WO2022138219A1 - Metal-filled microstructure and method for manufacturing metal-filled microstructure - Google Patents

Metal-filled microstructure and method for manufacturing metal-filled microstructure Download PDF

Info

Publication number
WO2022138219A1
WO2022138219A1 PCT/JP2021/045439 JP2021045439W WO2022138219A1 WO 2022138219 A1 WO2022138219 A1 WO 2022138219A1 JP 2021045439 W JP2021045439 W JP 2021045439W WO 2022138219 A1 WO2022138219 A1 WO 2022138219A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
treatment
anodizing
filled microstructure
filled
Prior art date
Application number
PCT/JP2021/045439
Other languages
French (fr)
Japanese (ja)
Inventor
吉則 堀田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180084859.3A priority Critical patent/CN116783331A/en
Priority to JP2022572131A priority patent/JPWO2022138219A1/ja
Publication of WO2022138219A1 publication Critical patent/WO2022138219A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment

Definitions

  • the present invention relates to a metal-filled microstructure and a method for manufacturing a metal-filled microstructure.
  • a metal-filled microstructure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years.
  • anisotropic conductivity It is expected to be used as a sex member.
  • An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection between the electronic component and the circuit board can be obtained simply by pressurizing the electronic component such as a semiconductor element. It is widely used as an electrical connection member and an inspection connector for performing functional inspections.
  • electronic components such as semiconductor elements are significantly downsized.
  • Patent Document 1 states that the density is "1 ⁇ 10 6 to 1 ⁇ 10 10 / mm 2 and the pore diameter is 10 to 500 nm.
  • the present inventor has made a conduction path in which a conductive substance is filled in a specific ratio of the through paths that penetrate in the thickness direction of the insulating base material.
  • the present invention has been completed by finding that the cost can be reduced by providing the above. That is, it was found that the above problem can be achieved by the following configuration.
  • the insulating base material has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths penetrating in the thickness direction of the insulating base material.
  • the insulating substrate is the anodic oxide film of the valve metal,
  • the plurality of conduction paths are composed of a conductive substance filled inside some of the through-passages of the plurality of through-passages.
  • a metal-filled microstructure in which the number of conduction paths is less than 70% of the number of through-passages in the entire field of view of any 20 fields of view when 12 ⁇ m 2 is one field of view.
  • the anodizing process is a process of performing anodizing a plurality of times.
  • FIG. 1 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the metal-filled microstructure of the present invention has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths penetrating in the thickness direction of the insulating base material.
  • the insulating base material is an anodic oxide film of valve metal.
  • a plurality of conduction paths are composed of a conductive material filled inside a part of the through-passages of the plurality of through-passages, and the number of conduction paths is 12 ⁇ m. It is less than 70% of the number of gangways in the total visual field of any 20 visual fields when 2 is set as 1 visual field.
  • FIG. 1 to 6 are schematic cross-sectional views showing an example of the method for manufacturing a metal-filled microstructure of the present invention in order of process. Note that FIG. 6 is also a schematic cross-sectional view showing an example of the metal-filled microstructure of the present invention.
  • the anodic oxide film 14 the plurality of conduction paths 12a penetrating the anodized film 14 in the thickness direction Dt, and a part of the through-passages 12a of the plurality of through-passages 12a. It has a plurality of conduction paths 16 formed by filling the inside of the surface with a conductive substance.
  • the insulating base material of the metal-filled microstructure of the present invention is an anodic oxide film of valve metal.
  • the valve metal include, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like.
  • aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to form an anodic oxide film which is an insulating base material by using an aluminum substrate to produce a metal-filled microstructure.
  • the aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material).
  • the surface of the aluminum substrate to be anodized which will be described later, preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. % Or more is more preferable.
  • the aluminum purity is in the above range, the regularity of the arrangement of the gangway is sufficient.
  • the surface of the aluminum substrate to be anodized which will be described later, is subjected to heat treatment, degreasing treatment and mirror finish treatment in advance.
  • heat treatment the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
  • the thickness of the insulating base material is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, still more preferably 10 to 300 ⁇ m, for the reason of good handleability. ..
  • the through-passage of the metal-filled microstructure of the present invention is preferably composed of micropores provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal.
  • the density of the gangway is preferably 2 million pieces / mm 2 or more, more preferably 10 million pieces / mm 2 or more, and further preferably 50 million pieces / mm 2 or more. It is particularly preferable that the number is 100 million pieces / mm 2 or more.
  • the average opening diameter of the gangway is preferably 5 to 500 nm, more preferably 20 to 400 nm, further preferably 40 to 200 nm, and particularly preferably 50 to 100 nm.
  • the conduction path of the metal-filled microstructure of the present invention is composed of a conductive substance, and is a metal filled in a micropore (through path) provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal. It is preferably composed of.
  • the metal is preferably a material having an electrical resistivity of 103 ⁇ ⁇ cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), and magnesium (. Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified. Of these, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is even more preferable, from the viewpoint of electrical conductivity.
  • the number of conduction paths is less than 70% of the number of through-passages, and is 20% or more and less than 70% in the entire visual field of any 20 visual fields when 12 ⁇ m 2 is set as one visual field. It is preferably 30% or more and less than 70%.
  • 12 ⁇ m 2 which is the size of one visual field, is a region having a width of 4 ⁇ m and a length of 3 ⁇ m.
  • the 20 fields are 20 consecutive images of the cross section of the metal-filled microstructure taken with a field emission scanning electron microscope (FE-SEM) at a magnification in the range of 40,000 to 70,000 times. Refers to the total (20 fields) of 12 ⁇ m 2 (horizontal: 4 ⁇ m, vertical: 3 ⁇ m) areas (1 field) arbitrarily selected from each image area.
  • the conduction path is preferably columnar, and the diameter thereof is preferably 5 to 500 nm, more preferably 20 to 400 nm, and 40 to 40. It is more preferably 200 nm, and particularly preferably 50 to 100 nm.
  • the surface of the insulating base material (the portion represented by reference numeral 14a in FIGS. 5 and 6) is coated with a metal different from the valve metal for the reason of good handleability. It is more preferable that the front surface and the back surface (the portion represented by reference numeral 14b in FIGS. 5 and 6) of the insulating base material are both coated with a metal different from the valve metal.
  • the metal different from the valve metal specifically, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), zinc ( Zn) and the like are preferably exemplified.
  • the thickness of the coating film (coating layer) coated with a metal different from the valve metal is preferably 2 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • Manufacturing method of metal-filled microstructure In the method for manufacturing a metal-filled microstructure of the present invention (hereinafter, abbreviated as "manufacturing method of the present invention"), anodization treatment is applied to one surface of a valve metal substrate, and one surface of the valve metal substrate is subjected to anodization treatment. After the anodic oxidation treatment step of forming an anodic oxide film having a micropore existing in the thickness direction and a barrier layer existing at the bottom of the micropore, and an anodic oxidation treatment step, electrolytic plating is applied to the inside of the micropore. It has a metal filling step of filling metal.
  • the anodizing treatment step is a step of performing a plurality of anodizing treatments, and any of the anodizing treatments performed after the second time (hereinafter, "specific anodizing").
  • This is a step in which the voltage in (also abbreviated as “treatment”) is at least twice the maximum value of the voltage in the anodizing treatment performed before the specific anodizing treatment.
  • the production method of the present invention includes a barrier layer removing treatment step for removing the barrier layer after the anodizing treatment step.
  • the manufacturing method of the present invention may include a substrate removing step of removing the valve metal substrate after the metal filling step.
  • the surface 10a on one side of the valve metal substrate 10 is anodized, and the micros present on the surface 10a on one side of the valve metal substrate 10 in the thickness direction Dt.
  • Anodized film 14 having a pore 12 and a barrier layer 13 existing at the bottom of the micropore 12 is formed.
  • another anodization treatment specifically anodization treatment
  • FIG. 1 in the anodic oxidation treatment step, the surface 10a on one side of the valve metal substrate 10 is anodized, and the micros present on the surface 10a on one side of the valve metal substrate 10 in the thickness direction Dt.
  • Anodized film 14 having a pore 12 and a barrier layer 13 existing at the bottom of the micropore 12 is formed.
  • another anodization treatment specifically anodization treatment
  • the barrier layer 13 is removed to reduce the thickness of the barrier layer 13a, and the first metal 15 is placed on the bottom of the micropore 12 from which the barrier layer 13 has been removed.
  • a second metal is filled inside the micropore in which the first metal 15 is formed at the bottom to form a conduction path 16.
  • the valve metal substrate 10 and the barrier layer 13a can be removed to obtain the metal-filled microstructure 20.
  • valve metal substrate As the valve metal substrate used in the manufacturing method of the present invention, the valve metal substrate described in the above-mentioned insulating base material can be used, and among them, an aluminum substrate is preferably used.
  • the anodic oxidation step the surface of one side of the valve metal substrate is anodized, so that the micropores existing on one side of the valve metal substrate and the barrier layer existing at the bottom of the micropores are present. It is a step of forming an anodic oxide film having.
  • the anodizing treatment step is a step of performing a plurality of anodizing treatments, and the voltage in any of the anodizing treatments (specific anodizing treatments) performed after the second time is the specific anodizing treatment. This is a step that is more than twice the maximum value of the voltage in the anodizing treatment performed before.
  • the plurality of anodizing treatments in the anodizing treatment step are two anodizing treatments, that is, a first anodizing treatment and a second anodizing treatment (specific anodizing treatment). Is preferable.
  • the solution used for the first anodic oxidation treatment and the second anodic oxidation treatment is preferably an acid solution, preferably sulfuric acid, phosphoric acid, chromium acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amide sulfonic acid and glycolic acid.
  • acid solution preferably sulfuric acid, phosphoric acid, chromium acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amide sulfonic acid and glycolic acid.
  • Tartrate acid, apple acid, citric acid and the like are more preferable
  • sulfuric acid, phosphoric acid, oxalic acid and the like are particularly preferable.
  • the conditions for the first anodic oxidation treatment and the second anodic oxidation treatment vary depending on the electrolytic solution used and cannot be unconditionally determined, but generally, the electrolytic solution concentration is 0.1 to 20% by mass and the liquid temperature. It is preferably ⁇ 10 to 30 ° C., current density 0.01 to 20 A / dm 2 , voltage 3 to 300 V, electrolysis time 0.5 to 30 hours, electrolytic solution concentration 0.5 to 15 mass%, liquid temperature ⁇ . More preferably, the temperature is 5 to 25 ° C., the current density is 0.05 to 15 A / dm 2 , the voltage is 5 to 250 V, and the electrolytic time is 1 to 25 hours.
  • the current density is 0.1 to 10 A / dm 2
  • the voltage is 10 to 200 V
  • the electrolysis time is 2 to 20 hours.
  • the voltage in the second anodizing treatment is performed under the condition that the voltage in the first anodizing treatment is at least twice the voltage in the first anodizing treatment.
  • the treatment time of the first anodizing treatment and the second anodizing treatment is preferably 0.5 minutes to 16 hours, more preferably 1 minute to 12 hours, and preferably 2 minutes to 8 hours. More preferred.
  • a method of changing the voltage intermittently or continuously can also be used. In this case, it is preferable to gradually lower the voltage. This makes it possible to reduce the resistance of the anodized film, and since fine micropores are generated in the anodized film, it is preferable in that the uniformity is improved especially when the pores are sealed by the electrodeposition treatment. ..
  • the barrier layer removing treatment step is an arbitrary treatment step for removing at least a part of the barrier layer of the anodizing film after the anodizing treatment step.
  • the method for removing the barrier layer is not particularly limited, and for example, a method for electrochemically dissolving the barrier layer at a potential lower than the potential in the final anodic oxidation treatment applied to the anodic oxidation treatment step (hereinafter, “electrolytic removal treatment”). ”); A method of removing the barrier layer by etching (hereinafter, also referred to as“ etching removal treatment ”); a method in which these are combined (particularly, after the electrolytic removal treatment is performed, the remaining barrier layer is removed by etching. Method of removing by treatment); etc.
  • the electrolytic removal treatment is not particularly limited as long as it is an electrolytic treatment performed at a potential lower than the potential (electrolytic potential) in the final anodizing treatment performed in the anodic oxidation treatment step.
  • the anodizing treatment step and the barrier layer removing step are continuously performed by lowering the electrolytic potential at the end of the final anodizing treatment performed in the anodizing treatment step. Can be done.
  • the same electrolytic solution and treatment conditions as those of the conventionally known anodizing treatment described above can be adopted except for the conditions other than the electrolytic potential.
  • the anodic oxidation treatment step and the barrier layer removal step are continuously performed as described above, it is preferable to perform the treatment using the same electrolytic solution.
  • the electrolytic potential in the electrolytic removal treatment is preferably lowered continuously or stepwise (step-like) to a potential lower than the electrolytic potential in the final anodic oxidation treatment performed in the anodic oxidation treatment step.
  • the reduction width (step width) when the electrolytic potential is gradually lowered is preferably 10 V or less, more preferably 5 V or less, and 2 V or less from the viewpoint of the withstand voltage of the barrier layer. It is more preferable to have it.
  • the voltage drop rate when the electrolytic potential is continuously or stepwise lowered is preferably 1 V / sec or less, more preferably 0.5 V / sec or less, and 0.2 V / sec, from the viewpoint of productivity and the like. Seconds or less is more preferable.
  • the etching removal treatment is not particularly limited, but may be a chemical etching treatment that dissolves using an acid aqueous solution or an alkaline aqueous solution, or may be a dry etching treatment.
  • the structure after the final anodic oxidation treatment performed in the above anodic oxidation treatment step is immersed in an acid aqueous solution or an alkaline aqueous solution, and the inside of the micropore is filled with the acid aqueous solution or the alkaline aqueous solution.
  • the barrier layer can be selectively dissolved by a method of contacting the surface of the anodic oxide film on the opening side of the micropore with a pH buffer solution or the like.
  • an acid aqueous solution when used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or oxalic acid, or a mixture thereof.
  • concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 15 to 80 ° C, more preferably 20 to 60 ° C, and further preferably 30 to 50 ° C.
  • an alkaline aqueous solution when used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C.
  • 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
  • As the pH buffer solution a buffer solution corresponding to the above-mentioned acid aqueous solution or alkaline aqueous solution can be appropriately used.
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, further preferably 8 to 90 minutes, and 10 to 90 minutes. It is particularly preferable to have it. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
  • the barrier layer removing treatment step is preferably a step of removing the barrier layer of the anodic oxide film by using an alkaline aqueous solution containing a metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum a metal layer made of the metal M1 is formed at the bottom of the micropore from which the barrier layer has been removed.
  • the hydrogen overvoltage means the voltage required for hydrogen to be generated.
  • the hydrogen overvoltage of aluminum (Al) is -1.66V (Journal of the Japanese Society of Chemistry, 1982, (8). ), P1305-1313).
  • Metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
  • the method of removing the barrier layer using such an alkaline aqueous solution containing the metal M1 is not particularly limited, and examples thereof include the same method as the above-mentioned chemical etching treatment.
  • the metal filling step is a step of performing an electrolytic plating treatment after the anodizing treatment step to fill the inside of the micropores with metal.
  • Examples of the metal include the same materials as those of the conduction path described above.
  • Examples of the method for filling the inside of the micropore with the metal include the same methods as those described in paragraphs [0123] to [0126] and [FIG. 4] of JP-A-2008-270158. Be done.
  • an electrolytic plating treatment method as a method of filling the inside of the micropores with the metal, and for example, an electrolytic plating method or an electroless plating method can be used.
  • an electrolytic plating method or an electroless plating method it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer. Therefore, in the production method of the present invention, when the metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis.
  • the rest time is required to be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
  • the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V. When performing constant potential electrolysis, it is desirable that cyclic voltammetry can be used in combination, and a potentiostat device such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
  • the plating solution a conventionally known plating solution can be used.
  • an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable.
  • the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution.
  • the hydrochloric acid concentration is preferably 10 to 20 g / L.
  • the electroless plating method it takes a long time to completely fill the pores made of micropores having a high aspect with metal. Therefore, in the production method of the present invention, it is desirable to fill the metal by the electrolytic plating method. ..
  • the electrolytic plating treatment method it is preferable to use a treatment method in which an AC electrolytic plating method and a DC electrolytic plating method are combined in this order.
  • a voltage is modulated in a sinusoidal manner at a predetermined frequency and applied.
  • the waveform at the time of voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or a reverse sawtooth wave.
  • the DC electrolytic plating method the treatment method in the above-mentioned electrolytic plating method can be appropriately used.
  • the substrate removing step is an arbitrary step of removing the valve metal substrate after the metal filling step.
  • the method for removing the valve metal substrate is not particularly limited, and for example, a method for removing by melting is preferable.
  • ⁇ Dissolution of valve metal substrate For the dissolution of the valve metal substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves the valve metal.
  • the dissolution rate of such a treatment liquid in the valve metal is preferably 1 ⁇ m / min or more, more preferably 3 ⁇ m / min or more, and further preferably 5 ⁇ m / min or more.
  • the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
  • Such treatment liquids are based on acid or alkaline aqueous solutions and include, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, etc. It is preferably a mixture of a gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like. Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
  • a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
  • the treatment temperature using such a treatment liquid is preferably ⁇ 10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
  • valve metal substrate is melted by bringing the valve metal substrate after the metal filling step into contact with the treatment liquid described above.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • the manufacturing method of the present invention includes a step of performing a pore size enlargement treatment after the anodizing treatment step and before the metal filling treatment step by DC electrolysis from the viewpoint of improving the soundness of filling in DC electrolytic plating. May be.
  • the pore diameter expansion treatment is a treatment (pore diameter expansion treatment) for enlarging the diameter (pore diameter) of the micropores existing in the anodic oxide film formed by the above-mentioned anodizing treatment step.
  • the pore diameter enlargement treatment can be performed by contacting the valve metal substrate with the anodic oxide film after the above-mentioned anodizing treatment step with an acid aqueous solution or an alkaline aqueous solution.
  • the contact method is not particularly limited, and examples thereof include a dipping method and a spraying method.
  • the surface of the insulating base material is coated with a metal different from the valve metal.
  • the method of forming a coating film (coating layer) made of a metal different from the valve metal is not particularly limited, but when the metal coating layer is provided on one surface of the insulating base material, for example, electrolysis in the above-mentioned metal filling step. It can be formed by continuing the plating treatment method even after the inside of the through-passage is filled with metal.
  • the metal coating layer is provided on the front surface and the back surface of the insulating base material
  • the metal coating layer is provided on the surface of the insulating base material by the method described above, and then the valve metal substrate is removed by the substrate removing step described above. It can be formed by a method of subjecting an exposed insulating base material and the surface of a conduction path to an electrolytic plating treatment.
  • Example 1 ⁇ Manufacturing of aluminum substrate> Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal treatment and filtration are performed, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
  • the surface was scraped to an average thickness of 10 mm by a surface mill, kept at 550 ° C for about 5 hours, and when the temperature dropped to 400 ° C, the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate. Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, it was finished by cold rolling to a thickness of 1.0 mm to obtain an aluminum substrate made of JIS 1050 material. After making this aluminum substrate 1030 mm wide, each of the following treatments was performed.
  • the aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
  • the cathode was a carbon electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • Electrolytic polishing liquid composition ⁇ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ Pure water 160mL ⁇ Sulfuric acid 150mL ⁇ Ethylene glycol 30mL
  • the cathode was a stainless steel electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
  • a NeoCool BD36 manufactured by Yamato Kagaku Co., Ltd.
  • a pair stirrer PS-100 manufactured by EYELA Tokyo Rika Kikai Co., Ltd. was used as the stirring and heating device.
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • ⁇ Barrier layer removal step (treatment condition 1)> Next, the barrier layer was removed by immersing in an alkaline aqueous solution containing Zn as a metal M1 having a higher hydrogen overvoltage than aluminum, specifically, a sodium hydroxide aqueous solution containing zinc at a saturation (bath temperature 25 ° C.) for 2 minutes.
  • ⁇ Metal filling process (treatment condition 1)> Next, an aluminum substrate was used as a cathode and platinum was used as a cathode to perform electrolytic plating. Specifically, a copper plating solution having the composition shown below was used, and constant current electrolysis was performed to prepare a metal-filled microstructure in which copper was filled inside the micropores.
  • a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
  • Substrate removal process Then, the aluminum substrate was dissolved and removed by immersing it in a mixed solution of copper chloride / hydrochloric acid to prepare a metal-filled microstructure.
  • Example 2 A metal-filled microstructure was produced in the same manner as in Example 1 except that the conditions for the first anodizing treatment and the second anodizing treatment were changed to the conditions shown in Table 1 below.
  • Example 3 The conditions of the first anodizing treatment and the second anodizing treatment were changed to the conditions shown in Table 1 below, and the metal filling step was performed under the conditions shown below. The structure was made.
  • Example 4 A metal-filled microstructure was produced by the same method as in Example 3 except that the pore size expansion treatment step shown below was performed between the AC electrolytic plating and the DC electrolytic plating in the metal filling step. ⁇ Hole diameter enlargement processing process> Then, it was immersed in an aqueous solution of potassium hydroxide aqueous solution (0.01 mol / L, 25 ° C.) for 20 minutes. After the treatment, it was thoroughly washed with water.
  • Example 1 The metal-filled microstructure was produced by the same method as in Example 1 except that the conditions of the first anodizing treatment were changed to the conditions shown in Table 1 below and the second anodizing treatment was not performed.
  • Each metal-filled microstructure produced in Examples 1 to 4 and Comparative Example 1 is cut with a focused ion beam (FIB) in the thickness direction, and the cross section thereof is surface photographed by FE-SEM. (Magnification 50,000 times) was photographed. Using the captured image, the number of conduction paths in the entire field of view of any 20 fields of view when 12 ⁇ m 2 was set as one field of view was confirmed, and the ratio to the number of gangway paths was calculated. The results are shown in Table 1 below.
  • FIB focused ion beam
  • a coating layer made of a metal different from the bulb metal was formed on the front surface and the back surface of the insulating base material as a sample for evaluation.
  • the formation of the coating layer on the surface of the insulating base material doubles the treatment time in the metal filling step in each Example and Comparative Example, and is continued even after the inside of the gangway is filled with metal.
  • the aluminum substrate is removed in the substrate removing step, and the surface of the exposed conduction path is used as an electrode for the surface of the exposed insulating base material in each embodiment. It was formed by subjecting it to an electrolytic plating treatment in the metal filling step in the comparative example.
  • Valve metal substrate 10 a Surface 12 Micropore 12a Through passage 13, 13a Barrier layer 14 Anodized oxide film 14a Surface 14b Back surface 15 First metal 16 Conduction path 20 Metal-filled microstructure Dt Thickness direction

Abstract

The present invention addresses the problem of providing a metal-filled microstructure and a method for manufacturing a metal-filled microstructure in which it is possible to reduce cost. This metal-filled microstructure has an insulating substrate, a plurality of penetrating paths penetrating in the thickness direction of the insulating substrate, and a plurality of conduction paths penetrating in the thickness direction of the insulating substrate. The insulating substrate is a valve-metal anodic oxide film. The plurality of conduction paths are configured from an electroconductive substance filling the interior of some of the plurality of penetrating paths. The number of conduction paths is less than 70% of the number of penetrating paths across all view fields for 20 discretionary view fields when 12 μm2 is deemed to be one view field.

Description

金属充填微細構造体および金属充填微細構造体の製造方法Metal-filled microstructures and methods for manufacturing metal-filled microstructures
 本発明は、金属充填微細構造体および金属充填微細構造体の製造方法に関するものである。 The present invention relates to a metal-filled microstructure and a method for manufacturing a metal-filled microstructure.
 絶縁性基材に設けられた複数の貫通孔に金属等の導電性物質が充填されてなる金属充填微細構造体は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電性部材としての用途が期待されている。
 異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、および機能検査を行う際の検査用コネクタ等として広く使用されている。
 特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、およびサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができないため、電子接続部材として異方導電性部材が注目されている。
A metal-filled microstructure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years. For example, anisotropic conductivity. It is expected to be used as a sex member.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection between the electronic component and the circuit board can be obtained simply by pressurizing the electronic component such as a semiconductor element. It is widely used as an electrical connection member and an inspection connector for performing functional inspections.
In particular, electronic components such as semiconductor elements are significantly downsized. As a method of directly connecting a wiring board such as conventional wire bonding, flip-chip bonding, thermocompression bonding, etc., the stability of electrical connection of electronic components cannot be sufficiently guaranteed, so that it can be used as an electronic connection member. An anisotropic conductive member is attracting attention.
 このような異方導電性部材として用いることができる金属充填微細構造体としては、例えば、特許文献1には、「1×10~1×1010/mmの密度で、孔径10~500nmのマイクロポア貫通孔を有する絶縁性基材からなる微細構造体であって、該マイクロポア貫通孔内部に、充填率80%以上で金属が充填されていることを特徴とする微細構造体。」が記載されている([請求項1])。 As a metal-filled microstructure that can be used as such an anisotropic conductive member, for example, Patent Document 1 states that the density is "1 × 10 6 to 1 × 10 10 / mm 2 and the pore diameter is 10 to 500 nm. A microstructure made of an insulating base material having a micropore through hole, wherein the inside of the micropore through hole is filled with a metal at a filling rate of 80% or more. " Is described ([Claim 1]).
特開2009-283431号公報Japanese Unexamined Patent Publication No. 2009-283431
 本発明者は、特許文献1に記載された金属充填微細構造体について検討したところ、金属の充填率が高く、コスト軽減を図る余地があることを明らかとした。 When the present inventor examined the metal-filled microstructure described in Patent Document 1, it was clarified that the metal filling rate is high and there is room for cost reduction.
 そこで、本発明は、コストの軽減を図ることができる金属充填微細構造体および金属充填微細構造体の製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a metal-filled microstructure and a method for manufacturing a metal-filled microstructure that can reduce costs.
 本発明者は、上記課題を達成すべく鋭意研究した結果、絶縁性基材の厚み方向に貫通した複数の貫通路のうち、特定の割合の貫通路の内部に導電性物質を充填した導通路を設けることにより、コストの軽減を図ることができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent research to achieve the above problems, the present inventor has made a conduction path in which a conductive substance is filled in a specific ratio of the through paths that penetrate in the thickness direction of the insulating base material. The present invention has been completed by finding that the cost can be reduced by providing the above.
That is, it was found that the above problem can be achieved by the following configuration.
 [1] 絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、絶縁性基材の厚み方向に貫通した複数の導通路とを有し、
 絶縁性基材が、バルブ金属の陽極酸化膜であり、
 複数の導通路が、複数の貫通路の一部の貫通路の内部に充填された導電性物質で構成されており、
 導通路の数が、12μmを1視野とした際の任意の20視野の全視野において、貫通路の数の70%未満である、金属充填微細構造体。
 [2] 絶縁性基材の表面が、バルブ金属と異なる金属で被覆されている、[1]に記載の金属充填微細構造体。
 [3] バルブ金属が、アルミニウムである、[1]または[2]に記載の金属充填微細構造体。
 [4] 導電性物質が、銅である、[1]~[3]のいずれかに記載の金属充填微細構造体。
 [5] [1]に記載された金属充填微細構造体を作製する金属充填微細構造体の製造方法であって、
 バルブ金属基板の片側の表面に陽極酸化処理を施し、バルブ金属基板の片側の表面に、厚み方向に存在するマイクロポアとマイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、
 陽極酸化処理工程の後に、電解めっき処理を施してマイクロポアの内部に金属を充填する金属充填工程とを有し、
 陽極酸化処理工程が、複数回の陽極酸化処理を施す工程であり、
 2回目以降に施されるいずれかの陽極酸化処理における電圧が、陽極酸化処理の前に施される陽極酸化処理における電圧の最大値の2倍以上である、金属充填微細構造体の製造方法。
 [6] 陽極酸化処理工程における複数回の陽極酸化処理が、2回の陽極酸化処理である、[5]に記載の金属充填微細構造体の製造方法。
[1] It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths penetrating in the thickness direction of the insulating base material.
The insulating substrate is the anodic oxide film of the valve metal,
The plurality of conduction paths are composed of a conductive substance filled inside some of the through-passages of the plurality of through-passages.
A metal-filled microstructure in which the number of conduction paths is less than 70% of the number of through-passages in the entire field of view of any 20 fields of view when 12 μm 2 is one field of view.
[2] The metal-filled microstructure according to [1], wherein the surface of the insulating base material is coated with a metal different from the valve metal.
[3] The metal-filled microstructure according to [1] or [2], wherein the valve metal is aluminum.
[4] The metal-filled microstructure according to any one of [1] to [3], wherein the conductive substance is copper.
[5] A method for manufacturing a metal-filled microstructure for producing the metal-filled microstructure according to [1].
Anodizing is applied to one surface of the valve metal substrate to form an anodized film having micropores existing in the thickness direction and a barrier layer existing at the bottom of the micropores on one surface of the valve metal substrate. Oxidation process and
After the anodic oxidation treatment step, it has a metal filling step of performing electrolytic plating treatment to fill the inside of the micropores with metal.
The anodizing process is a process of performing anodizing a plurality of times.
A method for manufacturing a metal-filled microstructure in which the voltage in any of the anodizing treatments applied after the second time is at least twice the maximum value of the voltage in the anodizing treatment applied before the anodizing treatment.
[6] The method for producing a metal-filled microstructure according to [5], wherein the plurality of anodizing treatments in the anodizing treatment step are two times anodizing treatment.
 本発明によれば、コストの軽減を図ることができる金属充填微細構造体および金属充填微細構造体の製造方法を提供することができる。 According to the present invention, it is possible to provide a metal-filled microstructure and a method for manufacturing a metal-filled microstructure that can reduce costs.
図1は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention. 図2は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention. 図3は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention. 図4は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention. 図5は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention. 図6は、本発明の金属充填微細構造体の製造方法の一例の一工程を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing one step of an example of the method for manufacturing a metal-filled microstructure of the present invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on the representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
[金属充填微細構造体]
 本発明の金属充填微細構造体は、絶縁性基材と、絶縁性基材の厚み方向に貫通した複数の貫通路と、絶縁性基材の厚み方向に貫通した複数の導通路とを有する。
 また、本発明の金属充填微細構造体は、絶縁性基材が、バルブ金属の陽極酸化膜である。
 更に、本発明の金属充填微細構造体は、複数の導通路が、複数の貫通路の一部の貫通路の内部に充填された導電性物質で構成されており、導通路の数が、12μmを1視野とした際の任意の20視野の全視野において、貫通路の数の70%未満である。
[Metal-filled microstructure]
The metal-filled microstructure of the present invention has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths penetrating in the thickness direction of the insulating base material.
Further, in the metal-filled microstructure of the present invention, the insulating base material is an anodic oxide film of valve metal.
Further, in the metal-filled microstructure of the present invention, a plurality of conduction paths are composed of a conductive material filled inside a part of the through-passages of the plurality of through-passages, and the number of conduction paths is 12 μm. It is less than 70% of the number of gangways in the total visual field of any 20 visual fields when 2 is set as 1 visual field.
 図1~図6は、本発明の金属充填微細構造体の製造方法の一例を工程順に示す模式的な断面図である。なお、図6は、本発明の金属充填微細構造体の一例を示す模式的な断面図でもある。 1 to 6 are schematic cross-sectional views showing an example of the method for manufacturing a metal-filled microstructure of the present invention in order of process. Note that FIG. 6 is also a schematic cross-sectional view showing an example of the metal-filled microstructure of the present invention.
 ここで、図6に示す金属充填微細構造体20は、陽極酸化膜14と、陽極酸化膜14の厚み方向Dtに貫通した複数の導通路12aと、複数の貫通路12aの一部の貫通路の内部に導電性物質を充填してなる複数の導通路16とを有する。 Here, in the metal-filled microstructure 20 shown in FIG. 6, the anodic oxide film 14, the plurality of conduction paths 12a penetrating the anodized film 14 in the thickness direction Dt, and a part of the through-passages 12a of the plurality of through-passages 12a. It has a plurality of conduction paths 16 formed by filling the inside of the surface with a conductive substance.
 <絶縁性基材>
 本発明の金属充填微細構造体が有する絶縁性基材は、上述した通り、バルブ金属の陽極酸化膜である。
 ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
 このため、アルミニウム基板を用いて、絶縁性基材である陽極酸化膜を形成し、金属充填微細構造体を製造することが好ましい。
<Insulating base material>
As described above, the insulating base material of the metal-filled microstructure of the present invention is an anodic oxide film of valve metal.
Here, examples of the valve metal include, for example, aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, aluminum is preferable because it has good dimensional stability and is relatively inexpensive.
Therefore, it is preferable to form an anodic oxide film which is an insulating base material by using an aluminum substrate to produce a metal-filled microstructure.
 アルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。 The aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; high-purity aluminum is vapor-deposited on low-purity aluminum (for example, a recycled material). A substrate; a substrate obtained by coating the surface of a silicon wafer, quartz, glass or the like with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate laminated with aluminum; and the like.
 アルミニウム基板のうち、後述する陽極酸化処理を施す側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。アルミニウム純度が上述の範囲であると、貫通路の配列の規則性が十分となる。 The surface of the aluminum substrate to be anodized, which will be described later, preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99.99% by mass. % Or more is more preferable. When the aluminum purity is in the above range, the regularity of the arrangement of the gangway is sufficient.
 また、アルミニウム基板のうち、後述する陽極酸化処理を施す側の表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されることが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の段落[0044]~[0054]に記載された各処理と同様の処理を施すことができる。
Further, it is preferable that the surface of the aluminum substrate to be anodized, which will be described later, is subjected to heat treatment, degreasing treatment and mirror finish treatment in advance.
Here, regarding the heat treatment, the degreasing treatment, and the mirror finish treatment, the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
 本発明においては、取り扱い性が良好となる理由から、絶縁性基材の厚みは、1~1000μmであることが好ましく、5~500μmであることがより好ましく、10~300μmであることが更に好ましい。 In the present invention, the thickness of the insulating base material is preferably 1 to 1000 μm, more preferably 5 to 500 μm, still more preferably 10 to 300 μm, for the reason of good handleability. ..
 <貫通路>
 本発明の金属充填微細構造体が有する貫通路は、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポアで構成されていることが好ましい。
 また、上記貫通路の密度は200万個/mm以上であることが好ましく、1000万個/mm以上であるのことがより好ましく、5000万個/mm以上であるのが更に好ましく、1億個/mm以上であるのが特に好ましい。
 また、上記貫通路の平均開口径は、5~500nmであることが好ましく、20~400nmであることがより好ましく、40~200nmであることが更に好ましく、50~100nmであることが特に好ましい。
<Gangway>
The through-passage of the metal-filled microstructure of the present invention is preferably composed of micropores provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal.
Further, the density of the gangway is preferably 2 million pieces / mm 2 or more, more preferably 10 million pieces / mm 2 or more, and further preferably 50 million pieces / mm 2 or more. It is particularly preferable that the number is 100 million pieces / mm 2 or more.
The average opening diameter of the gangway is preferably 5 to 500 nm, more preferably 20 to 400 nm, further preferably 40 to 200 nm, and particularly preferably 50 to 100 nm.
 <導通路>
 本発明の金属充填微細構造体が有する導通路は、導電性物質で構成されており、バルブ金属の陽極酸化膜の厚み方向に貫通して設けられたマイクロポア(貫通路)に充填された金属で構成されていることが好ましい。
 上記金属は、電気抵抗率が10Ω・cm以下の材料であるのが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)等が好適に例示される。
 中でも、電気伝導性の観点から、Cu、Au、Al、Niが好ましく、Cu、Auがより好ましく、Cuが更に好ましい。
<Conduction path>
The conduction path of the metal-filled microstructure of the present invention is composed of a conductive substance, and is a metal filled in a micropore (through path) provided so as to penetrate in the thickness direction of the anodic oxide film of the valve metal. It is preferably composed of.
The metal is preferably a material having an electrical resistivity of 103 Ω · cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), and magnesium (. Mg), nickel (Ni), zinc (Zn) and the like are preferably exemplified.
Of these, Cu, Au, Al, and Ni are preferable, Cu and Au are more preferable, and Cu is even more preferable, from the viewpoint of electrical conductivity.
 本発明においては、導通路の数は、上述した通り、12μmを1視野とした際の任意の20視野の全視野において、貫通路の数の70%未満であり、20%以上70%未満であることが好ましく、30%以上70%未満であることがより好ましい。
 ここで、1視野のサイズである12μmは、横が4μmであり、縦が3μmである領域である。
 また、20視野は、金属充填微細構造体の断面について、電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FE-SEM)を用いて40000~70000倍の範囲の倍率で撮影した連続した20個の画像領域のうち、各画像領域の中から任意に選択される12μm(横:4μm、縦:3μm)の領域(1視野)の合計(20視野)をいう。
In the present invention, as described above, the number of conduction paths is less than 70% of the number of through-passages, and is 20% or more and less than 70% in the entire visual field of any 20 visual fields when 12 μm 2 is set as one visual field. It is preferably 30% or more and less than 70%.
Here, 12 μm 2 , which is the size of one visual field, is a region having a width of 4 μm and a length of 3 μm.
The 20 fields are 20 consecutive images of the cross section of the metal-filled microstructure taken with a field emission scanning electron microscope (FE-SEM) at a magnification in the range of 40,000 to 70,000 times. Refers to the total (20 fields) of 12 μm 2 (horizontal: 4 μm, vertical: 3 μm) areas (1 field) arbitrarily selected from each image area.
 また、本発明においては、図5および図6に示す通り、導通路は柱状であることが好ましく、その直径は5~500nmであるのが好ましく、20~400nmであるのがより好ましく、40~200nmであるのが更に好ましく、50~100nmであるのが特に好ましい。 Further, in the present invention, as shown in FIGS. 5 and 6, the conduction path is preferably columnar, and the diameter thereof is preferably 5 to 500 nm, more preferably 20 to 400 nm, and 40 to 40. It is more preferably 200 nm, and particularly preferably 50 to 100 nm.
 本発明においては、取り扱い性が良好となる理由から、絶縁性基材の表面(図5および図6においては符号14aで表される部分)が、バルブ金属と異なる金属で被覆されていることが好ましく、絶縁性基材の表面および裏面(図5および図6においては符号14bで表される部分)が、いずれもバルブ金属と異なる金属で被覆されていることがより好ましい。
 ここで、バルブ金属と異なる金属としては、具体的には、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)等が好適に例示される。
In the present invention, the surface of the insulating base material (the portion represented by reference numeral 14a in FIGS. 5 and 6) is coated with a metal different from the valve metal for the reason of good handleability. It is more preferable that the front surface and the back surface (the portion represented by reference numeral 14b in FIGS. 5 and 6) of the insulating base material are both coated with a metal different from the valve metal.
Here, as the metal different from the valve metal, specifically, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), zinc ( Zn) and the like are preferably exemplified.
 また、バルブ金属と異なる金属で被覆した被膜(被覆層)の厚みは、2~50μmであることが好ましく、5~20μmであることがより好ましい。 Further, the thickness of the coating film (coating layer) coated with a metal different from the valve metal is preferably 2 to 50 μm, more preferably 5 to 20 μm.
[金属充填微細構造体の製造方法]
 本発明の金属充填微細構造体の製造方法(以下、「本発明の製造方法」と略す。)は、バルブ金属基板の片側の表面に陽極酸化処理を施し、バルブ金属基板の片側の表面に、厚み方向に存在するマイクロポアとマイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、陽極酸化処理工程の後に、電解めっき処理を施してマイクロポアの内部に金属を充填する金属充填工程とを有する。
 ここで、本発明の製造方法は、陽極酸化処理工程が、複数回の陽極酸化処理を施す工程であり、かつ、2回目以降に施されるいずれかの陽極酸化処理(以下、「特定陽極酸化処理」とも略す。)における電圧が、特定陽極酸化処理の前に施される陽極酸化処理における電圧の最大値の2倍以上となる工程である。
 また、本発明の製造方法は、陽極酸化処理工程の後に、バリア層を除去するバリア層除去処理工程を有することが好ましい。
 更に、本発明の製造方法は、金属充填工程の後に、バルブ金属基板を除去する基板除去工程を有していてもよい。
[Manufacturing method of metal-filled microstructure]
In the method for manufacturing a metal-filled microstructure of the present invention (hereinafter, abbreviated as "manufacturing method of the present invention"), anodization treatment is applied to one surface of a valve metal substrate, and one surface of the valve metal substrate is subjected to anodization treatment. After the anodic oxidation treatment step of forming an anodic oxide film having a micropore existing in the thickness direction and a barrier layer existing at the bottom of the micropore, and an anodic oxidation treatment step, electrolytic plating is applied to the inside of the micropore. It has a metal filling step of filling metal.
Here, in the production method of the present invention, the anodizing treatment step is a step of performing a plurality of anodizing treatments, and any of the anodizing treatments performed after the second time (hereinafter, "specific anodizing"). This is a step in which the voltage in (also abbreviated as "treatment") is at least twice the maximum value of the voltage in the anodizing treatment performed before the specific anodizing treatment.
Further, it is preferable that the production method of the present invention includes a barrier layer removing treatment step for removing the barrier layer after the anodizing treatment step.
Further, the manufacturing method of the present invention may include a substrate removing step of removing the valve metal substrate after the metal filling step.
 次に、本発明の製造方法における各工程の概要を図1~図6を用いて説明した後に、各処理工程について詳述する。 Next, the outline of each step in the manufacturing method of the present invention will be described with reference to FIGS. 1 to 6, and then each treatment step will be described in detail.
 図1および図2に示すように、陽極酸化処理工程において、バルブ金属基板10の片側の表面10aに陽極酸化処理を施し、バルブ金属基板10の片側の表面10aに、厚み方向Dtに存在するマイクロポア12とマイクロポア12の底部に存在するバリア層13とを有する陽極酸化膜14を形成する。
 次いで、図3に示す通り、再度の陽極酸化処理(特定陽極酸化処理)を施し、一部のマイクロポア12の底部にマイクロポアを厚み方向Dtに成長させた上で、バリア層13aを形成する。
 次いで、図4に示す通り、バリア層除去工程において、バリア層13を除去し、バリア層13aの厚みを薄くするとともに、バリア層13が除去されたマイクロポア12の底部に第1の金属15を形成する。
 次いで、図5に示す通り、金属充填工程において、底部に第1の金属15が形成されたマイクロポアの内部に第2の金属を充填して導通路16を形成する。
 次いで、図6に示す通り、基板除去工程において、バルブ金属基板10およびバリア層13aを除去し、金属充填微細構造体20を得ることができる。
As shown in FIGS. 1 and 2, in the anodic oxidation treatment step, the surface 10a on one side of the valve metal substrate 10 is anodized, and the micros present on the surface 10a on one side of the valve metal substrate 10 in the thickness direction Dt. Anodized film 14 having a pore 12 and a barrier layer 13 existing at the bottom of the micropore 12 is formed.
Next, as shown in FIG. 3, another anodization treatment (specific anodization treatment) is performed to grow the micropores on the bottom of some of the micropores 12 in the thickness direction Dt, and then the barrier layer 13a is formed. ..
Next, as shown in FIG. 4, in the barrier layer removing step, the barrier layer 13 is removed to reduce the thickness of the barrier layer 13a, and the first metal 15 is placed on the bottom of the micropore 12 from which the barrier layer 13 has been removed. Form.
Next, as shown in FIG. 5, in the metal filling step, a second metal is filled inside the micropore in which the first metal 15 is formed at the bottom to form a conduction path 16.
Next, as shown in FIG. 6, in the substrate removing step, the valve metal substrate 10 and the barrier layer 13a can be removed to obtain the metal-filled microstructure 20.
 〔バルブ金属基板〕
 本発明の製造方法に用いられるバルブ金属基板は、上述した絶縁性基材において説明したバルブ金属の基板を用いることができ、中でも、アルミニウム基板を用いることが好ましい。
[Valve metal substrate]
As the valve metal substrate used in the manufacturing method of the present invention, the valve metal substrate described in the above-mentioned insulating base material can be used, and among them, an aluminum substrate is preferably used.
 〔陽極酸化処理工程〕
 上記陽極酸化工程は、上記バルブ金属基板の片側の表面に陽極酸化処理を施すことにより、上記バルブ金属基板の片側の表面に、厚み方向に存在するマイクロポアとマイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する工程である。
 また、上記陽極酸化処理工程は、複数回の陽極酸化処理を施す工程であり、かつ、2回目以降に施されるいずれかの陽極酸化処理(特定陽極酸化処理)における電圧が、特定陽極酸化処理の前に施される陽極酸化処理における電圧の最大値の2倍以上となる工程である。
[Anodizing process]
In the anodic oxidation step, the surface of one side of the valve metal substrate is anodized, so that the micropores existing on one side of the valve metal substrate and the barrier layer existing at the bottom of the micropores are present. It is a step of forming an anodic oxide film having.
Further, the anodizing treatment step is a step of performing a plurality of anodizing treatments, and the voltage in any of the anodizing treatments (specific anodizing treatments) performed after the second time is the specific anodizing treatment. This is a step that is more than twice the maximum value of the voltage in the anodizing treatment performed before.
 上記陽極酸化工程で行う複数回の陽極酸化処理は、上述した電圧の関係を満たすものであれば、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、金属充填微細構造体の異方導電性を担保する観点から、自己規則化法や定電圧処理を用いるのが好ましい。
 ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
For the multiple anodizing treatments performed in the above-mentioned anodizing step, conventionally known methods can be used as long as they satisfy the above-mentioned voltage relationship, but the regularity of the micropore arrangement is increased and the metal filling is fine. From the viewpoint of ensuring the anodizing conductivity of the structure, it is preferable to use a self-regulation method or a constant voltage treatment.
Here, regarding the self-regularization method and the constant voltage treatment of the anodizing treatment, the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
 本発明の製造方法においては、上記陽極酸化処理工程における複数回の陽極酸化処理が、2回の陽極酸化処理、すなわち、第1陽極酸化処理および第2陽極酸化処理(特定陽極酸化処理)であることが好ましい。 In the production method of the present invention, the plurality of anodizing treatments in the anodizing treatment step are two anodizing treatments, that is, a first anodizing treatment and a second anodizing treatment (specific anodizing treatment). Is preferable.
 第1陽極酸化処理および第2陽極酸化処理は、例えば、酸濃度1~10質量%の溶液中で、アルミニウム基板を陽極として通電する方法を用いることができる。
 第1陽極酸化処理および第2陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
For the first anodizing treatment and the second anodizing treatment, for example, a method of energizing an aluminum substrate as an anode in a solution having an acid concentration of 1 to 10% by mass can be used.
The solution used for the first anodic oxidation treatment and the second anodic oxidation treatment is preferably an acid solution, preferably sulfuric acid, phosphoric acid, chromium acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amide sulfonic acid and glycolic acid. , Tartrate acid, apple acid, citric acid and the like are more preferable, and sulfuric acid, phosphoric acid, oxalic acid and the like are particularly preferable. These acids can be used alone or in combination of two or more.
 第1陽極酸化処理および第2陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.1~20質量%、液温-10~30℃、電流密度0.01~20A/dm、電圧3~300V、電解時間0.5~30時間であるのが好ましく、電解液濃度0.5~15質量%、液温-5~25℃、電流密度0.05~15A/dm、電圧5~250V、電解時間1~25時間であるのがより好ましく、電解液濃度1~10質量%、液温0~20℃、電流密度0.1~10A/dm、電圧10~200V、電解時間2~20時間であるのが更に好ましい。なお、上述した通り、第2陽極酸化処理における電圧は、第1陽極酸化処理における電圧の2倍以上となる条件で行う。 The conditions for the first anodic oxidation treatment and the second anodic oxidation treatment vary depending on the electrolytic solution used and cannot be unconditionally determined, but generally, the electrolytic solution concentration is 0.1 to 20% by mass and the liquid temperature. It is preferably −10 to 30 ° C., current density 0.01 to 20 A / dm 2 , voltage 3 to 300 V, electrolysis time 0.5 to 30 hours, electrolytic solution concentration 0.5 to 15 mass%, liquid temperature −. More preferably, the temperature is 5 to 25 ° C., the current density is 0.05 to 15 A / dm 2 , the voltage is 5 to 250 V, and the electrolytic time is 1 to 25 hours. It is more preferable that the current density is 0.1 to 10 A / dm 2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours. As described above, the voltage in the second anodizing treatment is performed under the condition that the voltage in the first anodizing treatment is at least twice the voltage in the first anodizing treatment.
 第1陽極酸化処理および第2陽極酸化処理の処理時間は、0.5分~16時間であるのが好ましく、1分~12時間であるのがより好ましく、2分~8時間であるのが更に好ましい。 The treatment time of the first anodizing treatment and the second anodizing treatment is preferably 0.5 minutes to 16 hours, more preferably 1 minute to 12 hours, and preferably 2 minutes to 8 hours. More preferred.
 第1陽極酸化処理および第2陽極酸化処理は、一定電圧下で行う以外に、電圧を断続的または連続的に変化させる方法も用いることができる。この場合は電圧を順次低くしていくのが好ましい。これにより、陽極酸化膜の抵抗を下げることが可能になり、陽極酸化膜に微細なマイクロポアが生成するため、特に電着処理により封孔処理する際に、均一性が向上する点で、好ましい。 In addition to performing the first anodizing treatment and the second anodizing treatment under a constant voltage, a method of changing the voltage intermittently or continuously can also be used. In this case, it is preferable to gradually lower the voltage. This makes it possible to reduce the resistance of the anodized film, and since fine micropores are generated in the anodized film, it is preferable in that the uniformity is improved especially when the pores are sealed by the electrodeposition treatment. ..
 〔バリア層除去処理工程〕
 上記バリア層除去処理工程は、上記陽極酸化処理工程の後に、上記陽極酸化膜のバリア層の少なくとも一部を除去する任意の処理工程である。
 バリア層を除去する方法は特に限定されず、例えば、上記陽極酸化処理工程に施す最後の陽極酸化処理における電位よりも低い電位でバリア層を電気化学的に溶解する方法(以下、「電解除去処理」ともいう。);エッチングによりバリア層を除去する方法(以下、「エッチング除去処理」ともいう。);これらを組み合わせた方法(特に、電解除去処理を施した後に、残存するバリア層をエッチング除去処理で除去する方法);等が挙げられる。
[Barrier layer removal process]
The barrier layer removing treatment step is an arbitrary treatment step for removing at least a part of the barrier layer of the anodizing film after the anodizing treatment step.
The method for removing the barrier layer is not particularly limited, and for example, a method for electrochemically dissolving the barrier layer at a potential lower than the potential in the final anodic oxidation treatment applied to the anodic oxidation treatment step (hereinafter, “electrolytic removal treatment”). ”); A method of removing the barrier layer by etching (hereinafter, also referred to as“ etching removal treatment ”); a method in which these are combined (particularly, after the electrolytic removal treatment is performed, the remaining barrier layer is removed by etching. Method of removing by treatment); etc.
 <電解除去処理>
 上記電解除去処理は、上記陽極酸化処理工程に施す最後の陽極酸化処理における電位(電解電位)よりも低い電位で施す電解処理であれば特に限定されない。
 本発明においては、上記電解溶解処理は、例えば、上記陽極酸化処理工程に施す最後の陽極酸化処理の終了時に電解電位を降下させることにより、上記陽極酸化処理工程とバリア層除去工程とを連続して行うことができる。
<Electrolytic removal treatment>
The electrolytic removal treatment is not particularly limited as long as it is an electrolytic treatment performed at a potential lower than the potential (electrolytic potential) in the final anodizing treatment performed in the anodic oxidation treatment step.
In the present invention, in the electrolytic dissolution treatment, for example, the anodizing treatment step and the barrier layer removing step are continuously performed by lowering the electrolytic potential at the end of the final anodizing treatment performed in the anodizing treatment step. Can be done.
 上記電解除去処理は、電解電位以外の条件については、上述した従来公知の陽極酸化処理と同様の電解液および処理条件を採用することができる。
 特に、上述したように上記陽極酸化処理工程とバリア層除去工程とを連続して行う場合は、同様の電解液を用いて処理するのが好ましい。
For the electrolytic removal treatment, the same electrolytic solution and treatment conditions as those of the conventionally known anodizing treatment described above can be adopted except for the conditions other than the electrolytic potential.
In particular, when the anodic oxidation treatment step and the barrier layer removal step are continuously performed as described above, it is preferable to perform the treatment using the same electrolytic solution.
 上記電解除去処理における電解電位は、上記陽極酸化処理工程に施す最後の陽極酸化処理における電解電位よりも低い電位に、連続的または段階的(ステップ状)に降下させるのが好ましい。
 ここで、電解電位を段階的に降下させる際の下げ幅(ステップ幅)は、バリア層の耐電圧の観点から、10V以下であるのが好ましく、5V以下であるのがより好ましく、2V以下であるのが更に好ましい。
 また、電解電位を連続的または段階的に降下させる際の電圧降下速度は、生産性等の観点から、いずれも1V/秒以下が好ましく、0.5V/秒以下がより好ましく、0.2V/秒以下が更に好ましい。
The electrolytic potential in the electrolytic removal treatment is preferably lowered continuously or stepwise (step-like) to a potential lower than the electrolytic potential in the final anodic oxidation treatment performed in the anodic oxidation treatment step.
Here, the reduction width (step width) when the electrolytic potential is gradually lowered is preferably 10 V or less, more preferably 5 V or less, and 2 V or less from the viewpoint of the withstand voltage of the barrier layer. It is more preferable to have it.
Further, the voltage drop rate when the electrolytic potential is continuously or stepwise lowered is preferably 1 V / sec or less, more preferably 0.5 V / sec or less, and 0.2 V / sec, from the viewpoint of productivity and the like. Seconds or less is more preferable.
 <エッチング除去処理>
 上記エッチング除去処理は特に限定されないが、酸水溶液またはアルカリ水溶液を用いて溶解する化学的エッチング処理であってもよく、ドライエッチング処理であってもよい。
<Etching removal process>
The etching removal treatment is not particularly limited, but may be a chemical etching treatment that dissolves using an acid aqueous solution or an alkaline aqueous solution, or may be a dry etching treatment.
 (化学エッチング処理)
 化学エッチング処理によるバリア層の除去は、例えば、上記陽極酸化処理工程に施す最後の陽極酸化処理後の構造物を酸水溶液またはアルカリ水溶液に浸漬させ、マイクロポアの内部に酸水溶液またはアルカリ水溶液を充填させた後に、陽極酸化膜のマイクロポアの開口部側の表面にpH緩衝液に接触させる方法等により、バリア層のみを選択的に溶解させることができる。
(Chemical etching process)
To remove the barrier layer by chemical etching treatment, for example, the structure after the final anodic oxidation treatment performed in the above anodic oxidation treatment step is immersed in an acid aqueous solution or an alkaline aqueous solution, and the inside of the micropore is filled with the acid aqueous solution or the alkaline aqueous solution. After this, only the barrier layer can be selectively dissolved by a method of contacting the surface of the anodic oxide film on the opening side of the micropore with a pH buffer solution or the like.
 ここで、酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸、シュウ酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。また、酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、15~80℃が好ましく、更に20~60℃が好ましく、更に30~50℃が好ましい。
 一方、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。また、アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、更に15~45℃が好ましく、更に20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液、0.5g/L、30℃の水酸化カリウム水溶液等が好適に用いられる。
 なお、pH緩衝液としては、上述した酸水溶液またはアルカリ水溶液に対応した緩衝液を適宜使用することができる。
Here, when an acid aqueous solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or oxalic acid, or a mixture thereof. The concentration of the aqueous acid solution is preferably 1 to 10% by mass. The temperature of the aqueous acid solution is preferably 15 to 80 ° C, more preferably 20 to 60 ° C, and further preferably 30 to 50 ° C.
On the other hand, when an alkaline aqueous solution is used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass. The temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C.
Specifically, for example, 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
As the pH buffer solution, a buffer solution corresponding to the above-mentioned acid aqueous solution or alkaline aqueous solution can be appropriately used.
 また、酸水溶液またはアルカリ水溶液への浸せき時間は、5~120分であるのが好ましく、8~120分であるのがより好ましく、8~90分であるのが更に好ましく、10~90分であるのが特に好ましい。なかでも、10~60分であるのが好ましく、15~60分であるのがより好ましい。 The immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, further preferably 8 to 90 minutes, and 10 to 90 minutes. It is particularly preferable to have it. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
 (ドライエッチング処理)
 ドライエッチング処理は、例えば、Cl/Ar混合ガス等のガス種を用いることが好ましい。
(Dry etching process)
For the dry etching treatment, it is preferable to use a gas type such as a Cl 2 / Ar mixed gas.
 本発明の製造方法においては、上記バリア層除去処理工程は、アルミニウムよりも水素過電圧の高い金属M1を含むアルカリ水溶液を用いて、上記陽極酸化膜のバリア層を除去する工程であることが好ましい。
 アルミニウムよりも水素過電圧の高い金属M1を含むアルカリ水溶液を用いることにより、バリア層が除去されたマイクロポアの底部に、金属M1からなる金属の層が形成されることになる。
 ここで、水素過電圧(hydrogen overvoltage)とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例およびその水素過電圧の値を以下に示す。
 <金属M1および水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
In the production method of the present invention, the barrier layer removing treatment step is preferably a step of removing the barrier layer of the anodic oxide film by using an alkaline aqueous solution containing a metal M1 having a hydrogen overvoltage higher than that of aluminum.
By using an alkaline aqueous solution containing a metal M1 having a higher hydrogen overvoltage than aluminum, a metal layer made of the metal M1 is formed at the bottom of the micropore from which the barrier layer has been removed.
Here, the hydrogen overvoltage means the voltage required for hydrogen to be generated. For example, the hydrogen overvoltage of aluminum (Al) is -1.66V (Journal of the Japanese Society of Chemistry, 1982, (8). ), P1305-1313). An example of the metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
<Metal M1 and hydrogen (1NH 2 SO 4 ) overvoltage>
-Platinum (Pt): 0.00V
-Gold (Au): 0.02V
-Silver (Ag): 0.08V
-Nickel (Ni): 0.21V
-Copper (Cu): 0.23V
-Tin (Sn): 0.53V
-Zinc (Zn): 0.70V
 このような金属M1を含むアルカリ水溶液を用いてバリア層を除去する方法は特に限定されず、例えば、上述した化学エッチング処理と同様の方法が挙げられる。 The method of removing the barrier layer using such an alkaline aqueous solution containing the metal M1 is not particularly limited, and examples thereof include the same method as the above-mentioned chemical etching treatment.
 〔金属充填工程〕
 上記金属充填工程は、上記陽極酸化処理工程の後に、電解めっき処理を施してマイクロポアの内部に金属を充填する工程である。
[Metal filling process]
The metal filling step is a step of performing an electrolytic plating treatment after the anodizing treatment step to fill the inside of the micropores with metal.
 <金属>
 上記金属は、上述した導通路の材料と同様のものが挙げられる。
<Metal>
Examples of the metal include the same materials as those of the conduction path described above.
 <充填方法>
 上記金属をマイクロポアの内部に充填する方法としては、例えば、特開2008-270158号公報の[0123]~[0126]段落および[図4]に記載された各方法と同様の方法等が挙げられる。
<Filling method>
Examples of the method for filling the inside of the micropore with the metal include the same methods as those described in paragraphs [0123] to [0126] and [FIG. 4] of JP-A-2008-270158. Be done.
 本発明の製造方法においては、上記金属をマイクロポアの内部に充填する方法として、電解めっき処理方法を用いることが好ましく、例えば、電解めっき法または無電解めっき法を用いることができる。
 ここで、着色などに用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもメッキが成長しないためと考えられる。
 そのため、本発明の製造方法においては、電解めっき法により金属を充填する場合は、パルス電解または定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒あることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
In the production method of the present invention, it is preferable to use an electrolytic plating treatment method as a method of filling the inside of the micropores with the metal, and for example, an electrolytic plating method or an electroless plating method can be used.
Here, it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by a conventionally known electrolytic plating method used for coloring or the like. It is considered that this is because the precipitated metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or longer.
Therefore, in the production method of the present invention, when the metal is filled by the electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis. The rest time is required to be 10 seconds or more, preferably 30 to 60 seconds.
It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
Further, the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V. When performing constant potential electrolysis, it is desirable that cyclic voltammetry can be used in combination, and a potentiostat device such as Solartron, BAS, Hokuto Denko, and IVIUM can be used.
 めっき液は、従来公知のメッキ液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであるのが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであるのが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でメッキを行なうのが望ましい。
As the plating solution, a conventionally known plating solution can be used.
Specifically, when precipitating copper, an aqueous solution of copper sulfate is generally used, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable. Further, the precipitation can be promoted by adding hydrochloric acid to the electrolytic solution. In this case, the hydrochloric acid concentration is preferably 10 to 20 g / L.
In addition, when precipitating gold, it is desirable to use a sulfuric acid solution of tetrachlorogold and perform plating by AC electrolysis.
 なお、無電解めっき法では、アスペクトの高いマイクロポアからなる孔中に金属を完全に充填には長時間を要するので、本発明の製造方法においては、電解メッキ法により金属を充填するのが望ましい。 In the electroless plating method, it takes a long time to completely fill the pores made of micropores having a high aspect with metal. Therefore, in the production method of the present invention, it is desirable to fill the metal by the electrolytic plating method. ..
 本発明の製造方法においては、電解めっき処理方法として、交流電解めっき法と直流電解めっき法とをこの順で組み合わせた処理方法を用いることが好ましい。
 ここで、交流電解めっき法は、例えば、電圧を予め定めた周波数で正弦波状に変調させて印加する。なお、電圧の変調の際の波形は正弦波に限定されるものではなく、例えば、矩形波、三角波、のこぎり波、または逆のこぎり波とすることもできる。
 また、直流電解めっき法は、上述した電解めっき法における処理方法を適宜用いることができる。
In the production method of the present invention, as the electrolytic plating treatment method, it is preferable to use a treatment method in which an AC electrolytic plating method and a DC electrolytic plating method are combined in this order.
Here, in the AC electrolytic plating method, for example, a voltage is modulated in a sinusoidal manner at a predetermined frequency and applied. The waveform at the time of voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or a reverse sawtooth wave.
Further, as the DC electrolytic plating method, the treatment method in the above-mentioned electrolytic plating method can be appropriately used.
 〔基板除去工程〕
 上記基板除去工程は、上記金属充填工程の後に、上記バルブ金属基板を除去する任意の工程である。
 バルブ金属基板を除去する方法は特に限定されず、例えば、溶解により除去する方法等が好適に挙げられる。
[Substrate removal process]
The substrate removing step is an arbitrary step of removing the valve metal substrate after the metal filling step.
The method for removing the valve metal substrate is not particularly limited, and for example, a method for removing by melting is preferable.
 <バルブ金属基板の溶解>
 上記バルブ金属基板の溶解は、陽極酸化膜を溶解しにくく、バルブ金属を溶解しやすい処理液を用いるのが好ましい。
 このような処理液は、バルブ金属に対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、バルブ金属よりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。
<Dissolution of valve metal substrate>
For the dissolution of the valve metal substrate, it is preferable to use a treatment liquid that is difficult to dissolve the anodic oxide film and easily dissolves the valve metal.
The dissolution rate of such a treatment liquid in the valve metal is preferably 1 μm / min or more, more preferably 3 μm / min or more, and further preferably 5 μm / min or more. Similarly, the dissolution rate for the anodic oxide film is preferably 0.1 nm / min or less, more preferably 0.05 nm / min or less, and even more preferably 0.01 nm / min or less.
Specifically, it is preferably a treatment liquid containing at least one metal compound having a lower ionization tendency than the valve metal and having a pH of 4 or less or 8 or more, and the pH is 3 or less or 9 or more. Is more preferable, and 2 or less or 10 or more is further preferable.
 このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。
Such treatment liquids are based on acid or alkaline aqueous solutions and include, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, etc. It is preferably a mixture of a gold compound (for example, platinum chloride acid), these fluorides, these chlorides and the like.
Of these, an acid aqueous solution base is preferable, and a chloride blend is preferable.
In particular, a treatment liquid obtained by blending a hydrochloric acid aqueous solution with mercury chloride (hydrochloric acid / mercury chloride) and a treatment liquid obtained by blending a hydrochloric acid aqueous solution with copper chloride (hydrochloric acid / copper chloride) are preferable from the viewpoint of treatment latitude.
The composition of such a treatment liquid is not particularly limited, and for example, a bromine / methanol mixture, a bromine / ethanol mixture, aqua regia, or the like can be used.
 また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
The acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol / L, more preferably 0.05 to 5 mol / L.
Further, the treatment temperature using such a treatment liquid is preferably −10 ° C. to 80 ° C., preferably 0 ° C. to 60 ° C.
 また、上記バルブ金属基板の溶解は、上記金属充填工程後のバルブ金属基板を上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。 Further, the valve metal substrate is melted by bringing the valve metal substrate after the metal filling step into contact with the treatment liquid described above. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method. Above all, the dipping method is preferable. The contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
 〔その他の処理工程〕
 <孔径拡大処理>
 本発明の製造方法は、直流電解めっきにおける充填の健全性向上の観点から上記陽極酸化処理工程の後であって、直流電解による金属充填処理工程の前に、孔径拡大処理を施す工程を有していてもよい。
 ここで、孔径拡大処理は、上述した陽極酸化処理工程により形成された陽極酸化膜に存在するマイクロポアの径(ポア径)を拡大させる処理(孔径拡大処理)である。
 また、孔径拡大処理は、上述した陽極酸化処理工程後の陽極酸化膜付きバルブ金属基板を、酸水溶液またはアルカリ水溶液に接触させることにより行うことができる。接触させる方法は特に制限されず、例えば、浸せき法およびスプレー法が挙げられる。
[Other processing processes]
<Hole diameter enlargement processing>
The manufacturing method of the present invention includes a step of performing a pore size enlargement treatment after the anodizing treatment step and before the metal filling treatment step by DC electrolysis from the viewpoint of improving the soundness of filling in DC electrolytic plating. May be.
Here, the pore diameter expansion treatment is a treatment (pore diameter expansion treatment) for enlarging the diameter (pore diameter) of the micropores existing in the anodic oxide film formed by the above-mentioned anodizing treatment step.
Further, the pore diameter enlargement treatment can be performed by contacting the valve metal substrate with the anodic oxide film after the above-mentioned anodizing treatment step with an acid aqueous solution or an alkaline aqueous solution. The contact method is not particularly limited, and examples thereof include a dipping method and a spraying method.
 <金属被覆層の形成>
 上述した本発明の金属充填微細構造体は、上述した通り、絶縁性基材の表面が、バルブ金属と異なる金属で被覆されていることが好ましい。
 ここで、バルブ金属と異なる金属による被膜(被覆層)の形成方法は特に限定されないが、絶縁性基材の片側の表面に金属被覆層を設ける場合には、例えば、上述した金属充填工程における電解めっき処理方法を、貫通路の内部に金属を充填させた後においても継続させることにより、形成することができる。
 また、絶縁性基材の表面および裏面に金属被覆層を設ける場合は、上述した方法で絶縁性基材の表面に金属被覆層を設けた後、上述した基板除去工程でバルブ金属基板を除去し、露出した絶縁性基材と導通路の表面に対して電解めっき処理を施す方法により、形成することができる。
<Formation of metal coating layer>
As described above, in the metal-filled microstructure of the present invention described above, it is preferable that the surface of the insulating base material is coated with a metal different from the valve metal.
Here, the method of forming a coating film (coating layer) made of a metal different from the valve metal is not particularly limited, but when the metal coating layer is provided on one surface of the insulating base material, for example, electrolysis in the above-mentioned metal filling step. It can be formed by continuing the plating treatment method even after the inside of the through-passage is filled with metal.
When the metal coating layer is provided on the front surface and the back surface of the insulating base material, the metal coating layer is provided on the surface of the insulating base material by the method described above, and then the valve metal substrate is removed by the substrate removing step described above. It can be formed by a method of subjecting an exposed insulating base material and the surface of a conduction path to an electrolytic plating treatment.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
 〔実施例1〕
 <アルミニウム基板の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS 1050材のアルミニウム基板を得た。
 このアルミニウム基板を幅1030mmにした後、以下に示す各処理を施した。
[Example 1]
<Manufacturing of aluminum substrate>
Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, Ti: A molten metal containing 0.03% by mass, the balance of which is Al and an aluminum alloy of unavoidable impurities is prepared, and after the molten metal treatment and filtration are performed, an ingot having a thickness of 500 mm and a width of 1200 mm is DC (Direct Chill). ) Made by the casting method.
Next, the surface was scraped to an average thickness of 10 mm by a surface mill, kept at 550 ° C for about 5 hours, and when the temperature dropped to 400 ° C, the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate.
Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, it was finished by cold rolling to a thickness of 1.0 mm to obtain an aluminum substrate made of JIS 1050 material.
After making this aluminum substrate 1030 mm wide, each of the following treatments was performed.
 <電解研磨処理>
 上記アルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
<Electropolishing treatment>
The aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.). The flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
(Electrolytic polishing liquid composition)
・ 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL
 <陽極酸化処理工程>
 次いで、電解研磨処理後のアルミニウム基板に、下記表1に示す条件の第1陽極酸化処理を施した。
 次いで、第1陽極酸化処理の電圧の1/5以下の電圧まで漸減させ、その電圧で10分間保持した後、更に0Vまで電圧を漸減させる電圧低下処理を施した。電圧の低下速度は2V/minとした。
 次いで、下記表1に示す条件の第2陽極酸化処理を施し、下記表1に示す総厚みの陽極酸化膜を形成した。
 なお、第1陽極酸化処理および第2陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<Anodizing process>
Next, the aluminum substrate after the electrolytic polishing treatment was subjected to the first anodizing treatment under the conditions shown in Table 1 below.
Then, the voltage was gradually reduced to 1/5 or less of the voltage of the first anodizing treatment, held at that voltage for 10 minutes, and then subjected to a voltage lowering treatment in which the voltage was further gradually reduced to 0V. The voltage drop rate was 2 V / min.
Next, a second anodizing treatment under the conditions shown in Table 1 below was performed to form an anodized film having a total thickness shown in Table 1 below.
In both the first anodizing treatment and the second anodizing treatment, the cathode was a stainless steel electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. A NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and a pair stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Further, the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
 <バリア層除去工程(処理条件1)>
 次いで、アルミニウムよりも水素過電圧の高い金属M1としてZnを含むアルカリ水溶液、具体的には、亜鉛を飽和に含む水酸化ナトリウム水溶液(浴温25℃)中に2分間浸漬しバリア層を除去した。
<Barrier layer removal step (treatment condition 1)>
Next, the barrier layer was removed by immersing in an alkaline aqueous solution containing Zn as a metal M1 having a higher hydrogen overvoltage than aluminum, specifically, a sodium hydroxide aqueous solution containing zinc at a saturation (bath temperature 25 ° C.) for 2 minutes.
 <金属充填工程(処理条件1)>
 次いで、アルミニウム基板を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、マイクロポアの内部に銅が充填された金属充填微細構造体を作製した。
 ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
 (銅めっき液組成および条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・SPS(ビス(3-スルホプロピル)ジサルファイド) 0.004g/L
 ・温度 25℃
 ・電流密度 10A/dm
<Metal filling process (treatment condition 1)>
Next, an aluminum substrate was used as a cathode and platinum was used as a cathode to perform electrolytic plating.
Specifically, a copper plating solution having the composition shown below was used, and constant current electrolysis was performed to prepare a metal-filled microstructure in which copper was filled inside the micropores.
Here, for constant current electrolysis, a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
(Copper plating solution composition and conditions)
・ Copper sulfate 100g / L
・ Sulfuric acid 50g / L
・ Hydrochloric acid 15g / L
・ SPS (bis (3-sulfopropyl) disulfide) 0.004 g / L
・ Temperature 25 ℃
・ Current density 10A / dm 2
 <基板除去工程>
 次いで、塩化銅/塩酸の混合溶液に浸漬させることによりアルミニウム基板を溶解して除去し、金属充填微細構造体を作製した。
<Substrate removal process>
Then, the aluminum substrate was dissolved and removed by immersing it in a mixed solution of copper chloride / hydrochloric acid to prepare a metal-filled microstructure.
 〔実施例2〕
 第1陽極酸化処理および第2陽極酸化処理の条件を下記表1に示す条件に変更した以外は、実施例1と同様の方法で、金属充填微細構造体を作製した。
[Example 2]
A metal-filled microstructure was produced in the same manner as in Example 1 except that the conditions for the first anodizing treatment and the second anodizing treatment were changed to the conditions shown in Table 1 below.
 〔実施例3〕
 第1陽極酸化処理および第2陽極酸化処理の条件を下記表1に示す条件に変更し、金属充填工程を以下に示す条件で行った以外は、実施例1と同様の方法で、金属充填微細構造体を作製した。
 <金属充填工程(処理条件2)>
(1)交流電解めっき
 次いで、0.1mol/Lの硫酸アルミニウム水溶液に硫酸亜鉛を0.1mol添加した浴を30℃に調整し、対極はカーボン電極とし、周波数50Hzの正弦波(ピーク電圧25V)をもちいて、5分電解処理を行った。交流電解終了後は十分に水洗を行った。
(2)直流電解めっき
 上記(1)の交流電解めっきの後、実施例1の金属充填処理(処理条件1)と同じ条件で直流電解めっきを行った。
[Example 3]
The conditions of the first anodizing treatment and the second anodizing treatment were changed to the conditions shown in Table 1 below, and the metal filling step was performed under the conditions shown below. The structure was made.
<Metal filling process (treatment condition 2)>
(1) AC Electrolytic Plating Next, the bath in which 0.1 mol of zinc sulfate was added to a 0.1 mol / L aluminum sulfate aqueous solution was adjusted to 30 ° C., the counter electrode was a carbon electrode, and a sine wave with a frequency of 50 Hz (peak voltage 25 V). Was electrolyzed for 5 minutes. After the AC electrolysis was completed, it was thoroughly washed with water.
(2) DC Electrolytic Plating After the AC electrolytic plating of (1) above, DC electrolytic plating was performed under the same conditions as the metal filling treatment (treatment condition 1) of Example 1.
 〔実施例4〕
 金属充填工程における交流電解めっきと直流電解めっきの間に、以下に示す孔径拡大処理工程を行った以外は、実施例3と同様の方法で、金属充填微細構造体を作製した。
 <孔径拡大処理工程>
 次いで、水酸化カリウム水溶液(0.01mol/L、25℃)の水溶液中に20分浸漬処理を行った。処理後は十分に水洗を行った。
[Example 4]
A metal-filled microstructure was produced by the same method as in Example 3 except that the pore size expansion treatment step shown below was performed between the AC electrolytic plating and the DC electrolytic plating in the metal filling step.
<Hole diameter enlargement processing process>
Then, it was immersed in an aqueous solution of potassium hydroxide aqueous solution (0.01 mol / L, 25 ° C.) for 20 minutes. After the treatment, it was thoroughly washed with water.
 〔比較例1〕
 第1陽極酸化処理の条件を下記表1に示す条件に変更し、第2陽極酸化処理を施さなかった以外は、実施例1と同様の方法で、金属充填微細構造体を作製した。
[Comparative Example 1]
The metal-filled microstructure was produced by the same method as in Example 1 except that the conditions of the first anodizing treatment were changed to the conditions shown in Table 1 below and the second anodizing treatment was not performed.
 実施例1~4および比較例1で作製した各金属充填微細構造体について、厚さ方向に対して集束イオンビーム(Focused Ion Beam:FIB)で切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影した。
 撮影された画像を用い、12μmを1視野とした際の任意の20視野の全視野における導通路の数を確認し、貫通路の数に対する割合を算出した。結果を下記表1に示す。
Each metal-filled microstructure produced in Examples 1 to 4 and Comparative Example 1 is cut with a focused ion beam (FIB) in the thickness direction, and the cross section thereof is surface photographed by FE-SEM. (Magnification 50,000 times) was photographed.
Using the captured image, the number of conduction paths in the entire field of view of any 20 fields of view when 12 μm 2 was set as one field of view was confirmed, and the ratio to the number of gangway paths was calculated. The results are shown in Table 1 below.
 また、実施例1~4および比較例1で作製した各金属充填微細構造体に関して、評価用のサンプルとして、絶縁性基材の表面および裏面に、バルブ金属と異なる金属による被覆層を形成した。
 ここで、絶縁性基材の表面への被覆層の形成は、各実施例および比較例における金属充填工程における処理時間を2倍とし、貫通路の内部に金属を充填させた後においても継続させることにより形成した。
 また、絶縁性基材の裏面への被覆層の形成は、基板除去工程でアルミニウム基板を除去し、露出した絶縁性基材の表面に対して、露出した導通路の表面を電極として各実施例および比較例における金属充填工程における電解めっき処理を施すことにより形成した。
Further, for each of the metal-filled microstructures produced in Examples 1 to 4 and Comparative Example 1, a coating layer made of a metal different from the bulb metal was formed on the front surface and the back surface of the insulating base material as a sample for evaluation.
Here, the formation of the coating layer on the surface of the insulating base material doubles the treatment time in the metal filling step in each Example and Comparative Example, and is continued even after the inside of the gangway is filled with metal. It was formed by
Further, in the formation of the coating layer on the back surface of the insulating base material, the aluminum substrate is removed in the substrate removing step, and the surface of the exposed conduction path is used as an electrode for the surface of the exposed insulating base material in each embodiment. It was formed by subjecting it to an electrolytic plating treatment in the metal filling step in the comparative example.
[評価]
 〔被覆層なし〕
 <コスト>
 コストについては、全ての貫通路の充填に必要な金属量に対する割合として、平均充填率を指標とし、充填率が低い方がコストダウン効果が高くなるよう、以下の評価基準とした。結果を下記表1に示す。
 1:80%以上
 2:70~80%
 3:60~70%
 4:55~60%
 5:50~55%
 6:45~50%
 7:40~45%
 8:35~40%
 9:30~35%
 <取扱性>
 取扱性については、大気中で1日間保管した場合の汚染による親水性低下(接触角変化)を指標とし、以下の評価基準で評価した。結果を下記表1に示す。
 A:接触角変化が10度以内(汚染の影響が小さい)
 B:接触角変化が10度以上(汚染されやすい)
[evaluation]
[No coating layer]
<Cost>
Regarding the cost, the average filling rate was used as an index as a ratio to the amount of metal required for filling all the gangways, and the following evaluation criteria were used so that the lower the filling rate, the higher the cost reduction effect. The results are shown in Table 1 below.
1: 80% or more 2: 70-80%
3: 60-70%
4: 55-60%
5: 50-55%
6: 45-50%
7: 40-45%
8: 35-40%
9: 30-35%
<Handling>
The handleability was evaluated according to the following evaluation criteria, using the decrease in hydrophilicity (change in contact angle) due to contamination when stored in the air for one day as an index. The results are shown in Table 1 below.
A: Contact angle change is within 10 degrees (the effect of contamination is small)
B: Contact angle change is 10 degrees or more (prone to contamination)
 〔被覆層あり〕
 <コスト>
 コストについては、被覆層なしと同様の上記基準で評価した。結果を下記表1に示す。
 <被覆性>
 被覆性については、倍率10倍の光学顕微鏡観察を行い、被覆層の状態を目視で確認し、以下の基準で評価した。結果を下記表1に示す。
 A:評価用のサンプルの作製の際に、2倍の処理時間で表層が全面均一に被覆された
 B:評価用のサンプルの作製の際に、2倍の処理時間で表層に一部被覆出来ていない部分が観察された
[With coating layer]
<Cost>
The cost was evaluated according to the same criteria as those without the coating layer. The results are shown in Table 1 below.
<Coating>
The coating property was evaluated by observing with an optical microscope at a magnification of 10 times, visually confirming the state of the coating layer, and evaluating it according to the following criteria. The results are shown in Table 1 below.
A: The surface layer was uniformly covered over the entire surface in twice the treatment time when preparing the evaluation sample. B: The surface layer could be partially covered in twice the treatment time when preparing the evaluation sample. The part that was not was observed
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、導通路の数が、12μmを1視野とした際の任意の20視野の全視野において貫通路の数の70%以上であると、コストが高くなることが分かった(比較例1)。
 これに対し、導通路の数が、12μmを1視野とした際の任意の20視野の全視野において貫通路の数の70%未満であると、コストの軽減が図れることが分かった(実施例1~4)。
From the results shown in Table 1, it was found that the cost increases when the number of conduction paths is 70% or more of the number of through-passages in the entire visual field of any 20 visual fields when 12 μm 2 is regarded as one visual field. (Comparative Example 1).
On the other hand, it was found that the cost can be reduced when the number of conduction paths is less than 70% of the number of gangway paths in all the fields of view of any 20 fields when 12 μm 2 is set as one field of view (implementation). Examples 1 to 4).
 10 バルブ金属基板
 10a 表面
 12 マイクロポア
 12a 貫通路
 13、13a バリア層
 14 陽極酸化膜
 14a 表面
 14b 裏面
 15 第1の金属
 16 導通路
 20 金属充填微細構造体
 Dt 厚み方向
10 Valve metal substrate 10a Surface 12 Micropore 12a Through passage 13, 13a Barrier layer 14 Anodized oxide film 14a Surface 14b Back surface 15 First metal 16 Conduction path 20 Metal-filled microstructure Dt Thickness direction

Claims (6)

  1.  絶縁性基材と、前記絶縁性基材の厚み方向に貫通した複数の貫通路と、前記絶縁性基材の厚み方向に貫通した複数の導通路とを有し、
     前記絶縁性基材が、バルブ金属の陽極酸化膜であり、
     前記複数の導通路が、前記複数の貫通路の一部の貫通路の内部に充填された導電性物質で構成されており、
     前記導通路の数が、12μmを1視野とした際の任意の20視野の全視野において、前記貫通路の数の70%未満である、金属充填微細構造体。
    It has an insulating base material, a plurality of through-passages penetrating in the thickness direction of the insulating base material, and a plurality of conduction paths penetrating in the thickness direction of the insulating base material.
    The insulating base material is an anodic oxide film of valve metal.
    The plurality of conduction paths are composed of a conductive substance filled in the inside of a part of the through-passages of the plurality of through-passages.
    A metal-filled microstructure in which the number of conduction paths is less than 70% of the number of through-passages in the entire field of view of any 20 fields of view when 12 μm 2 is one field of view.
  2.  前記絶縁性基材の表面が、前記バルブ金属と異なる金属で被覆されている、請求項1に記載の金属充填微細構造体。 The metal-filled microstructure according to claim 1, wherein the surface of the insulating base material is coated with a metal different from the valve metal.
  3.  前記バルブ金属が、アルミニウムである、請求項1または2に記載の金属充填微細構造体。 The metal-filled microstructure according to claim 1 or 2, wherein the valve metal is aluminum.
  4.  前記導電性物質が、銅である、請求項1~3のいずれか1項に記載の金属充填微細構造体。 The metal-filled microstructure according to any one of claims 1 to 3, wherein the conductive substance is copper.
  5.  請求項1に記載された金属充填微細構造体を作製する金属充填微細構造体の製造方法であって、
     バルブ金属基板の片側の表面に陽極酸化処理を施し、前記バルブ金属基板の片側の表面に、厚み方向に存在するマイクロポアと前記マイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、
     前記陽極酸化処理工程の後に、電解めっき処理を施して前記マイクロポアの内部に金属を充填する金属充填工程とを有し、
     前記陽極酸化処理工程が、複数回の陽極酸化処理を施す工程であり、
     2回目以降に施されるいずれかの陽極酸化処理における電圧が、前記陽極酸化処理の前に施される陽極酸化処理における電圧の最大値の2倍以上である、金属充填微細構造体の製造方法。
    A method for manufacturing a metal-filled microstructure for producing the metal-filled microstructure according to claim 1.
    Anodizing is applied to one surface of the valve metal substrate to form an anodized film having micropores existing in the thickness direction and a barrier layer existing at the bottom of the micropores on one surface of the valve metal substrate. Anodizing process and
    After the anodizing treatment step, there is a metal filling step of performing electrolytic plating treatment to fill the inside of the micropores with metal.
    The anodizing treatment step is a step of performing a plurality of anodizing treatments.
    A method for manufacturing a metal-filled microstructure in which the voltage in any of the anodizing treatments applied after the second time is at least twice the maximum value of the voltage in the anodizing treatment applied before the anodizing treatment. ..
  6.  前記陽極酸化処理工程における複数回の陽極酸化処理が、2回の陽極酸化処理である、請求項5に記載の金属充填微細構造体の製造方法。 The method for producing a metal-filled microstructure according to claim 5, wherein the plurality of anodizing treatments in the anodizing treatment step are two times anodizing treatment.
PCT/JP2021/045439 2020-12-22 2021-12-10 Metal-filled microstructure and method for manufacturing metal-filled microstructure WO2022138219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084859.3A CN116783331A (en) 2020-12-22 2021-12-10 Metal-filled microstructure and method for producing metal-filled microstructure
JP2022572131A JPWO2022138219A1 (en) 2020-12-22 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-212135 2020-12-22
JP2020212135 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022138219A1 true WO2022138219A1 (en) 2022-06-30

Family

ID=82159607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045439 WO2022138219A1 (en) 2020-12-22 2021-12-10 Metal-filled microstructure and method for manufacturing metal-filled microstructure

Country Status (4)

Country Link
JP (1) JPWO2022138219A1 (en)
CN (1) CN116783331A (en)
TW (1) TW202231937A (en)
WO (1) WO2022138219A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
WO2024070224A1 (en) * 2022-09-28 2024-04-04 国立大学法人九州大学 Heat transfer member and production method for same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131619A (en) * 1997-07-14 1999-02-02 Jiro Yamazaki Alumite magnetic film and its manufacture
JP2000297396A (en) * 1999-04-09 2000-10-24 Seiko Epson Corp Formation of fine metallic pattern
JP2012201915A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Metal-filled structure
JP2014512692A (en) * 2011-04-22 2014-05-22 テセラ インコーポレイテッド Vias in porous substrates
JP2015030895A (en) * 2013-08-05 2015-02-16 株式会社クラレ Anisotropic conductor film and production method of the same, device, electron emission element, field emission lamp, and field emission display
JP2019147988A (en) * 2018-02-27 2019-09-05 富士フイルム株式会社 Metal film, structure, composite material, production method of metal film, production method of structure, and production method of composite material
WO2020166240A1 (en) * 2019-02-15 2020-08-20 富士フイルム株式会社 Anodizing processing method and method of manufacturing anisotropic conductive member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131619A (en) * 1997-07-14 1999-02-02 Jiro Yamazaki Alumite magnetic film and its manufacture
JP2000297396A (en) * 1999-04-09 2000-10-24 Seiko Epson Corp Formation of fine metallic pattern
JP2012201915A (en) * 2011-03-24 2012-10-22 Fujifilm Corp Metal-filled structure
JP2014512692A (en) * 2011-04-22 2014-05-22 テセラ インコーポレイテッド Vias in porous substrates
JP2015030895A (en) * 2013-08-05 2015-02-16 株式会社クラレ Anisotropic conductor film and production method of the same, device, electron emission element, field emission lamp, and field emission display
JP2019147988A (en) * 2018-02-27 2019-09-05 富士フイルム株式会社 Metal film, structure, composite material, production method of metal film, production method of structure, and production method of composite material
WO2020166240A1 (en) * 2019-02-15 2020-08-20 富士フイルム株式会社 Anodizing processing method and method of manufacturing anisotropic conductive member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
WO2024070224A1 (en) * 2022-09-28 2024-04-04 国立大学法人九州大学 Heat transfer member and production method for same

Also Published As

Publication number Publication date
CN116783331A (en) 2023-09-19
TW202231937A (en) 2022-08-16
JPWO2022138219A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6960095B2 (en) Metal porous material, insoluble anode, fuel cell electrode, hydrogen production equipment, biomaterial, and metal porous material production method
WO2022138219A1 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
JP6960096B2 (en) Composite metal porous material, insoluble anode, fuel cell electrode, hydrogen production equipment, shape memory alloy, biomaterial, and method for producing composite metal porous material.
JPS58161785A (en) Electrode clad with lead or lead alloy and manufacture
US20060032757A1 (en) Activation of aluminum for electrodeposition or electroless deposition
EP3633078A1 (en) Method for producing titanium-plated member
WO2022138151A1 (en) Metal-filled microstructure, and method for producing metal-filled microstructure
JP7402981B2 (en) Structure and method for manufacturing the structure
JP6947212B2 (en) Method for manufacturing molten salt titanium plating solution composition and titanium plating member
WO2022181300A1 (en) Structure and method for manufacturing structure
WO2022014293A1 (en) Method for producing heteroconductive member
RU2813428C1 (en) Method of processing titanium and its alloys
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
WO2022138150A1 (en) Manufacturing method for structure
JPH0421000B2 (en)
JP5676515B2 (en) Insoluble metal electrode, electrolysis apparatus, and plating method
Ulu et al. Electrochemical formation of brazing alloys on metal substrates
Choi et al. Acid Palladium-Nickel Electroplating Using Ethylenediamine as Complexing Agent
JP2023098768A (en) Method for forming metal body, metal body, and fitting-type connection terminal having metal body
JPH0885893A (en) Electrode for strong acidic water
JP2016121382A (en) Hydrogen water generation electrode and manufacturing method
JPS5950756B2 (en) Manufacturing method of low overvoltage electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084859.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022572131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910368

Country of ref document: EP

Kind code of ref document: A1