JP7391661B2 - AC etching method - Google Patents

AC etching method Download PDF

Info

Publication number
JP7391661B2
JP7391661B2 JP2019238123A JP2019238123A JP7391661B2 JP 7391661 B2 JP7391661 B2 JP 7391661B2 JP 2019238123 A JP2019238123 A JP 2019238123A JP 2019238123 A JP2019238123 A JP 2019238123A JP 7391661 B2 JP7391661 B2 JP 7391661B2
Authority
JP
Japan
Prior art keywords
alternating current
electrolytic
current
electrode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019238123A
Other languages
Japanese (ja)
Other versions
JP2021105208A (en
Inventor
勇 小尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2019238123A priority Critical patent/JP7391661B2/en
Publication of JP2021105208A publication Critical patent/JP2021105208A/en
Application granted granted Critical
Publication of JP7391661B2 publication Critical patent/JP7391661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被処理物に交流でエッチングを行う交流エッチング方法に関する。 The present invention relates to an alternating current etching method for etching a workpiece with alternating current.

交流またはパルス交番電流により、被処理物にエッチングを行う交流エッチング方法が知られている。従来から、アルミニウム等の金属の交流エッチングには、被処理物と対向する対向電極としてカーボン(グラファイト)が広く用いられてきた(例えば、特許文献1)。カーボン電極は、耐酸性、耐腐食性に優れている一方、金属電極に比べて導電率が低いため電極を厚くする必要があり、装置が大型化するという問題点がある。また、カーボン電極は、金属電極に比べて強度が低いため、脆く、形状の自由度が低いという問題点もある。 2. Description of the Related Art AC etching methods are known in which a workpiece is etched using an alternating current or pulsed alternating current. Conventionally, carbon (graphite) has been widely used as a counter electrode facing the object to be processed in AC etching of metals such as aluminum (for example, Patent Document 1). Although carbon electrodes have excellent acid resistance and corrosion resistance, they have lower conductivity than metal electrodes, so the electrodes need to be thicker, which poses a problem in that the device becomes larger. Further, since carbon electrodes have lower strength than metal electrodes, they are brittle and have a low degree of freedom in shape.

そこで、特許文献2には、元々は直流エッチングを行う際のアノード電極として開発された白金族酸化物の被覆を設けた電極を、交流エッチングに転用する方法が提案されている。 Therefore, Patent Document 2 proposes a method in which an electrode coated with a platinum group oxide, which was originally developed as an anode electrode for direct current etching, is used for alternating current etching.

特開2005-252115号公報Japanese Patent Application Publication No. 2005-252115 特許第2514032号公報Patent No. 2514032

しかしながら、特許文献2に開示されている方法では、交流またはパルス交番電流の周波数(電解周波数)が20Hz以上に限られており、電解周波数が20Hz未満の場合には適用できない。したがって、アルミニウム電解コンデンサ用電解エッチング箔の製造においては、電解周波数7~20Hzの範囲が特に重要であるが、この重要な範囲で特許文献2の方法は適用できない。 However, in the method disclosed in Patent Document 2, the frequency of alternating current or pulsed alternating current (electrolysis frequency) is limited to 20 Hz or more, and cannot be applied when the electrolysis frequency is less than 20 Hz. Therefore, in the production of electrolytically etched foil for aluminum electrolytic capacitors, the electrolytic frequency range of 7 to 20 Hz is particularly important, but the method of Patent Document 2 cannot be applied in this important range.

本発明の目的は、装置の大型化および電極の損傷を抑制しつつ、従来よりも低い電解周波数で交流エッチングを行うことが可能な交流エッチング方法を提供することである。 An object of the present invention is to provide an AC etching method that can perform AC etching at a lower electrolytic frequency than conventional methods while suppressing the increase in size of the apparatus and damage to electrodes.

本発明の交流エッチング方法は、電解液に被処理物および対向電極を浸漬し、交流またはパルス交番電流により前記被処理物にエッチングを行う交流エッチング方法であって、前記対向電極としてルテニウム、イリジウムまたはロジウムの酸化物を用いて被覆した電極を用い、前記電解液として塩化物イオンを含有し硫酸イオン濃度を10mM以下に制限した溶液を用いる。 The AC etching method of the present invention is an AC etching method in which a workpiece and a counter electrode are immersed in an electrolytic solution, and the workpiece is etched by alternating current or pulsed alternating current, and the workpiece is etched using ruthenium, iridium, or An electrode coated with rhodium oxide is used, and a solution containing chloride ions and having a sulfate ion concentration limited to 10 mM or less is used as the electrolyte.

この構成によると、対向電極としてルテニウム、イリジウムまたはロジウムなどの貴金属酸化物を用いて被覆した電極を用いているので、装置の大型化および電極の損傷を抑制することができる。また、電解液として塩化物イオンを含有し硫酸イオン濃度を10mM以下に制限した溶液を用いることで、従来よりも低い20Hz未満の電解周波数で交流エッチングを行うことが可能である。 According to this configuration, since an electrode coated with a noble metal oxide such as ruthenium, iridium, or rhodium is used as the counter electrode, it is possible to suppress the increase in size of the device and damage to the electrode. Furthermore, by using a solution containing chloride ions and limiting the sulfate ion concentration to 10 mM or less as the electrolytic solution, it is possible to perform AC etching at an electrolytic frequency of less than 20 Hz, which is lower than conventional etching.

また、上述の交流エッチング方法においては、電解周波数の下限値を7Hzとする。 Further, in the above-mentioned AC etching method, the lower limit of the electrolytic frequency is 7 Hz.

この構成によると、電極を被覆する貴金属酸化物の消耗を抑制することができる。 According to this configuration, consumption of the noble metal oxide covering the electrode can be suppressed.

また、上述の交流エッチング方法においては、電流密度の上限値を0.5A-rms/cm2とする。 Further, in the above-mentioned AC etching method, the upper limit of the current density is set to 0.5 A-rms/cm 2 .

この構成によると、電極を被覆する貴金属酸化物の消耗を抑制することができる。 According to this configuration, consumption of the noble metal oxide covering the electrode can be suppressed.

本発明によれば、装置の大型化および電極の損傷を抑制しつつ、従来よりも低い電解周波数で交流エッチングを行うことが可能である。 According to the present invention, it is possible to perform AC etching at a lower electrolytic frequency than conventional etching while suppressing the increase in size of the apparatus and damage to the electrodes.

試料電極に対して長期の交流電解を行う信頼性試験を実施した際の槽電圧の経時変化を示すグラフである。It is a graph showing a change in cell voltage over time when a reliability test was conducted in which a sample electrode was subjected to long-term alternating current electrolysis. 信頼性試験後の試料電極の表面状態を撮影した写真であり、(a)は比較例、(b)は実施例である。It is a photograph which photographed the surface state of the sample electrode after a reliability test, (a) is a comparative example, and (b) is an example. 正弦波交流電解時の電位-電流挙動の解析結果である電位-電流曲線を示す。A potential-current curve that is the analysis result of potential-current behavior during sinusoidal AC electrolysis is shown.

以下、本発明の好適な一実施の形態について説明する。 A preferred embodiment of the present invention will be described below.

本実施形態に係る交流エッチング方法は、電解液に被処理物および対向電極を浸漬し、交流またはパルス交番電流により被処理物にエッチングを行うものである。対向電極としては、金属基体上に貴金属酸化物を用いて被覆した電極を用いる。貴金属酸化物としては、具体的には、白金族酸化物である酸化ルテニウム、酸化イリジウムまたは酸化ロジウムの中から選択する。金属基体の被覆は、貴金属酸化物のみで構成されていてもよいし、添加物を含有した複合酸化物であってもよい。金属基体としては、チタン、タングステン、タンタル、ニオブなどのバルブ金属またはこれらの合金を用いることができ、コスト、加工性においてチタンまたはチタン合金が好ましい。 In the AC etching method according to the present embodiment, a workpiece and a counter electrode are immersed in an electrolytic solution, and the workpiece is etched by alternating current or pulsed alternating current. As the counter electrode, an electrode in which a metal substrate is coated with a noble metal oxide is used. The noble metal oxide is specifically selected from platinum group oxides such as ruthenium oxide, iridium oxide, and rhodium oxide. The coating on the metal substrate may be composed only of a noble metal oxide, or may be a composite oxide containing additives. As the metal substrate, valve metals such as titanium, tungsten, tantalum, niobium, or alloys thereof can be used, and titanium or titanium alloys are preferable in terms of cost and workability.

電解液としては、塩化物イオンを含有し硫酸イオン濃度を10mM以下に制限した溶液を用いる。具体的には、塩酸を主体とした電解液であり硫酸イオン濃度を10mM以下に制限した溶液を用いる。また、食塩水を主体とした電解液であり硫酸イオン濃度を10mM以下に制限した溶液を用いることもできる。さらに、硫酸イオン濃度を6mM以下にすることで対向電極のより一層の長寿命化を図ることができる。電解周波数の下限値は、7Hzとすることが好ましい。電解周波数が7Hz未満である場合は、金属基体を被覆する貴金属酸化物の消耗により対向電極の寿命が短くなる。電流密度の上限値は、0.5A-rms/cm2とすることが好ましい。 As the electrolytic solution, a solution containing chloride ions and having a sulfate ion concentration limited to 10 mM or less is used. Specifically, an electrolytic solution containing hydrochloric acid as a main component and having a sulfate ion concentration limited to 10 mM or less is used. Furthermore, an electrolytic solution mainly composed of saline and a solution in which the sulfate ion concentration is limited to 10 mM or less can also be used. Furthermore, by setting the sulfate ion concentration to 6 mM or less, the life of the counter electrode can be further extended. The lower limit of the electrolysis frequency is preferably 7 Hz. If the electrolysis frequency is less than 7 Hz, the life of the counter electrode will be shortened due to consumption of the noble metal oxide covering the metal substrate. The upper limit of the current density is preferably 0.5 A-rms/cm 2 .

<効果>
以上のように、本実施形態の交流エッチング方法は、対向電極としてルテニウム、イリジウムまたはロジウムなどの貴金属酸化物を用いて被覆した電極を用いているので、装置の大型化および電極の損傷を抑制することができる。また、電解液として塩化物イオンを含有し硫酸イオン濃度を10mM以下に制限した溶液を用いることで、従来よりも低い20Hz以下の電解周波数で交流エッチングを行うことが可能である。つまり、アルミニウム電解コンデンサ用電解エッチング箔の製造においては重要な、電解周波数7~20Hzの範囲で交流エッチングを行うことが可能である。
<Effect>
As described above, the AC etching method of the present embodiment uses an electrode coated with a noble metal oxide such as ruthenium, iridium, or rhodium as the counter electrode, thereby suppressing the increase in size of the device and damage to the electrode. be able to. Furthermore, by using a solution containing chloride ions and limiting the sulfate ion concentration to 10 mM or less as the electrolytic solution, it is possible to perform AC etching at an electrolytic frequency of 20 Hz or less, which is lower than conventional etching. In other words, AC etching can be performed in the electrolytic frequency range of 7 to 20 Hz, which is important in the production of electrolytically etched foil for aluminum electrolytic capacitors.

また、本実施形態の交流エッチング方法は、電解周波数の下限値を7Hzとする。したがって、電極を被覆する貴金属酸化物の消耗を抑制することができる。 Further, in the AC etching method of this embodiment, the lower limit of the electrolytic frequency is 7 Hz. Therefore, consumption of the noble metal oxide covering the electrode can be suppressed.

さらに、本実施形態の交流エッチング方法は、電流密度の上限値を0.5A-rms/cm2とする。したがって、電極を被覆する貴金属酸化物の消耗を抑制することができる。 Furthermore, in the AC etching method of this embodiment, the upper limit of the current density is set to 0.5 A-rms/cm 2 . Therefore, consumption of the noble metal oxide covering the electrode can be suppressed.

以下、実施例および比較例により本発明をさらに詳細に説明するが、これらによって本発明が限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited by these.

<信頼性試験>
金属基体としてチタンを用いて酸化イリジウムで被覆した試料電極に対して、信頼性試験を実施した。試験においては、塩酸を主体とした電解液中で2枚の試料電極間に電流を流した。電流は、周波数7Hzの正弦波交流電流であり、電流密度(実効値:root mean square value)0.5A-rms/cm2である。比較例の電解液は、硫酸イオン濃度0.4M(=0.4mol/L)とする。実施例の電解液は、硫酸イオン濃度6mM(=0.006mol/L)と10mM(=0.01mol/L)とする。
<Reliability test>
Reliability tests were conducted on sample electrodes coated with iridium oxide using titanium as the metal substrate. In the test, a current was passed between two sample electrodes in an electrolytic solution containing mainly hydrochloric acid. The current is a sinusoidal alternating current with a frequency of 7 Hz and a current density (root mean square value) of 0.5 A-rms/cm 2 . The electrolytic solution of the comparative example has a sulfate ion concentration of 0.4 M (=0.4 mol/L). The electrolytic solution in the example has a sulfate ion concentration of 6 mM (=0.006 mol/L) and 10 mM (=0.01 mol/L).

図1に、長期の交流電解を行った際の電解槽電圧(槽電圧)の経時変化を示す。図1において、比較例は三角印のマーカーの折れ線グラフで示し、実施例は丸印および四角印のマーカーの折れ線グラフで示す。具体的には丸印が硫酸イオン濃度6mMの場合、四角印が硫酸イオン濃度10mMの場合を示す。図1に示すように、比較例では試験開始後150~200時間で槽電圧が急激に上昇する不具合が発生する。実施例の硫酸イオン濃度が6mMの場合と10mMの場合は、試験開始後2000時間経過しても槽電圧が安定しており、実用に支障ないことが示された。 FIG. 1 shows the change over time in the electrolytic cell voltage (cell voltage) during long-term AC electrolysis. In FIG. 1, comparative examples are shown in a line graph with triangular markers, and examples are shown in a line graph with circle and square markers. Specifically, the circles indicate the case where the sulfate ion concentration is 6mM, and the square marks indicate the case where the sulfate ion concentration is 10mM. As shown in FIG. 1, in the comparative example, a problem occurs in which the cell voltage suddenly increases 150 to 200 hours after the start of the test. When the sulfate ion concentration in the example was 6 mM and 10 mM, the cell voltage remained stable even after 2000 hours from the start of the test, indicating that there was no problem in practical use.

図2(a)、(b)に、比較例および実施例(硫酸イオン濃度が6mMの場合)における信頼性試験後の試料電極の表面状態を撮影した写真を示す。図2(a)、(b)の破線で囲まれた部分が電解試験を実施した領域である。図2(a)に示すように、比較例では酸化イリジウムの黒色被覆の剥離とチタン基材の露出、溶解、削れ、が発生している。図2(b)に示すように、実施例では酸化イリジウムの消耗は確認されず、実用に支障ないことを確認した。 FIGS. 2(a) and 2(b) show photographs of the surface state of the sample electrode after the reliability test in the comparative example and the example (when the sulfate ion concentration was 6 mM). The area surrounded by broken lines in FIGS. 2(a) and 2(b) is the area where the electrolytic test was performed. As shown in FIG. 2(a), in the comparative example, the black iridium oxide coating peeled off and the titanium base material was exposed, dissolved, and scraped. As shown in FIG. 2(b), no consumption of iridium oxide was observed in the example, and it was confirmed that there was no problem in practical use.

<電位-電流挙動の解析>
次に、上述の比較例よりも実施例の方が信頼性が高くなる要因について、つまり硫酸イオン濃度を10mM以下に制限した電解液を用いることの効果を確認するため、正弦波交流電解時の電位-電流挙動の解析を実施した。
<Analysis of potential-current behavior>
Next, in order to confirm the reason why the reliability of the example is higher than that of the above-mentioned comparative example, that is, the effect of using an electrolyte with a sulfate ion concentration limited to 10mM or less, we investigated the An analysis of potential-current behavior was performed.

解析においては、チタン基材上に酸化イリジウムで被覆した電極を、塩酸を主体とした電解液中で電解した。比較例の電解液は、硫酸イオン濃度0.4M(=0.4mol/L)とする。実施例の電解液は、硫酸イオン濃度6mM(=0.006mol/L)とする。電解電流の周波数は、3Hz、7Hzおよび20Hzの3パターンで解析を行った。また、電流密度は、0.1A-rms/cm2、0.2A-rms/cm2、0.5A-rms/cm2、1A-rms/cm2、2A-rms/cm2の5パターンで解析を行った。 In the analysis, an electrode coated with iridium oxide on a titanium base material was electrolyzed in an electrolyte mainly composed of hydrochloric acid. The electrolytic solution of the comparative example has a sulfate ion concentration of 0.4 M (=0.4 mol/L). The electrolytic solution in the example has a sulfate ion concentration of 6 mM (=0.006 mol/L). The analysis was performed using three patterns of electrolytic current frequencies: 3 Hz, 7 Hz, and 20 Hz. In addition, the current density is set in 5 patterns: 0.1A-rms/cm 2 , 0.2A-rms/cm 2 , 0.5A-rms/cm 2 , 1A-rms/cm 2 , and 2A-rms/cm 2 An analysis was performed.

解析の結果を、横軸を電位(V vs Ag/AgCl)、縦軸を電流(A/cm2)とする図3の各グラフに示す。図3には、比較例の電解液で電解電流の周波数が、3Hz、7Hzおよび20Hzの3パターンにそれぞれ対応する3つのグラフと、実施例の電解液で電解電流の周波数が、3Hz、7Hzおよび20Hzの3パターンにそれぞれ対応する3つのグラフとの合計6つのグラフが示されている。そして、各グラフには、電流密度が、0.1A-rms/cm2、0.2A-rms/cm2、0.5A-rms/cm2、1A-rms/cm2、2A-rms/cm2の5パターンの解析結果(電位-電流曲線)がそれぞれ示されている。 The results of the analysis are shown in the graphs of FIG. 3, with the horizontal axis representing potential (V vs. Ag/AgCl) and the vertical axis representing current (A/cm 2 ). FIG. 3 shows three graphs corresponding to three patterns in which the frequency of the electrolytic current is 3Hz, 7Hz, and 20Hz in the electrolytic solution of the comparative example, and the frequency of the electrolytic current in the electrolytic solution of the example is 3Hz, 7Hz, and 20Hz. A total of six graphs, including three graphs corresponding to three patterns of 20 Hz, are shown. In each graph, the current density is 0.1A-rms/cm 2 , 0.2A-rms/ cm 2 , 0.5A-rms/cm 2 , 1A-rms/cm 2 , 2A-rms/cm The analysis results (potential-current curves) of 5 patterns of 2 are shown respectively.

電位-電流曲線がきれいな楕円リサージュを描く場合は、電極表面の電気二重層容量の充放電により電流が流れていると考えられる。図3に示す解析結果では、電流密度0.5A-rms/cm2以下、かつ周波数7Hz以上がこれに該当する。すなわち、この条件下では電極の消耗は少ないと予想される。 When the potential-current curve depicts a clean elliptical Lissajous, it is considered that current is flowing due to charging and discharging of the electric double layer capacitance on the electrode surface. According to the analysis results shown in FIG. 3, this applies to a current density of 0.5 A-rms/cm 2 or less and a frequency of 7 Hz or more. That is, under these conditions, it is expected that there will be little wear on the electrodes.

電流密度が大きく、また周波数が小さくなるにつれて、分極(電位の振れ幅)が大きくなり、泡発生(水素、酸素)が急激に増加する。このとき電位-電流曲線の楕円は崩れ、歪みが生ずる。この場合、カソード分極時(電位負方向)に酸化イリジウムの還元反応に伴う体積収縮が 起こることで、電極を被覆している酸化イリジウムの消耗が発生すると考えられる。 As the current density increases and the frequency decreases, polarization (swings in potential) increases and bubble generation (hydrogen, oxygen) increases rapidly. At this time, the ellipse of the potential-current curve collapses, causing distortion. In this case, it is thought that the iridium oxide covering the electrode is consumed due to volume contraction due to the reduction reaction of iridium oxide during cathode polarization (negative potential direction).

電流密度が大きい場合、電位-電流曲線が8の字を描く様子が確認された。これはアノード分極時(電位正方向)の金属表面での酸化皮膜の形成と破壊、金属溶解に特徴的な現象であり、電極消耗の兆候であると考えられる。図3に示す解析結果では、比較例では全ての周波数、実施例では3Hzの場合がこれに該当する。すなわち、硫酸イオンがアノード酸化皮膜の形成と破壊に関与しており、電極寿命を縮める要因の1つであることを確認した。 When the current density was high, it was confirmed that the potential-current curve was shaped like a figure eight. This is a phenomenon characteristic of the formation and destruction of an oxide film on the metal surface and metal dissolution during anode polarization (positive potential direction), and is considered to be a sign of electrode wear. In the analysis results shown in FIG. 3, this applies to all frequencies in the comparative example and 3 Hz in the example. That is, it was confirmed that sulfate ions are involved in the formation and destruction of the anode oxide film, and are one of the factors that shorten the electrode life.

なお、上述の特許文献2においては、周波数は20Hz以上、電流密度は10~200A/dm2(=0.1~2A/cm2)に限定されている。比較例(周波数20Hz、電流密度2A-rms/cm2)の電位-電流曲線が8の字を描く解析結果より、特許文献2に開示されている範囲内であっても、硫酸イオン濃度に依存して電極寿命が短くなる可能性が示された。 Note that in the above-mentioned Patent Document 2, the frequency is limited to 20 Hz or more and the current density is limited to 10 to 200 A/dm 2 (=0.1 to 2 A/cm 2 ). From the analysis result that the potential-current curve of the comparative example (frequency 20 Hz, current density 2 A-rms/cm 2 ) draws a figure 8, even within the range disclosed in Patent Document 2, it does not depend on the sulfate ion concentration. This indicates that the electrode life may be shortened.

<変形例>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
<Modified example>
Although the embodiments of the present invention have been described above based on the drawings, it should be understood that the specific configuration is not limited to these embodiments. The scope of the present invention is indicated by the claims rather than the description of the embodiments described above, and includes all changes within the meaning and range equivalent to the claims.

すなわち、上述の実施形態においては、電解周波数の下限値を7Hzとする場合について説明したが、電解周波数は7Hz未満であってもよい。また、上述の実施形態においては、電流密度の上限値を0.5A-rms/cm2とする場合について説明したが、電流密度は0.5A-rms/cm2よりも大きくてもよい。 That is, in the above-mentioned embodiment, the case where the lower limit of the electrolysis frequency is 7 Hz has been described, but the electrolysis frequency may be less than 7 Hz. Further, in the above-described embodiment, the case where the upper limit of the current density is 0.5 A-rms/cm 2 has been described, but the current density may be larger than 0.5 A-rms/cm 2 .

また、上述の実施形態に係る交流エッチング方法は、アルミニウム電解コンデンサ用電解エッチング箔の製造に用いることが好適であるが、用途はこれに限定されるものではない。 Further, although the AC etching method according to the above-described embodiment is preferably used for manufacturing electrolytically etched foil for aluminum electrolytic capacitors, the application is not limited to this.

Claims (2)

電解液に被処理物および対向電極を浸漬し、交流またはパルス交番電流により前記被処理物にエッチングを行うアルミニウム電解コンデンサ用電解エッチング箔の製造に用いる交流エッチング方法であって、
前記対向電極としてルテニウム、イリジウムまたはロジウムの酸化物を用いて被覆した電極を用い、
前記電解液として塩化物イオンおよび硫酸イオンを含有し硫酸イオン濃度を10mM以下に制限した溶液を用い
前記交流またはパルス交番電流の電解周波数を7Hz以上、かつ、20Hz未満とすることを特徴とする交流エッチング方法。
An AC etching method used for manufacturing an electrolytic etching foil for an aluminum electrolytic capacitor, in which a workpiece and a counter electrode are immersed in an electrolytic solution, and the workpiece is etched by alternating current or pulsed alternating current, the method comprising:
Using an electrode coated with ruthenium, iridium or rhodium oxide as the counter electrode,
Using a solution containing chloride ions and sulfate ions and limiting the sulfate ion concentration to 10 mM or less as the electrolyte ,
An alternating current etching method characterized in that the electrolytic frequency of the alternating current or pulsed alternating current is 7 Hz or more and less than 20 Hz .
前記交流またはパルス交番電流の電流密度の上限値を0.5A-rms/cm2とすることを特徴とする請求項に記載の交流エッチング方法。 2. The alternating current etching method according to claim 1 , wherein the upper limit of the current density of the alternating current or pulsed alternating current is 0.5 A-rms/cm 2 .
JP2019238123A 2019-12-27 2019-12-27 AC etching method Active JP7391661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019238123A JP7391661B2 (en) 2019-12-27 2019-12-27 AC etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238123A JP7391661B2 (en) 2019-12-27 2019-12-27 AC etching method

Publications (2)

Publication Number Publication Date
JP2021105208A JP2021105208A (en) 2021-07-26
JP7391661B2 true JP7391661B2 (en) 2023-12-05

Family

ID=76918625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238123A Active JP7391661B2 (en) 2019-12-27 2019-12-27 AC etching method

Country Status (1)

Country Link
JP (1) JP7391661B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266100A (en) 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd Carbon electrode for etching and method for etching electrode foil for aluminum electrolytic capacitor using the same
JP2007103798A (en) 2005-10-06 2007-04-19 Nichicon Corp Method of forming aluminum electrode foil for electrolytic capacitor
CN101225539A (en) 2007-09-28 2008-07-23 扬州宏远电子有限公司 Multi-stage frequency-conversion eroding method for anode foil of aluminium electrolytic capacitor
CN108000795A (en) 2017-12-03 2018-05-08 无锡市恒利弘实业有限公司 A kind of preparation method and application of composite material for nanometer injection molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514032B2 (en) * 1987-05-08 1996-07-10 ペルメレック電極 株式会社 Metal electrolytic treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266100A (en) 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd Carbon electrode for etching and method for etching electrode foil for aluminum electrolytic capacitor using the same
JP2007103798A (en) 2005-10-06 2007-04-19 Nichicon Corp Method of forming aluminum electrode foil for electrolytic capacitor
CN101225539A (en) 2007-09-28 2008-07-23 扬州宏远电子有限公司 Multi-stage frequency-conversion eroding method for anode foil of aluminium electrolytic capacitor
CN108000795A (en) 2017-12-03 2018-05-08 无锡市恒利弘实业有限公司 A kind of preparation method and application of composite material for nanometer injection molding

Also Published As

Publication number Publication date
JP2021105208A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
EP0560338B1 (en) Oxygen generating electrode
JP4771130B2 (en) Oxygen generating electrode
JP7094110B2 (en) Electrodes for the electrolysis process
JP7153887B2 (en) electrode for electrolysis
JP2008127598A (en) Method for forming corrosion resistant plating layer, and rotary machine
WO2022138219A1 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
JP2013216940A (en) Method for plating metallic material, and composite electrode of solid polyelectrolyte membrane and catalytic metal
JP7391661B2 (en) AC etching method
JP4638672B2 (en) Anode for generating oxygen and support therefor
CN109594066A (en) A kind of preparation method of the super nanocrystalline titanium anode coating of hyperoxia
WO2022181300A1 (en) Structure and method for manufacturing structure
JPH0660427B2 (en) Oxygen generating electrode and method for manufacturing the same
JP2919169B2 (en) Electrode for oxygen generation and method for producing the same
KR20200015832A (en) Feed
JPH0633489B2 (en) Electrode for dilute salt water electrolysis
JPS63235493A (en) Electrode for generating oxygen and production thereof
JP4632966B2 (en) Method for producing electrolytic metal powder
US4406757A (en) Anodization method
JP6870389B2 (en) How to remove the oxide film on the surface of metal material
JP5403642B2 (en) Corrosion resistant conductive material
TW200816245A (en) Aluminum electrode plate for an electrolytic capacitor
JP2004265695A (en) Separator for fuel cell
JP3152499B2 (en) Electrode for oxygen generation and method for producing the same
JP3566023B2 (en) Electrode for fluorine-containing liquid electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7391661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150