WO2023169055A1 - 深度相机模组及其组装方法、拍摄组件和电子设备 - Google Patents

深度相机模组及其组装方法、拍摄组件和电子设备 Download PDF

Info

Publication number
WO2023169055A1
WO2023169055A1 PCT/CN2022/142268 CN2022142268W WO2023169055A1 WO 2023169055 A1 WO2023169055 A1 WO 2023169055A1 CN 2022142268 W CN2022142268 W CN 2022142268W WO 2023169055 A1 WO2023169055 A1 WO 2023169055A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical component
light source
camera module
circuit board
sensor
Prior art date
Application number
PCT/CN2022/142268
Other languages
English (en)
French (fr)
Inventor
刘海亮
戴阳
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023169055A1 publication Critical patent/WO2023169055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present application relates to the field of ranging technology, and more specifically, to a depth camera module, an assembly method of a depth camera module, a shooting component, and an electronic device.
  • Time of flight (ToF) technology is a technology that calculates the distance between the object and the sensor by measuring the time difference between the transmitted signal and the signal reflected by the object.
  • the distance between the optical center of the transmitter and the optical center of the receiver is too large, which is not conducive to miniaturization of the overall module.
  • Embodiments of the present application provide a depth camera module, an assembly method of the depth camera module, a shooting component, and an electronic device.
  • the depth camera module of this application includes a circuit board, a light source, a sensor, an integrated bracket, a first optical component and a second optical component.
  • the circuit board includes a bottom surface, a first bearing surface and a second bearing surface. The distance from the first bearing surface to the bottom surface is different from the distance from the second bearing surface to the bottom surface.
  • the light source is carried on the first carrying surface and is electrically connected to the circuit board. The light source is used to emit light.
  • the sensor is installed on the circuit board and is electrically connected to the circuit board. The sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the bracket is installed on the circuit board and forms an accommodation cavity with the circuit board. The accommodation cavity is used to accommodate the light source and the sensor.
  • a first optical component and a second optical component are provided on the bracket.
  • the first optical component is provided corresponding to the light source and is used to guide the light emitted by the light source to the outside of the depth camera module.
  • Two optical components are provided corresponding to the sensor and are used to receive at least part of the light reflected by the object and guide the light to the sensor.
  • the electronic device of this application includes a housing and a depth camera module.
  • the depth camera module is combined with the housing.
  • the depth camera module includes a circuit board, a light source, a sensor, an integrated bracket, a first optical component and a second optical component.
  • the circuit board includes a bottom surface, a first bearing surface and a second bearing surface. The distance from the first bearing surface to the bottom surface is different from the distance from the second bearing surface to the bottom surface.
  • the light source is carried on the first carrying surface and is electrically connected to the circuit board. The light source is used to emit light.
  • the sensor is installed on the circuit board and is electrically connected to the circuit board. The sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the bracket is installed on the circuit board and forms an accommodation cavity with the circuit board.
  • the accommodation cavity is used to accommodate the light source and the sensor.
  • a first optical component and a second optical component are provided on the bracket.
  • the first optical component is provided corresponding to the light source and is used to guide the light emitted by the light source to the outside of the depth camera module.
  • Two optical components are provided corresponding to the sensor and are used to receive at least part of the light reflected by the object and guide the light to the sensor.
  • the shooting component of the present application includes a depth camera module and a two-dimensional camera module.
  • the distance between the center of the sensor of the depth camera module and the center of the two-dimensional camera module is less than the second preset distance.
  • the two-dimensional camera module is used to obtain two-dimensional images, and the depth camera module is used to obtain depth information images.
  • the depth camera module includes a circuit board, a light source, a sensor, an integrated bracket, a first optical component and a second optical component.
  • the circuit board includes a bottom surface, a first bearing surface and a second bearing surface. The distance from the first bearing surface to the bottom surface is different from the distance from the second bearing surface to the bottom surface.
  • the light source is carried on the first carrying surface and is electrically connected to the circuit board.
  • the light source is used to emit light.
  • the sensor is installed on the circuit board and is electrically connected to the circuit board.
  • the sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the bracket is installed on the circuit board and forms an accommodation cavity with the circuit board. The accommodation cavity is used to accommodate the light source and the sensor.
  • a first optical component and a second optical component are provided on the bracket.
  • the first optical component is provided corresponding to the light source and is used to guide the light emitted by the light source to the outside of the depth camera module.
  • Two optical components are provided corresponding to the sensor and are used to receive at least part of the light reflected by the object and guide the light to the sensor.
  • the electronic device of the present application includes a housing and a photographing component, and the housing is combined with the photographing component.
  • the photographing component includes a depth camera module and a two-dimensional camera module. The distance between the center of the sensor of the depth camera module and the center of the two-dimensional camera module is less than a second preset distance.
  • the two-dimensional camera module is used to obtain two-dimensional images, and the depth camera module is used to obtain depth information images.
  • the depth camera module includes a circuit board, a light source, a sensor, an integrated bracket, a first optical component and a second optical component.
  • the circuit board includes a bottom surface, a first bearing surface and a second bearing surface. The distance from the first bearing surface to the bottom surface is different from the distance from the second bearing surface to the bottom surface.
  • the light source is carried on the first carrying surface and is electrically connected to the circuit board.
  • the light source is used to emit light.
  • the sensor is installed on the circuit board and is electrically connected to the circuit board.
  • the sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the bracket is installed on the circuit board and forms an accommodation cavity with the circuit board. The accommodation cavity is used to accommodate the light source and the sensor.
  • a first optical component and a second optical component are provided on the bracket.
  • the first optical component is provided corresponding to the light source and is used to guide the light emitted by the light source to the outside of the depth camera module.
  • Two optical components are provided corresponding to the sensor and are used to receive at least part of the light reflected by the object and guide the light to the sensor.
  • the assembly method of the depth camera module of the present application includes: providing a circuit board.
  • the circuit board includes a bottom surface, a first load-bearing surface and a second load-bearing surface.
  • the distance from the first load-bearing surface to the bottom surface is equal to the distance between the first load-bearing surface and the bottom surface.
  • the distance from the second bearing surface to the bottom surface is different; a light source is installed on the first bearing surface and electrically connected to the circuit board; the light source is used to emit light; and the sensor is installed on the second bearing surface.
  • the bearing surface is electrically connected to the circuit board, and the sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal; fix the first optical component on the integrated bracket; install the The bracket of the first optical component is fixedly connected to the circuit board, the bracket and the circuit board form an accommodation cavity, and the light source and the sensor are accommodated in the accommodation cavity, so that the third An optical component corresponds to the light source, the first optical component is used to guide the light emitted by the light source to the outside of the depth camera module; and the second optical component is fixedly installed on the bracket so that the The second optical component corresponds to the sensor, and is used to receive at least part of the light reflected back by the object and guide the light to the sensor.
  • the assembly method of the depth camera module of the present application includes: providing a circuit board.
  • the circuit board includes a bottom surface, a first load-bearing surface and a second load-bearing surface.
  • the distance from the first load-bearing surface to the bottom surface is equal to the distance between the first load-bearing surface and the bottom surface.
  • the distance from the second bearing surface to the bottom surface is different; a light source is installed on the first bearing surface and electrically connected to the circuit board; the light source is used to emit light; and the sensor is installed on the second bearing surface.
  • the bearing surface is electrically connected to the circuit board, and the sensor is used to receive at least part of the light reflected by the object and convert it into an electrical signal;
  • the integrated bracket is fixedly connected to the circuit board, and the bracket is connected to the circuit board.
  • the circuit board forms a receiving cavity, and the light source and the sensor are received in the receiving cavity;
  • the first optical component and the second optical component are fixed on the bracket, so that the first optical component and the The light source corresponds to the second optical component corresponding to the sensor.
  • the first optical component is used to guide the light emitted by the light source to the outside of the depth camera module.
  • the second optical component is used to guide the light source to the outside of the depth camera module. Receive at least part of the light reflected by the object and guide the light to the sensor.
  • the depth camera module, the assembly method of the depth camera module, the shooting component and the electronic device of the present application are achieved by installing the sensor and the light source in the depth camera module on the same circuit board, and the first optical component and the second optical component They are all fixedly installed on an integrated bracket. Compared with traditional depth camera modules (the transmitter and receiver have separate brackets and separate circuit boards), the structure of the depth camera module can be more compact and the depth can be shortened.
  • the depth camera module, the assembly method of the depth camera module, the shooting component and the electronic device of the present application carry the light source on the first bearing surface of the circuit board, and the first bearing surface and the second bearing surface have a certain distance.
  • the height difference can shorten the baseline distance of the depth camera module while leaving more space for electronic devices that need to be installed on the circuit board, thereby shortening the baseline distance of the depth camera module while ensuring the normal operation of the depth camera module. Work.
  • Figure 1 is a schematic diagram of the three-dimensional structure of a depth camera module in certain embodiments of the present application
  • Figure 2 is a schematic structural diagram of a depth camera module in some embodiments of the present application.
  • Figures 3 and 4 are schematic diagrams of the relationship between the baseline and the movement distance of the light spot in the sensor in the depth camera module in certain embodiments of the present application;
  • Figure 5 is a schematic structural diagram of an existing depth camera module and a depth camera module in certain embodiments of the present application;
  • FIGS. 6 to 10 are schematic structural diagrams of depth camera modules in certain embodiments of the present application.
  • Figure 11 is a schematic diagram of the relationship between the back focus size of the optical component in the light emitting module and the length, width and height of the light emitting module;
  • Figures 12 to 14 are schematic structural diagrams of the first optical component in the time-of-flight module in certain embodiments of the present application.
  • Figures 15 and 16 are schematic structural diagrams of the second optical component in the time-of-flight module in certain embodiments of the present application.
  • FIGS 17 and 18 are schematic structural diagrams of electronic devices in certain embodiments of the present application.
  • Figure 19 is a schematic flow chart of the assembly method of the depth camera module in some embodiments of the present application.
  • Figure 20 is a schematic structural diagram of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 21 is a schematic flow chart of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 22 is a schematic structural diagram of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 23 is a schematic flow chart of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 24 is a schematic structural diagram of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 25 is a schematic flow chart of an assembly method of a depth camera module in some embodiments of the present application.
  • Figure 26 is a schematic structural diagram of an assembly method of a depth camera module in some embodiments of the present application.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the depth camera module 100 includes a circuit board 10, a light source 30, a sensor 40, an integrated bracket 50, a first optical component 60 and a second optical component 70.
  • the circuit board 10 includes a bottom surface 11 , a first carrying surface 12 and a second carrying surface 13 . The distance between the first carrying surface 12 and the bottom surface 11 is different from the distance between the second carrying surface 13 and the bottom surface 11 .
  • the light source 30 is installed on the first carrying surface 12 of the circuit board 10 and is electrically connected to the circuit board 10. The light source 30 is used to emit light.
  • the sensor 40 is installed on the circuit board 10 and is electrically connected to the circuit board 10.
  • the sensor 40 is used to receive at least part of the light reflected by the object and convert it into an electrical signal.
  • the bracket 50 is installed on the circuit board 10 and forms an accommodation cavity 503 with the circuit board 10 .
  • the accommodation cavity 503 is used to accommodate the light source 30 and the sensor 40 .
  • the first optical component 60 and the second optical component 70 are both disposed on the integrated bracket 50 , wherein the first optical component 60 is disposed corresponding to the light source 30 , and the first optical component 60 is used to guide the light emitted by the light source 30 to the depth camera module. Outside the group 100; the second optical component 70 is provided corresponding to the sensor 40, and the second optical component 70 is used to receive at least part of the light reflected back by the object, and guide the received light to the sensor 40.
  • the transmitter and receiver in a typical depth camera module are two independent modules, each with its own bracket and its own circuit board. That is, the transmitting end includes a first circuit board and a first bracket, the first optical component is installed in the first bracket, and the light source is installed on the first circuit board; the receiving end includes a second circuit board and a second bracket, and the second optical component The component is arranged in the second bracket, and the sensor is arranged on the second circuit board.
  • the depth camera module 100 in this application installs the sensor 40 and the light source 30 on the same circuit board 10, and the first optical component 60 and the second optical component 70 are both fixedly installed on the integrated bracket 50.
  • the depth camera module both the transmitting end and the receiving end have separate brackets and separate circuit boards
  • the distance between the optical center of the sensor 40 and the light source 30 is defined as the baseline.
  • the baselines appearing below are also explained in the same way and will not be described again.
  • the depth camera module 100 of the present application carries the light source 30 on the first bearing surface 12 of the circuit board 10, and there is a certain height difference between the first bearing surface 12 and the second bearing surface 13, so that the depth camera module can be shortened. While shortening the baseline distance of the depth camera module 100, more space is left for the electronic device 81 (as shown in FIG. 5) that needs to be disposed on the circuit board 10, thereby shortening the baseline distance of the depth camera module 100 while ensuring that the depth camera module Group 100 works fine.
  • the depth camera module 100 in the embodiment of the present application is based on time of flight technology (Time of flight, ToF) to obtain the depth information of the object to be measured.
  • time-of-flight technology calculates the depth information of the object to be measured based on the time difference between the emitted light and the light reflected back from the object to be measured. Therefore, during the design process, it is hoped that the position of the sensor in the receiving end that is illuminated by the light spot will not change as much as possible, which will help simplify the design of the sensor readout circuit.
  • the depth camera module 100 Since the baseline distance of the depth camera module 100 can be shortened in this application, it is beneficial for the depth camera module 100 to obtain the depth information of the object to be measured. Specifically, when the light is projected out, it is reflected by the target and returned to the receiving end, and can be received by a certain pixel or several pixels of the sensor 40 in the receiving end. For the same pixel, when the distance between the target object and the module changes, the final projected position of the pixel will also change. For example, as shown in Figure 3, point D emits a laser beam.
  • the laser When the target is at position F, the laser is reflected through the focus point C of the receiving end, and finally illuminates point A on the image plane of the sensor 40 (the plane where point AB is located); When the target is at position E, it illuminates point B of the sensor 40 after passing through the focal point C of the receiving end lens group (ie, the second optical component 70 ). It can be seen that the same laser beam may eventually be received by different areas/pixels of the sensor 40 due to the different distances between the target object and the module.
  • the above-mentioned moving distance difference on the sensor 40 as L disparity , the focal length of the receiving end lens (ie, the second optical component 70) as f, and the distance between the optical center of the light emitting module and the optical center of the light receiving module as the baseline.
  • L baseline the distance between the target object and the lidar ranging module is L range
  • the above parameters follow the following relationship: That is to say, when the focal length f of the receiving end lens (ie, the second optical component 70 ) and the distance L range between the target object and the lidar ranging module are constant, the moving distance difference L disparity on the sensor 40 and the baseline L
  • the baseline is proportional to the baseline.
  • the baseline L baseline is 3mm (the typical value of the baseline in the existing depth camera module is 10mm)
  • the equivalent focal length of the second optical component 70 is 1.63mm
  • the size of the pixel in the sensor 40 is 10um.
  • the current measured object distance Changes occur, and the movement relationship of the light spot on the sensor 40 is as shown in Figure 4. It can be understood that under the influence of the baseline L baseline , it mainly affects the laser spot position for short range ranging (such as less than 2m).
  • the depth camera module 100 calculates the depth information of the object to be measured based on the time difference between emitting light and receiving light reflected back from the object to be measured.
  • the distance between the center of the sensor 40 and the center of the light source 30 is less than the first preset distance. This is helpful for the depth camera module 100 to obtain the depth information of the object to be measured.
  • the first preset distance may be 5 mm, that is, the distance between the center of the sensor 40 and the center of the light source 30 is less than 5 mm.
  • the distance between the center of the sensor 40 and the center of the light source 30 may be 4 mm, 3.5 mm, 2 mm, etc., which is not limited here.
  • the distance between the center of the sensor 40 and the center of the light source 30 may also be equal to 5 mm.
  • the distance between the center of the sensor 40 and the center of the light source 30 may be 3.6 mm.
  • the circuit board 10 can be used to dissipate heat from the sensor 40 and the light source 30 disposed on it, so that when the depth camera module 100 is operating normally, the heat generated by the sensor 40 and the light source 30 can be dissipated through the circuit board 10 to prevent the internal temperature of the depth camera module 100 from being too high and burning out other components inside the depth camera module 100, thereby extending the service life of the depth camera module 100.
  • the circuit board 10 can be a soft-hard combination circuit board, or a high-temperature co-fired ceramic circuit board. There is no limitation here, as long as the sensor 40 and the light source 30 disposed on it can be processed. Just dissipate heat.
  • the circuit board 10 includes a bottom surface 11 , a first load-bearing surface 12 and a second load-bearing surface 13 .
  • the distance between the first load-bearing surface 12 and the bottom surface 11 is different from the distance between the second load-bearing surface 13 and the bottom surface 11 . That is, there is a height difference between the first bearing surface 12 and the second bearing surface 13 . Since other electronic devices 81 are usually placed around the light source 30, the electronic device 81 needs to be at a certain distance from the light source 30 (as shown on the left side of Figure 5), and the light source 30 is arranged on the first carrying surface 12.
  • the depth camera module 100 further includes an electronic device 81 , and the electronic device 81 is provided on the second carrying surface 13 .
  • the distance between the electronic device 81 and the light source 30 is less than the preset threshold. In this way, the lateral distance between the electronic device 81 and the light source 30 can be shortened, and it can also prevent the electronic device 81 from contacting the light source 30 , thereby shortening the baseline distance of the depth camera module 100 .
  • the electronic device 81 may be a register used to control the emission time interval of the light source 30; or the electronic device 81 may also be a digital-to-analog converter or an analog-to-digital converter, which is not limited here.
  • the distance between the first carrying surface 12 and the bottom surface 11 is smaller than the distance between the second carrying surface 13 and the bottom surface 11 , and the light source 30 is carried on the first carrying surface 12 .
  • This not only helps shorten the baseline distance of the depth camera module 100, but also reduces the overall thickness of the optical depth camera module 100 without changing the distance between the light source 30 and the first optical component 60.
  • the distance between the first bearing surface 12 and the bottom surface 11 can also be greater than the distance between the second bearing surface 13 and the bottom surface 11 , which is also beneficial to shortening the baseline distance of the depth camera module 100 .
  • the light source 30 is electrically connected to the circuit board 10 , and the circuit board 10 can provide electricity to the light source 30 so that the light source 30 can emit light.
  • the light source 30 includes a first side 31 and a second side 32 opposite to each other, wherein the second side 32 is installed with the first bearing surface 12 .
  • the first soldering pad 91 is provided on the side of the light source 30 away from the circuit board 10 , that is, the first soldering pad 91 is provided on the first side 31 of the light source 30 .
  • the depth camera module 100 also includes an electrical connection wire 82 .
  • the first soldering pad 91 is used to electrically connect to the second soldering pad 92 on the circuit board 10 through the electrical connecting wire 82 so that the light source 30 is electrically connected to the circuit board 10 .
  • one end of the electrical connection wire 82 is electrically connected to the first side 31 of the light source 30 , and the other end is electrically connected to the pad located on the first carrying surface 12 . That is, the second soldering pad 92 is provided on the first carrying surface 12 , one end of the electrical connection wire 82 is electrically connected to the first soldering pad 91 , and the other end is electrically connected to the second soldering pad 92 , so that the light source 30 is connected to the circuit board. 10 electrical connections.
  • the electrical connection between the light source 30 and the circuit board 10 can be achieved; on the other hand, since the light source 30 is disposed on the first carrying surface 12, there is a height difference between the first carrying surface 12 and the second carrying surface 13, so that On the premise of ensuring the distance between the electronic device 81 and the light source 30, shorten the lateral distance between the electronic device 81 and the light source 30 to shorten the baseline distance of the depth camera module 100; on the other hand, since the second pad 92 is located on the first On the carrying surface 12 , compared with the second pad 92 being disposed on the second carrying surface 13 , the electrical connection wires 82 do not need to extend to the second carrying surface 13 , which is beneficial to reducing the complexity of the circuit layout of the circuit board 10 .
  • the distance between the first pad 91 and the second pad 92 is greater or smaller than the distance between two opposite sides of the light source 30 . That is, in the light emitting direction of the light source 30 , the distance between the first pad 91 and the second pad 92 is greater or smaller than the distance between the first side 31 and the second side 32 of the light source 30 . It can be understood that when the second bonding pad 92 is disposed on the same horizontal plane as the second side 32 of the light source 30 , in the light emitting direction of the light source 30 , the first bonding pad 91 disposed on the first side 31 of the light source 30 is in contact with the second bonding pad 92 .
  • the distance between the disks 92 must be equal to the distance between the first side 31 and the second side 32 .
  • the second soldering pad 92 is electrically connected to the first soldering pad 91 located on the first side 31 of the light source 30 . If the second soldering pad 92 is in direct contact with the light source 30 at this time, a short circuit or other fault may easily occur, resulting in the depth camera module 100 Can not work normally. Therefore, a certain distance needs to be maintained between the second pad 92 and the light source 30 .
  • the second pad The disk 92 and the second side 32 of the light source 30 are not disposed on the same horizontal plane, that is, there is a height difference between the second pad 92 and the second side 32 of the light source 30 .
  • the second bonding pad 92 will not directly contact the light source 30. This can further shorten the depth while ensuring the normal operation of the depth camera module 100. Baseline distance of camera module 100.
  • the distance between the first carrying surface 12 and the second carrying surface 13 is the first distance
  • the distance between the two opposite sides of the light source 30 is The distance is the second distance.
  • the distance between the first pad 91 and the second pad 92 is equal to the difference between the first distance and the second distance. value.
  • the second soldering pad 92 is provided on the second carrying surface 13
  • one end of the electrical connection wire 82 is electrically connected to the first side 31 of the light source 30
  • the other end is connected to the second carrying surface 13 .
  • the second pad 92 is electrically connected, so that the light source 30 is electrically connected to the light source 10 . That is, one end of the electrical connection wire 82 is electrically connected to the first bonding pad 91 , and the other end is electrically connected to the second bonding pad 92 . Since the light source 30 is carried on the first carrying surface 12 of the circuit board 10 in this embodiment, the light source 10 is electrically connected to the second pad 92 located on the second carrying surface 13 through the electrical connecting wire 82, and the first carrying There is a certain height difference between the surface 12 and the second carrying surface 13. Compared with arranging the second pad 92 on the first carrying surface 13, the second pad 92 can be shortened while ensuring the normal electrical connection between the light source 30 and the circuit board 10. The lateral distance between the pad 92 and the light source 30 further shortens the baseline distance of the camera module 100 .
  • the light source 30 is electrically connected to the second pad 92 located on the second carrying surface 13 through the electrical connection wire 82, in some embodiments, in the light emitting direction of the light source 30, the light source 30 is away from the first carrying surface.
  • the distance between one side of the surface 12 and the second bearing surface 13 is within a preset range. That is, in the light emitting direction of the light source 30, the distance between the first side 31 of the light source 30 and the second carrying surface 13 is within a preset range.
  • Gold wires are usually used as the electrical connection wires 82, and based on the current process technology, the gold wires have a limit curvature, that is, the curvature of the gold wires cannot be too large.
  • the distance between the first side 31 of the light source 30 and the second carrying surface 13 is within the preset range in the light emitting direction of the light source 30, it is possible to connect the first pad 91 and the second carrying surface 13.
  • the curvature of the electrical connecting wire 82 of the two pads 92 is maintained within a certain range, that is, it does not exceed the limit curvature of the gold wire, thereby reducing the difficulty of manufacturing the depth camera module 100 .
  • the first side 31 of the light source 30 is nearly flush with the second carrying surface 13 , which is more conducive to reducing the difficulty of manufacturing the depth camera module 100 .
  • the distance between the first carrying surface 12 and the bottom surface 11 when the distance between the first carrying surface 12 and the bottom surface 11 is smaller than the distance between the second carrying surface 13 , the distance between the first pad 91 and the second pad 92 may also be equal to the distance between the first pad 91 and the second pad 92 . The sum of one distance and the second distance. In this way, the lateral distance between the second pad 92 and the light source 30 can be shortened while ensuring the normal electrical connection between the light source 30 and the circuit board 10, thereby further shortening the baseline distance of the camera module 100.
  • the circuit board 10 further includes a connecting surface 14 connecting the first carrying surface 12 and the second carrying surface 13 .
  • the second soldering pad 92 can also be provided on the connecting surface 14.
  • One end of the electrical connecting wire 82 is electrically connected to the first side 31 of the light source 30, and the other end is electrically connected to the second soldering pad 92 located on the connecting surface 14, so that The light sources 30 and 10 are electrically connected. That is, one end of the electrical connection wire 82 is electrically connected to the first bonding pad 91 , and the other end is electrically connected to the second bonding pad 92 .
  • the lateral distance between the second pad 92 and the light source 30 can be shortened while ensuring the normal electrical connection between the light source 30 and the circuit board 10, thereby further shortening the baseline distance of the camera module 100.
  • the senor 40 is directly installed on the second bearing surface 13 of the circuit board 10 and is electrically connected to the circuit board 10 .
  • the circuit board 10 may also be provided with a groove (not shown) that is concave from the second carrying surface 13 to the bottom surface 11 , and the sensor 40 is received in the groove. In this way, on the premise that the distance between the sensor 40 and the second optical component 70 does not change, disposing the sensor 40 in the groove is more advantageous than directly disposing the sensor 40 on the second bearing surface 13 of the circuit board 10 . The overall thickness of the depth camera module 100 is reduced.
  • the integrated bracket 50 is fixedly installed on the circuit board 10 and forms an accommodating cavity 503 with the circuit board 10 .
  • the accommodating cavity 503 is used to accommodate the light source 30 and the sensor 40 .
  • the first optical component 60 fixed in the bracket 50 can correspond to the light source 30
  • the second optical component 70 fixed in the bracket 50 can correspond to the sensor 40 .
  • the number of accommodation cavities 503 may be one, in which case the light source 30 and the sensor 40 are both accommodated in the accommodation cavity 503; or, in some embodiments, the number of accommodation cavities 503 may be one. It can also be two, in which case the light source 30 and the sensor 40 are respectively accommodated in different accommodation cavities 503 .
  • the integrated bracket 50 includes a first support member 51 , a second support member 52 and a connecting component 53 connecting the first support member 51 and the second support member 52 .
  • the first supporting member 51 and the second supporting member 52 are spaced apart and fixed to the circuit board 10 respectively.
  • the first support member 51 and the second support member 52 can be fixedly connected to the circuit board 10 through different connection methods.
  • the first support member 51 and the second support member 52 can also be fixedly connected to the circuit board 10 through the same connection method. Fixed connection, no restrictions here.
  • the connection methods include but are not limited to bonding, snapping, threaded connection, etc.
  • the first support member 51 is closer to the light source 30 than the second support member 52 .
  • both the first support member 51 and the second support member 52 are carried on the second bearing surface 13 .
  • the first support member 51 is carried on the first bearing surface.
  • the second support member 52 is carried on the second bearing surface.
  • the connecting component 53 is connected to the first supporting member 51 and the second supporting member 52 .
  • the connecting component 53 includes a first mounting hole 531 and a second mounting hole 532 .
  • the first mounting hole 531 is used to install the first optical component 60
  • the second mounting hole 532 is used to install the second optical component 70 .
  • the first mounting hole 531 is a through hole with an axis perpendicular to the circuit board 10 to facilitate the propagation of the light beam.
  • the first optical component 60 is disposed in the first mounting hole 531 , and the first optical component 60 is connected to the first optical component 60 through adhesive.
  • the first mounting hole 531 is fixedly connected, and the optical axis of the first optical component 60 coincides with the optical axis of the light source 30, so that the corresponding arrangement of the first optical component and the light source 30 can be achieved after the bracket 50 and the circuit board 10 are fixedly connected.
  • the first optical component 60 is enabled to guide the light emitted by the light source 30 to the outside of the depth camera module 100 .
  • the first optical component 60 can also be installed and fixed in the first mounting hole 531 in other ways, which is not limited here.
  • the second mounting hole 532 is a through hole with an axis perpendicular to the circuit board 10 to facilitate the propagation of the light beam.
  • the second optical component 70 is connected to the second mounting hole 532. After the bracket 50 and the circuit board 10 are fixedly connected, the second mounting hole 532 can be connected to the circuit board 10.
  • the second optical element assembly and the light source 30 are arranged correspondingly, so that the light reflected by the object to be measured is guided to the sensor 40 through the second optical assembly 70 .
  • the depth camera module 100 also includes a filter 84.
  • the filter 84 is provided between the second optical component 70 and the sensor 40.
  • the filter 84 is used to filter a predetermined wavelength range. outside light.
  • the filter 84 and the second optical component 70 are installed in the second mounting hole 532 of the bracket 50, so that the light reflected back by the object to be measured passes through the second optical component 70 and the filter in sequence. The light sheet 84 then enters the sensor 40 .
  • the first optical component 60 includes a collimating lens 61 and a second diffractive optical element 62 .
  • the collimating lens 61 is closer to the light source 30 than the second diffractive optical element 62 .
  • the collimating lens 61 is used to collimate the light emitted by the light source 30 and guide the collimated light to the second diffractive optical element 62 .
  • the second diffractive optical element 62 is used to copy the received light and then project it out of the depth camera module 100 .
  • the light emitted by light source 30 forms a planar pattern.
  • the light source 30 includes a plurality of light-emitting elements (not shown), each of the plurality of light-emitting elements can emit light beams, and the light beams emitted by the multiple light-emitting elements form a planar pattern.
  • the first optical component 60 may include a first diffractive optical element 63 .
  • the first diffractive optical element 63 is provided with an integrated microstructure 631 that can collimate and replicate the planar pattern to emit the speckle pattern out of the depth camera module 100 .
  • the camera module 100 can also reduce the size of the depth camera module 100 and reduce the manufacturing cost of the depth camera module 100 without affecting the optical effect of the projected speckle image.
  • the distance between the first optical component 60 and the second bearing surface 13 is smaller than the distance between the second bearing surface 13 and the bottom surface 11 , and the light source 30 Being disposed on the first bearing surface 12 requires the first optical component 60 to have a larger back focus than disposing the light source 30 directly on the second bearing surface 13 .
  • the back focus of the first optical component 60 needs to be increased. Referring to FIG. 11 , it can be understood that the larger the back focus of the first optical component 60 , the larger the volume of the light emitting module composed of the light source 30 and the first optical component 60 , and thus the volume of the depth camera module 100 also increases.
  • the integrated microstructure 631 is used to realize the functions of the traditional lens group and the diffraction element at the same time. This can release the space of the light emission module to the greatest extent, which is very helpful for compressing the baseline of the depth camera module 100. . That is to say, the integrated microstructure 631 on the first diffractive optical element 63 can collimate the plane pattern and replicate the plane pattern to emit the speckle pattern. Compared with using different optical elements to achieve the collimation and replication functions respectively, it can further Shorten the baseline of depth camera module 100.
  • the integrated microstructure 631 may be formed by the fusion of a virtual phase-based first microstructure and a virtual second microstructure.
  • the first microstructure is used to collimate the light
  • the second microstructure is used to replicate the light spot formed by the received light.
  • the first microstructure is a microstructure of an n-step diffraction lens or a microstructure of a super lens, where n is greater than or equal to. In this way the first microstructure can be used to collimate light.
  • the second microstructure is a grating-based diffractive microstructure or a super-lens-based diffractive microstructure. In this way, the second microstructure can be used to replicate the light spot formed by the received light.
  • the first diffractive optical element 63 includes a first surface 6301 and a second surface 6302 that are opposite to each other.
  • the first surface 6301 faces the light source 30 and the second surface 6302 is away from the light source 30 . That is, the light emitted by the light source 30 will be incident on the first surface 6301 of the first diffractive optical element 63 and then be emitted from the second surface 6302 of the first diffractive optical element 63 .
  • the integrated microstructure 631 may be disposed on the first side 6301 and/or the second side 6302 of the first diffractive optical element 63 . For example, please refer to FIG. 12 .
  • the integrated microstructure 631 may be disposed on the first surface 6301 of the first diffractive optical element 63 . Compared with being disposed on the second surface 6302 of the first diffractive optical element 63 , there is It is beneficial to prevent the integrated microstructure 631 from being scratched and prevent moisture and dust from entering the integrated microstructure 631, thereby extending the service life of the depth camera module 100. For another example, please refer to FIG. 13 .
  • the integrated microstructure 631 can also be provided on the second surface 6302 of the first diffractive optical element 63 . Since strong light is directly incident on the integrated microstructure 631, glare may occur, and stray light is relatively strong, which may affect the detection accuracy of the depth camera module 100.
  • the integrated microstructure 631 is disposed on the second surface 6302 away from the light source 30, which can reduce the size of the depth camera module 100 while also avoiding glare and reducing stray light, which is beneficial to improving the depth camera module 100. detection accuracy.
  • integrated microstructures 631 are provided on both opposite sides of the first diffractive optical element 63, which is not limited here.
  • the first diffractive optical element 63 includes a first layer 632 and a second layer 633 .
  • the first layer 632 is closer to the light source 30 than the second layer 633 .
  • the integrated microstructure 631 is located in the sealed cavity 634 formed by the first layer 632 and the second layer 633 . Since the integrated microstructure 631 is contained in the sealed cavity 634, moisture and dust can be prevented from entering the integrated microstructure 631, which is beneficial to extending the service life of the depth camera module 100.
  • the first layer 632 and the second layer 633 of the first diffractive optical element 63 may be made of plastic material.
  • the first layer 632 and the second layer 633 of the first diffractive optical element 63 can also be made of other materials that are waterproof and dustproof, and are not limited here.
  • fillers 635 are provided between the gaps of the integrated microstructures 631 (as shown in FIG. 12 ). In this way, on the one hand, it is possible to prevent moisture and dust from entering the gaps of the integrated microstructure 631, thereby extending the service life of the depth camera module 100; on the other hand, it is also possible to prevent the light beam emitted by the light source 30 from entering the gaps of the integrated microstructure 631. directly into the human eye, thereby improving the safety of the depth camera module 100. It should be noted that, in some embodiments, the filler 635 may include organic matter or silica.
  • the second optical component 70 includes a phase lens 71.
  • the phase lens 71 is used to receive at least part of the light reflected back by the object and adjust the light emitted from the phase lens 71 to the sensor. 40 phase of the light. Since the phase lens 71 capable of adjusting the phase of light is provided in this embodiment to replace the traditional refractive lens group, the volume of the depth camera module 100 can be reduced, and the illumination of the light reaching the sensor 40 can be increased, which is beneficial to the reception of the sensor 40 light to improve the detection accuracy of the depth camera module 100.
  • the illumination of light passing through the phase lens 71 and reaching the sensor 40 is greater than or equal to 98%.
  • the phase lens 71 includes a substrate 711 and a phase microstructure 712 provided on the substrate 711 .
  • the phase structure is used to adjust the phase of the light emitted from the phase lens 71 to the sensor 40 .
  • the substrate 711 includes a first surface 7111 and a second surface 7112 that are opposite to each other.
  • the first surface 7111 is further away from the sensor 40 than the second surface 7112 .
  • the phase microstructure 712 may be disposed on the first side 7111 and/or the second side 7112 of the substrate 711 .
  • the phase microstructure 712 may be disposed on the first side 7111 of the substrate 711 . Since the phase microstructure 712 adjusts the phase of the light emitted from the phase lens 71 to the sensor 40, compared with the light directly passing through the lens and then emitting to the sensor 40, the illumination of the light reaching the image sensor can be improved.
  • phase microstructure 712 may also be disposed on the second surface 7112 of the substrate 711 . Since strong light is directly incident on the behavioral microstructure, glare may occur, and stray light is relatively strong, which is not conducive to the sensor 40 receiving light, thus affecting the detection accuracy of the depth camera module 100 . Therefore, in this embodiment, the phase microstructure 712 is disposed on the second surface 7112 of the substrate 711. Compared with arranging the microstructure on the first surface 7111 of the substrate 711, it can improve the illumination of the light reaching the sensor 40, and at the same time, Avoiding glare and reducing stray light helps the sensor 40 receive light to improve the detection accuracy of the depth camera module 100 . Of course, in some embodiments, phase microstructures 712 may be provided on both opposite sides of the substrate 711, which is not limited here.
  • the phase lens 71 is a planar phase lens, in which case the phase microstructure 712 includes nano-microstructures; or, in some embodiments, the phase lens 71 is a Fresnel lens, in which case The phase microstructure 712 includes an annular Fresnel microstructure, which is not limited here.
  • an embodiment of the present application also provides an electronic device 1000.
  • the electronic device 1000 includes a housing 200 and the depth camera module 100 described in any of the above embodiments.
  • the depth camera module 100 is combined with the housing 200 .
  • the electronic device 1000 can be a mobile phone, a computer, a tablet, a smart watch, a smart wearable device, etc., and is not limited here.
  • the sensor 40 and the light source 30 in the depth camera module 100 are installed on the same circuit board 10 , and the first optical component 60 and the second optical component 70 are both fixedly installed on the integrated bracket 50 , compared with traditional depth camera modules (both the transmitter and the receiver have separate brackets and separate circuit boards), the structure of the depth camera module 100 can be made more compact, and the length of the depth camera module 100 can also be shortened. Baseline distance.
  • the depth camera module 100 of the present application carries the light source 30 on the first bearing surface 12 of the circuit board 10, and there is a certain height difference between the first bearing surface 12 and the second bearing surface 13, thereby shortening the depth camera module.
  • an embodiment of the present application also provides a photographing component 300 .
  • the shooting component 300 includes a two-dimensional camera module 301 and the depth camera module 100 described in any of the above embodiments.
  • the two-dimensional camera module 301 is used to obtain two-dimensional images
  • the depth camera module 100 is used to obtain depth information images.
  • the distance between the center of the sensor 40 of the depth camera module 100 and the center of the two-dimensional camera module 301 is less than the second preset distance.
  • the two-dimensional camera module 301 can be a color camera module, and the two-dimensional image acquired at this time is a color image; or the two-dimensional camera module 301 can also be a black and white camera module, and the two-dimensional image acquired at this time is Black and white images are not limited here.
  • the second preset distance may be 2 cm. That is, the distance between the center of the sensor 40 of the depth camera module 100 and the center of the two-dimensional camera module 301 is less than 2 cm.
  • the distance between the center of the sensor 40 of the 2D camera module 100 and the center of the 2D camera module 301 can be 1.8cm, 1.3cm, 1cm, 0.8cm, etc., and is not limited here.
  • the distance between the center of the sensor 40 of the depth camera module 100 and the center of the two-dimensional camera module 301 may also be 2 cm.
  • the distance between the center of the sensor 40 of the depth camera module 100 and the center of the two-dimensional camera module 301 is 1.5 cm, so that the field of view of the depth camera module 100 and the two-dimensional camera module 301 can be maintained.
  • the field of view of the 2D camera module 301 is close, and a certain distance can be maintained between the depth camera module 100 and the 2D camera module 301 to avoid the temperature generated by the depth camera module 100 during the engineering process from affecting the 2D camera module.
  • Camera module 301 works normally.
  • the temperature of the depth camera module 100 is less than the preset temperature.
  • the preset temperature may be 60°C. That is, when the photographing component 300 is working, the temperature of the depth camera module 100 is less than 60°C.
  • the temperature of the depth camera module 100 may be 55°C, 50°C, 48°C, 45°C, 42°C, 35°C, 30°C, etc. Since the temperature of the depth camera module 100 is lower than the preset temperature, it is possible to prevent the temperature of the depth camera module 100 from being too high and affecting the normal operation of components (such as the two-dimensional camera module 301 ) arranged around it.
  • the temperature of the depth camera module 100 is stabilized at about 45°C.
  • an embodiment of the present application also provides an electronic device 1000.
  • the electronic device 1000 includes a housing 200 and the photographing component 300 described in any of the above embodiments.
  • the photographing component 300 is combined with the housing 200 .
  • the electronic device 1000 can be a mobile phone, a computer, a tablet, a smart watch, a smart wearable device, etc., and is not limited here.
  • the electronic device 1000 in this application sets the distance between the center of the sensor 40 of the depth camera module 100 and the center of the two-dimensional camera module 301 in the shooting component 300 to be less than the second preset distance. In this way, the field of view of the depth camera module 100 can be close to the field of view of the two-dimensional camera module 301, which is beneficial for the electronic device 1000 to obtain two-dimensional images and depth information images in the same field of view at the same time.
  • Assembly methods include:
  • the circuit board 10 includes a bottom surface 11, a first load-bearing surface 12 and a second load-bearing surface 13. The distance between the first load-bearing surface 12 and the bottom surface 11 is different from the distance between the second load-bearing surface 13 and the bottom surface 11;
  • 012 Install the light source 30 on the first bearing surface 12 and electrically connect it to the circuit board 10.
  • the light source 30 is used to emit light.
  • the sensor 40 is Receive at least part of the light reflected by the object and convert it into an electrical signal;
  • bracket 50 Fixedly connect the bracket 50 with the first optical component 60 installed to the circuit board 10.
  • the bracket 50 and the circuit board 10 form an accommodating cavity 503.
  • the light source 30 and the sensor 40 are accommodated in the accommodating cavity 503, so that the first optical The component 60 corresponds to the light source 30, and the first optical component 60 is used to guide the light emitted by the light source 30 to the outside of the depth camera module 100;
  • 015 Fixedly install the second optical component 70 on the bracket 50 so that the second optical component 70 corresponds to the sensor 40 .
  • the second optical component 70 is used to receive at least part of the light reflected back by the object and guide the light to the sensor 40 .
  • the assembly method of the depth camera module 100 in this application is by installing the sensor 40 and the light source 30 in the depth camera module 100 on the same circuit board 10, and the first optical component 60 and the second optical component 70 are both fixedly installed.
  • the integrated bracket 50 can make the structure of the depth camera module 100 more compact and shorten the depth camera module compared to the traditional depth camera module (the transmitting end and the receiving end each have a separate bracket and a separate circuit board). Baseline distance of module 100.
  • this assembly method is beneficial to eliminating assembly tolerances of the depth camera module 100 .
  • the circuit board 10 includes a bottom surface 11 , a first carrying surface 12 and a second carrying surface 13 .
  • the distance between the first carrying surface 12 and the bottom surface 11 is different from the distance between the second carrying surface 13 and the bottom surface 11 . That is, there is a height difference between the first bearing surface 12 and the second bearing surface 13 .
  • the distance between the first bearing surface 12 and the bottom surface 11 is smaller than the distance between the second bearing surface 13 and the bottom surface 11 .
  • the distance between the first bearing surface 12 and the bottom surface 11 is greater than the distance between the second bearing surface 13 and the bottom surface 11 .
  • the light source 30 is installed on the first carrying surface 12 and electrically connected to the circuit board 10 . Since other electronic devices 81 are usually placed around the light source 30, the electronic device 81 needs to be at a certain distance from the light source 30 (as shown on the left side of Figure 5), and the light source 30 is arranged on the first carrying surface 12. Moreover, there is a height difference between the first carrying surface 12 and the second carrying surface 13, which can shorten the lateral distance between the electronic device 81 and the light source 30 and at the same time prevent the electronic device 81 from contacting the light source 30 (as shown on the right side of Figure 5). . In this way, while shortening the baseline distance of the depth camera module 100, more space can be left for the electronic device 81 (as shown in FIG. 5) that needs to be disposed on the circuit board 10, thereby shortening the baseline distance of the depth camera module 100. distance while ensuring the normal operation of the depth camera module 100.
  • the light source 30 can be installed on the first bearing surface 12 through adhesive. Subsequently, the light source 30 and the circuit board 10 can be electrically connected through a gold wire bonding process.
  • the light source 30 includes an opposite first side 31 and a second side 32 , wherein the second side 32 is combined with the circuit board 10 , and the first side 31 is provided with a first pad 91 .
  • the circuit board 10 is provided with a second soldering pad 92 and an electrical connecting wire 82 through which the first soldering pad 91 and the second soldering pad 92 are electrically connected to realize the electrical connection between the light source 30 and the circuit board 10 .
  • the second pad 92 can be disposed on any one of the first carrying surface 12 , the second carrying surface 13 and the connecting surface 14 , and is not limited here.
  • the sensor 40 is installed on the second bearing surface 13 and electrically connected to the circuit board 10 .
  • the sensor 40 may be mounted to the second bearing surface 13 through adhesive.
  • the sensor 40 can then be electrically connected to the circuit board 10 through a gold wire bonding process, that is, connecting the pads on the sensor 40 and the pads on the circuit board 10 through wires (such as gold wires, or other conductive leads). So that the sensor 40 is electrically connected to the circuit board 10 .
  • the first optical component 60 is fixedly installed on the integrated bracket 50 . Specifically, the first optical component 60 is installed into the first mounting hole 531 of the bracket 50 . For example, in some embodiments, the first optical component 60 may be fixed in the first mounting hole 531 by adhesive means.
  • the bracket 50 includes a first side 501 and a second side 502 that are opposite to each other. After the bracket 50 is assembled with the circuit board 10, the first side 501 is more precise than the second side 502. Close to the circuit board 10.
  • the first optical component 60 includes a collimating lens 61 and a second diffractive optical element 62.
  • the collimating lens 61 is used to collimate the light emitted by the light source 30.
  • the second diffractive optical element 62 is used to receive the collimated light and receive the light. The received light is copied and projected outside the depth camera module 100 .
  • fixing the first optical component 60 to the integrated bracket 50 includes: sequentially attaching the second diffractive optical element 62 and the collimator along the direction from the second side 502 to the first side 501 of the bracket 50
  • the lens 61 is fixedly installed in the first mounting hole 531 of the bracket 50 .
  • the second diffractive optical element 62 is placed in the first mounting hole 531 along the direction from the second side 502 of the bracket 50 to the first side 501 , and then the second diffractive optical element 62 is fixedly connected to the first mounting hole 531 .
  • the second diffractive optical element 62 may be adhered to the first mounting hole 531 through adhesive.
  • the collimating lens 61 is placed in the first mounting hole 531 , and then the second diffractive optical element 62 is connected to the first mounting hole. 531 fixed connection.
  • the collimating lens 61 can also be bonded to the first mounting hole 531 through adhesive. In this way, the first optical component 60 is fixedly installed on the bracket 50 . It should be noted that when installing the collimating lens 61, it is necessary to first align it according to the second diffractive optical element 62 in the first mounting hole 531, and then fix the collimating lens 61 after the alignment is completed, so that the collimated lens 61 can be aligned. The light collimated by the straight lens 61 can smoothly enter the second diffractive optical element 62 .
  • the bracket 50 with the first optical component 60 installed is installed on the circuit board equipped with the sensor 40 and the light source 30 .
  • the bracket 50 and the circuit board 10 form an accommodation cavity 503 (as shown in FIG. 2 ).
  • the light source 30 and the sensor 40 It is housed in the accommodation cavity 503 so that the first optical component 60 corresponds to the light source 30 .
  • the first optical component 60 is used to guide the light emitted by the light source 30 to the outside of the depth camera module 100 .
  • the first optical component 60 installed on the bracket 50 and the light source provided on the circuit board 10 are aligned through an alignment process (Active Alignment, AA process, the same below, which will not be repeated here). 30 for alignment.
  • the bracket 50 is fixed to the circuit board 10 and the first optical component 60 corresponds to the light source 30 .
  • the first optical component 60 and the light source 30 are aligned through an alignment process, and the relative position between the first optical component 60 and the light source 30 is gradually adjusted, so that the first optical component 60 and the light source 30 gradually come close to facing each other.
  • the bracket 50 is fixed to the circuit board 10 to ensure the stability of the connection.
  • the second optical component 70 is installed on the bracket 50 so that the second optical component 70 corresponds to the sensor 40.
  • the second optical component 70 is used to receive at least part of the light reflected by the object, And guide the light to sensor 40.
  • the second optical component 70 is aligned with the sensor 40 provided on the circuit board 10 through an alignment process, and after the alignment is completed, the second optical component 70 is installed on the third part of the bracket 50 . two mounting holes 532 so that the second optical component 70 corresponds to the sensor 40 .
  • the second optical component 70 of the receiving end needs to be aligned into the depth camera module 100, it needs to be combined with the transmitting end (that is, the combination of the light source 30 and the first optical component 60). It is more complicated to correct the error using the speckles projected by the light emitting module).
  • the second optical component 70 is aligned with the sensor 40 provided on the circuit board 10 through an alignment process. It is recorded that while the effects of translation, rotation, and tilt are eliminated as much as possible, the difficulty of assembling the depth camera module 100 is reduced.
  • the assembly method further includes: installing the filter 84 in the second mounting hole 532 of the bracket 50 , filtering the light.
  • the plate 84 is used to filter light outside a predetermined wavelength range.
  • the optical filter 84 before installing the bracket 50 with the first optical component 60 on the circuit board 10 , the optical filter 84 can also be installed in the second mounting hole 532 of the bracket 50 , and then the filter 84 can be installed in the second mounting hole 532 of the bracket 50 .
  • the bracket 50 equipped with the first optical component 60 and the filter 84 is installed on the circuit board 10 .
  • the optical filter 84 can be installed before the first optical component 60 is installed, or after the first optical component 60 is installed. There is no limitation here.
  • Assembly methods include:
  • the circuit board 10 includes a bottom surface 11, a first load-bearing surface 12 and a second load-bearing surface 13. The distance between the first load-bearing surface 12 and the bottom surface 11 is different from the distance between the second load-bearing surface 13 and the bottom surface 11;
  • the first optical component 60 is used for The light emitted by the light source 30 is guided out of the depth camera module 100 .
  • the second optical component 70 is used to receive at least part of the light reflected by the object and guide the light to the sensor 40 .
  • the assembly method of the depth camera module 100 in this application is by installing the sensor 40 and the light source 30 in the depth camera module 100 on the same circuit board 10, and the first optical component 60 and the second optical component 70 are both fixedly installed.
  • the bracket 50 compared with the traditional depth camera module (the transmitting end and the receiving end each have a separate bracket and a separate circuit board), the structure of the depth camera module 100 can be made more compact, and the depth camera module can also be shortened. Baseline distance for group 100.
  • this assembly method is beneficial to eliminating assembly tolerances of the depth camera module 100 .
  • the circuit board 10 includes a bottom surface 11 , a first carrying surface 12 and a second carrying surface 13 .
  • the distance between the first carrying surface 12 and the bottom surface 11 is different from the distance between the second carrying surface 13 and the bottom surface 11 . That is, there is a height difference between the first bearing surface 12 and the second bearing surface 13 .
  • the distance between the first bearing surface 12 and the bottom surface 11 is smaller than the distance between the second bearing surface 13 and the bottom surface 11 .
  • the distance between the first bearing surface 12 and the bottom surface 11 is greater than the distance between the second bearing surface 13 and the bottom surface 11 .
  • the light source 30 is installed on the first carrying surface 12 and is electrically connected to the circuit board 10 ; and the sensor 40 is installed on the second carrying surface 13 and is electrically connected to the circuit board 10 .
  • the specific installation method of the light source 30 and the sensor 40 is the same as the specific installation method of the light source 30 and the sensor 40 in the above embodiment, and will not be described again here.
  • the bracket 50 is fixedly connected to the circuit board 10 .
  • the bracket 50 and the circuit board 10 form an accommodation cavity 503 (as shown in FIG. 2 ), and the light source 30 and the sensor 40 are accommodated in the accommodation cavity 503 .
  • the bracket 50 is fixedly installed on the circuit board 10 .
  • the bracket 50 and the circuit board 10 form an accommodation cavity 503 , and the light source 30 and the sensor 40 are accommodated in the accommodation cavity 503 .
  • the first optical component 60 and the second optical component 70 are fixed on the bracket 50 so that the first optical component 60 corresponds to the light source 30 and the second optical component 70 corresponds to the light source 30 .
  • the first optical component 60 is used to guide the light emitted by the light source 30 to the outside of the depth camera module 100
  • the second optical component 70 is used to receive at least part of the light reflected back by the object, and guide the light to the sensor 40 .
  • first optical component 60 and the second optical component 70 are fixed on the bracket 50, so that the first optical component 60 corresponds to the light source 30, and the The second optical component 70 corresponds to the sensor 40 and may include:
  • the first optical component 60 is first fixedly installed on the bracket 50 so that the first optical component 60 corresponds to the light source 30 .
  • the first optical component 60 is placed in the first mounting hole 531 of the bracket 50 , and then the first optical component 60 and the light source 30 are aligned and calibrated.
  • this step requires at least one of AA (Active Alignment, AA) alignment calibration of the first optical component 60 and the light source 30 in translation, tilt, and rotation.
  • AA Active Alignment, AA
  • the first optical component 60 is fixedly connected to the bracket 50 through gluing. In this way, the first optical component 60 is fixedly installed on the bracket 50 and corresponds to the light source 30 .
  • the light emitted by the light source 30 can be emitted out of the depth camera module 100 through the first optical component 60 .
  • the first optical component 60 can also be fixedly connected to the bracket 50 in other ways, which is not limited here.
  • the bracket 50 includes a first side 501 and a second side 502 that are opposite to each other. After the bracket 50 is assembled with the circuit board 10, the first side 501 is more precise than the second side 502. Close to the circuit board 10.
  • the first optical component 60 includes a collimating lens 61 and a second diffractive optical element 62.
  • the collimating lens 61 is used to collimate the light emitted by the light source 30.
  • the second diffractive optical element 62 is used to receive the collimated light and receive the light. The received light is copied and projected outside the depth camera module 100 .
  • fixing the first optical component 60 to the bracket 50 includes: sequentially attaching the collimating lens 61 and the second diffractive optical element along the direction from the first side 501 to the second side 502 of the bracket 50 52 is fixedly installed in the first hole of the bracket 50 .
  • the collimating lens 61 is placed in the first mounting hole 531 along the direction from the first side 501 to the second side 502 of the bracket 50 , and then the collimating lens 61 is aligned with the light source 30 .
  • this step requires AA alignment and calibration of the first optical component 60 and the light source 30 in translation, tilt, and rotation.
  • the collimating lens 61 is fixedly connected to the bracket 50 .
  • the second diffractive optical element 62 is assembled into the first mounting hole 531 in the direction from the first side 501 to the second side 502 of the bracket 50 . Tilt and rotation AA alignment calibration is required in this step.
  • the second diffractive optical element 62 is fixedly connected to the bracket 50 , so that the first optical component 60 is fixedly installed on the bracket 50 .
  • the collimating lens 61 and the second diffractive optical element 62 are assembled into the first mounting hole 531 along the direction from the first side 501 to the second side 502 of the bracket 50.
  • Flip mounting that is, assembling into the first mounting hole 531 along the second side 502 of the bracket 50 toward the first side 501
  • the second diffractive optical element 62 is directly installed and the bracket 50 of the collimating lens 61 are installed on the circuit board 10.
  • the second diffractive optical element 62 and the collimating lens 61 have been assembled, the second diffractive optical element 62 and the collimator cannot be eliminated when the light source 30 is used for alignment. Tilt and/or rotation errors between straight lenses 61.
  • the bracket 50 is first assembled with the circuit board 10 provided with the light source 30, and then the collimating lens 61 and the second diffractive optical element 62 are assembled in sequence, compared with directly assembling the second diffractive optical element 62, The bracket 50 of the diffractive optical element 62 and the collimating lens 61 is installed on the circuit board 10 , which is beneficial to reducing the assembly tolerance of the depth camera module 100 .
  • the second optical component 70 is fixedly installed on the bracket 50 provided with the first optical component 60 so that the second optical component 70 corresponds to the sensor 40 .
  • the second optical component 70 is placed in the second mounting hole 532 of the bracket 50 , and then the second optical component 70 is aligned and calibrated.
  • this step requires aligning the second optical component 70 with the sensor 40 Perform at least one of AA (Active Alignment, AA) alignment calibration of translation, tilt, and rotation; alternatively, this step requires performing AA (Active Alignment, AA) translation, tilt, and rotation of the second optical component 70 and the light emitting module.
  • AA Active Alignment, AA
  • At least one of Alignment (AA) alignment calibration wherein the light emitting module is composed of the first optical component 60 and the light source 30 .
  • the second optical component 70 is fixedly connected to the bracket 50 through gluing.
  • the second optical component 70 is fixedly installed on the bracket 50 and corresponds to the sensor 40.
  • at least part of the light reflected by the object to be measured can be incident on the sensor through the second optical component 70.
  • the second optical component 70 can also be fixedly connected to the bracket 50 in other ways, which is not limited here.
  • the second optical component 70 can also be installed first and then the first optical component 60 . Specifically, please refer to Figures 25 and 26.
  • the first optical component 60 and the second optical component 70 are fixed on the bracket 50, so that the first optical component 60 corresponds to the light source 30, and the The second optical component 70 corresponds to the sensor 40 and may also include:
  • the second optical component 70 is first fixedly installed on the bracket 50 so that the second optical component 70 corresponds to the sensor 40 .
  • the second optical component 70 is placed in the second mounting hole 532 of the bracket 50 , and then the second optical component 70 and the sensor 40 are aligned and calibrated.
  • this step requires at least one of AA (Active Alignment, AA) alignment calibration of the first optical component 60 and the sensor 40 in translation, tilt, and rotation.
  • AA Active Alignment, AA
  • the second optical component 70 is fixedly connected to the bracket 50 through gluing. In this way, the second optical component 70 is fixedly installed on the bracket 50 , and the second optical component 70 corresponds to the sensor 40 . At this time, the light passing through the second optical component 70 can be incident on the sensor 40 .
  • the second optical component 70 can also be fixedly connected to the bracket 50 in other ways, which is not limited here.
  • the first optical component 60 is fixedly installed on the bracket 50 provided with the second optical component 70 so that the first optical component 60 corresponds to the light source 30 .
  • the first optical component 60 is placed in the first mounting hole 531 of the bracket 50 , and then the first optical component 60 is aligned and calibrated.
  • this step requires aligning the first optical component 60 with the light source 30 Perform at least one of AA (Active Alignment, AA) alignment calibration of translation, tilt, and rotation; alternatively, this step requires performing AA (Active Alignment, AA) translation, tilt, and rotation of the first optical component 60 and the light receiving module.
  • AA Active Alignment, AA
  • At least one of Alignment (AA) alignment calibration wherein the light receiving module is composed of the second optical component 70 and the sensor 40 .
  • the first optical component 60 is fixedly connected to the bracket 50 through gluing.
  • the first optical component 60 is fixedly installed on the bracket 50 , and the first optical component 60 corresponds to the light source 30 .
  • the light emitted by the light source 30 can be emitted through the first optical component 60 , and at least part of the light reflected back by the object to be measured can be incident on the sensor through the second optical component 70 .
  • the first optical component 60 can also be fixedly connected to the bracket 50 in other ways, which is not limited here.
  • the specific installation method of the collimating lens 61 and the second diffractive optical element 62 is the same as that of the collimating lens 61 in the above embodiment.
  • the specific installation method of the second diffractive optical element 62 is the same and will not be described again.
  • the assembly method before fixing the first optical component 60 and the second optical component 70 to the bracket 50, the assembly method further includes: installing the optical filter 84 in the second mounting hole 532 of the bracket 50.
  • 84 is used to filter light outside a predetermined wavelength range.
  • the optical filter 84 before the bracket 50 is fixedly connected to the circuit board 10 , the optical filter 84 can also be installed in the second mounting hole 532 of the bracket 50 , and then the optical filter 84 installed thereon can be installed.
  • the bracket 50 is installed on the circuit board 10 .
  • the filter 84 can also be installed before the second optical component 70 is installed after the bracket 50 is fixedly connected to the circuit board 10 . There is no limitation here, as long as the filter 84 is installed on the second optical component 70 .
  • the optical assembly 70 is previously installed on the bracket 50 .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include at least one of the described features.
  • “plurality” means at least two, such as two or three, unless otherwise expressly and specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)

Abstract

一种深度相机模组(100)及其组装方法、拍摄组件(300)和电子设备(1000)。深度相机模组(100)包括电路板(10)、光源(30)、传感器(40)、一体支架(50)、第一光学组件(60)及第二光学组件(70)。

Description

深度相机模组及其组装方法、拍摄组件和电子设备
优先权信息
本申请请求2022年03月11日向中国国家知识产权局提交的、专利申请号为202210239195X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及测距技术领域,更具体而言,涉及一种深度相机模组、深度相机模组的组装方法、拍摄组件和电子设备。
背景技术
飞行时间技术(Time of flight,ToF)是一种通过测量发射信号和被物体反射回的信号之间的时间差,通过这个时间差,计算出物体和传感器距离之间测距的技术。现有的飞行时间模组中发射端的光学中心与接收端的光学中心之间的距离过大,不利于整体模组小型化。
发明内容
本申请实施方式提供一种深度相机模组、深度相机模组的组装方法、拍摄组件和电子设备。
本申请的深度相机模组包括电路板、光源、传感器、一体支架、第一光学组件及第二光学组件。所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同。所述光源承载于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线。所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号。所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器。第一光学组件及第二光学组件设于所述支架,所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的电子设备包括壳体及深度相机模组。所述深度相机模组与所述壳体结合。所述深度相机模组包括电路板、光源、传感器、一体支架、第一光学组件及第二光学组件。所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同。所述光源承载于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线。所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号。所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器。第一光学组件及第二光学组件设于所述支架,所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的拍摄组件包括深度相机模组及二维相机模组,所述深度相机模组的所述传感器的中心与所述二维相机模组的中心之间的距离小于第二预设距离。所述二维相机模组用于获取二维图像,所述深度相机模组用于获取深度信息图像。所述深度相机模组包括电路板、光源、传感器、一体支架、第一光学组件及第二光学组件。所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同。所述光源承载于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线。所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号。所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器。第一光学组件及第二光学组件设于所述支架,所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的电子设备包括壳体及拍摄组件,所述壳体与所述拍摄组件结合。所述拍摄组件包括深度相机模组及二维相机模组,所述深度相机模组的所述传感器的中心与所述二维相机模组的中心之间的距离小于第二预设距离。所述二维相机模组用于获取二维图像,所述深度相机模组用于获取深度信息图像。所述深度相机模组包括电路板、光源、传感器、一体支架、第一光学组件及第二光学组件。所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同。所述光源承载于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线。所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号。所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器。第一光学组件及第二光学组件设于所述支架,所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的深度相机模组的组装方法,包括:提供一电路板,所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;将光源安装于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线,将所述传感器安装于所述第二承载面,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;将第一光学组件固定安装于一体支架;将安装有所述第一光学组件的所述支架与所述电路板固定连接,所述支架与所述电路板形成容置腔,所述光源与所述传感器收容在所述容置腔内,以使所述第一光学组件与所述光源对应,所述第一光学组件用于将所述光源发射的光线引导至所述深度相机模组外;及将第二光学组件固定安装于所述支架,以使所述第二光学组件与所述传感器对应,所述第二光学组件用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的深度相机模组的组装方法,包括:提供一电路板,所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;将光源安装于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线,将所述传感器安装于所述第二承载面,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;将一体支架与所述电路板固定连接,所述支架与所述电路板形成容置腔,所述光源与所述传感器收容在所述容置腔内;将第一光学组件及第二光学组件固定在所述支架上,以使所述第一光学组件与所述光源对应、及所述第二光学组件与所述传感器对应,所述第一光学组件用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
本申请的深度相机模组、深度相机模组的组装方法、拍摄组件及电子设备,通过将深度相机模组中传感器及光源安装在同一块电路板上,并且第一光学组件及第二光学组件均固定安装于一体支架,相较于传统的深度相机模组(发射端与接收端都各自有单独的支架及各自单独的电路板)能够使深度相机模组结构更加紧凑,并且还能缩短深度相机模组的基线距离。另外,本申请的深度相机模组、深度相机模组的组装方法、拍摄组件及电子设备,通过将光源承载在电路板的第一承载面上,并且第一承载面与第二承载面具有一定高度差,能够在缩短深度相机模组的基线距离的同时,给需要设置在电路板上的电子器件留有更多空间,从而在缩短深度相机模组的基线距离的同时保证深度相机模组正常工作。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式中的深度相机模组立体结构的示意图;
图2是本申请某些实施方式中的深度相机模组的结构示意图;
图3及图4是本申请某些实施方式中的深度相机模组中基线与光斑在传感器中移动距离之间的关系的示意图;
图5是现有的深度相机模组与本申请某些实施方式中的深度相机模组的结构示意图;
图6至图10是本申请某些实施方式中的深度相机模组的结构示意图;
图11是光发射模组中光学组件后焦大小与光发射模组的长、宽、高大小的关系示意图;
图12至图14是本申请某些实施方式中的飞行时间模组中第一光学组件的结构示意图;
图15及图16是本申请某些实施方式中的飞行时间模组中第二光学组件的结构示意图;
图17及图18是本申请某些实施方式中的电子设备的结构示意图;
图19是本申请某些实施方式中的深度相机模组的组装方法的流程示意图
图20是本申请某些实施方式中的深度相机模组的组装方法的结构示意图;
图21是本申请某些实施方式中的深度相机模组的组装方法的流程示意图;
图22是本申请某些实施方式中的深度相机模组的组装方法的结构示意图;
图23是本申请某些实施方式中的深度相机模组的组装方法的流程示意图;
图24是本申请某些实施方式中的深度相机模组的组装方法的结构示意图;
图25是本申请某些实施方式中的深度相机模组的组装方法的流程示意图;
图26是本申请某些实施方式中的深度相机模组的组装方法的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1及图2,本申请实施方式提供一种深度相机模组100。深度相机模组100包括电路板10、光源30、传感器40、一体支架50、第一光学组件60及第二光学组件70。电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同。光源30安装于电路板10的第一承载面12,并与电路板10电连接,光源30用于发射光线。传感器40安装于电路板10,并与电路板10电连接,传感器40用于接收被物体反射回的至少部分光线并转换为电信号。支架50安装于电路板10,并与电路板10形成容置腔503,容置腔503用于收容光源30及传感器40。第一光学组件60及第二光学组件70均设于一体支架50,其中,第一光学组件60与光源30对应设置,并且第一光学组件60用于将光源30发射的光线引导至深度相机模组100外;第二光学组件70与传感器40对应设置,并且第二光学组件70用于接收被物体反射回的至少部分光线,并将接收到的光线引导至传感器40。
典型的深度相机模组中的发射端与接收端是独立的两个模块,二者都各自有单独的支架及各自单独的电路板。也即,发射端包括第一电路板及第一支架,第一光学组件设于第一支架中,光源设于第一电路板上;接收端包括第二电路板及第二支架,第二光学组件设于第二支架中,传感器设于第二电路板上。
本申请中的深度相机模组100,通过将传感器40及光源30安装在同一块电路板10上,并且第一光学组件60及第二光学组件70均固定安装于一体支架50,相较于传统的深度相机模组(发射端与接收端都各自有单独的支架及各自单独的电路板)能够使深度相机模组100结构更加紧凑,并且还能缩短深度相机模组100的基线距离。其中,将传感器40和光源30光学中心之间的距离定义为基线,下文中出现的基线也做相同解释,不再赘述。另外,本申请的深度相机模组100通过将光源30承载在电路板10的第一承载面12上,并且第一承载面12与第二承载面13具有一定高度差, 能够在缩短深度相机模组100的基线距离的同时,给需要设置在电路板10上的电子器件81(如图5所示)留有更多空间,从而在缩短深度相机模组100的基线距离的同时保证深度相机模组100正常工作。
需要说明的是,在本申请实施例中的深度相机模组100是基于飞行时间技术(Time of flight,ToF)来获取待测物体的深度信息。其中,飞行时间技术是基于发射光线与接收到待测物反射回来的光线之间的时间差,计算待测物的深度信息。因此,在设计过程中,希望光斑照射到接收端中传感器的位置尽量不要发生变化,如此有利于简化传感器读出电路的设计。
由于在本申请中能够缩短深度相机模组100的基线距离,如此有利于深度相机模组100获取待测物的深度信息。具体地,当光线投射出去,被目标反射回接收端,可以被接收端中的传感器40的某一像素或数个像素接收到。针对同一个像素,当目标物体与模组的距离改变时,该像素最终投射在上的位置也会发生变化。例如,如图3所示,D点发射一束激光,当目标在F位置时,激光被反射经过接收端的焦点C点,最终照射在传感器40的像面(AB点所在平面)的A点;当目标在E位置时,经过接收端镜头组(即第二光学组件70)焦点C点后照射在传感器40的B点。由此可见,同一束激光,由于目标物体距离模组的距离不同,最终有可能被传感器40的不同区域/像素接收。定义上述在传感器40上的移动距离差为L disparity,接收端镜头(即第二光学组件70)焦距为f,光发射模组的光学中心与光接收模组的光学中心之间的距离为基线L baseline,目标物体与激光雷达测距模组的距离为L range,上述参数遵从以下关系:
Figure PCTCN2022142268-appb-000001
也即是说,在接收端镜头(即第二光学组件70)焦距f及目标物体与激光雷达测距模组的距离L range一定的情况下,传感器40上的移动距离差L disparity与基线L baseline呈正比。假设基线L baseline为3mm(现有的深度相机模组中基线的典型值为10mm),第二光学组件70的等效焦距为1.63mm,传感器40中像素的尺寸为10um.当前被测物体距离发生变化,光斑在传感器40上的移动关系如图4所示。可以理解,在基线L baseline影响下,主要对于近距离测距(如小于2m)激光光斑位置有影响。由于深度相机模组100是基于发射光线与接收到待测物反射回来的光线之间的时间差,计算待测物的深度信息。从图4中可以看到,当目标距离为0.3m时,发射模组与光接收模组的中心距离较小(为3mm)时,光斑位置仅移动了约2.5个像素,但是发射模组与光接收模组的中心距离较大(为10mm),光斑位置移动了约8个像素。由此,可以证明缩短深度相机模组100的基线距离有利于深度相机模组100获取待测物的深度信息。
请继续参阅图1及图2,在一些实施例中,传感器40的中心与光源30的中心之间的距离小于第一预设距离。如此有利于深度相机模组100获取待测物的深度信息。在一些实施例中,第一预设距离可以为5mm,也即传感器40的中心与光源30的中心之间的距离小于5mm。例如,传感器40的中心与光源30的中心之间的距离可以为4mm、3.5mm、2mm等在此不作限制。当然,在一些实施例中,传感器40的中心与光源30的中心之间的距离也可以等于5mm。优选地,在一些实施例中,传感器40的中心与光源30的中心之间的距离可以为3.6mm。
在一些实施例中,电路板10可以用于对设置在其上的传感器40及光源30散热,如此在深度相机模组100正常工作时,传感器40及光源30产生的热量可以通过电路板10散发出去,以避免深度相机模组100内部温度过高,烧坏深度相机模组100内部的其他元器件,从而延长深度相机模组100的使用寿命。具体地,在一些实施例中,电路板10可以是软硬结合电路板,也可以是高温共烧陶瓷线路板,在此不作限制,只需要能够对设置在其上的传感器40及光源30进行散热即可。
请参阅图2,电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同。也即第一承载面12与第二承载面13之间具有高度差。由于通常在光源30周围还会设置其他的电子器件81,电子器件81需要与光源30之间有一定的间隔(如图5左侧所示),而将光源30设置在第一承载面12,且第一承载面12与第二承载面13之间存在高度差,能够缩短电子器件81与光源30横向间距的同时,还能够避免电子器件81与光源30接触(如图5右侧所示)。如此能够在缩短深度相机模组100的基线距离的同时,给需要设置在电路板10上的电子器件81(如图5所示)留有更多空间,从而在缩短深度相机模组100的基线距离的同时保证深度相机模组100正常工作。
需要说明的是,在一些实施例中,深度相机模组100还包括电子器件81,电子器件81设于第二承载面13。电子器件81与光源30之间的距离小于预设阈值。如此能够缩短电子器件81与光源30横向间距的同时,还能够避免电子器件81与光源30接触,从而缩短深度相机模组100的基线距离。其中,电子器件81可以是用于控制光源30发射时间间隔的寄存器;或者,电子器件81还可以是数模转换器或模数转换器等,在此不作限制。
具体地,请参阅图2及图6,在一些实施例中,第一承载面12到底面11的距离小于第二承载面13到底面11的距离,光源30承载于第一承载面12上。如此不仅有利于缩短深度相机模组100的基线距离,还能够在光源30与第一光学组件60之间的间距不改变的前提下,降低光深度相机模组100的整体厚度。当然,在一些实施例中,如图7所示,第一承载面12到底面11的距离也可以大于第二承载面13到底面11的距离,也有利于缩短深度相机模组100的基线距离。
光源30与电路板10电连接,电路板10能够为光源30提供电量,以使光源30能够发射光线。具体地,请参阅图8至图10,在一些实施例中,光源30包括相背的第一侧31及第二侧32,其中第二侧32安装与第一承载面12。光源30远离电路板10的一侧设有第一焊盘91,即光源30的第一侧31设有第一焊盘91。深度相机模组100还包括电连接线82,第一焊盘91用于通过电连接线82与电路板10上的第二焊盘92电连接,以使光源30与电路板10电连接。
示例地,请参阅图8,在一些实施例中,电连接线82的一端与光源30的第一侧31电连接,另一端与位于第一承载面12的焊盘电连接。也即,第二焊盘92设于第一承载面12上,电连接线82的一端与第一焊盘91电连接,另一端与第二焊盘92电连接,以使光源30与电路板10电连接。如此,一方面,能够实现光源30与电路板10之间的电连接;另一方面,由于光源30设置在第一承载面12,第一承载面12与第二承载面13具有高度差,能够在保证电子器件81与光源30之间间隔的前提下,缩短电子器件81与光源30横向间距,以缩短深度相机模组100的基线距离;再一方面,由于第二焊盘92设于第一承载面12,相较于第二焊盘92设于第二承载面13,电连接线82无需伸至第二承载面13,有利于降低电路板10的线路布局的复杂程度。
在一些实施例中,在光源30的出光方向上,第一焊盘91与第二焊盘92之间的距离大于或小于光源30相背两侧之间的距离。也即,在光源30的出光方向上,第一焊盘91与第二焊盘92之间的间距大于或小于光源30第一侧31与第二侧32之间的距离。可以理解,当第二焊盘92与光源30的第二侧32设置在同一水平面时,在光源30的出光方向上,设于光源30的第一侧31的第一焊盘91与第二焊盘92之间的间距,一定是等于第一侧31与第二侧32之间的距离的。第二焊盘92与位于光源30第一侧31的第一焊盘91电连接,若此时第二焊盘92与光源30直接接触,很容易会出现短路等故障,导致深度相机模组100不能正常工作。因此,需要使第二焊盘92与光源30之间保持一定的间距。然而,在本实施例中,由于在光源30的出光方向上,第一焊盘91与第二焊盘92之间的距离大于或小于光源30相背两侧之间的距离,因此第二焊盘92与光源30的第二侧32并没有设置在同一水平面上,也即第二焊盘92光源30的第二侧32之间存在高度差。此时,即便缩短第二焊盘92与光源30之间的横向间距,第二焊盘92也不会直接与光源30接触,如此能够在保证深度相机模组100正常工作的同时,进一步缩短深度相机模组100的基线距离。
示例地,请参阅图9,在一些实施例中,在光源30的出光方向上,第一承载面12与第二承载面13之间的距离为第一距离,光源30相背两侧之间的距离为第二距离。在第一承载面12到底面11的距离小于第二承载面13的距离的情况下,第一焊盘91与第二焊盘92之间的距离等于第一距离与第二距离之间的差值。具体地,如图9所示,第二焊盘92设于第二承载面13上,电连接线82的一端与光源30的第一侧31电连接,另一端与位于第二承载面13上的第二焊盘92电连接,以使光源30与10电连接。也即,电连接线82的一端与第一焊盘91电连接,另一端与第二焊盘92电连接。由于本实施例中将光源30承载在电路板10的第一承载面12上,通过电连接线82将光源10与位于第二承载面13上的第二焊盘92电连接,并且第一承载面12与第二承载面13具有一定高度差,如此相较于将第二焊盘92设于第一承载面13,能够在保证光源30与电路板10正常电连接的情况下,缩短第二焊盘92与光源30之间的横向距离,从而进一步缩短度相机模组100的基线距离。
需要说明的是,当光源30通过电连接线82与位于第二承载面13的第二焊盘92电连接时, 在一些实施例中,在光源30的出光方向上,光源30远离第一承载面12的一侧与第二承载面13之间的距离在预设范围内。也即,在光源30的出光方向上,光源30的第一侧31与第二承载面13之间的距离在预设范围内。通常采用金线作为电连接线82,而基于目前的工艺技术金线具有极限曲率,也即金线的曲率不能够过大。而在本实施例中,由于在光源30的出光方向上,光源30的第一侧31与第二承载面13之间的距离在预设范围内,如此能够使连接第一焊盘91及第二焊盘92的电连接线82的曲率维持在一定范围内,即不会超出金线的极限曲率,从而有利于降低制造深度相机模组100的难度。特别地,在一些实施例中,光源30的第一侧31与第二承载面13接近齐平,如此更有利于降低制造深度相机模组100的难度。
当然,在一些实施例中,在第一承载面12到底面11的距离小于第二承载面13的距离的情况下,第一焊盘91与第二焊盘92之间的距离还可以等于第一距离与第二距离之间的和。如此也能够在保证光源30与电路板10正常电连接的前提下,缩短第二焊盘92与光源30之间的横向距离,从而进一步缩短度相机模组100的基线距离。
请参阅图10,在一些实施例中,电路板10还包括连接第一承载面12与第二承载面13的连接面14。第二焊盘92还可以设于连接面14上,电连接线82的一端与光源30的第一侧31电连接,另一端与位于连接面14上的第二焊盘92电连接,以使光源30与10电连接。也即,电连接线82的一端与第一焊盘91电连接,另一端与第二焊盘92电连接。如此也能够在保证光源30与电路板10正常电连接的前提下,缩短第二焊盘92与光源30之间的横向距离,从而进一步缩短度相机模组100的基线距离。
在一些实施例中,传感器40直接安装在电路板10的第二承载面13,并与电路板10电连接。当然,在一些实施例中,电路板10也可以设有自第二承载面13向底面11凹陷的凹槽(图未示),传感器40收容于凹槽内。如此在传感器40与第二光学组件70之间的距离不改变的前提下,将传感器40设于凹槽内相较于直接将传感器40设于电路板10的第二承载面13,有利于使深度相机模组100的整体厚度减小。
请参阅图2,一体支架50固定安装于电路板10,并与电路板10形成容置腔503。容置腔503用于收容光源30和传感器40固定于支架50中的第一光学组件60能够与光源30对应,固定于支架50中的第二光学组件70能够与传感器40对应。其中,在一些实施例中,容置腔503的数量可以为1个,此时光源30与传感器40均收容于该容置腔503内;或者,在一些实施例中,容置腔503的数量还可以为两个,此时光源30和传感器40分别收容于不同容置腔503内。
具体地,请参阅图1及图2,在一些实施例中,一体支架50包括第一支撑件51、第二支撑件52及连接第一支撑件51及第二支撑件52的连接组件53。第一支撑件51及第二支撑件52间隔设置,并且分别固定于电路板10。其中,第一支撑件51与第二支撑件52可以通过不同的连接方式与电路板10的固定连接,当然第一支撑件51与第二支撑件52也可以通过相同的连接方式与电路板10固定连接,在此不作限制。此外,连接的方式包括但不限于粘接、卡接、螺纹连接等。
更具体地,第一支撑件51相较于第二支撑件52更靠近光源30,在一些实施例中,第一支撑件51与第二支撑件52均承载于第二承载面13。特别地,如图6所示,在一些实施例中,当第一承载面12到底面11的距离小于第二承载面13到底面11的距离时,第一支撑件51承载于第一承载面12,第二支撑件52承载于第二承载面。
连接组件53连接于第一支撑件51和第二支撑件52,连接组件53包括第一安装孔531及第二安装孔532。其中,第一安装孔531用于安装第一光学组件60,第二安装孔532用于安装第二光学组件70。示例地,第一安装孔531为轴线垂直于电路板10的通孔,以便于实现光束的传播,第一光学组件60设置在第一安装孔531内,并且第一光学组件60通过胶结剂与第一安装孔531固定连接,第一光学组件60的光轴与光源30的光轴相重合,以在支架50和电路板10固定连接后实现第一光学元组件与光源30的对应设置,以使第一光学组件60能够将光源30发射的光线引导至深度相机模组100外侧。当然,第一光学组件60还可以通过其他方式安装固定于第一安装孔531内,在此不作限制。
第二安装孔532为轴线垂直于电路板10的通孔,以便于实现光束的传播,并且第二光学组件70与第二安装孔532连接,在支架50和电路板10固定连接后,能够使第二光学元组件与光源30 的对应设置,以使待测物反射回的光线经由第二光学组件70引导至传感器40。
需要说明的是,在一些实施例中,深度相机模组100还包括滤光片84,滤光片84设于第二光学组件70与传感器40之间,滤光片84用于过滤预定波长范围以外的光线。具体地,在一些实施例中,滤光片84及第二光学组件70均安装在支架50的第二安装孔532内,以使待测物反射回的光线依次经过第二光学组件70及滤光片84后进入传感器40。
请参阅图8,在一些实施例中,第一光学组件60包括准直透镜61及第二衍射光学元件62,准直透镜61相较于第二衍射光学元件62更靠近光源30。准直透镜61用于准直光源30发射的光线,并将准直后的光线引导至第二衍射光学元件62。第二衍射光学元件62用于接收的光线进行复制后向深度相机模组100外投射。
在一些实施例中,光源30发射的光线形成平面图案。示例地,光源30包括多个发光元件(图未示),多个发光元件均能够发射光束,并且多个发光元件发射的光束形成平面图案。请参阅图2、图12至图14,第一光学组件60可以包括第一衍射光学元件63。第一衍射光学元件63设有集成微结构631,集成微结构631能够准直平面图案、及对平面图案进行复制,以向深度相机模组100外出射散斑图案。由于第一衍射光学元件63上的集成微结构631能够准直平面图案、及对平面图案进行复制以出射散斑图案,相较于采用不同光学元件分别实现准直及复制功能,本申请的深度相机模组100能够在不影响投射散斑图像的光学效果的前提下,还能够缩小深度相机模组100的体积,及降低深度相机模组100的制造成本。
此外,在保持第一光学组件60与第二承载面13之间的距离不变的情况下,第一承载面12到底面11的距离小于第二承载面13到底面11的距离,且光源30设于第一承载面12,相较于将光源30直接设置在第二承载面13,需要第一光学组件60具有更大的后焦。并且由于光源30周边的电子器件81及金线也会导致需要第一光学组件60的后焦变大。请参阅图11,可以理解,第一光学组件60的后焦越大,由光源30及第一光学组件60组合而成的光发射模组的体积越大,从而深度相机模组100的体积也越大。而在本实施例中采用设有集成微结构631同时实现传统的透镜组及衍射元件的功能,如此能够最大程度的释放光发射模组的空间,对于压缩深度相机模组100的基线极具帮助。也即,第一衍射光学元件63上的集成微结构631能够准直平面图案、及对平面图案进行复制以出射散斑图案,相较于采用不同光学元件分别实现准直及复制功能,能够进一步缩短深度相机模组100的基线。
具体地,集成微结构631可以由虚拟的基于相位的第一微结构和虚拟的第二微结构融合形成。其中,第一微结构用于对光线进行准直,第二微结构用于对接收到的光线形成的光斑起复制作用。例如,在一些实施例中,第一微结构为n台阶的衍射透镜的微结构或超透镜的微结构,其中n大于等于。如此第一微结构能够用于对光线进行准直。再例如,在一些实施例中,第二微结构为基于光栅的衍射微结构或基于超透镜的衍射微结构。如此第二微结构能够用于对接收到的光线形成的光斑起复制作用。
进一步地,请参阅图12及图13,第一衍射光学元件63包括相背的第一面6301及第二面6302,其中第一面6301朝向光源30,第二面6302远离光源30。也即光源30发射的光线会入射第一衍射光学元件63的第一面6301后由第一衍射光学元件63的第二面6302出射。集成微结构631可以设置在第一衍射光学元件63的第一面6301和/或第二面6302。例如,请参阅图12,在一些实施例中,集成微结构631可以设于第一衍射光学元件63的第一面6301,相较于设置在第一衍射光学元件63的第二面6302,有利于防止集成微结构631划伤、及避免水分及灰尘进入集成微结构631,从而延长深度相机模组100的使用寿命。再例如,请参阅图13,在一些实施例中,集成微结构631也可以设于第一衍射光学元件63的第二面6302。由于强光直接入射至集成微结构631可能会出现眩光,并且杂散光比较厉害,会影响深度相机模组100的检测精度。因此,本实施将集成微结构631设于远离光源30的第二面6302,能够在缩小深度相机模组100的体积的同时,还避免出现眩光及减少杂散光,有利于提升深度相机模组100的检测精度。当然,在一些实施例中,第一衍射光学元件63的相背两面均设置有集成微结构631,在此不作限制。
请参阅图14,在一些实施方式中,第一衍射光学元件63包括第一层632及第二层633,第一层632相较于第二层633更靠近光源30。集成微结构631位于第一层632及第二层633形成的密封腔634内。 由于集成微结构631收容在密封腔634内,能够避免水分和灰尘进入集成微结构631中,有利于延长深度相机模组100的使用寿命。需要说明的是,第一衍射光学元件63的第一层632及第二层633可以是塑料材质。当然,第一衍射光学元件63的第一层632及第二层633也可以是其他能够防水防尘的材质,在此不作限制。
在一些实施方式中,集成微结构631的空隙之间设置有填充物635(如图12所示)。如此,一方面,能够避免水分及灰尘进入集成微结构631的空隙之间,从而延长深度相机模组100的使用寿命;另一方面,还能够避免光源30发射的光束由集成微结构631的空隙之间直接射入人眼,从而提高深度相机模组100的安全性。需要说明的是,在一些实施例中,填充物635可以包括有机物或二氧化硅。
请参阅图15及图16,在一些实施例中,第二光学组件70包括相位型透镜71,相位型透镜71用于接收被物体反射回的至少部分光线并调节从相位型透镜71出射至传感器40的光线的相位。由于本实施例中的通过设置能够调节光线相位的相位型透镜71来代替传统折射透镜组,如此能够降低深度相机模组100的体积,还能够提升光线到达传感器40的照度,有利于传感器40接收光线,以提升深度相机模组100的检测精度。
需要说明的是,在一些实施例中,光线经过相位型透镜71到达传感器40的照度大于或等于98%。具体地,相位型透镜71包括衬底711及设置在衬底711上的相位微结构712。相位结构用于调节从相位型透镜71出射至传感器40的光线的相位。
更具体地,衬底711包括相背的第一面7111与第二面7112,第一面7111相较于第二面7112更远离传感器40。相位微结构712可以设置在衬底711的第一面7111和/或第二面7112。例如,请参阅图15,在一些实施例中,相位微结构712可以设置在衬底711的第一面7111上。由于相位微结构712对从相位型透镜71出射至传感器40的光线的相位进行调节,相较于光线直接穿过透镜后出射至传感器40,能够提升光线到达影像传感的照度。再例如,请参阅图16,在一些实施例中,相位微结构712也可以设置在衬底711的第二面7112上。由于强光直接入射至行为微结构可能会出现眩光,并且杂散光比较厉害,不利于传感器40接收光线,从而会影响深度相机模组100的检测精度。因此,本实施例将相位微结构712设置在衬底711的第二面7112,相较于将微结构设置在衬底711的第一面7111,能够在提升光线到达传感器40的照度的同时,避免出现眩光及减少杂散光,有利于传感器40接收光线,以提升深度相机模组100的检测精度。当然,在一些实施例中,衬底711的相背两面可以均设置有相位微结构712,在此不作限制。
需要说明的是,在一些实施例中,相位型透镜71为平面相位透镜,此时相位微结构712包括纳米微结构;或者,在一些实施例中,相位型透镜71为菲涅尔透镜,此时相位微结构712包括环形的菲涅尔微结构,在此不作限制。
请参阅图17,本申请实施方式还提供一种电子设备1000。电子设备1000包括壳体200及上述任意一项实施例中所述的深度相机模组100,深度相机模组100与壳体200结合。需要说明的是,电子设备1000可以是手机、电脑、平板电脑、智能手表、智能穿戴设备等,在此不作限制。
本申请中的电子设备1000,通过将深度相机模组100中的传感器40及光源30安装在同一块电路板10上,并且第一光学组件60及第二光学组件70均固定安装于一体支架50,相较于传统的深度相机模组(发射端与接收端都各自有单独的支架及各自单独的电路板)能够使深度相机模组100结构更加紧凑,并且还能缩短深度相机模组100的基线距离。另外,本申请的深度相机模组100通过将光源30承载在电路板10的第一承载面12上,并且第一承载面12与第二承载面13具有一定高度差,能够在缩短深度相机模组100的基线距离的同时,给需要设置在电路板10上的电子器件81(如图5所示)留有更多空间,从而在缩短深度相机模组100的基线距离的同时保证深度相机模组100正常工作。
请参阅图18,本申请实施方式还提供一种拍摄组件300。拍摄组件300包括二维相机模组301及上述任意一项实施例中所述的深度相机模组100。二维相机模组301用于获取二维图像,深度相机模组100用于获取深度信息图像。深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离小于第二预设距离。由于深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离小于第二预设距离,如此能够使深度相机模组100的视场与二维相机模组301的视场相接近,从而有利于拍摄组件300同时获取同一视场下的二维图像及深度信息图像。其中, 二维相机模组301可以是彩色相机模组,此时获取的二维图像为彩色图像;或者,二维相机模组301也可以是黑白相机模组,此时获取的二维图像为黑白图像,在此不作限制。
需要说明的是,在一些实施例中,第二预设距离可以为2cm。也即深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离小于2cm。例如,度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离可以为1.8cm、1.3cm、1cm、0.8cm等,在此不作限制。当然,在一些实施例中,深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离也可以为2cm。优选地,在一些实施例中,深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离为1.5cm,如此即能够保持深度相机模组100的视场与二维相机模组301的视场相接近,又能够使深度相机模组100与与二维相机模组301之间保持一定距离,以避免深度相机模组100在工程过程中产生的温度影响二维相机模组301正常工作。
在一些实施例中,在拍摄组件300工作时,深度相机模组100的温度小于预设温度。其中,在一些实施例中,预设温度可以为60℃。也即,在拍摄组件300工作时,深度相机模组100的温度小于60℃。例如,在拍摄组件300工作时,深度相机模组100的温度可以为55℃、50℃、48℃、45℃、42℃、35℃、30℃等。由于深度相机模组100的温度小于预设温度,能够避免深度相机模组100的温度过高,影响设置在其周围的元件(例如二维相机模组301)的正常工作。优选地,在一些实施例中,在拍摄组件300工作时,深度相机模组100的温度稳定在45℃左右。
请参阅图18,本申请实施方式还提供一种电子设备1000。电子设备1000包括壳体200及上述任意一项实施例中所述的拍摄组件300,拍摄组件300与壳体200结合。需要说明的是,电子设备1000可以是手机、电脑、平板电脑、智能手表、智能穿戴设备等,在此不作限制。
本申请中的电子设备1000,通过在拍摄组件300中设置深度相机模组100的传感器40的中心与二维相机模组301的中心之间的距离小于第二预设距离。如此能够使深度相机模组100的视场与二维相机模组301的视场相接近,从而有利于电子设备1000同时获取同一视场下的二维图像及深度信息图像。
请参阅图2、图19及图20,本申请实施方式提供一种深度相机模组100的组装方法。组装方法包括:
011:提供一电路板10,电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同;
012:将光源30安装于第一承载面12,并与电路板10电连接,光源30用于发射光线,将传感器40安装于第二承载面13,并与电路板10电连接,传感器40用于接收被物体反射回的至少部分光线并转换为电信号;
013:将第一光学组件60固定安装于一体支架50;
014:将安装有第一光学组件60的支架50与电路板10固定连接,支架50与电路板10形成容置腔503,光源30与传感器40收容在容置腔503内,以使第一光学组件60与光源30对应,第一光学组件60用于将光源30发射的光线引导至深度相机模组100外;
015:将第二光学组件70固定安装于支架50,以使第二光学组件70与传感器40对应,第二光学组件70用于接收被物体反射回的至少部分光线,并将光线引导至传感器40。
本申请中的深度相机模组100的组装方法,通过将深度相机模组100中传感器40及光源30安装在同一块电路板10上,并且第一光学组件60及第二光学组件70均固定安装于一体支架50,相较于传统的深度相机模组(发射端与接收端都各自有单独的支架及各自单独的电路板)能够使深度相机模组100结构更加紧凑,并且还能缩短深度相机模组100的基线距离。此外,该组装方法有利于消除深度相机模组100的组装公差。
具体地,请结合图20,提供一电路板10、光源30及传感器40,其中,光源30用于发射光线,传感器40用于接收被物体反射回的至少部分光线并转换为电信号。电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同。也即第一承载面12与第二承载面13之间具有高度差。例如,在一些实施例中,第一承载面12到底面11的距离小于第二承载面13到底面11的距离。再例如,在一些实施例中,第一承载面12到底面11的距离大于第二承载面13到底面11的距离。
将光源30安装于第一承载面12,并与电路板10电连接。由于通常在光源30周围还会设置其他的电子器件81,电子器件81需要与光源30之间有一定的间隔(如图5左侧所示),而将光源30设置在第一承载面12,且第一承载面12与第二承载面13之间存在高度差,能够缩短电子器件81与光源30横向间距的同时,还能够避免电子器件81与光源30接触(如图5右侧所示)。如此能够在缩短深度相机模组100的基线距离的同时,给需要设置在电路板10上的电子器件81(如图5所示)留有更多空间,从而在缩短深度相机模组100的基线距离的同时保证深度相机模组100正常工作。
具体地,在一些实施例中,可以将光源30通过粘胶安装于第一承载面12。随后,可以通过金线绑定工艺实现光源30与电路板10电连接。示例地,如图8至图10所示,光源30包括相背的第一侧31及第二侧32,其中第二侧32与电路板10结合,第一侧31设有第一焊盘91。电路板10上设有第二焊盘92,还提供电连接线82,通过电连接线82将第一焊盘91与第二焊盘92电连接,以实现光源30与电路板10的电连接。其中,第二焊盘92可以设置在第一承载面12、第二承载面13及连接面14中的任何一个上,在此不作限制。
将传感器40安装于第二承载面13,并与电路板10电连接。具体地,在一些实施例中,可以将传感器40通过粘胶安装至第二承载面13。之后可以通过金线绑定工艺实现传感器40与电路板10电连接,也即通过导线(例如金线,或其他可导电的引线)连接传感器40上的焊盘与电路板10上的焊盘,以使传感器40与电路板10电连接。
将第一光学组件60固定安装于一体支架50。具体地,将第一光学组件60安装至支架50的第一安装孔531内。例如,在一些实施例中,第一光学组件60可以通过胶粘的方式固定在第一安装孔531内。
请参阅图20,在一些实施例中,支架50包括相背的第一侧501及第二侧502,在将支架50与电路板10组装后,第一侧501相较于第二侧502更靠近电路板10。第一光学组件60包括准直透镜61及第二衍射光学元件62,准直透镜61用于准直光源30发射的光线,第二衍射光学元件62用于接收准直后的光线,并对接收到的光线进行复制后向深度相机模组100外投射。此时,在一些实施例中,将第一光学组件60固定安装于一体支架50包括:沿支架50的第二侧502向第一侧501的方向,依次将第二衍射光学元件62及准直透镜61固定安装至支架50的第一安装孔531内。
具体地,沿支架50的第二侧502向第一侧501的方向,将第二衍射光学元件62放置第一安装孔531内,之后将第二衍射光学元件62与第一安装孔531固定连接。例如,在一些实施例中,第二衍射光学元件62可以通过粘胶与第一安装孔531贴合。随后沿相同的方向,即依旧沿支架50的第二侧502向第一侧501的方向,将准直透镜61放置第一安装孔531内,之后将第二衍射光学元件62与第一安装孔531固定连接。同样地,在一些实施例中,准直透镜61也可以通过粘胶与第一安装孔531贴合。如此便将第一光学组件60固定安装至支架50。需要说明的是,在安装准直透镜61时,需要先根据第一安装孔531内的第二衍射光学元件62进行对位,在完成对位后再将准直透镜61固定,以使经过准直透镜61准直后的光线能够顺利进入至第二衍射光学元件62。
随后将安装有第一光学组件60的支架50安装至设有传感器40及光源30的电路板上,支架50与电路板10形成容置腔503(如图2所示),光源30与传感器40收容在容置腔503内,以使第一光学组件60与光源30对应,第一光学组件60用于将光源30发射的光线引导至深度相机模组100外。示例地,在一些实施例中,通过对准工艺(Active Alignment,AA制程,下同,在此不再赘述)将安装在支架50上的第一光学组件60与设于电路板10上的光源30进行对位,在完成对位后将支架50固定在电路板10,及第一光学组件60与光源30对应。需要说明的是,在一些实施例中,通过对准工艺对位第一光学组件60和光源30,并逐渐调整第一光学组件60和光源30之间的相对位置,以使得第一光学组件60和光源30逐渐接近正对设置。在调整第一光学组件60和光源30之间的相对位置满足第一光学组件60和光源30的对位精度后,将支架50与电路板10固定,保证连接的稳定性。
在安装好第一光学组件60后,将第二光学组件70安装于支架50,以使第二光学组件70与传感器40对应,第二光学组件70用于接收被物体反射回的至少部分光线,并将光线引导至传感器40。示例地,在一些实施例中,通过对准工艺将第二光学组件70与设于电路板10上的传感器40进行对位,在完成对位后将第二光学组件70安装在支架50的第二安装孔532内,以使第二光学组件70与传感器40对应。由于通常在深度相机模组100组装的过程中,若需要将接收端的第二光学组件70对齐到深度相 机模组100中时,需要结合发射端(即由光源30及第一光学组件60组合而成的光发射模组)投射的散斑来进行误差修正,较为复杂,而本实施例中,通过对准工艺将第二光学组件70与设于电路板10上的传感器40进行对位,能够记载尽量消除平移、旋转、倾斜带来的影响的同时,降低深度相机模组100组装的难度。
在一些实施例中,在将安装有第一光学组件60的支架50与电路板10固定连接之前,组装方法还包括:将滤光片84安装于支架50的第二安装孔532内,滤光片84用于过滤预定波长范围以外的光线。具体地,在一些实施例中,在将安装有第一光学组件60的支架50安装于电路板10之前,还可以将滤光片84安装于支架50的第二安装孔532内,随后再将安装有第一光学组件60及滤光片84的支架50安装于电路板10。其中,安装滤光片84可以在安装第一光学组件60之前,也可以在安装第一光学组件60之后,在此不作限制。
请参阅图2、图21及图22,本申请实施方式还提供一种深度相机模组100的组装方法。组装方法包括:
021:提供一电路板10,电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同;
022:将光源30安装于第一承载面12,并与电路板10电连接,光源30用于发射光线,将传感器40安装于第二承载面13,并与电路板10电连接,传感器40用于接收被物体反射回的至少部分光线并转换为电信号;
0242:将一体支架50与电路板10固定连接,支架50与电路板10形成容置腔503,光源30与传感器40收容在容置腔503内;
024:将第一光学组件60及第二光学组件70固定在支架50上,以使第一光学组件60与光源30对应、及第二光学组件70与传感器40对应,第一光学组件60用于将光源30发射的光线引导至深度相机模组100外,第二光学组件70用于接收被物体反射回的至少部分光线,并将光线引导至传感器40。
本申请中的深度相机模组100的组装方法,通过将深度相机模组100中传感器40及光源30安装在同一块电路板10上,并且第一光学组件60及第二光学组件70均固定安装于支架50,相较于传统的深度相机模组(发射端与接收端都各自有单独的支架及各自单独的电路板)能够使深度相机模组100结构更加紧凑,并且还能缩短深度相机模组100的基线距离。此外,该组装方法有利于消除深度相机模组100的组装公差。
具体地,请结合图22,提供一电路板10、光源30及传感器40,其中,光源30用于发射光线,传感器40用于接收被物体反射回的至少部分光线并转换为电信号。电路板10包括底面11、第一承载面12及第二承载面13,第一承载面12到底面11的距离与第二承载面13到底面11的距离不同。也即第一承载面12与第二承载面13之间具有高度差。例如,在一些实施例中,第一承载面12到底面11的距离小于第二承载面13到底面11的距离。再例如,在一些实施例中,第一承载面12到底面11的距离大于第二承载面13到底面11的距离。
将光源30安装于第一承载面12,并与电路板10电连接;及将传感器40安装于第二承载面13,并与电路板10电连接。光源30及传感器40的具体安装方式,与上文实施例中光源30及传感器40的具体安装方式相同,在此不作赘述。
随后将支架50与电路板10固定连接,支架50与电路板10形成容置腔503(如图2所示),光源30与传感器40收容在容置腔503内。具体地,将支架50固定安装在电路板10支架50与电路板10形成容置腔503,光源30与传感器40收容在容置腔503内。需要说明的是,此时需要使支架50的第一安装孔531与光源30对应,以便光源30发射的光线能够通过第一安装孔531射出;使支架50的第二安装孔532与传感器40对应,以便被待测物反射回的至少部分光线能够通过第二安装孔532射入传感器40。
在支架50与电路板10组装完成后,将第一光学组件60及第二光学组件70固定在支架50上,以使第一光学组件60与所述光源30对应、及第二光学组件70与传感器40对应,第一光学组件60用于将光源30发射的光线引导至深度相机模组100外,第二光学组件70用于接收被物体反射回的至少部分光线,并将光线引导至传感器40。
具体地,请参阅图23及图24,在一些实施例中,将第一光学组件60及第二光学组件70固定在支 架50上,以使第一光学组件60与光源30对应、及所述第二光学组件70与所述传感器40对应,可以包括:
0241:将第一光学组件60固定安装于支架50,以使第一光学组件60与光源30对应;及将第二光学组件70固定安装于设有第一光学组件60的支架50,以使第二光学组件70与传感器40对应。
在支架50与电路板10组装完成后,在一些实施例中,先将第一光学组件60固定安装于支架50,以使第一光学组件60与光源30对应。示例地,将第一光学组件60放置支架50的第一安装孔531内,之后将第一光学组件60与光源30进行对齐校准。例如,在一个例子中,该步骤需要将第一光学组件60与光源30进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准。在对齐校准之后,将第一光学组件60通过胶粘与支架50固定连接。如此便将第一光学组件60固定安装于支架50,且第一光学组件60与光源30对应,此时光源30发射的光线能够通过第一光学组件60出射至深度相机模组100外。当然第一光学组件60也可以通过其它方式与支架50固定连接,在此不作限制。
请参阅图24,在一些实施例中,支架50包括相背的第一侧501及第二侧502,在将支架50与电路板10组装后,第一侧501相较于第二侧502更靠近电路板10。第一光学组件60包括准直透镜61及第二衍射光学元件62,准直透镜61用于准直光源30发射的光线,第二衍射光学元件62用于接收准直后的光线,并对接收到的光线进行复制后向深度相机模组100外投射。此时,在一些实施例中,将第一光学组件60固定安装于支架50包括:沿支架50的第一侧501向第二侧502的方向,依次将准直透镜61及第二衍射光学元件52固定安装至支架50的第一孔内。
具体地,沿支架50的第一侧501向第二侧502的方向,将准直透镜61放置第一安装孔531内,之后将准直透镜61与光源30进行对齐校准。例如,在一个例子中,该步骤需要将第一光学组件60与光源30进行平移、倾斜、旋转的AA对齐校准。在对齐校准之后,将准直透镜61与支架50固定连接。之后在沿支架50的第一侧501向第二侧502的方向,将第二衍射光学元件62组装进第一安装孔531内。该步骤中需要进行倾斜和旋转AA对齐校准。在对齐校准之后,将第二衍射光学元件62与支架50固定连接,如此便将第一光学组件60固定安装于支架50。一方面,由于在本实施例中,准直透镜61与第二衍射光学元件62均是沿支架50的第一侧501向第二侧502的方向组装进第一安装孔531内的,相较于倒装(即沿支架50的第二侧502向第一侧501的方向组装进第一安装孔531),更有利于自动化组装;另一方面,若是直接将设有第二衍射光学元件62及准直透镜61的支架50安装到电路板10上,由于第二衍射光学元件62及准直透镜61已经组装完成,在结合光源30进行对齐校准时,无法消除第二衍射光学元件62及准直透镜61之间的倾斜和/或旋转误差。然而,在本实施例中,由于是先将支架50与设有光源30的电路板10组装后,再依次装配准直透镜61及第二衍射光学元件62,相较于直接将设有第二衍射光学元件62及准直透镜61的支架50安装到电路板10上,有利于减小深度相机模组100的组装公差。
随后,将第二光学组件70固定安装于设有第一光学组件60的支架50,以使第二光学组件70与传感器40对应。示例地,将第二光学组件70放置支架50的第二安装孔532内,之后对第二光学组件70进行对齐校准,例如,在一个例子中,该步骤需要将第二光学组件70与传感器40进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准;或者,该步骤需要将第二光学组件70与光发射模组进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准,其中光发射模组由第一光学组件60及光源30组合而成。在对齐校准之后,将第二光学组件70通过胶粘与支架50固定连接。如此便将第二光学组件70固定安装于支架50,且第二光学组件70与传感器40对应,此时被待测物反射回的至少部分光线能够通过第二光学组件70入射至传感。当然第二光学组件70也可以通过其它方式与支架50固定连接,在此不作限制。
在一些实施例中,也可以先安装第二光学组件70再安装第一光学组件60。具体地,请参阅图25及图26,在一些实施例中,将第一光学组件60及第二光学组件70固定在支架50上,以使第一光学组件60与光源30对应、及所述第二光学组件70与所述传感器40对应,还可以包括:
0242:将第二光学组件70固定于支架50,以使第二光学组件70与传感器40对应;及将第一光学元件固定安装于设有第二光学组件70的支架50,以使第一光学组件60与光源30对应。
在支架50与电路板10组装完成后,在一些实施例中,先将第二光学组件70固定安装于支架50,以使第二光学组件70与传感器40对应。示例地,将第二光学组件70放置支架50的第二安装孔532内, 之后将第二光学组件70与传感器40进行对齐校准。例如,在一个例子中,该步骤需要将第一光学组件60与传感器40进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准。在对齐校准之后,将第二光学组件70通过胶粘与支架50固定连接。如此便将第二光学组件70固定安装于支架50,且第二光学组件70与传感器40对应,此时经过第二光学组件70的光线能够入射至传感器40。当然第二光学组件70也可以通过其它方式与支架50固定连接,在此不作限制。
随后,将第一光学组件60固定安装于设有第二光学组件70的支架50,以使第一光学组件60与光源30对应。示例地,将第一光学组件60放置支架50的第一安装孔531内,之后对第一光学组件60进行对齐校准,例如,在一个例子中,该步骤需要将第一光学组件60与光源30进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准;或者,该步骤需要将第一光学组件60与光接收模组进行平移、倾斜、旋转的AA(Active Alignment,AA)对齐校准中的至少一种对齐校准,其中光接收模组由第二光学组件70及传感器40组合而成。在对齐校准之后,将第一光学组件60通过胶粘与支架50固定连接。如此便将第一光学组件60固定安装于支架50,且第一光学组件60与光源30对应。此时光源30发射的光线能够通过第一光学组件60出射,并且被待测物反射回的至少部分光线能够通过第二光学组件70入射至传感。当然第一光学组件60也可以通过其它方式与支架50固定连接,在此不作限制。
需要说明的是,当第一光学组件60包括准直透镜61及第二衍射光学元件62时,准直透镜61及第二衍射光学元件62的具体安装方法,与上述实施例中准直透镜61及第二衍射光学元件62的具体安装方法相同,在此不再赘述。
在一些实施例中,在将第一光学组件60及第二光学组件70固定在支架50之前,组装方法还包括:将滤光片84安装于支架50的第二安装孔532内,滤光片84用于过滤预定波长范围以外的光线。具体地,在一些实施例中,在将支架50与电路板10固定连接之前,还可以将滤光片84安装于支架50的第二安装孔532内,随后再将安装有滤光片84的支架50安装于电路板10。当然,在一些实施例中,也可以在将支架50与电路板10固定连接之后,在安装第二光学组件70之前安装滤光片84,在此不作限制,只需要滤光片84在第二光学组件70之前安装至支架50即可。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (24)

  1. 一种深度相机模组,其中,包括:
    电路板,所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;
    光源,所述光源承载于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线;
    传感器,所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;
    一体支架,所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器;及
    设于所述支架上的第一光学组件及第二光学组件,所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
  2. 根据权利要求1所述的深度相机模组,其中,所述传感器的中心与所述光源中心之间的距离小于第一预设距离。
  3. 根据权利要求1所述的深度相机模组,其中,所述光源远离所述电路板的一侧设有第一焊盘,所述第一焊盘用于与所述电路板上的第二焊盘电连接,以使所述光源与所述电路板电连接;其中,在所述光源的出光方向上,所述第一焊盘与所述第二焊盘之间的距离大于或小于所述光源的相背两侧之间的距离。
  4. 根据权利要求1所述的深度相机模组,其中,所述光源包括相背的第一侧及第二侧,所述第二侧安装于所述第一承载面,所述深度相机模组还包括电连接线,
    所述电连接线的一端与所述第一侧电连接,另一端与位于所述第一承载面上的第二焊盘电连接;或
    所述电连接线的一端与所述第一侧电连接,另一端与位于所述第二承载面上的第二焊盘电连接;或
    所述电连接线的一端与所述第一侧电连接,另一端与位于连接面上的第二焊盘电连接,其中所述连接面连接所述第一承载面与所述第二承载面。
  5. 根据权利要求1所述的深度相机模组,其中,所述支架包括第一支撑件、第二支撑件、及连接所述第一支撑件及所述第二支撑件的连接组件,其中,所述第一支撑件及所述第二支撑件分别固定于所述电路板,所述连接组件包括:
    第一安装孔,用于安装所述第一光学组件及
    第二安装孔,用于安装所述第二光学组件。
  6. 根据权利要求1所述的深度相机模组,其中,所述光源发射的光线形成平面图案,所述第一光学组件包括:
    第一衍射光学元件,所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制,以向飞行模组外出射散斑图案。
  7. 根据权利要求1所述的深度相机模组,其中,所述第一光学组件包括:
    准直透镜,用于准直所述光源发射的光线;及
    第二衍射光学元件,用于接收准直后的所述光线,并对接收到的所述光线进行复制后向所述深度相机模组外投射。
  8. 根据权利要求1所述的深度相机模组,其中,所述第二光学组件包括:
    相位型透镜,所述相位型透镜用于接收被物体反射回的至少部分所述光线,并调节从所述相位型透镜出射至所述传感器的光线的相位。
  9. 根据权利要求1所述的深度相机模组,其中,所述深度相机模组还包括滤光片,所述滤光片设于所述第二光学组件与所述传感器之间,所述滤光片用于过滤预定波长范围以外的光线。
  10. 一种电子设备,其中,包括:
    壳体;及
    深度相机模组,所述壳体与所述深度相机模组结合,所述深度相机模组包括电路板、光源、传感器、一体支架、设于所述支架上的第一光学组件及第二光学组件;所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;所述光源承载于 所述第一承载面,并与所述电路板电连接,所述光源用于发射光线;所述传感器安装于所述电路板,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;所述支架安装于所述电路板,并与所述电路板形成容置腔,所述容置腔用于收容所述光源和所述传感器;所述第一光学组件与所述光源对应设置,用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件与所述传感器对应设置,用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
  11. 根据权利要求10所述的电子设备,其中,所述传感器的中心与所述光源中心之间的距离小于第一预设距离。
  12. 根据权利要求10所述的电子设备,其中,所述光源远离所述电路板的一侧设有第一焊盘,所述第一焊盘用于与所述电路板上的第二焊盘电连接,以使所述光源与所述电路板电连接;其中,在所述光源的出光方向上,所述第一焊盘与所述第二焊盘之间的距离大于或小于所述光源的相背两侧之间的距离。
  13. 根据权利要求10所述的电子设备,其中,所述光源包括相背的第一侧及第二侧,所述第二侧安装于所述第一承载面,所述深度相机模组还包括电连接线,
    所述电连接线的一端与所述第一侧电连接,另一端与位于所述第一承载面上的第二焊盘电连接;或
    所述电连接线的一端与所述第一侧电连接,另一端与位于所述第二承载面上的第二焊盘电连接;或
    所述电连接线的一端与所述第一侧电连接,另一端与位于连接面上的第二焊盘电连接,其中所述连接面连接所述第一承载面与所述第二承载面。
  14. 根据权利要求10所述的电子设备,其中,所述支架包括第一支撑件、第二支撑件、及连接所述第一支撑件及所述第二支撑件的连接组件,其中,所述第一支撑件及所述第二支撑件分别固定于所述电路板,所述连接组件包括:
    第一安装孔,用于安装所述第一光学组件及
    第二安装孔,用于安装所述第二光学组件。
  15. 根据权利要求10所述的电子设备,其中,所述光源发射的光线形成平面图案,所述第一光学组件包括:
    第一衍射光学元件,所述衍射光学元件设有集成微结构,所述集成微结构能够准直所述平面图案、及对所述平面图案进行复制,以向飞行模组外出射散斑图案。
  16. 根据权利要求10所述的电子设备,其中,所述第一光学组件包括:
    准直透镜,用于准直所述光源发射的光线;及
    第二衍射光学元件,用于接收准直后的所述光线,并对接收到的所述光线进行复制后向所述深度相机模组外投射。
  17. 根据权利要求10所述的电子设备,其中,所述第二光学组件包括:
    相位型透镜,所述相位型透镜用于接收被物体反射回的至少部分所述光线,并调节从所述相位型透镜出射至所述传感器的光线的相位。
  18. 根据权利要求10所述的电子设备,其中,所述深度相机模组还包括滤光片,所述滤光片设于所述第二光学组件与所述传感器之间,所述滤光片用于过滤预定波长范围以外的光线。
  19. 一种拍摄组件,其中,包括:
    二维相机模组,用于获取二维图像;及
    权利要求1-9任意一项所述的深度相机模组,所述深度相机模组用于获取深度信息图像,所述深度相机模组的所述传感器的中心与所述二维相机模组的中心之间的距离小于第二预设距离。
  20. 根据权利要求19所述的拍摄组件,其中,在所述拍摄组件工作时,所述深度相机模组的温度小于预设温度。
  21. 一种电子设备,其中,包括:
    壳体;及
    权利要求19或20所述的拍摄组件,所述壳体与所述拍摄组件结合。
  22. 一种深度相机模组的组装方法,其中,包括:
    提供一电路板,所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;
    将光源安装于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线,将所述深度相机模组的传感器安装于所述第二承载面,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;
    将第一光学组件固定安装于一体支架;
    将安装有所述第一光学组件的所述支架与所述电路板固定连接,所述支架与所述电路板形成容置腔,所述光源与所述传感器收容在所述容置腔内,以使所述第一光学组件与所述光源对应,所述第一光学组件用于将所述光源发射的光线引导至所述深度相机模组外;
    将第二光学组件固定安装于所述支架,以使所述第二光学组件与所述传感器对应,所述第二光学组件用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
  23. 一种深度相机模组的组装方法,其中,包括:
    提供一电路板,所述电路板包括底面、第一承载面及第二承载面,所述第一承载面到所述底面的距离与所述第二承载面到所述底面的距离不同;
    将光源安装于所述第一承载面,并与所述电路板电连接,所述光源用于发射光线,将所述深度相机模组的传感器安装于所述第二承载面,并与所述电路板电连接,所述传感器用于接收被物体反射回的至少部分所述光线并转换为电信号;
    将一体支架与所述电路板固定连接,所述支架与所述电路板形成容置腔,所述光源与所述传感器收容在所述容置腔内;
    将第一光学组件及第二光学组件固定在所述支架上,以使所述第一光学组件与所述光源对应、及所述第二光学组件与所述传感器对应,所述第一光学组件用于将所述光源发射的光线引导至所述深度相机模组外,所述第二光学组件用于接收被物体反射回的至少部分所述光线,并将所述光线引导至所述传感器。
  24. 根据权利要求23所述的组装方法,其中,所述将第一光学组件及第二光学组件固定在所述支架上,以使所述第一光学组件与所述光源对应、及所述第二光学组件与所述传感器对应,包括:
    将所述第一光学组件固定安装于所述支架,以使所述第一光学组件与所述光源对应;及将所述第二光学组件固定安装于设有所述第一光学组件的所述支架,以使所述第二光学组件与所述传感器对应;或
    将所述第二光学组件固定于所述支架,以使所述第二光学组件与所述传感器对应;及将所述第一光学元件固定安装于设有所述第二光学组件的所述支架,以使所述第一光学组件与所述光源对应。
PCT/CN2022/142268 2022-03-11 2022-12-27 深度相机模组及其组装方法、拍摄组件和电子设备 WO2023169055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210239195.XA CN114640765A (zh) 2022-03-11 2022-03-11 深度相机模组及其组装方法、拍摄组件和电子设备
CN202210239195.X 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023169055A1 true WO2023169055A1 (zh) 2023-09-14

Family

ID=81948039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142268 WO2023169055A1 (zh) 2022-03-11 2022-12-27 深度相机模组及其组装方法、拍摄组件和电子设备

Country Status (2)

Country Link
CN (1) CN114640765A (zh)
WO (1) WO2023169055A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114706092A (zh) * 2022-03-11 2022-07-05 Oppo广东移动通信有限公司 飞行时间模组及其组装方法、拍摄组件和终端
CN114640765A (zh) * 2022-03-11 2022-06-17 Oppo广东移动通信有限公司 深度相机模组及其组装方法、拍摄组件和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290304A (zh) * 2019-07-29 2019-09-27 Oppo广东移动通信有限公司 深度相机及终端
CN111950539A (zh) * 2020-07-15 2020-11-17 欧菲微电子技术有限公司 Tof模组及制备方法、电子装置
WO2021026829A1 (zh) * 2019-08-14 2021-02-18 Oppo广东移动通信有限公司 光发射模组、光接收模组、深度相机和电子设备
CN112393691A (zh) * 2019-08-14 2021-02-23 Oppo广东移动通信有限公司 光发射模组、深度相机及电子设备
CN214895815U (zh) * 2021-04-01 2021-11-26 奥比中光科技集团股份有限公司 一种ToF深度相机及电子设备
CN114640765A (zh) * 2022-03-11 2022-06-17 Oppo广东移动通信有限公司 深度相机模组及其组装方法、拍摄组件和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319034B (zh) * 2018-02-27 2020-08-14 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
CN207780465U (zh) * 2018-02-27 2018-08-28 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置
CN109737868A (zh) * 2018-12-21 2019-05-10 华为技术有限公司 飞行时间模组及电子设备
CN111596507B (zh) * 2020-05-11 2022-04-22 常州纵慧芯光半导体科技有限公司 一种摄像模组及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290304A (zh) * 2019-07-29 2019-09-27 Oppo广东移动通信有限公司 深度相机及终端
WO2021026829A1 (zh) * 2019-08-14 2021-02-18 Oppo广东移动通信有限公司 光发射模组、光接收模组、深度相机和电子设备
CN112393691A (zh) * 2019-08-14 2021-02-23 Oppo广东移动通信有限公司 光发射模组、深度相机及电子设备
CN111950539A (zh) * 2020-07-15 2020-11-17 欧菲微电子技术有限公司 Tof模组及制备方法、电子装置
CN214895815U (zh) * 2021-04-01 2021-11-26 奥比中光科技集团股份有限公司 一种ToF深度相机及电子设备
CN114640765A (zh) * 2022-03-11 2022-06-17 Oppo广东移动通信有限公司 深度相机模组及其组装方法、拍摄组件和电子设备

Also Published As

Publication number Publication date
CN114640765A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2023169055A1 (zh) 深度相机模组及其组装方法、拍摄组件和电子设备
TWI735232B (zh) 光發射器或光偵測器模組及製造一光發射器或光偵測器模組之方法
US6490392B1 (en) Optical transmission system
WO2020125388A1 (zh) 飞行时间模组及电子设备
WO2020038060A1 (zh) 激光投射模组及其控制方法、图像获取设备和电子装置
US9971111B1 (en) Alignment mechanism of optical interconnect structure
CN1732399A (zh) 用于光电互连的组装、连接和耦合
WO2017123151A1 (en) Optoelectronic modules having features for improved alignment and reduced tilt
JP2006215288A (ja) 光学部品、光デバイス、電子機器
US20220277536A1 (en) Integrated electronic module for 3d sensing applications, and 3d scanning device including the integrated electronic module
KR20050100642A (ko) 광전자 입력 디바이스, 상기 디바이스의 제조 방법, 및상기 디바이스를 사용하여 대상의 움직임을 측정하는 방법
WO2023169057A1 (zh) 飞行时间模组及其组装方法、拍摄组件和终端
US20120327223A1 (en) Object detecting device and information acquiring device
TWI694296B (zh) 光學投射裝置
TW202108934A (zh) 結合增強安全特徵及熱管理之發光模組
CN215599370U (zh) 飞行时间摄像模组和电子设备
WO2020253686A1 (zh) 激光投射模组、深度相机和电子装置
CN112393691B (zh) 光发射模组、深度相机及电子设备
WO2021026829A1 (zh) 光发射模组、光接收模组、深度相机和电子设备
US20210124181A1 (en) Projection module, structured light three-dimensional imaging device and electronic apparatus
CN211015427U (zh) 一种光电输入装置及光电输入设备
WO2023044915A1 (zh) 测距装置和具有该测距装置的可移动平台
KR102328180B1 (ko) 라이다 모듈용 기판의 접합 방법
CN112995453B (zh) 深度信息摄像模组及其组装方法
TWI305625B (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930674

Country of ref document: EP

Kind code of ref document: A1