WO2021259319A1 - 一种具有能量回收功能的驱动电路及开关电源 - Google Patents

一种具有能量回收功能的驱动电路及开关电源 Download PDF

Info

Publication number
WO2021259319A1
WO2021259319A1 PCT/CN2021/101795 CN2021101795W WO2021259319A1 WO 2021259319 A1 WO2021259319 A1 WO 2021259319A1 CN 2021101795 W CN2021101795 W CN 2021101795W WO 2021259319 A1 WO2021259319 A1 WO 2021259319A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
capacitor
energy recovery
moment
Prior art date
Application number
PCT/CN2021/101795
Other languages
English (en)
French (fr)
Inventor
安德森马蒂亚斯
托瑞克•巴斯科佩格罗弗•维克多
代胜勇
张晓�
洪庆祖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21830258.6A priority Critical patent/EP4156484A4/en
Publication of WO2021259319A1 publication Critical patent/WO2021259319A1/zh
Priority to US18/145,179 priority patent/US20230131154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the field of circuits, in particular to a drive circuit and a switching power supply with energy recovery function.
  • FIG. 1 is a schematic diagram of the structure of an existing driving circuit using a driving chip.
  • the driver chip uses a traditional (Metal-Oxide-Semiconductor-Field-Effect Transistor, MOSFET) power field effect transistor or a triode (bipolar junction transistor, BJT)-based totem-pole push-pull circuit, which drives the resistor R g realizes the charging and discharging of the junction capacitance of the power tube.
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect Transistor
  • BJT triode-based totem-pole push-pull circuit
  • the prior art also proposes a drive circuit for specific energy recovery.
  • the resonant inductor L r and free-oscillating clamp diodes D1, D2 or MOS transistors are added after the traditional totem pole push-pull circuit. S 2 is turned on).
  • the junction capacitance of the power tube Q and the resonance inductance resonate, and the energy of the upper junction capacitance of the power tube Q is transferred to the resonance inductance, so as to realize the recovery of the driving energy of the junction capacitance of the power tube Q .
  • the energy stored in the resonant inductor is transferred to the junction capacitance of the power tube Q.
  • the resonant inductance is added to the circuit shown in the diagrams a and b in FIG. 2, so that the volume of the driving circuit will become very large, and at the same time, the control of the driving circuit will become more complicated than the traditional driving circuit.
  • the embodiments of the application provide a driving circuit and a switching power supply with an energy recovery function.
  • the embodiments of the invention can realize full utilization of energy, and the driving circuit is small in size and simple in control logic.
  • embodiments of the present application provide a drive circuit with energy recovery function, including: a control circuit, an energy recovery drive circuit, a switch circuit, and a DC power supply.
  • the control circuit is connected to the energy recovery drive circuit, and the energy recovery drive
  • the circuit is connected with the switch circuit, and the DC power supply is connected with the energy recovery drive circuit,
  • the control circuit is used to control the energy recovery drive circuit to charge the energy storage capacitor in it to the junction capacitance of the switching circuit at the first moment, and to make the DC power supply charge the junction capacitance of the switching circuit through the energy recovery drive circuit at the second moment, Make the switch circuit conductive;
  • the control circuit is also used to control the energy recovery drive circuit to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery drive circuit at the third moment, and make the junction capacitance of the switch circuit drive through energy recovery at the fourth moment
  • the circuit discharges to ground, causing the switching circuit to open.
  • the energy recovery drive circuit includes a push-pull drive circuit and an energy recovery circuit
  • the control circuit is connected to both the push-pull drive circuit and the energy recovery circuit, and both the push-pull drive circuit and the energy recovery circuit are connected to the switch circuit;
  • the DC power supply is connected to the push-pull drive circuit, and the control circuit is used to control the energy recovery drive circuit to charge the energy storage capacitor in it to the junction capacitance of the switch circuit at the first moment, and at the second moment to make the DC power source pass the energy recovery drive circuit Charge the junction capacitance of the switching circuit, including:
  • the control circuit is used to control the energy recovery circuit to charge the energy storage capacitor in it to the junction capacitance of the switching circuit at the first moment; and to control the push-pull drive circuit to make the DC power supply through the push-pull drive circuit to the switching circuit at the second moment Charge the junction capacitance;
  • the control circuit is also used to control the energy recovery drive circuit to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery drive circuit at the third moment, and make the junction capacitance of the switch circuit pass the energy recovery drive circuit at the fourth moment Discharge to ground, including:
  • the control circuit is used to control the energy recovery circuit to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery circuit at the third moment; and control the push-pull drive circuit to make the junction capacitance of the switch circuit pass the push-pull at the fourth moment
  • the drive circuit discharges to ground.
  • the switch circuit includes a resistor R4, a MOS transistor M0, a capacitor Cdg, and a capacitor Cgs; wherein the first end of the resistor R4 is connected to the gate of the MOS transistor M0, and both ends of the capacitor Cdg are respectively connected to the MOS transistor.
  • the drain and the gate of M0, the two ends of the capacitor Cgs are respectively connected to the source and the gate of the MOS transistor, and the source of the MOS transistor M0 is connected to the second end of the resistor R4;
  • the switch circuit specifically refers to turning on and off the drain and source of the MOS transistor M0; the junction capacitance of the switch circuit includes the capacitor Cds and the capacitor Cgs.
  • the MOS tube M0 is an NPN type MOS tube.
  • the push-pull driving circuit includes an NPN type transistor Q1, a PNP type transistor Q4, a capacitor C3 and a resistor R2;
  • the emitter of transistor Q4 is connected to the emitter of transistor Q1
  • the base of transistor Q4 is connected to the base of transistor Q1
  • the second end of resistor R2 is connected to the base of transistor Q4
  • the first end of resistor R2 is
  • the resistor R5 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the first end of the capacitor C3 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the first end of the capacitor C3 The two ends are connected to the base of the transistor Q4 and the base of the transistor Q1; the collector of the transistor Q1 is grounded.
  • the energy recovery circuit includes an NPN transistor Q2, a PNP transistor Q3, a clamp diode D2, a clamp diode D3, a capacitor C2, and a resistor R1; the capacitor C2 is an energy storage capacitor in the energy recovery drive circuit;
  • the emitter of the transistor Q2 is connected to the emitter of the transistor Q3, the base of the transistor Q2 and the base of the transistor Q3 are both connected to the second end of the resistor R1, the collector of the transistor Q2 is connected to the cathode of the diode D2, and the transistor Q3 The collector of is connected to the anode of diode D3, the cathode of diode D3 and the anode of diode D2 are both connected to the first end of capacitor C2, and the second end of capacitor C2 is grounded.
  • the push-pull driving circuit includes an NPN type transistor Q1, a PNP type transistor Q4, a capacitor C3, and a capacitor C4;
  • the emitter of transistor Q4 is connected to the emitter of transistor Q1
  • the base of transistor Q4 is connected to the base of transistor Q1
  • the second end of capacitor C4 is connected to the base of transistor Q4
  • the first end of capacitor C4 is
  • the resistor R5 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the first end of the capacitor C3 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the second end of the capacitor C3 is connected
  • the base of the transistor Q4 is connected to the base of the transistor Q1; the collector of the transistor Q1 is grounded.
  • the energy recovery circuit includes an NPN transistor Q2, a PNP transistor Q3, a clamp diode D2, a clamp diode D3, a capacitor C2, a capacitor C5, and a resistor R1; the capacitor C2 is an energy storage capacitor in the energy recovery drive circuit;
  • the emitter of transistor Q2 is connected to the emitter of transistor Q3, the base of transistor Q2 and the base of transistor Q3 are both connected to the second end of resistor R1 and the second end of capacitor C5, and the first end of resistor R1
  • the collector of transistor Q2 is connected to the cathode of diode D2
  • the collector of transistor Q3 is connected to the anode of diode D3
  • the cathode of diode D3 and the anode of diode D2 are both connected to the first end of capacitor C2. At one end, the second end of the capacitor C2 is grounded.
  • the parameters of the diode D2 and the parameters of the diode D3 are the same.
  • the parameters of the triode Q1 and the parameters of the triode Q3 are the same, and the parameters of the triode Q2 and the parameters of the triode Q4 are the same.
  • the switch circuit includes a capacitor Cdg and a capacitor Cgs and an equivalent drive pull-down resistor R4.
  • the push-pull drive circuit and the energy recovery circuit are both connected to the switch circuit, which specifically includes:
  • the gate of the MOS transistor is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1, and the source of the MOS transistor is connected to the collector of the transistor Q1;
  • the gate of the MOS transistor is connected between the emitter of the transistor Q2 and the emitter of the transistor Q3, and the source of the MOS transistor is connected to the second end of the capacitor C2;
  • connection between the DC power supply and the push-pull drive circuit specifically includes: the positive pole of the DC power supply is connected to the collector of the transistor Q, and the negative pole of the DC power supply is grounded.
  • control circuit includes a first drive signal generator, and the control circuit is connected to both the push-pull drive circuit and the energy recovery circuit, and specifically includes:
  • the anode of the first drive signal generator is connected to the first end of the resistor R2 and the first end of the resistor R1 through the resistor R3; the cathode of the first drive signal generator is grounded; or,
  • the anode of the first drive signal generator is connected to the first end of the capacitor C4 and the first end of the resistor R1 through a resistor R3; the cathode of the first drive signal generator is grounded.
  • control circuit is used to control the energy recovery circuit to make the energy storage capacitor charge the junction capacitance of the switching circuit at the first moment, which specifically includes:
  • the first drive signal generator outputs the rising edge of the drive signal, and at the first moment the voltage output by the first drive signal generator is greater than the turn-on voltage of the transistor Q2, so that the capacitor C2 is connected to the switching circuit through the diode D2 and the transistor Q2 The capacitor Cdg and capacitor Cgs are charged;
  • the control circuit is used to control the push-pull drive circuit to make the DC power supply charge the junction capacitance of the switch circuit through the push-pull drive circuit at the second moment, which specifically includes:
  • the first drive signal generator outputs the rising edge of the drive signal and charges the capacitor C3, so that the voltage on the capacitor C3 at the second moment is greater than the turn-on voltage of the transistor Q4, so as to realize the direct current power supply through the transistor Q4 to the capacitor Cdg and the capacitor Cgs Charge.
  • control circuit for controlling the energy recovery circuit to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery circuit at the third moment specifically includes:
  • the first driving signal generator outputs the falling edge of the driving signal, and at the third moment, the difference between the voltage of the driving signal and the voltage on the capacitor Cdg and capacitor Cgs of the switching circuit is greater than the turn-on voltage of the transistor Q3, so that the capacitance of the switching circuit Cdg and capacitor Cgs charge capacitor C2 through transistor Q3 and diode D3;
  • the control circuit is used to control the push-pull drive circuit to discharge the junction capacitance of the switch circuit to the ground through the push-pull drive circuit at the fourth moment, which specifically includes:
  • the first driving signal generator outputs the falling edge of the driving signal, and makes the voltage on the capacitor C3 greater than the turn-on voltage of the transistor Q1 at the fourth moment, so that the capacitor Cdg and the capacitor Cgs of the switching circuit are discharged to the ground through the transistor Q1.
  • control circuit includes a first drive signal generator and a second drive signal generator
  • the control circuit is connected with the push-pull drive circuit and the energy recovery circuit, including:
  • the anode of the first drive signal generator is connected to the first end of the resistor R1 through a resistor R3; the cathode of the first drive signal generator is grounded; the anode of the second drive signal generator is connected to the first end of the resistor R2 through a resistor R6 Section; the negative pole of the second drive signal generator is grounded; or,
  • the positive pole of the first drive signal generator is connected to the first end of the resistor R1 through a resistor R3; the negative pole of the first drive signal generator is grounded; the positive pole of the second drive signal generator is connected to the first end of the capacitor C4 through a resistor R6 ⁇ ; The negative pole of the second drive signal generator is grounded.
  • control circuit for controlling the energy recovery circuit to make the energy storage capacitor charge the junction capacitance of the switching circuit at the first moment specifically includes:
  • the first drive signal generator outputs the rising edge of the drive signal, and the voltage of the drive signal at the first moment is greater than the turn-on voltage of the transistor Q3, so that the capacitor C2 charges the capacitor Cdg and the capacitor Cgs of the switching circuit through the diode D2 and the transistor Q2 ;
  • the control circuit is used for the push-pull drive circuit to make the DC power supply charge the junction capacitance of the switch circuit through the push-pull drive circuit at the second moment, which specifically includes:
  • the second driving signal generator outputs the rising edge of the driving signal and charges the capacitor C3 so that the voltage on the capacitor C3 at the second moment is greater than the turn-on voltage of the transistor Q4, so that the DC power supply charges the capacitor through the transistor Q4.
  • control circuit is also used to control the energy recovery circuit to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery circuit at the third moment, which specifically includes:
  • the first driving signal generator outputs the falling edge of the driving signal, and at the third moment the difference between the voltage output by the first driving signal generator and the voltage on the capacitor Cdg and capacitor Cgs of the switching circuit is greater than the turn-on voltage of the transistor Q3, so as to Make the capacitor Cdg and the capacitor Cgs of the switching circuit charge the capacitor C2 through the transistor Q3 and the diode D3;
  • the control circuit is used to control the push-pull drive circuit to discharge the junction capacitance of the switch circuit to the ground through the push-pull drive circuit at the fourth moment, which specifically includes:
  • the second driving signal generator outputs the falling edge of the driving signal, and makes the voltage on the capacitor C3 greater than the turn-on voltage of the transistor Q1 at the fourth moment, so that the capacitor Cdg and the capacitor Cgs of the switching circuit are discharged to the ground through the transistor Q1 .
  • first driving signal generator and second driving signal generator may be, but not limited to, driving chips.
  • an embodiment of the present application provides a switching power supply, which includes part or all of the driving circuit described in the first aspect.
  • Fig. 1 is a driving circuit in the prior art
  • Figure 2 is a circuit with energy recovery function in the prior art
  • FIG. 3 is a schematic diagram of an application scenario of a driving circuit with energy recovery function provided by an embodiment of the application
  • FIG. 4 is a schematic structural diagram of a driving circuit with energy recovery function provided by an embodiment of the application.
  • FIG. 5a is a schematic diagram of a specific structure of a driving circuit with energy recovery function provided by an embodiment of the application.
  • Figure 5b is a schematic diagram of energy flow when the energy storage capacitor charges the junction capacitance of the switching circuit
  • Figure 5c is a schematic diagram of energy flow when the junction capacitance of the switching circuit charges the energy storage capacitor
  • FIG. 5d is a schematic diagram of voltage changes on each device when a driving circuit with energy recovery function is in operation according to an embodiment of the application;
  • FIG. 6a is a schematic diagram of a specific structure of another driving circuit with energy recovery function provided by an embodiment of the application.
  • Figure 6b is a schematic diagram of energy flow when the energy storage capacitor charges the junction capacitance of the switching circuit
  • Fig. 6c is a schematic diagram of energy flow when the junction capacitance of the switching circuit charges the energy storage capacitor
  • FIG. 7 is a schematic diagram of a specific structure of another driving circuit with energy recovery function provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a specific structure of another driving circuit with energy recovery function provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of an application scenario of a driving circuit with energy recovery function provided by an embodiment of the application.
  • the application scenario includes a switching power supply 30 and an electrical appliance 31, where the switching power supply 30 is connected to the electrical appliance 31.
  • the switching power supply 30 includes a power supply 301 and a driving circuit 302; the first port 302a of the power driving circuit 302 is connected to the power supply 301, and the second port 302b of the driving circuit 302 is connected to the consumer 31.
  • the driving circuit 302 is used to control the conduction and disconnection of the circuit between the power supply 301 and the consumer 31, thereby realizing the function of the switching power supply.
  • FIG. 4 is a schematic structural diagram of a driving circuit with energy recovery function provided by an embodiment of the application.
  • the drive circuit 302 includes a control circuit 303, an energy recovery drive circuit 304, a switch circuit 305, and a DC power supply 306.
  • the control terminal 303a of the control circuit 303 is connected to the first port 304a of the energy recovery drive circuit 304
  • the output terminal 306 a of the DC power supply 306 is connected to the third port 304 c of the energy recovery driving circuit 304
  • the second port 304 b of the energy recovery driving circuit 304 is connected to the first port 305 a of the switch circuit 305.
  • control circuit 303 is used to control the energy recovery drive circuit 304 to charge the energy storage capacitor therein to the junction capacitance of the switching circuit 305 at the first moment, and at the second moment to cause the DC power supply 306 to charge the switching circuit through the energy recovery drive circuit 304
  • the junction capacitance of 305 is charged, so that the switch circuit 305 is turned on, wherein the first time is before the second time;
  • the control circuit 303 is also used to control the energy recovery drive circuit 304 to make the junction capacitance of the switch circuit 305 charge the energy storage capacitor in the energy recovery drive circuit 304 at the third moment, and to pass the junction capacitance of the switch circuit 305 at the fourth moment
  • the energy recovery drive circuit 304 discharges to the ground, so that the switch circuit 305 is turned off, and the third time is before the fourth time.
  • the on and off of the switch circuit 305 specifically refers to the on and off between the second port and the third port of the switch circuit 305.
  • the second port 305b and the third port 305c of the switch circuit 305 are respectively connected to the consumer 31 and the power supply 301, and the second port 305b and the third port 305c of the switch circuit 305 are controlled to be turned off and on through the control circuit 303. , So as to realize the conduction and disconnection of the circuit between the power supply 301 and the electrical appliance 31.
  • the energy recovery drive circuit 304 includes a push-pull drive circuit 307 and an energy recovery circuit 308.
  • the first port 304a of the energy recovery drive circuit 304 includes a first port 307a of the push-pull drive circuit 307 and a first port of the energy recovery circuit 308.
  • the second port 304b of the energy recovery drive circuit 304 includes the second port 307b of the push-pull drive circuit 307 and the second port 308b of the energy recovery circuit 308,
  • control terminal 303a of the control circuit 303 is connected to the first port 304a of the energy recovery drive circuit 304, specifically including: the control terminal 303a of the control circuit 303, the first port 307a of the push-pull drive circuit 307 and the first port 307a of the energy recovery circuit 308 One port 308a is connected; the second port 304b of the energy recovery drive circuit 304 and the first port 305a of the switch circuit 305 are connected specifically including: the second port 307b of the push-pull drive circuit 307 and the second port 308b of the energy recovery circuit 308 are both connected Connected to the first port 305a of the switch circuit 305, the output terminal 306a of the DC power supply 306 and the third port 304c of the energy recovery driving circuit 304 specifically refer to the output terminal 306a of the DC power supply 306 and the third port 307c of the push-pull driving circuit 307 connect;
  • control circuit 303 controls the energy recovery drive circuit 304 to charge the energy storage capacitor therein to the junction capacitance of the switching circuit 305 at the first time, and at the second time causes the DC power supply 306 to charge the switching circuit through the energy recovery drive circuit 304
  • the charging of the junction capacitance of 305 specifically includes:
  • the control circuit 303 controls the energy recovery circuit 308 to make the energy storage capacitor in the energy recovery circuit 308 charge the junction capacitance of the switch circuit 305 at the first moment; and controls the push-pull drive circuit 307 to make the DC power supply 306 pass the push-pull at the second moment
  • the driving circuit 307 charges the junction capacitance of the switch circuit 305;
  • the control circuit 303 controls the energy recovery drive circuit 304 to charge the energy storage capacitor in the energy recovery drive circuit 304 by the junction capacitance of the switch circuit 305 at the third moment, and causes the junction capacitance of the switch circuit 305 to pass energy at the fourth moment.
  • the recovery drive circuit 304 discharges to ground, specifically including:
  • the control circuit 303 controls the energy recovery circuit 308 to make the junction capacitance of the switch circuit charge the energy storage capacitor in the energy recovery circuit 308 at the third moment; and controls the push-pull drive circuit 307 to pass the junction capacitance of the switch circuit 305 at the fourth moment
  • the push-pull drive circuit 307 discharges to ground.
  • the switch circuit includes a resistor R4, a MOS transistor M0, a capacitor Cdg, and a capacitor Cgs, wherein the first end of the resistor R4 is connected to the gate of the MOS transistor M0, and the capacitor Cdg The two ends are respectively connected to the drain and gate of the MOS transistor M0, the two ends of the capacitor Cgs are respectively connected to the gate and source of the MOS transistor, and the source of the MOS transistor M0 is connected to the second end of the resistor R4.
  • the second end 305b and the third end 305c of the switch circuit 305 respectively include the drain and source of the MOS transistor M0, and the conduction and disconnection between the second port and the third port of the switch circuit 305 refers to MOS
  • the drain and source of the tube M0 are turned on and off.
  • the junction capacitance of the switch circuit 305 includes a capacitance Cdg and a capacitance Cgs.
  • the switch circuit 305 further includes a capacitor Cds, and both ends of the capacitor Cds are respectively connected to the drain and the source of the MOS transistor M0.
  • the MOS tube M0 is an NPN type MOS tube.
  • the above-mentioned MOS tube can be, but is not limited to, ordinary silicon-based power field effect transistors (Si MOSFET), silicon carbide high electron mobility transistors (SiC HEMT), and gallium nitride high electron mobility transistors. (gallium nitride high electron mobility transistors, GaN HEMT) etc.
  • the push-pull driving circuit 307 includes an NPN-type transistor Q1, a PNP-type transistor Q4, a capacitor C3 and a resistor R2;
  • the emitter of transistor Q4 is connected to the emitter of transistor Q1
  • the base of transistor Q4 is connected to the base of transistor Q1
  • the second end of resistor R2 is connected to the base of transistor Q4
  • the first end of resistor R2 is
  • the resistor R5 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the first end of the capacitor C3 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the second end of the capacitor C3 is connected
  • the base of the transistor Q4 is connected to the base of the transistor Q1; the collectors of the transistor Q1 are all grounded.
  • the energy recovery circuit 308 includes an NPN transistor Q2, a PNP transistor Q3, a clamp diode D2, a clamp diode D3, a capacitor C2, and a resistor R1;
  • the capacitor C2 is an energy recovery drive Energy storage capacitor in circuit 304;
  • the emitter of transistor Q2 is connected to the emitter of transistor Q3, the base of transistor Q2 and the base of transistor Q3 are both connected to the second end of resistor R1, and the collector of transistor Q2 is connected to the cathode of diode D2.
  • the collector of Q3 is connected to the anode of diode D3, the cathode of diode D3 and the anode of diode D2 are both connected to the first end of capacitor C2, and the second end of capacitor C2 is grounded.
  • the push-pull driving circuit includes an NPN-type transistor Q1, a PNP-type transistor Q4, a capacitor C3, and a capacitor C4;
  • the emitter of transistor Q4 is connected to the emitter of transistor Q1
  • the base of transistor Q4 is connected to the base of transistor Q1
  • the second end of capacitor C4 is connected to the base of transistor Q4
  • the first end of capacitor C4 is
  • the resistor R5 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the first end of the capacitor C3 is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1
  • the second end of the capacitor C3 is connected
  • the base of the transistor Q4 is connected to the base of the transistor Q1; the collector of the transistor Q1 is grounded.
  • the energy recovery circuit includes an NPN transistor Q2, a PNP transistor Q3, a clamp diode D2, a clamp diode D3, a capacitor C2, a capacitor C5, and a resistor R1; the capacitor C2 is energy Recover the energy storage capacitor in the drive circuit 304;
  • the emitter of transistor Q2 is connected to the emitter of transistor Q3, the base of transistor Q2 and the base of transistor Q3 are both connected to the second end of resistor R1 and the second end of capacitor C5, and the first end of resistor R1
  • the collector of transistor Q2 is connected to the cathode of diode D2
  • the collector of transistor Q3 is connected to the anode of diode D3
  • the cathode of diode D3 and the anode of diode D2 are both connected to the first end of capacitor C2. At one end, the second end of the capacitor C2 is grounded.
  • the parameters of the clamp diode D2 and the parameters of the clamp diode D3 are the same.
  • the parameters of the triode Q1 and the parameters of the triode Q3 are the same, and the parameters of the triode Q2 and the parameters of the triode Q4 are the same.
  • the second port 307b of the push-pull driving circuit 307 and the second port 308b of the energy recovery circuit 308 are both connected to the first port 305a of the switch circuit 305, which specifically includes:
  • the gate of the MOS transistor is connected between the emitter of the transistor Q4 and the emitter of the transistor Q1, and the source of the MOS transistor is connected to the collector of the transistor Q1;
  • the gate of the MOS transistor is connected between the emitter of the transistor Q2 and the emitter of the transistor Q3; the source of the MOS transistor is connected to the second end of the capacitor C2;
  • connection between the DC power supply 306 and the push-pull driving circuit specifically includes: the positive electrode of the DC power supply 306 is connected to the collector of the transistor Q4, and the negative electrode of the DC power supply 306 is grounded.
  • the control circuit 303 includes a first driving signal generator V1.
  • the control terminal 304a of the control circuit 303 is connected to the first port 307a of the push-pull driving circuit 307 and the first port 308a of the energy recovery circuit 308, which specifically includes:
  • the anode of the first drive signal generator V1 is connected to the first end of the resistor R2 in the push-pull drive circuit 307 and the first end of the resistor R1 in the energy recovery circuit 308 through a resistor R3;
  • the negative pole of the signal generator V is grounded; or,
  • the anode of the first driving signal generator V1 is connected to the first end of the capacitor C4 in the push-pull driving circuit 307 through the resistor R3, and the first end of the resistor R1 and the capacitor C5 in the energy recovery circuit 308 The first end.
  • the first driving signal generator V1 outputs a driving signal.
  • the voltage V1 output by the first driving signal generator gradually increases, and the first driving signal generator V1 at the first moment
  • the voltage V1 output by the driving signal generator V1 is greater than the turn-on voltage Vbe2 of the transistor Q2 in the energy recovery circuit 308, such as 0.7V.
  • the collector and emitter of the transistor Q2 are turned on, and the capacitor C2 of the energy recovery circuit 308 passes through the diode.
  • D2 and transistor Q2 charge the capacitor Cdg and capacitor Cgs of the switch circuit 305 until the voltage on the capacitor C2 is less than the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305, at this time the voltage on the junction capacitor of the switch circuit 305 reaches the intermediate voltage. flat.
  • the capacitor C3 is charged.
  • the voltage on the capacitor C3 is greater than the conduction voltage Vbe4 of the transistor Q4, such as 0.7V, the collector of the transistor Q4
  • the DC power supply VCC charges the capacitor Cdg and the capacitor Cgs of the switch circuit 305 through the transistor Q4 in the push-pull driving circuit 307 until the voltage of the capacitor Cdg and the capacitor Cgs is equal to the voltage drop Vce of the DC power supply VCC and the transistor Q4
  • the voltage on the junction capacitance of the switch circuit 305 reaches a high level, and the switch circuit 305 is turned on.
  • the circuit for charging the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is shown in 5b.
  • the voltage V1 output by the first drive signal generator V1 gradually decreases, and at the third moment the voltage V1 output by the first drive signal generator V1 is the same as the capacitance Cdg and the capacitance Cgs of the switch circuit 305
  • the difference of the voltage on is greater than the turn-on voltage Vbe3 of the transistor Q3
  • the transistor Q3 is turned on, and the capacitor Cdg and the capacitor Cgs of the switching circuit 305 charge the capacitor C2 in the energy recovery circuit 308 through the transistor D3 and the transistor Q3 until the switch is switched.
  • the voltage on the capacitor Cdg and the capacitor Cgs of the circuit 305 is less than the voltage on the capacitor C2.
  • the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 drops from a high level to an intermediate level; with the first drive signal generator
  • the voltage on the capacitor C3 gradually decreases; at the fourth moment, the voltage on the capacitor C3 is less than the turn-on voltage Vbe1 of the transistor Q1, for example (-0.7V), the capacitor Cdg of the switch circuit 305 and The capacitor Cgs is discharged to the ground through the transistor Q1 in the push-pull driving circuit 307, so that the capacitor Cdg and the capacitor Cgs of the switch circuit 305 fall from an intermediate level to a low level, and the switch circuit 305 is turned off.
  • the discharge circuit of the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is shown in FIG. 5c.
  • FIG. 5d is a schematic diagram of voltage changes on each device when the driving circuit shown in FIG. 5a is working.
  • VC1 in Figure 5d refers to the voltage on the capacitor Cdg and the capacitor Cgs.
  • the first driving signal generator V1 outputs a square wave signal.
  • the voltage Vbe2 between the base and emitter of the transistor Q2 gradually increases; when the Vbe2 of the transistor Q2 is greater than 0.7V, the diode Q2 is turned on, and the energy storage capacitor C2 passes through the diode D2 and The transistor Q2 charges the capacitor Cdg and the capacitor Cgs of the switching circuit 305, the voltage on the energy storage capacitor C2 decreases, and the voltage on the capacitor Cdg and the capacitor Cgs increases until the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is greater than the energy storage
  • the voltage on the capacitor C2; the voltage on the capacitor C3 gradually increases with the voltage of the signal output by the first drive signal generator V1; when the voltage on the capacitor C3 is greater than the voltage between the base and the emitter of the transistor Q4, The transistor Q4 is turned on, and the power supply V2 charges the capacitor Cdg and the capacitor Cgs of the switching circuit 305 through the transistor Q4, so that the drain and the source of the
  • the voltage Vbe3 between the base and the emitter of the transistor Q3 gradually decreases; when the Vbe3 of the transistor Q3 is less than (-0.7) V, the transistor Q3 Turn on, the capacitor Cdg and the capacitor Cgs of the switch circuit 305 charge the energy storage capacitor C2 through the transistor Q3 and the diode D3, the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 decreases, and the voltage on the energy storage capacitor C2 increases until The voltage on the energy storage capacitor C2 is greater than the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305; the voltage on the capacitor C3 gradually decreases with the voltage of the signal output by the first drive signal generator V1; when the voltage on the capacitor C3 When the voltage Vbe1 between the base and emitter of the transistor Q1 is smaller than the transistor Q1 is turned on, the capacitor Cdg and the capacitor Cgs of the switching circuit 305 are discharged to the ground through
  • the first moment and the second moment are the results of the first drive signal generator V1 during the process of outputting the rising edge of the drive signal.
  • Time, and the first time is before the second time;
  • the third time and the fourth time are the time when the first driving signal generator V1 is outputting the falling edge of the driving signal, and the third time is before the fourth time.
  • the first moment may be before the third moment, or the first moment may be after the fourth moment.
  • the control circuit 303 includes a first drive signal generator V1 and a second drive signal generator V2.
  • the control circuit 303 is connected to the push-pull drive circuit 307 and the energy recovery circuit 308, and specifically includes:
  • the anode of the first drive signal generator V1 is connected to the first end of the resistor R1 through a resistor R2; the cathode of the first drive signal generator V1 is grounded; the anode of the second drive signal generator V2 is connected through a resistor R6 is connected to the first end of the resistor R2; the negative pole of the second drive signal generator V2 is grounded; or,
  • the anode of the first drive signal generator V1 is connected to the first end of the resistor R1 through a resistor R3; the cathode of the first drive signal generator V1 is grounded; the anode of the second drive signal generator V2 is connected through a resistor R6 is connected to the first end of the capacitor C4; the negative electrode of the second drive signal generator V2 is grounded.
  • the first driving signal generator V1 outputs a driving signal.
  • the voltage V1 output by the first driving signal generator V1 gradually increases, and at the first moment the first driving signal generator outputs
  • the voltage V1 of the energy recovery circuit 308 is greater than the turn-on voltage Vbe2 of the transistor Q2 in the energy recovery circuit 308, such as 0.7V, the collector and emitter of the transistor Q2 are turned on, and the capacitor C2 of the energy recovery circuit 308 switches through the diode D2 and the transistor Q2.
  • the capacitor Cdg and the capacitor Cgs of the circuit 305 are charged until the voltage on the capacitor C2 is less than the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305, at this time the voltage on the junction capacitor of the switch circuit 305 reaches an intermediate level.
  • the capacitor C3 is charged.
  • the voltage on the capacitor C3 is greater than the turn-on voltage Vbe4 of the transistor Q4, such as 0.7V, the collector of the transistor Q4 and The emitter is turned on, and the power supply VCC charges the capacitor Cdg and the capacitor Cgs of the switching circuit 305 through the transistor Q4 in the push-pull driving circuit 307 until the voltage of the capacitor Cdg and the capacitor Cgs is equal to the difference between the voltage drop Vce of the power supply VCC301 and the transistor Q4 At this time, the voltage on the junction capacitance of the switch circuit 305 reaches a high level, and the switch circuit 305 is turned on.
  • the circuit for charging the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is shown in 6b.
  • the first driving signal generator V1 When the first driving signal generator V1 outputs the falling edge of the driving signal, the voltage V1 output by the first driving signal generator V1 gradually decreases, and at the third moment the first driving signal generator V1 outputs the voltage of the driving signal and the capacitance Cdg
  • the difference with the voltage on the capacitor Cgs is greater than the turn-on voltage Vbe3 of the transistor Q3, the collector and emitter of the transistor Q3 are turned on, and the capacitor Cdg and the capacitor Cgs of the switching circuit 305 are connected to the energy recovery circuit 308 through the transistor D3 and the transistor Q3.
  • the capacitor C2 in the switch circuit 305 is charged until the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is less than the voltage on the capacitor C2.
  • the voltage on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 drops from a high level to an intermediate level ;
  • the second drive signal generator V2 outputs the falling edge of the drive signal
  • the voltage of the drive signal output by the second drive signal generator V2 gradually decreases; as the voltage of the drive signal output by the second drive signal generator V2 decreases, the capacitor The voltage on C3 gradually decreases; at the fourth moment, the voltage on the capacitor C3 is less than the on-voltage Vbe1 of the transistor Q1, for example (-0.7V)
  • the capacitor Cdg and the capacitor Cgs of the switch circuit 305 are driven by the push-pull circuit
  • the transistor Q1 in 307 discharges to the ground, so that the capacitor Cdg and the capacitor Cgs of the switch circuit 305 fall from the intermediate level to the low level, and the switch circuit 305 is turned off.
  • the discharge circuit of the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is shown in FIG. 6c.
  • the above-mentioned purpose of the first time before the second time and the third time before the fourth time is achieved.
  • the drive signal of the energy recovery circuit 308 precedes the drive signal of the push-pull drive circuit 307.
  • the drive signal of the energy recovery circuit 308 still precedes the drive signal of the push-pull drive circuit 307. Therefore, the energy recovery circuit 308 provides an intermediate level, which can provide a part of the drive energy during the turn-on process, and realizes partial recovery of the drive energy stored on the capacitor Cdg and the capacitor Cgs of the switch circuit 305 during the turn-off process.
  • the normal push-pull drive circuit After the drive voltage rises to the voltage on the capacitor C2 of the energy recovery circuit 308, the normal push-pull drive circuit provides the voltage required for the switch circuit 305 to be fully turned on or off, namely high level and low level; during the turn-on process
  • the capacitor Cdg and the capacitor Cgs of the switching circuit 305 are supplemented with the energy required to drive the corresponding set voltage from the intermediate level to the full conduction, and the remaining energy on the junction capacitance of the switching circuit 305 after recovery is extracted during the turn-off process to achieve the drive The set voltage corresponding to the off state.
  • the drive circuit is three-level drive, namely high level, middle level and low level.
  • the first driving signal generator V1 or the second driving signal generator V2 may be a driving chip, and the driving chip may be composed of a push-pull circuit composed of MOS transistors and a corresponding driving amplifier circuit composed of diodes and resistors.
  • the front-stage input signal of the driving chip is used to adjust the working status of the push-pull driving circuit and the energy recovery driving circuit, and the driving signal of the driving chip can be realized by a control chip or a logic gate.
  • the first moment and the second moment are the results of the first drive signal generator V1 in the process of outputting the rising edge of the drive signal.
  • Time, and the first time is before the second time;
  • the third time and the fourth time are the time when the second driving signal generator V2 is outputting the falling edge of the driving signal, and the third time is before the fourth time.
  • the first moment may be before the third moment, or the first moment may be after the fourth moment.
  • the first driving signal as shown in FIG. 5a can be output based on the first driving signal generator V1 and the second driving signal generator V2 The signal output by generator V1.
  • the function of the resistor R1 is to provide a pulse control signal for the energy recovery circuit 308 to make the corresponding transistors Q2 and Q3 work in a saturated state.
  • the resistor R1 is also a driving current-limiting resistor, and the current magnitude of the energy recovery circuit 308 charging and discharging the capacitor Cdg and the capacitor Cgs of the switching circuit can be adjusted by adjusting the base current Ib of the transistors Q2 and Q3.
  • the function of the diode D2 one is as a part of the charge and discharge conduction loop of the transistor Q2, and the other is to use its reverse cut-off characteristic to prevent the driving voltage of the capacitor Cdg and the capacitor Cgs of the switch circuit 305 from being greater than that of the capacitor C2 in the energy recovery circuit 308 After the voltage is applied, the CE junction of the transistor Q2 is damaged due to the reverse voltage.
  • the function of the diode D3 is to act as a part of the charge and discharge conduction loop of the transistor Q3, and to prevent the CE of the transistor Q3 after the driving voltage of the capacitor Cdg and the capacitor Cgs of the switch circuit 305 is less than the voltage of the capacitor C2 in the energy recovery circuit 308 The junction is damaged by the reverse voltage.
  • R2 and C3 The function of R2 and C3 is to provide the pulse control signal for the push-pull drive circuit 307.
  • the transistor Q2 and the transistor Q3 and the push-pull drive circuit in the energy recovery circuit 308 can be adjusted by adjusting the size of R2 and C3, that is, adjusting the time constant.
  • 307 corresponds to the working time difference between the transistor Q1 and the transistor Q4.
  • the time difference can also be regarded as the difference between the time when the energy recovery circuit 308 starts working and the time when the push-pull drive circuit 307 starts working.
  • the push-pull drive circuit 307 After the voltages of the capacitor Cdg and capacitor Cgs of the switch circuit 305 reach the intermediate level generated by the energy recovery circuit 308, the push-pull drive circuit 307 must quickly switch in, and the energy recovery circuit 308 is replaced by the DC power supply 306 to continue to the capacitor Cdg of the switch circuit 305 And the capacitor Cgs is charged.
  • R2 is also a driving current-limiting resistor.
  • the base current Ib of the transistors Q1 and Q4 can be adjusted by the size of the resistor R2, and then the push-pull drive circuit 307 can adjust the current when the capacitor Cdg and the capacitor Cgs of the switch circuit are charged and discharged. .
  • the rising edge speed and the falling edge speed of the drive signal output by the first drive signal generator can be adjusted.
  • the function of the capacitor C2 is to provide the energy required for the voltage of the capacitor Cdg and the capacitor Cgs of the switching circuit 305 to reach the mid-level voltage during the process of charging the capacitor Cdg and the capacitor Cgs of the switching circuit 305.
  • the energy released when the voltage of the capacitor Cdg and the capacitor Cgs of the switch circuit 305 reaches the mid-level voltage is recovered.
  • the voltage on C2 will stabilize at half of the DC power supply VCC; and the capacity of C2 should be more than one hundred times greater than the junction capacitance of the switching circuit, thereby avoiding C2
  • the voltage on the capacitor fluctuates too much.
  • R5 The function of R5 is to provide a discharge circuit for the capacitor Cdg and the capacitor Cgs of the switch circuit 305 after the voltage output by the control circuit 303 is lower than the corresponding turn-on voltage Vbe of the transistor Q4 or Q1 to ensure the reliable turn-off of the switch circuit 305.
  • the function of the capacitor C4 in Figs. 7 and 8 is the same as that of the resistor R2 in Figs. 5a and 6a; the function of the capacitor C5 and the resistor R1 in Figs. 7 and 8 is the same as that of Fig. 5a It has the same function as the resistor R1 in Figure 6a.
  • the resistor R1 is used to clamp the voltage on the capacitor C5.
  • the parameters of each device in Figure 5a, Figure 5b, Figure 5c, Figure 6a, Figure 6b, Figure 6c, Figure 7 and Figure 8 are as follows: the capacitance value of the capacitor C2 is 100nF, and the capacitance value of the capacitor C3
  • the value of capacitor C4 is 4.8nF, the value of capacitor C4 is 2nF, the value of capacitor C5 is 1nF, the value of resistor R1 is 22 ⁇ , the value of resistor R2 is 47 ⁇ , the value of resistor R3 is 3 ⁇ , and the value of resistor R4 is 10k ⁇ , the resistance value of resistor R5 is 220 ⁇ ;
  • the model of diode D2 and diode D3 is MBRS130L; the model of transistor Q1 and transistor Q3 is 2N2907, and the model of transistor Q2 and transistor Q4 is 2N2219A.
  • the triode in the above push-pull driving circuit can be replaced with a MOS transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

本申请公开了一种具有能量回收功能的驱动电路,包括:控制电路、能量回收驱动电路、开关电路和直流电源,控制电路,用于控制在第一时刻能量回收驱动电路中的储能电容对开关电路的结电容进行充电,并在第二时刻直流电源通过能量回收驱动电路对开关电路的结电容进行充电,使得开关电路导通;第一时刻在第二时刻之前;并控制在第三时刻开关电路的结电容对能量回收驱动电路中的储能电容进行充电,并在第四时刻开关电路的结电容通过能量回收驱动电路对地放电,使得开关电路关断;第三时刻在第四时刻之前。本申请还公开了一种开关电源。采用本申请实施例可以实现对驱动能量的部分回收再利用,提高能量的使用效率。

Description

一种具有能量回收功能的驱动电路及开关电源
本申请要求于2020年6月23日提交中国国家知识产权局、申请号为202010595162.X、发明名称为“一种具有能量回收功能的驱动电路及开关电源”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路领域,尤其涉及一种具有能量回收功能的驱动电路及开关电源。
背景技术
随着电源及功率模组朝着高密、高效、高频化发展,特别是在大功率应用场景中,需要多个功率管并联应用。
图1为现有的采用驱动芯片的驱动电路的结构示意图。如图1所示,驱动芯片内部采用传统的基于(Metal-Oxide-Semiconductor-Field-Effect Transistor,MOSFET)功率场效应晶体管或者三极管(bipolar junction transistor,BJT)的图腾柱推挽电路,通过驱动电阻R g实现对功率管结电容的充放电,充放电的过程中驱动能量会全部消耗在驱动电阻R g和驱动芯片内部的图腾柱推挽电路上。随着并联功率管的数量的增大,所需要的驱动损耗也就越大,会降低整个系统的效率。特别是在轻载下,驱动损耗在系统损耗中的占比会急剧上升,严重影响系统轻载效率。
因此,现有技术还提出了一种具体能量回收的驱动电路。如图2中的a图和b图所示,在传统的图腾柱推挽电路后增加了谐振电感L r和自由振荡的钳位二极管D1,D2或者MOS管,在功率管关断过程中(S 2导通),此时功率管Q的结电容和谐振电感发生谐振,将功率管Q的上结电容的能量转移到谐振电感上,从而实现对功率管Q的结电容的驱动能量的回收,在下次开通过程中(S 1导通),又将谐振电感上储存的能量转移到功率管Q的结电容上。
但是在图2中的a图和b图所示电路中增加了谐振电感,使得驱动电路的体积会变得很大,同时也使得驱动电路的控制也变得比传统的驱动电路更加复杂。
发明内容
本申请实施例提供一种具有能量回收功能的驱动电路及开关电源,采用发明实施例可以实现对能量的充分利用,并且驱动电路体积小,控制逻辑也简单。
第一方面,本申请实施例提供一种具有能量回收功能的驱动电路,包括:控制电路、能量回收驱动电路、开关电路和直流电源,其中,控制电路与能量回收驱动电路连接,该能量回收驱动电路与开关电路的连接,直流电源与能量回收驱动电路连接,
控制电路,用于控制能量回收驱动电路在第一时刻使其中的储能电容对开关电路的结电容充电,并在第二时刻使直流电源通过能量回收驱动电路对开关电路的结电容进行充电,使得开关电路导通;
该控制电路,还用于控制能量回收驱动电路在第三时刻使开关电路的结电容对能量回收驱动电路中的储能电容进行充电,并在第四时刻使开关电路的结电容通过能量回收驱动 电路对地放电,使得开关电路开断。
通过控制能量回收驱动电路的工作状态,对存储在开关电路的结电容上的一部分驱动能量转移到能量回收驱动电路的储能电容上,实现了驱动能量的回收再利用,避免了驱动能量全部消耗在驱动电阻上,从而实现驱动损耗大幅下降,使得整机效率更高,并且控制逻辑简单。
在一个可行的实施例中,能量回收驱动电路包括推挽驱动电路和能量回收电路,控制电路与推挽驱动电路和能量回收电路均连接,推挽驱动电路和能量回收电路均与开关电路连接;直流电源与推挽驱动电路连接,控制电路,用于控制能量回收驱动电路在第一时刻使其中的储能电容对开关电路的结电容充电,并在第二时刻使直流电源通过能量回收驱动电路对开关电路的结电容进行充电,包括:
控制电路,用于控制所述能量回收电路在第一时刻使其中的储能电容对开关电路的结电容进行充电;并控制推挽驱动电路第二时刻使直流电源通过推挽驱动电路对开关电路的结电容充电;
控制电路,还用于控制能量回收驱动电路在第三时刻使开关电路的结电容对能量回收驱动电路中的储能电容进行充电,并在第四时刻使开关电路的结电容通过能量回收驱动电路对地放电,包括:
控制电路,用于控制能量回收电路在第三时刻使开关电路的结电容对能量回收电路中的储能电容进行充电;并控制推挽驱动电路在第四时刻使开关电路的结电容通过推挽驱动电路对地放电。
可选地,开关电路包括电阻R4、MOS管M0、电容Cdg和电容Cgs;其中,电阻R4的第一端部连接到MOS管M0的栅极,电容Cdg的两端分别连接到所述MOS管M0的漏极和栅极,电容Cgs的两端分别连接到所述MOS晶体管的源极和栅极,所述MOS管M0的源极连接到电阻R4的第二端部;
使得所述开关电路导通和开断具体是指使MOS管M0的漏极和源极之间导通和开断;开关电路的结电容包括电容Cds和所述电容Cgs。
其中,MOS管M0为NPN型MOS管。
可选地,推挽驱动电路包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电阻R2;
其中,三极管Q4的发射极连接到三极管Q1的发射极,三极管Q4的基极连接到三极管Q1的基极,电阻R2的第二端部连接到三极管Q4的基极,电阻R2的第一端部通过电阻R5连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第一端部连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,电容C3的第二端部连接到三极管Q4的基极连接到三极管Q1的基极之间;三极管Q1的集电极接地。
可选地,能量回收电路包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2和电阻R1;电容C2为能量回收驱动电路中的储能电容;
其中三极管Q2的发射极连接到三极管Q3的发射极,三极管Q2的基极和三极管Q3的基极均连接到电阻R1的第二端部,三极管Q2的集电极连接到二极管D2的负极,三极管Q3的集电极连接到二极管D3的正极,二极管D3的负极和二极管D2的正极均连接至电容C2的第一端部,电容C2的第二端部接地。
可选地,推挽驱动电路包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电容C4;
其中,三极管Q4的发射极连接到三极管Q1的发射极,三极管Q4的基极连接到三极管Q1的基极,电容C4的第二端部连接到三极管Q4的基极,电容C4的第一端部通过电阻R5连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第一端部连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第二端部连接到三极管Q4的基极连接到三极管Q1的基极之间;三极管Q1的集电极接地。
可选地,能量回收电路包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2、电容C5和电阻R1;电容C2为能量回收驱动电路中的储能电容;
其中三极管Q2的发射极连接到三极管Q3的发射极,三极管Q2的基极和三极管Q3的基极均连接到电阻R1的第二端部和电容C5的第二端部,电阻R1的第一端部和电容C5的第一端部,三极管Q2的集电极连接到二极管D2的负极,三极管Q3的集电极连接到二极管D3的正极,二极管D3的负极和二极管D2的正极均连接至电容C2的第一端部,电容C2的第二端部接地。
可选地,上述二极管D2的参数和二极管D3的参数相同。
可选地,三极管Q1的参数和三级管Q3的参数相同,三极管Q2的参数和三极管Q4的参数相同。
在一个可行的实施例中,开关电路包括电容Cdg和电容Cgs和等效驱动下拉电阻R4,推挽驱动电路和能量回收电路均与开关电路连接,具体包括:
MOS晶体管的栅极连接到三极管Q4的发射极和三极管Q1的发射极之间,MOS晶体管的源极连接到三极管Q1的集电极;
MOS晶体管的栅极连接到三极管Q2的发射极和所述三极管Q3的发射极之间,MOS晶体管的源极连接到电容C2的第二端部;
直流电源与推挽驱动电路连接具体包括:直流电源的正极与三极管Q的集电极连接,直流电源的负极接地。
在一个可行的实施例中,控制电路包括第一驱动信号发生器,控制电路与所述推挽驱动电路和能量回收电路均连接,具体包括:
第一驱动信号发生器的正极通过电阻R3连接到电阻R2的第一端部和电阻R1的第一端部;第一驱动信号发生器的负极接地;或者,
第一驱动信号发生器的正极通过电阻R3连接到电容C4的第一端部和电阻R1的第一端部;第一驱动信号发生器的负极接地。
在一个可行的实施例中,控制电路,用于控制能量回收电路在第一时刻使其中的储能电容对开关电路的结电容进行充电,具体包括:
第一驱动信号发生器输出驱动信号的上升沿,并在第一时刻所述第一驱动信号发生器输出的电压大于三极管Q2的导通电压,以使电容C2通过二极管D2和三极管Q2对开关电路的电容Cdg和电容Cgs充电;
控制电路,用于控制推挽驱动电路在第二时刻使直流电源通过推挽驱动电路对开关电路的结电容充电,具体包括:
第一驱动信号发生器输出驱动信号的上升沿,并对电容C3充电,使得在第二时刻电容 C3上的电压大于三极管Q4的导通电压,以实现直流电源通过三极管Q4对电容Cdg和电容Cgs充电。
在一个可行的实施例中,控制电路,用于控制所述能量回收电路在第三时刻使开关电路的结电容对能量回收电路中的储能电容进行充电,具体包括:
第一驱动信号发生器输出驱动信号的下降沿,并在第三时刻驱动信号的电压与开关电路的电容Cdg和电容Cgs上电压的差值大于三极管Q3的导通电压,以使开关电路的电容Cdg和电容Cgs通过三极管Q3和二极管D3对电容C2充电;
控制电路,用于控制推挽驱动电路在第四时刻使开关电路的结电容通过推挽驱动电路对地放电,具体包括:
第一驱动信号发生器输出驱动信号的下降沿,并使得在第四时刻电容C3上的电压大于三极管Q1的导通电压,以实现开关电路的电容Cdg和电容Cgs通过三极管Q1对地放电。
在一个可行的实施例中,控制电路包括第一驱动信号发生器和第二驱动信号发生器,
控制电路与推挽驱动电路和能量回收电路均连接,具体包括:
第一驱动信号发生器的正极通过电阻R3连接到电阻R1的第一端部;第一驱动信号发生器的负极接地;第二驱动信号发生器的正极通过电阻R6连接到电阻R2的第一端部;第二驱动信号发生器的负极接地;或者,
第一驱动信号发生器的正极通过电阻R3连接到电阻R1的第一端部;第一驱动信号发生器的负极接地;第二驱动信号发生器的正极通过电阻R6连接到电容C4的第一端部;第二驱动信号发生器的负极接地。
在一个可行的实施例中,控制电路,用于控制所述能量回收电路在第一时刻使其中的储能电容对开关电路的结电容进行充电,具体包括:
第一驱动信号发生器输出驱动信号的上升沿,并在第一时刻驱动信号的电压大于三极管Q3的导通电压,以使电容C2通过二极管D2和三极管Q2对开关电路的电容Cdg和电容Cgs充电;
控制电路用于推挽驱动电路在第二时刻使直流电源通过推挽驱动电路对开关电路的结电容充电,具体包括:
第二驱动信号发生器输出驱动信号的上升沿,并对电容C3充电,使得在第二时刻电容C3上的电压大于三极管Q4的导通电压,以实现直流电源通过三极管Q4对电容充电。
在一个可行的实施例中,控制电路,还用于控制能量回收电路在第三时刻使开关电路的结电容对能量回收电路中的储能电容进行充电,具体包括:
第一驱动信号发生器输出驱动信号的下降沿,并在第三时刻第一驱动信号发生器输出的电压与开关电路的电容Cdg和电容Cgs上电压的差值大于三极管Q3的导通电压,以使开关电路的电容Cdg和电容Cgs通过三极管Q3和二极管D3对电容C2充电;
控制电路,用于控制推挽驱动电路在第四时刻使开关电路的结电容通过推挽驱动电路对地放电,具体包括:
第二驱动信号发生器输出驱动信号的下降沿,并使得在第四时刻电容C3上的电压大于三极管Q1的导通电压,以实现开关电路的电容Cdg和电容Cgs通过所述三极管Q1对地放电。
其中,上述第一驱动信号发生器和第二驱动信号发生器可以是但不限于驱动芯片。
第二方面,本申请实施例提供一种开关电源,该开关电源包括第一方面所述的驱动电路的部分或全部。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种驱动电路;
图2为现有技术中的一种具有能量回收功能的电路;
图3为本申请实施例提供的一种具有能量回收功能的驱动电路的应用场景示意图;
图4为本申请实施例提供的一种具有能量回收功能的驱动电路的结构示意图;
图5a为本申请实施例提供的一种具有能量回收功能的驱动电路的具体结构示意图;
图5b为储能电容对开关电路的结电容充电时能量流向示意图;
图5c为开关电路的结电容对储能电容充电时能量流向示意图;
图5d为本申请实施例提供的一种具有能量回收功能的驱动电路工作时各器件上的电压变化示意图;
图6a为本申请实施例提供的另一种具有能量回收功能的驱动电路的具体结构示意图;
图6b为储能电容对开关电路的结电容充电时能量流向示意图;
图6c为开关电路的结电容对储能电容充电时能量流向示意图;
图7为本申请实施例提供的另一种具有能量回收功能的驱动电路的具体结构示意图;
图8为本申请实施例提供的另一种具有能量回收功能的驱动电路的具体结构示意图。
具体实施方式
下面结合附图对本申请的实施例进行描述。
参见图3,图3为本申请实施例提供的一种具有能量回收功能的驱动电路的应用场景示意图。如图3所示,该应用场景包括开关电源30和用电器31,其中,开关电源30与用电器31连接。
开关电源30包括电源301和驱动电路302;电源驱动电路302的第一端口302a与电源301连接,驱动电路302的第二端口302b与用电器31连接。
通过驱动电路302来控制电源301与用电器31之间回路的导通和断开,进而实现开关电源的功能。
在此需要指出的是,本申请公开的具有能量回收功能的驱动电路还可以应用于其他电路,比如逆变器等。
参见图4,图4为本申请实施例提供的一种具有能量回收功能的驱动电路的架构示意图。如图4所示,该驱动电路302包括控制电路303、能量回收驱动电路304、开关电路305和直流电源306,其中控制电路303的控制端303a与能量回收驱动电路304的第一端口304a连接,直流电源306的输出端306a与能量回收驱动电路304的第三端口304c连接,能量回收驱动电路304的第二端口304b与开关电路305的第一端口305a连接。
其中,控制电路303用于控制能量回收驱动电路304在第一时刻使其中的储能电容对开关电路305的结电容充电,并在第二时刻使直流电源306通过能量回收驱动电路304对开关电路305的结电容进行充电,使得开关电路305导通,其中第一时刻在第二时刻之前;
控制电路303还用于控制能量回收驱动电路304在第三时刻使开关电路305的结电容对能量回收驱动电路304中的储能电容进行充电,并在第四时刻使开关电路305的结电容通过能量回收驱动电路304对地放电,使得开关电路305开断,第三时刻在第四时刻之前。
其中,开关电路305导通和开断具体是指:开关电路305的第二端口和第三端口之间导通和开断。
其中,开关电路305的第二端口305b和第三端口305c分别连接在用电器31和电源301,通过控制电路303控制开关电路305的第二端口305b和第三端口305c之间关断和导通,从而实现电源301与用电器31之间回路的导通和断开。
进一步地,能量回收驱动电路304包括推挽驱动电路307和能量回收电路308,能量回收驱动电路304的第一端口304a包括推挽驱动电路307的第一端口307a和能量回收电路308的第一端口308a,能量回收驱动电路304的第二端口304b包括推挽驱动电路307的第二端口307b和能量回收电路308的第二端口308b,
其中,控制电路303的控制端303a与能量回收驱动电路304的第一端口304a连接,具体包括:控制电路303的控制端303a与推挽驱动电路307的第一端口307a和能量回收电路308的第一端口308a均连接;能量回收驱动电路304的第二端口304b与开关电路305的第一端口305a连接具体包括:推挽驱动电路307的第二端口307b和能量回收电路308的第二端口308b均与开关电路305的第一端口305a连接,直流电源306的输出端306a与能量回收驱动电路304的第三端口304c具体是指直流电源306的输出端306a与推挽驱动电路307的第三端口307c连接;
具体地,控制电路303控制能量回收驱动电路304在第一时刻使其中的储能电容对开关电路305的结电容进行充电,并在第二时刻使直流电源306通过能量回收驱动电路304对开关电路305的结电容进行充电具体包括:
控制电路303控制能量回收电路308在第一时刻使能量回收电路308中的储能电容对开关电路305的结电容进行充电;并控制推挽驱动电路307在第二时刻使直流电源306通过推挽驱动电路307对开关电路305的结电容充电;
控制电路303控制能量回收驱动电路304在第三时刻使所述开关电路305的结电容对能量回收驱动电路304中的储能电容进行充电,并在第四时刻使开关电路305的结电容通过能量回收驱动电路304对地放电,具体包括:
控制电路303控制能量回收电路308在第三时刻使开关电路的结电容对能量回收电路308中的储能电容进行充电;并控制推挽驱动电路307在第四时刻使开关电路305的结电 容通过推挽驱动电路307对地放电。
可选地,如图5a或图6a所示,开关电路包括电阻R4、MOS管M0、电容Cdg和电容Cgs,其中,电阻R4的第一端部连接到MOS管M0的栅极,电容Cdg的两端分别连接到MOS管M0的漏极和栅极,电容Cgs的两端分别连接到MOS晶体管的栅极和源极,MOS管M0的源极连接到电阻R4的第二端部。
其中,开关电路305的第二端部305b和第三端部305c分别包括MOS管M0的漏极和源极,开关电路305的第二端口和第三端口之间导通和开断是指MOS管M0的漏极和源极之间导通和开断。
其中,在本申请中,开关电路305的结电容包括电容Cdg和电容Cgs。
可选地,开关电路305还包括电容Cds,该电容Cds的两端分别连接到MOS管M0的漏极和源极。
可选地,MOS管M0为NPN型MOS管。
其中,上述MOS管可以是但不限于普通的硅基功率场效应晶体管(Si MOSFET),碳化硅高电子迁移率晶体管(silicon carbide high electron mobility transistors,SiC HEMT),氮化镓高电子迁移率晶体管(gallium nitride high electron mobility transistors,GaN HEMT)等。
可选地,如图5a或图6a所示,推挽驱动电路307包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电阻R2;
其中,三极管Q4的发射极连接到三极管Q1的发射极,三极管Q4的基极连接到三极管Q1的基极,电阻R2的第二端部连接到三极管Q4的基极,电阻R2的第一端部通过电阻R5连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第一端部连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第二端部连接到三极管Q4的基极连接到三极管Q1的基极之间;三极管Q1的集电极均接地。
可选地,如图5a或图6a所示,能量回收电路308包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2和电阻R1;电容C2为能量回收驱动电路304中的储能电容;
其中,三极管Q2的发射极连接到三极管Q3的发射极,三极管Q2的基极和三极管Q3的基极均连接到电阻R1的第二端部,三极管Q2的集电极连接到二极管D2的负极,三极管Q3的集电极连接到二极管D3的正极,二极管D3的负极和二极管D2的正极均连接至电容C2的第一端部,电容C2的第二端部接地。
可选地,如图7或图8所示,推挽驱动电路包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电容C4;
其中,三极管Q4的发射极连接到三极管Q1的发射极,三极管Q4的基极连接到三极管Q1的基极,电容C4的第二端部连接到三极管Q4的基极,电容C4的第一端部通过电阻R5连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第一端部连接到三极管Q4的发射极和三极管Q1的发射极之间,电容C3的第二端部连接到三极管Q4的基极连接到三极管Q1的基极之间;三极管Q1的集电极接地。
可选地,如图7或图8所示,能量回收电路包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2、电容C5和电阻R1;电容C2为能量回收驱动 电路304中的储能电容;
其中三极管Q2的发射极连接到三极管Q3的发射极,三极管Q2的基极和三极管Q3的基极均连接到电阻R1的第二端部和电容C5的第二端部,电阻R1的第一端部和电容C5的第一端部,三极管Q2的集电极连接到二极管D2的负极,三极管Q3的集电极连接到二极管D3的正极,二极管D3的负极和二极管D2的正极均连接至电容C2的第一端部,电容C2的第二端部接地。
可选地,钳位二极管D2的参数和钳位二极管D3的参数相同。
可选地,三极管Q1的参数和三极管Q3的参数相同,三极管Q2的参数和三极管Q4的参数相同。
如图5a或图6a所示,推挽驱动电路307的第二端口307b和能量回收电路308的第二端口308b均连接到开关电路305的第一端口305a,具体包括:
MOS晶体管的栅极连接到三极管Q4的发射极和三极管Q1的发射极之间,MOS晶体管的源极连接到三极端Q1的集电极;
MOS晶体管的栅极连接到三极管Q2的发射极和三极管Q3的发射极之间;MOS晶体管的源极连接到电容C2的第二端部;
直流电源306与推挽驱动电路连接具体包括:直流电源306的正极与三极管Q4的集电极连接,直流电源306的负极接地。
控制电路303包括第一驱动信号发生器V1,控制电路303的控制端304a与推挽驱动电路307的第一端口307a和能量回收电路308的第一端口308a均连接,具体包括:
如图5a所示,第一驱动信号发生器V1的正极通过电阻R3连接到推挽驱动电路307中电阻R2的第一端部和能量回收电路308中电阻R1的第一端部;第一驱动信号发生器V的负极接地;或者,
如图7所示,第一驱动信号发生器V1的正极通过电阻R3连接到推挽驱动电路307中电容C4的第一端部,和能量回收电路308中电阻R1的第一端部及电容C5的第一端部。
具体地,如图5a所示,第一驱动信号发生器V1输出驱动信号,在输出驱动信号的上升沿时,第一驱动信号发生器输出的电压V1逐渐增大,并在第一时刻第一驱动信号发生器V1输出的电压V1大于能量回收电路308中三极管Q2的导通电压Vbe2,比如0.7V时,此时三极管Q2的集电极和发射极导通,能量回收电路308的电容C2通过二极管D2和三极管Q2对开关电路305的电容Cdg和电容Cgs充电,直至电容C2上的电压小于开关电路305的电容Cdg和电容Cgs上的电压,此时开关电路305的结电容上的电压达到中间电平。在第一驱动信号发生器V1输出驱动信号的上升沿时,对电容C3进行充电,在第二时刻电容C3上的电压大于三极管Q4的导通电压Vbe4,比如0.7V时,三极管Q4的集电极和发射极导通,直流电源VCC通过推挽驱动电路307中的三极管Q4对开关电路305的电容Cdg和电容Cgs充电,直至电容Cdg和电容Cgs的电压等于直流电源VCC与三极管Q4的压降Vce的差值,此时开关电路305的结电容上的电压达到高电平,开关电路305导通。对开关电路305的电容Cdg和电容Cgs进行充电的回路如5b所示。
在输出驱动信号的下降沿时,第一驱动信号发生器V1输出的电压V1逐渐降低,并在第三时刻第一驱动信号发生器V1输出驱动信号的电压与开关电路305的电容Cdg和电容 Cgs上的电压的差值大于三极管Q3的导通电压Vbe3时,三极管Q3导通,开关电路305的电容Cdg和电容Cgs通过三极管D3和三极管Q3对能量回收电路308中的电容C2进行充电,直至开关电路305的电容Cdg和电容Cgs上的电压小于电容C2上的电压,此时开关电路305的电容Cdg和电容Cgs上的电压从高电平下降到中间电平;随着第一驱动信号发生器输出的电压的降低,电容C3上的电压逐渐减小;在第四时刻电容C3上的电压小于三级管Q1的导通电压Vbe1,比如(-0.7V)时,开关电路305的电容Cdg和电容Cgs通过推挽驱动电路307中的三极管Q1对地放电,使得开关电路305的电容Cdg和电容Cgs从中间电平下降到低电平,进而使得开关电路305关断。开关电路305的电容Cdg和电容Cgs的放电回路如图5c所示。
图5d为图5a所示驱动电路工作时各器件上电压变化示意图。其中,图5d中的VC1指的是电容Cdg和电容Cgs上的电压。如图5d所示,第一驱动信号发生器V1输出方波信号。随着输出方波信号的上升沿,三极管Q2的基极与发射极之间的电压Vbe2逐渐增大;当三极管Q2的Vbe2大于0.7V时,二极管Q2导通,储能电容C2通过二极管D2和三极管Q2对开关电路305的电容Cdg和电容Cgs充电,储能电容C2上的电压降低,电容Cdg和电容Cgs上的电压增大,直至开关电路305的电容Cdg和电容Cgs上的电压大于储能电容C2上的电压;电容C3上的电压随着第一驱动信号发生器V1输出的信号的电压逐渐增大;当电容C3上的电压大于三极管Q4的基极与发射极之间的电压时,三极管Q4导通,电源V2通过三极管Q4对开关电路305的电容Cdg和电容Cgs充电,使得开关电路305的MOS管M0的漏极和源极之间导通;
随着第一驱动信号发生器V1输出方波信号的下降沿时,三极管Q3的基极与发射极之间的电压Vbe3逐渐减小;当三极管Q3的Vbe3小于(-0.7)V时,三极管Q3导通,开关电路305的电容Cdg和电容Cgs通过三极管Q3和二极管D3对储能电容C2充电,开关电路305的电容Cdg和电容Cgs上的电压降低,储能电容C2上的电压增大,直至储能电容C2上的电压大于开关电路305的电容Cdg和电容Cgs上的电压;电容C3上的电压随着第一驱动信号发生器V1输出的信号的电压逐渐减小;当电容C3上的电压小于三极管Q1的基极与发射极之间的电压Vbe1时,三极管Q1导通,开关电路305的电容Cdg和电容Cgs通过三极管Q1对地放电,直至开关电路305的电容Cdg和电容Cgs上的电压为0,使得开关电路305的MOS管M0的漏极和源极之间断开。
在此需要说明的是,图7所示电路的工作原理具体可参见图5a的工作原理的相关描述,在此不再叙述。
在此需要指出的是,对于图5a、图5b、图5c和图7所示的电路中,第一时刻和第二时刻为第一驱动信号发生器V1在输出驱动信号的上升沿过程中的时刻,且第一时刻在第二时刻之前;第三时刻和第四时刻为第一驱动信号发生器V1在输出驱动信号的下降沿过程中的时刻,且第三时刻在第四时刻之前。可选地,第一时刻可在第三时刻之前,或者第一时刻在第四时刻之后。
控制电路303包括第一驱动信号发生器V1和第二驱动信号发生器V2,控制电路303与推挽驱动电路307和能量回收电路308均连接,具体包括:
如图6a所示,第一驱动信号发生器V1的正极通过电阻R2连接到电阻R1的第一端部; 第一驱动信号发生器V1的负极接地;第二驱动信号发生器V2的正极通过电阻R6连接到电阻R2的第一端部;第二驱动信号发生器V2的负极接地;或者,
如图8所示,第一驱动信号发生器V1的正极通过电阻R3连接到电阻R1的第一端部;第一驱动信号发生器V1的负极接地;第二驱动信号发生器V2的正极通过电阻R6连接到电容C4的第一端部;第二驱动信号发生器V2的负极接地。
具体地,第一驱动信号发生器V1输出驱动信号,在输出驱动信号的上升沿时,第一驱动信号发生器V1输出的电压V1逐渐增大,并在第一时刻第一驱动信号发生器输出的电压V1大于能量回收电路308中三极管Q2的导通电压Vbe2,比如0.7V时,此时三极管Q2的集电极和发射极导通,能量回收电路308的电容C2通过二极管D2和三极管Q2对开关电路305的电容Cdg和电容Cgs充电,直至电容C2上的电压小于开关电路305的电容Cdg和电容Cgs上的电压,此时开关电路305的结电容上的电压达到中间电平。在第二驱动信号发生器V2输出驱动信号的上升沿时,对电容C3进行充电,在第二时刻电容C3上的电压大于三极管Q4的导通电压Vbe4,比如0.7V,三极管Q4的集电极和发射极导通,电源VCC通过推挽驱动电路307中的三极管Q4对开关电路305的电容Cdg和电容Cgs充电,直至电容Cdg和电容Cgs的电压等于电源VCC301与三极管Q4的压降Vce的差值,此时开关电路305的结电容上的电压达到高电平,开关电路305导通。对开关电路305的电容Cdg和电容Cgs进行充电的回路如6b所示。
在第一驱动信号发生器V1输出驱动信号的下降沿时,第一驱动信号发生器V1输出的电压V1逐渐降低,并在第三时刻第一驱动信号发生器V1输出驱动信号的电压与电容Cdg和电容Cgs上的电压的差值大于三极管Q3的导通电压Vbe3时,三极管Q3的集电极和发射极导通,开关电路305的电容Cdg和电容Cgs通过三极管D3和三极管Q3对能量回收电路308中的电容C2进行充电,直至开关电路305的电容Cdg和电容Cgs上的电压小于电容C2上的电压,此时开关电路305的电容Cdg和电容Cgs上的电压从高电平下降到中间电平;在第二驱动信号发生器V2输出驱动信号的下降沿时,第二驱动信号发生器V2输出驱动信号的电压逐渐降低;随着第二驱动信号发生器V2输出驱动信号的电压的降低,电容C3上的电压逐渐减小;在第四时刻电容C3上的电压小于三级管Q1的导通电压Vbe1,比如(-0.7V)时,开关电路305的电容Cdg和电容Cgs通过推挽驱动电路307中的三极管Q1对地放电,使得开关电路305的电容Cdg和电容Cgs从中间电平下降到低电平,进而使得开关电路305关断。开关电路305的电容Cdg和电容Cgs的放电回路如图6c所示。
其中,通过调节第一驱动信号发生器和第二驱动信号发生器的时延,来达到上述第一时刻在第二时刻之前和第三时刻在第四时刻之前的目的。在驱动上升沿过程中,能量回收电路308的驱动信号先于推挽驱动电路307的驱动信号,在驱动下降沿过程中,能量回收电路308的驱动信号仍然先于推挽驱动电路307的驱动信号,从而,能量回收电路308提供中间电平,可以在开通过程中提供一部分驱动能量,在关断过程中实现对开关电路305的电容Cdg和电容Cgs上存储的驱动能量的部分回收。
在驱动电压上升到能量回收电路308的电容C2上的电压后,正常推挽驱动电路,提供开关电路305完全导通或关断所需的电压,即高电平和低电平;在开通过程中补充开关电路305的电容Cdg和电容Cgs从中间电平到驱动完全导通对应的设定电压所需的能量,关 断过程中抽取经过回收后开关电路305的结电容上剩余的能量以达到驱动关断状态对应的设定电压。由此可以看成该驱动电路是三电平驱动,即高电平、中间电平和低电平。
可选地,第一驱动信号发生器V1或第二驱动信号发生器V2可以为驱动芯片,该驱动芯片可以由MOS管组成的推挽电路及对应的驱动放大电路组成二极管和电阻构成。驱动芯片的前级输入信号用于调节推挽驱动电路和能量回收驱动电路的工作状态,驱动芯片的驱动信号可以由控制芯片或者逻辑门来实现。
在此需要说明的是,图8所示电路的工作原理具体可参见图6a的工作原理的相关描述,在此不再叙述。
在此需要指出的是,对于图6a、图6b、图6c和图8所示的电路中,第一时刻和第二时刻为第一驱动信号发生器V1在输出驱动信号的上升沿过程中的时刻,且第一时刻位于第二时刻之前;第三时刻和第四时刻为第二驱动信号发生器V2在输出驱动信号的下降沿过程中的时刻,且第三时刻位于第四时刻之前。可选地,第一时刻可在第三时刻之前,或者第一时刻在第四时刻之后。
通过控制第一驱动信号发生器V1和第二驱动信号发生器V2输出信号的时序,可基于第一驱动信号发生器V1和第二驱动信号发生器V2输出如图5a所示的第一驱动信号发生器V1所输出的信号。
其中,电阻R1的作用是为能量回收电路308提供脉冲控制信号,使对应的三极管Q2和Q3工作在饱和态。同时电阻R1也是驱动限流电阻,可以通过调节三极管Q2和Q3的基极电流Ib来调节能量回收电路308对开关电路的电容Cdg和电容Cgs进行充放电的电流大小。
二极管D2的作用:一是作为三极管Q2充放电导通回路的一部分,二是利用其反向截止特性,防止在开关电路305的电容Cdg和电容Cgs驱动电压大于能量回收电路308中电容C2上的电压后,三极管Q2的CE结因承受反向电压而损坏。同理,二极管D3的作用一是作为三极管Q3充放电导通回路的一部分,二是防止在开关电路305的电容Cdg和电容Cgs驱动电压小于能量回收电路308中电容C2电压后,三极管Q3的CE结因承受反向电压而损坏。
R2和C3的作用是为推挽驱动电路307提供脉冲控制信号,同时可以通过调整R2和C3的大小,即调整其时间常数,来调整能量回收电路308中三极管Q2和三极管Q3和推挽驱动电路307应的三极管Q1和三极管Q4之间工作的时间差。该时间差也可以看成能量回收电路308的开始工作的时间与推挽驱动电路307开始工作的时间之间的差值。在开关电路305的电容Cdg和电容Cgs的电压到达能量回收电路308产生的中间电平后,推挽驱动电路307要快速切入,通过直流电源306替代能量回收电路308继续向开关电路305的电容Cdg和电容Cgs充电。同时R2也是驱动限流电阻,可通过电阻R2的大小来调节三极管Q1和Q4的基极电流Ib,进而实现调节推挽驱动电路307对开关电路的电容Cdg和电容Cgs进行充放电时电流的大小。
可选地,上述第一驱动信号发生器输出的驱动信号的上升沿速度和下降沿速度可调整。
其中,电容C2的作用是:在为开关电路305的电容Cdg和电容Cgs进行充电过程中提供开关电路305的电容Cdg和电容Cgs的电压到达中间电平电压所需的能量,在开关电 路305的电容Cdg和电容Cgs放电过程中,回收开关电路305的电容Cdg和电容Cgs的电压到达中间电平电压释放的能量。在由开关电源30和开关电路305组成的系统达到稳态后,C2上的电压会稳定在直流电源VCC的一半;并且C2的容量要大于开关电路的结电容的一百倍以上,从而避免C2电容上的电压波动过大。
R5的作用是在控制电路303输出的电压小于三极管Q4或Q1的对应的导通电压Vbe后来提供开关电路305的电容Cdg和电容Cgs的卸放电路,保证开关电路305的可靠关断。
在此需要指出的是,图7和图8中电容C4起到的作用与图5a和图6a中电阻R2的作用相同;图7和图8中电容C5和电阻R1起到的作用与图5a和图6a中电阻R1的作用相同。在第一驱动信号发生器V1输出稳态电平时,电阻R1用于嵌位电容C5上的电压。
在一个具体的示例中,图5a、图5b、图5c、图6a、图6b、图6c、图7和图8中各器件的参数如下:电容C2的电容值为100nF,电容C3的电容值为4.8nF,电容C4的电容值为2nF,电容C5的电容值为1nF,电阻R1的阻值为22Ω,电阻R2的阻值为47Ω,电阻R3的阻值为3Ω,电阻R4的阻值为10kΩ,电阻R5的阻值为220Ω;二极管D2和二极管D3的型号为MBRS130L;三极管Q1和三极管Q3的型号为2N2907,三极管Q2和三极管Q4的型号为2N2219A。
可选地,上述推挽驱动电路中的三极管可替换为MOS晶体管。
可以看出,在本申请的方案中,在对开关电路的结电容进行充电过程中,首先控制能量会后电路工作,以实现能量回收电路中的储能电容C2对开关电路的结电容进行充电,而再控制推挽驱动电路工作,以实现电源VCC对开关电路的结电容进行充电;在开关电路的结电容放电时,首先控制能量会后电路工作,以实现开关电路的结电容对能量回收电路中的储能电容C2进行充电,而再控制推挽驱动电路工作,以开关电路的结电容对地放电。
通过控制能量回收储电路和推挽驱动电路的工作顺序,对存储在开关电路上结电容的一部分驱动能量转移到能量回收驱动电路的储能电容上,实现了驱动能量的回收再利用,避免了驱动能量全部消耗在驱动电阻和推挽驱动电路上,从而实现驱动损耗大幅下降,使得整机效率更高。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种具有能量回收功能的驱动电路,其特征在于,所述驱动电路包括:控制电路、能量回收驱动电路、开关电路和直流电源,其中,所述控制电路与能量回收驱动电路连接,所述能量回收驱动电路与所述开关电路连接;所述直流电源与所述能量回收驱动电路连接;
    所述控制电路,用于控制所述能量回收驱动电路在第一时刻使其中的储能电容对所述开关电路的结电容进行充电,并在第二时刻使所述直流电源通过所述能量回收驱动对所述开关电路的结电容进行充电,使得所述开关电路导通;
    所述控制电路,还用于控制所述能量回收驱动电路在第三时刻使所述开关电路的结电容对所述能量回收驱动电路中的储能电容进行充电,并在第四时刻使所述开关电路的结电容通过所述能量回收驱动电路对地放电,使得所述开关电路开断。
  2. 根据权利要求1所述的电路,其特征在于,所述能量回收驱动电路包括推挽驱动电路和能量回收电路,所述控制电路与所述推挽驱动电路和所述能量回收电路均连接,所述推挽驱动电路和所述能量回收电路均与所述开关电路连接;所述直流电源与所述推挽驱动电路连接,
    所述控制电路,用于控制所述能量回收驱动电路在第一时刻使其中的储能电容对所述开关电路的结电容进行充电,并在第二时刻使所述直流电源通过所述能量回收驱动电路对所述开关电路的结电容进行充电具体包括:
    所述控制电路,用于控制所述能量回收电路在所述第一时刻使其中的储能电容对所述开关电路的结电容进行充电;并控制所述推挽驱动电路在第二时刻使所述直流电源通过所述推挽驱动电路对所述开关电路的结电容充电;
    所述控制电路,还用于控制所述能量回收驱动电路在第三时刻使所述开关电路的结电容对所述能量回收驱动电路中的储能电容进行充电,并在第四时刻使所述开关电路的结电容通过所述能量回收驱动电路对地放电,具体包括:
    所述控制电路,用于控制所述能量回收电路在第三时刻使所述开关电路的结电容对所述能量回收电路中的储能电容进行充电;并控制所述推挽驱动电路在第四时刻使所述开关电路的结电容通过所述推挽驱动电路对地放电。
  3. 根据权利要求2所述的电路,其特征在于,所述开关电路包括电阻R4、MOS管M0、电容Cdg和电容Cgs;
    其中,所述电阻R4的第一端部连接到所述MOS管M0的栅极,所述电容Cdg的两端分别连接到所述MOS管M0的漏极和栅极,所述电容Cgs的两端分别连接到所述MOS晶体管的源极和栅极,所述MOS管M0的源极连接到所述电阻R4的第二端部;
    所述使得所述开关电路导通具体是指使所述MOS管M0的漏极和源极之间导通;
    所述使得所述开关电路开断具体是指使所述MOS管M0的漏极和源极之间开断;
    所述开关电路的结电容包括所述电容Cds和所述电容Cgs。
  4. 根据权利要求3所述的电路,其特征在于,所述推挽驱动电路包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电阻R2;
    其中,所述三极管Q4的发射极连接到所述三极管Q1的发射极,所述三极管Q4的基极连接到所述三极管Q1的基极,所述电阻R2的第二端部连接到所述三极管Q4的基极,所述电阻R2的第一端部通过电阻R5连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,所述电容C3的第一端部连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,所述电容C3的第二端部连接到所述三极管Q4的基极连接到所述三极管Q1的基极之间;所述三极管Q1的集电极接地。
  5. 根据权利要求4所述的电路,其特征在于,所述能量回收电路包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2和电阻R1;所述电容C2为所述能量回收驱动电路中的储能电容;
    其中所述三极管Q2的发射极连接到所述三极管Q3的发射极,所述三极管Q2的基极和所述三极管Q3的基极均连接到所述电阻R1的第二端部,所述三极管Q2的集电极连接到所述二极管D2的负极,所述三极管Q3的集电极连接到所述二极管D3的正极,所述二极管D3的负极和二极管D2的正极均连接至所述电容C2的第一端部,所述电容C2的第二端部接地。
  6. 根据权利要求3所述的电路,其特征在于,所述推挽驱动电路包括NPN型三极管Q1、PNP型三极管Q4、电容C3和电容C4;
    其中,所述三极管Q4的发射极连接到所述三极管Q1的发射极,所述三极管Q4的基极连接到所述三极管Q1的基极,所述电容C4的第二端部连接到所述三极管Q4的基极,所述电容C4的第一端部通过电阻R5连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,所述电容C3的第一端部连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,所述电容C3的第二端部连接到所述三极管Q4的基极连接到所述三极管Q1的基极之间;所述三极管Q1的集电极接地。
  7. 根据权利要求6所述的电路,其特征在于,所述能量回收电路包括NPN型三极管Q2、PNP型三极管Q3、钳位二极管D2、钳位二极管D3、电容C2、电容C5和电阻R1;所述电容C2为所述能量回收驱动电路中的储能电容;
    其中所述三极管Q2的发射极连接到所述三极管Q3的发射极,所述三极管Q2的基极和所述三极管Q3的基极均连接到所述电阻R1的第二端部和所述电容C5的第二端部,所述电阻R1的第一端部和所述电容C5的第一端部,所述三极管Q2的集电极连接到所述二极管D2的负极,所述三极管Q3的集电极连接到所述二极管D3的正极,所述二极管D3的负极和二极管D2的正极均连接至所述电容C2的第一端部,所述电容C2的第二端部接地。
  8. 根据权利要求5或7所述的电路,其特征在于,所述推挽驱动电路和所述能量回收 电路均与所述开关电路连接,具体包括:
    所述MOS晶体管的栅极连接到所述三极管Q4的发射极和所述三极管Q1的发射极之间,所述MOS晶体管的源极连接到所述三极管Q1的集电极;
    所述MOS晶体管的栅极连接到所述三极管Q2的发射极和所述三极管Q3的发射极之间;所述MOS晶体管的源极连接到所述电容C2的第二端部;
    所述直流电源与所述推挽驱动电路连接具体包括:所述直流电源的正极与所述三极管Q4的集电极连接,所述直流电源的负极接地。
  9. 根据权利要求8所述的电路,其特征在于,所述控制电路包括第一驱动信号发生器,所述控制电路与所述推挽驱动电路和能量回收电路均连接,具体包括:
    所述第一驱动信号发生器的正极通过电阻R3连接到所述电阻R2的第一端部和所述电阻R1的第一端部;所述第一驱动信号发生器的负极接地;或者,
    所述第一驱动信号发生器的正极通过电阻R3连接到所述电容C4的第一端部和所述电阻R1的第一端部;所述第一驱动信号发生器的负极接地。
  10. 根据权利要求9所述的电路,其特征在于,所述控制电路,用于控制所述能量回收电路在所述第一时刻使其中的储能电容对所述开关电路的结电容进行充电,具体包括:
    所述第一驱动信号发生器输出驱动信号的上升沿,并在所述第一时刻所述第一驱动信号发生器输出的电压大于所述三极管Q2的导通电压,以使所述电容C2通过所述二极管D2和三极管Q2对所述电容Cgs和电容Cdg充电;
    所述控制电路,用于所述推挽驱动电路在所述第二时刻使所述直流电源通过所述推挽驱动电路对所述开关电路的结电容充电,具体包括:
    所述第一驱动信号发生器输出驱动信号的上升沿,并对所述电容C3充电,使得在所述第二时刻所述电容C3上的电压大于所述三极管Q4的导通电压,以实现所述直流电源通过所述三极管Q4对所述电容Cgs和电容Cdg充电。
  11. 根据权利要求9或10所述的电路,其特征在于,所述控制电路,用于控制所述能量回收电路在所述第三时刻使所述开关电路的结电容对所述能量回收电路中的储能电容进行充电,具体包括:
    所述第一驱动信号发生器输出驱动信号的下降沿,并在所述第三时刻所述驱动信号的电压与所述开关电路的电容Cdg和电容Cgs上电压的差值大于所述三极管Q3的导通电压,以使所述开关电路的电容Cdg和电容Cgs通过所述三极管Q3和所述二极管D3对所述电容C2充电;
    所述控制电路,用于控制所述推挽驱动电路在所述第四时刻使所述开关电路的结电容通过所述推挽驱动电路对地放电,具体包括:
    所述第一驱动信号发生器输出驱动信号的下降沿,并使得在所述第四时刻所述电容C3上的电压大于所述三极管Q1的导通电压,以实现所述电容Cgs和电容Cdg通过所述三极管Q1对地放电。
  12. 根据权利要求8所述的电路,其特征在于,所述控制电路包括第一驱动信号发生器和第二驱动信号发生器,
    所述控制电路与所述推挽驱动电路和能量回收电路均连接,具体包括:
    所述第一驱动信号发生器的正极通过电阻R3连接到所述电阻R1的第一端部;所述第一驱动信号发生器的负极接地;所述第二驱动信号发生器的正极通过电阻R6连接到所述电阻R2的第一端部;所述第二驱动信号发生器的负极接地;或者,
    所述第一驱动信号发生器的正极通过电阻R3连接到所述电阻R1的第一端部;所述第一驱动信号发生器的负极接地;所述第二驱动信号发生器的正极通过电阻R6连接到所述电容C4的第一端部;所述第二驱动信号发生器的负极接地。
  13. 根据权利要求12所述的电路,其特征在于,所述控制电路,用于控制所述能量回收电路在所述第一时刻使其中的储能电容对所述开关电路的结电容进行充电,具体包括:
    所述第一驱动信号发生器输出驱动信号的上升沿,并在所述第一时刻所述驱动信号的电压大于所述三极管Q3的导通电压,以使所述电容C2通过所述二极管D2和三极管Q2对所述电容Cgs和电容Cdg充电;
    所述控制电路,用于控制所述推挽驱动电路在所述第二时刻使所述直流电源通过所述推挽驱动电路对所述开关电路的结电容充电,具体包括:
    所述第二驱动信号发生器输出驱动信号的上升沿,并对所述电容C3充电,使得在所述第二时刻所述电容C3上的电压大于所述三极管Q4的导通电压,以实现所述直流电源通过所述三极管Q4对所述电容Cgs和电容Cdg充电。
  14. 根据权利要求12或13所述的电路,其特征在于,所述控制电路,用于控制所述能量回收电路在所述第三时刻使所述开关电路的结电容对所述能量回收电路中的储能电容进行充电,具体包括:
    所述第一驱动信号发生器输出驱动信号的下降沿,并在所述第三时刻所述第一驱动信号发生器输出的电压与所述电容Cgs和电容Cdg上电压的差值大于所述三极管Q3的导通电压,以使所述电容Cgs和电容Cdg通过所述三极管Q3和所述二极管D3对所述电容C2充电;
    所述控制电路控制所述推挽驱动电路在所述第四时刻使所述开关电路的结电容通过所述推挽驱动电路对地放电,具体包括:
    所述第二驱动信号发生器输出驱动信号的下降沿,并使得在所述第四时刻所述电容C3上的电压大于所述三极管Q1的导通电压,以实现所述电容Cgs和电容Cdg通过所述三极管Q1对地放电。
  15. 一种开关电源,其特征在于,所述开关电源包括如权利要求1-14任一项所述的驱动电路。
PCT/CN2021/101795 2020-06-23 2021-06-23 一种具有能量回收功能的驱动电路及开关电源 WO2021259319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21830258.6A EP4156484A4 (en) 2020-06-23 2021-06-23 DRIVER CIRCUIT HAVING AN ENERGY RECOVERY FUNCTION AND SWITCHING POWER SUPPLY
US18/145,179 US20230131154A1 (en) 2020-06-23 2022-12-22 Drive circuit with energy recovery function and switch mode power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010595162.XA CN111884491B (zh) 2020-06-23 2020-06-23 一种具有能量回收功能的驱动电路及开关电源
CN202010595162.X 2020-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/145,179 Continuation US20230131154A1 (en) 2020-06-23 2022-12-22 Drive circuit with energy recovery function and switch mode power supply

Publications (1)

Publication Number Publication Date
WO2021259319A1 true WO2021259319A1 (zh) 2021-12-30

Family

ID=73158163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101795 WO2021259319A1 (zh) 2020-06-23 2021-06-23 一种具有能量回收功能的驱动电路及开关电源

Country Status (4)

Country Link
US (1) US20230131154A1 (zh)
EP (1) EP4156484A4 (zh)
CN (1) CN111884491B (zh)
WO (1) WO2021259319A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884491B (zh) * 2020-06-23 2022-04-08 华为技术有限公司 一种具有能量回收功能的驱动电路及开关电源
CN113258922B (zh) * 2021-06-16 2021-10-08 上海芯龙半导体技术股份有限公司南京分公司 驱动电路及供电系统
CN117477912A (zh) * 2022-07-20 2024-01-30 华为技术有限公司 一种驱动电路及开关电源
CN116232011B (zh) * 2023-03-07 2024-01-26 禹创半导体(深圳)有限公司 一种具有能量回收机制的电压转换装置以及一种电源芯片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134320A (en) * 1991-03-07 1992-07-28 Hughes Aircraft Company High efficiency FET driver with energy recovery
JPH08163862A (ja) * 1994-12-01 1996-06-21 Murata Mfg Co Ltd Mosfetドライブ方法および回路
US6686729B1 (en) * 2002-10-15 2004-02-03 Texas Instruments Incorporated DC/DC switching regulator having reduced switching loss
CN106887949A (zh) * 2015-12-16 2017-06-23 德州仪器公司 栅极能量回收
CN109698612A (zh) * 2019-02-19 2019-04-30 东南大学 一种适用于高频应用的谐振门极驱动电路
CN111884491A (zh) * 2020-06-23 2020-11-03 华为技术有限公司 一种具有能量回收功能的驱动电路及开关电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010261A (en) * 1989-12-08 1991-04-23 General Electric Company Lossless gate driver circuit for a high frequency converter
US6570777B1 (en) * 2001-12-06 2003-05-27 Eni Technology, Inc. Half sine wave resonant drive circuit
CN101164093B (zh) * 2005-04-21 2010-10-06 松下电器产业株式会社 驱动电路及显示装置
US8941417B2 (en) * 2013-02-28 2015-01-27 Texas Instruments Incorporated Output driver for energy recovery from inductor based sensor
US9601904B1 (en) * 2015-12-07 2017-03-21 Raytheon Company Laser diode driver with variable input voltage and variable diode string voltage
WO2017110162A1 (ja) * 2015-12-22 2017-06-29 三菱電機株式会社 ゲート駆動回路およびそのゲート駆動回路を備えた電力変換装置
US10340909B2 (en) * 2016-01-07 2019-07-02 Mitsubishi Electric Corporation Buffer circuit and semiconductor device
CN107769529B (zh) * 2017-11-17 2020-02-07 郑州嘉晨电器有限公司 功率器件软关电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134320A (en) * 1991-03-07 1992-07-28 Hughes Aircraft Company High efficiency FET driver with energy recovery
JPH08163862A (ja) * 1994-12-01 1996-06-21 Murata Mfg Co Ltd Mosfetドライブ方法および回路
US6686729B1 (en) * 2002-10-15 2004-02-03 Texas Instruments Incorporated DC/DC switching regulator having reduced switching loss
CN106887949A (zh) * 2015-12-16 2017-06-23 德州仪器公司 栅极能量回收
CN109698612A (zh) * 2019-02-19 2019-04-30 东南大学 一种适用于高频应用的谐振门极驱动电路
CN111884491A (zh) * 2020-06-23 2020-11-03 华为技术有限公司 一种具有能量回收功能的驱动电路及开关电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156484A4

Also Published As

Publication number Publication date
EP4156484A1 (en) 2023-03-29
EP4156484A4 (en) 2023-11-29
CN111884491A (zh) 2020-11-03
US20230131154A1 (en) 2023-04-27
CN111884491B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2021259319A1 (zh) 一种具有能量回收功能的驱动电路及开关电源
CN202094794U (zh) 一种自举型门极驱动控制电路
CN103199677B (zh) 单路隔离型mosfet驱动电路
CN113098240B (zh) 一种Cascode型GaN功率器件的驱动电路
JP2019514153A (ja) コンタクタコイル制御回路
CN110868073B (zh) 一种基于多绕组变压器耦合的串联SiC MOSFET驱动电路
CN109698612A (zh) 一种适用于高频应用的谐振门极驱动电路
CN105449997A (zh) 一种功率变换器的功率开关管隔离栅驱动电路
US6353543B2 (en) Switching circuit of power conversion apparatus
JP2021182857A (ja) 双方向ダブルベースバイポーラ接合トランジスタを用いたスイッチアセンブリ、及びそれを動作させる方法
CN202424662U (zh) Igbt驱动装置
CN111555596B (zh) 一种具有可调负压的SiC MOSFET栅极串扰抑制驱动电路
CN110719019B (zh) 一种副边有源箝位控制电路
CN111614236A (zh) 一种基于桥式电路的SiC MOSFET门极辅助电路
CN202424500U (zh) 有源钳位正激同步整流的软开关电路
CN206602454U (zh) 使同步整流电路中整流管软启动的电路、模块及其电源
CN114552968A (zh) 一种适用于GaN驱动芯片的自适应自举充电电路
CN110394527B (zh) 一种用于提高逆变式弧焊电源igbt工作可靠性的电路
CN210578336U (zh) 一种电机驱动系统
CN210359727U (zh) 一种用于提高逆变式弧焊电源igbt工作可靠性的电路
CN111313660B (zh) 一种混合式谐振驱动电路及其控制方法
CN216564940U (zh) 一种变换器及其正反馈电路
CN218888381U (zh) 一种用于输出正负非对称电压的驱动电路
CN212543643U (zh) 一种控制超级结mosfet开关速度的电路
CN218482787U (zh) 一种源极同步驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021830258

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE