WO2021261122A1 - Structure and method for manufacturing structure - Google Patents

Structure and method for manufacturing structure Download PDF

Info

Publication number
WO2021261122A1
WO2021261122A1 PCT/JP2021/018884 JP2021018884W WO2021261122A1 WO 2021261122 A1 WO2021261122 A1 WO 2021261122A1 JP 2021018884 W JP2021018884 W JP 2021018884W WO 2021261122 A1 WO2021261122 A1 WO 2021261122A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
oxide film
anodic oxide
metal layer
pores
Prior art date
Application number
PCT/JP2021/018884
Other languages
French (fr)
Japanese (ja)
Inventor
吉則 堀田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227044916A priority Critical patent/KR20230015412A/en
Priority to JP2022532400A priority patent/JP7402981B2/en
Priority to CN202180044421.2A priority patent/CN115916523A/en
Publication of WO2021261122A1 publication Critical patent/WO2021261122A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to a structure in which a plurality of conductive columnar bodies are arranged in a state of being electrically insulated from each other and metal layers are provided on both sides of the substrate, and a method for manufacturing the structure.
  • metal foils have been used for various purposes such as electrically conductive members. Metal foil is also used for decoration and the like. Examples of the metal foil include aluminum foil, copper foil, titanium foil and the like. The thickness of the metal foil is about several hundred ⁇ m, for example, about 200 ⁇ m.
  • the metal foil has a thickness of about several hundred ⁇ m, and is easily deformed and has poor workability when drilling or cutting. At present, there is no metal foil with excellent workability.
  • An object of the present invention is to provide a structure having excellent processability and a method for manufacturing the structure.
  • one aspect of the present invention is a plurality of columnar bodies composed of conductors and a plurality of columnar bodies electrically insulated from each other along the thickness direction. It provides a structure having a provided substrate and metal layers provided on both sides of the substrate in the thickness direction.
  • the substrate has an electrically insulating insulating film, and the plurality of columnar bodies are provided on the insulating film in a state of being electrically insulated from each other.
  • the insulating film is preferably composed of an anodic oxide film.
  • the metal layers provided on both sides in the thickness direction of the substrate are preferably made of the same type of metal.
  • the plurality of columnar bodies and the metal layer are preferably composed of copper.
  • Another aspect of the present invention is a first aspect in which one surface of an anodic oxide film having a plurality of pores extending in the thickness direction is plated with a first metal and one surface is coated with the first metal. It provides a method for manufacturing a structure, which comprises a coating step and a second coating step of coating the other surface of the anodic oxide film with a second metal from the other surface with a second metal.
  • the second coating step is preferably a plating step in which the other surface of the anodic oxide film is plated with the second metal and the other surface is coated with the second metal.
  • a metal projecting step of projecting a first metal filled in a plurality of pores of the anodic oxide film from the other surface of the anodic oxide film by the first coating step is preferable to have. It is preferable that the first metal in the first coating step and the second metal in the second coating step are the same type of metal. It is preferable that the first metal in the first coating step and the second metal in the second coating step are copper.
  • the thickness of the metal foil is about several hundred ⁇ m, and the metal foil is easily deformed and difficult to process when drilling or cutting.
  • the workability was excellent by providing metal layers on both sides of a substrate in which a plurality of conductive columnar bodies were arranged in a state of being electrically insulated from each other, leading to the present invention. rice field.
  • the structure will be specifically described.
  • FIG. 1 is a schematic cross-sectional view showing an example of a fine structure according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view showing an example of a fine structure according to an embodiment of the present invention
  • FIG. 2 is a plan view of the metal layer 20 of FIG. 1 as viewed from the surface 20a side.
  • the structure 10 shown in FIG. 1 includes a plurality of columnar bodies 12, a substrate 14 provided along the thickness direction in a state where the plurality of columnar bodies 12 are electrically insulated from each other, and a Dt in the thickness direction of the substrate 14. It has metal layers 20 and 22 provided on both sides of the above.
  • Each of the plurality of columnar bodies 12 is composed of a conductor.
  • the metal layer 20 is provided on the surface 14a of the substrate 14.
  • the metal layer 22 is provided on the back surface 14b of the substrate 14.
  • the substrate 14 of the structure 10 has an electrically insulating insulating film 16.
  • the plurality of columnar bodies 12 are arranged on the insulating film 16 in a state of being electrically insulated from each other.
  • the insulating film 16 has a plurality of pores 17 penetrating in the thickness direction Dt.
  • the columnar body 12 is provided in the plurality of pores 17.
  • the plurality of columnar bodies 12 may be arranged in a state of being electrically insulated from each other, and the insulating film 16 is not always necessary.
  • the structure 10 has, for example, a rectangular outer shape.
  • the outer shape of the structure 10 is not limited to a rectangle, and may be, for example, a circle.
  • the outer shape of the structure 10 can be shaped according to the intended use, ease of manufacture, and the like.
  • the columnar body 12, the metal layer 20, and the metal layer 22 are formed by, for example, a plating method.
  • the plating method for example, the columnar body 12 and the metal layer 20 can be formed by the same plating step. Further, the columnar body 12 and the metal layer 22 can be formed by the same plating process.
  • the metal layers 20 and 22 provided on both sides of the substrate 14 in the thickness direction Dt are preferably made of the same type of metal. In this case, the metal layers 20 and 22 and the columnar body 12 may be made of the same kind of metal or may be made of different metals. Further, the columnar body 12, the metal layer 20, and the metal layer 22 may be made of different metals.
  • the above-mentioned different metals mean that when two metals are compared, the types of constituent elements are different in the case of a single metal. Further, the above-mentioned different metals mean that in the case of an alloy, the types of the elements of the main component are different when the main components having a content of 50% by mass or more are compared. Further, the same kind of metal means that when two metals are compared, in the case of a single metal, the types of constituent elements are the same. In the case of an alloy, when comparing the main components having a content of 50% by mass or more, it means that the types of the elements of the main components are the same.
  • the columnar body and the metal layer are taken out, and the columnar body and the metal layer are measured using a fluorescent X-ray (XRF) analyzer, respectively. Therefore, it is possible to distinguish between the columnar body and the metal layer by specifying the metal components. Whether the metal layers are the same type of metal or different metals is determined by taking out each metal layer and measuring each metal layer using a fluorescent X-ray (XRF) analyzer. It can be distinguished by specifying the metal component.
  • XRF fluorescent X-ray
  • the strength is higher than that of the metal foil, and the structure 10 is deformed when drilling or cutting. It is difficult and has excellent workability compared to metal foil. As described above, the structure 10 has excellent workability. Further, the structure 10 is superior in workability as compared with the metal foil even if the insulating film 16 is provided.
  • the thickness ht of the structure 10 is preferably in the range of 5 to 500 ⁇ m, more preferably in the range of 10 to 300 ⁇ m, and further preferably 1 ⁇ m or more and 30 ⁇ m or less. If the thickness of the structure is within the above range, the workability is excellent.
  • the plurality of columnar bodies 12 are provided in a state of being electrically insulated from each other, and are composed of conductors.
  • the conductor constituting the columnar body is made of, for example, a metal.
  • the metal preferably include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, copper and gold are more preferable, and copper is most preferable.
  • the height H of the columnar body 12 in the thickness direction Dt is preferably 10 to 300 ⁇ m, more preferably 20 to 30 ⁇ m.
  • the average diameter d of the columnar body 12 is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, further preferably 40 to 200 nm, and even more preferably 50 to 200 nm. Most preferably, it is 100 nm. Density of the columnar body 12 is preferably 20,000 / mm 2 or more, more preferably 2,000,000 / mm 2 or more, still more preferably 10,000,000 / mm 2 or more, 50 million The number of pieces / mm 2 or more is particularly preferable, and the number of pieces / mm 2 or more is most preferable.
  • the distance p between the centers of the adjacent columnar bodies 12 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
  • the average diameter of the columnar body is obtained by photographing the surface of the insulating film from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 columnar bodies having an annular shape around them are extracted, the diameter thereof is measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the columnar bodies.
  • the magnification the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more columnar bodies can be obtained.
  • the maximum value of the distance between the ends of the columnar body portion was measured. That is, since the shape of the opening of the columnar body is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the columnar body portion is set as the opening diameter. Therefore, for example, even in the case of a columnar body having a shape in which two or more columnar bodies are integrated, this is regarded as one columnar body, and the maximum value of the distance between the ends of the columnar body portions is set as the opening diameter. ..
  • the metal layers 20 and 22 constitute the structure 10 (see FIG. 1).
  • One of the metal layer 20 and the metal layer 22 can be formed in the same process as the columnar body 12. Therefore, from the viewpoint of the manufacturing method, it is preferable to use the same metal as the columnar body 12.
  • copper (Cu), gold (Au), aluminum (Al) and nickel (Ni) are preferable, copper (Cu) and gold (Au) are more preferable, and copper (Cu) is preferable. More preferred.
  • a noble metal can also be used for the metal layer.
  • the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 are preferably 1 to 50 ⁇ m, and more preferably 5 to 20 ⁇ m. Further, the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 may be the same or different. The same thickness of the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 is 0.9 ⁇ (thickness hm) / (thickness hj) ⁇ 1.1. The difference between the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 means that 0.9 ⁇ (thickness hm) / (thickness hj) ⁇ 1.1.
  • the insulating film is a state in which a plurality of columnar bodies 12 made of a conductor are electrically insulated from each other.
  • the insulating film has a plurality of pores 17.
  • the length of the insulating film 16 in the thickness direction Dt is the same as the height H of the columnar body 12 described above.
  • the length of the insulating film 16 in the thickness direction Dt that is, the thickness of the insulating film 16 is preferably 10 to 300 ⁇ m, more preferably 20 to 30 ⁇ m.
  • the spacing between the columns in the insulating film is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 20 nm to 60 nm.
  • the insulating film When the distance between the columns in the insulating film is within this range, the insulating film sufficiently functions as an electrically insulating partition wall of the columnar body 12.
  • the distance between the columns means the width between the adjacent columns, and the cross section of the structure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times, and the intervals between the adjacent columns are observed. The average value of the width measured at 10 points.
  • the insulating film is composed of, for example, an anodic oxide film 34 (see FIG. 9).
  • the anodic oxide film 34 has a plurality of pores 32 (see FIG. 9).
  • the pores 32 of the anodic oxide film 34 correspond to the pores 17 (see FIG. 1) of the insulating film 16.
  • the average diameter of the pores is preferably 1 ⁇ m or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, even more preferably 40 to 200 nm, and even more preferably 50 to 100 nm. Most preferably.
  • the average diameter d of the pores 32 is 1 ⁇ m or less and is within the above range, a columnar body 12 having the above average diameter can be obtained.
  • the average diameter of the pores 32 is obtained by photographing the surface of the anodic oxide film 34 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope.
  • the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more pores can be obtained.
  • the maximum value of the distance between the ends of the pore portions was measured. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the pore portion is set as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portions is set as the opening diameter. ..
  • the structure 10 is cut in the thickness direction Dt, and the cross section of the cut cross section is observed using an FE-SEM (Field Emission-Scanning Electron Microscope). Is the average value obtained by measuring 10 points corresponding to each size.
  • FE-SEM Field Emission-Scanning Electron Microscope
  • FIGS. 3 to 9 are schematic cross-sectional views showing a first example of a method for manufacturing a structure according to an embodiment of the present invention in order of steps.
  • the same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the structure 10 shown in FIG. 1 in which the insulating film 16 is composed of an anodic oxide film of aluminum will be described as an example.
  • An aluminum substrate is used to form an anodic oxide film of aluminum. Therefore, in the first example of the method for manufacturing a structure, first, as shown in FIG. 3, an aluminum substrate 30 is prepared.
  • the size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the anodic oxide film 34 of the finally obtained structure 10 (see FIG. 9), that is, the thickness of the substrate 14, the apparatus to be processed, and the like. Is.
  • the aluminum substrate 30 is, for example, a rectangular plate material. It should be noted that the present invention is not limited to the aluminum substrate, and a metal substrate capable of forming an insulating film can be used.
  • the surface 30a (see FIG. 3) on one side of the aluminum substrate 30 is anodized.
  • the surface 30a (see FIG. 3) on one side of the aluminum substrate 30 is anodized, and as shown in FIG. 4, an anodic oxide film having a plurality of pores 32 extending in the thickness direction Dt of the aluminum substrate 30. 34 is formed.
  • a barrier layer 33 is present at the bottom of each pore 32.
  • the above-mentioned anodizing step is called an anodizing treatment step.
  • the anodic oxide film 34 having a plurality of pores 32 has a barrier layer 33 at the bottom of each of the pores 32 as described above, but the barrier layer 33 shown in FIG. 4 is removed.
  • an anodic oxide film 34 (see FIG. 5) having a plurality of pores 32 without the barrier layer 33 is obtained.
  • the step of removing the barrier layer 33 is referred to as a barrier layer removing step.
  • the barrier layer removing step the barrier layer 33 of the anodic oxide film 34 is removed by using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, the bottom 32c of the pores 32 (see FIG. 5).
  • a metal layer 35a (see FIG. 5) made of a metal (metal M1) is formed on the surface 32d (see FIG. 5). As a result, the aluminum substrate 30 exposed to the pores 32 is covered with the metal layer 35a.
  • the alkaline aqueous solution containing the ion of the metal M1 may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.).
  • the content of the aluminum ion-containing compound is preferably 0.1 to 20 g / L, more preferably 0.3 to 12 g / L, and even more preferably 0.5 to 6 g / L in terms of the amount of aluminum ions.
  • the surface 34a of the anodized film 34 having a plurality of pores 32 extending in the thickness direction Dt is plated with the first metal, and the surface 34a is coated with the first metal.
  • the metal layer 35a can be used as an electrode for electrolytic plating.
  • the metal 35b is used as the first metal, and the plating proceeds starting from the metal layer 35a formed on the surface 32d (see FIG. 5) of the bottom 32c (see FIG. 5) of the pores 32.
  • the inside of the pores 32 of the anodic oxide film 34 is filled with the metal 35b, which is the first metal, and the surface 34a of the anodic oxide film 34 is further filled with the metal layer 20 by the metal 35b. Is formed.
  • the columnar body 12 having conductivity By filling the inside of the pores 32 with the metal 35b, the columnar body 12 having conductivity is formed. It should be noted that the metal layer 35a and the metal 35b are collectively filled with the metal 35.
  • the step of plating the inside of the pores 32 of the anodic oxide film 34 with the first metal from the surface 34a of the anodic oxide film 34 and coating the surface 34a of the anodic oxide film 34 with the first metal is the first coating. It is called a process.
  • the surface 34a of the anodic oxide film 34 corresponds to one surface of the anodic oxide film 34.
  • the first coating step is a metal filling step of filling the pores 32 of the anodic oxide film 34 with the metal 35b as described above. including. Electroplating is used in the first coating step, and the first coating step will be described in detail later.
  • the thickness hm of the metal layer 20 can be adjusted by adjusting the plating time of the first coating step and the like.
  • the aluminum substrate 30 is removed as shown in FIG. The step of removing the aluminum substrate 30 is called a substrate removing step.
  • the barrier layer 33 is not only removed but also finely divided by removing the barrier layer using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum.
  • a metal layer 35a of the metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum substrate 30 exposed at the bottom of the hole 32.
  • the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
  • a holding step of holding the voltage of 95% or more and 105% or less of the voltage (holding voltage) selected from the range of less than 30% of the voltage in the anodizing treatment step for a total of 5 minutes or more is provided. It has been found that the uniformity of metal filling during the plating treatment is greatly improved by combining the application of an alkaline aqueous solution containing the ions of the metal M1. Therefore, it is preferable to have a holding step. Although the detailed mechanism is unknown, in the barrier layer removal step, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum substrate and the anodic oxide film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved.
  • a metal layer 35a made of a metal (metal M1) was formed at the bottom of the pores 32, but the present invention is not limited to this, and only the barrier layer 33 is removed to form the pores 32.
  • the aluminum substrate 30 is exposed on the bottom.
  • the aluminum substrate 30 may be used as an electrode for electrolytic plating with the aluminum substrate 30 exposed.
  • the exposed back surface 34b of the anodic oxide film 34 is partially removed in the thickness direction, and as shown in FIG. 8, a plurality of pores of the anodic oxide film 34 are obtained by the first coating step.
  • the metal 35 filled in 32 that is, a part of the columnar body 12 protrudes from the back surface 34b of the anodic oxide film 34.
  • the back surface 34b of the anodic oxide film 34 corresponds to the other surface of the anodic oxide film 34.
  • the metal 35 (first metal) filled in the plurality of pores 32 of the anodic oxide film 34 by the first coating step is projected from the back surface 34b of the anodic oxide film 34. That is, projecting a part of the columnar body 12 from the back surface 34b of the anodic oxide film 34 is called a metal projecting step.
  • the metal layer 22 is formed by coating the back surface 34b of the anodic oxide film 34 with the second metal from the back surface 34b of the anodic oxide film 34 using the second metal, and the structure shown in FIG. 9 is formed. 10 is obtained.
  • the metal 35b can be used as in the first metal.
  • the step of coating the back surface 34b of the anodic oxide film 34 with the second metal from the back surface 34b of the anodic oxide film 34 with the second metal is referred to as the second coating step.
  • plating can be used in the same manner as the first coating step.
  • the second coating step is, for example, a plating step in which plating is performed from the back surface 34b of the anodic oxide film 34 with a second metal, and the back surface 34b of the anodic oxide film 34 is coated with the second metal. In this case, plating proceeds from the back surface 34b of the anodic oxide film 34 to form the metal layer 22.
  • the thickness hj of the metal layer 22 (see FIG. 1) can be adjusted by the film forming time in the second coating step, for example, the plating time.
  • the second coating step for forming the metal layer 22 is not limited to the plating method, and for example, the metal layer 22 may be formed by using a vapor deposition method or a sputtering method. However, from the viewpoint of the formation time of the metal layer 22, it is preferable to use a plating method having a higher film forming speed than the vapor deposition method and the sputtering method.
  • the columnar body 12 protruding from the back surface 34b of the anodic oxide film 34 makes it compared to a flat surface.
  • the columnar body 12, which is a conductor, is easily plated, and the metal layer 22 is more easily formed by the plating. Further, due to the anchor effect of the columnar body 12, the bonding strength between the back surface 34b of the anodic oxide film 34 and the metal layer 22 is also higher than that without the columnar body 12.
  • the metal layer 22 is formed by a vapor deposition method other than the plating method and a sputtering method, if the columnar body 12 protrudes from the back surface 34b of the anodic oxide film 34 as in the plating method, the metal layer 22 is further formed. Further, the bonding strength between the back surface 34b of the anodic oxide film 34 and the metal layer 22 is increased. For this reason, it is preferable to have the above-mentioned metal projecting step between the first coating step and the second coating step.
  • the first metal described above constitutes the columnar body 12 and the metal layer 20, and the second metal constitutes the metal layer 22.
  • copper is used as the first metal and the second metal described above.
  • the first metal and the second metal may be the same type of metal or different metals.
  • the aluminum substrate 30 shown in FIG. 6 corresponds to the metal layer 22 of the structure 10 shown in FIG. Therefore, the configuration shown in FIG. 6 also corresponds to the structure 10.
  • the metal layer 20 and the metal layer 22 are made of different metals.
  • the metal layer 20 is made of copper and the metal layer 22 is made of aluminum.
  • the back surface 34b is coated with the second metal.
  • the metal layer 22 may be formed. In this case, plating proceeds from the back surface 34b of the anodic oxide film 34 to form the metal layer 22.
  • the first coating step the columnar body 12 is formed to form the metal layer 20, and in the second coating step, the metal layer 22 is formed, but the present invention is not limited thereto.
  • the metal layer 20 may be formed in the first coating step, and the columnar body 12 and the metal layer 22 may be formed in the second coating step.
  • the second coating step is preferably a plating step using a plating method because the pores are filled with metal to form the columnar body 12.
  • FIGS. 10 to 13 are schematic cross-sectional views showing a second example of the method for manufacturing a structure according to an embodiment of the present invention in order of steps.
  • the same components as those shown in FIGS. 3 to 9 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the steps shown below are different from those in the first example of the method for manufacturing the structure.
  • the aluminum substrate 30 is removed from the aluminum substrate 30 on which the anodic oxide film 34 shown in FIG. 4 is formed, and as shown in FIG. 10, the anodic oxide film in which a plurality of pores 32 are formed is formed. Get 34. Since the substrate removing step can be used for removing the aluminum substrate 30, detailed description thereof will be omitted.
  • a pore wide treatment is used for expanding the diameter of the pore 32.
  • the pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the pores 32.
  • An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
  • the second metal is plated on the entire surface of the back surface 34b of the anodic oxide film 34 shown in FIG. 11, and the metal layer 36 is formed on the entire surface of the back surface 34b of the anodic oxide film 34 as shown in FIG.
  • the pores 32 of the anodic oxide film 34 are filled with metal to form a columnar body 12, and in the step of forming the metal layer 36 on the back surface 34b of the anodic oxide film 34, The pores 32 are not filled with metal.
  • the step of forming the metal layer 36 is the above-mentioned second coating step.
  • the formation of the metal layer 36 by the second coating step is the same step as the second coating step of forming the metal layer 22 described above.
  • the formation of the metal layer 36 is not limited to the plating method as in the formation of the metal layer 22, and the metal layer 36 may be formed by, for example, a vapor deposition method or a sputtering method. However, from the viewpoint of the formation time of the metal layer 36, it is preferable to use a plating method having a higher film forming speed than the vapor deposition method and the sputtering method.
  • the metal layer 36 is a member corresponding to the above-mentioned metal layer 22, and is preferably made of the same metal as the metal layer 22.
  • the metal layer 36 can be made of the same metal as the metal layer 20 described above.
  • the metal layer 36 is provided on the back surface 34b side of the anodic oxide film 34.
  • the metal layer 36 covers all the openings on the back surface 34b side of the anodic oxide film 34 of the pores 32.
  • the metal layer 36 is formed on the anodic oxide film 34
  • a plurality of fine particles are formed inside the pores 32 of the anodic oxide film 34 by the plating method as in the first example.
  • the holes 32 are filled with the metal 35b to form the columnar body 12, and the metal layer 20 is further formed on the surface 34a of the anodic oxide film 34.
  • the structure 10 is formed.
  • the step of filling the pores 32 of the anodic oxide film 34 with the metal 35b to form the columnar body 12 and forming the metal layer 20 corresponds to the above-mentioned first coating step. ..
  • the insulating film is made of, for example, an inorganic material.
  • an inorganic material For example, one having an electrical resistivity of about 10 14 ⁇ ⁇ cm can be used.
  • “consisting of an inorganic material” is a regulation for distinguishing from a polymer material, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material as a main component (50% by mass). The above).
  • the insulating film is composed of, for example, an anodic oxide film.
  • an anodic oxide film for example, an aluminum anodic oxide film is used because pores having a desired average diameter are formed and columnar bodies are easily formed.
  • the anodic oxide film of aluminum is not limited, and an anodic oxide film of valve metal can be used. Therefore, valve metal is used as the metal substrate.
  • examples of the valve metal include, for example, the above-mentioned aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like.
  • an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
  • the metal substrate is used for manufacturing a structure and is a substrate for forming an insulating film.
  • a metal substrate on which an anodic oxide film can be formed is used, and a metal substrate composed of the above-mentioned valve metal can be used.
  • an aluminum substrate is used as the metal substrate because it is easy to form an anodic oxide film as an insulating film.
  • the aluminum substrate used to form the insulating film 16 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; low-purity aluminum (for example, for example).
  • the surface of one side of the aluminum substrate on which the anodic oxide film is formed by the anodic oxidation treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99. It is more preferably .99% by mass or more. When the aluminum purity is in the above range, the regularity of the micropore arrangement is sufficient.
  • the aluminum substrate is not particularly limited as long as it can form an anodic oxide film, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
  • the surface of one side of the aluminum substrate to be anodized is previously heat-treated, degreased and mirror-finished.
  • the heat treatment, the degreasing treatment, and the mirror finish treatment the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
  • the mirror finish treatment before the anodic oxidation treatment is, for example, electrolytic polishing, and for the electrolytic polishing, for example, an electrolytic polishing liquid containing phosphoric acid is used.
  • anodizing process For the anodizing treatment, a conventionally known method can be used, but a self-regular method or a constant voltage treatment is used from the viewpoint of increasing the regularity of the micropore arrangement and ensuring the anisotropic conductivity of the metal structure. Is preferable.
  • the self-regularization method and the constant voltage treatment of the anodizing treatment the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
  • the method for manufacturing the structure may include a holding step.
  • the holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more.
  • the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step.
  • This is a step of performing electrolytic treatment for 5 minutes or more.
  • the "voltage in the anodizing treatment” is a voltage applied between the aluminum and the counter electrode, and for example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. The average value.
  • the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably present, and more preferably 5% or more and 20% or less.
  • the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
  • the holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
  • the voltage in the holding step may be set by continuously or stepwise reducing the voltage from the voltage in the anodic oxidation treatment step to the voltage in the holding step, but for the reason of further improving the in-plane uniformity, the anodic oxidation treatment is performed. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the step.
  • the above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted.
  • the anodic oxide film having a plurality of micropores has a barrier layer (not shown) at the bottom of the micropores as described above. It has a barrier layer removing step for removing the barrier layer.
  • the barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • the barrier layer removing step described above the barrier layer is removed, and a conductor layer made of the metal M1 is formed at the bottom of the micropores.
  • the hydrogen overvoltage means the voltage required for hydrogen to be generated.
  • the hydrogen overvoltage of aluminum (Al) is -1.66V (Journal of the Chemical Society of Japan, 1982, (8), p1305-1313). ).
  • Metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
  • the pores 32 can also be formed by expanding the diameter of the micropores and removing the barrier layer.
  • pore wide processing is used to increase the diameter of the micropores.
  • the pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the micropores.
  • An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
  • the barrier layer at the bottom of the micropores can also be removed by the pore wide treatment, and by using the sodium hydroxide aqueous solution in the pore wide treatment, the diameter of the micropores is expanded and the barrier layer is removed.
  • Specific examples of the above-mentioned metals are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn). ..
  • copper (Cu), gold (Au), aluminum (Al), nickel (Ni) are preferable, and copper (Cu) and gold (Au) are preferable from the viewpoint of electrical conductivity and formation by a plating method. ) Is more preferable, and copper (Cu) is further preferable.
  • ⁇ Plating method> As the plating method for filling the inside of the pores with metal, for example, an electrolytic plating method or an electroless plating method can be used. Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer. Therefore, when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
  • the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V.
  • constant potential electrolysis it is desirable that cyclic voltammetry can be used in combination, and potentiometer devices such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
  • plating liquid As the plating solution, a conventionally known plating solution can be used. Specifically, when precipitating copper, an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L. When depositing gold, it is desirable to use a sulfuric acid solution of tetrachlorogold and perform plating by AC electrolysis.
  • the plating solution preferably contains a surfactant.
  • a surfactant known ones can be used.
  • Sodium lauryl sulfate which is conventionally known as a surfactant to be added to the plating solution, can be used as it is.
  • Both ionic (cationic / anionic / bidirectional) and nonionic (nonionic) hydrophilic portions can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated.
  • a cation beam activator is desirable.
  • the concentration of the surfactant in the plating solution composition is preferably 1% by mass or less. In the electroless plating method, it takes a long time to completely fill the pores having pores having a high aspect with metal, so it is desirable to fill the pores with metal by using the electroplating method.
  • the substrate removing step is a step of removing the above-mentioned aluminum substrate after the first coating step.
  • the method for removing the aluminum substrate is not particularly limited, and for example, a method for removing by melting is preferable.
  • a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
  • a treatment liquid preferably has a dissolution rate in aluminum of 1 ⁇ m / min or more, more preferably 3 ⁇ m / min or more, and further preferably 5 ⁇ m / min or more.
  • the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
  • a pH hydrogen ion index
  • the treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum.
  • a gold compound for example, platinum chloride acid
  • these fluorides, these chlorides and the like are preferably blended.
  • an acid aqueous solution base is preferable, and a chloride blend is preferable.
  • a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L. Further, the treatment temperature using the treatment liquid for dissolving aluminum is preferably ⁇ 10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
  • the above-mentioned melting of the aluminum substrate is performed by bringing the aluminum substrate after the above-mentioned plating step into contact with the above-mentioned treatment liquid.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • a support may be provided on the anodic oxide film 34, for example.
  • the support preferably has the same outer shape as the anodic oxide film 34. By attaching a support, handleability is increased.
  • an acid aqueous solution or an alkaline aqueous solution that does not dissolve the metal constituting the columnar body 12 but dissolves the anodic oxide film 34, that is, aluminum oxide (Al 2 O 3).
  • the anodic oxide film 34 is partially removed by contacting the above-mentioned acid aqueous solution or alkaline aqueous solution with the anodic oxide film 34 having pores 32 filled with metal.
  • the method of bringing the above-mentioned acid aqueous solution or alkaline aqueous solution into contact with the anodic oxide film 34 is not particularly limited, and examples thereof include a dipping method and a spraying method. Of these, the dipping method is preferable.
  • an aqueous acid solution When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Of these, an aqueous solution containing no chromic acid is preferable because it is excellent in safety.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 60 ° C.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes.
  • the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated.
  • a cleaning treatment may be performed between the immersion treatments.
  • the metal 35, that is, the columnar body 12 is projected from the back surface 34b of the anodic oxide film 34, but the metal 35, that is, the columnar body 12 is an anode for the reason that the pressure bonding property with the metal layer 22 is good. It is preferable to project 10 nm to 1000 nm more than the back surface 34b of the oxide film 34, and more preferably 50 nm to 500 nm. That is, the amount of protrusion of the columnar body 12 from the back surface 34b of the protruding portion is preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm.
  • the height of the protruding part of the columnar body is the average value obtained by observing the cross section of the structure with a field emission scanning electron microscope at a magnification of 20,000 times and measuring the height of the protruding part of the columnar body at 10 points. ..
  • the anodic oxide film 34 and the end portion of the metal are processed so as to be in the same plane.
  • heat treatment can be performed for the purpose of reducing the strain in the columnar body 12 generated by the metal filling.
  • the heat treatment is preferably carried out in a reducing atmosphere from the viewpoint of suppressing the oxidation of the metal, specifically, the oxygen concentration is preferably 20 Pa or less, and more preferably carried out under vacuum.
  • the vacuum means a state of a space in which at least one of the gas density and the atmospheric pressure is lower than that of the atmosphere. Further, it is preferable that the heat treatment is performed while applying stress to the anodic oxide film 34 for the purpose of straightening.
  • the anodic oxide film 34 is filled with the metal 35 to form the columnar body 12, and the metal layer 20 is formed, or the columnar body 12 shown in FIG. 8 is an anode.
  • This is a step of coating the back surface 34b of the anodic oxide film 34 with the second metal by using the second metal in a state of protruding from the oxide film 34.
  • the metal layer 22 is formed by the second coating step. Since the second coating step is the same step as the first coating step except that the pores of the anodic oxide film are not filled with metal, detailed description thereof will be omitted.
  • the second coating step is also a step of forming a second metal on the entire surface of the back surface 34b of the anodic oxide film 34, for example, by a plating method, as shown in FIG.
  • the second metal is plated using an electroless plating method to form the metal layer 36.
  • the pore-wide treatment is a treatment in which the aluminum substrate is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the diameter of the pores 32.
  • the barrier layer is removed by the pore wide treatment to penetrate the pores of the anodic oxide film 34.
  • an aqueous acid solution When an aqueous acid solution is used for the pore wide treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 40 ° C.
  • an alkaline aqueous solution When an alkaline aqueous solution is used for the pore wide treatment, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and even more preferably 15 to 30 minutes.
  • the present invention is basically configured as described above. Although the structure of the present invention and the method for manufacturing the structure have been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

Provided are a structure having excellent workability and a method for manufacturing the structure. The structure includes: a plurality of columnar bodies constituted by a conductor; a substrate on which the plurality of columnar bodies are disposed along the thickness direction, in a state of being mutually electrically insulated; and a metal layer which is provided on both surfaces of the substrate in the thickness direction.

Description

構造体及び構造体の製造方法Structure and method of manufacturing the structure
 本発明は、導電性を有する柱状体が、複数互いに電気的に絶縁された状態で配置された基体の両面に金属層が設けられた構造体及び構造体の製造方法に関する。 The present invention relates to a structure in which a plurality of conductive columnar bodies are arranged in a state of being electrically insulated from each other and metal layers are provided on both sides of the substrate, and a method for manufacturing the structure.
 従来から、電気導電部材等の種々の用途に金属箔が用いられている。また、金属箔は装飾等にも用いられている。金属箔としては、アルミニウム箔、銅箔、及びチタン箔等がある。金属箔の厚みは、数百μm程度であり、例えば、200μm程度である。 Conventionally, metal foils have been used for various purposes such as electrically conductive members. Metal foil is also used for decoration and the like. Examples of the metal foil include aluminum foil, copper foil, titanium foil and the like. The thickness of the metal foil is about several hundred μm, for example, about 200 μm.
 上述のように金属箔は、厚みが数百μm程度であり、穴をあけたり、切断する際に、変形しやすく加工性が悪い。加工性が優れた金属箔がないのが現状である。 As mentioned above, the metal foil has a thickness of about several hundred μm, and is easily deformed and has poor workability when drilling or cutting. At present, there is no metal foil with excellent workability.
 本発明の目的は、加工性が優れた構造体及び構造体の製造方法を提供することにある。 An object of the present invention is to provide a structure having excellent processability and a method for manufacturing the structure.
 上述の目的を達成するために、本発明の一態様は、導電体で構成された、複数の柱状体と、複数の柱状体が、互いに電気的に絶縁された状態で、厚み方向に沿って設けられた基体と、基体の厚み方向における両面に設けられた金属層とを有する、構造体を提供するものである。 In order to achieve the above object, one aspect of the present invention is a plurality of columnar bodies composed of conductors and a plurality of columnar bodies electrically insulated from each other along the thickness direction. It provides a structure having a provided substrate and metal layers provided on both sides of the substrate in the thickness direction.
 基体は、電気的に絶縁な絶縁膜を有し、複数の柱状体は絶縁膜に、互いに電気的に絶縁された状態で設けられていることが好ましい。
 絶縁膜は、陽極酸化膜で構成されていることが好ましい。
 基体の厚み方向における両面に設けられた金属層は、同種の金属で構成されていることが好ましい。
 複数の柱状体及び金属層は、銅で構成されることが好ましい。
It is preferable that the substrate has an electrically insulating insulating film, and the plurality of columnar bodies are provided on the insulating film in a state of being electrically insulated from each other.
The insulating film is preferably composed of an anodic oxide film.
The metal layers provided on both sides in the thickness direction of the substrate are preferably made of the same type of metal.
The plurality of columnar bodies and the metal layer are preferably composed of copper.
 本発明の他の態様は、厚み方向に延在する複数の細孔を有する陽極酸化膜の一方の面から第1の金属でめっきを行なって一方の面を第1の金属で被覆する第1被覆工程と、陽極酸化膜の他方の面から第2の金属を用いて他方の面を第2の金属で被覆する第2被覆工程とを有する、構造体の製造方法を提供するものである。
 第2被覆工程は、陽極酸化膜の他方の面から第2の金属でめっきを行なって他方の面を第2の金属で被覆するめっき工程であることが好ましい。
 第1被覆工程と第2被覆工程との間に、第1被覆工程により陽極酸化膜の複数の細孔に充填された第1の金属を、陽極酸化膜の他方の面から突出させる金属突出工程を有することが好ましい。
 第1被覆工程の第1の金属と、第2被覆工程の第2の金属とは、同種の金属であることが好ましい。
 第1被覆工程の第1の金属と、第2被覆工程の第2の金属が銅であることが好ましい。
Another aspect of the present invention is a first aspect in which one surface of an anodic oxide film having a plurality of pores extending in the thickness direction is plated with a first metal and one surface is coated with the first metal. It provides a method for manufacturing a structure, which comprises a coating step and a second coating step of coating the other surface of the anodic oxide film with a second metal from the other surface with a second metal.
The second coating step is preferably a plating step in which the other surface of the anodic oxide film is plated with the second metal and the other surface is coated with the second metal.
Between the first coating step and the second coating step, a metal projecting step of projecting a first metal filled in a plurality of pores of the anodic oxide film from the other surface of the anodic oxide film by the first coating step. It is preferable to have.
It is preferable that the first metal in the first coating step and the second metal in the second coating step are the same type of metal.
It is preferable that the first metal in the first coating step and the second metal in the second coating step are copper.
 本発明によれば、加工性が優れた構造体を提供できる。 According to the present invention, it is possible to provide a structure having excellent workability.
本発明の実施形態の構造体の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the structure of embodiment of this invention. 本発明の実施形態の構造体の一例を示す模式的平面図である。It is a schematic plan view which shows an example of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第1例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 1st example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第2例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第2例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第2例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd example of the manufacturing method of the structure of embodiment of this invention. 本発明の実施形態の構造体の製造方法の第2例の一工程を示す模式的断面図である。It is a schematic cross-sectional view which shows one step of the 2nd example of the manufacturing method of the structure of embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の構造体及び構造体の製造方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
 湿度及び時間について、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
Hereinafter, the structure of the present invention and the method for manufacturing the structure will be described in detail based on the preferred embodiments shown in the accompanying drawings.
It should be noted that the figures described below are exemplary for explaining the present invention, and the present invention is not limited to the figures shown below.
In the following, "-" indicating the numerical range includes the numerical values described on both sides. For example, when ε a is a numerical value α b to a numerical value β c , the range of ε a is a range including the numerical value α b and the numerical value β c , and is expressed in mathematical symbols as α b ≤ ε a ≤ β c .
Humidity and time include error ranges generally tolerated in the art, unless otherwise stated.
 金属箔は、厚みが数百μm程度であり、穴をあけたり、切断する等の加工の際に、金属箔が変形しやすく加工しにくい。しかしながら、鋭意検討した結果、導電性を有する柱状体が、複数互いに電気的に絶縁された状態で配置された基体の両面に金属層を設けることにより、加工性が優れることがわかり本発明に至った。以下、構造体について具体的に説明する。 The thickness of the metal foil is about several hundred μm, and the metal foil is easily deformed and difficult to process when drilling or cutting. However, as a result of diligent studies, it was found that the workability was excellent by providing metal layers on both sides of a substrate in which a plurality of conductive columnar bodies were arranged in a state of being electrically insulated from each other, leading to the present invention. rice field. Hereinafter, the structure will be specifically described.
[構造体の一例]
 図1は本発明の実施形態の細構造体の一例を示す模式的断面図であり、図2は本発明の実施形態の細構造体の一例を示す模式的平面図である。図2は図1の金属層20の表面20a側から見た平面図である。
 図1に示す構造体10は、複数の柱状体12と、複数の柱状体12が互いに電気的に絶縁された状態で、厚み方向に沿って設けられた基体14と、基体14の厚み方向Dtにおける両面に設けられた金属層20、22とを有する。複数の柱状体12は、それぞれ導電体で構成されている。金属層20は、基体14の表面14aに設けられている。金属層22は、基体14の裏面14bに設けられている。
[Example of structure]
FIG. 1 is a schematic cross-sectional view showing an example of a fine structure according to an embodiment of the present invention, and FIG. 2 is a schematic plan view showing an example of a fine structure according to an embodiment of the present invention. FIG. 2 is a plan view of the metal layer 20 of FIG. 1 as viewed from the surface 20a side.
The structure 10 shown in FIG. 1 includes a plurality of columnar bodies 12, a substrate 14 provided along the thickness direction in a state where the plurality of columnar bodies 12 are electrically insulated from each other, and a Dt in the thickness direction of the substrate 14. It has metal layers 20 and 22 provided on both sides of the above. Each of the plurality of columnar bodies 12 is composed of a conductor. The metal layer 20 is provided on the surface 14a of the substrate 14. The metal layer 22 is provided on the back surface 14b of the substrate 14.
 構造体10の基体14は、電気的に絶縁な絶縁膜16を有する。複数の柱状体12は、絶縁膜16に、互いに電気的に絶縁された状態で配置されている。この場合、例えば、絶縁膜16は、厚み方向Dtに貫通する複数の細孔17を有する。複数の細孔17に柱状体12が設けられている。
 なお、複数の柱状体12は、互いに電気的に絶縁された状態で配置されていればよく、絶縁膜16は必ずしも必要ではない。
 また、構造体10は、図2に示すように、例えば、外形が矩形である。なお、構造体10の外形は、矩形に限定されるものではなく、例えば、円形でもよい。構造体10の外形は、用途、作製しやすさ等に応じた形状とすることができる。
The substrate 14 of the structure 10 has an electrically insulating insulating film 16. The plurality of columnar bodies 12 are arranged on the insulating film 16 in a state of being electrically insulated from each other. In this case, for example, the insulating film 16 has a plurality of pores 17 penetrating in the thickness direction Dt. The columnar body 12 is provided in the plurality of pores 17.
The plurality of columnar bodies 12 may be arranged in a state of being electrically insulated from each other, and the insulating film 16 is not always necessary.
Further, as shown in FIG. 2, the structure 10 has, for example, a rectangular outer shape. The outer shape of the structure 10 is not limited to a rectangle, and may be, for example, a circle. The outer shape of the structure 10 can be shaped according to the intended use, ease of manufacture, and the like.
 柱状体12と、金属層20と、金属層22とは、例えば、めっき法により形成される。
 めっき法を用いた場合、例えば、柱状体12と金属層20とが同じめっき工程で形成することできる。また、柱状体12と金属層22とが同じめっき工程で形成することができる。
 基体14の厚み方向Dtにおける両面に設けられた金属層20,22は、同種の金属で構成されていることが好ましい。この場合、金属層20、22と柱状体12とは、同種の金属で構成されていてもよく、異なる金属で構成されていてもよい。
 また、柱状体12と、金属層20と、金属層22とが、それぞれ異なる金属で構成されていてもよい。
The columnar body 12, the metal layer 20, and the metal layer 22 are formed by, for example, a plating method.
When the plating method is used, for example, the columnar body 12 and the metal layer 20 can be formed by the same plating step. Further, the columnar body 12 and the metal layer 22 can be formed by the same plating process.
The metal layers 20 and 22 provided on both sides of the substrate 14 in the thickness direction Dt are preferably made of the same type of metal. In this case, the metal layers 20 and 22 and the columnar body 12 may be made of the same kind of metal or may be made of different metals.
Further, the columnar body 12, the metal layer 20, and the metal layer 22 may be made of different metals.
 上述の異なる金属とは、2つの金属を比較した場合、単一金属の場合、構成元素の種類が異なることをいう。また、上述の異なる金属とは、合金の場合、含有量が50質量%以上の主成分を比較した場合、主成分の元素の種類が異なることをいう。
 また、同種の金属とは、2つの金属を比較した場合、単一金属の場合、構成元素の種類が同じであることをいう。合金の場合、含有量が50質量%以上の主成分を比較した場合、主成分の元素の種類が同じであることをいう。
 柱状体と金属層とが同種の金属又は異なる金属であるかについては、柱状体と金属層を取り出し、柱状体と金属層とをそれぞれ、蛍光X線(XRF)分析装置を用いて測定することにより、柱状体と金属層との金属成分を特定することによって区別することができる。
 また、金属層同士が同種の金属もしくは異なる金属であるかについては、各金属層を取り出し、各金属層をそれぞれ、蛍光X線(XRF)分析装置を用いて測定することにより、各金属層の金属成分を特定することによって区別することができる。
The above-mentioned different metals mean that when two metals are compared, the types of constituent elements are different in the case of a single metal. Further, the above-mentioned different metals mean that in the case of an alloy, the types of the elements of the main component are different when the main components having a content of 50% by mass or more are compared.
Further, the same kind of metal means that when two metals are compared, in the case of a single metal, the types of constituent elements are the same. In the case of an alloy, when comparing the main components having a content of 50% by mass or more, it means that the types of the elements of the main components are the same.
To determine whether the columnar body and the metal layer are the same type of metal or different metals, the columnar body and the metal layer are taken out, and the columnar body and the metal layer are measured using a fluorescent X-ray (XRF) analyzer, respectively. Therefore, it is possible to distinguish between the columnar body and the metal layer by specifying the metal components.
Whether the metal layers are the same type of metal or different metals is determined by taking out each metal layer and measuring each metal layer using a fluorescent X-ray (XRF) analyzer. It can be distinguished by specifying the metal component.
 構造体10を上述のように柱状体12と、金属層20、22とを有する構成とすることにより、金属箔に比して強度が高くなり、穴をあけたり、切断する際に、変形しにくく、加工性が金属箔に比して優れる。このように加工性が優れた構造体10となる。また、構造体10は絶縁膜16が設けられていても加工性が金属箔に比して優れる。
 構造体10の厚みhtは、5~500μmの範囲内であるのが好ましく、10~300μmの範囲内であるのがより好ましく、1μm以上30μm以下であることが更に好ましい。構造体の厚みが上述の範囲であれば、加工性が優れる。
By forming the structure 10 with the columnar body 12 and the metal layers 20 and 22 as described above, the strength is higher than that of the metal foil, and the structure 10 is deformed when drilling or cutting. It is difficult and has excellent workability compared to metal foil. As described above, the structure 10 has excellent workability. Further, the structure 10 is superior in workability as compared with the metal foil even if the insulating film 16 is provided.
The thickness ht of the structure 10 is preferably in the range of 5 to 500 μm, more preferably in the range of 10 to 300 μm, and further preferably 1 μm or more and 30 μm or less. If the thickness of the structure is within the above range, the workability is excellent.
 以下、構造体の構成についてより具体的に説明する。
〔柱状体〕
 複数の柱状体12は、上述のように、互いに電気的に絶縁された状態で設けられており、導電体で構成されている。
 柱状体を構成する導電体は、例えば、金属で構成されている。金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、及びニッケル(Ni)等が好適に例示される。電気伝導性の観点から、銅、金、アルミニウム、及びニッケルが好ましく、銅及び金がより好ましく、銅が最も好ましい。
 厚み方向Dtにおける柱状体12の高さHは、10~300μmであることが好ましく、20~30μmであることがより好ましい。
Hereinafter, the configuration of the structure will be described more specifically.
[Columnar body]
As described above, the plurality of columnar bodies 12 are provided in a state of being electrically insulated from each other, and are composed of conductors.
The conductor constituting the columnar body is made of, for example, a metal. Specific examples of the metal preferably include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) and the like. From the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, copper and gold are more preferable, and copper is most preferable.
The height H of the columnar body 12 in the thickness direction Dt is preferably 10 to 300 μm, more preferably 20 to 30 μm.
 <柱状体の形状>
 柱状体12の平均直径dは、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることが更に好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。
 柱状体12の密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることが更に好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。
 更に、隣接する各柱状体12の中心間距離pは、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。
 柱状体の平均直径は、走査型電子顕微鏡を用いて絶縁膜の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている柱状体を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を柱状体の平均直径として算出する。
 なお、倍率は、柱状体を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、柱状体部分の端部間の距離の最大値を測定した。すなわち、柱状体の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、柱状体部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の柱状体が一体化したような形状の柱状体の場合にも、これを1つの柱状体とみなし、柱状体部分の端部間の距離の最大値を開口径とする。
<Shape of columnar body>
The average diameter d of the columnar body 12 is preferably 1 μm or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, further preferably 40 to 200 nm, and even more preferably 50 to 200 nm. Most preferably, it is 100 nm.
Density of the columnar body 12 is preferably 20,000 / mm 2 or more, more preferably 2,000,000 / mm 2 or more, still more preferably 10,000,000 / mm 2 or more, 50 million The number of pieces / mm 2 or more is particularly preferable, and the number of pieces / mm 2 or more is most preferable.
Further, the distance p between the centers of the adjacent columnar bodies 12 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
The average diameter of the columnar body is obtained by photographing the surface of the insulating film from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 columnar bodies having an annular shape around them are extracted, the diameter thereof is measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the columnar bodies.
As the magnification, the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more columnar bodies can be obtained. For the opening diameter, the maximum value of the distance between the ends of the columnar body portion was measured. That is, since the shape of the opening of the columnar body is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the columnar body portion is set as the opening diameter. Therefore, for example, even in the case of a columnar body having a shape in which two or more columnar bodies are integrated, this is regarded as one columnar body, and the maximum value of the distance between the ends of the columnar body portions is set as the opening diameter. ..
〔金属層〕
 金属層20、22(図1参照)は、構造体10(図1参照)を構成するものである。金属層20、及び金属層22のうち、一方を柱状体12と同じ工程で形成することができる。このため、製造方法の観点からも柱状体12と同じ金属で構成することが好ましい。例えば、めっき法で形成される場合、銅(Cu)、金(Au)、アルミニウム(Al)、ニッケル(Ni)が好ましく、銅(Cu)、金(Au)がより好ましく、銅(Cu)が更に好ましい。
 また、金属層には、貴金属を用いることもできる。貴金属は、例えば、Au(金)、Ag(銀)及び白金族(Ru,Rh,Pd,Os,Ir,Pt)等である。
 金属層20の厚みhm、金属層22の厚みhjは、1~50μmであることが好ましく、5~20μmであることがより好ましい。
 また、金属層20の厚みhmと金属層22の厚みhjは、同じでもよく、異なっていてもよい。金属層20の厚みhmと金属層22の厚みhjとの厚みが同じとは、0.9≦(厚みhm)/(厚みhj)≦1.1である。金属層20の厚みhmと金属層22の厚みhjとが異なるとは、0.9≦(厚みhm)/(厚みhj)≦1.1を外れる場合をいう。
[Metal layer]
The metal layers 20 and 22 (see FIG. 1) constitute the structure 10 (see FIG. 1). One of the metal layer 20 and the metal layer 22 can be formed in the same process as the columnar body 12. Therefore, from the viewpoint of the manufacturing method, it is preferable to use the same metal as the columnar body 12. For example, when formed by a plating method, copper (Cu), gold (Au), aluminum (Al) and nickel (Ni) are preferable, copper (Cu) and gold (Au) are more preferable, and copper (Cu) is preferable. More preferred.
Further, a noble metal can also be used for the metal layer. Noble metals are, for example, Au (gold), Ag (silver), platinum group (Ru, Rh, Pd, Os, Ir, Pt) and the like.
The thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 are preferably 1 to 50 μm, and more preferably 5 to 20 μm.
Further, the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 may be the same or different. The same thickness of the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 is 0.9 ≦ (thickness hm) / (thickness hj) ≦ 1.1. The difference between the thickness hm of the metal layer 20 and the thickness hj of the metal layer 22 means that 0.9 ≦ (thickness hm) / (thickness hj) ≦ 1.1.
〔絶縁膜〕
 絶縁膜は、導電体で構成された、複数の柱状体12を互いに電気的に絶縁された状態にするものである。絶縁膜は複数の細孔17を有する。
 絶縁膜16の厚み方向Dtにおける長さは、上述の柱状体12の高さHと同じである。絶縁膜16の厚み方向Dtにおける長さ、すなわち、絶縁膜16の厚みは、10~300μmであることが好ましく、20~30μmであることがより好ましい。
 絶縁膜における各柱状体の間隔は、5nm~800nmであることが好ましく、10nm~200nmであることがより好ましく、20nm~60nmであることが更に好ましい。絶縁膜における各柱状体の間隔がこの範囲であると、絶縁膜が、柱状体12の電気絶縁性の隔壁として十分に機能する。
 ここで、各柱状体の間隔とは、隣接する柱状体間の幅をいい、構造体10の断面を電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、隣接する柱状体間の幅を10点で測定した平均値をいう。
 なお、後述のように、絶縁膜は、例えば、陽極酸化膜34(図9参照)で構成される。陽極酸化膜34は複数の細孔32(図9参照)を有する。陽極酸化膜34の細孔32は、絶縁膜16の細孔17(図1参照)に相当する。
[Insulating film]
The insulating film is a state in which a plurality of columnar bodies 12 made of a conductor are electrically insulated from each other. The insulating film has a plurality of pores 17.
The length of the insulating film 16 in the thickness direction Dt is the same as the height H of the columnar body 12 described above. The length of the insulating film 16 in the thickness direction Dt, that is, the thickness of the insulating film 16 is preferably 10 to 300 μm, more preferably 20 to 30 μm.
The spacing between the columns in the insulating film is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 20 nm to 60 nm. When the distance between the columns in the insulating film is within this range, the insulating film sufficiently functions as an electrically insulating partition wall of the columnar body 12.
Here, the distance between the columns means the width between the adjacent columns, and the cross section of the structure 10 is observed with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times, and the intervals between the adjacent columns are observed. The average value of the width measured at 10 points.
As will be described later, the insulating film is composed of, for example, an anodic oxide film 34 (see FIG. 9). The anodic oxide film 34 has a plurality of pores 32 (see FIG. 9). The pores 32 of the anodic oxide film 34 correspond to the pores 17 (see FIG. 1) of the insulating film 16.
<細孔の平均直径>
 細孔の平均直径は、1μm以下であることが好ましく、5~500nmであることがより好ましく、20~400nmであることが更に好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。細孔32の平均直径dが1μm以下であり、上述の範囲であると、上述の平均直径を有する柱状体12を得ることができる。
 細孔32の平均直径は、走査型電子顕微鏡を用いて陽極酸化膜34の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている細孔を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を細孔の平均直径として算出する。
 なお、倍率は、細孔を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、細孔部分の端部間の距離の最大値を測定した。すなわち、細孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、細孔部分の端部間の距離の最大値を開口径とする。従って、例えば、2以上の細孔が一体化したような形状の細孔の場合にも、これを1つの細孔とみなし、細孔部分の端部間の距離の最大値を開口径とする。
<Average diameter of pores>
The average diameter of the pores is preferably 1 μm or less, more preferably 5 to 500 nm, further preferably 20 to 400 nm, even more preferably 40 to 200 nm, and even more preferably 50 to 100 nm. Most preferably. When the average diameter d of the pores 32 is 1 μm or less and is within the above range, a columnar body 12 having the above average diameter can be obtained.
The average diameter of the pores 32 is obtained by photographing the surface of the anodic oxide film 34 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 pores having a ring-shaped periphery are extracted, the diameter thereof is measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the pores.
As the magnification, the magnification in the above range can be appropriately selected so that a photographed image capable of extracting 20 or more pores can be obtained. For the opening diameter, the maximum value of the distance between the ends of the pore portions was measured. That is, since the shape of the opening of the pore is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the pore portion is set as the opening diameter. Therefore, for example, even in the case of a pore having a shape in which two or more pores are integrated, this is regarded as one pore, and the maximum value of the distance between the ends of the pore portions is set as the opening diameter. ..
 なお、構造体10の各部位の大きさについては、特に断りがなければ、構造体10を厚み方向Dtに切断し、FE-SEM(Field emission - Scanning Electron Microscope)を用いて切断断面の断面観察を行い、各サイズに該当する箇所を10点測定した平均値である。 Regarding the size of each part of the structure 10, unless otherwise specified, the structure 10 is cut in the thickness direction Dt, and the cross section of the cut cross section is observed using an FE-SEM (Field Emission-Scanning Electron Microscope). Is the average value obtained by measuring 10 points corresponding to each size.
[構造体の製造方法の第1例]
 図3~図9は本発明の実施形態の構造体の製造方法の第1例を工程順に示す模式的断面図である。なお、図3~図9において、図1及び図2に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 構造体の製造方法の第1例では、図1に示す構造体10において、絶縁膜16がアルミニウムの陽極酸化膜で構成されるものを例にして説明する。アルミニウムの陽極酸化膜を形成するために、アルミニウム基板を用いる。このため、構造体の製造方法の第1例では、まず、図3に示すように、アルミニウム基板30を用意する。
 アルミニウム基板30は、最終的に得られる構造体10(図9参照)の陽極酸化膜34の厚み、すなわち、基体14の厚み、加工する装置等に応じて大きさ及び厚みが適宜決定されるものである。アルミニウム基板30は、例えば、矩形状の板材である。なお、アルミニウム基板に限定されるものではなく、絶縁膜を形成できる金属基板を用いることができる。
[First example of a method for manufacturing a structure]
3 to 9 are schematic cross-sectional views showing a first example of a method for manufacturing a structure according to an embodiment of the present invention in order of steps. In FIGS. 3 to 9, the same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and detailed description thereof will be omitted.
In the first example of the method for manufacturing a structure, the structure 10 shown in FIG. 1 in which the insulating film 16 is composed of an anodic oxide film of aluminum will be described as an example. An aluminum substrate is used to form an anodic oxide film of aluminum. Therefore, in the first example of the method for manufacturing a structure, first, as shown in FIG. 3, an aluminum substrate 30 is prepared.
The size and thickness of the aluminum substrate 30 are appropriately determined according to the thickness of the anodic oxide film 34 of the finally obtained structure 10 (see FIG. 9), that is, the thickness of the substrate 14, the apparatus to be processed, and the like. Is. The aluminum substrate 30 is, for example, a rectangular plate material. It should be noted that the present invention is not limited to the aluminum substrate, and a metal substrate capable of forming an insulating film can be used.
 次に、アルミニウム基板30の片側の表面30a(図3参照)を陽極酸化処理する。これにより、アルミニウム基板30の片側の表面30a(図3参照)が陽極酸化されて、図4に示すように、アルミニウム基板30の厚み方向Dtに延在する複数の細孔32を有する陽極酸化膜34が形成される。各細孔32の底部にはバリア層33が存在する。上述の陽極酸化する工程を陽極酸化処理工程という。
 複数の細孔32を有する陽極酸化膜34には、上述のようにそれぞれ細孔32の底部にバリア層33が存在するが、図4に示すバリア層33を除去する。これにより、バリア層33のない、複数の細孔32を有する陽極酸化膜34(図5参照)を得る。なお、上述のバリア層33を除去する工程をバリア層除去工程という。
 バリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いることにより、陽極酸化膜34のバリア層33を除去すると同時に、細孔32の底部32c(図5参照)の面32d(図5参照)に金属(金属M1)からなる金属層35a(図5参照)を形成する。これにより、細孔32に露出したアルミニウム基板30は金属層35aにより被覆される。これにより、細孔32へめっきによる金属充填の際に、めっきが進行しやすくなり、細孔に金属が十分に充填されないことが抑制され、細孔への金属の未充填等が抑制され、柱状体12の形成不良が抑制される。
 なお、上述の金属M1のイオンを含むアルカリ水溶液は更にアルミニウムイオン含有化合物(アルミン酸ソーダ、水酸化アルミニウム、酸化アルミニウム等)を含んでもよい。アルミニウムイオン含有化合物の含有量は、アルミニウムイオンの量に換算して0.1~20g/Lが好ましく、0.3~12g/Lがより好ましく、0.5~6g/Lが更に好ましい。
Next, the surface 30a (see FIG. 3) on one side of the aluminum substrate 30 is anodized. As a result, the surface 30a (see FIG. 3) on one side of the aluminum substrate 30 is anodized, and as shown in FIG. 4, an anodic oxide film having a plurality of pores 32 extending in the thickness direction Dt of the aluminum substrate 30. 34 is formed. A barrier layer 33 is present at the bottom of each pore 32. The above-mentioned anodizing step is called an anodizing treatment step.
The anodic oxide film 34 having a plurality of pores 32 has a barrier layer 33 at the bottom of each of the pores 32 as described above, but the barrier layer 33 shown in FIG. 4 is removed. As a result, an anodic oxide film 34 (see FIG. 5) having a plurality of pores 32 without the barrier layer 33 is obtained. The step of removing the barrier layer 33 is referred to as a barrier layer removing step.
In the barrier layer removing step, the barrier layer 33 of the anodic oxide film 34 is removed by using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum, and at the same time, the bottom 32c of the pores 32 (see FIG. 5). A metal layer 35a (see FIG. 5) made of a metal (metal M1) is formed on the surface 32d (see FIG. 5). As a result, the aluminum substrate 30 exposed to the pores 32 is covered with the metal layer 35a. As a result, when the pores 32 are filled with metal by plating, the plating is facilitated, the pores are suppressed from being sufficiently filled with metal, the pores are suppressed from being unfilled with metal, and the columns are columnar. Poor formation of the body 12 is suppressed.
The alkaline aqueous solution containing the ion of the metal M1 may further contain an aluminum ion-containing compound (sodium aluminate, aluminum hydroxide, aluminum oxide, etc.). The content of the aluminum ion-containing compound is preferably 0.1 to 20 g / L, more preferably 0.3 to 12 g / L, and even more preferably 0.5 to 6 g / L in terms of the amount of aluminum ions.
 次に、厚み方向Dtに延在する複数の細孔32を有する陽極酸化膜34の表面34aから第1の金属でめっきを行なって表面34aを第1の金属で被覆する。この場合、金属層35aを電解めっきの電極として用いることができる。第1の金属として金属35bを用い、細孔32の底部32c(図5参照)の面32d(図5参照)に形成された金属層35aを起点にして、めっきが進行する。これにより、図6に示すように、陽極酸化膜34の細孔32の内部に、第1の金属である金属35bが充填され、更に陽極酸化膜34の表面34aに、金属35bにより金属層20が形成される。細孔32の内部に金属35bを充填することにより、導電性を有する柱状体12が形成される。なお、金属層35aと金属35bとをまとめて充填した金属35という。
 陽極酸化膜34の細孔32の内部に、陽極酸化膜34の表面34aから第1の金属でめっきを行なって、陽極酸化膜34の表面34aを第1の金属で被覆する工程を第1被覆工程という。陽極酸化膜34の表面34aが陽極酸化膜34の一方の面に相当する。
 第1被覆工程では、陽極酸化膜34の細孔32に金属35bが充填されるため、第1被覆工程は、上述のように金属35bを陽極酸化膜34の細孔32に充填する金属充填工程を含む。第1被覆工程には、電解めっきが用いられ、第1被覆工程については後に詳細に説明する。なお、金属層20の厚みhm(図1参照)は、第1被覆工程のめっき時間等により調整することができる。
 第1被覆工程の後に、図7に示すようにアルミニウム基板30を除去する。アルミニウム基板30を除去する工程を基板除去工程という。
Next, the surface 34a of the anodized film 34 having a plurality of pores 32 extending in the thickness direction Dt is plated with the first metal, and the surface 34a is coated with the first metal. In this case, the metal layer 35a can be used as an electrode for electrolytic plating. The metal 35b is used as the first metal, and the plating proceeds starting from the metal layer 35a formed on the surface 32d (see FIG. 5) of the bottom 32c (see FIG. 5) of the pores 32. As a result, as shown in FIG. 6, the inside of the pores 32 of the anodic oxide film 34 is filled with the metal 35b, which is the first metal, and the surface 34a of the anodic oxide film 34 is further filled with the metal layer 20 by the metal 35b. Is formed. By filling the inside of the pores 32 with the metal 35b, the columnar body 12 having conductivity is formed. It should be noted that the metal layer 35a and the metal 35b are collectively filled with the metal 35.
The step of plating the inside of the pores 32 of the anodic oxide film 34 with the first metal from the surface 34a of the anodic oxide film 34 and coating the surface 34a of the anodic oxide film 34 with the first metal is the first coating. It is called a process. The surface 34a of the anodic oxide film 34 corresponds to one surface of the anodic oxide film 34.
Since the metal 35b is filled in the pores 32 of the anodic oxide film 34 in the first coating step, the first coating step is a metal filling step of filling the pores 32 of the anodic oxide film 34 with the metal 35b as described above. including. Electroplating is used in the first coating step, and the first coating step will be described in detail later. The thickness hm of the metal layer 20 (see FIG. 1) can be adjusted by adjusting the plating time of the first coating step and the like.
After the first coating step, the aluminum substrate 30 is removed as shown in FIG. The step of removing the aluminum substrate 30 is called a substrate removing step.
 第1被覆工程の前のバリア層除去工程において、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いてバリア層を除去することにより、バリア層33を除去するだけでなく、細孔32の底部に露出したアルミニウム基板30にアルミニウムよりも水素ガスが発生しにくい金属M1の金属層35aが形成される。その結果、金属充填の面内均一性が良好となる。これは、めっき液による水素ガスの発生が抑制され、電解めっきによる金属充填が進行しやすくなったと考えられる。
 また、バリア層除去工程において、陽極酸化処理工程における電圧の30%未満の範囲から選択される電圧(保持電圧)の95%以上105%以下の電圧に通算5分以上保持する保持工程を設け、金属M1のイオンを含むアルカリ水溶液を適用することを組み合わせることにより、めっき処理時の金属充填の均一性が大きく良化することを見出している。このため、保持工程があることが好ましい。
 詳しいメカニズムは不明だが、バリア層除去工程において、金属M1のイオンを含むアルカリ水溶液を用いることでバリア層下部に金属M1の層が形成され、これによりアルミニウム基板と陽極酸化膜との界面がダメージを受けることを抑制することができ、バリア層の溶解の均一性が向上したためと考えられる。
In the barrier layer removing step prior to the first coating step, the barrier layer 33 is not only removed but also finely divided by removing the barrier layer using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum. A metal layer 35a of the metal M1 that is less likely to generate hydrogen gas than aluminum is formed on the aluminum substrate 30 exposed at the bottom of the hole 32. As a result, the in-plane uniformity of the metal filling becomes good. It is considered that this is because the generation of hydrogen gas by the plating solution was suppressed and the metal filling by the electrolytic plating proceeded easily.
Further, in the barrier layer removing step, a holding step of holding the voltage of 95% or more and 105% or less of the voltage (holding voltage) selected from the range of less than 30% of the voltage in the anodizing treatment step for a total of 5 minutes or more is provided. It has been found that the uniformity of metal filling during the plating treatment is greatly improved by combining the application of an alkaline aqueous solution containing the ions of the metal M1. Therefore, it is preferable to have a holding step.
Although the detailed mechanism is unknown, in the barrier layer removal step, a layer of metal M1 is formed under the barrier layer by using an alkaline aqueous solution containing ions of metal M1, which damages the interface between the aluminum substrate and the anodic oxide film. It is considered that this is because the reception can be suppressed and the uniformity of dissolution of the barrier layer is improved.
 なお、バリア層除去工程において、細孔32の底部に金属(金属M1)からなる金属層35aを形成したが、これに限定されるものではなく、バリア層33だけを除去し、細孔32の底にアルミニウム基板30を露出させる。アルミニウム基板30を露出させた状態で、アルミニウム基板30を電解めっきの電極として用いてもよい。 In the barrier layer removing step, a metal layer 35a made of a metal (metal M1) was formed at the bottom of the pores 32, but the present invention is not limited to this, and only the barrier layer 33 is removed to form the pores 32. The aluminum substrate 30 is exposed on the bottom. The aluminum substrate 30 may be used as an electrode for electrolytic plating with the aluminum substrate 30 exposed.
 アルミニウム基板30を除去した後、露出された、陽極酸化膜34の裏面34bを、厚み方向に一部除去して、図8に示すように第1被覆工程により陽極酸化膜34の複数の細孔32に充填された金属35、すなわち、柱状体12の一部を陽極酸化膜34の裏面34bよりも突出させることが好ましい。陽極酸化膜34の裏面34bが陽極酸化膜34の他方の面に相当する。
 第1被覆工程により陽極酸化膜34の複数の細孔32に充填された金属35(第1の金属)を陽極酸化膜34の裏面34bから突出させる。すなわち、柱状体12の一部を陽極酸化膜34の裏面34bよりも突出させることを、金属突出工程という。
After removing the aluminum substrate 30, the exposed back surface 34b of the anodic oxide film 34 is partially removed in the thickness direction, and as shown in FIG. 8, a plurality of pores of the anodic oxide film 34 are obtained by the first coating step. It is preferable that the metal 35 filled in 32, that is, a part of the columnar body 12, protrudes from the back surface 34b of the anodic oxide film 34. The back surface 34b of the anodic oxide film 34 corresponds to the other surface of the anodic oxide film 34.
The metal 35 (first metal) filled in the plurality of pores 32 of the anodic oxide film 34 by the first coating step is projected from the back surface 34b of the anodic oxide film 34. That is, projecting a part of the columnar body 12 from the back surface 34b of the anodic oxide film 34 is called a metal projecting step.
 次に、陽極酸化膜34の裏面34bから第2の金属を用いて、陽極酸化膜34の裏面34bを第2の金属で被覆することにより、金属層22が形成され、図9に示す構造体10が得られる。この場合、第2の金属には、第1の金属と同じく金属35bを用いることができる。
 陽極酸化膜34の裏面34bから第2の金属を用いて陽極酸化膜34の裏面34bを第2の金属で被覆する工程を第2被覆工程という。第2被覆工程は、後に詳細に説明するが第1被覆工程と同様に、めっきを利用することができる。第2被覆工程は、例えば、陽極酸化膜34の裏面34bから第2の金属でめっきを行なって、陽極酸化膜34の裏面34bを第2の金属で被覆するめっき工程である。この場合、陽極酸化膜34の裏面34bからめっきが進行して金属層22が形成される。
 なお、金属層22の厚みhj(図1参照)は、第2被覆工程における成膜時間、例えば、めっき時間等により調整することができる。
 金属層22を形成する第2被覆工程は、めっき法に限定されるものではなく、例えば、蒸着法、又はスパッタ法を用いて金属層22を形成してもよい。しかしながら、金属層22の形成時間の観点から、蒸着法及びスパッタ法に比して成膜速度が速いめっき法を用いることが好ましい。
Next, the metal layer 22 is formed by coating the back surface 34b of the anodic oxide film 34 with the second metal from the back surface 34b of the anodic oxide film 34 using the second metal, and the structure shown in FIG. 9 is formed. 10 is obtained. In this case, as the second metal, the metal 35b can be used as in the first metal.
The step of coating the back surface 34b of the anodic oxide film 34 with the second metal from the back surface 34b of the anodic oxide film 34 with the second metal is referred to as the second coating step. As the second coating step, which will be described in detail later, plating can be used in the same manner as the first coating step. The second coating step is, for example, a plating step in which plating is performed from the back surface 34b of the anodic oxide film 34 with a second metal, and the back surface 34b of the anodic oxide film 34 is coated with the second metal. In this case, plating proceeds from the back surface 34b of the anodic oxide film 34 to form the metal layer 22.
The thickness hj of the metal layer 22 (see FIG. 1) can be adjusted by the film forming time in the second coating step, for example, the plating time.
The second coating step for forming the metal layer 22 is not limited to the plating method, and for example, the metal layer 22 may be formed by using a vapor deposition method or a sputtering method. However, from the viewpoint of the formation time of the metal layer 22, it is preferable to use a plating method having a higher film forming speed than the vapor deposition method and the sputtering method.
 第2被覆工程において、例えば、めっきにより、陽極酸化膜34の裏面34bを第2の金属で被覆する場合、陽極酸化膜34の裏面34bから突出した柱状体12により、平坦な面に比して、導電体である柱状体12にめっきがつきやくなり、めっきにより金属層22が更に形成されやすくなる。更には、柱状体12によるアンカー効果により、陽極酸化膜34の裏面34bと金属層22との接合強度も、柱状体12がない場合に比して高くなる。めっき法以外の蒸着法及びスパッタ法を用いて金属層22を形成した場合でも、めっき法と同様に陽極酸化膜34の裏面34bから柱状体12が突出していれば、金属層22が更に形成されやすくなり、更には陽極酸化膜34の裏面34bと金属層22との接合強度も高くなる。このようなことから、第1被覆工程と第2被覆工程との間に、上述の金属突出工程を有することが好ましい。 In the second coating step, for example, when the back surface 34b of the anodic oxide film 34 is coated with the second metal by plating, the columnar body 12 protruding from the back surface 34b of the anodic oxide film 34 makes it compared to a flat surface. The columnar body 12, which is a conductor, is easily plated, and the metal layer 22 is more easily formed by the plating. Further, due to the anchor effect of the columnar body 12, the bonding strength between the back surface 34b of the anodic oxide film 34 and the metal layer 22 is also higher than that without the columnar body 12. Even when the metal layer 22 is formed by a vapor deposition method other than the plating method and a sputtering method, if the columnar body 12 protrudes from the back surface 34b of the anodic oxide film 34 as in the plating method, the metal layer 22 is further formed. Further, the bonding strength between the back surface 34b of the anodic oxide film 34 and the metal layer 22 is increased. For this reason, it is preferable to have the above-mentioned metal projecting step between the first coating step and the second coating step.
 上述の第1の金属は柱状体12及び金属層20を構成し、第2の金属は金属層22を構成するものである。上述の第1の金属と第2の金属とには、例えば、銅が用いられる。第1の金属と第2の金属とは、同種の金属でもよく、異なる金属でもよい。
 また、図6に示すアルミニウム基板30が、図9に示す構造体10の金属層22に相当する。このため、図6に示す構成も、構造体10に該当する。図6の構成では、金属層20と、金属層22とが異なる金属で構成される。例えば、金属層20が銅で構成され、金属層22がアルミニウムで構成される。
 また、上述の図8に示す金属突出工程をすることなく、図7に示す陽極酸化膜34の裏面34bから、例えば、第2の金属でめっきを行なって裏面34bを第2の金属で被覆して、金属層22を形成してもよい。この場合、陽極酸化膜34の裏面34bからめっきが進行して金属層22が形成される。
 また、第1被覆工程で、柱状体12を形成して金属層20を形成し、第2被覆工程で金属層22を形成したが、これに限定されるものではない。例えば、第1被覆工程で、金属層20を形成し、第2被覆工程で柱状体12と金属層22とを形成してもよい。この場合、第2被覆工程は、細孔に金属を充填して柱状体12を形成するため、めっき法を用いためっき工程であることが好ましい。
The first metal described above constitutes the columnar body 12 and the metal layer 20, and the second metal constitutes the metal layer 22. For example, copper is used as the first metal and the second metal described above. The first metal and the second metal may be the same type of metal or different metals.
Further, the aluminum substrate 30 shown in FIG. 6 corresponds to the metal layer 22 of the structure 10 shown in FIG. Therefore, the configuration shown in FIG. 6 also corresponds to the structure 10. In the configuration of FIG. 6, the metal layer 20 and the metal layer 22 are made of different metals. For example, the metal layer 20 is made of copper and the metal layer 22 is made of aluminum.
Further, without performing the metal projecting step shown in FIG. 8 above, the back surface 34b of the anodized film 34 shown in FIG. 7 is plated with, for example, a second metal, and the back surface 34b is coated with the second metal. The metal layer 22 may be formed. In this case, plating proceeds from the back surface 34b of the anodic oxide film 34 to form the metal layer 22.
Further, in the first coating step, the columnar body 12 is formed to form the metal layer 20, and in the second coating step, the metal layer 22 is formed, but the present invention is not limited thereto. For example, the metal layer 20 may be formed in the first coating step, and the columnar body 12 and the metal layer 22 may be formed in the second coating step. In this case, the second coating step is preferably a plating step using a plating method because the pores are filled with metal to form the columnar body 12.
[構造体の製造方法の第2例]
 図10~図13は本発明の実施形態の構造体の製造方法の第2例を工程順に示す模式的断面図である。なお、図10~図13において、図3~図9に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 構造体の製造方法の第2例では、構造体の製造方法の第1例に比して、以下に示す工程が異なる。
 第2例では、図4に示す陽極酸化膜34が形成されたアルミニウム基板30に対して、アルミニウム基板30を除去し、図10に示すように、複数の細孔32が形成された陽極酸化膜34を得る。アルミニウム基板30の除去は、基板除去工程を利用することができるため、詳細な説明は省略する。
[Second example of manufacturing method of structure]
10 to 13 are schematic cross-sectional views showing a second example of the method for manufacturing a structure according to an embodiment of the present invention in order of steps. In FIGS. 10 to 13, the same components as those shown in FIGS. 3 to 9 are designated by the same reference numerals, and detailed description thereof will be omitted.
In the second example of the method for manufacturing the structure, the steps shown below are different from those in the first example of the method for manufacturing the structure.
In the second example, the aluminum substrate 30 is removed from the aluminum substrate 30 on which the anodic oxide film 34 shown in FIG. 4 is formed, and as shown in FIG. 10, the anodic oxide film in which a plurality of pores 32 are formed is formed. Get 34. Since the substrate removing step can be used for removing the aluminum substrate 30, detailed description thereof will be omitted.
 次に、図10に示す陽極酸化膜34の細孔32を拡径し、かつバリア層33を除去して、図11に示すように、陽極酸化膜34に厚み方向Dtに貫通する細孔32を複数形成する。
 細孔32の拡径には、例えば、ポアワイド処理が用いられる。ポアワイド処理は、陽極酸化膜を、酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、細孔32の孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液、又は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等の水溶液を用いることができる。
Next, the pores 32 of the anodic oxide film 34 shown in FIG. 10 are enlarged and the barrier layer 33 is removed, and as shown in FIG. 11, the pores 32 penetrating the anodic oxide film 34 in the thickness direction Dt. To form a plurality.
For example, a pore wide treatment is used for expanding the diameter of the pore 32. The pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the pores 32. , An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
 次に、図11に示す陽極酸化膜34の裏面34bの全面に第2の金属をめっきして、図12に示すように陽極酸化膜34の裏面34bの全面に金属層36を形成する。なお、金属層36を形成する際、陽極酸化膜34の細孔32は金属で充填されて柱状体12が形成されており、陽極酸化膜34の裏面34bに金属層36を形成する工程では、細孔32に金属を充填しない。
 金属層36を形成する工程が上述の第2被覆工程である。第2被覆工程による金属層36の形成は、上述の金属層22を形成した第2被覆工程と同様の工程である。なお、金属層36の形成は、金属層22の形成と同様に、めっき法に限定されるものではなく、例えば、蒸着法、又はスパッタ法を用いて金属層36を形成してもよい。しかしながら、金属層36の形成時間の観点から、蒸着法及びスパッタ法に比して成膜速度が速いめっき法を用いることが好ましい。
 金属層36は、上述の金属層22に相当する部材であり、金属層22と同じ金属で構成することが好ましい。金属層36は、上述の金属層20と同じ金属で構成することができる。
 ここで、図12に示すように、陽極酸化膜34の裏面34b側に金属層36が設けられている。金属層36は、細孔32の陽極酸化膜34の裏面34b側の開口を全て覆っている。陽極酸化膜34の裏面34bに金属層36を設けることにより、細孔32へ金属めっきによる金属充填の際に、めっきが進行しやすくなり、金属が十分に充填されないことが抑制され、細孔32への金属の未充填等が抑制される。
Next, the second metal is plated on the entire surface of the back surface 34b of the anodic oxide film 34 shown in FIG. 11, and the metal layer 36 is formed on the entire surface of the back surface 34b of the anodic oxide film 34 as shown in FIG. When forming the metal layer 36, the pores 32 of the anodic oxide film 34 are filled with metal to form a columnar body 12, and in the step of forming the metal layer 36 on the back surface 34b of the anodic oxide film 34, The pores 32 are not filled with metal.
The step of forming the metal layer 36 is the above-mentioned second coating step. The formation of the metal layer 36 by the second coating step is the same step as the second coating step of forming the metal layer 22 described above. The formation of the metal layer 36 is not limited to the plating method as in the formation of the metal layer 22, and the metal layer 36 may be formed by, for example, a vapor deposition method or a sputtering method. However, from the viewpoint of the formation time of the metal layer 36, it is preferable to use a plating method having a higher film forming speed than the vapor deposition method and the sputtering method.
The metal layer 36 is a member corresponding to the above-mentioned metal layer 22, and is preferably made of the same metal as the metal layer 22. The metal layer 36 can be made of the same metal as the metal layer 20 described above.
Here, as shown in FIG. 12, the metal layer 36 is provided on the back surface 34b side of the anodic oxide film 34. The metal layer 36 covers all the openings on the back surface 34b side of the anodic oxide film 34 of the pores 32. By providing the metal layer 36 on the back surface 34b of the anodic oxide film 34, when the pores 32 are filled with metal by metal plating, the plating is facilitated, the metal is not sufficiently filled, and the pores 32 are prevented from being sufficiently filled. Unfilling of metal to the metal is suppressed.
 次に、図13に示すように、陽極酸化膜34に金属層36が形成された状態で、陽極酸化膜34の細孔32の内部に、第1例と同じく、めっき法により、複数の細孔32に金属35bを充填し、柱状体12を形成し、更に陽極酸化膜34の表面34aに金属層20を形成する。これにより、構造体10が形成される。なお、図13に示すように陽極酸化膜34の細孔32の内部に金属35bを充填して柱状体12を形成し、金属層20を形成する工程が、上述の第1被覆工程に相当する。 Next, as shown in FIG. 13, in a state where the metal layer 36 is formed on the anodic oxide film 34, a plurality of fine particles are formed inside the pores 32 of the anodic oxide film 34 by the plating method as in the first example. The holes 32 are filled with the metal 35b to form the columnar body 12, and the metal layer 20 is further formed on the surface 34a of the anodic oxide film 34. As a result, the structure 10 is formed. As shown in FIG. 13, the step of filling the pores 32 of the anodic oxide film 34 with the metal 35b to form the columnar body 12 and forming the metal layer 20 corresponds to the above-mentioned first coating step. ..
〔絶縁膜〕
 絶縁膜は、例えば、無機材料からなる。例えば、1014Ω・cm程度の電気抵抗率を有するものを用いることができる。
 なお、「無機材料からなり」とは、高分子材料と区別するための規定であり、無機材料のみから構成された絶縁性基材に限定する規定ではなく、無機材料を主成分(50質量%以上)とする規定である。
[Insulating film]
The insulating film is made of, for example, an inorganic material. For example, one having an electrical resistivity of about 10 14 Ω · cm can be used.
In addition, "consisting of an inorganic material" is a regulation for distinguishing from a polymer material, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material as a main component (50% by mass). The above).
 絶縁膜は、上述のように、例えば、陽極酸化膜で構成される。陽極酸化膜としては、所望の平均径を有する細孔が形成され、柱状体を形成しやすいという理由から、例えば、アルミニウムの陽極酸化膜が用いられる。しかしながら、アルミニウムの陽極酸化膜に限定されるものではなく、バルブ金属の陽極酸化膜を用いることができる。このため、金属基板は、バルブ金属を用いられる。
 ここで、バルブ金属としては、具体的には、例えば、上述のアルミニウム、これ以外に、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化膜であることが好ましい。このため、アルミニウム基板を用いて、構造体を製造することが好ましい。
As described above, the insulating film is composed of, for example, an anodic oxide film. As the anodic oxide film, for example, an aluminum anodic oxide film is used because pores having a desired average diameter are formed and columnar bodies are easily formed. However, the anodic oxide film of aluminum is not limited, and an anodic oxide film of valve metal can be used. Therefore, valve metal is used as the metal substrate.
Here, examples of the valve metal include, for example, the above-mentioned aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, an aluminum anodic oxide film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
〔金属基板〕
 金属基板は、構造体の製造に用いられるものであり、絶縁膜を形成するための基板である。金属基板は、例えば、上述のように、陽極酸化膜が形成できる金属基板が用いられ、上述のバルブ金属で構成されるものを用いることができる。例えば、金属基板には、上述のように、絶縁膜として陽極酸化膜を形成しやすいという理由から、アルミニウム基板が用いられる。
[Metal substrate]
The metal substrate is used for manufacturing a structure and is a substrate for forming an insulating film. As the metal substrate, for example, as described above, a metal substrate on which an anodic oxide film can be formed is used, and a metal substrate composed of the above-mentioned valve metal can be used. For example, as described above, an aluminum substrate is used as the metal substrate because it is easy to form an anodic oxide film as an insulating film.
〔アルミニウム基板〕
 絶縁膜16を形成するために用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
[Aluminum substrate]
The aluminum substrate used to form the insulating film 16 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; low-purity aluminum (for example, for example). A substrate on which high-purity aluminum is vapor-deposited on (recycled material); a substrate on which the surface of silicon wafer, quartz, glass, etc. is coated with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate on which aluminum is laminated; etc. ..
 アルミニウム基板のうち、陽極酸化処理により陽極酸化膜を形成する片側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上述の範囲であると、マイクロポア配列の規則性が十分となる。
 アルミニウム基板は、陽極酸化膜を形成することができれば、特に限定されるものでなく、例えば、JIS(Japanese Industrial Standards) 1050材が用いられる。
The surface of one side of the aluminum substrate on which the anodic oxide film is formed by the anodic oxidation treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99. It is more preferably .99% by mass or more. When the aluminum purity is in the above range, the regularity of the micropore arrangement is sufficient.
The aluminum substrate is not particularly limited as long as it can form an anodic oxide film, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
 アルミニウム基板のうち陽極酸化処理される片側の表面は、予め熱処理、脱脂処理及び鏡面仕上げ処理が施されていることが好ましい。
 ここで、熱処理、脱脂処理及び鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理の前の鏡面仕上げ処理は、例えば、電解研磨であり、電解研磨には、例えば、リン酸を含有する電解研磨液が用いられる。
It is preferable that the surface of one side of the aluminum substrate to be anodized is previously heat-treated, degreased and mirror-finished.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
The mirror finish treatment before the anodic oxidation treatment is, for example, electrolytic polishing, and for the electrolytic polishing, for example, an electrolytic polishing liquid containing phosphoric acid is used.
〔陽極酸化処理工程〕
 陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、金属構造体の異方導電性を担保する観点から、自己規則化法又は定電圧処理を用いることが好ましい。
 ここで、陽極酸化処理の自己規則化法及び定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落及び[図3]に記載された各処理と同様の処理を施すことができる。
[Anodizing process]
For the anodizing treatment, a conventionally known method can be used, but a self-regular method or a constant voltage treatment is used from the viewpoint of increasing the regularity of the micropore arrangement and ensuring the anisotropic conductivity of the metal structure. Is preferable.
Here, regarding the self-regularization method and the constant voltage treatment of the anodizing treatment, the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
〔保持工程〕
 構造体の製造方法は保持工程を有してもよい。保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧に通算5分以上保持する工程である。言い換えると、保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧で通算5分以上電解処理を施す工程である。
 ここで、「陽極酸化処理における電圧」とは、アルミニウムと対極間に印加する電圧であり、例えば、陽極酸化処理による電解時間が30分であれば、30分の間に保たれている電圧の平均値をいう。
[Holding process]
The method for manufacturing the structure may include a holding step. The holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more. This is the process of holding. In other words, the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step. This is a step of performing electrolytic treatment for 5 minutes or more.
Here, the "voltage in the anodizing treatment" is a voltage applied between the aluminum and the counter electrode, and for example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. The average value.
 陽極酸化膜の側壁厚み、すなわち、細孔の深さに対してバリア層の厚みを適切な厚みに制御する観点から、保持工程における電圧が、陽極酸化処理における電圧の5%以上25%以下であることが好ましく、5%以上20%以下であることがより好ましい。 From the viewpoint of controlling the thickness of the side wall of the anodizing film, that is, the thickness of the barrier layer to an appropriate thickness with respect to the depth of the pores, the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably present, and more preferably 5% or more and 20% or less.
 また、面内均一性がより向上する理由から、保持工程における保持時間の合計が、5分以上20分以下であることが好ましく、5分以上15分以下であることがより好ましく、5分以上10分以下であることが更に好ましい。
 また、保持工程における保持時間は、通算5分以上であればよいが、連続5分以上であることが好ましい。
Further, for the reason that the in-plane uniformity is further improved, the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
The holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
 更に、保持工程における電圧は、陽極酸化処理工程における電圧から保持工程における電圧まで連続的又は段階的に降下させて設定してもよいが、面内均一性が更に向上する理由から、陽極酸化処理工程の終了後、1秒以内に、上述の保持電圧の95%以上105%以下の電圧に設定することが好ましい。 Further, the voltage in the holding step may be set by continuously or stepwise reducing the voltage from the voltage in the anodic oxidation treatment step to the voltage in the holding step, but for the reason of further improving the in-plane uniformity, the anodic oxidation treatment is performed. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the step.
 上述の保持工程は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理工程と連続して行うこともできる。
 上述の保持工程は、電解電位以外の条件については、上述の従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、保持工程と陽極酸化処理工程とを連続して施す場合は、同様の電解液を用いて処理することが好ましい。
The above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
In the above-mentioned holding step, with respect to conditions other than the electrolytic potential, the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted.
In particular, when the holding step and the anodizing treatment step are continuously performed, it is preferable to perform the treatment using the same electrolytic solution.
 複数のマイクロポアを有する陽極酸化膜には、上述のようにマイクロポアの底部にバリア層(図示せず)が存在する。このバリア層を除去するバリア層除去工程を有する。 The anodic oxide film having a plurality of micropores has a barrier layer (not shown) at the bottom of the micropores as described above. It has a barrier layer removing step for removing the barrier layer.
〔バリア層除去工程〕
 バリア層除去工程は、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去する工程である。
 上述のバリア層除去工程により、バリア層が除去され、かつ、マイクロポアの底部に、金属M1からなる導電体層が形成されることになる。
 ここで、水素過電圧とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例及びその水素過電圧の値を以下に示す。
 <金属M1及び水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
[Barrier layer removal process]
The barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
By the barrier layer removing step described above, the barrier layer is removed, and a conductor layer made of the metal M1 is formed at the bottom of the micropores.
Here, the hydrogen overvoltage means the voltage required for hydrogen to be generated. For example, the hydrogen overvoltage of aluminum (Al) is -1.66V (Journal of the Chemical Society of Japan, 1982, (8), p1305-1313). ). An example of the metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
<Metal M1 and hydrogen (1NH 2 SO 4 ) overvoltage>
-Platinum (Pt): 0.00V
-Gold (Au): 0.02V
-Silver (Ag): 0.08V
-Nickel (Ni): 0.21V
-Copper (Cu): 0.23V
-Tin (Sn): 0.53V
-Zinc (Zn): 0.70V
 細孔32は、マイクロポアを拡径し、かつバリア層を除去して形成することもできる。この場合、マイクロポアの拡径には、ポアワイド処理が用いられる。ポアワイド処理は、陽極酸化膜を、酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、マイクロポアの孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液、又は水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等の水溶液を用いることができる。
 なお、ポアワイド処理でも、マイクロポアの底部のバリア層を除去することができ、ポアワイド処理において水酸化ナトリウム水溶液を用いることにより、マイクロポアが拡径され、かつバリア層が除去される。
The pores 32 can also be formed by expanding the diameter of the micropores and removing the barrier layer. In this case, pore wide processing is used to increase the diameter of the micropores. The pore-wide treatment is a treatment in which the anodic oxide film is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the pore size of the micropores. An aqueous solution of an inorganic acid such as hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
The barrier layer at the bottom of the micropores can also be removed by the pore wide treatment, and by using the sodium hydroxide aqueous solution in the pore wide treatment, the diameter of the micropores is expanded and the barrier layer is removed.
〔第1被覆工程(金属充填工程)〕
 <第1被覆工程に用いられる金属>
 第1被覆工程において、柱状体を形成するために、上述の細孔32の内部に導電体として充填される金属、及び金属層を構成する金属は、電気抵抗率が103Ω・cm以下の材料であることが好ましい。上述の金属の具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、及び亜鉛(Zn)が好適に例示される。
 なお、導電体としては、電気伝導性、及びめっき法による形成の観点から、銅(Cu)、金(Au)、アルミニウム(Al)、ニッケル(Ni)が好ましく、銅(Cu)、金(Au)がより好ましく、銅(Cu)が更に好ましい。
[First coating process (metal filling process)]
<Metal used in the first coating process>
In the first coating step, in order to form a columnar body, a metal to be filled as a conductor in the interior of the aforementioned pores 32, and the metal constituting the metal layer, the electrical resistivity of less 10 3 Ω · cm It is preferably a material. Specific examples of the above-mentioned metals are preferably gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), and zinc (Zn). ..
As the conductor, copper (Cu), gold (Au), aluminum (Al), nickel (Ni) are preferable, and copper (Cu) and gold (Au) are preferable from the viewpoint of electrical conductivity and formation by a plating method. ) Is more preferable, and copper (Cu) is further preferable.
 <めっき法>
 細孔の内部に金属を充填するめっき法としては、例えば、電解めっき法又は無電解めっき法を用いることができる。
 ここで、着色等に用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、電解めっき法により金属を充填する場合は、パルス電解又は定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒であることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
<Plating method>
As the plating method for filling the inside of the pores with metal, for example, an electrolytic plating method or an electroless plating method can be used.
Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
Therefore, when metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds.
It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS株式会社、北斗電工株式会社、IVIUM社等のポテンショスタット装置を用いることができる。 Further, the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V. When performing constant potential electrolysis, it is desirable that cyclic voltammetry can be used in combination, and potentiometer devices such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
(めっき液)
 めっき液は、従来公知のめっき液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであることが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであることが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
(Plating liquid)
As the plating solution, a conventionally known plating solution can be used.
Specifically, when precipitating copper, an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L.
When depositing gold, it is desirable to use a sulfuric acid solution of tetrachlorogold and perform plating by AC electrolysis.
 めっき液は、界面活性剤を含むことが好ましい。
 界面活性剤としては公知のものを使用することができる。従来メッキ液に添加する界面活性剤として知られているラウリル硫酸ナトリウムをそのまま使用することもできる。親水性部分がイオン性(カチオン性・アニオン性・双性)のもの、非イオン性(ノニオン性)のものいずれも利用可能であるが、メッキ対象物表面への気泡の発生等を回避する点でカチオン線活性剤が望ましい。めっき液組成における界面活性剤の濃度は1質量%以下であることが望ましい。
 なお、無電解めっき法では、アスペクトの高い細孔からなる孔中に金属を完全に充填には長時間を要するので、電解めっき法を用いて細孔に金属を充填することが望ましい。
The plating solution preferably contains a surfactant.
As the surfactant, known ones can be used. Sodium lauryl sulfate, which is conventionally known as a surfactant to be added to the plating solution, can be used as it is. Both ionic (cationic / anionic / bidirectional) and nonionic (nonionic) hydrophilic portions can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated. A cation beam activator is desirable. The concentration of the surfactant in the plating solution composition is preferably 1% by mass or less.
In the electroless plating method, it takes a long time to completely fill the pores having pores having a high aspect with metal, so it is desirable to fill the pores with metal by using the electroplating method.
〔基板除去工程〕
 基板除去工程は、第1被覆工程の後に、上述のアルミニウム基板を除去する工程である。アルミニウム基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。
[Substrate removal process]
The substrate removing step is a step of removing the above-mentioned aluminum substrate after the first coating step. The method for removing the aluminum substrate is not particularly limited, and for example, a method for removing by melting is preferable.
 <アルミニウム基板の溶解>
 上述のアルミニウム基板の溶解は、陽極酸化膜を溶解しにくく、アルミニウムを溶解しやすい処理液を用いることが好ましい。
 このような処理液は、アルミニウムに対する溶解速度が、1μm/分以上であることが好ましく、3μm/分以上であることがより好ましく、5μm/分以上であることが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となることが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、アルミよりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pH(水素イオン指数)が4以下又は8以上となる処理液であることが好ましく、そのpHが3以下又は9以上であることがより好ましく、2以下又は10以上であることが更に好ましい。
<Dissolution of aluminum substrate>
For the above-mentioned dissolution of the aluminum substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves aluminum.
Such a treatment liquid preferably has a dissolution rate in aluminum of 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
Specifically, it is preferably a treatment liquid containing at least one metal compound having a lower ionization tendency than aluminum and having a pH (hydrogen ion index) of 4 or less or 8 or more, and the pH is 3 or less or It is more preferably 9 or more, and further preferably 2 or less or 10 or more.
 アルミニウムを溶解する処理液としては、酸又はアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであることが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドすることが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、アルミニウムを溶解する処理液の組成は、特に限定されるものではく、例えば、臭素/メタノール混合物、臭素/エタノール混合物、及び王水等を用いることができる。
The treatment liquid for dissolving aluminum is based on an acid or alkaline aqueous solution, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum. , A gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like are preferably blended.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of the treatment liquid for dissolving aluminum is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
 また、アルミニウムを溶解する処理液の酸又はアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、アルミニウムを溶解する処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
The acid or alkali concentration of the treatment liquid for dissolving aluminum is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using the treatment liquid for dissolving aluminum is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
 また、上述のアルミニウム基板の溶解は、上述のめっき工程後のアルミニウム基板を上述の処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。中でも、浸漬法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 Further, the above-mentioned melting of the aluminum substrate is performed by bringing the aluminum substrate after the above-mentioned plating step into contact with the above-mentioned treatment liquid. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 なお、陽極酸化膜34に、例えば、支持体を設けてもよい。支持体は陽極酸化膜34と同じ外形状であることが好ましい。支持体を取り付けることにより、取扱い性が増す。 A support may be provided on the anodic oxide film 34, for example. The support preferably has the same outer shape as the anodic oxide film 34. By attaching a support, handleability is increased.
〔金属突出工程〕
 上述の陽極酸化膜34の一部除去には、例えば、柱状体12を構成する金属を溶解せず、陽極酸化膜34、すなわち、酸化アルミニウム(Al)を溶解する酸水溶液又はアルカリ水溶液が用いられる。上述の酸水溶液又はアルカリ水溶液を、金属が充填された細孔32を有する陽極酸化膜34に接触させることにより、陽極酸化膜34を一部除去する。上述の酸水溶液又はアルカリ水溶液を陽極酸化膜34に接触させる方法は、特に限定されず、例えば、浸漬法及びスプレー法が挙げられる。中でも浸漬法が好ましい。
[Metal protrusion process]
For the partial removal of the anodic oxide film 34 described above, for example, an acid aqueous solution or an alkaline aqueous solution that does not dissolve the metal constituting the columnar body 12 but dissolves the anodic oxide film 34, that is, aluminum oxide (Al 2 O 3). Is used. The anodic oxide film 34 is partially removed by contacting the above-mentioned acid aqueous solution or alkaline aqueous solution with the anodic oxide film 34 having pores 32 filled with metal. The method of bringing the above-mentioned acid aqueous solution or alkaline aqueous solution into contact with the anodic oxide film 34 is not particularly limited, and examples thereof include a dipping method and a spraying method. Of these, the dipping method is preferable.
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸及び塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。中でもクロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
 また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Of these, an aqueous solution containing no chromic acid is preferable because it is excellent in safety. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 60 ° C.
When an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であるのがより好ましく、15~60分であるのが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。 The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes. Here, the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated. A cleaning treatment may be performed between the immersion treatments.
 また、金属35、すなわち、柱状体12を陽極酸化膜34の裏面34bより突出させる程度であるが、金属層22との圧着性が良好となる理由から、金属35、すなわち、柱状体12を陽極酸化膜34の裏面34bよりも10nm~1000nm突出させることが好ましく、50nm~500nm突出させることがより好ましい。すなわち、突出部の裏面34bからの柱状体12の突出量は10nm~1000nmが好ましく、より好ましくは50nm~500nmである。
 柱状体の突出部の高さは、構造体の断面を電解放出形走査型電子顕微鏡により2万倍の倍率で観察し、柱状体の突出部の高さを10点で測定した平均値をいう。
Further, the metal 35, that is, the columnar body 12 is projected from the back surface 34b of the anodic oxide film 34, but the metal 35, that is, the columnar body 12 is an anode for the reason that the pressure bonding property with the metal layer 22 is good. It is preferable to project 10 nm to 1000 nm more than the back surface 34b of the oxide film 34, and more preferably 50 nm to 500 nm. That is, the amount of protrusion of the columnar body 12 from the back surface 34b of the protruding portion is preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm.
The height of the protruding part of the columnar body is the average value obtained by observing the cross section of the structure with a field emission scanning electron microscope at a magnification of 20,000 times and measuring the height of the protruding part of the columnar body at 10 points. ..
 柱状体12の突出部の高さを厳密に制御する場合は、細孔32の内部に金属を充填した後、陽極酸化膜34と金属の端部とを同一平面状になるように加工した後、陽極酸化膜を選択的に除去することが好ましい。
 また、上述の金属の充填後、又は金属突出工程の後に、金属の充填に伴い発生した柱状体12内の歪みを軽減する目的で、加熱処理を施すことができる。
 加熱処理は、金属の酸化を抑制する観点から還元性雰囲気で施すことが好ましく、具体的には、酸素濃度が20Pa以下で行うことが好ましく、真空下で行うことがより好ましい。ここで、真空とは、大気よりも、気体密度及び気圧のうち、少なくとも一方が低い空間の状態をいう。
 また、加熱処理は、矯正の目的で、陽極酸化膜34に応力を加えながら行うことが好ましい。
When strictly controlling the height of the protruding portion of the columnar body 12, after filling the inside of the pores 32 with metal, the anodic oxide film 34 and the end portion of the metal are processed so as to be in the same plane. , It is preferable to selectively remove the anodic oxide film.
Further, after the above-mentioned metal filling or after the metal projecting step, heat treatment can be performed for the purpose of reducing the strain in the columnar body 12 generated by the metal filling.
The heat treatment is preferably carried out in a reducing atmosphere from the viewpoint of suppressing the oxidation of the metal, specifically, the oxygen concentration is preferably 20 Pa or less, and more preferably carried out under vacuum. Here, the vacuum means a state of a space in which at least one of the gas density and the atmospheric pressure is lower than that of the atmosphere.
Further, it is preferable that the heat treatment is performed while applying stress to the anodic oxide film 34 for the purpose of straightening.
〔第2被覆工程〕
 第2被覆工程は、図7に示すように陽極酸化膜34に金属35が充填されて柱状体12が形成され、かつ金属層20が形成された状態、又は図8に示す柱状体12を陽極酸化膜34から突出させた状態で、第2の金属を用いて、陽極酸化膜34の裏面34bに、第2の金属で被覆する工程である。第2被覆工程により、金属層22が形成される。第2被覆工程は、第1被覆工程に比して、陽極酸化膜の細孔に金属を充填しないこと以外は、同じ工程であるため、その詳細な説明は省略する。第2被覆工程は、上述のように成膜時間が速いことから、第1被覆工程と同様にめっき法を用いることが好ましい。
 また、第2被覆工程は、図12に示すように陽極酸化膜34の裏面34bの全面に、第2の金属を、例えば、めっき法により、金属層36を形成する工程でもある。例えば、無電解めっき法を用いて第2の金属をめっきして金属層36を形成する。
[Second coating step]
In the second coating step, as shown in FIG. 7, the anodic oxide film 34 is filled with the metal 35 to form the columnar body 12, and the metal layer 20 is formed, or the columnar body 12 shown in FIG. 8 is an anode. This is a step of coating the back surface 34b of the anodic oxide film 34 with the second metal by using the second metal in a state of protruding from the oxide film 34. The metal layer 22 is formed by the second coating step. Since the second coating step is the same step as the first coating step except that the pores of the anodic oxide film are not filled with metal, detailed description thereof will be omitted. Since the film formation time is fast in the second coating step as described above, it is preferable to use the plating method in the same manner as in the first coating step.
Further, the second coating step is also a step of forming a second metal on the entire surface of the back surface 34b of the anodic oxide film 34, for example, by a plating method, as shown in FIG. For example, the second metal is plated using an electroless plating method to form the metal layer 36.
<ポアワイド処理>
 ポアワイド処理は、アルミニウム基板を酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜を溶解させ、細孔32の径を拡大する処理である。ポアワイド処理により、バリア層を除去して陽極酸化膜34の細孔を貫通させる。
<Pore wide processing>
The pore-wide treatment is a treatment in which the aluminum substrate is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodic oxide film and expand the diameter of the pores 32. The barrier layer is removed by the pore wide treatment to penetrate the pores of the anodic oxide film 34.
 ポアワイド処理に酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、25~40℃であるのが好ましい。
 ポアワイド処理にアルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~60分であるのが好ましく、10~50分であるのがより好ましく、15~30分であるのが更に好ましい。
When an aqueous acid solution is used for the pore wide treatment, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, or hydrochloric acid, or a mixture thereof. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 25 to 40 ° C.
When an alkaline aqueous solution is used for the pore wide treatment, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 20 to 35 ° C.
Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 60 minutes, more preferably 10 to 50 minutes, and even more preferably 15 to 30 minutes.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の構造体及び構造体の製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the structure of the present invention and the method for manufacturing the structure have been described in detail above, the present invention is not limited to the above-described embodiment, and various improvements or changes have been made without departing from the gist of the present invention. Of course, it is also good.
 10 構造体
 12 柱状体
 14 基体
 14a 表面
 14b 裏面
 16 絶縁膜
 17 細孔
 20 金属層
 22 金属層
 30 アルミニウム基板
 30a 表面
 32 細孔
 33 バリア層
 34 陽極酸化膜
 34a 表面
 34b 裏面
 35 金属
 35a 金属層
 35b 金属
 36 金属層
 Dt 厚み方向
 d 平均直径
 hm、hj、ht 厚み
 H 高さ
 p 中心間距離
10 Structure 12 Columnar body 14 Base 14a Front surface 14b Back surface 16 Insulation film 17 Pore 20 Metal layer 22 Metal layer 30 Aluminum substrate 30a Surface 32 Pore 33 Barrier layer 34 Anodized film 34a Surface 34b Back surface 35 Metal 35a Metal layer 35b Metal 36 Metal layer Dt Thickness direction d Average diameter hm, hj, ht Thickness H Height p Center-to-center distance

Claims (10)

  1.  導電体で構成された、複数の柱状体と、
     複数の前記柱状体が、互いに電気的に絶縁された状態で、厚み方向に沿って設けられた基体と、
     前記基体の前記厚み方向における両面に設けられた金属層とを有する、構造体。
    Multiple columnar bodies composed of conductors,
    A substrate provided along the thickness direction of the plurality of columnar bodies in a state of being electrically insulated from each other,
    A structure having metal layers provided on both sides of the substrate in the thickness direction.
  2.  前記基体は、電気的に絶縁な絶縁膜を有し、複数の前記柱状体は前記絶縁膜に、互いに電気的に絶縁された状態で設けられている、請求項1に記載の構造体。 The structure according to claim 1, wherein the substrate has an electrically insulating insulating film, and a plurality of the columnar bodies are provided on the insulating film in a state of being electrically insulated from each other.
  3.  前記絶縁膜は、陽極酸化膜で構成されている、請求項2に記載の構造体。 The structure according to claim 2, wherein the insulating film is composed of an anodic oxide film.
  4.  前記基体の前記厚み方向における両面に設けられた金属層は、同種の金属で構成されている、請求項1~3のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 3, wherein the metal layers provided on both sides of the substrate in the thickness direction are made of the same type of metal.
  5.  前記複数の柱状体及び前記金属層は、銅で構成される、請求項1~4のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 4, wherein the plurality of columnar bodies and the metal layer are made of copper.
  6.  厚み方向に延在する複数の細孔を有する陽極酸化膜の一方の面から第1の金属でめっきを行なって前記一方の面を前記第1の金属で被覆する第1被覆工程と、
     前記陽極酸化膜の他方の面から第2の金属を用いて前記他方の面を前記第2の金属で被覆する第2被覆工程とを有する、構造体の製造方法。
    A first coating step of plating with a first metal from one surface of an anodic oxide film having a plurality of pores extending in the thickness direction and coating the one surface with the first metal.
    A method for producing a structure, comprising a second coating step of coating the other surface with the second metal from the other surface of the anodic oxide film using a second metal.
  7.  前記第2被覆工程は、前記陽極酸化膜の前記他方の面から前記第2の金属でめっきを行なって前記他方の面を前記第2の金属で被覆するめっき工程である、請求項6に記載の構造体の製造方法。 The second coating step is the plating step of plating the other surface of the anodic oxide film with the second metal and coating the other surface with the second metal, according to claim 6. How to manufacture the structure of.
  8.  前記第1被覆工程と前記第2被覆工程との間に、前記第1被覆工程により前記陽極酸化膜の前記複数の細孔に充填された第1の金属を、前記陽極酸化膜の前記他方の面から突出させる金属突出工程を有する、請求項6又は7に記載の構造体の製造方法。 Between the first coating step and the second coating step, the first metal filled in the plurality of pores of the anodic oxide film by the first coating step is applied to the other of the anodic oxide film. The method for manufacturing a structure according to claim 6 or 7, which comprises a metal projecting step of projecting from a surface.
  9.  前記第1被覆工程の前記第1の金属と、前記第2被覆工程の前記第2の金属とは、同種の金属である、請求項6~8のいずれか1項に記載の構造体の製造方法。 The production of the structure according to any one of claims 6 to 8, wherein the first metal in the first coating step and the second metal in the second coating step are the same type of metal. Method.
  10.  前記第1被覆工程の前記第1の金属と、前記第2被覆工程の前記第2の金属が、銅である、請求項6~9のいずれか1項に記載の構造体の製造方法。 The method for producing a structure according to any one of claims 6 to 9, wherein the first metal in the first coating step and the second metal in the second coating step are copper.
PCT/JP2021/018884 2020-06-23 2021-05-19 Structure and method for manufacturing structure WO2021261122A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227044916A KR20230015412A (en) 2020-06-23 2021-05-19 Structures and methods of manufacturing structures
JP2022532400A JP7402981B2 (en) 2020-06-23 2021-05-19 Structure and method for manufacturing the structure
CN202180044421.2A CN115916523A (en) 2020-06-23 2021-05-19 Structure and method for manufacturing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020107604 2020-06-23
JP2020-107604 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261122A1 true WO2021261122A1 (en) 2021-12-30

Family

ID=79282466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018884 WO2021261122A1 (en) 2020-06-23 2021-05-19 Structure and method for manufacturing structure

Country Status (5)

Country Link
JP (1) JP7402981B2 (en)
KR (1) KR20230015412A (en)
CN (1) CN115916523A (en)
TW (1) TW202201433A (en)
WO (1) WO2021261122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091185A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Conductive film, method of manufacturing the same, and semiconductor device and method of manufacturing the same
JP2015199330A (en) * 2014-04-08 2015-11-12 佳勝科技股▲ふん▼有限公司 composite substrate
JP2019508612A (en) * 2016-10-31 2019-03-28 ▲躍▼ ▲張▼ Metal plate sandwiching hollow tube and use thereof
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091185A (en) * 2009-10-22 2011-05-06 Shinko Electric Ind Co Ltd Conductive film, method of manufacturing the same, and semiconductor device and method of manufacturing the same
JP2015199330A (en) * 2014-04-08 2015-11-12 佳勝科技股▲ふん▼有限公司 composite substrate
JP2019508612A (en) * 2016-10-31 2019-03-28 ▲躍▼ ▲張▼ Metal plate sandwiching hollow tube and use thereof
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Also Published As

Publication number Publication date
TW202201433A (en) 2022-01-01
JP7402981B2 (en) 2023-12-21
JPWO2021261122A1 (en) 2021-12-30
KR20230015412A (en) 2023-01-31
CN115916523A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP7092076B2 (en) Titanium base material, manufacturing method of titanium base material, electrode for water electrolysis, water electrolysis device
JP6960095B2 (en) Metal porous material, insoluble anode, fuel cell electrode, hydrogen production equipment, biomaterial, and metal porous material production method
RU2330124C2 (en) Electrolysis method for water chloric-alkaline solutions, electrode for electrolysis of chloric-alkaline solution and method of making an electrolytic electrode
JP4771130B2 (en) Oxygen generating electrode
US10400345B2 (en) Method of synthesizing a metal foam, metal foam, uses thereof and device comprising such a metal foam
WO2018216322A1 (en) Composite metal porous body and method for producing composite metal porous body
JP6260860B2 (en) Electrolytic aluminum foil, battery electrode and storage device using the same, and method for producing electrolytic aluminum foil
JP2022051582A (en) Titanium base material, method for manufacturing the same, electrode for water electrolysis and water electrolysis apparatus
BRPI0409985B1 (en) Metal article of a valve metal substrate for use in electrocatalytic processes and process for producing said metal article
WO2021261122A1 (en) Structure and method for manufacturing structure
WO2022138219A1 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
WO2022138150A1 (en) Manufacturing method for structure
WO2022181300A1 (en) Structure and method for manufacturing structure
TWI525225B (en) Electrolyte for electrodepositing molybdenum and method for forming molybdenum-containing layer
JP2005105409A (en) Method for manufacturing porous silicon structure and method for manufacturing metal-carrying porous silicon
RU2691967C1 (en) Method of making an electrode from reinforced lead dioxide
JP2007119897A (en) Method for producing metal-carrying porous silicon, electrode structure for fuel cell, and fuel cell
WO2021193857A1 (en) Titanium substrate, method for producing titanium substrate, electrode for water electrolysis, and water electrolysis device
EP3960905A1 (en) Electrode for electrolysis, and method for producing electrode for electrolysis
WO2022138151A1 (en) Metal-filled microstructure, and method for producing metal-filled microstructure
JP7391661B2 (en) AC etching method
TW202217866A (en) Method for fabrication of anisotropic conductive member
US20080251282A1 (en) Highly thermally conductive circuit substrate
CN116445998A (en) Double-crystal copper-nickel alloy metal layer and preparation method thereof
JPH06299396A (en) Insoluble electrode and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532400

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227044916

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829819

Country of ref document: EP

Kind code of ref document: A1