WO2023044915A1 - 测距装置和具有该测距装置的可移动平台 - Google Patents

测距装置和具有该测距装置的可移动平台 Download PDF

Info

Publication number
WO2023044915A1
WO2023044915A1 PCT/CN2021/121042 CN2021121042W WO2023044915A1 WO 2023044915 A1 WO2023044915 A1 WO 2023044915A1 CN 2021121042 W CN2021121042 W CN 2021121042W WO 2023044915 A1 WO2023044915 A1 WO 2023044915A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
installation
distance measuring
mounting bracket
measuring device
Prior art date
Application number
PCT/CN2021/121042
Other languages
English (en)
French (fr)
Inventor
吕荣
娄元帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/121042 priority Critical patent/WO2023044915A1/zh
Publication of WO2023044915A1 publication Critical patent/WO2023044915A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems

Definitions

  • the present application relates to the field of distance measurement, in particular to a distance measurement device and a movable platform with the distance measurement device.
  • the scanning component has an independent mounting frame
  • the ranging component has a mounting base
  • the mounting frame and the mounting base are independent of each other
  • the scanning component and the ranging component have different position references, resulting in the distance between the ranging component and the scanning component.
  • the dimensional chain is long, the tolerance control is difficult, and the cost of control and the probability of error increase.
  • quality problems will incur a large price.
  • the present application provides a distance measuring device and a movable platform with the distance measuring device.
  • the embodiment of the present application provides a ranging device, including:
  • Ranging components including a transmitter for emitting laser light and a receiver for receiving light back;
  • a scanning component is arranged on the outgoing light path of the transmitter, the scanning component can change the transmission direction of the laser light, and project the returning light to the receiver;
  • An installation bracket is an integral structure, and the scanning component and the distance measuring component are respectively arranged on the installation bracket.
  • the embodiment of the present application provides a mobile platform, including:
  • the distance measuring device is connected to the platform main body.
  • the application installs the scanning component and the ranging component at the same time through the installation bracket of the integrated structure, which facilitates the installation of the scanning component and the ranging component, and integrates the position reference of the scanning component and the ranging component into the same
  • the dimensional chain can be shortened, the difficulty of tolerance control is reduced, the number of parts is reduced, and the cost of control and the probability of problems are reduced.
  • Fig. 1 is a schematic structural view of a mounting bracket of a ranging device in an embodiment of the present application
  • Fig. 2 is an exploded view of the ranging device in an embodiment of the present application
  • Fig. 3 is a structural schematic view of the mounting bracket of the ranging device in another direction in an embodiment of the present application;
  • Fig. 4 is another exploded view of the ranging device in an embodiment of the present application.
  • Fig. 5 is another exploded view of the ranging device in an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional view of a ranging device in an embodiment of the present application.
  • Fig. 7 is another schematic cross-sectional view of the ranging device in an embodiment of the present application.
  • Fig. 8 is another schematic cross-sectional view of the ranging device in an embodiment of the present application.
  • Fig. 9 is a partial structural schematic diagram of a ranging device in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a ranging device in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of the use of the ranging device in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the scanning beam of the ranging device shown in FIG. 11 .
  • Support part 413. Window; 42. Top cover; 43. Second fixed connector; 5. Main control board; 6. Interface board; 61. Second electrical connection part; Material; 9. Adapter board; 91. First electrical connection part; 10. Photoelectric switch board; 101. FPC interface; 20. Heat dissipation block; 210. Fourth fixed connector; 2220. Fixed end; ; 300. Control device.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one (unit) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, wherein a, b, c can be single or multiple.
  • an embodiment of the present application provides a distance measuring device, which may include a distance measuring component 1 , a scanning component 2 and a mounting bracket 3 .
  • the distance measuring component 1 includes a transmitter 11 for emitting laser light and a receiver 12 for receiving back light.
  • the scanning component 2 is arranged on the outgoing light path of the transmitter 11 .
  • the scanning component 2 can change the transmission direction of the laser light and project it to the external environment, and project the returning light to the receiver 12 .
  • the mounting bracket 3 is an integral structure, and the scanning component 2 and the distance measuring component 1 are respectively arranged on the mounting bracket 3 .
  • the scanning component 2 and the distance measuring component 1 are installed at the same time through the mounting bracket 3 of the integrated structure, which facilitates the installation of the scanning component 2 and the distance measuring component 1, and integrates the position references of the scanning component 2 and the distance measuring component 1 into the same Mounting on the bracket 3 can shorten the dimensional chain, reduce the difficulty of tolerance control, reduce the number of parts, reduce the cost of control and the probability of problems.
  • the mounting bracket 3 may include a first mounting bracket 31 and a second mounting bracket 32 located on one side of the first mounting bracket 31, the first mounting bracket 31 is used for installing the distance measuring component 1, and the second mounting bracket 32 is used for The scanning component 2 is installed so that the scanning component 2 is located on one side of the distance measuring component 1 . It can be understood that the first installation bracket 31 and the second installation bracket 32 are integrally structured.
  • the first mounting bracket 31 and the second mounting bracket 32 can be integrated into one mounting bracket 3 by die casting, injection molding or machining.
  • the ranging assembly 1 of the embodiment of the present application may further include a collimating element 13, which is arranged on the outgoing light path of the transmitter 11 and used for collimating the laser light.
  • the first mounting bracket 31 can be provided with a first mounting portion 311
  • the second mounting bracket 32 can be provided with a second mounting portion 321
  • the first mounting portion 311 is located on the first mounting bracket 31 close to the second mounting bracket 32
  • the transmitter 11 is mounted on the end of the first mounting bracket 31 away from the second mounting bracket 32.
  • the first installation part 311 is used for installing the collimating element 13
  • the second installing part 321 is used for installing the scanning assembly 2
  • the collimating element 13 is located between the scanning assembly 2 and the emitter 11 .
  • the relative positions of the first mounting part 311 and the second mounting part 321 in the body coordinate system of the mounting bracket 3 are fixed, and the position of the first mounting part 311 in the body coordinate system is used to indicate the alignment element 13
  • the position in the body coordinate system, the position of the second installation part 321 in the body coordinate system is used to indicate the position of the distance measuring assembly 1 in the body coordinate system.
  • the first mounting part 311 can be used as the origin of the body coordinate system, so by directly controlling the tolerance of the first mounting part 311 and the second mounting part 321, the tolerance between the distance measuring component 1 and the scanning component 2 can be controlled, that is, the distance measurement
  • the tolerance of the component 1 and the scanning component 2 is determined by the tolerance of the first mounting part 311 and the second mounting part 321, thereby shortening the dimensional chain of the main optical path (including the outgoing optical path and the return optical path) and improving the measurement accuracy of the distance measuring device.
  • the body coordinate system is the coordinate system defined based on the mounting bracket 3, and specifically the origin and coordinate axes of the body coordinate system can be defined as required.
  • the collimating element 13 may include a lens
  • the first installation part 311 may include a first installation hole 3111
  • the lens is installed in the first installation hole 3111
  • the surface of the lens is opposite to the light incident end of the scanning component 2 .
  • the first installation part 311 is not limited to the installation hole, and can also be other structures, such as a semi-circular mounting structure, the lens is mounted on the semi-circular mounting structure, and the central axis of the circle where the semi-circular mounting structure is located coincides with the optical axis of the lens. Tolerances between the distance measuring component 1 and the scanning component 2 are controlled by controlling the tolerance between the central axis of the circle where the semicircular mounting structure is located and the second mounting portion 321 .
  • the ranging assembly 1 may further include a reflector 14 , and reflect the returning light to the receiver 12 through the reflecting mirror 14 .
  • the first mounting bracket 31 can also be provided with a third mounting portion 312 , and the third mounting portion 312 is disposed between the first mounting hole 3111 and the transmitter 11 .
  • the reflector 14 is installed on the third installation part 312 , and the reflector 14 is opposite to the lens, the laser beam is transmitted to the lens through the reflector 14 , and the return light is reflected to the receiver 12 by the reflector 14 .
  • the third mounting portion 312 may include a second mounting hole, wherein the central axis of the second mounting hole is inclined relative to the central axis of the first mounting hole 3111 , so that the mirror 14 is inclined relative to the lens. It should be understood that the third mounting portion 312 is not limited to mounting holes, and may also have other structures, and the structure of the third mounting portion 312 may be selected according to the structure of the reflector 14 , so that the third mounting portion 312 is adapted to the reflector 14 .
  • the top edge of the second mounting hole is integrally formed with the top edge of the first mounting hole 3111 , such design makes the structure more concise and beautiful.
  • the first mounting bracket 31 can also be provided with a through hole 313 passing through the first mounting bracket 31 , and the through hole 313 is located below the reflector 14 .
  • the receiver 12 is installed on the bottom surface of the first mounting bracket 31 , the through hole 313 is opposite to the receiver 12 , and the return light enters the receiver 12 through the through hole 313 after being reflected by the reflector 14 . In this way, the structural layout is more reasonable and compact.
  • the second mounting bracket 32 may include two bearing frames 322, the two bearing frames 322 are arranged on both sides of the same end of the first mounting bracket 31 at intervals, and the scanning assembly 2 is sandwiched between the two bearing frames 322 .
  • the design of two bearing frames 322 arranged at intervals can reduce the weight of the mounting bracket 3 .
  • the two supporting frames 322 are substantially parallel; in some other embodiments, the two supporting frames 322 may also form an included angle.
  • each carrier 322 is respectively provided with at least one second mounting part 321, and the corresponding position of the scanning assembly 2 is provided with a fixing lug 21, the second The mounting portion 321 is correspondingly matched with the fixing lug 21 , so that the scanning assembly 2 is suspended between the two supporting frames 322 .
  • each carrying frame 322 is respectively provided with at least two second mounting portions 321 .
  • each carrier 322 is respectively provided with two second mounting parts 321, and the two sides of the scanning assembly 2 are respectively provided with two fixing lugs 21, and the four second mounting parts 321 are connected with the four The two fixing lugs 21 are correspondingly connected. It should be understood that other numbers of the second mounting portion 321 and the fixing lug 21 may also be provided.
  • the second mounting portion 321 may include a first mounting column, the first mounting column is provided with a first fixing hole, and the fixing lug 21 is provided with a second fixing hole, The first fixing hole and the second fixing hole are fixedly connected through the first fixing connecting piece 22 .
  • the first fixing member 22 may be a screw, a pin or other fixing members.
  • the second mounting part 321 and the fixing lug 21 respectively include four
  • the first fixing connector 22 is a screw
  • an anti-vibration sleeve 211 can be provided in the second fixing hole, and the anti-vibration sleeve 211 is sheathed on the first fixing connector 22 .
  • the shockproof cover 211 can be a silicone cover, or a shockproof cover made of other materials. It should be understood that the shockproof sleeve 211 may also be replaced by other shockproof structures.
  • At least two second installation portions 321 of each carrier 322 are coplanar, and at least two second installation portions 321 of each carrier 322 are located on the same straight line.
  • the projection of the center of gravity of the scanning assembly 2 on the plane where the at least two second mounting parts 321 of each carrier 322 are located is on the at least two second mounting parts 321 of the carrier 322 on the connection.
  • the second fixing hole is provided with a shockproof sleeve 211
  • at least two shockproof sleeves 211 of the same carrier 322 are also coplanar, and at least two shockproof sleeves 211 of each carrier 322 are located on the same straight line, scanning assembly 2
  • the projection of the center of gravity of each bearing frame 322 on the plane where the at least two shockproof sleeves 211 are located is on the line connecting the at least two shockproof sleeves 211 of the bearing bracket 322 .
  • At least two second mounting portions 321 of each carrier 322 have different heights.
  • the heights of at least two second mounting portions 321 of each carrier 322 gradually increase from the first mounting bracket 31 to the second mounting bracket 32 .
  • the heights of at least two second mounting portions 321 of each carrier 322 gradually decrease from the first mounting bracket 31 to the second mounting bracket 32 .
  • each carrier frame 322 is provided with a cooling plate 3223 at one end away from the first mounting bracket 31.
  • the second mounting portion 321 is higher than the second mounting portion 321 disposed on the top of the second mounting bracket 32 .
  • the distance measuring device of the embodiment of the present application may also include a housing 4, the housing 4 may include a bottom case 41 and a top cover 42, the bottom case 41 is provided with a receiving cavity 411, and the top cover 42 is covered on the bottom case 41 top.
  • the top of the mounting bracket 3 cooperates with the top of the bottom case 41, so that the mounting bracket 3 is suspended in the receiving cavity 411, and the assembly of the mounting bracket 3 is optimized through the hanging assembly method, and the convenient assembly of the mounting bracket 3 is realized.
  • the suspension from top to bottom is beneficial to provide a heat dissipation layer between the heat dissipation bracket and the shell 4 .
  • the suspension assembly method of the mounting bracket 3 can be designed according to needs.
  • each support frame 314 is provided with a fourth mounting portion 3141 at one end away from the second mounting bracket 32, and the second mounting bracket 32 is far away from one end of the first mounting bracket 31
  • the two fourth installation parts 3141 and the two fifth installation parts 3221 correspond to the four corners of the top of the bottom case 41 respectively, and the bottom of each fourth installation part 3141 and each fifth installation part 3221
  • the bottoms of each are respectively provided with positioning surfaces 33, and the positioning surfaces 33 are in contact with the corresponding corners.
  • the relative positions of the positioning surface 33 and the first mounting part 311 in the body coordinate system are fixed, and the position of the positioning surface 33 in the body coordinate system is used to indicate that the preset position of the bottom case 41 is fixed in the body coordinate system.
  • the tolerance between the optical axis of the collimating element 13 and the preset position of the bottom case 41 can be controlled by controlling the tolerance between the first mounting part 311 and the positioning surface 33, that is, the optical axis of the collimating element 13 and the preset position of the bottom case 41 can be controlled.
  • the tolerance of the preset position of the bottom case 41 is determined by the tolerance of the first mounting portion 311 and the positioning surface 33 , thereby shortening the dimensional chain of the main optical path and improving the measurement accuracy of the distance measuring device.
  • the preset position may be the top boundary of the bottom case 41 , or other positions on the top of the bottom case 41 .
  • the four positioning surfaces 33 are coplanar to facilitate the hanging assembly of the mounting bracket 3 .
  • the positioning surfaces 33 of the two fourth installation parts 3141 are coplanar, the positioning surfaces 33 of the two fifth installation parts 3221 are coplanar, the positioning surfaces 33 of the fourth installation part 3141 and the fifth installation part 3221 The positioning surfaces 33 are not coplanar.
  • the two fourth mounting portions 3141 and the two fifth mounting portions 3221 are respectively connected to the four corners of the top of the bottom case 41 through the second fixing connector 43 .
  • the second fixing member 43 can be a screw, a pin or other fixing members.
  • the second fixed connector 43 is a screw, so that the mounting bracket 3 can be locked on the shell 4 only by installing four screws from top to bottom.
  • a heat dissipation layer is provided between the bottom case 41, which is beneficial to the heat dissipation design.
  • the support frame 314 can be roughly triangular in shape, and the support frame 314 is provided with a hollow portion 3142 , so that the triangular support frame 314 has good stability, and the design of the hollow portion 3142 can reduce the weight. It should be understood that the support frame 314 may also be designed in other shapes, and the hollow portion 3142 may not be provided on the support frame 314 .
  • the suspension assembly method of the mounting bracket 3 can also be designed in other ways, for example, a supporting column is respectively provided between the first mounting bracket 31 and each bearing frame 322, the top of the supporting column is provided with lugs, and the lugs are hung on the bottom.
  • the top of the shell 41 and the bottom of the lug are provided with the above-mentioned positioning surface 33 .
  • the bottom case 41 may be provided with a window 413 .
  • the window 413 is opposite to the light emitting end of the scanning component 2 .
  • the laser light emitted by the emitter 11 is collimated by the reflector 14 , the collimating element 13 and scanned by the component 2 in sequence, and then emitted from the window 413 .
  • the returned light enters through the window 413 , passes through the scanning component 2 , the collimating element 13 and the mirror 14 in turn, and is received by the receiver 12 .
  • each carrier 322 can also be respectively provided with a positioning hole 3222 , the positioning hole 3222 penetrates to the bottom of the corresponding carrier 322 , and the corresponding position of the positioning hole 3222 and the bottom case 41 is connected by a third fixed connector.
  • the angle between the center line of the positioning hole 3222 and the central axis of the first mounting part 311 in the body coordinate system is fixed, and the center line of the positioning hole 3222 and the central axis of the first mounting part 311 are in the body coordinate system
  • the included angle is used to indicate the included angle between the center line of the housing 4 and the optical axis of the collimation element 13, wherein the center line of the housing 4 is parallel to the horizontal plane, optionally, the center line of the housing 4 is in contact with the first mounting bracket 31 and The arrangement directions of the second mounting brackets 32 are consistent.
  • the angular tolerance between the optical axis of the collimating optical path and the centerline of the housing 4 can be controlled, that is, the optical axis of the collimating element 13 and the centerline of the housing 4
  • the angle tolerance of the angle is determined by the tolerance of the first mounting part 311 and the positioning hole 3222 , so as to reduce the possible error of FOV shooting and reduce the size of the window 413 on the bottom case 41 to a certain extent.
  • the emitter 11 may include an emitting board for emitting laser light, and the emitting board is mounted on an end of the first mounting bracket 31 away from the second mounting bracket 32 .
  • the receiver 12 includes a receiving plate for receiving the returned light, the receiving plate is installed on the bottom of the first mounting bracket 31 , and the receiving plate is arranged between the first mounting bracket 31 and the bottom of the bottom case 41 . This layout method is beneficial to heat dissipation design.
  • the ranging device of the embodiment of the present application may also include a main control board 5, an interface board 6 and a small interface board 7, and the interface board 6 is provided with an external communication interface, which can be realized through the external communication interface. Communication between the distance measuring device and external equipment.
  • the main control board 5 is installed on the outer surface of one side of the first mounting bracket 31 and the second mounting bracket 32, and the interface board 6 is installed on the other side of the outer surface of the first mounting bracket 31 and the second mounting bracket 32, that is, the main control board 5 is installed on one side of the outer surface of the installation bracket 3, and the interface board 6 is installed on the other side of the outer surface of the installation bracket.
  • the small interface board 7 is arranged above the first installation bracket 31, and the end of the small interface board 7 facing the main control board 5 is docked with the corresponding position of the main control board 5 so that the main control board 5 and the small interface board 7 are electrically connected.
  • One end of the small board 7 facing the interface board 6 is docked with a corresponding position of the interface board 6 so that the interface board 6 and the interface board 7 are electrically connected.
  • the main control board 5 , the interface board 6 and the small interface board 7 form a "door"-shaped structure, which has a compact structure and a more reasonable layout, making full use of the space of the storage cavity 411 .
  • the larger main control board 5 and the interface board 6 are installed on both sides of the mounting bracket 3, and the smaller interface board 7 with a smaller size (including thickness) is installed above the first mounting bracket 31, so that the In order to achieve the ultimate compression in the height and dimension of the distance measuring device, the limit of performance and volume has been achieved.
  • the main control board 5, the interface board 6, and the small interface board 7 are designed in an integrated manner, so that there is no need to set up connectors, FPCs, etc. between the main control board 5, the interface board 6, and the small interface board 7 to realize Communication, the structure is simpler and the structural strength is improved.
  • the main control board 5 , the interface board 6 and the small interface board 7 are all flexible boards or board-flexible boards, which are convenient for integrated design.
  • At least two of the main control board 5, the interface board 6, and the interface board 7 are independent of each other, and the two independent circuit boards can be connected by connectors, FPC, etc. to realize two The communication connection of the circuit board.
  • the mounting bracket 3 is a heat dissipation bracket, and the heating elements of the main control board 5 and the interface board 6 are arranged towards the corresponding side of the mounting bracket 3, and the main control board 5 and the heat of the heating element of the interface board 6 is conducted to the housing 4 through the mounting bracket 3 . That is, the heat dissipated by the heating elements of the main control board 5 and the interface board 6 is guided to the casing 4 through the mounting bracket 3 , and then the heat is dissipated by the casing 4 .
  • the heating elements of the main control board 5 and the interface board 6 are respectively attached to the heat dissipation plates 3223 on the corresponding sides, and the contact between the heat dissipation plate 3223 and the heating elements of the main control board 5 and the interface board 6 increases the Heat dissipation area, thereby speeding up heat dissipation.
  • the main control board 5 needs to undertake more data processing and transmission. Therefore, the number of heating elements of the main control board 5 will be more than that of the interface board 6.
  • the main control board In order to achieve uniform heat dissipation, optionally, the main control board The heat dissipation plate 3223 attached to the interface board 6 is thicker than the heat dissipation plate 3223 attached to the interface board 6 .
  • the heat conducting material 8 is filled between the heating elements of the main control board 5 and the interface board 6 and the corresponding heat sink 3223 .
  • a thermal conductive material 8 is filled between the bottom of each cooling plate 3223 and the bottom case 41 .
  • the heat-conducting material 8 is filled between the heating elements of the main control board 5 and the interface board 6 and the corresponding heat dissipation plate 3223, and the heating elements of the main control board 5 and the interface board 6 are connected to the corresponding heat dissipation plate 3223 The gaps are also filled with thermally conductive material 8 .
  • the interface board 7 is in contact with the top cover 42 . Since the small interface board 7 has less heat dissipation, it is enough to conduct heat through the contact between the small interface board 7 and the top cover 42 .
  • the distance measuring device of the embodiment of the present application may also include a flexible adapter plate 9, which is attached to the surface of the scanning component 2 facing the interface board 6, and the adapter plate 9 and The scanning component 2 is electrically connected.
  • One end of the adapter plate 9 is provided with a first electrical connection portion 91, and the corresponding position of the interface board 6 is provided with a second electrical connection portion 61, and the first electrical connection portion 91 cooperates with the second electrical connection portion 61, so that the interface board 6 and the second electrical connection portion 61 are matched.
  • the scanning component 2 realizes the communication. In this way, the rotation of the motor in the scanning component 2 can be controlled by an external device. Moreover, by setting the adapter board 9, the position change of the interface board 6 caused by the rotation of the scanning assembly 2 is avoided.
  • the adapter board 9 may be an FPC board.
  • the distance measuring device of the embodiment of the present application may also include a photoelectric switch board 10, the photoelectric switch board 10 is attached to the top outer surface of the scanning assembly 2, and the photoelectric switch board 10 is used to detect the scanning assembly 2
  • the size of the rotation angle of the rotating parts (such as motors), and the side of the photoelectric switch board 10 facing the main control board 5 is provided with an FPC interface 101, and the FPC interface 101 is electrically connected with the main control board 5, so that the The rotation angle is transmitted to the main control board 5, so that the main control board 5 can control the scanning component 2 to work.
  • the bottom of the receiving board is in contact with the bottom case 41, and the heat of the heating element of the receiving board is exported through the bottom case 41. Since the heat dissipation of the receiving board is small, it is enough to conduct heat through the contact between the receiving board and the bottom case 41 .
  • a heat conducting material 8 may be filled between the bottom of the receiving plate and the bottom case 41 .
  • this up-and-down installation method is also easy to extrude the filled heat-conducting material 8 into a heat-conducting layer, so that the heat-conducting material 8 is fully in contact with each structure, Further speed up heat dissipation.
  • the position of the launch plate is adjustable. After the adjustment of the launch plate is calibrated by the focusing equipment, several reserved spaces of the launch plate and several pillars protruding from the structure are glued and fixed. Achieve focus. Therefore, the position of the launching board will vary within a certain range in the body coordinate system.
  • the size of the adjustment amount of the emission plate is mainly affected by the accumulated tolerance in the optical path.
  • the launch plate of the existing configuration has a longer dimensional chain relative to the body coordinate system, and has multi-layer transfers. If the floating heat dissipation scheme is directly used, there is a problem that the design gap is too large after calculating the tolerance. Moreover, it is difficult to assemble in terms of configuration, and it is impossible to form a better heat dissipation path.
  • the ranging device of the embodiment of the present application may also include a heat dissipation block 20, and at least one end of the supporting frame 314 away from the second mounting bracket 32 is provided with a sixth mounting bracket 32. part 3143 , the sixth installation part 3143 is used for installing the cooling block 20 .
  • An installation space is formed between the heat dissipation block 20 , the two supporting frames 314 and the two fourth installation portions 3141 , the emitting board is installed in the installation space, and there is a gap between the emitting board and the heat dissipation block 20 .
  • the relative position of the sixth installation part 3143 and the first installation part 311 in the body coordinate system is fixed, and the position of the sixth installation part 3143 in the body coordinate system is used to indicate the position of the launching plate in the body coordinate system.
  • the sixth installation Part 3143 and the tolerance of the first mounting part 311 can determine the tolerance of the emission plate and the collimation element 13, that is, the tolerance of the emission plate and the collimation element 13 is determined by the tolerance of the sixth mounting portion 3143 and the first mounting portion 311 Determined, thereby shortening the dimension chain of the launching plate in the body coordinate system.
  • the position of the heat dissipation block 20 in the body coordinate system is fixed, and by controlling the tolerance of the heat dissipation block 20 relative to the first installation part 311, it is possible to ensure that the launch plate has a higher consistency in the body coordinate system. It is easier to control the assembly of the launch board, and the assembly does not need to manually adjust the position of the launch board to ensure the heat dissipation effect of the launch board.
  • the sixth mounting part 3143 may include a second mounting column, the second mounting column is provided with a third fixing hole, the cooling block 20 is provided with a fourth fixing hole, and the third fixing hole and the fourth fixing hole are fixed by the fourth fixing connector 210 connect.
  • the fourth fixed connection part 210 may be a screw, a pin or other fixed connection parts.
  • one end of one of the support frames 314 away from the second mounting bracket 32 is provided with two second mounting columns, the two second mounting columns are arranged at intervals up and down, and each second mounting column is provided with a third fixing hole for heat dissipation.
  • One side of the block 20 is provided with two fourth fixing holes, and the two fourth fixing connectors 210 are respectively fixed in the corresponding third fixing holes through the two fourth fixing holes, so that one side of the cooling block 20 It is fixed on one of the supporting frames 314 .
  • two second mounting posts can also be provided at one end of one of the support frames 314 away from the second mounting bracket 32, and a third mounting post can be provided at the end of the other support frame 314 away from the second mounting bracket 32, through three
  • a fourth fixing connector 210 fixes both sides of the cooling block 20 on the two supporting frames 314 respectively.
  • the gap between the emission board and the heat dissipation block 20 can be filled with the heat conducting material 8 , so that high reliability heat conduction can be realized, and the heat of the emission plate can be transferred to the heat dissipation block 20 .
  • the heat-conducting material 8 can be coated on the heat dissipation block 20 first, and then the emitting board is installed in the installation space.
  • the emitting board squeezes the heat-conducting material 8 so that a heat-conducting layer is formed between the emitting board and the heat-dissipating block 20 .
  • the bottom shell 41 can be provided with a support portion 412, and the support portion 412 is accommodated in the receiving cavity 411, and the end of the cooling block 20 away from the emission plate is provided with a fixed end 220, and the fixed end 220 is connected to the support portion 412, and fixed The bottom of the end 220 is in contact with the support portion 412 . In this way, the heat of the heat dissipation block 20 can be dissipated through the bottom case 41 .
  • the space between the bottom of the fixed end 220 and the supporting portion 412 may be filled with a heat conducting material 8 .
  • the heat conducting material 8 can be coated on the top of the support part 412 first, and then the fixed end 220 of the heat dissipation block 20 is assembled on the support part 412. Under the action of the lower extrusion force, the heat-conducting material 8 on the top of the supporting end can better form a heat-conducting layer.
  • the heat dissipation block 20 is arranged on the housing 4, which causes the dimensional chain of the emission plate in the body coordinate system to be very long, and the distance between the emission plate and the heat dissipation block 20 may be much larger; and, it is required After the installation bracket 3 is assembled on the bottom case 41, the heat dissipation block 20 is installed, and the operation space is small.
  • the heat dissipation block 20 and the bottom case 41 are made into one part, which requires an action of translation toward the heat dissipation block 20 after the mounting bracket 3 is assembled on the bottom case 41 , making assembly difficult.
  • the thermally conductive material 8 in the above embodiments may be thermally conductive glue, or other thermally conductive materials.
  • the ranging device in this embodiment of the present application may be a laser radar, but is not limited to a laser radar.
  • the lidar is used to sense external environment information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental objects.
  • the laser radar can detect the distance from the detection object to the laser radar by measuring the time of light propagation between the laser radar and the detection object, that is, the time-of-flight (TOF).
  • the laser radar can also detect the distance from the detection object to the laser radar through other technologies, such as a ranging method based on phase shift (phase shift) measurement, or a ranging method based on frequency shift (frequency shift) measurement, which is not mentioned here. Do limit.
  • the laser radar may include a transmitting circuit, a receiving circuit, a sampling circuit and an operation circuit.
  • the transmitting circuit may transmit a sequence of light pulses (eg, a sequence of laser pulses).
  • the receiving circuit can receive the light pulse sequence reflected by the detected object 100, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal, and then process the electrical signal and output it to the sampling circuit.
  • the sampling circuit can sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit can determine the distance between the lidar and the detected object 100 based on the sampling result of the sampling circuit.
  • the lidar may also include a control circuit, which can control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit which can control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • the lidar shown in FIG. 10 includes a transmitting circuit, a receiving circuit, a sampling circuit and an arithmetic circuit for emitting a light beam for detection
  • the transmitting circuit, The number of any one of the receiving circuit, the sampling circuit, and the computing circuit can also be at least two, for emitting at least two light beams along the same direction or in different directions respectively; wherein, the at least two light paths can be emitted simultaneously , can also be emitted at different times.
  • the light emitting chips in the at least two emitting circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the laser emitting chips in the at least two emitting circuits are packaged together and accommodated in the same packaging space.
  • the lidar may further include a scanning component 2 for changing the propagation direction of at least one laser pulse sequence emitted by the transmitting circuit to emit.
  • the module including the transmitting circuit, the receiving circuit, the sampling circuit and the operation circuit, or the module including the transmission circuit, the receiving circuit, the sampling circuit, the operation circuit and the control circuit can be referred to as the ranging component 1, and the ranging component 1 Can be independent of other modules, e.g. Scan Component 2.
  • a coaxial optical path may be used in the lidar, that is, the beam emitted by the lidar and the reflected beam share at least part of the optical path in the lidar.
  • at least one laser pulse sequence emitted by the transmitting circuit passes through the scanning component 2 to change its propagation direction and exits, and the laser pulse sequence reflected by the detected object 100 passes through the scanning component 2 and enters the receiving circuit.
  • the laser radar can also adopt an off-axis optical path, that is, the beam emitted by the laser radar and the reflected beam are respectively transmitted along different optical paths in the laser radar.
  • FIG. 11 shows a schematic diagram of an embodiment in which the lidar of the present application adopts a coaxial optical path.
  • the lidar includes a ranging component 1, and the ranging component 1 includes a transmitter 11 (which may include the above-mentioned transmitting circuit), a collimating element 13, a receiver 12 (which may include the above-mentioned receiving circuit, sampling circuit and computing circuit) and optical path changing element 15.
  • the ranging component 1 is used to emit light beams, receive return light, and convert the return light into electrical signals.
  • the emitter 11 can be used for emitting a sequence of light pulses.
  • transmitter 11 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 11 is a narrow-bandwidth beam whose wavelength is outside the range of visible light.
  • the collimating element 13 is arranged on the outgoing light path of the emitter 11 for collimating the light beam emitted from the emitter 11 , and collimating the light beam emitted by the emitter 11 into parallel light to be emitted to the scanning component 2 .
  • the collimation element 13 is also used for converging at least a part of the return light reflected by the detection object 100 .
  • the collimating element 13 may be a collimating lens or other elements capable of collimating light beams.
  • the transmitting optical path and the receiving optical path in the laser radar are combined before the collimating element 13 through the optical path changing element 15, so that the transmitting optical path and the receiving optical path can share the same collimating element 13, so that the optical path more compact.
  • the transmitter 11 and the receiver 12 respectively use their own collimating elements 13 , and the optical path changing element 15 is arranged on the optical path behind the collimating element 13 .
  • the optical path changing element 15 can be realized by a small-area reflector 14. Merge the transmit light path and the receive light path.
  • the optical path changing element 15 can also use a reflector 14 with a through hole 313, wherein the through hole 313 is used to transmit the outgoing light of the transmitter 11, and the reflector 14 is used to reflect the returned light to the receiver. Device 12. In this way, the shielding of the return light by the support of the small reflector 14 in the case of using the small reflector 14 can be reduced.
  • the optical path changing element 15 deviates from the optical axis of the collimating element 13 .
  • the optical path changing element 15 may also be located on the optical axis of the collimating element 13 .
  • the lidar also includes a scanning component 2 .
  • the scanning component 2 is placed on the outgoing light path of the ranging component 1, and the scanning component 2 is used to change the transmission direction of the collimated light beam 201 emitted by the collimating element 13 and project it to the external environment, and project the returning light 202 to the collimating element 13.
  • the returning light 202 is converged onto the receiver 12 through the collimating element 13 .
  • the scanning component 2 may include at least one optical element for changing the propagation path of the beam, wherein the optical element may change the propagation path of the beam by reflecting, refracting, diffracting and so on.
  • the scanning component 2 includes a lens, a prism, a vibrating mirror, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical elements are movable, for example, driven by a driving module to move the at least part of the optical elements, and the moving optical elements can reflect, refract or diffract light beams to different directions at different times.
  • multiple optical elements of scanning assembly 2 may rotate or vibrate about a common axis, each rotating or vibrating optical element serving to continuously change the direction of propagation of the incident light beam.
  • the multiple optical elements of scanning assembly 2 may rotate at different rotational speeds, or vibrate at different speeds.
  • at least some of the optical elements of the scanning assembly 2 may rotate at substantially the same rotational speed.
  • the plurality of optical elements of the scanning assembly 2 may also rotate around different axes.
  • the multiple optical elements of the scanning component 2 may also rotate in the same direction or in different directions; or vibrate in the same direction or in different directions, which is not limited here.
  • the scanning assembly 2 includes a first optical element 23 and a first driver 24 connected to the first optical element 23, the first driver 24 is used to drive the first optical element 23 to rotate around the rotation axis, so that the first optical element Element 23 changes the direction of the collimated beam.
  • the first optical element 23 projects the collimated light beams in different directions.
  • the angle between the direction of the collimated beam changed by the first optical element 23 and the rotation axis changes as the first optical element 23 rotates.
  • the first optical element 23 includes a pair of opposing non-parallel surfaces through which the collimated light beam passes.
  • the first optical element 23 comprises a prism whose thickness varies along at least one radial direction.
  • the first optical element 23 includes a wedge prism to refract the collimated light beam.
  • the scanning assembly 2 further includes a second optical element 25, the second optical element 25 rotates around a rotation axis, and the rotation speed of the second optical element 25 may be the same as or different from that of the first optical element 23.
  • the second optical element 25 is used to change the direction of the light beam projected by the first optical element 23 .
  • the second optical element 25 is connected with a second driver 26 , and the second driver 26 drives the second optical element 25 to rotate.
  • the first optical element 23 and the second optical element 25 can be driven by the same or different drivers, so that the rotation speed and/or direction of rotation of the first optical element 23 and the second optical element 25 are different, so that the collimated light beams projected to the external space are different.
  • the direction can scan a larger spatial range.
  • control device 300 controls the first driver 24 and the second driver 26 to drive the first optical element 23 and the second optical element 25 respectively.
  • the rotational speeds of the first optical element 23 and the second optical element 25 can be determined according to the area and pattern expected to be scanned in practical applications.
  • the first driver 24 or the second driver 26 may include a motor or other driver.
  • the second optical element 25 includes a pair of opposing non-parallel surfaces through which the light beam passes.
  • the second optical element 25 comprises a prism whose thickness varies along at least one radial direction.
  • second optical element 25 includes a wedge prism.
  • the scanning assembly 2 further includes a third optical element (not shown in the figure) and a driver for driving the movement of the third optical element.
  • the third optical element comprises a pair of opposite non-parallel surfaces through which the light beam passes.
  • the third optical element comprises a prism whose thickness varies along at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or deflections.
  • FIG. 12 is a schematic diagram of a scanning pattern of a lidar. It can be understood that when the speed of the optical elements in the scanning assembly 2 changes, the scanning pattern will also change accordingly.
  • the scanning component 2 When the light projected by the scanning component 2 hits the detected object 100 , a part of the light is reflected by the detected object 100 to the laser radar in a direction opposite to the projected light.
  • the return light 202 reflected by the detection object 100 enters the collimation element 13 after passing through the scanning component 2 .
  • the receiver 12 and the emitter 11 are placed on the same side of the collimation element 13, and the receiver 12 is used to convert at least part of the return light passing through the collimation element 13 into an electrical signal.
  • each optical element is coated with an anti-reflection film.
  • the thickness of the anti-reflection film is equal to or close to the wavelength of the light beam emitted by the transmitter 11, which can increase the intensity of the transmitted light beam.
  • a filter layer is coated on the surface of a component located on the beam propagation path in the lidar, or an optical filter is provided on the beam propagation path, for at least transmitting the wavelength band of the beam emitted by the transmitter 11, Reflect other wavebands to reduce the noise brought by the ambient light to the receiver 12 .
  • the transmitter 11 may include a laser diode, and the laser diode emits nanosecond-level laser pulses.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or falling edge time of the electrical signal pulse. In this way, the laser radar can use the pulse receiving time information and the pulse sending time information to calculate TOF, thereby determining the distance from the detected object 100 to the laser radar.
  • An embodiment of the present application also provides a movable platform, which may include a platform main body and the distance measuring device in the above embodiment, and the distance measuring device is connected to the platform main body.
  • the mobile platform in the embodiment of the present application may include a vehicle, such as an unmanned vehicle or a manned vehicle. It should be understood that the movable platform can also be other, such as an unmanned aerial vehicle.
  • the distance measuring device provided by the embodiment of the present application and the movable platform with the distance measuring device have been introduced in detail above.
  • specific examples are used to illustrate the principle and implementation of the present application.
  • the description of the above embodiment is only It is used to help understand the method and its core idea of this application; at the same time, for those of ordinary skill in the art, according to the idea of this application, there will be changes in the specific implementation and application scope. In summary, this The content of the description should not be understood as limiting the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置和具有该测距装置的可移动平台,测距装置包括:测距组件(1),包括用于发射激光的发射器(11)和用于接收回光的接收器(12);扫描组件(2),设于发射器(11)的出射光路上,扫描组件(2)能够改变激光的传输方向,并将回光投射至接收器(12);和安装支架(3),安装支架(3)为一体结构,扫描组件(2)和测距组件(1)分别设置于安装支架(3)上。该装置通过一体结构的安装支架(3)同时安装扫描组件(2)和测距组件(1),方便扫描组件(2)和测距组件(1)的安装,将扫描组件(2)和测距组件(1)的位置基准整合到同一个安装支架(3)上,可以缩短尺寸链,降低公差控制的难度,缩减了零件数量,降低了管控成本和出问题的概率。

Description

测距装置和具有该测距装置的可移动平台 技术领域
本申请涉及测距领域,尤其涉及一种测距装置和具有该测距装置的可移动平台。
背景技术
现有测距装置中,扫描组件有独立的安装架,测距组件有安装底座,安装架和安装座相互独立,扫描组件与测距组件具有不同的位置基准,导致测距组件与扫描组件的尺寸链长,公差控制难度大,管控成本和出错的概率增加。对于测距装置这种功能安全器件,出现质量问题后会产生较大代价。
发明内容
本申请提供一种测距装置和具有该测距装置的可移动平台。
具体地,本申请是通过如下技术方案实现的:
第一方面,本申请实施例提供一种测距装置,包括:
测距组件,包括用于发射激光的发射器和用于接收回光的接收器;
扫描组件,设于所述发射器的出射光路上,所述扫描组件能够改变所述激光的传输方向,并将所述回光投射至所述接收器;和
安装支架,所述安装支架为一体结构,所述扫描组件和所述测距组件分别设置于所述安装支架上。
第二方面,本申请实施例提供一种可移动平台,包括:
平台主体;和
第一方面所述的测距装置,所述测距装置连接于所述平台主体。
根据本申请实施例提供的技术方案,本申请通过一体结构的安装支架同时安装扫描组件和测距组件,方便扫描组件和测距组件的安装,将扫描组件和测距组件的位置基准整合到同一个安装支架上,可以缩短尺寸链,降低公差控制的难度,缩减了零件数量,降低了管控成本和出问题的概率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请一实施例中的测距装置的安装支架的结构示意图;
图2是本申请一实施例中的测距装置的爆炸图;
图3是本申请一实施例中的测距装置的安装支架在另一方向上的结构示意图;
图4是本申请一实施例中的测距装置的另一爆炸图;
图5是本申请一实施例中的测距装置的另一爆炸图;
图6是本申请一实施例中的测距装置的剖面示意图;
图7是本申请一实施例中的测距装置的另一剖面示意图;
图8是本申请一实施例中的测距装置的另一剖面示意图;
图9是本申请一实施例中的测距装置的部分结构示意图;
图10是本申请一实施例中的测距装置的硬件结构示意图;
图11是本申请一实施例中的测距装置的使用示意图;
图12是图11所示的测距装置的扫描光束示意图。
附图标记:
1、测距组件;11、发射器;12、接收器;13、准直元件;14、反射镜;15、光路改变元件;2、扫描组件;21、固定凸耳;211、防震套;22、第一固定连接件;23、第一光学元件;24、第一驱动器;25、第二光学元件;26、第二驱动器;3、安装支架;31、第一安装支架;311、第一安装部;3111、第一安装孔;312、第三安装部;313、通孔;314、支撑架;3141、第四安装部;3142、镂空部;3143、第六安装部;32、第二安装支架;321、第二安装部;322、承载架;3221、第五安装部;3222、定位孔;3223、散热板;33、定位面;4、外壳;41、底壳;411、收容腔;412、支撑部;413、窗口;42、顶盖;43、第二固定连接件;5、主控板;6、接口板;61、第二电连接部;7、接口小板;8、导热材料;9、转接板;91、第一电连接部;10、光电开关板;101、FPC接口;20、散热块;210、第四固定连接件;2220、固定端;100、被探测物;300、控制装置。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
需要说明的是,在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达, 是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c,a和b,a和c,b和c,或a和b和c,其中a、b、c可以是单个,也可以是多个。
参见图1和图2,本申请实施例提供一种测距装置,该测距装置可包括测距组件1、扫描组件2和安装支架3。
其中,测距组件1包括用于发射激光的发射器11和用于接收回光的接收器12。扫描组件2设于发射器11的出射光路上,本申请实施例中,扫描组件2能够改变激光的传输方向并投射至外界环境,并将回光投射至接收器12。安装支架3为一体结构,扫描组件2和测距组件1分别设置于安装支架3上。
本申请实施例通过一体结构的安装支架3同时安装扫描组件2和测距组件1,方便扫描组件2和测距组件1的安装,将扫描组件2和测距组件1的位置基准整合到同一个安装支架3上,可以缩短尺寸链,降低公差控制的难度,缩减了零件数量,降低了管控成本和出问题的概率。
参见图1,安装支架3可包括第一安装支架31以及设于第一安装支架31一侧的第二安装支架32,第一安装支架31用于安装测距组件1,第二安装支架32用于安装扫描组件2,使得扫描组件2位于测距组件1的一侧。可以理解的是,第一安装支架31与第二安装支架32为一体结构。
可以通过压铸、注塑或机加工等将第一安装支架31和第二安装支架32集成为一个安装支架3。
本申请实施例的测距组件1还可包括准直元件13,准直元件13设于发射器11的出射光路上,并用于准直激光。
再次参见图1,第一安装支架31可设有第一安装部311,第二安装支架32可设有第二安装部321,第一安装部311设于第一安装支架31靠近第二安装支架32的一端,发射器11安装于第一安装支架31远离第二安装支架32的一端。其中,第一安装部311用于安装准直元件13,第二安装部321用于安装扫描组件2,准直元件13位于扫描组件2与发射器11之间。本申请实施例中,第一安装部311与第二安装部321在安装支架3的机体坐标系中的相对位置固定,第一安装部311在机体坐标系中的位置用于指示准直元件13在机体坐标系中的位置,第二安装部321在机体坐标系中的位置用于指示所述测距组件1在机体坐标系中的位置。第一安装部311可作为机体坐标系的原点,因此通过直接管控第一安装部311与第二安装部321的公差这一个尺寸即能管控测距组件1与扫描组件2的公差,即测距组件1与扫描组件2的公差由第一安装部311与第二安装部321的公差确定,从而缩短了主光路(包括出射光路和回光路)尺寸链,提高测距装置的测量精度。
其中,机体坐标系即为以安装支架3为基准定义的坐标系,具体可以根据需要 定义机体坐标系的原点和坐标轴。
在一些实施例中,准直元件13可包括透镜,第一安装部311可包括第一安装孔3111,透镜安装于第一安装孔3111,透镜的表面与扫描组件2的光入射端相对。如此,通过管控第一安装孔3111的中心轴与第二安装部321的公差来管控测距组件1与扫描组件2的公差。
应当理解地,第一安装部311不限于安装孔,还可以为其他结构,如半圆环形安装结构,透镜安装于半圆环形安装结构,半圆环形安装结构所在圆的中心轴与透镜的光轴重合。通过管控半圆环形安装结构所在圆的中心轴与第二安装部321的公差来管控测距组件1与扫描组件2的公差。
此外,在一些实施例中,为了将回光投射至接收器12,测距组件1还可包括反射镜14,通过反射镜14将回光反射至接收器12。再次参见图1,第一安装支架31还可设有第三安装部312,第三安装部312设于第一安装孔3111和发射器11之间。其中,反射镜14安装于第三安装部312,并且反射镜14与透镜相对,激光经反射镜14透射至透镜,回光经反射镜14反射至接收器12。
可选地,第三安装部312可包括第二安装孔,其中,第二安装孔的中心轴相对第一安装孔3111的中心轴倾斜,使得反射镜14相对透镜倾斜。应当理解地,第三安装部312不限于安装孔,还可以为其他结构,可根据反射镜14的结构来选择第三安装部312的结构,使得第三安装部312适配于反射镜14。
可选地,第二安装孔的顶部边缘与第一安装孔3111的顶部边缘一体成型,如此设计,结构更简洁且美观。
参见图3,第一安装支架31还可设有贯穿第一安装支架31的通孔313,通孔313位于反射镜14的下方。接收器12安装于第一安装支架31的底部表面,通孔313与接收器12相对,回光经反射镜14反射后,通过通孔313进入至接收器12。如此,结构布局更合理且紧凑。
如图1所示,第二安装支架32可包括两个承载架322,两个承载架322间隔设于第一安装支架31同一端的两侧,扫描组件2夹设于两个承载架322之间。两个间隔排布的承载架322的设计,能够减轻安装支架3的重量。图1所示的实施例中,两个承载架322大致平行;在另外一些实施例中,两个承载架322也可呈一夹角。
为实现扫描组件2的便捷组装,参见图1、图2和图4,每个承载架322分别设有至少一个第二安装部321,扫描组件2的对应位置设有固定凸耳21,第二安装部321与固定凸耳21对应配合,使得扫描组件2悬挂于两个承载架322之间。为将扫描组件2稳定地组装在两个承载架322之间,每个承载架322分别设有至少两个第二安装部321。如图1和图2所示,每个承载架322分别设有两个第二安装部321,扫描组件2的两侧分别设有两个固定凸耳21,四个第二安装部321与四个固定凸耳21对应 连接。应当理解地,第二安装部321和固定凸耳21也可设置为其他数量。
为实现第二安装部321与固定凸耳21的便捷组装,第二安装部321可包括第一安装柱,第一安装柱设有第一固定孔,固定凸耳21设有第二固定孔,第一固定孔和第二固定孔通过第一固定连接件22固定连接。
该第一固定连接件22可以为螺钉、销轴或其他固定连接件。
例如,第二安装部321和固定凸耳21分别包括四个,第一固定连接件22为螺钉,四个第二安装部321的第一固定孔和四个固定凸耳21的第二固定孔分别对准后,只需从上往下安装四个螺钉即可将扫描组件2锁定在第二安装支架32上,这种上下组装的难度小,且有利于散热设计。
为减小扫描组件2因振动产生的噪声,可在第二固定孔内设置防震套211,防震套211套设于第一固定连接件22。该防震套211可以为硅胶套,也可以为其他材质的防震套。应当理解地,也可通过其他防震结构替代防震套211。
每个承载架322的至少两个第二安装部321共面,且每个承载架322的至少两个第二安装部321位于同一直线上。为达到较好的减震降噪效果,扫描组件2的重心在每个承载架322的至少两个第二安装部321所在面上的投影在该承载架322的至少两个第二安装部321的连线上。当第二固定孔内设有防震套211时,同一承载架322的至少两个防震套211也共面,并且,每个承载架322的至少两个防震套211位于同一直线上,扫描组件2的重心在每个承载架322的至少两个防震套211所在面上的投影在该承载架322的至少两个防震套211的连线上。
为方便扫描组件2的悬挂组装,每个承载架322的至少两个第二安装部321的高度不相同。例如,在一些实施例中,由第一安装支架31向第二安装支架32的方向,每个承载架322的至少两个第二安装部321的高度逐渐增大。或者,在一些实施例中,由第一安装支架31向第二安装支架32的方向,每个承载架322的至少两个第二安装部321的高度逐渐减小。
再次参见图1,每个承载架322远离第一安装支架31的一端分别设有散热板3223,本实施例中,散热板3223设于承载架322的顶部,每个散热板3223的顶部分别设有一个第二安装部321,每个承载架322上位于散热板3223与第一安装支架31之间的部分的顶部分别设有一个第二安装部321,如此,设在散热板3223顶部的第二安装部321高于设在第二安装支架32的顶部的第二安装部321。
参见图5和图6,本申请实施例的测距装置还可包括外壳4,外壳4可包括底壳41和顶盖42,底壳41设有收容腔411,顶盖42盖设于底壳41的顶部。本申请实施例中,安装支架3的顶部与底壳41的顶部配合,使得安装支架3悬挂于收容腔411内,通过悬挂组装方式优化了安装支架3的组装,实现安装支架3的便捷组装,且从上往下的悬挂有利于散热支架与外壳4之间设置散热层。
安装支架3的悬挂组装方式可以根据需要设计,例如,在一些实施例中,参见图1,第一安装支架31还可设有两个支撑架314,两个支撑架314分别由第一安装部311的两侧向远离第二安装支架32的方向延伸,每个支撑架314远离第二安装支架32的一端分别设有第四安装部3141,第二安装支架32远离第一安装支架31的一端的两侧分别设有第五安装部3221,两个第四安装部3141及两个第五安装部3221分别与底壳41的顶部连接,使得安装支架3悬挂于收容腔411内。
在组装时,先将测距组件1和扫描组件2组装在安装支架3上,测距组件1和扫描组件2组装完成后,再将安装支架3悬挂组装在底壳41上。
可选地,两个第四安装部3141及两个第五安装部3221分别与底壳41顶部的四个角部对应配合,每个第四安装部3141的底部及每个第五安装部3221的底部分别设有定位面33,定位面33与对应的角部相接触。本实施例中,定位面33与第一安装部311在机体坐标系中的相对位置固定,定位面33在机体坐标系中的位置用于指示底壳41的预设位置在机体坐标系中定位置,这样,通过管控第一安装部311与定位面33的公差这一个尺寸即能管控准直元件13的光轴与底壳41的预设位置的公差,即准直元件13的光轴与底壳41的预设位置的公差由第一安装部311与定位面33的公差确定,从而缩短了主光路的尺寸链,提高测距装置的测量精度。
其中,该预设位置可以为底壳41顶部边界,也可以为底壳41顶部其他位置。
在一些实施例中,四个定位面33共面,方便安装支架3的悬挂组装。
在另外一些实施例中,两个第四安装部3141的定位面33共面,两个第五安装部3221的定位面33共面,第四安装部3141的定位面33与第五安装部3221的定位面33不共面。
两个第四安装部3141及两个第五安装部3221分别与底壳41顶部的四个角部通过第二固定连接件43相连接。该第二固定连接件43可以为螺钉、销轴或其他固定连接件。例如,第二固定连接件43为螺钉,如此,只需从上往下安装四个螺钉即可将安装支架3锁定在外壳4上,这种上下组装的难度小,且有方便在安装支架3与底壳41之间设置散热层,有利于散热设计。
支撑架314可大致呈三角形,且支撑架314设有镂空部3142,如此,三角形的支撑架314稳定性好,镂空部3142的设计能够减轻重量。应当理解地,支撑架314也可设计为其他形状,也可不在支撑架314上设置镂空部3142。
安装支架3的悬挂组装方式还可以设计为其他,例如,在第一安装支架31和每个承载架322之间分别设有支撑柱,支撑柱的顶部设有凸耳,凸耳挂设于底壳41的顶部,且凸耳的底部设有上述定位面33。
底壳41可设有窗口413,窗口413与扫描组件2的光出射端相对,扫描组件2 的光出射端设于扫描组件2远离准直元件13的一端。本申请实施例中,发射器11发射的激光依次经反射镜14、准直元件13准直和扫描组件2后,由窗口413射出。并且,回光由窗口413进入,依次经扫描组件2、准直元件13和反射镜14后,由接收器12接收。
参见图3,每个承载架322还可分别设有定位孔3222,定位孔3222贯穿至对应承载架322的底部,定位孔3222与底壳41的对应位置通过第三固定连接件连接。本实施例中,定位孔3222的中心线与第一安装部311的中轴线在机体坐标系中的夹角固定,定位孔3222的中心线与第一安装部311的中轴线在机体坐标系中的夹角用于指示外壳4的中心线与准直元件13的光轴的夹角,其中,外壳4的中心线平行于水平面,可选地,外壳4的中心线与第一安装支架31和第二安装支架32的排布方向一致。通过直接管控第一安装部311与定位孔3222的公差这一个尺寸即能管控准直光路的光轴与外壳4的中心线的角度公差,即准直元件13的光轴与外壳4的中心线的角度公差由第一安装部311与定位孔3222的公差确定,从而降低FOV射出的可能误差,并可一定程度缩小底壳41上的窗口413的尺寸。
参见图2和图7,发射器11可包括用于发射激光的发射板,发射板安装于第一安装支架31远离第二安装支架32的一端。参见图2和图6,接收器12包括用于接收回光的接收板,接收板安装于第一安装支架31的底部,且接收板设于第一安装支架31与底壳41的底部之间。这种布局方式,有利于散热设计。
参见图2、图5和图8,本申请实施例的测距装置还可包括主控板5、接口板6以及接口小板7,接口板6设有外部通信接口,可通过外部通信接口实现测距装置与外部设备的通信。主控板5安装于第一安装支架31和第二安装支架32的一侧外表面,接口板6安装于第一安装支架31和第二安装支架32的另一侧外表面,即主控板5安装于安装支架3的一侧外表面,接口板6安装于安装架的另一侧外表面。接口小板7设于第一安装支架31的上方,接口小板7朝向主控板5的一端与主控板5的对应位置对接以使得主控板5与接口小板7实现电连接,接口小板7朝向接口板6的一端与接口板6的对应位置对接以使得接口板6与接口小板7实现电连接。本实施例中,主控板5、接口板6以及接口小板7形成“门”字形结构,结构紧凑且布局更合理,充分利用了收容腔411的空间。并且,将尺寸较大的主控板5和接口板6安装在安装支架3的两侧,将尺寸(包括厚度)较小的接口小板7安装在第一安装支架31的上方,如此,实现了在测距装置的高度尺寸上的极致压缩,做到了性能与体积的极限。
在一些实施例中,主控板5、接口板6以及接口小板7一体化设计,这样,主控板5、接口板6以及接口小板7之间无需设置插接件、FPC等以实现通信,结构更简单且提高了结构强度。其中,主控板5、接口板6以及接口小板7均为柔性板或板挠性板,方便一体化设计。
在另外一些实施例中,主控板5、接口板6以及接口小板7中的至少两个相互独立,相互独立的两个电路板之间可通过插接件、FPC等连接以实现两个电路板的通信连接。
为实现主控板5和接口板6的散热,本申请实施例中,安装支架3为散热支架,主控板5和接口板6的发热元件均朝向安装支架3的对应侧设置,主控板5和接口板6的发热元件的热量经安装支架3传导至外壳4。即主控板5和接口板6的发热元件散出的热量经安装支架3导至外壳4,再由外壳4将热量散出。
参见图2和图8,主控板5及接口板6的发热元件分别贴设于对应侧的散热板3223,通过散热板3223与主控板5及接口板6的发热元件的接触,增大散热面积,从而加快散热速度。
相比接口板6,主控板5需要承担更多数据处理与传输,因此,主控板5的发热元件的数量会多于接口板6,为实现均匀散热,可选地,与主控板5相贴设的散热板3223的厚度大于与接口板6相贴设的散热板3223的厚度。
为实现高可靠性的热传导,在一些实施例中,主控板5及接口板6的发热元件与对应散热板3223之间填充有导热材料8。或者,在一些实施例中,每个散热板3223的底部与底壳41之间填充有导热材料8。或者,在一些实施例中,主控板5及接口板6的发热元件与对应散热板3223之间填充有导热材料8,并且,主控板5及接口板6的发热元件与对应散热板3223之间也填充有导热材料8。
为实现接口小板7的散热,本实施例中,接口小板7与顶盖42接触。由于接口小板7散热量较少,故通过接口小板7与顶盖42接触导热即可。
参见图2和图4,本申请实施例的测距装置还可包括柔性的转接板9,转接板9贴设于扫描组件2朝向接口板6的一侧表面,并且转接板9与扫描组件2电连接。转接板9的一端设有第一电连接部91,接口板6的对应位置设有第二电连接部61,第一电连接部91与第二电连接部61配合,使得接口板6与扫描组件2实现通信。如此,可通过外部设备控制扫描组件2中的电机的转动。并且,通过设置转接板9,避免了扫描组件2转动导致的接口板6的位置变化。
其中,该转接板9可以为FPC板。
再次参见图2和图4,本申请实施例的测距装置还可包括光电开关板10,光电开关板10贴设于扫描组件2的顶部外表面,该光电开关板10用于检测扫描组件2中的转动部件(如电机)的转动角度大小,并且,光电开关板10朝向主控板5的一侧设有FPC接口101,FPC接口101与主控板5电连接,从而通过FPC接口101将转动角度大小传输给主控板5,便于主控板5控制扫描组件2工作。
为实现接收板的散热,本实施例中,接收板的底部与底壳41接触,接收板的 发热元件的热量通过底壳41导出。由于接收板散热量较少,故通过接收板与底壳41接触导热即可。
在一些实施例中,为实现高可靠性的热传导,接收板的底部与底壳41之间可填充有导热材料8。
应当理解地,由于安装支架3是悬挂在底壳41的顶部的,这种上下安装方式也易于将填充的导热材料8挤压成导热层,使得导热材料8与各结构之间的充分接触,进一步加快散热速度。
目前的测距装置中,发射板的位置是可调节的,发射板的调节通过调焦设备校准后,将发射板的几个预留空位和结构上伸出的几个柱子使用胶水粘接固定实现对焦。因此发射板的位置在机体坐标系中会有一定范围的变化。发射板的调节量的大小,主要受光路中累计的公差影响。现有构型的发射板相对于机体坐标系的尺寸链较长,有多层转接。若直接使用浮动型散热方案,存在计算公差后设计间隙过大的问题。且构型上难以装配,无法形成较好的散热通路问题。
对于此,为实现发射板的散热,参见图7和图9,本申请实施例的测距装置还可包括散热块20,至少一个支撑架314远离第二安装支架32的一端设有第六安装部3143,第六安装部3143用于安装散热块20。散热块20与两个支撑架314及两个第四安装部3141之间形成一安装空间,发射板安装于安装空间内,且发射板与散热块20之间存在间隙。第六安装部3143与第一安装部311在机体坐标系中的相对位置固定,第六安装部3143在机体坐标系中的位置用于指示发射板在机体坐标系中的位置,通过第六安装部3143与第一安装部311的公差这一个尺寸即能够确定发射板与准直元件13的公差,即发射板与准直元件13的公差由第六安装部3143与第一安装部311的公差确定,从而缩短发射板在机体坐标系中的尺寸链。相比浮动型散热方案,散热块20在机体坐标系的位置是固定的,通过管控散热块20相对第一安装部311的公差,就能保证发射板在机体坐标系有较高的一致性,更易管控发射板的组装,且组装不需要人工调整发射板的位置,确保发射板的散热效果。
第六安装部3143可包括第二安装柱,第二安装柱设有第三固定孔,散热块20设有第四固定孔,第三固定孔与第四固定孔通过第四固定连接件210固定连接。
该第四固定连接件210可以为螺钉、销轴或其他固定连接件。
例如,其中一个支撑架314远离第二安装支架32的一端设有两个第二安装柱,两个第二安装柱上下间隔排布,每个第二安装柱均设有第三固定孔,散热块20的一侧设有两个第四固定孔,通过两个第四固定连接件210分别穿过两个第四固定孔固定于对应的第三固定孔中,从而将散热块20的一侧固定于其中一个支撑架314上。当然,也可以在其中一个支撑架314远离第二安装支架32的一端设置两个第二安装柱,并在另一个支撑架314远离第二安装支架32的一端设置一个第三安装柱,通过三个第四固 定连接件210将散热块20的两侧分别固定在两个支撑架314上。
发射板与散热块20之间的缝隙可填充有导热材料8,如此,能实现高可靠性的热传导,将发射板的热量传递到散热块20上。
可先在散热块20上涂设导热材料8,再将发射板安装在安装空间,发射板挤压导热材料8使得发射板与散热块20之间形成导热层。
参见图7,底壳41可设有支撑部412,支撑部412收容于收容腔411内,散热块20远离发射板的一端设有固定端220,固定端220连接于支撑部412,并且,固定端220的底部与支撑部412接触。如此,散热块20的热量可通过底壳41导出。
为实现高可靠性的热传导,固定端220的底部与支撑部412之间可填充有导热材料8。
可先在支撑部412的顶部涂设导热材料8,再将散热块20的固定端220组装在支撑部412上,由于固定端220与支撑部412是上下方向组装的,故在散热块20向下的挤压力作用下,支撑端顶部的导热材料8能够更好地形成导热层。
在一些实施例中,散热块20设置在外壳4上,这种方式导致发射板在机体坐标系中的尺寸链很长,发射板和散热块20之间的间距可能会大很多;并且,需要在将安装支架3组装在底壳41上之后再装散热块20,操作空间小。
在一些实施例中,散热块20与底壳41做成一个零件,这需要在将安装支架3组装在底壳41上之后,增加一个向散热块20平移的动作,组装困难。
上述实施例中的导热材料8可以为导热胶,也可以为其他导热材料。
本申请实施例的测距装置可以为激光雷达,但不限于激光雷达。
在一种实施方式中,激光雷达用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,激光雷达可以通过测量激光雷达和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到激光雷达的距离。或者,激光雷达也可以通过其他技术来探测探测物到激光雷达的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图10至图12所示的激光雷达对测距的工作流程进行举例描述。
如图10所示,激光雷达可以包括发射电路、接收电路、采样电路和运算电路。
发射电路可以发射光脉冲序列(例如激光脉冲序列)。接收电路可以接收经过被探测物100反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路。采样电路可以对电信号进行采样,以 获取采样结果。运算电路可以基于采样电路的采样结果,以确定激光雷达与被探测物100之间的距离。
可选地,该激光雷达还可以包括控制电路,该控制电路可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图10示出的激光雷达中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图10所示的电路,激光雷达还可以包括扫描组件2,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路、接收电路、采样电路和运算电路的模块,或者,包括发射电路、接收电路、采样电路、运算电路和控制电路的模块称为测距组件1,该测距组件1可以独立于其他模块,例如,扫描组件2。
激光雷达中可以采用同轴光路,也即激光雷达出射的光束和经反射回来的光束在激光雷达内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描组件2改变传播方向出射后,经被探测物100反射回来的激光脉冲序列经过扫描组件2后入射至接收电路。或者,激光雷达也可以采用异轴光路,也即激光雷达出射的光束和经反射回来的光束在激光雷达内分别沿不同的光路传输。图11示出了本申请的激光雷达采用同轴光路的一种实施例的示意图。
如图11所示,激光雷达包括测距组件1,测距组件1包括发射器11(可以包括上述的发射电路)、准直元件13、接收器12(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件15。测距组件1用于发射光束,且接收回光,将回光转换为电信号。其中,发射器11可以用于发射光脉冲序列。在一些实施例中,发射器11可以发射激光脉冲序列。可选的,发射器11发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件13设置于发射器11的出射光路上,用于准直从发射器11发出的光束,将发射器11发出的光束准直为平行光出射至扫描组件2。准直元件13还用于会聚经被探测物100反射的回光的至少一部分。该准直元件13可以是准直透镜或者是其他能够准直光束的元件。
在图11所示实施例中,通过光路改变元件15来将激光雷达内的发射光路和接收光路在准直元件13之前合并,使得发射光路和接收光路可以共用同一个准直元件13,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器11和接收器12 分别使用各自的准直元件13,将光路改变元件15设置在准直元件13之后的光路上。
在图11所示实施例中,由于发射器11出射的光束的光束孔径较小,激光雷达所接收到的回光的光束孔径较大,所以光路改变元件15可以采用小面积的反射镜14来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件15也可以采用带通孔313的反射镜14,其中该通孔313用于透射发射器11的出射光,反射镜14用于将回光反射至接收器12。这样可以减小采用小反射镜14的情况中小反射镜14的支架会对回光的遮挡。
在图11所示实施例中,光路改变元件15偏离了准直元件13的光轴。在其他的一些实现方式中,光路改变元件15也可以位于准直元件13的光轴上。
激光雷达还包括扫描组件2。扫描组件2放置于测距组件1的出射光路上,扫描组件2用于改变经准直元件13出射的准直光束201的传输方向并投射至外界环境,并将回光202投射至准直元件13。回光202经准直元件13汇聚到接收器12上。
在一些实施例中,扫描组件2可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描组件2包括透镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描组件2的多个光学元件可以绕共同的轴旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一些实施例中,扫描组件2的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一些实施例中,扫描组件2的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描组件2的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描组件2的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一些实施例中,扫描组件2包括第一光学元件23和与第一光学元件23连接的第一驱动器24,第一驱动器24用于驱动第一光学元件23绕转动轴转动,使第一光学元件23改变准直光束的方向。第一光学元件23将准直光束投射至不同的方向。在一些实施例中,准直光束经第一光学元件23改变后的方向与转动轴的夹角随着第一光学元件23的转动而变化。在一些实施例中,第一光学元件23包括相对的非平行的一对表面,准直光束穿过该对表面。在一些实施例中,第一光学元件23包括厚度沿至少一个径向变化的棱镜。在一些实施例中,第一光学元件23包括楔角棱镜,对准直光束进行折射。
在一些实施例中,扫描组件2还包括第二光学元件25,第二光学元件25绕转 动轴转动,第二光学元件25的转动速度可以与第一光学元件23的转动速度相同或不同。第二光学元件25用于改变第一光学元件23投射的光束的方向。在一些实施例中,第二光学元件25与第二驱动器26连接,第二驱动器26驱动第二光学元件25转动。第一光学元件23和第二光学元件25可以由相同或不同的驱动器驱动,使第一光学元件23和第二光学元件25的转速和/或转向不同,从而将准直光束投射至外界空间不同的方向,可以扫描较大的空间范围。在一些实施例中,控制装置300控制第一驱动器24和第二驱动器26,分别驱动第一光学元件23和第二光学元件25。第一光学元件23和第二光学元件25的转速可以根据实际应用中预期扫描的区域和样式确定。第一驱动器24或第二驱动器26可以包括电机或其他驱动器。
在一些实施例中,第二光学元件25包括相对的非平行的一对表面,光束穿过该对表面。在一些实施例中,第二光学元件25包括厚度沿至少一个径向变化的棱镜。在一些实施例中,第二光学元件25包括楔角棱镜。
一些实施例中,扫描组件2还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一些实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一些实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描组件2中的各光学元件旋转可以将光投射至不同的方向,例如方向203和方向204,如此对激光雷达周围的空间进行扫描。如图12所示,图12为激光雷达的一种扫描图案的示意图。可以理解的是,扫描组件2内的光学元件的速度变化时,扫描图案也会随之变化。
当扫描组件2投射出的光打到被探测物100时,一部分光被被探测物100沿与投射的光相反的方向反射至激光雷达。被探测物100反射的回光202经过扫描组件2后入射至准直元件13。
接收器12与发射器11放置于准直元件13的同一侧,接收器12用于将穿过准直元件13的至少部分回光转换为电信号。
一些实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器11发射出的光束的波长相等或接近,能够增加透射光束的强度。
一些实施例中,激光雷达中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器11所出射的光束所在波段,反射其他波段,以减少环境光给接收器12带来的噪音。
在一些实施例中,发射器11可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光雷达可以利用脉 冲接收时间信息和脉冲发出时间信息计算TOF,从而确定被探测物100到激光雷达的距离。
本申请实施例还提供一种可移动平台,该可移动平台可包括平台主体和上述实施例中的测距装置,测距装置连接于平台主体。
本申请实施例的可移动平台可包括车辆,如无人车辆或有人驾驶车辆。应当理解地,可移动平台也可为其他,如无人飞行器。
以上对本申请实施例所提供的测距装置和具有该测距装置的可移动平台进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (87)

  1. 一种测距装置,其特征在于,包括:
    测距组件,包括用于发射激光的发射器和用于接收回光的接收器;
    扫描组件,设于所述发射器的出射光路上,所述扫描组件能够改变所述激光的传输方向,并将所述回光投射至所述接收器;和
    安装支架,所述安装支架为一体结构,所述扫描组件和所述测距组件分别设置于所述安装支架上。
  2. 根据权利要求1所述的测距装置,其特征在于,所述安装支架包括第一安装支架以及设于所述第一安装支架一侧的第二安装支架,所述第一安装支架用于安装所述测距组件,所述第二安装支架用于安装所述扫描组件,使得所述扫描组件位于所述测距组件的一侧。
  3. 根据权利要求2所述的测距装置,其特征在于,所述测距组件还包括准直元件,所述准直元件设于所述发射器的出射光路上,并用于准直所述激光;
    所述第一安装支架设有第一安装部,所述第二安装支架设有第二安装部,所述第一安装部设于所述第一安装支架靠近所述第二安装支架的一端,所述发射器安装于所述第一安装支架远离所述第二安装支架的一端;
    所述第一安装部用于安装所述准直元件,所述第二安装部用于安装所述扫描组件,所述准直元件位于所述扫描组件与所述发射器之间;
    其中,所述第一安装部与所述第二安装部在所述安装支架的机体坐标系中的相对位置固定,所述第一安装部在所述机体坐标系中的位置用于指示所述准直元件在所述机体坐标系中的位置,所述第二安装部在所述机体坐标系中的位置用于指示所述测距组件在所述机体坐标系中的位置。
  4. 根据权利要求3所述的测距装置,其特征在于,所述准直元件包括透镜,所述第一安装部包括第一安装孔,所述透镜安装于所述第一安装孔,所述透镜的表面与所述扫描组件的光入射端相对。
  5. 根据权利要求4所述的测距装置,其特征在于,所述第一安装支架还设有第三安装部,所述第三安装部设于所述第一安装孔和所述发射器之间;
    所述测距组件还包括反射镜,所述反射镜安装于所述第三安装部,并与所述透镜相对,所述激光经所述反射镜透射至所述透镜,所述回光经所述反射镜反射至所述接收器。
  6. 根据权利要求5所述的测距装置,其特征在于,所述第三安装部包括第二安装孔,所述第二安装孔的中心轴相对所述第一安装孔的中心轴倾斜,使得所述反射镜相对所述透镜倾斜。
  7. 根据权利要求6所述的测距装置,其特征在于,所述第二安装孔的顶部边缘与所述第一安装孔的顶部边缘一体成型。
  8. 根据权利要求5所述的测距装置,其特征在于,所述第一安装支架还设有贯穿 所述第一安装支架的通孔,所述通孔位于所述反射镜的下方;
    所述接收器安装于所述第一安装支架的底部表面,所述通孔与所述接收器相对,所述回光经所述反射镜反射后,通过所述通孔进入至所述接收器。
  9. 根据权利要求3所述的测距装置,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架同一端的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架分别设有至少一个所述第二安装部,所述扫描组件的对应位置设有固定凸耳,所述第二安装部与所述固定凸耳对应配合,使得所述扫描组件悬挂于两个所述承载架之间。
  10. 根据权利要求9所述的测距装置,其特征在于,每个所述承载架分别设有至少两个所述第二安装部。
  11. 根据权利要求10所述的测距装置,其特征在于,所述第二安装部包括第一安装柱,所述第一安装柱设有第一固定孔,所述固定凸耳设有第二固定孔,所述第一固定孔和所述第二固定孔通过第一固定连接件固定连接。
  12. 根据权利要求11所述的测距装置,其特征在于,所述第二固定孔内设有防震套,所述防震套套设于所述第一固定连接件。
  13. 根据权利要求10所述的测距装置,其特征在于,每个所述承载架的至少两个所述第二安装部共面,且每个所述承载架的至少两个所述第二安装部位于同一直线上;
    所述扫描组件的重心在每个所述承载架的至少两个所述第二安装部所在面上的投影在所述承载架的至少两个所述第二安装部的连线上。
  14. 根据权利要求10或13所述的测距装置,其特征在于,每个所述承载架的至少两个所述第二安装部的高度不相同。
  15. 根据权利要求14所述的测距装置,其特征在于,由所述第一安装支架向所述第二安装支架的方向,每个所述承载架的至少两个所述第二安装部的高度逐渐增大。
  16. 根据权利要求10或13所述的测距装置,其特征在于,每个所述承载架分别包括两个所述第二安装部。
  17. 根据权利要求3所述的测距装置,其特征在于,所述测距装置还包括外壳,所述外壳包括底壳和顶盖,所述底壳设有收容腔,所述顶盖盖设于所述底壳的顶部;
    所述第一安装支架还设有两个支撑架,两个所述支撑架分别由所述第一安装部的两侧向远离所述第二安装支架的方向延伸,每个支撑架远离所述第二安装支架的一端分别设有第四安装部,所述第二安装支架远离所述第一安装支架的一端的两侧分别设有第五安装部,两个所述第四安装部及两个所述第五安装部分别与所述底壳的顶部连接,使得所述安装支架悬挂于所述收容腔内。
  18. 根据权利要求17所述的测距装置,其特征在于,两个所述第四安装部及两个所述第五安装部分别与所述底壳顶部的四个角部对应配合;
    每个所述第四安装部的底部及每个所述第五安装部的底部分别设有定位面,所述 定位面与对应的角部相接触;
    其中,所述定位面与所述第一安装部在所述机体坐标系中的相对位置固定,所述定位面在所述机体坐标系中的位置用于指示所述底壳的预设位置在所述机体坐标系中定位置。
  19. 根据权利要求17或18所述的测距装置,其特征在于,两个所述第四安装部及两个所述第五安装部分别与所述底壳顶部的四个角部通过第二固定连接件相连接。
  20. 根据权利要求18所述的测距装置,其特征在于,四个所述定位面共面。
  21. 根据权利要求17所述的测距装置,其特征在于,所述支撑架大致呈三角形,且所述支撑架设有镂空部。
  22. 根据权利要求17所述的测距装置,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架还分别设有定位孔,所述定位孔贯穿至对应承载架的底部,所述定位孔与所述底壳的对应位置通过第三固定连接件连接;
    其中,所述定位孔的中心线与所述第一安装部的中轴线在所述机体坐标系中的夹角固定,所述定位孔的中心线与所述第一安装部的中轴线在所述机体坐标系中的夹角用于指示所述外壳的中心线与所述准直元件的光轴的夹角,其中,所述外壳的中心线平行于水平面。
  23. 根据权利要求17所述的测距装置,其特征在于,所述发射器包括用于发射激光的发射板,所述发射板安装于所述第一安装支架远离所述第二安装支架的一端,所述接收器包括用于接收回光的接收板,所述接收板安装于所述第一安装支架的底部,且所述接收板设于所述第一安装支架与所述底壳的底部之间。
  24. 根据权利要求23所述的测距装置,其特征在于,所述测距装置还包括主控板、接口板以及接口小板,所述接口板设有外部通信接口,所述主控板安装于所述第一安装支架和所述第二安装支架的一侧外表面,所述接口板安装于所述第一安装支架和所述第二安装支架的另一侧外表面,所述接口小板设于所述第一安装支架的上方;
    所述接口小板朝向所述主控板的一端与所述主控板的对应位置对接以使得所述主控板与所述接口小板实现电连接,所述接口小板朝向所述接口板的一端与所述接口板的对应位置对接以使得所述接口板与所述接口小板实现电连接。
  25. 根据权利要求24所述的测距装置,其特征在于,所述主控板、接口板以及接口小板一体化设计。
  26. 根据权利要求25所述的测距装置,其特征在于,所述主控板、接口板以及接口小板均为柔性板或板挠性板。
  27. 根据权利要求24所述的测距装置,其特征在于,所述安装支架为散热支架;
    所述主控板和所述接口板的发热元件均朝向所述安装支架的对应侧设置,所述主控板和所述接口板的发热元件的热量经所述安装支架传导至所述外壳。
  28. 根据权利要求27所述的测距装置,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架远离所述第一安装支架的一端分别设有散热板,所述主控板及所述接口板的发热元件分别贴设于对应侧的散热板。
  29. 根据权利要求28所述的测距装置,其特征在于,与所述主控板相贴设的散热板的厚度大于与所述接口板相贴设的散热板的厚度。
  30. 根据权利要求28所述的测距装置,其特征在于,所述主控板及所述接口板的发热元件与对应散热板之间填充有导热材料。
  31. 根据权利要求28所述的测距装置,其特征在于,每个所述散热板的底部与所述底壳之间填充有导热材料。
  32. 根据权利要求24所述的测距装置,其特征在于,所述接口小板与所述顶盖接触。
  33. 根据权利要求24所述的测距装置,其特征在于,所述测距装置还包括柔性的转接板,所述转接板贴设于所述扫描组件朝向所述接口板的一侧表面,并与所述扫描组件电连接;
    所述转接板的一端设有第一电连接部,所述接口板的对应位置设有第二电连接部,所述第一电连接部与所述第二电连接部配合,使得所述接口板与所述扫描组件实现通信。
  34. 根据权利要求33所述的测距装置,其特征在于,所述测距装置还包括光电开关板,所述光电开关板贴设于所述扫描组件的顶部外表面,用于检测所述扫描组件中的转动部件的转动角度大小,并且,所述光电开关板朝向所述主控板的一侧设有FPC接口,所述FPC接口与所述主控板电连接。
  35. 根据权利要求23所述的测距装置,其特征在于,所述接收板的底部与所述底壳接触,所述接收板的发热元件的热量通过所述底壳导出。
  36. 根据权利要求35所述的测距装置,其特征在于,所述接收板的底部与所述底壳之间填充有导热材料。
  37. 根据权利要求23所述的测距装置,其特征在于,所述测距装置还包括散热块,至少一个所述支撑架远离所述第二安装支架的一端设有第六安装部,用于安装所述散热块;
    所述散热块与两个所述支撑架及两个所述第四安装部之间形成一安装空间,所述发射板安装于所述安装空间内,且所述发射板与所述散热块之间存在间隙;
    其中,所述第六安装部与所述第一安装部在所述机体坐标系中的相对位置固定,所述第六安装部在所述机体坐标系中的位置用于指示所述发射板在所述机体坐标系中的位置。
  38. 根据权利要求37所述的测距装置,其特征在于,所述第六安装部包括第二安 装柱,所述第二安装柱设有第三固定孔,所述散热块设有第四固定孔,所述第三固定孔与所述第四固定孔通过第四固定连接件固定连接。
  39. 根据权利要求37或38所述的测距装置,其特征在于,其中一个支撑架远离所述第二安装支架的一端设有两个所述第六安装部,两个所述第六安装部间隔设置。
  40. 根据权利要求37所述的测距装置,其特征在于,所述发射板与所述散热块之间的缝隙填充有导热材料。
  41. 根据权利要求37所述的测距装置,其特征在于,所述底壳设有支撑部,所述支撑部收容于所述收容腔内,所述散热块远离所述发射板的一端设有固定端,所述固定端连接于所述支撑部,并且,所述固定端的底部与所述支撑部接触。
  42. 根据权利要求41所述的测距装置,其特征在于,所述固定端的底部与所述支撑部之间填充有导热材料。
  43. 根据权利要求17所述的测距装置,其特征在于,所述底壳设有窗口,与所述扫描组件的光出射端相对,所述扫描组件的光出射端设于所述扫描组件远离所述准直元件的一端。
  44. 一种可移动平台,其特征在于,包括:
    平台主体;和
    测距装置,所述测距装置连接于所述平台主体,所述测距装置包括:
    测距组件,包括用于发射激光的发射器和用于接收回光的接收器;
    扫描组件,设于所述发射器的出射光路上,所述扫描组件能够改变所述激光的传输方向,并将所述回光投射至所述接收器;和
    安装支架,所述安装支架为一体结构,所述扫描组件和所述测距组件分别设置于所述安装支架上。
  45. 根据权利要求44所述的可移动平台,其特征在于,所述安装支架包括第一安装支架以及设于所述第一安装支架一侧的第二安装支架,所述第一安装支架用于安装所述测距组件,所述第二安装支架用于安装所述扫描组件,使得所述扫描组件位于所述测距组件的一侧。
  46. 根据权利要求45所述的可移动平台,其特征在于,所述测距组件还包括准直元件,所述准直元件设于所述发射器的出射光路上,并用于准直所述激光;
    所述第一安装支架设有第一安装部,所述第二安装支架设有第二安装部,所述第一安装部设于所述第一安装支架靠近所述第二安装支架的一端,所述发射器安装于所述第一安装支架远离所述第二安装支架的一端;
    所述第一安装部用于安装所述准直元件,所述第二安装部用于安装所述扫描组件,所述准直元件位于所述扫描组件与所述发射器之间;
    其中,所述第一安装部与所述第二安装部在所述安装支架的机体坐标系中的相对位置固定,所述第一安装部在所述机体坐标系中的位置用于指示所述准直元件在所述机体坐标系中的位置,所述第二安装部在所述机体坐标系中的位置用于指示所述测距 组件在所述机体坐标系中的位置。
  47. 根据权利要求46所述的可移动平台,其特征在于,所述准直元件包括透镜,所述第一安装部包括第一安装孔,所述透镜安装于所述第一安装孔,所述透镜的表面与所述扫描组件的光入射端相对。
  48. 根据权利要求47所述的可移动平台,其特征在于,所述第一安装支架还设有第三安装部,所述第三安装部设于所述第一安装孔和所述发射器之间;
    所述测距组件还包括反射镜,所述反射镜安装于所述第三安装部,并与所述透镜相对,所述激光经所述反射镜透射至所述透镜,所述回光经所述反射镜反射至所述接收器。
  49. 根据权利要求48所述的可移动平台,其特征在于,所述第三安装部包括第二安装孔,所述第二安装孔的中心轴相对所述第一安装孔的中心轴倾斜,使得所述反射镜相对所述透镜倾斜。
  50. 根据权利要求49所述的可移动平台,其特征在于,所述第二安装孔的顶部边缘与所述第一安装孔的顶部边缘一体成型。
  51. 根据权利要求48所述的可移动平台,其特征在于,所述第一安装支架还设有贯穿所述第一安装支架的通孔,所述通孔位于所述反射镜的下方;
    所述接收器安装于所述第一安装支架的底部表面,所述通孔与所述接收器相对,所述回光经所述反射镜反射后,通过所述通孔进入至所述接收器。
  52. 根据权利要求46所述的可移动平台,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架同一端的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架分别设有至少一个所述第二安装部,所述扫描组件的对应位置设有固定凸耳,所述第二安装部与所述固定凸耳对应配合,使得所述扫描组件悬挂于两个所述承载架之间。
  53. 根据权利要求52所述的可移动平台,其特征在于,每个所述承载架分别设有至少两个所述第二安装部。
  54. 根据权利要求53所述的可移动平台,其特征在于,所述第二安装部包括第一安装柱,所述第一安装柱设有第一固定孔,所述固定凸耳设有第二固定孔,所述第一固定孔和所述第二固定孔通过第一固定连接件固定连接。
  55. 根据权利要求54所述的可移动平台,其特征在于,所述第二固定孔内设有防震套,所述防震套套设于所述第一固定连接件。
  56. 根据权利要求53所述的可移动平台,其特征在于,每个所述承载架的至少两个所述第二安装部共面,且每个所述承载架的至少两个所述第二安装部位于同一直线上;
    所述扫描组件的重心在每个所述承载架的至少两个所述第二安装部所在面上的投影在所述承载架的至少两个所述第二安装部的连线上。
  57. 根据权利要求53或56所述的可移动平台,其特征在于,每个所述承载架的至少两个所述第二安装部的高度不相同。
  58. 根据权利要求57所述的可移动平台,其特征在于,由所述第一安装支架向所述第二安装支架的方向,每个所述承载架的至少两个所述第二安装部的高度逐渐增大。
  59. 根据权利要求53或56所述的可移动平台,其特征在于,每个所述承载架分别包括两个所述第二安装部。
  60. 根据权利要求46所述的可移动平台,其特征在于,所述测距装置还包括外壳,所述外壳包括底壳和顶盖,所述底壳设有收容腔,所述顶盖盖设于所述底壳的顶部;
    所述第一安装支架还设有两个支撑架,两个所述支撑架分别由所述第一安装部的两侧向远离所述第二安装支架的方向延伸,每个支撑架远离所述第二安装支架的一端分别设有第四安装部,所述第二安装支架远离所述第一安装支架的一端的两侧分别设有第五安装部,两个所述第四安装部及两个所述第五安装部分别与所述底壳的顶部连接,使得所述安装支架悬挂于所述收容腔内。
  61. 根据权利要求60所述的可移动平台,其特征在于,两个所述第四安装部及两个所述第五安装部分别与所述底壳顶部的四个角部对应配合;
    每个所述第四安装部的底部及每个所述第五安装部的底部分别设有定位面,所述定位面与对应的角部相接触;
    其中,所述定位面与所述第一安装部在所述机体坐标系中的相对位置固定,所述定位面在所述机体坐标系中的位置用于指示所述底壳的预设位置在所述机体坐标系中定位置。
  62. 根据权利要求60或61所述的可移动平台,其特征在于,两个所述第四安装部及两个所述第五安装部分别与所述底壳顶部的四个角部通过第二固定连接件相连接。
  63. 根据权利要求61所述的可移动平台,其特征在于,四个所述定位面共面。
  64. 根据权利要求60所述的可移动平台,其特征在于,所述支撑架大致呈三角形,且所述支撑架设有镂空部。
  65. 根据权利要求60所述的可移动平台,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架还分别设有定位孔,所述定位孔贯穿至对应承载架的底部,所述定位孔与所述底壳的对应位置通过第三固定连接件连接;
    其中,所述定位孔的中心线与所述第一安装部的中轴线在所述机体坐标系中的夹角固定,所述定位孔的中心线与所述第一安装部的中轴线在所述机体坐标系中的夹角用于指示所述外壳的中心线与所述准直元件的光轴的夹角,其中,所述外壳的中心线平行于水平面。
  66. 根据权利要求60所述的可移动平台,其特征在于,所述发射器包括用于发射 激光的发射板,所述发射板安装于所述第一安装支架远离所述第二安装支架的一端,所述接收器包括用于接收回光的接收板,所述接收板安装于所述第一安装支架的底部,且所述接收板设于所述第一安装支架与所述底壳的底部之间。
  67. 根据权利要求66所述的可移动平台,其特征在于,所述测距装置还包括主控板、接口板以及接口小板,所述接口板设有外部通信接口,所述主控板安装于所述第一安装支架和所述第二安装支架的一侧外表面,所述接口板安装于所述第一安装支架和所述第二安装支架的另一侧外表面,所述接口小板设于所述第一安装支架的上方;
    所述接口小板朝向所述主控板的一端与所述主控板的对应位置对接以使得所述主控板与所述接口小板实现电连接,所述接口小板朝向所述接口板的一端与所述接口板的对应位置对接以使得所述接口板与所述接口小板实现电连接。
  68. 根据权利要求67所述的可移动平台,其特征在于,所述主控板、接口板以及接口小板一体化设计。
  69. 根据权利要求68所述的可移动平台,其特征在于,所述主控板、接口板以及接口小板均为柔性板或板挠性板。
  70. 根据权利要求67所述的可移动平台,其特征在于,所述安装支架为散热支架;
    所述主控板和所述接口板的发热元件均朝向所述安装支架的对应侧设置,所述主控板和所述接口板的发热元件的热量经所述安装支架传导至所述外壳。
  71. 根据权利要求70所述的可移动平台,其特征在于,所述第二安装支架包括两个承载架,两个所述承载架间隔设于所述第一安装支架的两侧,且两个所述承载架大致平行,所述扫描组件夹设于两个所述承载架之间;
    每个所述承载架远离所述第一安装支架的一端分别设有散热板,所述主控板及所述接口板的发热元件分别贴设于对应侧的散热板。
  72. 根据权利要求71所述的可移动平台,其特征在于,与所述主控板相贴设的散热板的厚度大于与所述接口板相贴设的散热板的厚度。
  73. 根据权利要求71所述的可移动平台,其特征在于,所述主控板及所述接口板的发热元件与对应散热板之间填充有导热材料。
  74. 根据权利要求71所述的可移动平台,其特征在于,每个所述散热板的底部与所述底壳之间填充有导热材料。
  75. 根据权利要求67所述的可移动平台,其特征在于,所述接口小板与所述顶盖接触。
  76. 根据权利要求67所述的可移动平台,其特征在于,所述测距装置还包括柔性的转接板,所述转接板贴设于所述扫描组件朝向所述接口板的一侧表面,并与所述扫描组件电连接;
    所述转接板的一端设有第一电连接部,所述接口板的对应位置设有第二电连接部,所述第一电连接部与所述第二电连接部配合,使得所述接口板与所述扫描组件实现通信。
  77. 根据权利要求76所述的可移动平台,其特征在于,所述测距装置还包括光电开关板,所述光电开关板贴设于所述扫描组件的顶部外表面,用于检测所述扫描组件中的转动部件的转动角度大小,并且,所述光电开关板朝向所述主控板的一侧设有FPC接口,所述FPC接口与所述主控板电连接。
  78. 根据权利要求66所述的可移动平台,其特征在于,所述接收板的底部与所述底壳接触,所述接收板的发热元件的热量通过所述底壳导出。
  79. 根据权利要求78所述的可移动平台,其特征在于,所述接收板的底部与所述底壳之间填充有导热材料。
  80. 根据权利要求66所述的可移动平台,其特征在于,所述测距装置还包括散热块,至少一个所述支撑架远离所述第二安装支架的一端设有第六安装部,用于安装所述散热块;
    所述散热块与两个所述支撑架及两个所述第四安装部之间形成一安装空间,所述发射板安装于所述安装空间内,且所述发射板与所述散热块之间存在间隙;
    其中,所述第六安装部与所述第一安装部在所述机体坐标系中的相对位置固定,所述第六安装部在所述机体坐标系中的位置用于指示所述发射板在所述机体坐标系中的位置。
  81. 根据权利要求80所述的可移动平台,其特征在于,所述第六安装部包括第二安装柱,所述第二安装柱设有第三固定孔,所述散热块设有第四固定孔,所述第三固定孔与所述第四固定孔通过第四固定连接件固定连接。
  82. 根据权利要求80或81所述的可移动平台,其特征在于,其中一个支撑架远离所述第二安装支架的一端设有两个所述第六安装部,两个所述第六安装部间隔设置。
  83. 根据权利要求80所述的可移动平台,其特征在于,所述发射板与所述散热块之间的缝隙填充有导热材料。
  84. 根据权利要求80所述的可移动平台,其特征在于,所述底壳设有支撑部,所述支撑部收容于所述收容腔内,所述散热块远离所述发射板的一端设有固定端,所述固定端连接于所述支撑部,并且,所述固定端的底部与所述支撑部接触。
  85. 根据权利要求84所述的可移动平台,其特征在于,所述固定端的底部与所述支撑部之间填充有导热材料。
  86. 根据权利要求60所述的可移动平台,其特征在于,所述底壳设有窗口,与所述扫描组件的光出射端相对,所述扫描组件的光出射端设于所述扫描组件远离所述准直元件的一端。
  87. 根据权利要求44所述的可移动平台,其特征在于,所述可移动平台包括车辆。
PCT/CN2021/121042 2021-09-27 2021-09-27 测距装置和具有该测距装置的可移动平台 WO2023044915A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121042 WO2023044915A1 (zh) 2021-09-27 2021-09-27 测距装置和具有该测距装置的可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121042 WO2023044915A1 (zh) 2021-09-27 2021-09-27 测距装置和具有该测距装置的可移动平台

Publications (1)

Publication Number Publication Date
WO2023044915A1 true WO2023044915A1 (zh) 2023-03-30

Family

ID=85719916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121042 WO2023044915A1 (zh) 2021-09-27 2021-09-27 测距装置和具有该测距装置的可移动平台

Country Status (1)

Country Link
WO (1) WO2023044915A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203148438U (zh) * 2013-03-08 2013-08-21 武汉海达数云技术有限公司 一种一体化移动三维测量装置
CN109557556A (zh) * 2018-12-03 2019-04-02 北京觉醒纪科技有限公司 扫描组件和激光雷达
CN109814086A (zh) * 2019-01-07 2019-05-28 上海禾赛光电科技有限公司 一种激光雷达
CN209485276U (zh) * 2019-01-09 2019-10-11 深圳市大疆创新科技有限公司 测距装置及移动平台
CN211505871U (zh) * 2019-12-09 2020-09-15 上海禾赛光电科技有限公司 激光雷达
US20210190919A1 (en) * 2019-12-23 2021-06-24 Veoneer Us, Inc. Detection system using optical scanning element with glass body and reflective member
CN113030907A (zh) * 2019-12-09 2021-06-25 上海禾赛科技股份有限公司 激光雷达

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203148438U (zh) * 2013-03-08 2013-08-21 武汉海达数云技术有限公司 一种一体化移动三维测量装置
CN109557556A (zh) * 2018-12-03 2019-04-02 北京觉醒纪科技有限公司 扫描组件和激光雷达
CN109814086A (zh) * 2019-01-07 2019-05-28 上海禾赛光电科技有限公司 一种激光雷达
CN209485276U (zh) * 2019-01-09 2019-10-11 深圳市大疆创新科技有限公司 测距装置及移动平台
CN211505871U (zh) * 2019-12-09 2020-09-15 上海禾赛光电科技有限公司 激光雷达
CN113030907A (zh) * 2019-12-09 2021-06-25 上海禾赛科技股份有限公司 激光雷达
US20210190919A1 (en) * 2019-12-23 2021-06-24 Veoneer Us, Inc. Detection system using optical scanning element with glass body and reflective member

Similar Documents

Publication Publication Date Title
CN109597050B (zh) 一种激光雷达
CN109613515B (zh) 一种激光雷达系统
WO2020062110A1 (zh) 扫描模组、测距装置、测距组件、距离探测设备及移动平台
US20220277536A1 (en) Integrated electronic module for 3d sensing applications, and 3d scanning device including the integrated electronic module
CN111665599A (zh) 光模块
US20220120899A1 (en) Ranging device and mobile platform
WO2023169055A1 (zh) 深度相机模组及其组装方法、拍摄组件和电子设备
CN114114320A (zh) 激光收发组件及激光雷达
WO2023044915A1 (zh) 测距装置和具有该测距装置的可移动平台
CN219737761U (zh) 激光雷达
US10613199B2 (en) Distance measuring apparatus
CN110596675A (zh) 一种激光发射装置及激光雷达系统
CN111273254B (zh) 一种激光雷达发射装置及激光雷达
CN215932128U (zh) 测距装置和具有该测距装置的可移动平台
CN211206787U (zh) 测距组件及移动平台
CN209606612U (zh) 测距装置及移动平台
CN214669609U (zh) 激光雷达及其收发模块
CN211206773U (zh) 扫描模组、测距组件及移动平台
CN211627823U (zh) 测距装置、距离探测设备及移动平台
CN211236239U (zh) 距离探测设备及移动平台
CN211236241U (zh) 距离探测设备及移动平台
CN111273255B (zh) 一种激光雷达发射装置及激光雷达
CN216646818U (zh) 激光收发组件及激光雷达
WO2020142963A1 (zh) 测距装置及移动平台
CN219871772U (zh) 一种激光雷达装置及传感设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE