WO2021260479A1 - 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法 - Google Patents

鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法 Download PDF

Info

Publication number
WO2021260479A1
WO2021260479A1 PCT/IB2021/055152 IB2021055152W WO2021260479A1 WO 2021260479 A1 WO2021260479 A1 WO 2021260479A1 IB 2021055152 W IB2021055152 W IB 2021055152W WO 2021260479 A1 WO2021260479 A1 WO 2021260479A1
Authority
WO
WIPO (PCT)
Prior art keywords
saddle
vehicle
information
rider
traveling
Prior art date
Application number
PCT/IB2021/055152
Other languages
English (en)
French (fr)
Inventor
ラーズ プファウ
Original Assignee
ロベルト•ボッシュ•ゲゼルシャフト•ミト•ベシュレンクテル•ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロベルト•ボッシュ•ゲゼルシャフト•ミト•ベシュレンクテル•ハフツング filed Critical ロベルト•ボッシュ•ゲゼルシャフト•ミト•ベシュレンクテル•ハフツング
Priority to EP23203870.3A priority Critical patent/EP4300463A3/en
Priority to EP21743566.8A priority patent/EP4173920A1/en
Priority to US18/013,008 priority patent/US20230242100A1/en
Priority to EP23203869.5A priority patent/EP4300462A3/en
Priority to EP23203867.9A priority patent/EP4300461A3/en
Priority to JP2022531094A priority patent/JP7482226B2/ja
Publication of WO2021260479A1 publication Critical patent/WO2021260479A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/085Taking automatic action to adjust vehicle attitude in preparation for collision, e.g. braking for nose dropping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/3225Systems specially adapted for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/30Environment conditions or position therewithin
    • B60T2210/32Vehicle surroundings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/09Complex systems; Conjoint control of two or more vehicle active control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance

Definitions

  • the present invention has a control device for a saddle-type vehicle equipped with at least one ambient environment detection device, a rider-assist system equipped with the control device, and at least one ambient environment detection device. It is related to the control method of both saddle-mounted vehicles equipped with.
  • Some conventional saddle-mounted vehicles are equipped with an ambient environment detection device. Based on the output of the ambient environment detector, information on the object located in front of the traveling line of the saddle-type vehicle is acquired (for example, Patent Document 1).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 9 — 1 1 6 8 8 2 [Summary of the invention]
  • Saddle-type vehicles are much smaller than other vehicles (for example, passenger cars, trucks, etc.). Therefore, the saddle-mounted vehicle is capable of special traveling that is not expected in other vehicles.
  • information on the target located in front of the traveling line of the saddle-type vehicle is acquired based on the output of the surrounding environment detection device. With such information, it may be difficult to adequately address the driving peculiarities of saddle-mounted vehicles.
  • the present invention was made in the background of the above-mentioned problems, and obtains a control device capable of dealing with the peculiarity of traveling of a saddle-type vehicle. , To obtain a rider assistance system equipped with such a control device, and to obtain a control method that can cope with the driving peculiarities of a saddle-type vehicle.
  • the control device is a control device for a saddle-type vehicle equipped with at least one ambient environment detection device, and is a rider support for supporting the rider of the saddle-type vehicle. It is equipped with an execution unit that executes an operation, and further, based on the output of the ambient environment detection device, left-handed target information that is information on a target located on the left side of the traveling line of the saddle-type vehicle, and left-handed target information.
  • the right-hand target information which is the target information located on the right side of the traveling line, the acquisition unit for acquiring, the left-side target information acquired by the acquisition unit, and at least one of the right-side target information.
  • the saddle-mounted vehicle is provided with an analysis unit that analyzes the traveling state of the saddle-mounted vehicle, and the executing unit executes the rider-supporting operation according to the analysis result of the traveling state in the analysis unit. ..
  • the rider assist system includes the above-mentioned control device.
  • the control method according to the present invention is a control method for a saddle-type vehicle equipped with at least one ambient environment detection device, and the execution unit of the control device is a rider of the saddle-type vehicle.
  • the execution unit of the control device is a rider of the saddle-type vehicle.
  • -A rider that assists-It has an execution step to execute the assist operation, and further, the acquisition unit of the control device is based on the output of the ambient environment detection device, and is on the traveling line of the saddle-type vehicle.
  • the execution unit executes the rider-support operation according to the analysis result of the running state in the analysis step.
  • the position is located to the left of the traveling line of the saddle-type vehicle based on the output of at least one ambient environment detection device.
  • the left target information which is the information of the target to be driven
  • the right target information which is the target information located on the right side of the traveling line, are acquired, and at least one of the left target information and the right target information is acquired.
  • the running state of the saddle-mounted vehicle is analyzed based on the above, and the rider support operation is executed according to the analysis result. Therefore, it is possible to appropriately cope with the running peculiarities of saddle-mounted vehicles.
  • FIG. 1 is a diagram showing a state in which the rider-support system according to the embodiment of the present invention is mounted on a saddle-mounted vehicle.
  • FIG. 2 is a diagram showing a system configuration of a rider support system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a detection state of the surrounding environment detection device in a situation where a saddle-mounted vehicle travels between convoys in the rider-support system according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a detection state of the surrounding environment detection device in a situation where a saddle-mounted vehicle is group traveling in the rider support system according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a detection state of the surrounding environment detection device in the rider support system according to the embodiment of the present invention in a situation where a saddle-mounted vehicle runs unevenly in the lane.
  • FIG. 6 is a diagram showing an operation flow of a control device of the rider support system according to the embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION [Modes for Carrying Out an Invention]
  • the rider-support system according to the present invention is used for a motorcycle is described below, but the rider-support system according to the present invention is other than the motorcycle. It may be used for saddle-mounted vehicles.
  • Saddle-type vehicles are, for example, motorcycles (motorcycles, motorcycles), paggy, bicycles, and the like.
  • the motor cycle includes a vehicle whose source is an engine, a vehicle whose source is an electric motor, and the like, and includes, for example, a talented pie, a scooter, an electric scooter, and the like.
  • Bicycle also means all vehicles that can travel on the road by the pedaling force of the rider applied to the pedals. Bicycles include ordinary bicycles, electrically power assisted bicycles, electric bicycles, and the like.
  • FIG. 1 is a diagram showing a state in which the rider-support system according to the embodiment of the present invention is mounted on a saddle-mounted vehicle.
  • FIG. 2 is a diagram showing a system configuration of the rider support system according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the detection state of the surrounding environment detection device of the rider-assist system according to the embodiment of the present invention in a situation where a saddle-mounted vehicle travels between convoys.
  • FIG. 4 is a diagram showing the detection state of the ambient environment detection device in the situation where the saddle-mounted vehicle is group-driving in the rider-support system according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the detection state of the ambient environment detection device of the rider support system according to the embodiment of the present invention under the condition that the saddle-mounted vehicle runs unevenly in the lane.
  • the rider assist system 1 is mounted on the saddle-mounted vehicle 100.
  • Rider support ⁇ 2021/260479 ⁇ (: 1'2021/055152 Assistance system 1 is the surrounding environment detection device 1 1 3 that outputs the surrounding environment information in front of the saddle type vehicle 100 0, and the saddle type vehicle 100 0.
  • Surrounding environment detection device 1 1 [3 that outputs the surrounding environment information behind, and surrounding environment detection device 1 1 0 that outputs the surrounding environment information on the left side of the saddle-mounted vehicle 1 0 0, and the saddle-mounted vehicle 1 0 0
  • Surrounding environment detection device 1 1 that outputs surrounding environment information to the right of 0, driving state detection device 1 2 that outputs driving state information of saddle-mounted vehicle 100, and control device (Miwa (3 II))
  • Rider-Assistance system 1 is an ambient environment detector 1 1 3, 1 1 ⁇ , 1 1 as needed. , 1 1 ⁇ 1 Performs a rider support operation to support the rider of the saddle-mounted vehicle 100 using the surrounding environment information output from 1.
  • the control device 20 has various detection devices (illustrated) for outputting other information (for example, information on the brake operation status by the rider, information on the accelerator operation status by the rider, etc.) as necessary. The detection result of (omitted) is also input.
  • Each ⁇ 5 of the rider support system 1 may be used exclusively for the rider support system 1 or may be shared with other systems.
  • Ambient environment detector 1 1 3, 1 1 [3, 1 1. , 1 1 ⁇ 1 are, for example, radar, 1_I ⁇ 1 3 "sensors, ultrasonic sensors, cameras, etc.
  • Surrounding environment detectors 1 1 3 are saddle-mounted vehicles 1 0 0 Front ⁇ 5 (This is provided and is directed forward on the traveling line lo 1_ of the saddle-type vehicle 100.
  • Surrounding environment detection device 1 1 [3 is the rear ⁇ of the saddle-type vehicle 100 0. 5 (This is provided and is directed to the rear on the traveling line row 1_ of the saddle-type vehicle 100.
  • the ambient environment detection device 110 is provided on the side of the saddle-type vehicle 100 0. It is directed to the left of the traveling line 1_ of the saddle-type vehicle 100.
  • the ambient environment detection device 1 1 ⁇ 1 is the side of the saddle-type vehicle 100 0. It is directed to the right of the traveling line row 1_ of the type vehicle 100. There may be one ambient environment detection device 110, and it detects diagonally forward of the saddle type vehicle 100. Both an ambient environment detection device 110 with a range R 0 and another ambient environment detection device 110 with a detection range R 0 diagonally behind the saddle-mounted vehicle 100 are installed. There may be one ambient environment detector 1 1 ⁇ 1, and the ambient environment detector 1 1 ⁇ 1 and the detection range R ⁇ 1 diagonally forward of the saddle-mounted vehicle 100 0. , Detection range R diagonally behind the saddle-mounted vehicle 100
  • Both of another ambient environment detection device 1 1 ⁇ 1 set to ⁇ 1 may be provided.
  • the ambient environment detection device 1 ⁇ ⁇ 0221/260479 ⁇ (: 17132021/055152)
  • At least a part of 10 and the ambient environment detector 1 1 ⁇ 1 may be substituted by the ambient environment detector 1 1 3 or the ambient environment detector 1 1 [3.
  • the traveling line lo 1_ is the past or unprecedented traveling locus of the saddle-mounted vehicle 100.
  • the driving state detection device 1 2 is a vehicle speed sensor and an inertia sensor. And, including.
  • the vehicle speed sensor detects the vehicle speed occurring in the saddle-mounted vehicle 100.
  • the inertial sensor detects the three-axis acceleration and the three-axis (mouth, pitch, yo-) angular velocities occurring in the saddle-mounted vehicle 100.
  • the driving state detection device 1 2 actually converts the vehicle speed generated in the saddle-mounted vehicle 100 into the three-axis acceleration and the three-axis angular velocity generated in the saddle-mounted vehicle 100. It may detect other possible physical quantities.
  • the inertial sensor may detect only the acceleration of the three axes and the angular velocity of the three axes. Further, if necessary, at least one of the vehicle speed sensor and the inertial sensor may be omitted, or another sensor may be added.
  • the control device 2 0 includes at least an acquisition unit 2 1, an analysis unit 2 2, and an execution unit 2 3.
  • Each ⁇ 5 of the control device 20 may be provided collectively in one housing, or may be separately provided in a plurality of housings.
  • the device 20 may or may not be composed of, for example, a microcomputer, a microphone, a processor unit, or the like, or may be composed of an updatable component such as firmware. It may also be a program module or the like executed by a command from 0 II or the like.
  • the acquisition unit 2 1 is located around the saddle-mounted vehicle 1 0 0 based on the output of the ambient environment detection device 1 1 3, 1 1 ⁇ , 1 1 ⁇ , 1 1 ⁇ 1. Get the information of the target to be done.
  • the acquisition unit 2 1 is located on the left side target information, which is the information of the target cho 1 located on the left side of the traveling line lo 1_ of the saddle-mounted vehicle 100, and on the right side of the traveling line lo 1_.
  • the analysis unit 2 2 analyzes the running state of the saddle-mounted vehicle 100 based on at least one of the left target information and the right target information.
  • the execution unit 2 3 executes a rider-support operation according to the analysis result of the running state in the analysis unit 2 2.
  • a saddle-mounted vehicle 100 0 travels between the left convoy 2 0 0 and the right convoy 3 0 0.
  • the acquisition unit 2 1 is to the left of the traveling line lo 1 _ of the saddle-mounted vehicle 100 based on the output of the surrounding environment detection device 1 1 ⁇ , 1 1 ⁇ 1.
  • the information of the relative distance port 2 0 1 of the vehicle 2 0 1 traveling to the left of the saddle-type vehicle 100 0 1 with respect to the saddle-type vehicle 100 0 is acquired.
  • the information of the relative distance 0 3 0 1 to the saddle-type vehicle 100 0 of the vehicle 3 0 1 traveling to the right of the saddle-type vehicle 100 0 is acquired.
  • the acquisition unit 2 1 obtains the information.
  • information on the relative distance openings 2 0 1, 0 3 0 1 it is possible to obtain a £ separation in the width direction of the saddle-mounted vehicle 100, and a predetermined angle with respect to the width direction.
  • the type vehicle 100 may be traveling at a different speed than the vehicle 201 or the vehicle 301, or may be traveling at the same speed.
  • the saddle-type vehicle 100 is a vehicle.
  • the acquisition unit 2 1 is the other that belongs to the left convoy 2 0 0 after acquiring the information of the relative distance port 2 0 1, 0 3 0 1 of the vehicle 2 0 1, 3 0 1 to the saddle-type vehicle 100 0.
  • Information on the relative distance 0 2 0 1 of the vehicle 2 0 1 and other belonging to the right convoy 3 0 0 The information of the relative distance opening 3 0 1 of the vehicle 3 0 1 will be acquired.
  • the analysis unit 2 2 the information of the relative distance 0 2 0 1, 0 3 0 1 acquired by the acquisition unit 2 1 is the vehicle 2 0 1, 3 0 1 is the saddle type vehicle 1 0.
  • the information indicates that the vehicle exists closer to 0 than the reference value, it is determined that the traveling state of the saddle-mounted vehicle 100 is traveling between rows.
  • the analysis unit 2 2 indicates that the presence of vehicles 2 0 1, 3 0 1 on both the left and right sides of the saddle-type vehicle 100 at a distance below the reference value continues for a predetermined period or longer, or is specified.
  • the analysis unit 2 2 sets the reference value on both the left and right sides of the saddle-mounted vehicle 100. It is advisable to maintain the determination that the traveling state of the saddle-type vehicle 100 is inter-row driving until the absence of the vehicles 2 0 1, 3 0 1 at a lower proximity continues for a predetermined time or longer.
  • a saddle-mounted vehicle 1 0 0 is grouped with other vehicles 1 1 0, 3 0 1 3, 3 0 1 [3] in lane 1_1.
  • the acquisition unit 2 1 is located on the left side of the traveling line lo 1 _ of the saddle-mounted vehicle 100 based on the outputs of the surrounding environment detection devices 1 1 ⁇ and 1 1.
  • the left target information, which is the information of the target, and the right target information, which is the information of the target 2 located on the right side of the traveling line row 1_ of the saddle-mounted vehicle 100, are acquired.
  • the information of the relative distance port 2 0 1 with respect to the saddle type vehicle 100 0 of the vehicle 2 0 1 traveling to the left of the saddle type vehicle 100 is acquired.
  • the relative distance to the saddle-mounted vehicle 100 0 of the vehicle traveling on the right side of the saddle-mounted vehicle 100 0 1 3 0 1 3 and 3 0 1 3 0 1 Saddle information is acquired.
  • the acquisition unit 2 1 may acquire the distance in the width direction of the saddle-mounted vehicle 100 as information on the relative distances 0 2 0 1, 03 0 1 3, 03 0 1 13, and may acquire the distance in the vehicle width direction.
  • the traveling row in the group running of the saddle-type vehicle 100 is on the right side
  • the saddle of at least two vehicles traveling on the left side of the saddle-type vehicle 100 is used as the information for the left side. It suffices to acquire information on the relative distance to the passenger-type vehicle 100.
  • the information of the relative distance 02 0 1, 03 0 1 3, 03 0 ⁇ acquired by the acquisition unit 2 1 is one side of the traveling line lo 1 _ of the saddle-mounted vehicle 100.
  • the saddle-type vehicle 100 0 travels. It is divided into half when the state is group running.
  • the reference value should be set to a value smaller than the relative distance opening 201. ⁇ 2021/260479 Saddle (: 1'2021/055152.
  • analysis ⁇ 5 2 2 uses information on which of the multiple vehicles 3 0 1 3, 3 0 1 ⁇ is on the running line lo 1_. Then, the running speed of the saddle-mounted vehicle 100 in the group running is divided into half ⁇ . Vehicles whose relative distance to 100 is less than the standard value 3 0 1 3, 3 0 1 When the existence of multiple ⁇ continues for a predetermined period or longer, the running state of the saddle-type vehicle 100 is group running.
  • the analysis ⁇ 5 2 2 is a vehicle whose relative distance to the saddle-type vehicle 100 is less than the standard value on one side of the traveling line lo 1_ of the saddle-type vehicle 100. Until the absence of multiple 0 1 3, 3 0 1 13 continues for a specified period of time or longer, it is advisable to separate the running condition of the saddle-mounted vehicle 100 from the group running.
  • the acquisition unit 2 1 detects the surrounding environment under the condition that the saddle-mounted vehicle 100 0 runs unevenly within the line 1_1. Based on the output of the device 1 1 ⁇ , 1 1 ⁇ 1, the left side target information, which is the information of the target chome 1 located on the left side of the running line mouth 1_ of the saddle type vehicle 100, and the saddle type. Acquires the right-hand target information, which is the information of the target-chome 2 located on the right side of the traveling line row 1_ of the vehicle 100.
  • the acquisition unit 2 1 may acquire the distance in the vehicle width direction of the saddle-mounted vehicle 100 as information on the relative distances 0 2 0 1, 0 3 0 1, and may acquire the distance in the vehicle width direction.
  • the distance in the direction forming a predetermined angle may be obtained, or the distance from the center of the saddle-mounted vehicle 100 in the width direction may be obtained, and the saddle-mounted vehicle may be obtained.
  • You may get £ £ from the side of vehicle 100 you may get the distance to the side of vehicle 2 0 1, 3 0 1, and you may get the distance to the side of vehicle 2 0 1, 3 0 1
  • the distance to the center in the vehicle width direction of the vehicle may be acquired, or other physical quantities that can be substantially converted into them may be acquired.
  • the saddle-mounted vehicle 100 may be traveling at a speed different from that of the vehicle 201 or the vehicle 301, or may be traveling at the same speed.
  • the acquisition unit 2 1 determines the vehicle 2 0 1, 3 with respect to the saddle-type vehicle 100 0.
  • the target street 1 is a road facility (for example, a guard rail, a curb, a lane boundary line, etc.), and as the target information on the left, the relative distance of the saddle-type vehicle 100 to the road facility.
  • Information on the mouth 201 may be obtained.
  • the target Ding 2 is a road facility (for example, a guard rail, a curb, a lane boundary line, etc.), and as the target information on the right side, the relative distance of the saddle-type vehicle 100 to the road facility.
  • Information on mouth 3 0 1 may be obtained
  • the analysis unit 2 2 uses the information of the relative distances 0 2 0 1, 0 3 0 1 acquired by the acquisition unit 2 1 to run 1 _ of both saddle-mounted vehicles 1 0 0.
  • the traveling position within 1 that is, the traveling position of the saddle-mounted vehicle 100 in the vehicle width direction
  • the analysis unit 2 2 may separate the traveling state of the saddle-mounted vehicle 100 from the biased traveling when the deviation from the center of the line 1_1 of the traveling position exceeds the reference value.
  • the bias direction may be divided by half, and the bias amount may be divided by half.
  • the analysis unit 2 2 averages the information of the relative distance ports 2 0 1 and the port 3 0 1 acquired by the acquisition unit 2 1 over time, and travels in the saddle-mounted vehicle 100 0 0. It is good to separate the positions by half.
  • the target chop 1 or the target chop 2 is a vehicle
  • the information of the relative distance openings 2 0 1, 0 3 0 1 may be acquired for a plurality of vehicles, and the average thereof may be obtained.
  • the target chop 1 and the target chop 2 are a combination of objects that tend to have different distances from the line boundary (for example, the target chopstick 1 is a vehicle 201 and the target chopstick 2 is a guard ray-. For example, if it is a curb or a curb), the relative distance obtained by the acquisition unit 2 1 using the general statistical value of the distance from the line boundary to the object 0 2 0 1, 0 3 0 1 Information may be corrected.
  • the execution ⁇ 5 2 3 executes a cruise control operation or an adaptive cruise control operation of the saddle-mounted vehicle 100 as a rider support operation.
  • the cruise control operation the saddle-type vehicle 100 runs at the target speed set by the rider (this, the behavior control device 30 uses various mechanisms (for example, brake, engine, etc.)).
  • the adaptive cruise control operation the distance between the vehicle and the preceding vehicle is maintained. In other words, in the adaptive cruise control operation, there is no preceding vehicle. In that case, the saddle-type vehicle 100 runs at the target speed set by the rider (this, the behavior control device 30 is each.
  • ⁇ 2021/260479 Controls the ⁇ (: 1 '2021 / 055152 type mechanism (for example, brake, engine, etc.), and if there is a preceding vehicle, it is below the target speed.
  • the saddle-type vehicle 100 runs at a speed aimed at maintaining the distance from the preceding vehicle (this, the behavior control device 30 controls various mechanisms (for example, brake, engine, etc.)).
  • 2 3 outputs a command to the behavior control device 30 to cause various mechanisms (for example, brake, engine, etc.) to execute the cruise control operation or the adaptive cruise control operation.
  • the execution unit 2 3 determines the running state of the preceding vehicle (for example, the relative distance to the saddle-mounted vehicle 100 0) based on the output of the ambient environment detection device 1 1 3. (Relative speed, relative acceleration, etc.) is acquired to set the target speed.
  • the distance between the vehicle and the preceding vehicle can be adjusted by the rider.
  • the execution unit 2 3 is in the analysis unit 2 2 while the saddle-mounted vehicle 100 is in the running state of the vehicle during the execution of the cruise control ⁇ -le operation or the adaptive wheel control ⁇ -le operation. If it is determined that the vehicle is running between rows (see Fig. 3), the rider support operation is executed according to the determination. Execution ⁇ 5 2 3 forcibly cancels or suspends, for example, a cruise control operation or an adaptive group control operation. In addition, the execution unit 2 3 forcibly reduces the target speed in the cruise control operation or the adaptive cruise control operation by a predetermined amount or to a predetermined value. In addition, the execution unit 2 3 forcibly switches the adaptive cruise control operation to the cruise control operation, for example.
  • the execution ⁇ 5 2 3 is a left-handed convoy 2 traveling ahead in the area used for determining the presence or absence of a preceding vehicle in the detection range of the surrounding environment detection device 1 1 3. Forced to narrow to exclude 0 0 vehicles 2 0 1 and vehicles in the right convoy 3 0 0 traveling ahead.
  • the execution unit 2 3 While the execution unit 2 3 is executing the cruise control ⁇ -le operation or the adaptive cruise control ⁇ -le operation, the analysis unit 2 2 changes the running state of the saddle-type vehicle 1 0 0. -If it is determined that the vehicle is running (see Fig. 4), the rider support operation is executed according to the determination.
  • the execution ⁇ 5 2 3 is a saddle-type vehicle in the area used for determining the presence or absence of a preceding vehicle in the detection range of the surrounding environment detection device 1 1 3.
  • the execution unit 2 3 should expand only the side where the vehicle 3 0 1 3 is located (on the right side in the example of Fig. 4). Also, the execution unit 2 3 should narrow the side where the vehicle 3 0 1 3 is not present (left side in the example of Fig. 4), and the execution unit 2 3 is the preceding vehicle (that is, the vehicle) maintained by the adaptive cruise control operation. Forcibly shorten the distance between the vehicle and 3 0 1 3) by the specified amount or to the specified value.
  • the execution unit 2 3 is the traveling position of the saddle-type vehicle 100 in the analysis unit 2 2 during the execution of the cruise control operation or the adaptive cruise control operation (see Fig. 5). ) Is analyzed, the rider-supporting operation is executed according to the analysis result. For example, in the adaptive cruise control operation, the execution unit 2 3 sets the area used for determining the presence or absence of the preceding vehicle in the detection range of the ambient environment detection device 1 1 3 by the saddle-type vehicle 100. Shift to include only the running lane 1_1. The execution unit 2 3 may shift the region according to the deviation direction and the deviation amount from the center of the line 1_1 of the traveling position of the saddle-mounted vehicle 100. In addition, when the amount of bias is stable for a predetermined period or longer, it is advisable to shift the region of the execution method 5 2 3. In addition, if the amount of bias does not exceed the reference value, the execution unit 2 3 should not shift the area.
  • the execution unit 2 3 performs a forward collision suppression operation of the saddle-mounted vehicle 100 as a rider-support operation.
  • the forward collision suppression operation is enabled, the possibility of collision with an object (for example, a vehicle, a person, an animal, an obstacle, a falling object, etc.) located in front of a saddle-type vehicle 100 is determined, and a collision is possible.
  • the warning device 40 issues a warning when the sex exceeds the standard.
  • the warning device 40 may give a warning by sound, may give a warning by display or lighting, or may give a warning by vibration. Moreover, it may be a combination thereof.
  • the warning device 40 may generate vibration as a warning by controlling various mechanisms (for example, brakes, engines, etc.) to cause the saddle-mounted vehicle 100 to instantly decelerate or accelerate. ..
  • various mechanisms for example, brakes, engines, etc.
  • the saddle-mounted vehicle 100 may automatically avoid the collision (this, the behavior control device 30 may control various mechanisms (for example, brake, engine, etc.).
  • the execution unit 2 3 obtains information on the target located in front (for example, relative distance, relative speed, relative acceleration, etc. with respect to the saddle-mounted vehicle 100). Acquire and determine the possibility of collision.
  • Warning device 40 ⁇ 2021/260479 ⁇ (: 1'2021/055152 may be installed in the saddle-mounted vehicle 100, and the equipment attached to the saddle-mounted vehicle 100 (for example, Helmet, gloves, etc.) ), It may issue a warning to the driver of another vehicle, and output a control command to the warning device of the other vehicle or equipment attached to the other vehicle. It may be a thing.
  • the execution unit 2 3 is running between the convoys in the saddle-type vehicle 100 in the analysis unit 2 2 (see Fig. 3). ) If it is separated by half, the rider support operation is executed according to the half. For example, the execution unit 2 3 sets the area used for determining the possibility of collision in the detection range of the surrounding environment detection device 1 1 3 to the vehicle 2 0 1 in the left convoy traveling ahead 2 0 1 and the front. Forcibly narrow to exclude vehicles 3 0 1 in the right-hand convoy 3 0 1 traveling in. In addition, Execution 5 2 3 forcibly prohibits deceleration of saddle-type vehicles 100 for warning or avoidance, for example. In addition, the execution ⁇ ⁇ 2 3 forcibly lowers the upper limit of the deceleration that occurs in the saddle-type vehicle 100 for warning or avoidance, for example.
  • the execution unit 2 3 is in the group driving state of the saddle-mounted vehicle 100 in the analysis unit 2 2 (see Fig. 4). If there is a half ⁇ , the rider support action is executed according to the half ⁇ . For example, the execution unit 2 3 sets the area used for determining the possibility of collision in the detection range of the ambient environment detection device 1 1 3 in a traveling row different from the traveling row to which the saddle-mounted vehicle 100 belongs. Forcibly narrow the vehicle to exclude the traveling vehicle 3 0 1 3. At that time, the execution unit 2 3 should narrow only the side where the vehicle 3 0 1 3 is located (the right side in the example of FIG. 4).
  • the execution unit 2 3 forcibly prohibits the saddle-type vehicle 100 from decelerating for warning or avoidance, for example.
  • the execution ⁇ 5 2 3 forcibly lowers the upper limit of the deceleration that occurs in the saddle-type vehicle 100 for warning or avoidance, for example.
  • the execution unit 2 3 analyzes the traveling position of the saddle-type vehicle 100 ⁇ (see Fig. 5) by the analysis unit 2 2. And, the rider-support operation is executed according to the analysis result. For example, the practice unit 2 3 covers only the range 1 _ 1 on which the saddle-type vehicle 100 runs in the area used for determining the possibility of collision in the detection range of the surrounding environment detection device 1 1 3. Shift to include.
  • Execution unit 2 3 is a saddle-mounted vehicle 1 ⁇ ⁇ 0221/260479 ⁇ (: 17132021/055152)
  • the execution unit 2 3 should not shift the area when the bias amount does not exceed the reference value.
  • the rider-support motion that the execution unit 2 3 changes according to the discrimination result in the analysis unit 2 2 is an object located behind or to the side of the saddle-mounted vehicle 100 (for example). , Vehicles, falling objects, etc.) may be a collision suppression operation. Even in such a collision suppression operation, the execution unit 2 3 may operate in the same manner as in the case of the forward collision suppression operation.
  • the execution unit 2 3 executes a blind spot traveling vehicle warning operation of the saddle-mounted vehicle 100 as a rider-assisting operation.
  • the blind spot traveling vehicle warning operation is enabled, it is determined whether or not there is rain on a vehicle located diagonally behind the saddle-mounted vehicle 100, and if there is such a vehicle, the warning device 40 issues a warning.
  • the warning device 40 may give a warning by sound, may give a warning by display or lighting, or may give a warning by vibration. Moreover, it may be a combination thereof.
  • the warning device 40 controls various mechanisms (for example, brakes, engine, etc.) to instantaneously cause the saddle-mounted vehicle 100 to decelerate or accelerate, thereby emitting vibration as a warning. May be good.
  • the execution unit 2 3 determines whether or not there is a vehicle located diagonally behind the saddle-mounted vehicle 100. In addition, instead of the surrounding environment detection device 1 1 ⁇ , the presence or absence of a vehicle located diagonally behind the saddle-type vehicle 100 is determined based on the output of the surrounding environment detection device 1 1 ⁇ , 1 1 ⁇ 1. You may.
  • the execution unit 2 3 shows that the saddle-mounted vehicle 100 is traveling between convoys in the analysis unit 2 2 (Fig. 3). (See) If it is divided into half, the rider assisting action is performed according to the half. Execution ⁇ 5 2 3 forcibly prohibits the issuance of warnings, for example. In addition, the execution ⁇ 5 2 3 is
  • Execution unit 2 3 is in a situation where the blind spot traveling vehicle warning operation is enabled, and the analysis unit 2 2 shows that the saddle-mounted vehicle 100 is running in a group. (See Fig. 4) If it is divided into half, it will execute the rider support action according to the half. Execution ⁇ 5 2 3 will forcibly prohibit the warning, for example. , Execution ⁇ 5 2 3 forcibly reduces the perception of the warning rider, for example.
  • the execution unit 2 3 is a saddle-mounted vehicle in the analysis unit 2 2 under the condition that the blind spot traveling vehicle warning operation is enabled.
  • the rider support operation is executed according to the analysis result.
  • the execution unit 2 3 sets the area used for determining the presence or absence of a vehicle in the detection range of the ambient environment detection device 1 1 to the range 1 _ 1 of the traveling position of the saddle-type vehicle 100. Shift to the opposite side of the deviation direction from the center. that time
  • Execution ⁇ 5 2 3 should determine the amount of shift according to the amount of bias. In addition, when the amount of bias is stable for a predetermined period or longer, it is advisable to shift the region of the execution method 5 2 3. In addition, if the amount of bias does not exceed the reference value, the execution method 5 2 3 should not shift the area.
  • FIG. 6 is a diagram showing an operation flow of the control device of the rider support system according to the embodiment of the present invention. The order of each step may be changed as appropriate, or another step may be appropriately added.
  • the control device 2 0 repeatedly executes the operation flow shown in FIG. 6 while the saddle-mounted vehicle 100 is running.
  • step 5 1 0 the acquisition unit 2 1 is the ambient environment detection device 1 1 3, 1 1 13 and 1 1.
  • the acquisition unit 2 1 is located on the left side target information, which is the information of the target street 1 located on the left side of the traveling line row 1_ of the saddle-mounted vehicle 100, and on the right side of the traveling line row 1_. Acquires the target information on the right side, which is the information of the target Ding 2.
  • step 5 1 0 2 the analysis ⁇ ⁇ 2 2 analyzes the running state of the saddle-type vehicle 100 based on at least one of the left target information and the right target information. ..
  • step 5 1 0 3 the execution ⁇ 52 3 executes a rider-support operation according to the analysis result of the running state in the analysis ⁇ 52 2.
  • the saddle-type vehicle 100 is driven based on the output of at least one ambient environment detector (eg, ambient environment detector 1 1 0, 1 1 d).
  • the left target information which is the information of the target street 1 located on the left side of the line lo 1_
  • the right target information which is the information of the target chop 2 located on the right side of the traveling line lo 1_
  • the running state of the saddle-type vehicle 100 is analyzed based on at least one of the left target information and the right target information, and the rider-assist operation is executed according to the analysis result. Therefore, it is possible to appropriately cope with the running peculiarities of the saddle-mounted vehicle 100.
  • the left object information is a saddle-type vehicle 1 0 0 of at least one vehicle (2 0 1 in the examples of FIGS. 3 to 5) located to the left of the traveling line lo 1_.
  • Information on the relative distance to, and the target information on the right is at least one vehicle located to the right of the traveling line 1_ (3 0 1, 3 0 1 8, 3 0 1 in the examples of FIGS. 3 to 5). It is the information of the relative distance to the saddle type vehicle 100 0. With such a configuration, the response to the driving peculiarities of the saddle-mounted vehicle 100 becomes more appropriate.
  • the relative distance information is the relative distance of the saddle-mounted vehicle 100 in the vehicle width direction (mouth 2 0 1, mouth 3 0 1, 03 0 1 3, ⁇ 3 0 in the examples of FIGS. 3 to 5). It should be the information of 1 13). With such a configuration, the response to the driving peculiarities of the saddle-mounted vehicle 100 is further ensured. ⁇ 0 2021/260479 ⁇ (: 171 2021/055152)
  • the left target information is acquired based on the output of the ambient environment detector 1 1 ⁇ having the detection range R ⁇
  • the right target information is the ambient environment detection having the detection range R ⁇ . Obtained based on the output of device 1 1 ⁇ 1. That is, the left target information and the right target information are acquired by separate detection devices. With such a configuration, unnecessary areas are suppressed from being included in the detection range, and for example, the load of arithmetic processing can be reduced and the accuracy of information can be improved.
  • the ambient environment detector 1 1 ⁇ is directed to the left side of the saddle-mounted vehicle 100, and the ambient environment detector 1 1 ⁇ 1 is located to the right side of the saddle-mounted vehicle 100. It should be aimed. By being configured in this way, information can be made accurate.
  • the analysis unit 2 2 travels between the saddle-mounted vehicle 100 and I based on the left target information and the right target information acquired by the acquisition unit 2 1. Analyze the presence or absence of. With such a configuration, the rider corresponding to the driving condition peculiar to the saddle-type vehicle 100, that is, the inter-row driving that is possible due to the extremely small size of the saddle-type vehicle 100- Support operation becomes possible.
  • the analysis unit 2 2 is used for group driving of the saddle-type vehicle 100 based on at least one of the left target information and the right target information acquired by the acquisition unit 2 1. Analyze the presence or absence. With such a configuration, the driving condition peculiar to the saddle-type vehicle 100, that is, the group driving with a high density that is possible because the saddle-type vehicle 100 is extremely small. Rider corresponding to-Support operation becomes possible.
  • the analysis unit 2 2 is based on at least one of the left target information and the right target information acquired by the acquisition unit 2 1, and the saddle-type vehicle 100 in group travel is running. Should be analyzed. With such a configuration, it corresponds to the running condition peculiar to the saddle-type vehicle 100, that is, the staggered group running that is possible because the saddle-type vehicle 100 is extremely small. Riders-Support actions are possible.
  • the analysis unit 2 2 is based on the left object information and the right object information acquired by the acquisition unit 2 1.
  • ⁇ 2021/260479 Saddle (: 1 '2021 / 055152 Saddle-type vehicle 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • the analysis unit 2 2 analyzes the deviation direction and the amount of deviation from the center of the line 1_1 of the traveling position based on the left object information and the right object information acquired by the acquisition unit 2 1. do. With such a configuration, it is possible to ensure that the vehicle can be driven at a position that is significantly deviated from the center of lane 1-1.
  • the execution unit 2 3 changes the cruise control operation or the adaptive cruise control operation of the saddle-mounted vehicle 100 according to the analysis result of the running state in the analysis unit 2 2. ..
  • the execution unit 2 3 changes the collision suppression operation of the saddle-mounted vehicle 100 according to the analysis result of the running state in the analysis unit 2 2.
  • the execution unit 2 3 changes the blind spot traveling vehicle warning operation of the saddle-mounted vehicle 100 according to the analysis result of the traveling state by the analysis unit 2 2.
  • the need for information optimization is particularly high. In other words, it is useful for temples to analyze the running state of the saddle-type vehicle 100 based on the left object information and the right object information.
  • the embodiments of the present invention are not limited to the above description. That is, the present invention includes a form obtained by modifying the embodiment described above. Further, the present invention includes a form in which only a part of the embodiments described above is carried out, or a form in which the embodiments are combined.
  • Rider-Assistance system 1 1 3, 1 1 ⁇ , 1 1 0, 1 1 ⁇ 1 Ambient environment detector, 1 2 Traveling condition detector, 20 Control device, 2 1 Acquisition unit, 2 2 Analysis unit, 2 3 Execution unit, 3 0 Behavior control device, 4 0 Warning device, 1 0 0 Saddle-type vehicle, 2 0 0, 3 0 0 Vehicle line, 1 1 0, 2 0 1, 3 0 1, 3 0 1 3 , 3 0 1 ⁇ Vehicle, Ding 1, Ding 2 Target, Mouth 1_ Driving Line, 1_ 1, 1_ 2, 1_ 3 Lane, 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、鞍乗型車両の走行の特殊性に対応し得る制御装置を得るものである。また、そのような制御装置を備えているライダー支援システムを得るものである。また、鞍乗型車両の走行の特殊性に対応し得る制御方法を得るものである。 少なくとも1つの周囲環境検出装置(11c、11d) の出力に基づいて、鞍乗型車両(100)の走行ライン(DL)の左方に位置する対象(T1)の情報である左方対象情報と、その走行ライン(DL)の右方に位置する対象(T2)の情報である右方対象情報と、が取得され、左方対象情報及び右方対象情報の少なくとも一方に基づいて鞍乗型車両(100)の走行状態が解析され、その解析結果に応じたライダー支援動作が実行される。

Description

〇 2021/260479 卩(:1' 2021/055152
【書類名】明細書
【発明の名称】鞍乗型車両の制御装置、ライダ-支援システム、及び、鞍乗型車両の制御方法 【技術分野】
[ 0 0 0 1 ] 本発明は、少なくとも 1つの周囲環境検出装置が搭載された鞍乗型車両の制御装置と、その制御 装置を備えているライダ-支援システムと、少なくとも 1つの周囲環境検出装置が搭載された鞍乗型車 両の制御方法と、に関する。
【背景技術】
[ 0 0 0 2 ] 従来の鞍乗型車両として、周囲環境検出装置が搭載されたものがある。周囲環境検出装置の出力 に基づいて、鞍乗型車両の走行ライン上の前方に位置する対象の情報が取得される (例えば、特許文 献 1) 。
【先行技術文献】
【特許文献】
[ 0 0 0 3 ]
【特許文献 1】特開 2 0 0 9 — 1 1 6 8 8 2号公報 【発明の概要】
【発明が解決しようとする課題】
[ 0 0 0 4 ] 鞍乗型車両は、他の車両 (例えば、乗用車、 トラック等) と比較して格段小型である。そのため、鞍 乗型車両は、他の車両では想定されない特殊な走行が可能である。一方、従来の鞍乗型車両では、 周囲環境検出装置の出力に基づいて、鞍乗型車両の走行ライン上の前方に位置する対象の情報が取 得される。そのような情報では、鞍乗型車両の走行の特殊性に適切に対応することが困難となる場合が 生じ得る。
[ 0 0 0 5 ] 〇 2021/260479 卩(:1' 2021/055152 本発明は、上述の課題を背景としてなされたものであり、鞍乗型車両の走行の特殊性に対応し得る 制御装置を得るものである。また、そのような制御装置を備えているライダー支援システムを得るものである 。また、鞍乗型車両の走行の特殊性に対応し得る制御方法を得るものである。
【課題を角军決するための手段】
[ 0 0 0 6 ] 本発明に係る制御装置は、少なくとも 1つの周囲環境検出装置が搭載された鞍乗型車両の制御 装置であって、前記鞍乗型車両のライダ-を支援するライダ-支援動作を実行する実行部を備えており、 更に、前記周囲環境検出装置の出力に基づいて、前記鞍乗型車両の走行ラインの左方に位置する対 象の情報である左方対象情報と、該走行ラインの右方に位置する対象の情報である右方対象情報と、 を取得する取得部と、前記取得部で取得された前記左方対象情報及び前記右方対象情報の少なく とも一方に基づいて、前記鞍乗型車両の走行状態を解析する解析部と、を備えており、前記実行部は 、前記解析部での前記走行状態の解析結果に応じた前記ライダ-支援動作を実行する。
[ 0 0 0 7 ] 本発明に係るライダー支援システムは、上述の制御装置を備えているものである。
[ 0 0 0 8 ] 本発明に係る制御方法は、少なくとも 1つの周囲環境検出装置が搭載された鞍乗型車両の制御 方法であって、制御装置の実行部が、前記鞍乗型車両のライダ-を支援するライダ-支援動作を実行す る実行ステップを備えており、更に、前記制御装置の取得部が、前記周囲環境検出装置の出力に基づ いて、前記鞍乗型車両の走行ラインの左方に位置する対象の情報である左方対象情報と、該走行ライ ンの右方に位置する対象の情報である右方対象情報と、を取得する取得ステップと、前記制御装置の 解析部が、前記取得ステップで取得された前記左方対象情報及び前記右方対象情報の少なくとも一 方に基づいて、前記鞍乗型車両の走行状態を解析する解析ステップと、を備えており、前記実行ステッ プでは、前記実行部が、前記解析ステップでの前記走行状態の解析結果に応じた前記ライダ-支援動 作を実行する。
【発明の効果】 〇 2021/260479 卩(:1' 2021/055152
[ 0 0 0 9 ] 本発明に係る制御装置、ライダ-支援システム、及び、制御方法では、少なくとも 1つの周囲環境検 出装置の出力に基づいて、鞍乗型車両の走行ラインの左方に位置する対象の情報である左方対象情 報と、その走行ラインの右方に位置する対象の情報である右方対象情報と、が取得され、左方対象情 報及び右方対象情報の少なくとも一方に基づいて鞍乗型車両の走行状態が解析され、その解析結果 に応じたライダー支援動作が実行される。そのため、鞍乗型車両の走行の特殊性に適切に対応すること が可能となる。
【図面の簡単な説明】
[ 0 0 1 0 ]
【図 1】本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両への搭載状態を示す図であ る
【図 2】本発明の実施の形態に係るライダー支援システムの、システム構成を示す図である。
【図 3】本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両が車列間走行を行う状況 下での周囲環境検出装置の検出状態を示す図である。
【図 4】本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両がグル-プ走行を行う状況 下での周囲環境検出装置の検出状態を示す図である。
【図 5】本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両がレ-ン内で偏り走行を行う 状況下での周囲環境検出装置の検出状態を示す図である。
【図 6】本発明の実施の形態に係るライダー支援システムの、制御装置の動作フローを示す図である。 【発明を実施するための形態】
[ 0 0 1 1】 以下に、本発明に係る制御装置、ライダ-支援システム、及び、制御方法について、図面を用いて説 明する。
[ 0 0 1 2 ] なお、以下で説明する構成、動作等は、一例であり、本発明に係る制御装置、ライダ-支援システム、 〇 2021/260479 卩(:1' 2021/055152 及び、制御方法は、そのような構成、動作等である場合に限定されない。
【0 0 1 3】 例えば、以下では、本発明に係るライダ-支援システムが、 自動二輪車に用いられる場合を説明してい るが、本発明に係るライダ-支援システムが、 自動二輪車以外の他の鞍乗型車両に用いられてもよい。鞍 乗型車両は、例えば、モ-タサイクル (自動二輪車、 自動三輪車) 、パギ-、 自転車等である。モ -タサ イクルには、エンジンを谁進源とする車両、電気モータを谁進源とする車両等が含まれ、例えば、才ートパイ 、スクーター、電動スクーター等が含まれる。また、 自転車は、ペダルに付与されるライダーの踏力によって路上 を谁進することが可能な乗物全般を意味する。 自転車には、普通自転車、電動アシスト自転車、電動 自転車等が含まれる。
[ 0 0 1 4 ] また、以下では、同一の又は類似する説明を適宜簡略化又は省略している。また、各図において、同 一の又は類似する咅5分については、同一の符号を付すか又は符号を付すことを省略している。また、細か い構造については、適宜図示を簡略化又は省略している。
[ 0 0 1 5 ] 実施の形態. 以下に、実施の形態に係るライダー支援システムを説明する。
[ 0 0 1 6 ]
<ライダー支援システムの構成> 実施の形態に係るライダー支援システムの構成について説明する。 図 1は、本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両への搭載状態を示す図で ある。図 2は、本発明の実施の形態に係るライダー支援システムの、システム構成を示す図である。図 3は 、本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両が車列間走行を行う状況下での周 囲環境検出装置の検出状態を示す図である。図 4は、本発明の実施の形態に係るライダ-支援システ ムの、鞍乗型車両がグル-プ走行を行う状況下での周囲環境検出装置の検出状態を示す図である。 図 5は、本発明の実施の形態に係るライダ-支援システムの、鞍乗型車両がレ-ン内で偏り走行を行う 状況下での周囲環境検出装置の検出状態を示す図である。
[ 0 0 1 7 ] 図 1〜図 5に示されるように、ライダー支援システム 1は、鞍乗型車両 1 0 0に搭載される。ライダー支 〇 2021/260479 卩(:1' 2021/055152 援システム 1は、鞍乗型車両 1 0 0の前方の周囲環境情報を出力する周囲環境検出装置 1 1 3と 、鞍乗型車両 1 0 0の後方の周囲環境情報を出力する周囲環境検出装置 1 1 [3と、鞍乗型車両 1 0 0の左方の周囲環境情報を出力する周囲環境検出装置 1 1 0と、鞍乗型車両 1 0 0の右方 の周囲環境情報を出力する周囲環境検出装置 1 1 と、鞍乗型車両 1 0 0の走行状態情報を出 力する走行状態検出装置 1 2と、制御装置 (巳 (3 II) 2 0と、を含む。
[ 0 0 1 8 ] ライダ-支援システム 1は、必要に応じて、周囲環境検出装置 1 1 3、 1 1 匕、 1 1 。、 1 1 ¢1から 出力された周囲環境情報を用いて、鞍乗型車両 1 0 〇のライダ-を支援するためのライダ-支援動作を 実行する。制御装置 2 0には、必要に応じて、他の情報 (例えば、ライダ-によるブレ-キ操作状態の情 報、ライダ-によるアクセル操作状態の情報等) を出力するための各種検出装置 (図示省略) の検出 結果も入力される。ライダー支援システム 1の各咅5は、ライダー支援システム 1に専ら用いられるものであっ てもよく、また、他のシステムと共用されるものであってもよい。
[ 0 0 1 9 ] 周囲環境検出装置 1 1 3、 1 1 [3、 1 1 。、 1 1 ¢1は、それぞれ、例えば、レ-ダ-、 1_ I ¢1 3 「セ ンサ、超音波センサ、カメラ等である。周囲環境検出装置 1 1 3は、鞍乗型車両 1 0 0の前咅5(こ設け られ、鞍乗型車両 1 0 0の走行ラインロ 1_上の前方に向けられている。周囲環境検出装置 1 1 [3は、 鞍乗型車両 1 0 0の後咅5(こ設けられ、鞍乗型車両 1 0 0の走行ラインロ 1_上の後方に向けられている 。周囲環境検出装置 1 1 0は、鞍乗型車両 1 0 0の側部に設けられ、鞍乗型車両 1 0 0の走行ラ インロ 1_の左方に向けられている。周囲環境検出装置 1 1 ¢1は、鞍乗型車両 1 0 0の側咅5(こ設けられ 、鞍乗型車両 1 0 0の走行ラインロ 1_の右方に向けられている。周囲環境検出装置 1 1 0が 1つであ ってもよく、また、鞍乗型車両 1 0 0の斜め前方を検出範囲 R 0とする周囲環境検出装置 1 1 0と、 鞍乗型車両 1 0 0の斜め後方を検出範囲 R 0とする別の周囲環境検出装置 1 1 0と、の両方が設 けられていてもよい。周囲環境検出装置 1 1 ¢1が 1つであってもよく、また、鞍乗型車両 1 0 0の斜め前 方を検出範囲 R ¢1とする周囲環境検出装置 1 1 ¢1と、鞍乗型車両 1 0 0の斜め後方を検出範囲 R
¢1とする別の周囲環境検出装置 1 1 ¢1と、の両方が設けられていてもよい。また、周囲環境検出装置 1 \¥02021/260479 卩(:17132021/055152
1 0及び周囲環境検出装置 1 1 ¢1の少なくとも一部が、周囲環境検出装置 1 1 3又は周囲環境 検出装置 1 1 [3で代用されていてもよい。なお、走行ラインロ 1_は、鞍乗型車両 1 0 0の過去又は未 来の走行軌跡である。
[ 0 0 2 0 ] 走行状態検出装置 1 2は、車速センサと、慣性センサ
Figure imgf000008_0001
と、を含む。車速センサは、鞍乗 型車両 1 0 0に生じている車速を検出する。慣性センサは、鞍乗型車両 1 0 0に生じている 3軸の加 速度及び 3軸 (口-ル、ピッチ、ヨ -) の角速度を検出する。走行状態検出装置 1 2が、鞍乗型車両 1 0 0に生じている車速と、鞍乗型車両 1 0 0に生じている 3軸の加速度及び 3軸の角速度と、に実 質的に換算可能な他の物理量を検出するものであってもよい。また、慣性センサが、 3軸の加速度及び 3 軸の角速度の一咅5のみを検出するものであってもよい。また、必要に応じて、車速センサ及び慣性センサ の少なくとも一方が省略されてもよく、また、他のセンサが追加されてもよい。
[ 0 0 2 1 ] 制御装置 2 0は、少なくとも、取得部 2 1と、解析部 2 2と、実行部 2 3と、を含む。制御装置 2 0 の各咅5は、 1つの筐体に纏めて設けられていてもよく、また、複数の筐体に分けられて設けられていてもよ い。また、芾 I】御装置 2 0の一咅5又は全ては、例えば、マイコン、マイク □プロセッサユニット等で構成されても よく、また、ファームウエア等の更新可能なもので構成されてもよく、また、 0 II等からの指令によって実行 されるプログラムモジュール等であってもよい。
[ 0 0 2 2 ] 取得部 2 1は、周囲環境検出装置 1 1 3、 1 1 匕、 1 1 〇、 1 1 ¢1の出力に基づいて、鞍乗型車 両 1 0 0の周辺に位置する対象の情報を取得する。特に、取得部 2 1は、鞍乗型車両 1 0 0の走行 ラインロ 1_の左方に位置する対象丁 1の情報である左方対象情報と、その走行ラインロ 1_の右方に位 置する対象丁 2の情報である右方対象情報と、を取得する。また、解析部 2 2は、左方対象情報及び 右方対象情報の少なくとも一方に基づいて、鞍乗型車両 1 0 〇の走行状態を解析する。実行部 2 3 は、解析部 2 2での走行状態の解析結果に応じたライダ-支援動作を実行する。
[ 0 0 2 3 ] 〇 2021/260479 卩(:1' 2021/055152 一例として、図 3に示されるように、鞍乗型車両 1 0 0が左方車列 2 0 0と右方車列 3 0 0の間を 走行する車列間走行を行う状況下で、取得部 2 1は、周囲環境検出装置 1 1 〇、 1 1 ¢1の出力に 基づいて、鞍乗型車両 1 0 0の走行ラインロ 1_の左方に位置する対象丁 1の情報である左方対象情 報と、鞍乗型車両 1 0 0の走行ラインロ 1_の右方に位置する対象丁 2の情報である右方対象情報と 、を取得する。左方対象情報として、鞍乗型車両 1 0 0の左方を走行する車両 2 0 1の鞍乗型車両 1 0 0に対する相対距離口 2 0 1の情報が取得される。また、右方対象情報として、鞍乗型車両 1 0 0 の右方を走行する車両 3 0 1の鞍乗型車両 1 0 0に対する相対距離 0 3 0 1の情報が取得され る。取得部 2 1は、相対距離口 2 0 1 , 0 3 0 1の情報として、鞍乗型車両 1 0 0の車幅方向での £巨離を取得してもよく、また、その車幅方向に対して所定の角度をなす方向での £巨離を取得してもよく、ま た、鞍乗型車両 1 0 0の車幅方向の中心からの £巨離を取得してもよく、また、鞍乗型車両 1 0 0の側 面からの £巨離を取得してもよく、また、車両 2 0 1 , 3 0 1の側面までの £巨離を取得してもよく、また、車 両 2 0 1、 3 0 1の車幅方向の中心までの £巨離を取得してもよく、また、それらに実質的に換算可能な 他の物理量を取得してもよい。なお、車列間走行では、鞍乗型車両 1 0 0が、車両 2 0 1又は車両 3 0 1と異なる速度で走行していてもよく、また、同一の速度で走行していてもよい。鞍乗型車両 1 0 0が 、車両 2 0 1及び車両 3 0 1と異なる速度で車列間走行を行う場合 (例えば、左方車列 2 0 0と 右方車列 3 0 0の間をすり抜ける場合等) (こは、取得部 2 1は、鞍乗型車両 1 0 0に対する車両 2 0 1 , 3 0 1の相対距離口 2 0 1 , 0 3 0 1の情報を取得した後に、左方車列 2 0 0に属する他の 車両 2 0 1の相対距離 0 2 0 1の情報、及び、右方車列 3 0 0に属する他の車両 3 0 1の相対距 離口 3 0 1の情報を取得することとなる。
[ 0 0 2 4 ] 解析部 2 2は、取得部 2 1で取得された相対距離 0 2 0 1 , 0 3 0 1の情報が、車両 2 0 1、 3 0 1が鞍乗型車両 1 0 0に対して基準値を下回る近さで存在することを示す情報である場合に、鞍乗 型車両 1 0 0の走行状態が車列間走行であると判別する。解析部 2 2が、鞍乗型車両 1 0 0の左 右両側において基準値を下回る近さで車両 2 0 1 , 3 0 1が存在することが、所定期間以上継続する 場合に、又は、所定時間間隔以下で所定回数以上繰り返される場合に、鞍乗型車両 1 0 0の走行 〇 2021/260479 卩(:1' 2021/055152 状態が車歹〇間走行であると半 するとよい。また、解析部 2 2は、鞍乗型車両 1 0 0の左右両側にお いて基準値を下回る近さで車両 2 0 1 , 3 0 1が存在しないことが、所定時間以上継続するまで、鞍 乗型車両 1 0 0の走行状態が車列間走行であるとの判別を維持するとよい。
[0 0 2 5] 一例として、図 4に示されるように、鞍乗型車両 1 0 0がレーン 1_ 1において他の車両 1 1 0 , 3 0 1 3 , 3 0 1 [3とグル-プ走行を行う状況下で、取得部 2 1は、周囲環境検出装置 1 1 〇、 1 1 の 出力に基づいて、鞍乗型車両 1 0 0の走行ラインロ 1_の左方に位置する対象丁 1の情報である左方 対象情報と、鞍乗型車両 1 0 0の走行ラインロ 1_の右方に位置する対象丁 2の情報である右方対象 情報と、を取得する。左方対象情報として、鞍乗型車両 1 0 0の左方を走行する車両 2 0 1の鞍乗 型車両 1 0 0に対する相対距離口 2 0 1の情報が取得される。また、右方対象情報として、鞍乗型 車両 1 0 0の右方を走行する車両 3 0 1 3 , 3 0 1 13の鞍乗型車両 1 0 0に対する相対距離口 3 0 1 3、 口 3 0 1 匕の情報が取得される。取得部 2 1は、相対距離 0 2 0 1 , 03 0 1 3 , 03 0 1 13の情報として、鞍乗型車両 1 0 0の車幅方向での距離を取得してもよく、また、その車幅方向に対 して所定の角度をなす方向での距離を取得してもよく、また、鞍乗型車両 1 0 0の車幅方向の中心から の £巨離を取得してもよく、また、鞍乗型車両 1 0 0の側面からの £巨離を取得してもよく、また、車両 2 0 1 、 3 0 1 3、 3 0 1 匕の側面までの £巨離を取得してもよく、また、車両 2 0 1、 3 0 1 3、 3 0 1 匕 の車幅方向の中心までの距離を取得してもよく、また、それらに実質的に換算可能な他の物理量を取得 してもよい。なお、鞍乗型車両 1 0 0のグル-プ走行における走行列が右側である場合には、左方対象 情報として、鞍乗型車両 1 0 0の左方を走行する少なくとも 2つの車両の鞍乗型車両 1 0 0に対する 相対距離の情報が取得されればよい。
[00 26] 解析部 2 2は、取得部 2 1で取得された相対距離 02 0 1 , 03 0 1 3 , 03 0 ^の情報が、 鞍乗型車両 1 0 0の走行ラインロ 1_の片側に鞍乗型車両 1 0 0に対する相対距離が基準値を下回 る車両 3 0 1 3 , 3 0 1 13が複数存在することを示す情報である場合に、鞍乗型車両 1 0 0の走行 状態がグループ走行であると半 ^別する。その基準値が、相対距離口 2 0 1より小さい値に設定されるとよ 〇 2021/260479 卩(:1' 2021/055152 い。また、解析咅5 2 2は、その複数の車両 3 0 1 3 , 3 0 1 匕が走行ラインロ 1_のどちらにあるかの情報 を用いて、グル-プ走行での鞍乗型車両 1 0 0の走行歹 0を半 ^別する。解析部 2 2は、鞍乗型車両 1 0 0 の走行ラインロ 1_の片側に鞍乗型車両 1 0 0に対する相対距離が基準値を下回る車両 3 0 1 3、 3 0 1 匕が複数存在することが所定期間以上継続する場合に、鞍乗型車両 1 0 0の走行状態がグル -プ走行であると半 ^別するとよい。また、解析咅5 2 2は、鞍乗型車両 1 0 0の走行ラインロ 1_の片側に 鞍乗型車両 1 0 0に対する相対距離が基準値を下回る車両 3 0 1 3 , 3 0 1 13が複数存在しない ことが所定時間以上継続するまで、鞍乗型車両 1 0 0の走行状態がグル-プ走行であるとの半 ^別を維 寺するとよい。
[ 0 0 2 7 ] 一例として、図 5に示されるように、鞍乗型車両 1 0 0がレ-ン 1_ 1内で偏り走行を行う状況下で、取 得部 2 1は、周囲環境検出装置 1 1 〇、 1 1 ¢1の出力に基づいて、鞍乗型車両 1 0 0の走行ライン 口 1_の左方に位置する対象丁 1の情報である左方対象情報と、鞍乗型車両 1 0 0の走行ラインロ 1_ の右方に位置する対象丁 2の情報である右方対象情報と、を取得する。左方対象情報として、鞍乗型 車両 1 0 0の左方を走行する車両 2 0 1の鞍乗型車両 1 0 0に対する相対距離 0 2 0 1の情報が 取得される。また、右方対象情報として、鞍乗型車両 1 0 0の右方を走行する車両 3 0 1の鞍乗型 車両 1 0 0に対する相対距離 0 3 0 1の情報が取得される。取得部 2 1は、相対距離 0 2 0 1 , 0 3 0 1の情報として、鞍乗型車両 1 0 0の車幅方向での距離を取得してもよく、また、その車幅方向に 対して所定の角度をなす方向での距離を取得してもよく、また、鞍乗型車両 1 0 0の車幅方向の中心か らの £巨離を取得してもよく、また、鞍乗型車両 1 0 0の側面からの £巨離を取得してもよく、また、車両 2 0 1 、 3 0 1の側面までの距離を取得してもよく、また、車両 2 0 1 , 3 0 1の車幅方向の中心までの距 離を取得してもよく、また、それらに実質的に換算可能な他の物理量を取得してもよい。なお、偏り走行で は、鞍乗型車両 1 0 0が、車両 2 0 1又は車両 3 0 1と異なる速度で走行していてもよく、また、同一 の速度で走行していてもよい。鞍乗型車両 1 0 0が、車両 2 0 1及び車両 3 0 1と異なる速度で偏り 走行を行う場合には、取得部 2 1は、鞍乗型車両 1 0 0に対する車両 2 0 1 , 3 0 1の相対距離口 2 0 1 , 0 3 0 1の情報を取得した後に、左方レ-ン1_ 2を走行する他の車両 2 0 1の相対距離口 2 〇 2021/260479 卩(:1' 2021/055152
0 1の情報、及び、右方レ-ン1_ 3を走行する他の車両 3 0 1の相対距離口 3 0 1の情報を取得する こととなる。なお、対象丁 1が、道路設備 (例えば、ガ-ドレ-ル、縁石、 レ-ン境界線等) であり、左方 対象情報として、鞍乗型車両 1 0 0のその道路設備に対する相対距離口 2 0 1の情報が取得されて もよい。また、対象丁 2が、道路設備 (例えば、ガ-ドレ-ル、縁石、レ-ン境界線等) であり、右方対象 情報として、鞍乗型車両 1 0 0のその道路設備に対する相対距離口 3 0 1の情報が取得されてもよい
[ 0 0 2 8 ] 解析部 2 2は、取得部 2 1で取得された相対距離 0 2 0 1 , 0 3 0 1の情報を用いて、鞍乗型車 両 1 0 0のレ-ン 1_ 1内での走行位置 (つまり、鞍乗型車両 1 0 0の車幅方向での走行位置) を解 析する。解析部 2 2は、その走行位置のレ-ン 1_ 1の中心からの偏りが基準値を超える場合に、鞍乗型 車両 1 0 0の走行状態が偏り走行であると半 ^別してもよく、また、その偏り方向を半 ^別してもよく、また、そ の偏り量を半 ^別してもよい。解析部 2 2が、取得部 2 1で取得された相対距離口 2 0 1、 口 3 0 1の 情報を時間平均して、鞍乗型車両 1 〇 0のレ-ン1_ 1内での走行位置を半 ^別するとよい。対象丁 1又 は対象丁 2が車両である場合には、複数の車両に対して相対距離口 2 0 1 , 0 3 0 1の情報が取得 され、その平均が求められてもよい。また、対象丁 1と対象丁 2が、 レ-ン境界からの距離が異なる傾向と なる物の組み合わせである場合 (例えば、対象丁 1が車両 2 0 1で、対象丁 2がガ-ドレ-ル又は縁石 である場合等) には、レ-ン境界からその物までの距離の一般的な統計値を用いて、取得部 2 1で取得 された相対距離 0 2 0 1 , 0 3 0 1の情報が補正されてもよい。
[ 0 0 2 9 ] 一例として、実行咅5 2 3は、ライダー支援動作として、鞍乗型車両 1 0 0のクルーズコントロール動作 又はアダプティブクルーズコント □—ル動作を実行する。クルーズコント □—ル動作では、ライダーによって設定さ れた目標速度で鞍乗型車両 1 0 0が走行するよう(こ、挙動制御装置 3 0が各種機構 (例えば、ブレ -キ、エンジン等) を芾 I】御する。アダプティブクルーズコントロール動作では、そのような芾 I】御にカロえて、先行車 との車間の維持が図られる。つまり、アダプティブクル-ズコントロ-ル動作では、先行車が居ない場合には、 ライダ-によって設定された目標速度で鞍乗型車両 1 0 0が走行するよう(こ、挙動制御装置 3 0が各 〇 2021/260479 卩(:1' 2021/055152 種機構 (例えば、ブレ-キ、エンジン等) を制御し、先行車が居る場合には、その目標速度以下であって
、且つ、先行車との車間の維持を目指す速度で鞍乗型車両 1 0 0が走行するよう(こ、挙動制御装置 3 0が各種機構 (例えば、ブレーキ、エンジン等) を制御する。実行部 2 3は、各種機構 (例えば、ブレ —キ、エンジン等) にクルーズコント □—ル動作又はアダプティブクルーズコント □—ル動作を実行させるための芾1】 御指令を、挙動制御装置 3 0に出力する。アダプティブクル-ズコントロ-ル動作において、実行部 2 3は 、周囲環境検出装置 1 1 3の出力に基づいて、先行車の走行状態 (例えば、鞍乗型車両 1 0 0に 対する相対距離、相対速度、相対加速度等) を取得して、 目標速度を設定する。また、先行車との車 間は、ライダーによって調整が可能である。
[ 0 0 3 0 ] 実行部 2 3は、クル-ズコント □-ル動作又はアダプティブクル-ズコント □-ル動作の実行中に、解析部 2 2で鞍乗型車両 1 0 0の走行状態が車列間走行 (図 3参照) であると判別されると、その判別に 応じたライダー支援動作を実行する。実行咅5 2 3は、例えば、クルーズコントロール動作又はアダプティブク ル-ズコントロ-ル動作を強制的に解除又は中断する。また、実行部 2 3は、例えば、クル-ズコントロ-ル 動作又はアダプティブクル-ズコントロ-ル動作での目標速度を強制的に所定量だけ又は所定値に低下さ せる。また、実行部 2 3は、例えば、アダプティブクルーズコントロール動作を強制的にクルーズコントロール動 作に切り替える。また、実行咅5 2 3は、例えば、アダプティブクルーズコントロール動作において、周囲環境 検出装置 1 1 3の検出範囲のうちの先行車の有無判定に用いられる領域を、前方を走行する左方車 列 2 0 0の車両 2 0 1及び前方を走行する右方車列 3 0 0の車両 3 0 1を除外すべく強制的に狭 める。
[ 0 0 3 1 ] 実行部 2 3は、クル-ズコント □-ル動作又はアダプティブクル-ズコント □-ル動作の実行中に、解析部 2 2で鞍乗型車両 1 0 0の走行状態がグル-プ走行 (図 4参照) であると判別されると、その判別に 応じたライダー支援動作を実行する。実行咅5 2 3は、例えば、アダプティブクルーズコントロール動作において 、周囲環境検出装置 1 1 3の検出範囲のうちの先行車の有無判定に用いられる領域を、鞍乗型車両
1 0 0が属する走行歹 0と異なる走行歹 0でグループ走行する車両 3 0 1 3を含むべく強制的に広げる。そ 〇 2021/260479 卩(:1' 2021/055152 の際、実行部 2 3は、その車両 3 0 1 3が居る側 (図 4の例では右側) のみを広げるとよい。また、実 行部 2 3は、その車両 3 0 1 3が居ない側 (図 4の例では左側) を狭めるとよい。また、実行部 2 3 は、アダプティブクル-ズコントロ-ル動作で維持される先行車 (つまり車両 3 0 1 3) との車間を強制的 に所定量だけ又は所定値に短くする。
[ 0 0 3 2 ] 実行部 2 3は、クル-ズコントロ-ル動作又はアダプティブクル-ズコントロ-ル動作の実行中に、解析部 2 2で鞍乗型車両 1 0 0の走行位置 (図 5参照) が解析されると、その解析結果に応じたライダ-支 援動作を実行する。実行部 2 3は、例えば、アダプティブクル-ズコントロ-ル動作において、周囲環境検 出装置 1 1 3の検出範囲のうちの先行車の有無判定に用いられる領域を、鞍乗型車両 1 0 0が走行 するレ-ン 1_ 1のみを含むべくずらす。実行部 2 3は、鞍乗型車両 1 0 0の走行位置のレ-ン 1_ 1の中 心からの偏り方向及び偏り量に応じて、その領域をずらすとよい。また、実行咅5 2 3は、その偏り量が所定 期間以上に亘って安定している場合に、その領域をずらすとよい。また、実行部 2 3は、偏り量が基準値 を上回らない場合に、その領域をずらさないとよい。
[ 0 0 3 3 ] 一例として、実行部 2 3は、ライダ-支援動作として、鞍乗型車両 1 0 0の前方衝突抑制動作を実 行する。前方衝突抑制動作が有効化されると、鞍乗型車両 1 0 0の前方に位置する対象 (例えば、 車両、人、動物、障害物、落下物等) に対する衝突可能性が判定され、衝突可能性が基準を上回る ±易合に警告装置 4 0が警告を発する。警告装置 4 0は、音によって警告を発するものであってもよく、ま た、表示、又は点灯によって警告を発するものであってもよく、また、振動によって警告を発するものであっても よく、また、それらの組み合わせであってもよい。警告装置 4 0は、各種機構 (例えば、ブレーキ、エンジン 等) を制御して鞍乗型車両 1 0 0に瞬時的に減速又は加速を生じさせることで、警告としての振動を発 してもよい。前方衝突抑制動作において、鞍乗型車両 1 0 0が自動で衝突を回避するよう(こ、挙動制 御装置 3 0が各種機構 (例えば、ブレ-キ、エンジン等) を制御してもよい。実行部 2 3は、周囲環境 検出装置 1 1 3の出力に基づいて、前方に位置する対象の情報 (例えば、鞍乗型車両 1 0 0に対す る相対距離、相対速度、相対加速度等) を取得して、衝突可能性を判定する。なお、警告装置 4 0 〇 2021/260479 卩(:1' 2021/055152 は、鞍乗型車両 1 0 0に設けられていてもよく、また、鞍乗型車両 1 0 0に付随する備品 (例えば、へ ルメット、グローブ等) に設けられていてもよく、また、他の車両の運転者に警告を発するものであってもよく、 また、他の車両又は他の車両に付随する備品の警告装置に制御指令を出力するものであってもよい。
[ 0 0 3 4 ] 実行部 2 3は、前方衝突抑制動作が有効化されている状況下で、解析部 2 2で鞍乗型車両 1 0 〇の走行状態が車列間走行 (図 3参照) であると半 ^別されると、その半 ^別に応じたライダー支援動作を 実行する。実行部 2 3は、例えば、周囲環境検出装置 1 1 3の検出範囲のうちの衝突可能性の判定 に用いられる領域を、前方を走行する左方車列 2 0 0の車両 2 0 1及び前方を走行する右方車列 3 0 0の車両 3 0 1を除外すべく強制的に狭める。また、実行咅5 2 3は、例えば、警告又は回避のために 鞍乗型車両 1 0 0に減速度が生じることを強制的に禁止する。また、実行咅^ 2 3は、例えば、警告又 は回避のために鞍乗型車両 1 0 0に生じる減速度の上限値を強制的に低下させる。
[ 0 0 3 5 ] 実行部 2 3は、前方衝突抑制動作が有効化されている状況下で、解析部 2 2で鞍乗型車両 1 0 〇の走行状態がグループ走行 (図 4参照) であると半 ^別されると、その半 ^別に応じたライダー支援動作を 実行する。実行部 2 3は、例えば、周囲環境検出装置 1 1 3の検出範囲のうちの衝突可能性の判定 に用いられる領域を、鞍乗型車両 1 〇 〇が属する走行列と異なる走行列でグル-プ走行する車両 3 0 1 3を除外すべく強制的に狭める。その際、実行部 2 3は、その車両 3 0 1 3が居る側 (図 4の例で は右側) のみを狭めるとよい。また、実行部 2 3は、例えば、警告又は回避のために鞍乗型車両 1 0 0 に減速度が生じることを強制的に禁止する。また、実行咅5 2 3は、例えば、警告又は回避のために鞍乗 型車両 1 0 0に生じる減速度の上限値を強制的に低下させる。
[ 0 0 3 6 ] 実行部 2 3は、前方衝突抑制動作が有効化されている状況下で、解析部 2 2で鞍乗型車両 1 0 〇の走行位置 (図 5参照) が解析されると、その解析結果に応じたライダ-支援動作を実行する。実 行部 2 3は、例えば、周囲環境検出装置 1 1 3の検出範囲のうちの衝突可能性の判定に用いられる 領域を、鞍乗型車両 1 0 0が走行するレ-ン 1_ 1のみを含むべくずらす。実行部 2 3は、鞍乗型車両 1 \¥02021/260479 卩(:17132021/055152
0 0の走行位置のレーン1_ 1の中心からの偏り方向及び偏り量に応じて、その領域をずらすとよい。また、 実行咅5 2 3は、その偏り量が所定期間以上に亘って安定している場合に、その領域をずらすとよい。また、 実行部 2 3は、偏り量が基準値を上回らない場合に、その領域をずらさないとよい。
[ 0 0 3 7 ] なお、実行部 2 3が解析部 2 2での判別結果に応じて変化させるライダ-支援動作が、鞍乗型車両 1 0 0の後方又は側方に位置する対象 (例えば、車両、落下物等) に対する衝突抑制動作であって もよい。そのような衝突抑制動作においても、実行部 2 3が、前方衝突抑制動作の場合と同様に動作 するとよい。
[ 0 0 3 8 ] 一例として、実行部 2 3は、ライダ-支援動作として、鞍乗型車両 1 0 0の死角走行車両警告動作 を実行する。死角走行車両警告動作が有効化されると、鞍乗型車両 1 0 0の斜め後方に位置する車 雨の有無が判定され、そのような車両が有る場合に警告装置 4 0が警告を発する。警告装置 4 0は、 音によって警告を発するものであってもよく、また、表示、又は点灯によって警告を発するものであってもよく、ま た、振動によって警告を発するものであってもよく、また、それらの組み合わせであってもよい。警告装置 4 0 は、各種機構 (例えば、ブレ-キ、エンジン等) を制御して鞍乗型車両 1 0 0に瞬時的に減速又は加 速を生じさせることで、警告としての振動を発してもよい。実行部 2 3は、周囲環境検出装置 1 1 匕の 出力に基づいて、鞍乗型車両 1 0 0の斜め後方に位置する車両の有無を判定する。なお、周囲環境 検出装置 1 1 匕に換えて、周囲環境検出装置 1 1 〇、 1 1 ¢1の出力に基づいて、鞍乗型車両 1 0 0 の斜め後方に位置する車両の有無が判定されてもよい。
[ 0 0 3 9 ] 実行部 2 3は、死角走行車両警告動作が有効化されている状況下で、解析部 2 2で鞍乗型車両 1 0 0の走行状態が車列間走行 (図 3参照) であると半 ^別されると、その半 ^別に応じたライダー支援 動作を実行する。実行咅5 2 3は、例えば、警告が発することを強制的に禁止する。また、実行咅5 2 3は
、例えば、警告のライダーによる知覚性を強制的に低下させる。
[ 0 0 4 0 ] \¥02021/260479 卩(:17132021/055152 実行部 2 3は、死角走行車両警告動作が有効化されている状況下で、解析部 2 2で鞍乗型車両 1 0 0の走行状態がグループ走行 (図 4参照) であると半 ^別されると、その半 ^別に応じたライダー支援動 作を実行する。実行咅5 2 3は、例えば、警告が発することを強制的に禁止する。また、実行咅5 2 3は、 例えば、警告のライダーによる知覚性を強制的に低下させる。
[ 0 0 4 1 ] 実行部 2 3は、死角走行車両警告動作が有効化されている状況下で、解析部 2 2で鞍乗型車両
1 0 0の走行位置 (図 5参照) が解析されると、その解析結果に応じたライダー支援動作を実行する。 実行部 2 3は、例えば、周囲環境検出装置 1 1 匕の検出範囲のうちの車両の有無の判定に用いられ る領域を、鞍乗型車両 1 0 0の走行位置のレ-ン1_ 1の中心からの偏り方向と反対側にずらす。その際
、実行咅5 2 3は、偏り量に応じてずらす量を決定するとよい。また、実行咅5 2 3は、その偏り量が所定期 間以上に亘つて安定している場合に、その領域をずらすとよい。また、実行咅5 2 3は、偏り量が基準値を 上回らない場合に、その領域をずらさないとよい。
[ 0 0 4 2 ]
<ライダー支援システムの動作> 実施の形態に係るライダー支援システムの動作について説明する。 図 6は、本発明の実施の形態に係るライダ-支援システムの、制御装置の動作フロ-を示す図である。 なお、各ステップの順序が適宜入れ替えられていてもよく、また、別のステップが適宜カロえられていてもよい。
[ 0 0 4 3 ] 制御装置 2 0は、鞍乗型車両 1 0 0の走行中において、図 6に示される動作フロ-を繰り返し実行 する。
[ 0 0 4 4 ]
(取得ステップ) ステップ 5 1 0 1において、取得部 2 1は、周囲環境検出装置 1 1 3、 1 1 13、 1 1 。、 1 1 の 出力に基づいて、鞍乗型車両 1 0 0の周辺に位置する対象の情報を取得する。特に、取得部 2 1は 、鞍乗型車両 1 0 0の走行ラインロ 1_の左方に位置する対象丁 1の情報である左方対象情報と、そ の走行ラインロ 1_の右方に位置する対象丁 2の情報である右方対象情報と、を取得する。
[ 0 0 4 5 ] 〇 2021/260479 卩(:1' 2021/055152
(解析ステップ) 続いて、ステップ 5 1 0 2において、解析咅^ 2 2は、左方対象情報及び右方対象情報の少なくとも 一方に基づいて、鞍乗型車両 1 0 0の走行状態を解析する。
[0 0 4 6]
(実行ステップ) 続いて、ステップ 5 1 0 3において、実行咅52 3は、解析咅52 2での走行状態の解析結果に応じたラ イダ-支援動作を実行する。
[0 0 4 7]
<ライダー支援システムの効果> 実施の形態に係るライダー支援システムの効果について説明する。
[0 0 4 8] ライダ-支援システム 1では、少なくとも 1つの周囲環境検出装置 (例えば、周囲環境検出装置 1 1 0, 1 1 d)の出力に基づいて、鞍乗型車両 1 0 0の走行ラインロ 1_の左方に位置する対象丁 1の 情報である左方対象情報と、その走行ラインロ 1_の右方に位置する対象丁 2の情報である右方対象情 報と、が取得され、左方対象情報及び右方対象情報の少なくとも一方に基づいて鞍乗型車両 1 0 0 の走行状態が解析され、その解析結果に応じたライダ-支援動作が実行される。そのため、鞍乗型車両 1 0 0の走行の特殊性に適切に対応することが可能となる。
[0 0 4 9] 好ましくは、左方対象情報は、走行ラインロ 1_の左方に位置する少なくとも 1つの車両 (図 3〜図 5 の例の 2 0 1) の鞍乗型車両 1 0 0に対する相対距離の情報であり、右方対象情報は、走行ライ ンロ 1_の右方に位置する少なくとも 1つの車両 (図 3〜図 5の例の 3 0 1、 3 0 1 8、 3 0 1 匕) の 鞍乗型車両 1 0 0に対する相対距離の情報である。そのように構成されることで、鞍乗型車両 1 0 0 の走行の特殊性への対応がより適切化される。特に、相対距離の情報は、鞍乗型車両 1 0 0の車幅 方向での相対距離 (図 3〜図 5の例の口 2 0 1、 口 3 0 1、 03 0 1 3、 〇 3 0 1 13) の情報で あるとよい。そのように構成されることで、鞍乗型車両 1 0 0の走行の特殊性への対応がより確実化され \¥0 2021/260479 卩(:171 2021/055152 る
[ 0 0 5 0 ] 好ましくは、左方対象情報は、検出範囲 R〇を有する周囲環境検出装置 1 1 〇の出力に基づいて 取得され、右方対象情報は、検出範囲 R を有する周囲環境検出装置 1 1 ¢1の出力に基づいて取 得される。つまり、左方対象情報及び右方対象情報は、別々の検出装置によって取得される。そのよう に構成されることで、不要な領域が検出範囲に含まれることが抑制されて、例えば、演算処理負担の低 減、情報の高精度化等が図られる。特に、周囲環境検出装置 1 1 〇は、鞍乗型車両 1 0 0の左側 の真横に向けられており、周囲環境検出装置 1 1 ¢1は、鞍乗型車両 1 0 0の右側の真横に向けられ ているとよい。そのように構成されることで、情報の正確化が図られる。
[ 0 0 5 1 ] 好ましくは、解析部 2 2は、取得部 2 1で取得された左方対象情報及び右方対象情報に基づいて、 鞍乗型車両 1 0 0の車歹 I」間走行の有無を解析する。そのように構成されることで、鞍乗型車両 1 0 0 に特有の走行状態、つまり、鞍乗型車両 1 0 0が格段小型であることで可能となる車列間走行に対応 したライダ-支援動作が可能となる。
[ 0 0 5 2 ] 好ましくは、解析部 2 2は、取得部 2 1で取得された左方対象情報及び右方対象情報の少なくとも 一方に基づいて、鞍乗型車両 1 0 0のグループ走行の有無を解析する。そのように構成されることで、鞍 乗型車両 1 0 0に特有の走行状態、つまり、鞍乗型車両 1 0 0が格段小型であることで可能となる密 集度が高いグル-プ走行に対応したライダ-支援動作が可能となる。特に、解析部 2 2は、取得部 2 1 で取得された左方対象情報及び右方対象情報の少なくとも一方に基づいて、グル-プ走行での鞍乗型 車両 1 0 0の走行歹 I」を解析するとよい。そのように構成されることで、鞍乗型車両 1 0 0に特有の走行 状態、つまり、鞍乗型車両 1 0 0が格段小型であることで可能となる千鳥状のグル-プ走行に対応した ライダ-支援動作が可能となる。
[ 0 0 5 3 ] 好ましくは、解析部 2 2は、取得部 2 1で取得された左方対象情報及び右方対象情報に基づいて、 〇 2021/260479 卩(:1' 2021/055152 鞍乗型車両 1 0 0のレーン 1_ 1内での走行位置を解析する。そのように構成されることで、鞍乗型車両
1 0 0に特有の走行状態、つまり、鞍乗型車両 1 0 0が格段小型であることで可能となるレ-ン 1_ 1の 中心から大きく偏った位置での走行に対応したライダ-支援動作が可能となる。特に、解析部 2 2は、取 得部 2 1で取得された左方対象情報及び右方対象情報に基づいて、走行位置のレ-ン 1_ 1の中心か らの偏り方向及び偏り量を解析する。そのように構成されることで、 レーン1_ 1の中心から大きく偏った位置 での走行への対応が確実化される。
[ 0 0 5 4 ] 好ましくは、実行部 2 3は、解析部 2 2での走行状態の解析結果に応じて、鞍乗型車両 1 0 0のク ルーズコントロール動作又はアダプティブクルーズコントロール動作を変化させる。また、実行部 2 3は、解析 部 2 2での走行状態の解析結果に応じて、鞍乗型車両 1 0 0の衝突抑制動作を変化させる。また、 実行部 2 3は、解析部 2 2での走行状態の解析結果に応じて、鞍乗型車両 1 0 0の死角走行車両 警告動作を変化させる。それらの動作では、情報を適切化することの必要性が特に高い。つまり、左方対 象情報及び右方対象情報に基づいて鞍乗型車両 1 0 0の走行状態を解析することは、それらの動作 において寺に有用である。
[ 0 0 5 5 ] 本発明の実施の形態は、以上の説明に限定されない。つまり、本発明には、以上で説明された実施の 形態に対して変形を施した形態が含まれる。また、本発明には、以上で説明された実施の形態の一部の みが実施される形態、又は、その形態同士が組み合わされた形態が含まれる。
【符号の説明】
[ 0 0 5 6 ]
1 ライダ-支援システム、 1 1 3、 1 1 匕、 1 1 0、 1 1 ¢1 周囲環境検出装置、 1 2 走行状 態検出装置、 2 0 制御装置、 2 1 取得部、 2 2 解析部、 2 3 実行部、 3 0 挙動制御 装置、 4 0 警告装置、 1 0 0 鞍乗型車両、 2 0 0 , 3 0 0 車列、 1 1 0、 2 0 1、 3 0 1、 3 0 1 3、 3 0 1 匕 車両、 丁 1、 丁 2 対象、 口 1_ 走行ライン、 1_ 1、 1_ 2、 1_ 3 レ-ン、 8。
、 8 検出範囲。

Claims

【書類名】請求の範囲 【請求項 1】 少なくとも 1つの周囲環境検出装置 ( 1 1 c、 1 1 d) が搭載された鞍乗型車両 ( 1 0 0) の 制御装置 (2 0) であって、 前記鞍乗型車両 ( 1 0 0) のライダ-を支援するライダ-支援動作を実行する実行咅P(2 3) を備 えており、 更に、 前記周囲環境検出装置 ( 1 1 c、 1 1 d) の出力に基づいて、前記鞍乗型車両 ( 1 0 0) の 走行ライン (DL) の左方に位置する対象 (T1) の情報である左方対象情報と、該走行ライン ( DL ) の右方に位置する対象 (T2) の情報である右方対象情報と、を取得する取得部 (2 1) と 前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対象情報の少なくとも一方に 基づいて、前記鞍乗型車両 ( 1 0 0) の走行状態を解析する解析部 (2 2) と、 を備えており、 前記実行部 (2 3) は、前記解析部 (2 2) での前記走行状態の解析結果に応じた前記ライダ -支援動作を実行する、 制御装置 (2 0) 。
【請求項 2】 前記左方対象情報は、前記走行ライン (DL) の左方に位置する少なくとも 1つの車両 (2 0 1 ) の前記鞍乗型車両 ( 1 0 0) に対する相対距離の情報であり、 前記右方対象情報は、前記走行ライン (DL) の右方に位置する少なくとも 1つの車両 (3 0 1 、 3 0 1 a、 3 0 1 b) の前記鞍乗型車両 ( 1 0 0) に対する相対距離の情報である、 請求項 1に記載の制御装置 (2 0) 。
【請求項 3】 前記相対距離の情報は、前記鞍乗型車両 ( 1 0 0) の車幅方向での相対距離 (02 0 1、 口 〇 2021/260479 卩(:1' 2021/055152
3 0 1、 03 0 1 3 \ D 3 0 1 b) の情報である、 請求項 2に記載の制御装置 (2 0) 。
【請求項 4】 前記左方対象情報は、第 1検出範囲 (R c) を有する前記周囲環境検出装置である第 1周囲 環境検出装置 ( 1 1 〇) の出力に基づいて取得され、 前記右方対象情報は、前記第 1検出範囲 (R c) と異なる第 2検出範囲 (R d) を有する前 記周囲環境検出装置である第 2周囲環境検出装置 ( 1 1 ¢0 の出力に基づいて取得される、 請求項 1〜 3の何れか一項に記載の制御装置 (2 0) 。
【請求項 5】 前記第 1周囲環境検出装置 ( 1 1 〇) は、前記鞍乗型車両 ( 1 0 0) の左側の真横に向けら れており、 前記第 2周囲環境検出装置 ( 1 1 ¢0 は、前記鞍乗型車両 ( 1 0 0) の右側の真横に向けら れている、 請求項 4に記載の制御装置 (2 0) 。
【請求項 6】 前記解析部 (2 2) は、前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対 象情報に基づいて、前記走行状態としての、前記鞍乗型車両 ( 1 0 0) の車列間走行の有無を解 析する、 請求項 1〜 5の何れか一項に記載の制御装置 (2 0) 。
【請求項 7】 前記解析部 (2 2) は、前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対 象情報の少なくとも一方に基づいて、前記走行状態としての、前記鞍乗型車両 ( 1 0 0) のグル-プ 走行の有無を解析する、 請求項 1〜 6の何れか一項に記載の制御装置 (2 0) 。
【請求項 8】 〇 2021/260479 卩(:1' 2021/055152 前記解析部 (2 2) は、前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対 象情報の少なくとも一方に基づいて、前記走行状態としての、グル-プ走行での前記鞍乗型車両 ( 1 〇 〇) の走行列を解析する、 請求項 1〜 7の何れか一項に記載の制御装置 (2 0) 。
【請求項 9】 前記解析部 (2 2) は、前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対 象情報に基づいて、前記走行状態としての、前記鞍乗型車両 (1 0 0) のレ-ン (1_ 1) 内での走 行位置を解析する、 請求項 1〜 8の何れか一項に記載の制御装置 (2 0) 。
【請求項 1 0】 前記解析部 (2 2) は、前記取得部 (2 1) で取得された前記左方対象情報及び前記右方対 象情報に基づいて、前記走行状態としての、前記走行位置の前記レ-ン (し 1) の中心からの偏り方 向及び偏り量を解析する、 請求項 9に記載の制御装置 (2 0) 。
【請求項 1 1】 前記実行部 (2 3) は、前記解析部 (2 2) での前記走行状態の解析結果に応じて、前記ライ ダー支援動作として実行される、前記鞍乗型車両 (1 0 0) のクルーズコントロール動作又はアダプテイ ブクル-ズコント □-ル動作を変化させる、 請求項 1〜 1 0の何れか一項に記載の制御装置 (2 0) 。
【請求項 1 2】 前記実行部 (2 3) は、前記解析部 (2 2) での前記走行状態の解析結果に応じて、前記ライ ダ-支援動作として実行される、前記鞍乗型車両 (1 0 0) の衝突抑制動作を変化させる、 請求項 1〜 1 1の何れか一項に記載の制御装置 (2 0) 。
【請求項 1 3】 前記実行部 (2 3) は、前記解析部 (2 2) での前記走行状態の解析結果に応じて、前記ライ 〇 2021/260479 卩(:1' 2021/055152 ダ-支援動作として実行される、前記鞍乗型車両 (1 0 0) の死角走行車両警告動作を変化させる 請求項 1〜 1 2の何れか一項に記載の制御装置 (2 0) 。
【請求項 1 4】 ライダー支援システム (1) であって、 請求項 1〜 1 3の何れか一項に記載の制御装置 (2 0) を備えている、 ライダー支援システム (1) 。
【請求項 1 5】 少なくとも 1つの周囲環境検出装置 (1 1 。、 1 1 ¢0 が搭載された鞍乗型車両 (1 0 0) の 制御方法であって、 制御装置 (2 0) の実行部 (2 3) が、前記鞍乗型車両 (1 0 0) のライダ-を支援するライダ —支援動作を実行する実行ステップ (5 1 0 3) を備えており、 更に、 前記制御装置 (2 0) の取得部 (2 1) が、前記周囲環境検出装置 (1 1 〇、 1 1 ¢0 の出 力に基づいて、前記鞍乗型車両 (1 0 0) の走行ライン (口〇 の左方に位置する対象 (丁 1) の 情報である左方対象情報と、該走行ライン (口 1_) の右方に位置する対象 (丁 2) の情報である右 方対象情報と、を取得する取得ステップ (5 1 0 1) と、 前記制御装置 (2 0) の解析部 (2 2) が、前記取得ステップ (5 1 0 1) で取得された前記 左方対象情報及び前記右方対象情報の少なくとも一方に基づいて前記鞍乗型車両 (1 0 0) の走 行状態を解析する解析ステップ (5 1 0 2) と、 を備えており、 前記実行ステップ (5 1 0 3) では、前記実行部 (2 3) が、前記解析ステップ (5 1 0 2) で の前記走行状態の解析結果に応じた前記ライダ-支援動作を実行する、 制御方法。
PCT/IB2021/055152 2020-06-26 2021-06-11 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法 WO2021260479A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP23203870.3A EP4300463A3 (en) 2020-06-26 2021-06-11 Saddle-type vehicle control apparatus, rider assistance system, and saddle-type vehicle control method
EP21743566.8A EP4173920A1 (en) 2020-06-26 2021-06-11 Saddle-type vehicle control apparatus, rider assistance system, and saddle-type vehicle control method
US18/013,008 US20230242100A1 (en) 2020-06-26 2021-06-11 Controller for straddle-type vehicle, rider-assistance system, and control method for straddle-type vehicle
EP23203869.5A EP4300462A3 (en) 2020-06-26 2021-06-11 Saddle-type vehicle control apparatus, rider assistance system, and saddle-type vehicle control method
EP23203867.9A EP4300461A3 (en) 2020-06-26 2021-06-11 Saddle-type vehicle control apparatus, rider assistance system, and saddle-type vehicle control method
JP2022531094A JP7482226B2 (ja) 2020-06-26 2021-06-11 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110090A JP2022007244A (ja) 2020-06-26 2020-06-26 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法
JP2020-110090 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021260479A1 true WO2021260479A1 (ja) 2021-12-30

Family

ID=76999909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/055152 WO2021260479A1 (ja) 2020-06-26 2021-06-11 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法

Country Status (4)

Country Link
US (1) US20230242100A1 (ja)
EP (4) EP4300461A3 (ja)
JP (2) JP2022007244A (ja)
WO (1) WO2021260479A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023187546A1 (ja) * 2022-03-31 2023-10-05 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング 鞍乗り型車両の制御装置及び制御方法
WO2023187525A1 (ja) * 2022-03-31 2023-10-05 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング 鞍乗り型車両の挙動の制御装置及び制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218458A1 (de) * 2013-09-16 2015-03-19 Robert Bosch Gmbh Vorrichtung zum Erfassen einer Verkehrssituation in einem toten Winkel eines neigefähigen Fahrzeuges
WO2017115371A1 (en) * 2015-12-30 2017-07-06 Foresight Automotive Ltd. Apparatus and method for avoiding vehicular accidents
JP2019099033A (ja) * 2017-12-06 2019-06-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh モータサイクルの挙動を制御する制御装置及び制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003554A (ja) 2007-06-19 2009-01-08 Toyota Motor Corp 走行制御装置、走行制御システム
JP6410509B2 (ja) 2014-08-04 2018-10-24 株式会社エフ・シー・シー 鞍乗り型車両
WO2017030132A1 (ja) 2015-08-17 2017-02-23 ヤマハ発動機株式会社 リーン車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218458A1 (de) * 2013-09-16 2015-03-19 Robert Bosch Gmbh Vorrichtung zum Erfassen einer Verkehrssituation in einem toten Winkel eines neigefähigen Fahrzeuges
WO2017115371A1 (en) * 2015-12-30 2017-07-06 Foresight Automotive Ltd. Apparatus and method for avoiding vehicular accidents
JP2019099033A (ja) * 2017-12-06 2019-06-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh モータサイクルの挙動を制御する制御装置及び制御方法
US20210162998A1 (en) * 2017-12-06 2021-06-03 Robert Bosch Gmbh Control device and control method for controlling behavior of motorcycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023187546A1 (ja) * 2022-03-31 2023-10-05 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング 鞍乗り型車両の制御装置及び制御方法
WO2023187525A1 (ja) * 2022-03-31 2023-10-05 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング 鞍乗り型車両の挙動の制御装置及び制御方法

Also Published As

Publication number Publication date
EP4300461A3 (en) 2024-03-13
EP4300462A3 (en) 2024-03-13
EP4300463A3 (en) 2024-03-13
EP4300461A2 (en) 2024-01-03
EP4300462A2 (en) 2024-01-03
US20230242100A1 (en) 2023-08-03
EP4300463A2 (en) 2024-01-03
JP2022007244A (ja) 2022-01-13
JP7482226B2 (ja) 2024-05-13
JPWO2021260479A1 (ja) 2021-12-30
EP4173920A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
JP7203121B2 (ja) 鞍乗型車両のライダー支援システムのための処理装置及び処理方法、鞍乗型車両のライダー支援システム、及び、鞍乗型車両
WO2021260479A1 (ja) 鞍乗型車両の制御装置、ライダー支援システム、及び、鞍乗型車両の制御方法
US20220185275A1 (en) Controller and control method for controlling operation of motorcycle
JP7377880B2 (ja) モータサイクルの動作の制御装置及び制御方法
JP7531400B2 (ja) 鞍乗型車両のライダー支援システムのための処理装置及び処理方法、鞍乗型車両のライダー支援システム、及び、鞍乗型車両
JPWO2020115596A1 (ja) 鞍乗型車両の警告システムのための処理装置及び処理方法、鞍乗型車両の警告システム、及び、鞍乗型車両
US20230249778A1 (en) Controller for straddle-type vehicle, rider-assistance system, and control method for straddle-type vehicle
JP7261866B2 (ja) モータサイクルの動作を制御する制御装置及び制御方法
US20230219412A1 (en) Controller and control method
WO2021060357A1 (ja) Fcw制御装置を備えたリーン車両
US20230147892A1 (en) Controller and control method
JP7561212B2 (ja) ライダー支援システムの制御装置及び制御方法
US20230060955A1 (en) Controller and control method
US20240317225A1 (en) Vehicle control device, operation method of vehicle control device, and storage medium
WO2022229792A1 (ja) ライダー支援システムの制御装置及び制御方法
WO2023187546A1 (ja) 鞍乗り型車両の制御装置及び制御方法
JP2022170770A (ja) リーン車両の事故の発生の有無を判別する処理装置、及び、方法
JP2022097845A (ja) ヘルメット、ライダー支援システム、及び、それらの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531094

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217074349

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021743566

Country of ref document: EP

Effective date: 20230126

NENP Non-entry into the national phase

Ref country code: DE