外侧面2151及第三外侧面2153上均没有设置柔性垫50。(2)部分外侧面215上设置有柔性垫50,且该部分外侧面215中的每个外侧面215上均设置有多个柔性垫50,即仅有部分外侧面215上设置有多个柔性垫50,其余部分外侧面215上没有设置柔性垫50。例如,第二外侧面2152与第四外侧面2154上各自设置有多个柔性垫50,第一外侧面2151及第三外侧面2153上均没有设置柔性垫50。(3)部分外侧面215上设置有柔性垫50,且该部分外侧面215中的一子部分外侧面215上均设置有多个柔性垫50,该部分外侧面215中的剩余子部分外侧面215上均设置有一个柔性垫50。例如,第二外侧面2152上仅设置有一个柔性垫50,第四外侧面2154上设置有多个柔性垫50,第一外侧面2151及第三外侧面2153上均没有设置柔性垫50。(4)四个外侧面215上均设置有柔性垫50,且部分外侧面仅设置有一个柔性垫50,另一部分外侧面215设置有多个柔性垫50。例如,第一外侧面2151及第三外侧面2153上各自设置有一个柔性垫50,第二外侧面2152及第四外侧面2154上各自设置有多个柔性垫50。(5)四个外侧面215上均设置有多个柔性垫50。
需要说明的是,当同一外侧面215上设置有多个柔性垫50时,多个柔性垫50的高度相同。如此,同一外侧面215上的多个柔性垫50的高度均相同,当外壳10受到外力冲击而向扫描模块20方向挤压以与多个柔性垫50接触时,外壳10与多个柔性垫之间50的相互作用力较为均匀,避免外壳10因受力不均而发生倾斜。
在一个实施例中,请参阅图10,扫描模块20还可包括电子器件25,电子器件25例如可以为电容、电阻、电感、传感器等。电子器件25安装在扫描壳体21的一个或多个外侧面215上。当电子器件25 安装在设置有柔性垫50的外侧面215上时,柔性垫50的高度要高于电子器件25的高度,即电子器件25的高度低于柔性垫50的高度。由于柔性垫50的高度高于电子器件25的高度,当外壳10受到外力向扫描模块20方向挤压时,外壳10先挤压到柔性垫50而不会挤压到电子器件25,从而保护了电子器件25,保证电子器件25不被损坏。
在一个实施例中,扫描壳体21的外侧面215呈弧形曲面结构,设置在其上的柔性垫50呈与外侧面215曲面相配合的弧形结构。
在一个实施例中,请参阅图7,扫描壳体21的外侧面215包括相对完整的向外凸起的圆弧形切去部分凸起结构而成的平面区域216,柔性垫50设置在平面区域216上。本实施方式中,平面区域216呈矩形结构,柔性垫50也呈矩形结构。将扫描壳体21外侧面215切去部分结构而成的平面区域216,可减小扫描模块20的尺寸及质量,从而减小距离探测设备100的尺寸及质量。
请继续参阅图7,在一个实施例中,平面区域216开设有收容槽217,柔性垫50设置在收容槽217内。收容槽217对柔性垫50在外侧面215上的安装位置起到限定作用,即,收容槽217能减小柔性垫50的安装难度。
请参阅图3、图6和图7,在一个实施例中,扫描壳体21包括第一壳体213及第二壳体214。平面区域216由第一壳体213上的子平面区域及第二壳体214上的子平面区域共同构成,第一壳体213的子平面区域开设有第一子收容槽2171,第二壳体214的子平面区域开设有第二子收容槽2172,第一子收容槽2171及第二子收容槽2172连通并共同围成收容槽217。
综上,在距离探测模组100受到跌落等较大外部冲击时,扫描模块20会产生较大的位移,由于本申请的实施方式在扫描壳体21的至少一个外侧面215上设置了至少一个柔性垫50,能够避免外壳10直接与扫描模块20碰撞,同时柔性垫50被压缩能减小外界冲击力传递到扫描模块20上的大小以实现缓冲效果,从而提高扫描模块20的抗冲击性能。
请参阅图11,在另一些实施例中,柔性垫50还可以设置在外壳10的内侧面15上,外壳10的至少一个内侧面15上设置有至少一个柔性垫50,柔性垫50与扫描外壳21的外侧面215相对。柔性垫50可通过胶合、螺纹连接、焊接、及卡接方式中的任意一种或多种安装在所述内侧面15上。此时,柔性垫50的材料及硬度同前述,在此不再赘述。
具体地,请一并参阅图2及图11,距离探测设备100包括四个柔性垫50,四个柔性垫50分别设置在第一内侧面151、第二内侧面152、第三内侧面153、及第四内侧面154上。柔性垫50在未被压缩时,柔性垫50的远离外壳10的一面与扫描壳体21的外侧面215之间的距离小于外壳10受到第一冲击力产生的位移。也即是说,当外壳10受到的冲击力大于第一冲击力时,扫描模块20会先与柔性垫50接触,柔性垫50压缩以降低外壳10受到的冲击力对扫描模块20的影响,从而实现缓冲效果。另外,由于柔性垫50夹持在外壳10与扫描模块20之间以为扫描模块20提供减振空间,避免扫描模块20自身振动传递至外壳10,从而实现减振功能。
在一个实施例中,柔性垫50在未被压缩时,柔性垫50的远离外壳10的一面与对应的扫描模块20的外侧面215之间的距离小于外壳10受到第一冲击力产生的位移,并且大于外壳10受到的第二冲击力产生的位移。具体地,当外壳10受到的冲击力小于第二冲击力时,柔性垫50与扫描模块20不接触,即柔性垫50不发挥作用,距离探测设备100仅由柔性连接组件40实现减振功能。当外壳10受到的冲击力大于第二冲击力且小于第一冲击力时,柔性垫50与扫描模块20接触并且柔性垫50被压缩以为扫描模块20提供缓冲及减振,同时柔性连接件41的第一支撑部411及第二支撑部412未被完全压缩仍可为扫描模块20提供减振功能。也即是说,当外壳10受到的冲击力大于第二冲击力且小于第一冲击力时,距离探测设备100由柔性垫50及柔性连接件41共同实现减振功能。当外壳10受到的冲击力大于第一冲击力时,柔性连接组件40的第一支撑部411及第二支撑部412被完全压缩不能提供为扫描模块20提供减振,此时距离探测设备100仅由柔性垫50实现减振功能。
在一些实施例中,柔性垫50设置在内侧面15上还有如下几种情况:(1)部分内侧面15上设置有柔性垫50,且该部分内侧面15中的每个内侧面15上均设置有一个柔性垫50,即仅有部分内侧面15上设置有一个柔性垫50,其余部分内侧面15上没有设置柔性垫50。例如,外壳10的四个内侧面15中,两个内侧面15上各自设置有一个柔性垫50,其余两个内侧面15上均没有设置柔性垫50。(2)部分内 侧面15上设置有柔性垫50,且该部分内侧面15中的每个外侧面215上均设置有多个柔性垫50,即仅有内侧面15上设置有多个柔性垫50,其余部分内侧面15上没有设置柔性垫50。例如,外壳10的四个内侧面15中,两个内侧面15上各自设置有多个柔性垫50,其余两个内侧面15上均没有设置柔性垫50。(3)部分内侧面15上设置有柔性垫50,且该部分内侧面15中的一子部分内侧面15上均设置有多个柔性垫50,该部分内侧面15中的剩余子部分内侧面15上均设置有一个柔性垫50。例如,外壳10的四个内侧面15中,其中一个内侧面15上仅设置有一个柔性垫50,一个内侧面15上设置有多个柔性垫50,其余两个内侧面15上没有设置柔性垫50。(4)四个内侧面15上均设置有柔性垫50,且部分内侧面15仅设置有一个柔性垫50,另一部分内侧面15215设置有多个柔性垫50。例如,外壳10的四个内侧面15中,两个内侧面15上各自设置有一个柔性垫50,其余两个内侧面15上各自设置有多个柔性垫50。(5)四个内侧面15上均设置有多个柔性垫50。
请再参阅图2及图3,在一个实施例中,测距模块30刚性固定在外壳10内,即收容在收容腔14内。测距模块30与扫描模块20相对设置且二者之间具有间隙。具体地,测距模块30包括测距壳体31、光源32、光路改变元件33、准直元件34、及探测器35。测距模块30可以采用同轴光路,也即测距模块30出射的激光光束和经反射回来的激光光束在测距模块30内共用至少部分光路。或者,测距模块30也可以采用异轴光路,也即测距模块30出射的光束和经反射回来的光束在探测装置内分别沿不同的光路传输。
在一些实施例中,光源32包括图4中所示的发射电路320。探测器35包括图4中所示的接收电路351、采样电路352和运算电路353,或者还包括图4所示的控制电路354。
请参阅图3,下面以测距模块30采用第一种同轴光路来进行说明光源32、光路改变元件33、准直元件34、及探测器35。
光源32安装在测距壳体31上。光源32可以用于发射激光脉冲序列,可选地,光源32发射出的激光束为波长在可见光范围之外的窄带宽光束。光源32发出的激光脉冲序列能够进入到扫描壳体21内。在一些实施例中,光源32可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的激光。例如,光源32发射的激光脉冲持续10ns。
准直元件34设置在光源32的出光光路上,用于准直从光源32发出的激光光束,即,将光源32发出的激光光束准直为平行光。具体地,准直元件34安装在测距壳体31内并位于靠近扫描模块20的一端。更具体地,准直元件34位于光源32与扫描模块20之间。准直元件34还用于会聚经探测物200反射的回光的至少一部分。准直元件34可以是准直透镜或者是其他能够准直光束的元件。在一个实施例中,准直元件34上镀有增透膜,能够增加透射光束的强度。
光路改变元件33安装在测距壳体31内并设置在光源32的出光光路上,用于改变光源32发出的激光光束的光路。具体地,光路改变元件33位于准直元件34的与扫描模块20相背的一侧。光路改变元件33可以为反射镜或半反半透镜,光路改变元件33包括与光源32相对的反射面332。本实施方式中,光路改变元件33为小反射镜,能将光源32发出的激光光束的光路方向改变90度或其他角度。
探测器35安装在测距壳体31内,探测器35位于测距壳体31的远离扫描模块20的一端,探测器35与光源32放置于准直元件34的同一侧,其中,探测器35与准直元件34正对,探测器35用于将穿过准直元件34的至少部分回光转换为电信号。
测距装置100工作时,光源32发出激光脉冲,该激光脉冲经光路改变元件33改变光路方向(可以为改变90度或改变其他角度)后被准直元件34准直,准直后的激光脉冲被光学元件23改变传输方向后出射并投射到探测物200上,经探测物200反射回的激光脉冲经过光学元件23后至少一部分的回光被准直元件34会聚到探测器35上。探测器35将穿过准直元件34的至少部分回光转换为电信号脉冲,距离探测设备100通过该电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,距离探测设备100可以利用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物200到距离探测设备100的距离。
请参阅图5,下面以测距模块30采用第二种异轴光路来进行说明光源32、光路改变元件33、准直元件34、及探测器35。此时,准直元件34的结构及位置与第一种同轴光路中的准直元件34的结构及位置相同,不同之处在于:光路改变元件33为大反射镜,该大反射镜包括反射面332,且该大反射镜的 中间位置开设有通光孔。探测器35与光源32仍旧放置于准直元件34的同一侧,相较前述的第一种同轴光路,该异轴光路中的探测器35与光源32的位置互换,即在异轴光路中,光源32与准直元件34正对,探测器35与反射面332相对,光路改变元件33位于光源32与准直元件34之间。
距离探测设备100工作时,光源32发出激光脉冲,该激光脉冲从光路改变元件33的通光孔穿过后被准直元件34准直,准直后的激光脉冲被棱镜23改变传输方向后出射并投射到探测物200上,经探测物200反射回的激光脉冲经过光学元件23后至少一部分的回光被准直元件34会聚到光路改变元件33的反射面332上。反射面332将该至少一部分的回光反射至探测器35上,探测器35将该被反射的至少部分回光转换为电信号脉冲,距离探测设备100通过该电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,距离探测设备100可以利用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物200到距离探测设备100的距离。本实施方式中,光路改变元件33的尺寸较大,能够覆盖光源32的整个视场范围,回光被光路改变元件33直接反射至探测器35,避免了光路改变元件33本身对回光光路的遮挡,增加了探测器35能够探测到回光的强度,提高了测距精度。
请参阅图15,本申请还提供一种距离探测设备100,该距离探测设备100包括外壳10、扫描模块20及减振模块70。外壳10形成有收容腔14,扫描模块20收容在收容腔14内。减振模块70包括至少两个柔性连接组件40,扫描模块20通过减振模块70与外壳10连接,并且减振模块70的刚度主轴与扫描模块20的惯性主轴之间的距离在第二预设范围内,第二预设范围可以根据实际情况进行设置,扫描模块20的惯性主轴和减震模块70的刚度主轴之间的距离可以为惯性主轴和刚度主轴的圆点之间的距离,此时第二预设范围可以为0.01厘米至1厘米之间的任意值,本申请对此不作限制,减振模块70的刚度主轴与扫描模块20的惯性主轴之间的距离也可以为惯性主轴和刚度主轴之间的偏差角度,此时第二预设范围为角度,例如,第二预设范围可以是0.1°至5°之间的任意值。特别地,减振模块70的刚度主轴与扫描模块20的惯性主轴之间的距离等于0,即减振模块70的刚度主轴与扫描模块20的惯性主轴重合。
由于减振模块70的刚度主轴与扫描模块20的惯性主轴之间的距离在第二预设范围内,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度,因此当扫描模块受到冲击力的作用时,减震模块70可以减弱冲击力对扫描模块20的影响。特别地,减振模块70的刚度主轴与扫描模块20的惯性主轴之间的距离等于0,即减振模块70的刚度主轴与扫描模块20的惯性主轴重合时,减震模块70对扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动的解耦效果更好,因此,减震模块70更好的减弱冲击力对扫描模块20的影响,即减震模块70的减震效果更强。需要说明的是,图15所示的距离探测设备100中的其他结构及连接方式与前述实施方式的距离探测设备100的结构及连接方式分别相同,在此不作赘述。
需要说明的是,扫描模块20的惯性主轴是指:在一个空间坐标系中,扫描模块20的三个惯性积(惯性积是指扫描模块20中各质点或质量单元的质量与其到两个相互垂直平面的距离之乘积的总和)有两个为零,则其共用的坐标轴为扫描模块20的惯性主轴。减振模块70刚度主轴是指:减振系统上的三个互相正交的坐标轴构成的弹性系统,使得任意两轴间的刚度耦合项为零,则称这几个坐标轴为减振系统刚度主轴。在一些实施例中,可以先确定扫描模块20的惯性主轴,从而根据惯性主轴和刚度主轴之间的关系确定减震模块70的刚度主轴,进而确定减震模块70的位置。在一个实施例中,可以通过对扫描模块20的惯性主轴进行建模,以确定减振模块70设置在扫描模块20的某一位置后,能够使减振模块70的刚度主轴与惯性主轴重合,根据确定的刚性主轴的位置设置柔性连接组件40,以使多个柔性连接组件40组成的减振模块70的刚度主轴与扫描模块20的惯性主轴重合。在实际应用中,扫描模块20不仅包括扫描壳体、位于扫描壳体内的光学元件、及位于扫描壳体内并用于驱动光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子,还包括与扫描模块20连接的元器件(例如设置在扫描模块20外部或内部的电子器件),也就是说,在构建扫描模块20的惯性主轴时,所有需要被减震的器件都可以被考虑在内,惯性主轴的主体包括但不限于扫描模块20,所有包含扫描模块的主体的惯性主轴都属于本申请的保护范围。
请参阅图16及图17,本申请还提供一种距离探测设备100,该距离探测设备100包括外壳10、扫 描模块20及至少一对柔性连接组件40。外壳10形成有收容腔14,扫描模块20收容在收容腔14内,扫描模块20通过至少一对柔性连接组件40与外壳10连接,并且扫描模块20的质心O到同一对中的两个柔性连接组件40的连线的垂直距离均在第三预设范围内。特别地,扫描模块20的质心O到同一对中的两个柔性连接组件40的连线的垂直距离为0,即同一对柔性连接组件40的连线均经过扫描模块20的质心O。
在一些实施例中,距离探测设备100包括多对柔性连接组件40,多对柔性连接组件40的连线相交于一交点,并且该交点与扫描模块20的质心O之间的距离在第三预设范围内。特别地,多对柔性连接组件40的连线的交点与扫描模块20的质心O之间的距离等于0,即多对柔性连接组件40的连线的交点与扫描模块20的质心O重合。
具体地,请参阅图16及图17,距离探测设备100包括第一柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。第一柔性连接组件431与第二柔性连接组件432的连线与第三柔性连接组件441与第四柔性连接组件442的连线相交于交点P,交点P与质心O重合。由于交点P与质心O之间的距离在第三预设范围内,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。需要说明的是,图16所示的距离探测设备100中的其他结构及连接方式可与前述实施方式的距离探测设备100的结构及连接方式分别相同,在此不作赘述。
请参阅图18及图3,本申请还提供一种距离探测设备100,该距离探测设备100包括外壳10、扫描模块20及至少一对柔性连接组件40。外壳10形成有收容腔14,扫描模块20收容在收容腔14内。扫描模块20包括扫描壳体21、驱动器22、光学元件23、控制器24。其中,驱动器22包括定子221及转子222,定子221可用于驱动转子222绕转轴26转动。扫描壳体21通过至少一对柔性连接组件40连接在外壳10上,同一对中的两个柔性连接组件40关于转子222的转轴26对称。需要说明的是,图18所示的距离探测设备100中的其他结构及连接方式可与前述实施方式的距离探测设备100的结构及连接方式分别相同,在此不作赘述。
例如,请参阅图18及图19,距离探测设备100包括第一柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。其中,第一柔性连接组件431与第二柔性连接组件432关于转轴26对称,第三柔性连接组件441与第四柔性连接组件442关于转轴26对称。由于同一对柔性连接组件40关于转子222的转轴26对称,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。
示例地,距离探测设备100包括至少两对柔性连接组件40,不同对中的柔性连接组件40的连线与转子222的转轴26处于同一平面内。具体地,请参阅图18及图19,距离探测设备100包括第一柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。第一柔性连接组件431与第三连接组件441之间的连线为第一连接线81、第二柔性连接组件432与第四连接组件442之间的连线为第二连接线82。其中,第一连接线81、第二连接线82及转轴26处于同一平面内。同样地,第一柔性连接组件431与第四连接组件442之间的连线为第三连接线83、第二柔性连接组件432与第三连接组件441之间的连线为第四连接线84。其中,第三连接线83、第四连接线84及转轴26处于同一平面内。由于不同对中的柔性连接组件40的连线与转子222的转轴26处于同一平面内,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。
在一些实施例中,当距离探测设备100包括两对柔性连接组件40时,每对柔性连接组件40所在的平面与扫描模块20的参数M之间的距离相等。其中扫描模块20的参数可以是扫描模块20的质心、中心、或重心中的任意一种。具体地,请参阅图18及图20,距离探测设备100包括扫描模块20、第一柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔 性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。其中,第一柔性连接组件431与第二柔性连接组件432所在的平面与扫描模块20的参数M之间的距离为D1、第三柔性连接组件441与第四柔性连接组件442所在的平面与扫描模块20的参数M之间的距离为D2,D1=D2。由于每对柔性连接组件40所在的平面与扫描模块20的参数M之间的距离相等,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。
在一些实施例中,当距离探测设备100包括柔性连接组件40为两对时,每对柔性连接组件40所在的平面与转子222的转轴26的中心点N之间的距离相等。具体地,请参阅图18及图21,距离探测设备100包括扫描模块20、第一柔性连接组件43及第二对柔性连接组件44,第一对柔性连接组件43包括第一柔性连接组件431及第二柔性连接组件432,第二对柔性连接组件44包括第三柔性连接组件441及第四柔性连接组件442。其中,第一柔性连接组件431与第二柔性连接组件432所在的平面与转子222的转轴26的中心点N之间的距离为D3、第三柔性连接组件441与第四柔性连接组件442所在的平面与转子222的转轴26的中心点N之间的距离为D4,D3=D4。由于每对柔性连接组件40所在的平面与转子222的转轴26的中心点N之间的距离相等,能够将扫描模块20在三维坐标系中X、Y、Z三个方向的位移及转动进行解耦,即扫描模块20的平动加速度不会引起转动加速度,转动加速度也不会引起扫描模块20的平动加速度。
请参阅图22,本申请实施方式还提供一种可移动平台1000,可移动平台1000包括可移动平台本体300及上述任一实施方式的距离探测设备100。可移动平台1000可以是无人飞行器、无人车、无人船、机器人、装甲战车等。一个可移动平台1000可以配置有一个或多个距离探测设备100。距离探测设备100可以用于探测可移动平台1000周围的环境,以便于可移动平台1000进一步依据周围的环境进行避障、轨迹选择等操作,距离探测设备100可以设置在可移动平台1000的前部或上部,本申请对此不作限制。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (45)

  1. 一种距离探测设备,其特征在于,包括:
    外壳,所述外壳形成有收容腔;
    扫描模块,所述扫描模块收容在所述收容腔内,所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子;及
    至少一对柔性连接组件,所述扫描壳体通过至少一对所述柔性连接组件连接在所述外壳上,同一对中的两个所述柔性连接组件分别设置在所述扫描壳体的对角,所述对角的连线位于垂直于所述转子的转轴的平面内。
  2. 根据权利要求1所述的距离探测设备,其特征在于,所述对角的连线定义为对角线,所述对角线与所述转子的转轴之间的距离在第一预设范围内。
  3. 根据权利要求2所述的距离探测设备,其特征在于,
    所述对角线为每对所述柔性连接组件中的两个柔性连接件组件的中心的连线;或
    所述对角线为每对所述柔性连接组件中的两个柔性连接件的中心的连线;或
    所述对角线为每对所述柔性连接组件中的两个紧固件的中心的连线;或
    所述对角线为每对所述柔性连接组件与所述外壳连接处的中心的连线。
  4. 根据权利要求2所述的距离探测设备,其特征在于,所述距离探测设备包括多对所述柔性连接组件,与多对所述柔性连接组件对应的多条对角线相互平行。
  5. 根据权利要求4所述的距离探测设备,其特征在于,与多对所述柔性连接组件对应的多条对角线与所述转子的转轴位于同一平面内。
  6. 根据权利要求2所述的距离探测设备,其特征在于,所述距离探测设备包括两对所述柔性连接组件,与两对所述柔性连接组件对应的两条对角线相交并位于同一平面内。
  7. 根据权利要求2所述的距离探测设备,其特征在于,所述距离探测设备包括多对所述柔性连接组件,与多对所述柔性连接组件对应的多条对角线包括多条具有第一方向的第一对角线及多条具有第二方向的第二对角线,所述第一方向与所述第二方向不同,多条所述第一对角线与所述转子的转轴位于第一平面内,多条所述第二对角线与所述转子的转轴位于第二平面内,所述第一平面与所述第二平面相交。
  8. 根据权利要求7所述的距离探测设备,其特征在于,在同一所述截面内包括所述第一对角线与所述第二对角线。
  9. 一种距离探测设备,其特征在于,包括:
    外壳,所述外壳形成有收容腔;
    扫描模块,所述扫描模块收容在所述收容腔内,所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子;及
    减振模块,所述减振模块包括至少两个柔性连接组件,所述扫描模块通过所述减振模块与所述外壳连接,所述减振模块的刚度主轴与所述扫描模块的惯性主轴之间的距离在第二预设范围内。
  10. 根据权利要求9所述的距离探测设备,其特征在于,所述减振模块的刚度主轴与所述扫描模块的惯性主轴重合。
  11. 一种距离探测设备,其特征在于,包括:
    外壳,所述外壳形成有收容腔;
    扫描模块,所述扫描模块收容在所述收容腔内,所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子;及
    至少一对柔性连接组件,所述扫描壳体通过至少一对所述柔性连接组件与所述外壳连接,所述扫描模块的质心到同一对中的两个所述柔性连接组件的连线的垂直距离均在第三预定范围内。
  12. 根据权利要求11所述的距离探测设备,其特征在于,所述距离探测设备包括多对所述柔性连接组件,多对所述柔性连接组件的连线相交于一交点,所述交点与所述扫描模块的质心之间的距离在所述 第三预定范围内。
  13. 根据权利要求12所述的距离探测设备,其特征在于,同一对中的两个所述柔性连接组件的连线均经过所述扫描模块的质心;或
    多对所述柔性连接组件连线的交点与所述扫描模块的质心重合。
  14. 一种距离探测设备,其特征在于,包括:
    外壳,所述外壳形成有收容腔;
    扫描模块,所述扫描模块收容在所述收容腔内,所述扫描模块包括扫描壳体、位于所述扫描壳体内的光学元件、及位于所述扫描壳体内并用于驱动所述光学元件运动的驱动器,所述驱动器包括用于带动所述光学元件转动的转子;及
    至少一对柔性连接组件,所述扫描壳体通过至少一对所述柔性连接组件连接在所述外壳上,同一对中的两个所述柔性连接组件关于所述转子的转轴对称。
  15. 根据权利要求14所述的距离探测设备,其特征在于,至少存在两对所述柔性连接组件,不同对中的所述柔性连接组件的连线与所述转子的转轴处于同一平面内。
  16. 根据权利要求14所述的距离探测设备,其特征在于,当所述柔性连接组件为两对时,每对所述柔性连接组件所在的平面与所述扫描模块的参数之间的距离相等,所述参数包括质心、中心、或重心中的任意一种;
    或,每对所述柔性连接组件所在的平面与所述转子的转轴的中心点之间的距离相等。
  17. 根据权利要求1-16任意一项所述的距离探测设备,其特征在于,每个所述柔性连接组件包括柔性连接件及紧固件,所述柔性连接件及所述外壳通过所述紧固件与所述扫描壳体连接。
  18. 根据权利要求17所述的距离探测设备,其特征在于,至少部分所述柔性连接件位于所述外壳与所述扫描壳体之间。
  19. 根据权利要求1-18任意一项所述的距离探测设备,其特征在于,所述扫描壳体包括相背的扫描壳体顶壁及扫描壳体底壁,每个所述柔性连接组件包括柔性连接件,所述柔性连接件设置在所述外壳与所述扫描壳体之间,同一对所述柔性连接组件中的一个所述柔性连接件位于所述外壳与所述扫描壳体顶壁之间,另一个所述柔性连接件位于所述外壳与所述扫描壳体底壁之间。
  20. 根据权利要求1-18任意一项所述的距离探测设备,其特征在于,所述外壳包括基座、中壳及盖体,所述中壳包括中壳本体,所述中壳本体包括相背的两个中壳侧壁,所述基座与两个所述中壳侧壁的底部结合,所述盖体与两个所述中壳侧壁的顶部结合,所述基座、所述中壳、及所述盖体共同围成所述收容腔。
  21. 根据权利要求20所述的距离探测设备,其特征在于,所述基座能够拆卸地与所述中壳侧壁的底部连接,所述盖体能够拆卸地与所述中壳侧壁的顶部连接。
  22. 根据权利要求20所述的距离探测设备,其特征在于,所述中壳还包括至少一对凸缘,每对所述柔性连接组件对应一对所述凸缘,每对所述凸缘中的一个所述凸缘从一个所述中壳侧壁顶部处的内侧面朝所述收容腔内延伸,每对所述凸缘中的另一个所述凸缘从另一个所述中壳侧壁底部处的内侧面朝所述收容腔内延伸,所述扫描壳体通过至少一对所述柔性连接组件连接在对应的一对所述凸缘上。
  23. 根据权利要求22所述的距离探测设备,其特征在于,所述柔性连接件组件的柔性连接件及所述凸缘通过所述柔性连接件组件的紧固件与所述扫描壳体连接。
  24. 根据权利要求23所述的距离探测设备,其特征在于,所述柔性连接件包括柔性的第一支撑部、柔性的连接部及柔性的第二支撑部,所述第一支撑部和所述第二支撑部分别连接在所述连接部的相对两端,所述柔性连接件开设有贯穿所述第一支撑部、所述连接部及所述第二支撑部的贯穿孔;所述凸缘开设有凸缘安装孔,所述连接部穿设在所述凸缘安装孔内,所述第一支撑部及所述第二支撑部分别位于所述凸缘的相背两侧,所述紧固件穿过所述贯穿孔并与所述扫描壳体结合以将所述扫描模块连接在所述凸缘上,所述第二支撑部位于所述凸缘与所述扫描壳体之间。
  25. 根据权利要求24所述的距离探测设备,其特征在于,所述柔性连接件的被经过所述贯穿孔的轴线的面所截得的截面呈“工”字形。
  26. 根据权利要求23所述的距离探测设备,其特征在于,所述柔性连接件由阻尼硅橡胶、硅橡胶、 阻尼橡胶、丁基橡胶、三元乙丙橡胶、丁腈橡胶、聚氯乙烯丁腈橡胶及氟橡胶中的至少一种材料制成。
  27. 根据权利要求23所述的距离探测设备,其特征在于,所述柔性连接件的硬度范围为[10HA,30HA]。
  28. 根据权利要求1-27任意一项所述的距离探测设备,其特征在于,所述距离探测设备还包括至少一个柔性垫,所述扫描壳体的至少一个外侧面上设置有至少一个所述柔性垫,所述柔性垫与所述外壳的内侧面相对。
  29. 根据权利要求28所述的距离探测设备,其特征在于,每个所述外侧面上均设置有一个所述柔性垫;或
    部分所述外侧面上设置有所述柔性垫,且该部分所述外侧面中的每个外侧面上均设置有一个所述柔性垫;或
    部分所述外侧面上设置有所述柔性垫,且该部分所述外侧面中的每个外侧面上均设置有多个所述柔性垫;或
    部分所述外侧面上设置有所述柔性垫,且该部分所述外侧面中的一子部分外侧面上均设置有多个所述柔性垫,该部分所述外侧面中的剩余子部分外侧面上均设置有一个所述柔性垫;或
    每个所述外侧面上均设置有多个所述柔性垫。
  30. 根据权利要求28所述的距离探测设备,其特征在于,所述外侧面呈弧形曲面,所述柔性垫呈与所述曲面相配合的弧形结构。
  31. 根据权利要求28所述的距离探测设备,其特征在于,所述外侧面包括相对完整的向外凸起的圆弧形切去部分凸起结构而形成的平面区域,所述柔性垫设置在所述平面区域。
  32. 根据权利要求31所述的距离探测设备,其特征在于,所述平面区域开设有收容槽,所述柔性垫收容在所述收容槽内。
  33. 根据权利要求32所述的距离探测设备,其特征在于,所述扫描壳体包括相接的第一壳体及第二壳体,所述第一壳体的所述外侧面开设有第一子收容槽,所述第二壳体的所述外侧面开设有第二子收容槽,所述第一壳体与所述壳体结合时,所述第一子收容槽与所述第二子收容槽连通并共同围成所述收容槽。
  34. 根据权利要求28至33任意一项所述的距离探测设备,其特征在于,所述柔性垫通过胶合、螺纹连接、焊接、及卡接方式中的任意一种或多种安装在所述外侧面上。
  35. 根据权利要求28所述的距离探测设备,其特征在于,当一个所述外侧面上设置多个所述柔性垫时,一个所述外侧面上的多个所述柔性垫的高度相同;或
    所述扫描模块还包括电子器件,所述电子器件安装在设置有所述柔性垫的所述外侧面上,所述电子器件的高度低于所述柔性垫的高度。
  36. 根据权利要求28所述的距离探测设备,其特征在于,在所述柔性垫未被压缩时,所述柔性垫的远离所述扫描模块的一面与对应的所述外壳的内侧面之间的距离小于所述外壳受到的第一冲击力产生的位移。
  37. 根据权利要求1-27任意一项所述的距离探测设备,其特征在于,所述距离探测设备还包括至少一个柔性垫,所述外壳的至少一个内侧面上设置有至少一个所述柔性垫,所述柔性垫与所述扫描壳体的外侧面相对。
  38. 根据权利要求37所述的距离探测设备,其特征在于,每个所述内侧面上均设置有一个所述柔性垫;或
    部分所述内侧面上设置有所述柔性垫,且该部分所述内侧面中的每个内侧面上均设置有一个所述柔性垫;或
    部分所述内侧面上设置有所述柔性垫,且该部分所述内侧面中的每个内侧面上均设置有多个所述柔性垫;或
    部分所述内侧面上设置有所述柔性垫,且该部分所述内侧面中的一子部分内侧面上均设置有多个所述柔性垫,该部分所述内侧面中的剩余子部分内侧面上均设置有一个所述柔性垫;或
    每个所述内侧面上均设置有多个所述柔性垫。
  39. 根据权利要求37所述的距离探测设备,其特征在于,所述外壳还包括四个内侧面,一个所述内 侧面位于所述盖体上,一个所述内侧面位于所述基座上,其余两个所述内侧面位于所述中壳的相对的两个侧壁上;
    所述柔性垫为四个,四个所述柔性垫分别设置在四个所述内侧面上。
  40. 根据权利要求37所述的距离探测设备,其特征在于,在所述柔性垫未被压缩时,所述柔性垫的远离所述内侧面的一面与对应的所述外侧面之间的距离小于所述外壳受到的第一冲击力产生的位移。
  41. 根据权利要求36或40所述的距离探测设备,其特征在于,所述距离大于所述外壳受到的第二冲击力产生的位移,所述第一冲击力大于所述第二冲击力。
  42. 根据权利要求36或40所述的距离探测设备,其特征在于,所述第一冲击力大于或等于所述扫描模块的自身重力的五十倍。
  43. 根据权利要求28或37所述的距离探测设备,其特征在于,所述柔性垫由阻尼硅橡胶、硅橡胶、阻尼橡胶、丁基橡胶、三元乙丙橡胶、丁腈橡胶、聚氯乙烯丁腈橡胶及氟橡胶中的至少一种材料制成。
  44. 根据权利要求28或37所述的距离探测设备,其特征在于,所述柔性垫的硬度范围为[40HA,60HA]。
  45. 一种可移动平台,其特征在于,所述可移动平台包括:
    可移动平台本体;及
    权利要求1至44任意一项所述的距离探测设备,所述距离探测设备安装在所述可移动平台本体上。
PCT/CN2020/098813 2020-06-29 2020-06-29 距离探测设备及可移动平台 WO2022000164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/098813 WO2022000164A1 (zh) 2020-06-29 2020-06-29 距离探测设备及可移动平台
CN202080006841.7A CN114127508A (zh) 2020-06-29 2020-06-29 距离探测设备及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098813 WO2022000164A1 (zh) 2020-06-29 2020-06-29 距离探测设备及可移动平台

Publications (1)

Publication Number Publication Date
WO2022000164A1 true WO2022000164A1 (zh) 2022-01-06

Family

ID=79317800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098813 WO2022000164A1 (zh) 2020-06-29 2020-06-29 距离探测设备及可移动平台

Country Status (2)

Country Link
CN (1) CN114127508A (zh)
WO (1) WO2022000164A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362194A (zh) * 2009-03-23 2012-02-22 罗伯特·博世有限公司 用于光学测量仪的光学系统模块
CN104033849A (zh) * 2013-03-07 2014-09-10 深圳市海洋王照明工程有限公司 光源减振结构及使用该光源减振结构的舰船用灯具
CN204726828U (zh) * 2015-05-22 2015-10-28 红安县华利机械制造有限责任公司 一种改进的光模块固定装置
JP2016099503A (ja) * 2014-11-21 2016-05-30 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN108518450A (zh) * 2018-04-20 2018-09-11 武汉中航传感技术有限责任公司 一种抗振装置及光纤光栅解调仪
CN209485276U (zh) * 2019-01-09 2019-10-11 深圳市大疆创新科技有限公司 测距装置及移动平台
CN111308837A (zh) * 2018-12-11 2020-06-19 青岛海信激光显示股份有限公司 一种光机引擎及投影设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362194A (zh) * 2009-03-23 2012-02-22 罗伯特·博世有限公司 用于光学测量仪的光学系统模块
CN104033849A (zh) * 2013-03-07 2014-09-10 深圳市海洋王照明工程有限公司 光源减振结构及使用该光源减振结构的舰船用灯具
JP2016099503A (ja) * 2014-11-21 2016-05-30 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
CN204726828U (zh) * 2015-05-22 2015-10-28 红安县华利机械制造有限责任公司 一种改进的光模块固定装置
CN108518450A (zh) * 2018-04-20 2018-09-11 武汉中航传感技术有限责任公司 一种抗振装置及光纤光栅解调仪
CN111308837A (zh) * 2018-12-11 2020-06-19 青岛海信激光显示股份有限公司 一种光机引擎及投影设备
CN209485276U (zh) * 2019-01-09 2019-10-11 深圳市大疆创新科技有限公司 测距装置及移动平台

Also Published As

Publication number Publication date
CN114127508A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
WO2020062110A1 (zh) 扫描模组、测距装置、测距组件、距离探测设备及移动平台
CN209485276U (zh) 测距装置及移动平台
CN209878990U (zh) 扫描模组、测距装置及移动平台
WO2020142965A1 (zh) 扫描模组、测距装置及移动平台
WO2022000164A1 (zh) 距离探测设备及可移动平台
JP2022103971A (ja) 光走査装置及び測距装置
CN209728159U (zh) 扫描模组、测距装置及移动平台
US20210333393A1 (en) Scanning module, distance measuring device and mobile platform
CN211206787U (zh) 测距组件及移动平台
CN209606612U (zh) 测距装置及移动平台
CN115754986A (zh) 激光雷达光学扫描系统、激光雷达和飞行器
CN213581352U (zh) 测距装置及移动平台
JP2022128450A (ja) 距離測定装置、レーザレーダ及び移動ロボット
CN211627823U (zh) 测距装置、距离探测设备及移动平台
CN211236239U (zh) 距离探测设备及移动平台
CN211206773U (zh) 扫描模组、测距组件及移动平台
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
WO2023044915A1 (zh) 测距装置和具有该测距装置的可移动平台
CN211236241U (zh) 距离探测设备及移动平台
WO2020142963A1 (zh) 测距装置及移动平台
WO2022193113A1 (zh) 扫描模组、测距装置及可移动平台
CN111670337B (zh) 测距装置及移动平台
CN215116779U (zh) 抗反射干扰的测距雷达和移动机器人
CN212275964U (zh) 电路板、测距装置和测距系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942686

Country of ref document: EP

Kind code of ref document: A1