WO2021261389A1 - 光電変換素子、撮像素子、光センサ、化合物 - Google Patents

光電変換素子、撮像素子、光センサ、化合物 Download PDF

Info

Publication number
WO2021261389A1
WO2021261389A1 PCT/JP2021/023174 JP2021023174W WO2021261389A1 WO 2021261389 A1 WO2021261389 A1 WO 2021261389A1 JP 2021023174 W JP2021023174 W JP 2021023174W WO 2021261389 A1 WO2021261389 A1 WO 2021261389A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
compound
substituent
conversion element
Prior art date
Application number
PCT/JP2021/023174
Other languages
English (en)
French (fr)
Inventor
和平 金子
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180044170.8A priority Critical patent/CN115769705A/zh
Priority to JP2022531932A priority patent/JP7454671B2/ja
Publication of WO2021261389A1 publication Critical patent/WO2021261389A1/ja
Priority to US18/145,019 priority patent/US20230147152A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element, an image pickup element, an optical sensor, and a compound.
  • a planar solid-state image sensor in which photodiodes (PDs) are two-dimensionally arranged and signal charges generated in each PD are read out by a circuit is widely used.
  • a structure in which a color filter that transmits light of a specific wavelength is arranged on the light incident surface side of the planar solid-state image sensor is common.
  • a single plate type in which color filters that transmit blue (B: blue) light, green (G: green) light, and red (R: red) light are regularly arranged on each PD arranged two-dimensionally.
  • Solid-state image sensors are well known.
  • Patent Document 1 discloses a photoelectric conversion element containing the following compound.
  • Another object of the present invention is to provide a photoelectric conversion element exhibiting excellent external quantum efficiency and responsiveness to light having any wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region. .. Another object of the present invention is to provide an image pickup device, an optical sensor, and a compound related to the photoelectric conversion element.
  • X 13 represents CR a4- in the equation (1).
  • X 12 represents a sulfur atom in the formula (1).
  • R a1 may have a substituent, an aryl group, a heteroaryl group, an alkenyl group, or alkynyl group, any one of [1] to [3] The photoelectric conversion element according to one.
  • the photoelectric conversion element according to any one of [1] to [4] wherein Y 11 represents an oxygen atom in the formula (1).
  • the photoelectric conversion film further contains an n-type semiconductor material and has a bulk heterostructure formed in a state where the compound represented by the formula (1) and the n-type semiconductor material are mixed, [1] to [5]. ].
  • the photoelectric conversion element according to any one of. [7] The photoelectric conversion element according to any one of [1] to [6], wherein the photoelectric conversion film further contains a p-type semiconductor material.
  • the photoelectric conversion element according to any one of [1] to [7] which comprises one or more intermediate layers in addition to the photoelectric conversion film between the conductive film and the transparent conductive film.
  • An image pickup device including the photoelectric conversion element according to any one of [1] to [8].
  • An optical sensor comprising the photoelectric conversion element according to any one of [1] to [8].
  • [11] A compound represented by the formula (1).
  • X 12 represents a sulfur atom in the formula (1).
  • R a1 may have a substituent, an aryl group, a heteroaryl group, an alkenyl group, or alkynyl group, any one of [11] to [13] The compound described in one.
  • [15] The compound according to any one of [11] to [14] , wherein Y 11 represents an oxygen atom in the formula (1).
  • the present invention it is possible to provide a photoelectric conversion element exhibiting excellent external quantum efficiency and responsiveness to light having any wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region. Further, the present invention can provide an image pickup device, an optical sensor, and a compound related to the photoelectric conversion element.
  • the bonding direction of the divalent group described is not particularly limited, and for example, when L is —CO—O— in the formula “X—L—Y”, it is bonded to the X side. If the position where it is connected is * 1 and the position where it is connected to the Y side is * 2, L may be * 1-CO-O- * 2 or * 1-O-CO- * 2. There may be.
  • the term (hetero) aryl means aryl and heteroaryl.
  • the photoelectric conversion element has a conductive film, a photoelectric conversion film, and a transparent conductive film in this order.
  • a feature of the present invention as compared with the prior art is that a compound represented by the formula (1) described later (hereinafter, also referred to as “specific compound”) is used for the photoelectric conversion film.
  • the photoelectric conversion element of the present invention exhibits excellent external quantum efficiency and responsiveness to light having any wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region.
  • the specific compound has a structural site (formula (1)) capable of functioning as a donor as compared with the compound disclosed in Patent Document 1.
  • the ionization potential is deep and the HOMO (Highest Occupied Molecular Orbital) is used. It is considered that the overlap integral between LUMO (Lowest Unoccupied Molecular Orbital)) and LUMO (Lowest Unoccupied Molecular Orbital) is large. It is presumed that the specific compound exhibits the above-mentioned effects due to the characteristics due to the above-mentioned structure.
  • the group represented by Y 11 of the particular compound is an oxygen atom
  • the overlap integral between the HOMO and the LUMO from the plane of a particular compound is increased more larger
  • the above effects are more remarkably superior.
  • the external quantum efficiency for light of each wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region is more excellent, and the responsiveness to the light of each wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region. It is also referred to as "the effect of the present invention is more excellent" that the effect of at least one of the above is obtained.
  • FIG. 1 shows a schematic cross-sectional view of an embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10a shown in FIG. 1 includes a conductive film (hereinafter, also referred to as a lower electrode) 11 that functions as a lower electrode, an electron blocking film 16A, a photoelectric conversion film 12 containing a specific compound described later, and an upper electrode. It has a structure in which a functioning transparent conductive film (hereinafter, also referred to as an upper electrode) 15 is laminated in this order.
  • FIG. 2 shows a schematic cross-sectional view of another embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10b shown in FIG. 2 has a configuration in which an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B, and an upper electrode 15 are laminated in this order on a lower electrode 11.
  • the stacking order of the electron blocking film 16A, the photoelectric conversion film 12, and the hole blocking film 16B in FIGS. 1 and 2 may be appropriately changed depending on the application and characteristics.
  • the photoelectric conversion element 10a it is preferable that light is incident on the photoelectric conversion film 12 via the upper electrode 15. Further, when the photoelectric conversion element 10a (or 10b) is used, a voltage can be applied. In this case, it is preferable that the lower electrode 11 and the upper electrode 15 form a pair of electrodes, and a voltage of 1 ⁇ 10 -5 to 1 ⁇ 10 7 V / cm is applied between the pair of electrodes. From the viewpoint of performance and power consumption, the applied voltage is more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 7 V / cm, further preferably 1 ⁇ 10 -3 to 5 ⁇ 10 6 V / cm.
  • the voltage application method it is preferable to apply the voltage so that the electron blocking film 16A side becomes the cathode and the photoelectric conversion film 12 side becomes the anode in FIGS. 1 and 2.
  • a voltage can be applied by the same method.
  • the photoelectric conversion element 10a (or 10b) can be suitably applied to optical sensor applications and image pickup element applications.
  • the photoelectric conversion film contains a compound (specific compound) represented by the formula (1).
  • X 11 and X 12 independently represent an oxygen atom, a sulfur atom, a selenium atom, or -NR a3- .
  • R a3 represents a hydrogen atom or a substituent.
  • the type of the substituent represented by R a3 is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • a substituent is preferable, and an alkyl group, an aryl group, or a heteroaryl group, which may have a substituent, is more preferable, and has a substituent, in that the effect of the present invention is more excellent.
  • an alkyl group or an aryl group is more preferable, an alkyl group or a phenyl group having 1 to 4 carbon atoms which may have a substituent is particularly preferable, and a methyl group or an ethyl group is most preferable.
  • substituents that the above alkyl group, the above aryl group, and the above heteroaryl group may have include the groups exemplified by the substituent W described later. Among them, oxygen atom, sulfur atom, or ⁇ NR a3 ⁇ is preferable, sulfur atom or —NR a3 ⁇ is more preferable, and sulfur atom is further preferable as X 11 in that the effect of the present invention is more excellent.
  • an oxygen atom, a sulfur atom, or -NR a3 - are preferable, sulfur atom or -NR a3 - is more preferable, and a sulfur atom further preferred.
  • R a4 represents a hydrogen atom or a substituent.
  • the type of the substituent represented by R a4 is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • Ra4 an alkyl group, an aryl group, or a heteroaryl group, which may have a hydrogen atom or a substituent, is preferable, and a hydrogen atom is more preferable, because the effect of the present invention is more excellent.
  • R a1 represents a hydrogen atom or a substituent having a molecular weight of 700 or less.
  • the substituent having a molecular weight of 700 or less is not particularly limited as long as it has a molecular weight of 700 or less.
  • the molecular weight of the substituent having a molecular weight of 700 or less represented by Ra1 is preferably 600 or less, more preferably 500 or less, further preferably 300 or less, and particularly preferably 200 or less.
  • the lower limit is not particularly limited, but 50 or more is preferable.
  • Examples of the substituent represented by Ra1 having a molecular weight of 700 or less include an alkyl group, an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, and an amino group, which may have a substituent, and an indolin.
  • an alkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group, which may have a substituent is preferable as Ra1 because the effect of the present invention is more excellent.
  • An aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group which may have a substituent is more preferable, and an aryl group or an alkynyl group which may have a substituent is further preferable, and a phenyl group or 1 to 1 to carbon atoms.
  • Ten alkynyl groups are particularly preferred.
  • substituents that the above alkyl group, the above aryl group, the above heteroaryl group, the above alkenyl group, and the above alkynyl group may have include the groups exemplified by the substituent W described later.
  • the aryl group and the heteroaryl group further have a substituent, the cyano group is preferable as the substituent.
  • the alkenyl group and the alkynyl group further have a substituent the substituent is preferably an aryl group (for example, a phenyl group).
  • R a2 represents a hydrogen atom or a substituent.
  • the type of the substituent represented by R a2 is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • Ra2 an alkyl group, an aryl group, or a heteroaryl group, which may have a hydrogen atom or a substituent, is preferable, and a hydrogen atom is more preferable, because the effect of the present invention is more excellent.
  • R a5 represents a hydrogen atom or a substituent.
  • the type of the substituent represented by R a5 is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • Ra5 an alkyl group, an aryl group, or a heteroaryl group, which may have a hydrogen atom or a substituent, is preferable, and a hydrogen atom is more preferable, because the effect of the present invention is more excellent.
  • R a6 and R a7 each independently represent a cyano group or -COOR a8.
  • R a8 represents an alkyl group, an aryl group, or a heteroaryl group which may have a substituent.
  • the cyano group is preferable as R a6 and R a7 because the effect of the present invention is more excellent.
  • A represents a ring containing at least two carbon atoms.
  • the two carbon atoms are intended to be a carbon atom to which Y 11 is bonded and a carbon atom adjacent to the carbon atom to which Y 11 is bonded in the formula (1), and both carbon atoms constitute A. It is an atom.
  • the carbon number of A is preferably 3 to 30, more preferably 3 to 20, and even more preferably 3 to 15.
  • the carbon number is the number of carbons including two carbon atoms specified in the formula (1).
  • A may have a hetero atom, and examples of the hetero atom include a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom.
  • the hetero atom possessed by A may have a hetero atom as a ring member atom, or may have a hetero atom other than the ring member atom.
  • A may have a substituent, and a halogen atom is preferable as the substituent.
  • the number of heteroatoms in A is preferably 0 to 10, more preferably 0 to 5, and even more preferably 0 to 2.
  • A may or may not exhibit aromaticity.
  • A may have a monocyclic structure or a condensed ring structure.
  • a fused ring containing at least one selected from the group consisting of a 5-membered ring, a 6-membered ring, an array, a 5-membered ring and a 6-membered ring is preferable.
  • the number of rings forming the fused ring is preferably 2 to 4, more preferably 2 to 3.
  • the ring represented by A preferably has a group represented by the formula (A1).
  • * 1 represents the bond position with the carbon atom to which Y 11 specified in the formula (1) is bonded
  • * 2 is the carbon atom to which Y 11 specified in the formula (1) is bonded. Represents the bond position with an adjacent carbon atom.
  • L represents a single bond or -NR L- .
  • RL represents a hydrogen atom or a substituent.
  • an alkyl group, an aryl group, or a heteroaryl group which may have a substituent is preferable, and an alkyl group or an aryl group which may have a substituent is more preferable.
  • the type of the substituent is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • L a single bond is preferable.
  • RY1 to RY5 each independently represent a hydrogen atom or a substituent.
  • RY1 to RY5 an alkyl group, an aryl group, or a heteroaryl group, which may independently have a substituent, is preferable, and an alkyl group which may have a substituent may be used.
  • an aryl group is more preferable.
  • the type of the substituent is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • R Z1 represents a hydrogen atom or a substituent.
  • the type of the substituent represented by R Z1 is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later.
  • the R Z1 is preferably an alkyl group, an aryl group, or a heteroaryl group, which may have a hydrogen atom or a substituent, and more preferably a hydrogen atom, because the effect of the present invention is more excellent.
  • R Z2 and R Z3 each independently represent a cyano group or -COOR Z4.
  • R Z4 represents an alkyl group, an aryl group, or a heteroaryl group which may have a substituent. Of these, the cyano group is preferable as R Z2 and R Z3.
  • a ring formed by bonding -LYZ- and two carbon atoms specified in the formula (1) is formed.
  • a combination of 5-membered or 6-membered rings is preferred.
  • the 5-membered ring or the 6-membered ring may be fused with a different ring (preferably a benzene ring) to form a condensed ring structure.
  • the group represented by the formula (A1) the group represented by the following formula (A2) is more preferable.
  • a 1 and A 2 each independently represent a hydrogen atom or a substituent.
  • substituents are preferable as A 1 and A 2.
  • the benzene ring formed by A 1 and A 2 preferably further has a substituent.
  • the type of the substituent is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later. Among them, as the substituent, a halogen atom is preferable, and a chlorine atom or a fluorine atom is more preferable.
  • substituents of the benzene ring formed by A 1 and A 2 may be further linked to each other to form a ring.
  • substituents of the benzene ring formed by A 1 and A 2 may be further linked to each other to form a benzene ring.
  • * 1 in formula (A2), * 2, and Z 1 * 1 in formula (A1) described above, * 2, and has the same meaning as Z, preferred embodiments are also the same.
  • the group represented by the formula (A1) the group represented by the following formula (A3) is more preferable.
  • a 3 ⁇ A 6 each independently represent a hydrogen atom or a substituent.
  • a 3 and A 4 may be connected to each other to form a ring
  • a 4 and A 5 may be connected to each other to form a ring
  • a 5 and A 6 may be connected to each other to form a ring. May form a ring.
  • a 3 and A 4, A 4 and A 5, and A 5 and the A 6 is, as the ring formed by linking each other, is preferably a benzene ring.
  • the A 4 and A 5 are bonded to each other to form a ring, as the ring and A 4 and A 5 are formed by linking each other, it is preferably a benzene ring.
  • the ring formed by linking A 3 and A 4 , A 4 and A 5 , and A 5 and A 6 to each other may be further substituted with a substituent.
  • the type of the substituent is not particularly limited, and examples thereof include the groups exemplified by the substituent W described later. * 1 in formula (A3), * 2, and Z 1, * 1 in formula (A1) described above, * 2, and has the same meaning as Z, preferred embodiments are also the same.
  • the ring formed by connecting with each other it is usually preferable that the ring is used as an acidic nucleus in the merocyanine dye.
  • the following (a) to (s) can be mentioned.
  • (B) Pyrazolinen nucleus for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, and 1- (2-benzothiazolyl) -3-methyl-2. -Pyrazoline-5-on and the like.
  • (C) Isoxazolinen nucleus examples thereof include 3-phenyl-2-isoxazoline-5-one and 3-methyl-2-isoxazoline-5-one.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxyindole and the like can be mentioned.
  • (E) 2,4,6-trioxohexahydropyrimidine nucleus examples thereof include barbituric acid or 2-thiobarbituric acid and its derivatives.
  • Examples of the derivative include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, and 1,3.
  • 1,3-diaryl compound such as diphenyl, 1,3-di (p-chlorophenyl), 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1- such as 1-ethyl-3-phenyl
  • Examples thereof include an aryl form and a 1,3-diheteroaryl form such as 1,3-di (2-pyridyl).
  • 2-thio-2,4-thiazolidinedione nucleus examples thereof include rhodanine and its derivatives.
  • Examples of the derivative include 3-alkyl loadanine such as 3-methyl loadanine, 3-ethyl loadanine and 3-allyl loadanine, 3-aryl loadanine such as 3-phenyl loadanin, and 3- (2).
  • 3-alkyl loadanine such as 3-methyl loadanine, 3-ethyl loadanine and 3-allyl loadanine
  • 3-aryl loadanine such as 3-phenyl loadanin
  • 3- (2) 3-phenyl loadanin
  • -Pyridyl) 3-heteroaryl loadanine such as loadanine and the like can be mentioned.
  • Thianaphthenone nucleus For example, 3 (2H) -thianaftenone-1,1-dioxide and the like can be mentioned.
  • (K) Thiazoline-4-one nucleus Examples thereof include 4-thiazolinone and 2-ethyl-4-thiazolinone.
  • (L) 2,4-imidazolidinedione (hydantoin) nucleus For example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione and the like can be mentioned.
  • (N) Imidazoline-5-one nucleus Examples thereof include 2-propylmercapto-2-imidazolin-5-one.
  • (O) 3,5-Pyrazolidinedione nuclei examples thereof include 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
  • Indanone nuclei For example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone and the like Can be mentioned.
  • R Benzofuran-3- (2H) -one nuclei: Examples thereof include benzofuran-3- (2H) -one.
  • S Examples thereof include 2,2-dihydrophenalene-1,3-dione nuclei.
  • the compound represented by the formula (2) is preferable.
  • X 11 , X 12 , Y 11 , R a1 , R a2 , and R a4 are synonymous with each group in formula (1), and their preferred embodiments are also the same.
  • the specific compound does not have any of a carboxy group, a phosphoric acid group, a sulfonic acid group, and a salt of these groups from the viewpoint of avoiding deterioration of vapor deposition suitability.
  • monosulfate ester groups, monophosphate ester groups, phosphonic acid groups, phosphinic acid groups, boric acid groups, and salts of these groups are all present from the viewpoint of avoiding deterioration of vapor deposition suitability. It is preferable not to do so.
  • substituent W in the present specification will be described.
  • substituent W include a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, and an aryl.
  • heterocyclic group may be called heterocyclic group
  • cyano group hydroxy group, nitro group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group
  • acyloxy group carbamoyloxy group, alkoxycarbonyloxy Group, aryloxycarbonyloxy group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino Group, mercapto group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, alkyl or arylsulfinyl group, alkyl or arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, ary
  • the substituent W may be further substituted with the substituent W.
  • the alkyl group may be substituted with a halogen atom.
  • the details of the substituent W are described in paragraph [0023] of JP-A-2007-234651.
  • the specific compound does not have any of a carboxy group, a phosphoric acid group, a sulfonic acid group, and a salt of these groups from the viewpoint of avoiding deterioration of vapor deposition suitability.
  • alkyl group, aryl group, and heteroaryl group that a specific compound may have The number of carbon atoms of the alkyl group contained in the specific compound is not particularly limited, but is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be linear, branched, or cyclic. Further, the alkyl group may be substituted with a substituent (for example, substituent W).
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group, a cyclohexyl group and the like.
  • the number of carbon atoms in the aryl group of the specific compound is not particularly limited, but is preferably 6 to 30, more preferably 6 to 18, and even more preferably 6.
  • the aryl group may have a monocyclic structure or a condensed ring structure in which two or more rings are fused. Further, the aryl group may be substituted with a substituent (for example, the substituent W).
  • the aryl group include a phenyl group, a naphthyl group, an anthryl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, a biphenyl group, a fluorenyl group and the like. Of these, a phenyl group, a naphthyl group, or an anthryl group is preferable.
  • the number of carbon atoms in the heteroaryl group (monovalent aromatic heterocyclic group) of the specific compound is not particularly limited, but is preferably 3 to 30, more preferably 3 to 18.
  • the heteroaryl group may be substituted with a substituent (for example, substituent W).
  • the heteroaryl group has a hetero atom in addition to a carbon atom and a hydrogen atom.
  • the hetero atom include a sulfur atom, an oxygen atom, a nitrogen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. Of these, a sulfur atom, an oxygen atom, or a nitrogen atom is preferable.
  • the number of heteroatoms contained in the heteroaryl group is not particularly limited, and is often 1 to 10, preferably 1 to 4, and more preferably 1 to 2.
  • the number of ring members of the heteroaryl group is not particularly limited, but is preferably 3 to 8, more preferably 5 to 7, and even more preferably 5 to 6.
  • the heteroaryl group may have a monocyclic structure or a condensed ring structure in which two or more rings are fused. In the case of a condensed ring structure, an aromatic hydrocarbon ring (for example, a benzene ring) having no heteroatom may be contained.
  • heteroaryl group examples include a pyridyl group, a quinolyl group, an isoquinolyl group, an acridinyl group, a phenanthridinyl group, a pteridinyl group, a pyrazinyl group, a quinoxalinyl group, a pyrimidinyl group, a quinazolyl group, a pyridadinyl group, a cinnolinyl group and a phthalazinyl group.
  • the molecular weight of the specific compound is not particularly limited, but is preferably 300 to 900. When the molecular weight is 900 or less, the vapor deposition temperature does not rise and the decomposition of the compound is unlikely to occur. Further, when the molecular weight is 300 or more, the glass transition point of the vapor-deposited film is not lowered, and the heat resistance of the photoelectric conversion element is improved.
  • the maximum absorption wavelength of the specific compound is preferably in the range of 500 to 650 nm, and more preferably in the range of 540 to 620 nm.
  • the maximum absorption wavelength is a value measured in a solution state (solvent: chloroform) by adjusting the absorption spectrum of the specific compound to a concentration such that the absorbance becomes 0.5 to 1.
  • Absorption coefficient at the maximum absorption wavelength of the specific compound is preferably 50000 cm -1 or more, more preferably 75000Cm -1 or more, 100000 -1 or more is more preferable.
  • the upper limit of the absorption coefficient is not particularly limited, and is preferably 300,000 cm -1 or less.
  • the ionization potential of the specific compound in a single membrane is preferably 5.2 to 6.2 eV, preferably 5.2 to 6.1 eV, in terms of matching the energy level with the p-type semiconductor material described later. Is more preferable, and 5.4 to 6.0 eV is even more preferable.
  • one specific compound may be used alone, or two or more thereof may be used in combination.
  • the photoelectric conversion film preferably further contains an n-type semiconductor material described later, or preferably contains an n-type semiconductor material described later and a p-type semiconductor material described later.
  • Total film thickness in single layer conversion / total film thickness in single layer conversion of specific compound + film film in single layer conversion of n-type semiconductor material + film thickness in single layer conversion of p-type semiconductor material ⁇ 100) is preferably 15 to 75% by volume, more preferably 25 to 75% by volume.
  • the photoelectric conversion film is substantially composed of a specific compound and an n-type semiconductor material, or is substantially composed of a specific compound, an n-type semiconductor material, and a p-type semiconductor material. ..
  • “substantially” means that when the photoelectric conversion film is composed of a specific compound and an n-type semiconductor material, the total content of the specific compound and the n-type semiconductor material is 95 with respect to the total mass of the photoelectric conversion film. Intended to be greater than or equal to mass%.
  • the photoelectric conversion film is composed of a specific compound, an n-type semiconductor material, and a p-type semiconductor material
  • the specific compound, the n-type semiconductor material, and the p-type semiconductor material are used with respect to the total mass of the photoelectric conversion film. It is intended that the total content is 95% by mass or more.
  • the photoelectric conversion film preferably contains an n-type semiconductor material as a component other than the specific compound.
  • the n-type semiconductor material is an acceptor-type organic semiconductor material (compound), and refers to an organic compound having a property of easily accepting electrons. More specifically, the n-type semiconductor material refers to an organic compound having better electron transportability than a specific compound. Further, it is preferable that the n-type semiconductor material has a high electron affinity for a specific compound.
  • the electron mobility (electron carrier mobility) of a compound can be evaluated by using, for example, the Time-of-Fright method (range time method, TOF method) or a field effect transistor element.
  • the electron carrier mobility of the n-type semiconductor material is preferably 10 -4 cm 2 / V ⁇ s or more, more preferably 10 -3 cm 2 / V ⁇ s or more, and 10 -2 cm 2 / s or more. It is more preferably V ⁇ s or more.
  • the upper limit of the electron carrier mobility is not particularly limited, but is preferably 10 cm 2 / V ⁇ s or less, for example, from the viewpoint of suppressing the flow of a small amount of current without light irradiation.
  • the value of the reciprocal of the LUMO value obtained by the calculation of B3LYP / 6-31G (d) using Gaussian '09 (software manufactured by Gaussian) as the electron affinity value (value multiplied by -1). ) Is used.
  • the electron affinity of the n-type semiconductor material is preferably 3.0 to 5.0 eV.
  • the n-type semiconductor material is, for example, fullerene selected from the group consisting of fullerene and its derivatives, condensed aromatic carbocyclic compounds (for example, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and Fluolanthene derivative); 5- to 7-membered heterocyclic compound having at least one nitrogen atom, oxygen atom, and sulfur atom (eg, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline).
  • fullerene selected from the group consisting of fullerene and its derivatives, condensed aromatic carbocyclic compounds (for example, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives
  • the n-type semiconductor material preferably contains fullerenes selected from the group consisting of fullerenes and derivatives thereof.
  • fullerenes selected from the group consisting of fullerenes and derivatives thereof.
  • the fullerene include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene C540, and mixed fullerene.
  • fullerene derivative include compounds in which a substituent is added to the above fullerene.
  • the substituent is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the fullerene derivative the compound described in JP-A-2007-123707 is preferable.
  • the thickness) ⁇ 100) in terms of a single layer is preferably 15 to 100% by volume, more preferably 35 to 100% by volume.
  • An organic dye may be used as the n-type semiconductor material in place of the above-mentioned n-type semiconductor material or together with the above-mentioned n-type semiconductor material.
  • an organic dye By using an organic dye as the n-type semiconductor material, it is easy to control the absorption wavelength (maximum absorption wavelength) of the photoelectric conversion element in an arbitrary wavelength range.
  • the organic dyes include, for example, cyanine pigments, styryl pigments, hemicyanine pigments, merocyanine pigments (including zero methine merocyanin (simple merocyanin)), rodacyanine pigments, allopolar pigments, oxonols pigments, hemioxonor pigments, squalium pigments, croconium pigments, and the like.
  • the n-type semiconductor material contains an organic dye
  • the thickness) ⁇ 100) of the material in terms of a single layer is preferably 15 to 100% by volume, more preferably 35 to 100% by volume.
  • the molecular weight of the n-type semiconductor material is preferably 200 to 1200, more preferably 200 to 1000.
  • the photoelectric conversion film preferably has a bulk heterostructure formed in a state where a specific compound and an n-type semiconductor material are mixed.
  • the bulk heterostructure is a layer in which a specific compound and an n-type semiconductor material are mixed and dispersed in a photoelectric conversion film.
  • the photoelectric conversion film having a bulk heterostructure can be formed by either a wet method or a dry method. The bulk heterostructure is described in detail in paragraphs [0013] to [0014] of JP-A-2005-303266.
  • the n-type semiconductor material contained in the photoelectric conversion film may be used alone or in combination of two or more.
  • the photoelectric conversion film further contains a p-type semiconductor material in addition to the specific compound and the n-type semiconductor material as components other than the specific compound.
  • the p-type semiconductor material is intended to be a p-type semiconductor material other than the specific compound.
  • the p-type semiconductor material is a donor organic semiconductor material (compound) and refers to an organic compound having a property of easily donating electrons. More specifically, the p-type semiconductor material refers to an organic compound having better hole transport properties than a specific compound.
  • the hole transport property (hole carrier mobility) of a compound can be evaluated by using, for example, the Time-of-Flitht method (range time method, TOF method) or a field effect transistor element.
  • the hole carrier mobility of the p-type semiconductor material is preferably 10 -4 cm 2 / V ⁇ s or more, more preferably 10 -3 cm 2 / V ⁇ s or more, and 10 -2 cm 2 or more. It is more preferably / V ⁇ s or more.
  • the upper limit of the hole carrier mobility is not particularly limited, but is preferably 10 cm 2 / V ⁇ s or less, for example, from the viewpoint of suppressing the flow of a small amount of current without light irradiation. It is also preferable that the p-type semiconductor material has a small ionization potential with respect to a specific compound.
  • the photoelectric conversion film contains a p-type semiconductor material
  • Examples of the p-type semiconductor material include triarylamine compounds (for example, N, N'-bis (3-methylphenyl)-(1,1'-biphenyl) -4,4'-diamine (TPD), 4, 4'-Bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), the compound described in paragraphs [0128] to [0148] of JP2011-228614A, JP-A-2011-176259.
  • TPD triarylamine compounds
  • TPD 4, 4'-Bis [N- (naphthyl) -N-phenyl-amino] biphenyl
  • JP2011-228614A JP-A-2011-176259.
  • Ring compounds eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pentacene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives
  • porphyrin compounds eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pentacene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives
  • porphyrin compounds eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pentacene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives
  • porphyrin compounds eg, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives,
  • the p-type semiconductor material includes a compound represented by the formula (p1), a compound represented by the formula (p2), a compound represented by the formula (p3), a compound represented by the formula (p4), or a compound represented by the formula (p4).
  • the compound represented by the formula (p5) is also preferable.
  • the substituent represented by R include an alkyl group, an alkoxy group, a halogen atom, an alkylthio group, a (hetero) arylthio group, an alkylamino group, a (hetero) arylamino group, a (hetero) aryl group and the like. Be done. These groups may further have a substituent.
  • the (hetero) aryl group may be an arylaryl group which may further have a substituent (that is, a biaryl group; at least one of the aryl groups constituting this group may be a heteroaryl group).
  • R the group represented by R in the formula (IX) of WO2019-081416 is also preferable.
  • X and Y are each independently, -CR 2 2 -, sulfur atom, oxygen atom, -NR 2 -, or -SiR 2 2 - represents a.
  • R 2 represents a hydrogen atom, an alkyl group (preferably a methyl group or a trifluoromethyl group), an aryl group, or a heteroaryl group which may have a substituent.
  • R 2 having two or more may be the same or different from each other.
  • the p-type semiconductor material contained in the photoelectric conversion film may be used alone or in combination of two or more.
  • the photoelectric conversion film in the present invention is a non-emissive film, and has characteristics different from those of an organic light emitting device (OLED: Organic Light Emitting Diode).
  • the non-emission film is intended to be a film having an emission quantum efficiency of 1% or less, and the emission quantum efficiency is preferably 0.5% or less, more preferably 0.1% or less.
  • the photoelectric conversion film can be formed mainly by a coating film forming method and a dry film forming method.
  • the coating type film forming method includes, for example, a drop casting method, a casting method, a dip coating method, a die coater method, a roll coater method, a bar coater method, and a coating method including a spin coating method, an inkjet method, a screen printing method, and a gravure printing method.
  • Various printing methods including a flexography printing method, an offset printing method, and a microcontact printing method, and a Langmuir-Blodgett (LB) method and the like.
  • the dry film forming method includes, for example, a physical vapor deposition method such as a vapor deposition method (particularly a vacuum vapor deposition method), a sputtering method, an ion plating method, an MBE (Molecular Beam Epitaxy) method, and a CVD method such as plasma polymerization. Chemical Vapor Deposition) method can be mentioned. Of these, the dry film forming method is preferable, and the vacuum vapor deposition method is more preferable. When the photoelectric conversion film is formed by the vacuum vapor deposition method, the manufacturing conditions such as the degree of vacuum and the vapor deposition temperature can be set according to a conventional method.
  • the thickness of the photoelectric conversion film is preferably 10 to 1000 nm, more preferably 50 to 800 nm, and even more preferably 50 to 500 nm.
  • the electrodes are made of a conductive material.
  • the conductive material include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Since light is incident from the upper electrode 15, it is preferable that the upper electrode 15 is transparent to the light to be detected.
  • the material constituting the upper electrode 15 is, for example, antimony or fluorine-doped tin oxide (ATO: Antimony Tin Oxide, FTO: Fluorine topped Tin Oxide), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO: Conductive metal oxides such as Indium Tin Oxide), and indium zinc oxide (IZO); metal thin films such as gold, silver, chromium, and nickel; mixtures or mixtures of these metals with conductive metal oxides. Laminates; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and the like. Of these, conductive metal oxides are preferable from the viewpoint of high conductivity and transparency.
  • ATO Antimony Tin Oxide
  • FTO Fluorine topped Tin Oxide
  • ITO Conductive metal oxides such as Indium Tin Oxide
  • IZO indium zinc oxide
  • metal thin films such as gold, silver, chromium, and nickel
  • Laminates and organic conductive materials such as
  • the sheet resistance is preferably 100 to 10000 ⁇ / ⁇ .
  • the degree of freedom in the range of film thickness that can be thinned is large.
  • Increasing the light transmittance is preferable because it increases the light absorption in the photoelectric conversion film and increases the photoelectric conversion ability.
  • the film thickness of the upper electrode 15 is preferably 5 to 100 nm, more preferably 5 to 20 nm.
  • the lower electrode 11 may be transparent or may reflect light without being transparent, depending on the intended use.
  • the material constituting the lower electrode 11 is, for example, antimony or fluorine-doped tin oxide (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO) and the like.
  • Conductive metal oxides metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides or nitrides of these metals (eg, titanium nitride (TiN)). Examples include a mixture or laminate of these metals and a conductive metal oxide; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole.
  • the method for forming the electrode is not particularly limited and can be appropriately selected depending on the electrode material. Specifically, wet methods such as printing method and coating method; physical methods such as vacuum vapor deposition method, sputtering method, and ion plating method; and chemical methods such as CVD and plasma CVD method, etc. Can be mentioned.
  • wet methods such as printing method and coating method; physical methods such as vacuum vapor deposition method, sputtering method, and ion plating method; and chemical methods such as CVD and plasma CVD method, etc.
  • the electrode material is ITO
  • methods such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (sol-gel method, etc.), and application of a dispersion of indium tin oxide can be mentioned.
  • the photoelectric conversion element of the present invention has one or more intermediate layers in addition to the photoelectric conversion film between the conductive film and the transparent conductive film.
  • the intermediate layer include a charge blocking film.
  • the charge blocking film include an electron blocking film and a hole blocking film.
  • the photoelectric conversion element preferably has at least an electron blocking film as an intermediate layer. Each membrane will be described in detail below.
  • the electron blocking film is a donor organic semiconductor material (compound).
  • the electron blocking membrane preferably has an ionization potential of 4.8 to 5.8 eV.
  • the ionization potential Ip (B) of the electron blocking film, the ionization potential Ip (1) of the first compound, and the ionization potential Ip (2) of the second compound are Ip (B) ⁇ Ip (1).
  • a p-type semiconductor material can be used as the electron blocking film.
  • One type of p-type semiconductor material may be used alone, or two or more types may be used.
  • Examples of the p-type semiconductor material include p-type organic semiconductor materials, and specific examples thereof include triarylamine compounds (for example, N, N'-bis (3-methylphenyl)-(1,1'-biphenyl). ) -4,4'-Diamine (TPD), 4,4'-Bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), Paragraph [0128] of JP2011-228614A. -The compound described in [0148], the compound described in paragraphs [0052] to [0063] of JP-A-2011-176259, the compound described in paragraphs [0119]-[0158] of JP-A-2011-225544.
  • Amin compounds, hydrazone compounds, polysilane compounds, thiophene compounds eg, thienothiophene derivatives, dibenzothiophene derivatives, benzodithiophene derivatives, dithienothiophene derivatives, [1] benzothieno [3,2-b] thiophene (BTBT) derivatives, thieno [3,2-f: 4,5-f'] Bis [1] Benzothiophene (TBBT) derivative, compound according to paragraphs [0031] to [0036] of JP-A-2018-014474, WO2016-194630.
  • thiophene compounds eg, thienothiophene derivatives, dibenzothiophene derivatives, benzodithiophene derivatives, dithienothiophene derivatives, [1] benzothieno [3,2-b] thiophene (BTBT) derivatives, thieno [3,2-f: 4,5-f'] Bis [
  • a polymer material can also be used as the electron blocking film.
  • the polymer material include polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrrole, pyrrole, picolin, thiophene, acetylene, and diacetylene, and derivatives thereof.
  • the electron blocking film may be composed of a plurality of films.
  • the electron blocking film may be made of an inorganic material.
  • Inorganic materials that can be electron blocking films include, for example, calcium oxide, chromium oxide, copper oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium oxide copper, niobium oxide, molybdenum oxide, and indium copper oxide. , Indium silver oxide, and iridium oxide.
  • the hole blocking film is an acceptor-type organic semiconductor material (compound), and the above-mentioned n-type semiconductor material can be used.
  • the method for producing the charge blocking film is not particularly limited, and examples thereof include a dry film forming method and a wet film forming method.
  • the dry film forming method include a vapor deposition method and a sputtering method.
  • the vapor deposition method may be either a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method, and a physical vapor deposition method such as a vacuum vapor deposition method is preferable.
  • the wet film forming method include an inkjet method, a spray method, a nozzle printing method, a spin coating method, a dip coating method, a casting method, a die coating method, a roll coating method, a bar coating method, and a gravure coating method. From the viewpoint of patterning, the inkjet method is preferable.
  • the thickness of the charge blocking film is preferably 3 to 200 nm, more preferably 5 to 100 nm, and even more preferably 5 to 30 nm, respectively.
  • the photoelectric conversion element may further have a substrate.
  • the type of substrate used is not particularly limited, and examples thereof include a semiconductor substrate, a glass substrate, and a plastic substrate.
  • the position of the substrate is not particularly limited, and usually, a conductive film, a photoelectric conversion film, and a transparent conductive film are laminated on the substrate in this order.
  • the photoelectric conversion element may further have a sealing layer.
  • the performance of the photoelectric conversion material may be significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, the entire photoelectric conversion film is covered with a dense metal oxide, metal nitride, ceramics such as metal nitride oxide, or a sealing layer such as diamond-like carbon (DLC: Diamond-like Carbon) that does not allow water molecules to permeate. By sealing the metal, the above deterioration can be prevented.
  • the material of the sealing layer may be selected and manufactured in accordance with paragraphs [0210] to [0215] of JP-A-2011-082508.
  • the photoelectric conversion film may have a configuration of only one layer or a multilayer configuration of two or more layers.
  • the photoelectric conversion film in the photoelectric conversion element of the present invention has a multilayer structure of two or more layers, at least one layer may contain a specific compound.
  • the photoelectric conversion film in the photoelectric conversion element is, for example, a layer containing a specific compound and a layer having photosensitivity in the near-infrared to infrared region. It is also preferable to configure it as a laminated body with.
  • the configuration of such a photoelectric conversion element for example, the configurations of the photoelectric conversion elements disclosed in JP-A-2019-2080226, JP-A-2018-125850, JP-A-2018-1258448 and the like can be applied. ..
  • the photoelectric conversion element includes, for example, an image pickup element having a photoelectric conversion element.
  • the image pickup element is an element that converts the optical information of an image into an electric signal.
  • a plurality of photoelectric conversion elements are arranged on a matrix in the same plane, and each photoelectric conversion element (pixel) has an optical signal. Is converted into an electric signal, and the electric signal can be sequentially output to the outside of the image sensor for each pixel. Therefore, each pixel is composed of one or more photoelectric conversion elements and one or more transistors.
  • the image pickup element is mounted on an image pickup element such as a digital camera and a digital video camera, an electronic endoscope, and an image pickup module such as a mobile phone.
  • the photoelectric conversion element of the present invention is also preferably used for an optical sensor having the photoelectric conversion element of the present invention.
  • the optical sensor may be used by the photoelectric conversion element alone, or may be used as a line sensor in which the photoelectric conversion element is arranged in a straight line, or a two-dimensional sensor in which the photoelectric conversion element is arranged in a plane.
  • the present invention also relates to a specific compound.
  • the specific compound is a compound represented by the above-mentioned formula (1), and the preferred embodiment is also the same.
  • the specific compound is particularly useful as a material for a photoelectric conversion film used in an optical sensor, an image sensor, or a photovoltaic cell. In general, the specific compound often functions as a p-type organic semiconductor in the photoelectric conversion film.
  • the specific compound can also be used as a coloring material, a liquid crystal material, an organic semiconductor material, a charge transport material, a pharmaceutical material, and a fluorescence diagnostic agent material.
  • the compound (A-1) is J.I. Chem. Soc. Perkin Trans. It was synthesized according to the method described in I, 1998, 4, 685-687.
  • the structures of the compounds (D-1) to (D-18) and the comparative compounds (R-1) to (R-2) are specifically shown below.
  • the photoelectric conversion element includes a lower electrode 11, an electron blocking film 16A, a photoelectric conversion film 12, and an upper electrode 15.
  • an amorphous ITO is formed on a glass substrate by a sputtering method to form a lower electrode 11 (thickness: 30 nm), and a compound (EB-1) described later is vacuumed on the lower electrode 11.
  • a film was formed by a heat vapor deposition method to form an electron blocking film 16A (thickness: 30 nm).
  • a photoelectric conversion film 12 having a bulk heterostructure of 160 nm (240 nm when a p-type semiconductor material was also used) was formed.
  • an amorphous ITO was formed on the photoelectric conversion film 12 by a sputtering method to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm).
  • a SiO film is formed on the upper electrode 15 as a sealing layer by a vacuum deposition method, and then an aluminum oxide (Al 2 O 3 ) layer is formed on the SiO film by an ALCVD (Atomic Layer Chemical Vapor Deposition) method to form a photoelectric conversion element.
  • ALCVD Atomic Layer Chemical Vapor Deposition
  • each component was added according to Table 1, and the specific compound (D-1) was changed to the specific compounds (D-2) to (D-18) or the comparative compounds (R-1) to (R-2). Except for this, a photoelectric conversion element was manufactured by the same method. When the comparative compound (R-2) was used, the photoelectric conversion film could not be formed and the photoelectric conversion element could not be manufactured (corresponding to Comparative Example 2).
  • n-type semiconductor material Fullerene (C 60 ) was used as the n-type semiconductor material.
  • ⁇ P-type semiconductor material> The following compounds (P-1) to (P-4) were used as the p-type semiconductor material.
  • the specific compounds (D-1) to (D-18) all show an external quantum efficiency (photoelectric conversion efficiency) of 50% or more at all wavelengths of 450 nm, 580 nm, and 650 nm, which is sufficient as an external photoelectric conversion element. It was confirmed that it has quantum efficiency.
  • the external quantum efficiency was measured using an Optel constant energy quantum efficiency measuring device. The amount of irradiated light was 50 ⁇ W / cm 2 .
  • the external quantum efficiency (photoelectric conversion efficiency) of the photoelectric conversion element of Comparative Example 1 is standardized to 1 at all wavelengths of 450 nm, 580 nm, and 650 nm to obtain the external quantum efficiency (photoelectric conversion efficiency) of each photoelectric conversion element. Relative values were calculated and the obtained values were evaluated according to the following criteria. In terms of practicality, an evaluation of "D” or higher is preferable, and an evaluation of "C” or higher is more preferable.
  • the rise time of the photoelectric conversion element of Comparative Example 1 was standardized to 1 at all wavelengths of 450 nm, 580 nm, and 650 nm, and the relative value of the rise time of each photoelectric conversion element was obtained. Evaluated by criteria. In terms of practicality, an evaluation of "D” or higher is preferable, and an evaluation of "C” or higher is more preferable.
  • Example 1 From the comparison between Example 1 and Example 8, it was confirmed that in the formula (1), when Y 11 represents an oxygen atom, the effect is more excellent. From the comparison between Example 1 and Example 19, it was confirmed that the effect is more excellent when the photoelectric conversion film further contains a p-type semiconductor material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本発明は、赤色波長領域、緑色波長領域、及び青色波長領域のいずれの波長の光に対しても優れた外部量子効率と応答性とを示す光電変換素子、撮像素子、光センサ、並びに化合物を提供する。本発明の光電変換素子は、導電性膜、光電変換膜、及び透明導電性膜をこの順に有する光電変換素子であって、光電変換膜が、式(1)で表される化合物を含む。

Description

光電変換素子、撮像素子、光センサ、化合物
 本発明は、光電変換素子、撮像素子、光センサ、及び化合物に関する。
 従来、固体撮像素子としては、フォトダイオード(PD:photodiode)を2次元的に配列し、各PDで発生した信号電荷を回路で読み出す平面型固体撮像素子が広く用いられている。
 カラー固体撮像素子を実現するには、平面型固体撮像素子の光入射面側に、特定の波長の光を透過するカラーフィルタを配した構造が一般的である。現在、2次元的に配列した各PD上に、青色(B:blue)光、緑色(G:green)光、及び赤色(R:red)光を透過するカラーフィルタを規則的に配した単板式固体撮像素子がよく知られている。しかし、この単板式固体撮像素子においては、カラーフィルタを透過しなかった光が利用されず光利用効率が悪い。
 これらの欠点を解決するため、近年、有機光電変換膜を信号読み出し用基板上に配置した構造を有する光電変換素子の開発が進んでいる。
 例えば、特許文献1では、以下の化合物を含む光電変換素子が開示されている。
Figure JPOXMLDOC01-appb-C000003
国際公開第2018/065350号
 近年、撮像素子及び光センサ等の性能向上の要求に伴い、これらに使用される光電変換素子に求められる諸特性に関しても更なる向上が求められている。
 例えば、赤色波長領域(例えば、波長650nm等)、緑色波長領域(例えば、波長580nm等)、及び青色波長領域(例えば、波長450nm等)のいずれの波長の光に対しても優れた外部量子効率と応答性とを示す性能が求められている。
 本発明者らは、特許文献1に記載された光電変換素子について検討したところ、外部量子効率及び応答性の少なくとも一方の要求水準を満たしておらず、外部量子効率と応答性とを両立できていないことを知見した。
 そこで、本発明は、赤色波長領域、緑色波長領域、及び青色波長領域のいずれの波長の光に対しても優れた外部量子効率と応答性とを示す光電変換素子を提供することを課題とする。
 また、本発明は、上記光電変換素子に関する、撮像素子、及び光センサ、並びに化合物を提供することも課題とする。
 本発明者らは、上記課題について鋭意検討した結果、下記構成により上記課題を解決できることを見出し、本発明を完成するに至った。
 〔1〕導電性膜、光電変換膜、及び透明導電性膜をこの順に有する光電変換素子であって、光電変換膜が、後述する式(1)で表される化合物を含む、光電変換素子。
 〔2〕式(1)中、X13が=CRa4-を表す、〔1〕に記載の光電変換素子。
 〔3〕式(1)中、X12が硫黄原子を表す、〔1〕又は〔2〕に記載の光電変換素子。
 〔4〕式(1)中、Ra1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す、〔1〕~〔3〕のいずれか1つに記載の光電変換素子。
 〔5〕式(1)中、Y11が酸素原子を表す、〔1〕~〔4〕のいずれか1つに記載の光電変換素子。
 〔6〕光電変換膜が、更にn型半導体材料を含み、式(1)で表される化合物とn型半導体材料とが混合された状態で形成するバルクヘテロ構造を有する、〔1〕~〔5〕のいずれか1つに記載の光電変換素子。
 〔7〕光電変換膜が、更にp型半導体材料を含む、〔1〕~〔6〕のいずれか1つに記載の光電変換素子。
 〔8〕導電性膜と透明導電性膜の間に、光電変換膜の他に1種以上の中間層を含む、〔1〕~〔7〕のいずれか1つに記載の光電変換素子。
 〔9〕〔1〕~〔8〕のいずれか1つに記載の光電変換素子を含む、撮像素子。
 〔10〕〔1〕~〔8〕のいずれか1つに記載の光電変換素子を含む、光センサ。
 〔11〕式(1)で表される化合物。
 〔12〕式(1)中、X13が=CRa4-を表す、〔11〕に記載の化合物。
 〔13〕式(1)中、X12が硫黄原子を表す、〔11〕又は〔12〕に記載の化合物。
 〔14〕式(1)中、Ra1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す、〔11〕~〔13〕のいずれか1つに記載の化合物。
 〔15〕式(1)中、Y11が酸素原子を表す、〔11〕~〔14〕のいずれか1つに記載の化合物。
 本発明によれば、赤色波長領域、緑色波長領域、及び青色波長領域のいずれの波長の光に対しても優れた外部量子効率と応答性とを示す光電変換素子を提供できる。
 また、本発明は、上記光電変換素子に関する、撮像素子、及び光センサ、並びに化合物を提供できる。
光電変換素子の一構成例を示す断面模式図である。 光電変換素子の一構成例を示す断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、置換又は無置換を明記していない置換基等については、目的とする効果を損なわない範囲で、その基に更に置換基(例えば、後述する置換基W)が置換していてもよい。例えば、「アルキル基」という表記は、置換基(例えば、後述する置換基W)が置換していてもよいアルキル基を意味する。
 また、本明細書において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、表記される2価の基の結合方向は特に制限されず、例えば、「X-L-Y」という式中の、Lが-CO-O-である場合、X側に結合している位置を*1、Y側に結合している位置を*2とすると、Lは、*1-CO-O-*2であってもよく、*1-O-CO-*2であってもよい。
 本明細書において、(ヘテロ)アリールとは、アリール及びヘテロアリールの意味である。
[光電変換素子]
 光電変換素子は、導電性膜、光電変換膜、及び透明導電性膜をこの順に有する。
 従来技術と比較した本発明の特徴点としては、光電変換膜に、後述する式(1)で表される化合物(以下「特定化合物」ともいう。)を使用している点が挙げられる。
 上記構成により、本発明の光電変換素子は、赤色波長領域、緑色波長領域、及び青色波長領域のいずれの波長の光に対しても優れた外部量子効率と応答性とを示す。
 本発明の光電変換素子が上記効果を発現する作用機序は明らかではないが、特定化合物は、特許文献1に開示された化合物と比べると、ドナーとして機能し得る構造部位(式(1)に明示される2つの5員環が縮合した構造部位と、Ra1とを含む構造部位が相当する)の電子供与性が小さいため、イオン化ポテンシャルが深く、かつ、HOMO(Highest Occupied Molecular Orbital(最高被占軌道))と、LUMO(Lowest Unoccupied Molecular Orbital(最低空軌道))との重なり積分が大きいと考えられる。特定化合物は、上記構造に起因した特性により、上述の効果を発現していると推測される。
 特に後述するように、特定化合物のY11で表される基が酸素原子である場合等においては、特定化合物の平面性がより高まることからHOMOとLUMOとの重なり積分がより大きくなると推測され、上述の効果がより顕著に優れる。
 以下、赤色波長領域、緑色波長領域、及び青色波長領域の各波長の光に対する外部量子効率がより優れること、並びに、赤色波長領域、緑色波長領域、及び青色波長領域の各波長の光に対する応答性がより優れること、の少なくとも一方の効果を得られることを「本発明の効果がより優れる」ともいう。
 以下に、本発明の光電変換素子の好適実施形態について図面を参照して説明する。
 図1に、本発明の光電変換素子の一実施形態の断面模式図を示す。図1に示す光電変換素子10aは、下部電極として機能する導電性膜(以下、下部電極とも記す)11と、電子ブロッキング膜16Aと、後述する特定化合物を含む光電変換膜12と、上部電極として機能する透明導電性膜(以下、上部電極とも記す)15とがこの順に積層された構成を有する。また、図2に、本発明の光電変換素子の他の実施形態の断面模式図を示す。図2に示す光電変換素子10bは、下部電極11上に、電子ブロッキング膜16Aと、光電変換膜12と、正孔ブロッキング膜16Bと、上部電極15とがこの順に積層された構成を有する。なお、図1及び図2中の電子ブロッキング膜16A、光電変換膜12、及び正孔ブロッキング膜16Bの積層順は、用途及び特性に応じて、適宜変更してもよい。
 光電変換素子10a(又は10b)では、上部電極15を介して光電変換膜12に光が入射されることが好ましい。
 また、光電変換素子10a(又は10b)を使用する場合には、電圧を印加できる。この場合、下部電極11と上部電極15とが一対の電極をなし、この一対の電極間に、1×10-5~1×10V/cmの電圧を印加することが好ましい。性能及び消費電力の点から、印加される電圧としては、1×10-4~1×10V/cmがより好ましく、1×10-3~5×10V/cmが更に好ましい。
 なお、電圧印加方法については、図1及び図2において、電子ブロッキング膜16A側が陰極となり、光電変換膜12側が陽極となるように印加することが好ましい。光電変換素子10a(又は10b)を光センサとして使用した場合、また、撮像素子に組み込んだ場合も、同様の方法により電圧を印加できる。
 後段で詳述するように、光電変換素子10a(又は10b)は光センサ用途及び撮像素子用途に好適に適用できる。
 以下に、本発明の光電変換素子を構成する各層の形態について詳述する。
〔光電変換膜〕
<式(1)で表される化合物>
 光電変換膜は、式(1)で表される化合物(特定化合物)を含む。
 なお、本明細書中、下記式(1)中、Ra2が結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に基づいて区別され得る幾何異性体について、式(1)は、シス体及びトランス体のいずれをも含む。つまり、上記C=C二重結合に基づいて区別されるシス体とトランス体とは、いずれも特定化合物に含まれる。
 また、本明細書中、下記式(1)中、Y11が=CRa6a7を表す場合において、Ra6及びRa7が結合する炭素原子とそれに隣接する炭素原子(式(1)中に明示される、Aで表される環の構成原子である炭素原子に該当する)とで構成されるC=C二重結合に基づいて区別され得る幾何異性体について、式(1)は、シス体及びトランス体のいずれをも含む。つまり、上記C=C二重結合に基づいて区別されるシス体とトランス体とは、いずれも特定化合物に含まれる。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、X11及びX12は、それぞれ独立に、酸素原子、硫黄原子、セレン原子、又は-NRa3-を表す。
 Ra3は、水素原子又は置換基を表す。
 Ra3で表される置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 Ra3としては、本発明の効果がより優れる点で、置換基が好ましく、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基がより好ましく、置換基を有していてもよい、アルキル基又はアリール基が更に好ましく、置換基を有していてもよい、炭素数1~4のアルキル基又はフェニル基が特に好ましく、メチル基又はエチル基が最も好ましい。また、上記アルキル基、上記アリール基、及び上記ヘテロアリール基が有していてもよい置換基としては、後述する置換基Wで例示する基が挙げられる。
 なかでも、本発明の効果がより優れる点で、X11としては、酸素原子、硫黄原子、又は-NRa3-が好ましく、硫黄原子又は-NRa3-がより好ましく、硫黄原子が更に好ましい。
 なかでも、本発明の効果がより優れる点で、X12としては、酸素原子、硫黄原子、又は-NRa3-が好ましく、硫黄原子又は-NRa3-がより好ましく、硫黄原子が更に好ましい。
 X13は、窒素原子又は=CRa4-を表す。
 Ra4は、水素原子又は置換基を表す。
 Ra4で表される置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 なかでも、本発明の効果がより優れる点で、Ra4としては、水素原子、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子がより好ましい。
 なかでも、本発明の効果がより優れる点で、X13としては、=CRa4-が好ましい。
 Ra1は、水素原子又は分子量700以下の置換基を表す。
 分子量700以下の置換基としては、分子量700以下であれば特に制限されない。
 Ra1で表される分子量700以下の置換基の分子量としては、600以下が好ましく、500以下がより好ましく、300以下が更に好ましく、200以下が特に好ましい。下限は特に制限されないが、50以上が好ましい。
 Ra1で表される分子量700以下の置換基としては、例えば、置換基を有していてもよい、アルキル基、アリール基、ヘテロアリール基、アルケニル基、アルキニル基、及びアミノ基、並びに、インドリン誘導体基、テトラヒドロキノリン誘導体基、2-ピラゾリン誘導体基、オキシインドール誘導体基、ヘキサヒドロピリミジン誘導体基、ローダニン誘導体基、ヒダントイン誘導体基、チオヒダントイン誘導体基、チアゾリノン誘導体基、チアゾリジンジオン誘導体基、オキサゾリジンジオン誘導体基、イミダゾリン誘導体基、及びピラゾリジンジオン誘導体基等の電子供与性が比較的強い置換基以外の置換基が挙げられる。
 なかでも、本発明の効果がより優れる点で、Ra1としては、置換基を有していてもよい、アルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基が好ましく、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基がより好ましく、置換基を有していてもよい、アリール基又はアルキニル基が更に好ましく、フェニル基又は炭素数1~10のアルキニル基(例えば、アセチニル基、エチニル基、プロピニル基、及びブチニル基等)が特に好ましい。
 また、上記アルキル基、上記アリール基、上記ヘテロアリール基、上記アルケニル基、及び上記アルキニル基が有していてもよい置換基としては、後述する置換基Wで例示する基が挙げられる。上記アリール基及び上記ヘテロアリール基が更に置換基を有する場合、置換基としては、シアノ基が好ましい。また、上記アルケニル基及び上記アルキニル基が更に置換基を有する場合、置換基としては、アリール基(例えば、フェニル基)が好ましい。
 Ra2は、水素原子又は置換基を表す。
 Ra2で表される置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 なかでも、本発明の効果がより優れる点で、Ra2としては、水素原子、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子がより好ましい。
 Y11は、酸素原子、硫黄原子、=NRa5、又は=CRa6a7を表す。
 なかでも、本発明の効果がより優れる点で、Y11としては、酸素原子又は=CRa6a7が好ましく、酸素原子がより好ましい。
 Ra5は、水素原子又は置換基を表す。
 Ra5で表される置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。なかでも、本発明の効果がより優れる点で、Ra5としては、水素原子、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子がより好ましい。
 Ra6及びRa7は、それぞれ独立に、シアノ基又は-COORa8を表す。
 Ra8は、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基を表す。
 なかでも、本発明の効果がより優れる点で、Ra6及びRa7としては、シアノ基が好ましい。
 Aは、少なくとも2つの炭素原子を含む環を表す。
 なお、2つの炭素原子とは、式(1)中のY11が結合する炭素原子と、Y11が結合する炭素原子に隣接する炭素原子とを意図し、いずれの炭素原子もAを構成する原子である。
 Aの炭素数としては、3~30が好ましく、3~20がより好ましく、3~15が更に好ましい。なお、上記炭素数は、式(1)中に明示される2個の炭素原子を含む炭素数である。
 Aは、ヘテロ原子を有していてもよく、ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子が挙げられる。また、Aが有するヘテロ原子は、環員原子としてヘテロ原子を有していてもよく、環員原子以外としてヘテロ原子を有していてもよい。
 なかでも、Aが有するヘテロ原子としては、窒素原子、硫黄原子、又は酸素原子が好ましく、酸素原子がより好ましい。
 Aは、置換基を有していてもよく、置換基としては、ハロゲン原子が好ましい。
 A中のヘテロ原子の数としては、0~10が好ましく、0~5がより好ましく、0~2が更に好ましい。なお、上記ヘテロ原子の数は、式(1)中のY11で表される基が含むヘテロ原子の原子数、及びAが置換基として有し得るハロゲン原子の数を含まないヘテロ原子の数である。
 Aは、芳香族性を示してもよく、示さなくてもよい。
 Aは、単環構造でもよく、縮環構造でもよい。なかでも、Aとしては、5員環、6員環、並び、5員環及び6員環からなる群より選択される少なくとも1つを含む縮合環が好ましい。上記縮合環を形成する環の数としては、2~4が好ましく、2~3がより好ましい。
(式(A1)で表される基)
 なかでも、Aで表される環は、式(A1)で表される基を有することが好ましい。
 なお、*は、式(1)中に明示されるY11が結合する炭素原子との結合位置を表し、*は、式(1)中に明示されるY11が結合する炭素原子に隣接する炭素原子との結合位置を表す。
-L-Y-Z-*     (A1)
 式(A1)中、Lは、単結合又は-NR-を表す。
 Rは、水素原子又は置換基を表す。なかでも、Rとしては、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、置換基を有していてもよい、アルキル基又はアリール基がより好ましい。上記置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 Lとしては、単結合が好ましい。
 Yは、-CRY1=CRY2-、-CS-NRY3-、-CS-、-NRY4-、又は-N=CRY5-を表す。
 なかでも、Yとしては、-CRY1=CRY2-が好ましい。
 RY1~RY5は、それぞれ独立に、水素原子又は置換基を表す。
 なかでも、RY1~RY5としては、それぞれ独立に、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、置換基を有していてもよい、アルキル基又はアリール基がより好ましい。上記置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 また、Yが-CRY1=CRY2-を表す場合、RY1とRY2とは互いに連結して環を形成することが好ましく、RY1とRY2とは互いに連結してベンゼン環を形成することがより好ましい。
 Zは、単結合、-CO-、-CS-、-C(=NRZ1)-、又は-C(=CRZ2Z3)-を表す。
 なかでも、Zとしては、-CO-又は-C(=CRZ2Z3)-が好ましく、-CO-がより好ましい。
 RZ1は、水素原子又は置換基を表す。
 RZ1で表される置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 なかでも、本発明の効果がより優れる点で、RZ1としては、水素原子、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子がより好ましい。
 RZ2及びRZ3は、それぞれ独立に、シアノ基又は-COORZ4を表す。
 RZ4は、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基を表す。
 なかでも、RZ2及びRZ3としては、シアノ基が好ましい。
 なお、上記、L、Y、及びZの組み合わせとしては、-L-Y-Z-と、式(1)中に明示される2個の炭素原子と、が結合して形成される環が、5員環又は6員環になる組み合わせが好ましい。また、上述の通り、上記5員環又は6員環は、更に異なる環(好ましくはベンゼン環)と縮環して、縮環構造を形成していてもよい。
 式(A1)で表される基としては、下記式(A2)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(A2)中、A及びAは、それぞれ独立に、水素原子又は置換基を表す。
 なかでも、A及びAとしては、置換基が好ましい。
 また、AとAとは互いに連結して環を形成することが好ましく、AとAとは互いに連結してベンゼン環を形成することがより好ましい。
 AとAとによって形成される上記ベンゼン環は、更に置換基を有することが好ましい。上記置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。なかでも、上記置換基としては、ハロゲン原子が好ましく、塩素原子又はフッ素原子がより好ましい。
 また、AとAとによって形成される上記ベンゼン環が有する置換基が、更に互いに連結して環を形成していてもよい。例えば、AとAとで形成される上記ベンゼン環が有する置換基が、更に互いに連結してベンゼン環を形成していてもよい。
 式(A2)中の*、*、及びZは、上述した式(A1)中の*、*、及びZと同義であり、好適態様も同じである。
 式(A1)で表される基としては、下記式(A3)で表される基が更に好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(A3)中、A~Aは、それぞれ独立に、水素原子又は置換基を表す。
 なかでも、A~Aとしては、それぞれ独立に、水素原子又はハロゲン原子が好ましく、水素原子、塩素原子、又はフッ素原子がより好ましく、水素原子が更に好ましい。
 AとAとは互いに連結して環を形成していてもよく、AとAとは互いに連結して環を形成していてもよく、AとAとは互いに連結して環を形成していてもよい。AとA、AとA、及びAとAとが、それぞれ互いに連結して形成する環としては、ベンゼン環が好ましい。
 なかでも、AとAとが互いに連結して環を形成することが好ましく、AとAとが互いに連結して形成される環としては、ベンゼン環が好ましい。
 上記AとA、AとA、及びAとAとが、それぞれ互いに連結して形成する環は、更に置換基が置換していてもよい。上記置換基の種類としては特に制限されず、後述する置換基Wで例示する基が挙げられる。
 式(A3)中の*、*、及びZは、上述した式(A1)中の*、*、及びZと同義であり、好適態様も同じである。
 上記互いに連結して形成される環としては、通常、メロシアニン色素において酸性核として用いられるものが好ましい。具体的には、以下の(a)~(s)が挙げられる。
(a)1,3-ジカルボニル核:例えば、1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、及び1,3-ジオキサン-4,6-ジオン等が挙げられる。
(b)ピラゾリノン核:例えば、1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、及び1-(2-ベンゾチアゾリル)-3-メチル-2-ピラゾリン-5-オン等が挙げられる。
(c)イソオキサゾリノン核:例えば、3-フェニル-2-イソオキサゾリン-5-オン、及び3-メチル-2-イソオキサゾリン-5-オン等が挙げられる。
(d)オキシインドール核:例えば、1-アルキル-2,3-ジヒドロ-2-オキシインドール等が挙げられる。
(e)2,4,6-トリオキソヘキサヒドロピリミジン核:例えば、バルビツール酸又は2-チオバルビツール酸及びその誘導体等が挙げられる。上記誘導体としては、例えば、1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、及び1,3-ジ(2―ピリジル)等の1,3-ジヘテロアリール体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えば、ローダニン及びその誘導体等が挙げられる。上記誘導体としては、例えば、3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、及び3-(2-ピリジル)ローダニン等の3-ヘテロアリールローダニン等が挙げられる。
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば、3-エチル-2-チオ-2,4-オキサゾリジンジオン等が挙げられる。
(h)チアナフテノン核:例えば、3(2H)-チアナフテノン-1,1-ジオキサイド等が挙げられる。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば、3-エチル-2-チオ-2,5-チアゾリジンジオン等が挙げられる。
(j)2,4-チアゾリジンジオン核:例えば、2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、及び3-フェニル-2,4-チアゾリジンジオン等が挙げられる。
(k)チアゾリン-4-オン核:例えば、4-チアゾリノン、及び2-エチル-4-チアゾリノン等が挙げられる。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば、2,4-イミダゾリジンジオン、及び3-エチル-2,4-イミダゾリジンジオン等が挙げられる。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば、2-チオ-2,4-イミダゾリジンジオン、及び3-エチル-2-チオ-2,4-イミダゾリジンジオン等が挙げられる。
(n)イミダゾリン-5-オン核:例えば、2-プロピルメルカプト-2-イミダゾリン-5-オン等が挙げられる。
(o)3,5-ピラゾリジンジオン核:例えば、1,2-ジフェニル-3,5-ピラゾリジンジオン、及び1,2-ジメチル-3,5-ピラゾリジンジオン等が挙げられる。
(p)ベンゾチオフェン-3(2H)-オン核:例えば、ベンゾチオフェン-3(2H)-オン、オキソベンゾチオフェン-3(2H)-オン、及びジオキソベンゾチオフェンー3(2H)-オン等が挙げられる。
(q)インダノン核:例えば、1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、及び3,3-ジメチル-1-インダノン等が挙げられる。
(r)ベンゾフラン-3-(2H)-オン核:例えば、ベンゾフラン-3-(2H)-オン等が挙げられる。
(s)2,2-ジヒドロフェナレン-1,3-ジオン核等が挙げられる。
 特定化合物としては、式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(2)中、X11、X12、Y11、Ra1、Ra2、及びRa4は、それぞれ式(1)中の各基と同義であり、それぞれの好適態様も同じである。
 特定化合物は、蒸着適性の悪化を回避する点から、カルボキシ基、リン酸基、スルホン酸基、及びこれらの基の塩のいずれも有さないことが好ましい。
 また、上記基以外にも、蒸着適性の悪化を回避する点から、モノ硫酸エステル基、モノリン酸エステル基、ホスホン酸基、ホスフィン酸基、ホウ酸基、及びこれらの基の塩のいずれも有さないことが好ましい。
(置換基W)
 本明細書における置換基Wについて記載する。
 置換基Wとしては、例えば、ハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、及びトリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、及びビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といってもよい)、シアノ基、ヒドロキシ基、ニトロ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル又はアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、及びその他の公知の置換基が挙げられる。
 また、置換基Wは、更に置換基Wで置換されていてもよい。例えば、アルキル基にハロゲン原子が置換していてもよい。
 なお、置換基Wの詳細については、特開2007-234651号公報の段落[0023]に記載される。
 ただし、上述した通り、特定化合物は、蒸着適性の悪化を回避する点から、カルボキシ基、リン酸基、スルホン酸基、及びこれらの基の塩のいずれも有さないことが好ましい。
(特定化合物が有し得るアルキル基、アリール基、及びヘテロアリール基)
 特定化合物が有するアルキル基の炭素数は特に制限されないが、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよい。また、アルキル基には、置換基(例えば、置換基W)が置換していてもよい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、及びシクロへキシル基等が挙げられる。
 特定化合物が有するアリール基中の炭素数は特に制限されないが、6~30が好ましく、6~18がより好ましく、6が更に好ましい。アリール基は、単環構造であっても、2つ以上の環が縮環した縮環構造であってもよい。また、アリール基には、置換基(例えば、置換基W)が置換していてもよい。
 アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基、及びフルオレニル基等が挙げられる。なかでも、フェニル基、ナフチル基、又はアントリル基が好ましい。
 特定化合物が有するヘテロアリール基(1価の芳香族複素環基)中の炭素数は特に制限されないが、3~30が好ましく、3~18がより好ましい。ヘテロアリール基には、置換基(例えば、置換基W)が置換していてもよい。
 ヘテロアリール基は、炭素原子、及び水素原子以外にヘテロ原子を有する。ヘテロ原子としては、例えば、硫黄原子、酸素原子、窒素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子が挙げられる。なかでも、硫黄原子、酸素原子、又は窒素原子が好ましい。
 ヘテロアリール基が有するヘテロ原子の数は特に制限されず、1~10の場合が多く、1~4が好ましく、1~2がより好ましい。
 ヘテロアリール基の環員数は特に制限されないが、3~8が好ましく、5~7がより好ましく、5~6が更に好ましい。なお、ヘテロアリール基は、単環構造であっても、2つ以上の環が縮環した縮環構造であってもよい。縮環構造の場合、ヘテロ原子を有さない芳香族炭化水素環(例えば、ベンゼン環)が含まれていてもよい。
 ヘテロアリール基としては、例えば、ピリジル基、キノリル基、イソキノリル基、アクリジニル基、フェナントリジニル基、プテリジニル基、ピラジニル基、キノキサリニル基、ピリミジニル基、キナゾリル基、ピリダジニル基、シンノリニル基、フタラジニル基、トリアジニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、インダゾリル基、イソオキサゾリル基、ベンゾイソオキサゾリル基、イソチアゾリル基、ベンゾイソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、テトラゾリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピロリル基、インドリル基、イミダゾピリジニル基、及びカルバゾリル基等が挙げられる。
 以下に、特定化合物を例示する。
 なお、下記で示す構造式は、化合物を式(1)に当てはめた場合において、Ra2が結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に相当する基に基づいて区別され得るシス体とトランス体とのいずれをも含むことを意図する。また、Y11が=CRa6a7を表す場合において、Ra6及びRa7が結合する炭素原子とそれに隣接する炭素原子(式(1)中に明示される、Aで表される環の構成原子である炭素原子に該当する)とで構成されるC=C二重結合に基づいて区別され得るシス体とトランス体とのいずれをも含むことを意図する。
 下記中、「TMS」はトリメチルシリル基を表す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 特定化合物の分子量は特に制限されないが、300~900が好ましい。上記分子量が900以下であれば、蒸着温度が高くならず、化合物の分解が起こりにくい。また、上記分子量が300以上であれば、蒸着膜のガラス転移点が低くならず、光電変換素子の耐熱性が向上する。
 特定化合物の極大吸収波長は、500~650nmの範囲にあることが好ましく、540~620nmの範囲にあることがより好ましい。
 なお、上記極大吸収波長は、特定化合物の吸収スペクトルを吸光度が0.5~1になる程度の濃度に調整して溶液状態(溶剤:クロロホルム)で測定した値である。
 特定化合物の極大吸収波長における吸収係数は、50000cm-1以上が好ましく、75000cm-1以上がより好ましく、100000cm-1以上が更に好ましい。上記吸光係数の上限に特に制限はされず、300000cm-1以下が好ましい。
 特定化合物の単独膜におけるイオン化ポテンシャルは、後述するp型半導体材料とのエネルギー準位のマッチングの点で、5.2~6.2eVであることが好ましく、5.2~6.1eVであることがより好ましく、5.4~6.0eVであることが更に好ましい。
 なお、光電変換膜中、特定化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 光電変換膜は、上述の特定化合物以外に、更に、後述するn型半導体材料を含むか、又は、後述するn型半導体材料と後述するp型半導体材料とを含むのが好ましい。
 光電変換膜が後述するn型半導体材料を含む場合、光電変換素子の応答性の点から、光電変換膜全体における、特定化合物とn型半導体材料との合計の含有量に対する特定化合物の含有量(=特定化合物の単層換算での膜厚の合計/(特定化合物の単層換算での膜厚の合計+n型半導体材料の単層換算での膜厚)×100)は、20~80体積%が好ましく、40~80体積%がより好ましい。
 また、光電変換膜が、後述するn型半導体材料と後述するp型半導体材料とを含む場合、光電変換素子の応答性の点から、光電変換膜全体における、特定化合物の含有量(=特定化合物の単層換算での膜厚の合計/(特定化合物の単層換算での膜厚の合計+n型半導体材料の単層換算での膜厚+p型半導体材料の単層換算での膜厚)×100)は、15~75体積%が好ましく、25~75体積%がより好ましい。
 なお、光電変換膜は、実質的に、特定化合物とn型半導体材料から構成されるか、又は、実質的に、特定化合物とn型半導体材料とp型半導体材料とから構成されることが好ましい。なお、「実質的」とは、光電変換膜が特定化合物とn型半導体材料から構成される場合においては、光電変換膜全質量に対して、特定化合物及びn型半導体材料の合計含有量が95質量%以上であることを意図する。光電変換膜が、特定化合物とn型半導体材料とp型半導体材料とから構成される場合においては、光電変換膜の全質量に対して、特定化合物とn型半導体材料とp型半導体材料との合計含有量が、95質量%以上であることを意図する。
<n型半導体材料>
 光電変換膜は、特定化合物以外の他の成分として、n型半導体材料を含むことが好ましい。n型半導体材料は、アクセプター性有機半導体材料(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。
 更に詳しくは、n型半導体材料は、特定化合物よりも電子輸送性に優れる有機化合物をいう。また、n型半導体材料は、特定化合物に対して電子親和力が大きいことが好ましい。
 本明細書において、化合物の電子輸送性(電子キャリア移動度)は、例えば、Time-of-Flight法(飛程時間法、TOF法)、又は電界効果トランジスタ素子を用いて評価できる。
 n型半導体材料の電子キャリア移動度は、10-4cm/V・s以上であることが好ましく、10-3cm/V・s以上であることがより好ましく、10-2cm/V・s以上であることが更に好ましい。上記電子キャリア移動度の上限は特に制限されないが、光照射していない状態で微量の電流が流れることを抑制する点から、例えば、10cm/V・s以下が好ましい。
 本明細書において、電子親和力の値としてGaussian‘09(Gaussian社製ソフトウェア)を用いてB3LYP/6-31G(d)の計算により求められるLUMOの値の反数の値(マイナス1を掛けた値)を用いる。
 n型半導体材料の電子親和力は、3.0~5.0eVが好ましい。
 n型半導体材料は、例えば、フラーレン及びその誘導体からなる群より選択されるフラーレン類、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、及びフルオランテン誘導体);窒素原子、酸素原子、及び硫黄原子の少なくとも1つを有する5~7員環のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、及びチアゾール等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;1,4,5,8-ナフタレンテトラカルボン酸無水物;1,4,5,8-ナフタレンテトラカルボン酸無水物イミド誘導体、オキサジアゾール誘導体;アントラキノジメタン誘導体;ジフェニルキノン誘導体;バソクプロイン、バソフェナントロリン、及びこれらの誘導体;トリアゾール化合物;ジスチリルアリーレン誘導体;含窒素ヘテロ環化合物を配位子として有する金属錯体;シロール化合物;並びに、特開2006-100767号公報の段落[0056]~[0057]に記載の化合物が挙げられる。
 なかでも、n型半導体材料は、フラーレン及びその誘導体からなる群より選択されるフラーレン類を含むことが好ましい。
 フラーレンは、例えば、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、及びミックスドフラーレンが挙げられる。
 フラーレン誘導体は、例えば、上記フラーレンに置換基が付加した化合物が挙げられる。置換基は、アルキル基、アリール基、又は複素環基が好ましい。フラーレン誘導体は、特開2007-123707号公報に記載の化合物が好ましい。
 n型半導体材料がフラーレン類を含む場合、光電変換膜中におけるn型半導体材料の合計の含有量に対するフラーレン類の含有量(=(フラーレン類の単層換算での膜厚/全n型半導体材料の単層換算での膜厚)×100)は、15~100体積%が好ましく、35~100体積%がより好ましい。
 上述したn型半導体材料に代えて、又は、上述したn型半導体材料とともに、n型半導体材料として有機色素を使用してもよい。
 n型半導体材料として有機色素を使用することで、光電変換素子の吸収波長(極大吸収波長)を、任意の波長域にコントロールしやすい。
 上記有機色素は、例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、ロダシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、サブフタロシアニン色素、金属錯体色素、特開2014-082483号公報の段落[0083]~[0089]に記載の化合物、特開2009-167348号公報の段落[0029]~[0033]に記載の化合物、特開2012-077064号公報の段落[0197]~[0227]に記載の化合物、WO2018-105269号公報の段落[0035]~[0038]に記載の化合物、WO2018-186389号公報の段落[0041]~[0043]に記載の化合物、WO2018-186397号公報の段落[0059]~[0062]に記載の化合物、WO2019-009249号公報の段落[0078]~[0083]に記載の化合物、WO2019-049946号公報の段落[0054]~[0056]に記載の化合物、WO2019-054327号公報の段落[0059]~[0063]に記載の化合物、及びWO2019-098161号公報の段落[0086]~[0087]に記載の化合物が挙げられる。
 n型半導体材料が有機色素を含む場合、光電変換膜中におけるn型半導体材料の合計の含有量に対する上記有機色素の含有量(=(有機色素の単層換算での膜厚/全n型半導体材料の単層換算での膜厚)×100)は、15~100体積%が好ましく、35~100体積%がより好ましい。
 n型半導体材料の分子量は、200~1200が好ましく、200~1000がより好ましい。
 光電変換膜は、特定化合物とn型半導体材料とが混合された状態で形成されるバルクヘテロ構造を有することが好ましい。バルクヘテロ構造は、光電変換膜内で、特定化合物とn型半導体材料とが混合、分散している層である。バルクヘテロ構造を有する光電変換膜は、湿式法及び乾式法のいずれでも形成できる。なお、バルクへテロ構造については、特開2005-303266号公報の段落[0013]~[0014]等において詳細に説明されている。
 光電変換膜におけるn型半導体材料の含有量(=(n型半導体材料の単層換算での膜厚/光電変換膜全体の膜厚)×100)は5~70体積%が好ましく、10~60体積%がより好ましく、15~60体積%が更に好ましい。
 なお、光電変換膜中に含まれるn型半導体材料は、1種単独で使用してもよいし、2種以上を併用してもよい。
<p型半導体材料>
 光電変換膜は、特定化合物以外の他の成分として、特定化合物及びn型半導体材料に加えて、更にp型半導体材料を含むことも好ましい。なお、特定化合物をp型半導体材料として使用する場合は、上記p型半導体材料は、特定化合物以外のp型半導体材料を意図する。
 p型半導体材料とは、ドナー性有機半導体材料(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。
 更に詳しくは、p型半導体材料とは、特定化合物よりも正孔輸送性に優れる有機化合物をいう。
 本明細書において、化合物の正孔輸送性(正孔キャリア移動度)は、例えば、Time-of-Flight法(飛程時間法、TOF法)、又は、電界効果トランジスタ素子を用いて評価できる。
 p型半導体材料の正孔キャリア移動度は、10-4cm/V・s以上であることが好ましく、10-3cm/V・s以上であることがより好ましく、10-2cm/V・s以上であることが更に好ましい。上記正孔キャリア移動度の上限は特に制限されないが、光照射していない状態で微量の電流が流れることを抑制する点から、例えば、10cm/V・s以下が好ましい。
 また、p型半導体材料は、特定化合物に対してイオン化ポテンシャルが小さいことも好ましい。
 光電変換膜がp型半導体材料を含む場合、特定化合物と、p型半導体材料と、上述したn型半導体材料とが混合された状態で形成されるバルクヘテロ構造を有することが好ましい。
 p型半導体材料としては、例えば、トリアリールアミン化合物(例えば、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、特開2011-228614号公報の段落[0128]~[0148]に記載の化合物、特開2011-176259号公報の段落[0052]~[0063]に記載の化合物、特開2011-225544号公報の段落[0119]~[0158]に記載の化合物、特開2015-153910号公報の段落[0044]~[0051]に記載の化合物、及び特開2012-094660号公報の段落[0086]~[0090]に記載の化合物等)、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、ポリシラン化合物、チオフェン化合物(例えば、チエノチオフェン誘導体、ジベンゾチオフェン誘導体、ベンゾジチオフェン誘導体、ジチエノチオフェン誘導体、[1]ベンゾチエノ[3,2-b]チオフェン(BTBT)誘導体、チエノ[3,2-f:4,5-f´]ビス[1]ベンゾチオフェン(TBBT)誘導体、特開2018-014474号の段落[0031]~[0036]に記載の化合物、WO2016-194630号の段落[0043]~[0045]に記載の化合物、WO2017-159684号の段落[0025]~[0037]、[0099]~[0109]に記載の化合物、特開2017-076766号公報の段落[0029]~[0034]に記載の化合物、WO2018-207722の段落[0015]~[0025]に記載の化合物、特開2019-054228の段落[0045]~[0053]に記載の化合物、WO2019-058995の段落[0045]~[0055]に記載の化合物、WO2019-081416の段落[0063]~[0089]に記載の化合物、特開2019-080052の段落[0033]~[0036]に記載の化合物、WO2019-054125の段落[0044]~[0054]に記載の化合物、WO2019-093188の段落[0041]~[0046]に記載の化合物、等)、シアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ペンタセン誘導体、ピレン誘導体、ペリレン誘導体、及びフルオランテン誘導体)、ポルフィリン化合物、フタロシアニン化合物、トリアゾール化合物、オキサジアゾール化合物、イミダゾール化合物、ポリアリールアルカン化合物、ピラゾロン化合物、アミノ置換カルコン化合物、オキサゾール化合物、フルオレノン化合物、シラザン化合物、並びに、含窒素ヘテロ環化合物を配位子として有する金属錯体が挙げられる。
 また、p型半導体材料としては、式(p1)で表される化合物、式(p2)で表される化合物、式(p3)で表される化合物、式(p4)で表される化合物、又は式(p5)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000044
 式(p1)~(p5)中、2つ存在するRは、それぞれ独立に、水素原子又は置換基を表す。なお、Rで表される置換基としては、アルキル基、アルコキシ基、ハロゲン原子、アルキルチオ基、(ヘテロ)アリールチオ基、アルキルアミノ基、(ヘテロ)アリールアミノ基、及び(ヘテロ)アリール基等が挙げられる。これらの基は、更に置換基を有していてもよい。例えば、(ヘテロ)アリール基は、更に置換基を有してもよいアリールアリール基(つまりビアリール基。この基を構成するアリール基の少なくとも一方がヘテロアリール基でもよい)であってもよい。
 また、Rで表される置換基としては、WO2019-081416の式(IX)におけるRで表される基も好ましい。
 X及びYは、それぞれ独立に、-CR -、硫黄原子、酸素原子、-NR-、又は-SiR -を表す。
 Rは、水素原子、置換基を有してもよい、アルキル基(好ましくはメチル基又はトリフルオロメチル基)、アリール基、又はヘテロアリール基を表す。2以上存在するRは、それぞれ同一でも異なっていてもよい。
 以下に、p型半導体材料として使用し得る化合物を例示する。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 光電変換膜におけるp型半導体材料の含有量(=(p型半導体材料の単層換算での膜厚/光電変換膜全体の膜厚)×100)は5~70体積%が好ましく、10~50体積%がより好ましく、15~40体積%が更に好ましい。
 なお、光電変換膜中に含まれるp型半導体材料は、1種単独で使用してもよいし、2種以上を併用してもよい。
 本発明における光電変換膜は非発光性膜であり、有機電界発光素子(OLED:Organic Light Emitting Diode)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜を意図し、発光量子効率は0.5%以下が好ましく、0.1%以下がより好ましい。
<成膜方法>
 光電変換膜は、主に、塗布式成膜法及び乾式成膜法により成膜できる。
 塗布式成膜は、例えば、ドロップキャスト法、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、及びスピンコート法を含む塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、及びマイクロコンタクト印刷法を含む各種印刷法、並びにLangmuir-Blodgett(LB)法等が挙げられる。
 乾式成膜法は、例えば、蒸着法(特に、真空蒸着法)、スパッタ法、イオンプレーティング法、及びMBE(Molecular Beam Epitaxy)法等の物理気相成長法、並びに、プラズマ重合等のCVD(Chemical Vapor Deposition)法が挙げられる。
 なかでも、乾式成膜法が好ましく、真空蒸着法がより好ましい。真空蒸着法により光電変換膜を成膜する場合、真空度及び蒸着温度等の製造条件は常法に従って設定できる。
 光電変換膜の厚みは、10~1000nmが好ましく、50~800nmがより好ましく、50~500nmが更に好ましい。
<電極>
 電極(上部電極(透明導電性膜)15と下部電極(導電性膜)11)は、導電性材料から構成される。導電性材料は、金属、合金、金属酸化物、電気伝導性化合物、及びこれらの混合物等が挙げられる。
 上部電極15から光が入射されるため、上部電極15は検知したい光に対し透明であることが好ましい。上部電極15を構成する材料は、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO:Antimony Tin Oxide、FTO:Fluorine doped Tin Oxide)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO:Indium Tin Oxide)、及び酸化亜鉛インジウム(IZO:Indium zinc oxide)等の導電性金属酸化物;金、銀、クロム、及びニッケル等の金属薄膜;これらの金属と導電性金属酸化物との混合物又は積層物;並びに、ポリアニリン、ポリチオフェン、及びポリピロール等の有機導電性材料、等が挙げられる。なかでも、高導電性及び透明性等の点から、導電性金属酸化物が好ましい。
 通常、導電性膜をある範囲より薄くすると、急激な抵抗値の増加をもたらすが、本実施形態にかかる光電変換素子を組み込んだ固体撮像素子では、シート抵抗は、好ましくは100~10000Ω/□でよく、薄膜化できる膜厚の範囲の自由度は大きい。また、上部電極(透明導電性膜)15は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大、及び透過率の増加を考慮すると、上部電極15の膜厚は、5~100nmが好ましく、5~20nmがより好ましい。
 下部電極11は、用途に応じて、透明性を持たせる場合と、逆に透明性を持たせず光を反射させる場合とがある。下部電極11を構成する材料は、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル、チタン、タングステン、及びアルミ等の金属、これらの金属の酸化物又は窒化物等の導電性化合物(一例として窒化チタン(TiN)を挙げる);これらの金属と導電性金属酸化物との混合物又は積層物;並びに、ポリアニリン、ポリチオフェン、及びポリピロール、等の有機導電性材料等が挙げられる。
 電極を形成する方法は特に制限されず、電極材料に応じて適宜選択できる。具体的には、印刷方式、及びコーティング方式等の湿式方式;真空蒸着法、スパッタ法、及びイオンプレーティング法等の物理的方式;並びに、CVD、及びプラズマCVD法等の化学的方式、等が挙げられる。
 電極の材料がITOの場合、電子ビーム法、スパッタ法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法等)、及び酸化インジウムスズの分散物の塗布等の方法が挙げられる。
〔電荷ブロッキング膜:電子ブロッキング膜及び正孔ブロッキング膜〕
 本発明の光電変換素子は、導電性膜と透明導電性膜との間に、光電変換膜の他に1種以上の中間層を有していることも好ましい。上記中間層は、電荷ブロッキング膜が挙げられる。光電変換素子がこの膜を有することにより、得られる光電変換素子の特性(光電変換効率及び応答性等)がより優れる。電荷ブロッキング膜は、電子ブロッキング膜と正孔ブロッキング膜とが挙げられる。光電変換素子は、中間層として、少なくとも電子ブロッキング膜を有することが好ましい。
 以下に、それぞれの膜について詳述する。
<電子ブロッキング膜>
 電子ブロッキング膜は、ドナー性有機半導体材料(化合物)である。
 電子ブロッキング膜は、イオン化ポテンシャルが4.8~5.8eVであることが好ましい。
 また、電子ブロッキング膜のイオン化ポテンシャルIp(B)と、第一の化合物のイオン化ポテンシャルIp(1)と、第二の化合物のイオン化ポテンシャルIp(2)とが、Ip(B)≦Ip(1)かつIp(B)≦Ip(2)の関係を満たすことが好ましい。
 電子ブロッキング膜としては、例えば、p型半導体材料を使用できる。p型半導体材料は1種単独で使用してもよく、2種以上を使用してもよい。
 p型半導体材料としては、例えば、p型有機半導体材料が挙げられ、具体的には、トリアリールアミン化合物(例えば、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、特開2011-228614号公報の段落[0128]~[0148]に記載の化合物、特開2011-176259号公報の段落[0052]~[0063]に記載の化合物、特開2011-225544号公報の段落[0119]~[0158]に記載の化合物、特開2015-153910号公報の段落[0044]~[0051]に記載の化合物、及び特開2012-094660号公報の段落[0086]~[0090]に記載の化合物等)、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、ポリシラン化合物、チオフェン化合物(例えば、チエノチオフェン誘導体、ジベンゾチオフェン誘導体、ベンゾジチオフェン誘導体、ジチエノチオフェン誘導体、[1]ベンゾチエノ[3,2-b]チオフェン(BTBT)誘導体、チエノ[3,2-f:4,5-f´]ビス[1]ベンゾチオフェン(TBBT)誘導体、特開2018-014474号の段落[0031]~[0036]に記載の化合物、WO2016-194630号の段落[0043]~[0045]に記載の化合物、WO2017-159684号の段落[0025]~[0037]、[0099]~[0109]に記載の化合物、特開2017-076766号公報の段落[0029]~[0034]に記載の化合物、WO2018-207722の段落[0015]~[0025]に記載の化合物、特開2019-054228の段落[0045]~[0053]に記載の化合物、WO2019-058995の段落[0045]~[0055]に記載の化合物、WO2019-081416の段落[0063]~[0089]に記載の化合物、特開2019-080052の段落[0033]~[0036]に記載の化合物、WO2019-054125の段落[0044]~[0054]に記載の化合物、WO2019-093188の段落[0041]~[0046]に記載の化合物、等)、シアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ペンタセン誘導体、ピレン誘導体、ペリレン誘導体、及びフルオランテン誘導体)、ポルフィリン化合物、フタロシアニン化合物、トリアゾール化合物、オキサジアゾール化合物、イミダゾール化合物、ポリアリールアルカン化合物、ピラゾロン化合物、アミノ置換カルコン化合物、オキサゾール化合物、フルオレノン化合物、シラザン化合物、並びに、含窒素ヘテロ環化合物を配位子として有する金属錯体が挙げられる。
 p型半導体材料は、n型半導体材料よりもイオン化ポテンシャルが小さい化合物が挙げられる。この条件を満たせば、n型半導体材料として例示した有機色素も使用し得る。
 また、電子ブロッキング膜として、高分子材料も使用できる。
 高分子材料は、例えば、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、及びジアセチレン等の重合体、並びに、その誘導体が挙げられる。
 なお、電子ブロッキング膜は、複数膜で構成してもよい。
 電子ブロッキング膜は、無機材料で構成されていてもよい。一般的に、無機材料は有機材料よりも誘電率が大きいため、無機材料を電子ブロッキング膜に用いた場合に、光電変換膜に電圧が多くかかるようになり、光電変換効率が高くなる。電子ブロッキング膜となりうる無機材料は、例えば、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、及び酸化イリジウムが挙げられる。
<正孔ブロッキング膜>
 正孔ブロッキング膜は、アクセプター性有機半導体材料(化合物)であり、上述したn型半導体材料を利用できる。
 電荷ブロッキング膜の製造方法は特に制限されず、例えば、乾式成膜法及び湿式成膜法が挙げられる。乾式成膜法は、例えば、蒸着法及びスパッタ法が挙げられる。蒸着法は、物理蒸着(PVD:Physical Vapor Deposition)法及び化学蒸着(CVD)法のいずれでもよく、真空蒸着法等の物理蒸着法が好ましい。湿式成膜法は、例えば、インクジェット法、スプレー法、ノズルプリント法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、及びグラビアコート法が挙げられ、高精度パターニングの点から、インクジェット法が好ましい。
 電荷ブロッキング膜(電子ブロッキング膜及び正孔ブロッキング膜)の厚みは、それぞれ、3~200nmが好ましく、5~100nmがより好ましく、5~30nmが更に好ましい。
<基板>
 光電変換素子は、更に基板を有してもよい。
 使用される基板の種類は特に制限されず、例えば、半導体基板、ガラス基板、及びプラスチック基板が挙げられる。
 なお、基板の位置は特に制限されず、通常、基板上に導電性膜、光電変換膜、及び透明導電性膜をこの順で積層する。
<封止層>
 光電変換素子は、更に封止層を有してもよい。
 光電変換材料は水分子等の劣化因子の存在で顕著にその性能が劣化してしまうことがある。そこで、水分子を浸透させない緻密な金属酸化物、金属窒化物、及び金属窒化酸化物等のセラミクス、又はダイヤモンド状炭素(DLC:Diamond-like Carbon)等の封止層で光電変換膜全体を被覆して封止することで、上記劣化を防止できる。
 なお、封止層は、特開2011-082508号公報の段落[0210]~[0215]に記載に従って、材料の選択及び製造を行ってもよい。
 本発明の光電変換素子において、光電変換膜は、1層のみの構成であってもよいし、2層以上の多層構成であってもよい。なお、本発明の光電変換素子中の光電変換膜が2層以上の多層構成である場合、少なくとも1層が特定化合物を含んでいればよい。
 本発明の光電変換素子を後述する撮像素子及び光センサに適用する場合、光電変換素子中の光電変換膜を、例えば、特定化合物を含む層と近赤外~赤外領域に感光性を有する層との積層体として構成するのも好ましい。このような光電変換素子の構成としては、例えば、特開2019-208026号公報、特開2018-125850号公報、及び特開2018-125848号公報等に開示された光電変換素子の構成を適用できる。
[撮像素子]
 光電変換素子の用途として、例えば、光電変換素子を有する撮像素子が挙げられる。
 撮像素子とは、画像の光情報を電気信号に変換する素子であり、通常、複数の光電変換素子が同一平面状でマトリクス上に配置されており、各々の光電変換素子(画素)において光信号を電気信号に変換し、その電気信号を画素ごとに逐次撮像素子外に出力できるものをいう。そのために、画素ひとつあたり、1つ以上の光電変換素子、1つ以上のトランジスタから構成される。
 撮像素子は、デジタルカメラ、及びデジタルビデオカメラ等の撮像素子、電子内視鏡、並びに、携帯電話機等の撮像モジュール等に搭載される。
 本発明の光電変換素子は、本発明の光電変換素子を有する光センサに用いることも好ましい。光センサは、上記光電変換素子単独で用いてもよいし、上記光電変換素子を直線状に配したラインセンサ、又は平面状に配した2次元センサとして用いてもよい。
[化合物]
 本発明は、特定化合物にも関する。
 特定化合物は、上述した式(1)で表される化合物であり、好適態様も同じである。
 特定化合物は、光センサ、撮像素子、又は光電池に用いる光電変換膜の材料として特に有用である。なお、通常、特定化合物は、光電変換膜内でp型有機半導体として機能する場合が多い。また、特定化合物は、着色材料、液晶材料、有機半導体材料、電荷輸送材料、医薬材料、及び蛍光診断薬材料としても用いることもできる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[合成例]
〔特定化合物(D-1)~(D-18)の合成〕
 特定化合物(D-1)は、以下のスキームに従って、合成した。
Figure JPOXMLDOC01-appb-C000050
 化合物(A-1)は、J.Chem.Soc.Perkin Trans.I,1998, 4, 685-687に記載の方法に従って合成した。
 化合物(A-1)(2.20g、10.0mmol)と、フェニルボロン酸(3.66g、30.0mmol)と、炭酸カリウム(4.98g、36.0mmol)と、テトラヒドロフラン/水(15/1(v/v)、100mL)とを混合し、室温で撹拌しながら減圧脱気をした。脱気後、得られた混合液にテトラキス(トリフェニルホスフィン)パラジウム(0)(0.23g、0.20mmol)を添加し、混合液を加熱還流し、窒素下14時間撹拌した。放冷後、混合液中の不溶物をセライト濾過で除去し、得られた混合液を減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=90:10~ヘキサン/酢酸エチル=70:30)で精製し、化合物(A-2)(1.52g、70%)を得た。
 化合物(A-2)(1.50g、6.90mmol)と、テトラヒドロフラン(69mL)とを混合し、-78℃で撹拌したところへ、n-ブチルリチウムヘキサン溶液(1.6M)(5.18mL、8.28mmol)を滴下し、-78℃で30分間撹拌した。得られた混合液を-78℃で撹拌したところに、N,N-ジメチルホルムアミド(0.80mL、10.4mmol)を滴下し、-78℃で窒素下1時間撹拌した。混合液を0℃まで昇温後、水を滴下し、分液ロートを用いてクロロホルムで抽出した。得られた有機相を、分液ロートを用いて飽和塩化アンモニウム水溶液とブラインで洗浄し、減圧濃縮して得られた粗生成物を、クロロホルムに溶解させ、メタノールを添加することで析出させた。析出した固体をろ取し、メタノールで洗浄した。得られた固体を真空乾燥させることで化合物(A-3)(1.39g、82%)で得た。
 化合物(A-3)(1.00g、4.08mmol)と、ベンゾインダンジオン(1.04g、5.30mmol)と、無水酢酸(15mL)とを混合し、得られた混合液を70℃で4時間撹拌した。放冷した後、混合溶液にメタノール(30mL)を添加して30分間撹拌し、固体を析出させた。析出した固体をろ取し、メタノールで洗浄して粗生成物を得た。得られた粗生成物を、クロロホルムに溶解させ、メタノールを添加することで析出させた。析出した固体をろ取し、メタノールで洗浄した。得られた固体を真空乾燥させることで化合物(D-1)(1.47g、85%)で得た。
 得られた化合物(D-1)はMS(Mass Spectrometry)により同定した。MS(ESI+)m/z:424.0([M+H]
また、上記化合物(D-1)の合成方法を参照して、化合物(D-2)~(D-18)を合成した。
 以下に、化合物(D-1)~(D-18)並びに比較化合物(R-1)~(R-2)の構造を具体的に示す。
 なお、以下に示す化合物(D-1)~(D-18)の構造は、シス体とトランス体とをいずれも含む。つまり、化合物(D-1)~(D-18)を上述した式(1)に当てはめた場合において、Ra2が結合する炭素原子とそれに隣接する炭素原子とで構成されるC=C二重結合に相当する基に基づいて区別され得るシス体とトランス体とのいずれをも含むことを意図する。また、Y11が=CRa6a7を表す場合において、Ra6及びRa7が結合する炭素原子とそれに隣接する炭素原子(式(1)中に明示される、Aで表される環の構成原子である炭素原子に該当する)とで構成されるC=C二重結合に基づいて区別され得るシス体とトランス体とのいずれをも含むことを意図する。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
[光電変換素子の作製]
〔作製手順〕
 得られた特定化合物を用いて図1の形態の光電変換素子を作製した。
 光電変換素子は、下部電極11、電子ブロッキング膜16A、光電変換膜12、及び上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、更に下部電極11上に後述する化合物(EB-1)を真空加熱蒸着法により成膜して、電子ブロッキング膜16A(厚み:30nm)を形成した。
 更に、基板の温度を25℃に制御した状態で、電子ブロッキング膜16A上に、上述した特定化合物(D-1)とn型半導体材料(フラーレン(C60))と、所望に応じてp型半導体材料(後述する化合物(P-1)~(P-4)のいずれかの化合物)と、をそれぞれ単層換算で80nmとなるように真空蒸着法により共蒸着して成膜した。これによって、160nm(p型半導体材料も使用した場合は240nm)のバルクヘテロ構造を有する光電変換膜12を形成した。
 更に、光電変換膜12上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、真空蒸着法により封止層としてSiO膜を形成した後、その上にALCVD(Atomic Layer Chemical Vapor Deposition)法により酸化アルミニウム(Al)層を形成し、光電変換素子を作製した。
 また、表1に従って各成分を添加し、特定化合物(D-1)を特定化合物(D-2)~(D-18)又は比較用化合物(R-1)~(R-2)に変更した以外は、同様の方法により、光電変換素子を作製した。
 なお、比較用化合物(R-2)を用いた場合、光電変換膜を成膜できず、光電変換素子を作製できなかった(比較例2に該当する)。
〔各種材料〕
 上述の光電変換素子の作製に使用した各種材料を示す。
<電子ブロッキング膜形成材料>
 電子ブロッキング膜形成材料としては、以下に示す化合物(EB-1)を使用した。
Figure JPOXMLDOC01-appb-C000053
<n型半導体材料>
 n型半導体材料としては、フラーレン(C60)を使用した。
<p型半導体材料>
 p型半導体材料として、以下に示す化合物(P-1)~(P-4)を使用した。
Figure JPOXMLDOC01-appb-C000054
[評価]
〔光電変換効率(外部量子効率)の評価〕
 得られた各光電変換素子の駆動の確認をした。各光電変換素子に2.0×10V/cmの電界強度となるように電圧を印加した。その後、上部電極(透明導電性膜)側から光を照射し、IPCE(Incident-photon-to-current conversion efficiency)測定を行い、450nm、580nm、及び650nmの各波長での外部量子効率(連続駆動前の外部量子効率)を抽出した。特定化合物(D-1)~(D-18)はいずれも、450nm、580nm、及び650nmの全ての波長において50%以上の外部量子効率(光電変換効率)を示し、光電変換素子として十分な外部量子効率を有することを確認した。外部量子効率は、オプテル製定エネルギー量子効率測定装置を用いて測定した。照射した光量は50μW/cmであった。
 また、450nm、580nm、及び650nmの全ての波長において、比較例1の光電変換素子の外部量子効率(光電変換効率)を1に規格化して各光電変換素子の外部量子効率(光電変換効率)の相対値を求め、得られた値を下記基準により評価した。なお、実用性の点で、「D」以上の評価が好ましく、「C」以上の評価がより好ましい。
<評価基準>
 「A」:1.8以上
 「B」:1.5以上1.8未満
 「C」:1.3以上1.5未満
 「D」:1.1以上1.3未満
 「E」:1.1未満
〔応答性の評価〕
 得られた各光電変換素子の応答性を評価した。各光電変換素子に2.0×10V/cmの強度となるように電圧を印加した。その後、LED(light emitting diode)を瞬間的に点灯させて上部電極(透明導電性膜)側から光を照射し、450nm、580nm、及び650nmの各波長での光電流をオシロスコープで測定して、0%信号強度から97%信号強度までの立ち上がり時間を計った。次いで、450nm、580nm、及び650nmの全ての波長において、比較例1の光電変換素子の立ち上がり時間を1に規格化して、各光電変換素子の立ち上がり時間の相対値を求め、得られた値を下記基準により評価した。
 なお、実用性の点で、「D」以上の評価が好ましく、「C」以上の評価がより好ましい。
<評価基準>
 「A」:0.1未満
 「B」:0.1以上0.3未満
 「C」:0.3以上0.7未満
 「D」:0.7以上1.0未満
 「E」:1.0以上
 結果を表1に示す。
 表1中、各記載は、以下を示す。
 「X13が=CRa4-」欄は、特定化合物のX13が=CRa4-を表すか否かを示す。該当する場合を「A」とし、該当しない場合を「-」とする。
 「X12が硫黄原子」欄は、特定化合物のX12が硫黄原子を表すか否かを示す。該当する場合を「A」とし、該当しない場合を「-」とする。
 「Ra1がアリール基等」欄は、特定化合物のRa1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表すか否かを示す。該当する場合を「A」とし、該当しない場合を「-」とする。
 「Y11が酸素原子」欄は、特定化合物のY11が酸素原子を表すか否かを示す。該当する場合を「A」とし、該当しない場合を「-」とする。
Figure JPOXMLDOC01-appb-T000055
 表1の結果から、実施例の光電変換素子は、赤色波長領域、緑色波長領域、及び青色波長領域のいずれの波長の光に対しても優れた外部量子効率と応答性とを示すことが確認された。
 実施例1と実施例10との比較等から、式(1)中、X13が=CRa4-を表す場合、より効果が優れることが確認された。
 実施例1と実施例9との比較等から、式(1)中、X12が硫黄原子を表す場合、より効果が優れることが確認された。
 実施例1と実施例7との比較等から、式(1)中、Ra1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す場合、より効果が優れることが確認された。
 実施例1と実施例8との比較等から、式(1)中、Y11が酸素原子を表す場合、より効果が優れることが確認された。
 実施例1と実施例19との比較等から、光電変換膜が、更にp型半導体材料を含む場合、より効果が優れることが確認された。
 10a,10b  光電変換素子
 11  導電性膜(下部電極)
 12  光電変換膜
 15  透明導電性膜(上部電極)
 16A  電子ブロッキング膜
 16B  正孔ブロッキング膜

Claims (15)

  1.  導電性膜、光電変換膜、及び透明導電性膜をこの順に有する光電変換素子であって、前記光電変換膜が、下記式(1)で表される化合物を含む、光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、X11及びX12は、それぞれ独立に、酸素原子、硫黄原子、セレン原子、又は-NRa3-を表す。X13は、窒素原子又は=CRa4-を表す。Ra1は、水素原子又は分子量700以下の置換基を表す。Y11は、酸素原子、硫黄原子、=NRa5、又は=CRa6a7を表す。Ra2~Ra5は、それぞれ独立に、水素原子又は置換基を表す。Ra6及びRa7は、それぞれ独立に、シアノ基又は-COORa8を表す。Ra8は、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基を表す。Aは、少なくとも2つの炭素原子を含む環を表す。
  2.  前記式(1)中、前記X13が=CRa4-を表す、請求項1に記載の光電変換素子。
  3.  前記式(1)中、前記X12が硫黄原子を表す、請求項1又は2に記載の光電変換素子。
  4.  前記式(1)中、前記Ra1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す、請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記式(1)中、前記Y11が酸素原子を表す、請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記光電変換膜が、更にn型半導体材料を含み、前記式(1)で表される化合物と前記n型半導体材料とが混合された状態で形成するバルクヘテロ構造を有する、請求項1~5のいずれか1項に記載の光電変換素子。
  7.  前記光電変換膜が、更にp型半導体材料を含む、請求項1~6のいずれか1項に記載の光電変換素子。
  8.  前記導電性膜と前記透明導電性膜の間に、前記光電変換膜の他に1種以上の中間層を含む、請求項1~7のいずれか1項に記載の光電変換素子。
  9.  請求項1~8のいずれか1項に記載の光電変換素子を含む、撮像素子。
  10.  請求項1~8のいずれか1項に記載の光電変換素子を含む、光センサ。
  11.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002

     式(1)中、X11及びX12は、それぞれ独立に、酸素原子、硫黄原子、セレン原子、又は-NRa3-を表す。X13は、窒素原子又は=CRa4-を表す。Ra1は、水素原子又は分子量700以下の置換基を表す。Y11は、酸素原子、硫黄原子、=NRa5、又は=CRa6a7を表す。Ra2~Ra5は、それぞれ独立に、水素原子又は置換基を表す。Ra6及びRa7は、それぞれ独立に、シアノ基又は-COORa8を表す。Ra8は、置換基を有していてもよい、アルキル基、アリール基、又はヘテロアリール基を表す。
  12.  前記式(1)中、前記X13が=CRa4-を表す、請求項11に記載の化合物。
  13.  前記式(1)中、前記X12が硫黄原子を表す、請求項11又は12に記載の化合物。
  14.  前記式(1)中、前記Ra1が、置換基を有していてもよい、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す、請求項11~13のいずれか1項に記載の化合物。
  15.  前記式(1)中、前記Y11が酸素原子を表す、請求項11~14のいずれか1項に記載の化合物。
PCT/JP2021/023174 2020-06-25 2021-06-18 光電変換素子、撮像素子、光センサ、化合物 WO2021261389A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180044170.8A CN115769705A (zh) 2020-06-25 2021-06-18 光电转换元件、成像元件、光传感器及化合物
JP2022531932A JP7454671B2 (ja) 2020-06-25 2021-06-18 光電変換素子、撮像素子、光センサ、化合物
US18/145,019 US20230147152A1 (en) 2020-06-25 2022-12-22 Photoelectric conversion element, imaging element, optical sensor, and compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109851 2020-06-25
JP2020109851 2020-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/145,019 Continuation US20230147152A1 (en) 2020-06-25 2022-12-22 Photoelectric conversion element, imaging element, optical sensor, and compound

Publications (1)

Publication Number Publication Date
WO2021261389A1 true WO2021261389A1 (ja) 2021-12-30

Family

ID=79281257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023174 WO2021261389A1 (ja) 2020-06-25 2021-06-18 光電変換素子、撮像素子、光センサ、化合物

Country Status (4)

Country Link
US (1) US20230147152A1 (ja)
JP (1) JP7454671B2 (ja)
CN (1) CN115769705A (ja)
WO (1) WO2021261389A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014396A (ja) * 2016-07-20 2018-01-25 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および固体撮像装置
WO2019009249A1 (ja) * 2017-07-07 2019-01-10 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、および、化合物
US20190389832A1 (en) * 2016-07-08 2019-12-26 Merck Patent Gmbh Organic semiconducting compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190389832A1 (en) * 2016-07-08 2019-12-26 Merck Patent Gmbh Organic semiconducting compounds
JP2018014396A (ja) * 2016-07-20 2018-01-25 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および固体撮像装置
WO2019009249A1 (ja) * 2017-07-07 2019-01-10 富士フイルム株式会社 光電変換素子、光センサ、撮像素子、および、化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUSSAIN RIAZ, HUSSAIN RIAZ, KHAN MUHAMMAD, MEHBOOB MUHAMMAD, KHALID MUHAMMAD, IQBAL JAVED, AYUB KHURSHID, ADNAN MUHAMMAD, AHMED MA: "Enhancement in Photovoltaic Properties of N , N ‐diethylaniline based Donor Materials by Bridging Core Modifications for Efficient Solar Cells", CHEMISTRYSELECT, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 5, no. 17, 8 May 2020 (2020-05-08), DE , pages 5022 - 5034, XP055895796, ISSN: 2365-6549, DOI: 10.1002/slct.202000096 *

Also Published As

Publication number Publication date
JPWO2021261389A1 (ja) 2021-12-30
JP7454671B2 (ja) 2024-03-22
US20230147152A1 (en) 2023-05-11
CN115769705A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
JP6848077B2 (ja) 光電変換素子、光センサ、及び撮像素子
KR101719089B1 (ko) 광전 변환 소자 및 그 사용 방법, 광 센서, 촬상 소자
JP6918109B2 (ja) 光電変換素子、光センサ、撮像素子、および、化合物
JP7050927B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP5840187B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
WO2014051007A1 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP6077426B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP7011056B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2021221032A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
JP6970808B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2021261447A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2021141078A1 (ja) 光電変換素子、撮像素子、光センサ
WO2020203355A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、撮像素子用材料、光センサ用材料
WO2021261389A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2021090619A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、化合物
WO2020202978A1 (ja) 光電変換素子、撮像素子、光センサ、撮像素子用光電変換素子用材料、光センサ用光電変換素子用材料
WO2020261938A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料
WO2020261933A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料
WO2023054346A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2024185810A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
TW202436280A (zh) 光電轉換元件、攝像元件、光感測器及化合物
JP2021009879A (ja) 光電変換素子、撮像素子、光センサ、光電変換素子用材料、化合物
KR20240046541A (ko) 광전 변환 소자, 촬상 소자, 광 센서, 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828030

Country of ref document: EP

Kind code of ref document: A1