WO2021259130A1 - 一种煤制天然气的耐硫甲烷化系统及方法 - Google Patents

一种煤制天然气的耐硫甲烷化系统及方法 Download PDF

Info

Publication number
WO2021259130A1
WO2021259130A1 PCT/CN2021/100602 CN2021100602W WO2021259130A1 WO 2021259130 A1 WO2021259130 A1 WO 2021259130A1 CN 2021100602 W CN2021100602 W CN 2021100602W WO 2021259130 A1 WO2021259130 A1 WO 2021259130A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
methanation
sulfur
coal
inlet
Prior art date
Application number
PCT/CN2021/100602
Other languages
English (en)
French (fr)
Inventor
王晓龙
何忠
郜时旺
许世森
刘练波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to DE112021000236.8T priority Critical patent/DE112021000236T5/de
Publication of WO2021259130A1 publication Critical patent/WO2021259130A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of coal-to-natural gas, relates to a methanation process for the comprehensive utilization of raw coal, and in particular to a sulfur-resistant methanation system and method for coal-to-natural gas.
  • the industrially mature coal-to-natural gas process technology mainly uses crushed coal pressurized gasification technology.
  • the methane content of the crude gas produced by the gasifier accounts for about 8-13%.
  • the increase in the methane content of the crude gas can effectively reduce the reaction load of the subsequent sections.
  • the crushed coal pressurized gasification technology requires the raw coal particle size to be controlled at 6-50mm, which causes problems such as insufficient lump coal and excess pulverized coal, resulting in a great waste of resources; in addition, the waste water of crushed coal pressurized gasification technology
  • the treatment technology is not mature enough, and it is easy to cause environmental pollution.
  • the CO methanation reaction is a typical strong exothermic reaction.
  • the adiabatic temperature rise for every 1% of the CO conversion is about 72°C; the conversion rate of the CO methanation reaction decreases with the increase of temperature.
  • the reaction temperature is higher than 500°C, It will be beneficial to side reactions such as reverse water gas reaction, shift reaction and carbon deposition reaction; at the same time, the carbon monoxide methanation reaction is a reduced volume reaction, and pressurization is beneficial to the production of CH 4 products; the usual methanation process requires the use of multiple series in series In the adiabatic fixed bed reactor, each stage of the reactor is connected in series with multiple heat exchangers, and then enters the next stage of reactor after cooling. The entire process generally requires 3 ⁇ 4 stages of such reactors and 8 ⁇ 10 heat exchangers. The CO is completely converted. Such a long process and multiple sets of reaction heat exchange devices cause high investment and complex operation of the methanation process.
  • a sulfur-resistant methanation system for coal-to-natural gas including coal gasification process, pulverized coal or coal-water slurry gasification process, gas-to-gas heat exchanger I, adiabatic sulfur-resistant methanation reactor, steam superheater I, uniform temperature Sulfur-resistant methanation reactor, boiler water preheater I, steam drum I, gas-liquid separator I, low-temperature methanol washing process, gas-gas heat exchanger II, adiabatic methanation reactor, steam superheater II, gas-liquid separation Reactor II, high temperature circulating compressor, homogeneous temperature methanation reactor, boiler water preheater II, steam drum II, vapor-liquid separator III and water pump;
  • the outlet of the coal preparation section is respectively connected with the inlet of the crushed coal gasification process and the inlet of the pulverized coal or coal water slurry gasification process.
  • the outlet of the crushed coal gasification process and the outlet of the pulverized coal or coal water slurry gasification process are combined and combined with the gas-gas heat exchanger I
  • the shell side inlet of the gas-to-gas heat exchanger I is connected to the inlet of the adiabatic sulfur-tolerant methanation reactor and the tube side inlet of the uniform temperature sulfur-tolerant methanation reactor.
  • the outlet of the adiabatic sulfur-tolerant methanation reactor is connected to the steam
  • the shell side inlet of the superheater I is connected, the shell side outlet of the steam superheater I is connected with the gas-gas heat exchanger I tube side inlet, and the gas-gas heat exchanger I tube side outlet is connected with the uniform temperature sulfur-resistant methanation reactor tube side.
  • the inlet is connected, the tube side outlet of the homogeneous temperature sulfur-resistant methanation reactor is connected with the boiler water preheater I shell side inlet, the boiler water preheater I shell side outlet is connected with the gas-liquid separator I inlet, gas-liquid
  • the gas phase outlet of the upper part of the separator I is connected with the inlet of the low-temperature methanol washing process, the outlet of the low-temperature methanol washing process pipeline and the outlet pipeline of the high-temperature circulation compressor are combined and connected to the inlet of the gas-gas heat exchanger II, and the gas-gas heat exchanger II
  • the outlet of the tube pass and the medium-pressure steam pipeline are combined and connected to the inlet of the adiabatic methanation reactor.
  • the outlet of the adiabatic methanation reactor is connected to the inlet of the second shell of the steam superheater.
  • the outlet of the second shell of the steam superheater is divided into two branches.
  • One of the branches is connected with the inlet of the tube side of the homogeneous temperature methanation reactor, the other branch is connected with the inlet of the shell side of the gas-gas heat exchanger, and the outlet of the shell side of the gas-gas heat exchanger is connected with the gas-liquid separator II
  • the inlet is connected, the gas phase outlet of the upper part of the gas-liquid separator II is connected with the inlet of the high-temperature circulating compressor;
  • the tube side outlet of the homogeneous temperature methanation reactor is connected with the boiler water preheater II shell side inlet, and the boiler water preheater II
  • the shell side outlet is connected with the inlet of the gas-liquid separator III, and the gas-phase outlet at the upper part of the gas-liquid separator III is qualified synthetic natural gas.
  • the boiler water inlet is respectively connected with the inlet of the boiler water preheater I and the pipe pass of the boiler water preheater II, the outlet of the boiler water preheater II pipe is connected with the inlet of the steam drum II, and the outlet of the boiler water preheater I pipe pass Connected to the inlet of steam drum I; steam drum I establishes water circulation through the riser and downcomer and the shell side of the uniform temperature and sulfur-resistant methanation reactor, and steam drum II is connected to the shell of the uniform temperature methanation reactor through the riser and downcomer A water cycle is established during the process; the steam drum I and the steam drum II produce a large amount of medium pressure steam.
  • the medium pressure steam pipeline outlet mainly has four branches.
  • the second medium-pressure steam branch is connected to the inlet of the steam superheater I
  • the outlet of the steam superheater I is connected to the inlet of the supersaturated steam main line
  • the third medium-pressure steam branch is connected to the steam
  • the inlet of the superheater II tube pass is connected, and the outlet of the steam superheater II tube pass is connected to the inlet of the supersaturated steam main line to produce high-quality supersaturated medium pressure steam.
  • the fourth medium pressure steam branch is connected to the coal gasification process inlet to participate in During the coal gasification process, the excess medium-pressure steam is sent to other sections; the condensate produced by the gas-liquid separator I, the gas-liquid separator II and the gas-liquid separator III is pumped to the circulating water section by pumps.
  • the methanation catalyst in the middle of the bed in the adiabatic methanation reactor is HN-1
  • the sulfur tolerant methanation catalyst in the middle of the bed in the adiabatic and sulfur-resistant methanation reactor is HN-3
  • the upper and lower parts of the bed are both packed There are high temperature alumina ceramic balls.
  • both the methanation catalyst HN-1 and the sulfur-resistant methanation catalyst HN-3 have a special-shaped four-hole structure, and the diameter of a single high-temperature alumina ceramic ball is 5mm, and the high-temperature alumina ceramic ball is located on the upper and lower parts of the bed.
  • the filling height is 100 ⁇ 200mm.
  • the composition of the methanation catalyst HN-1 is: in mass fraction, NiO 35%-60%, La 2 O 3 2%-10%, M O O 3 0.5%-5%, K 2 O 0.2 -2%, CaO 2%-10%, MgO 2%-10%, Al 2 O 3 30%-50% and graphite 1%-2%;
  • the composition of sulfur-resistant methanation catalyst HN-3 is: In terms of fractions, Al 2 O 3 50%-85%, MoO 3 5%-15%, ZrO 2 2%-11%, MgO2%-11%, CaO2%-15%, CeO 2 0.5%-6%, K 2 O0.5%-6%, SiO 2 0.5-6% and P 2 O 5 0.5%-6%.
  • the methanation catalyst filled in the tubes of the homogeneous temperature methanation reactor is HN-2
  • the sulfur-resistant methanation catalyst filled in the tubes of the homogeneous temperature and sulfur-resistant methanation reactor is HN-4.
  • the upper and lower parts of the tubes are All are filled with high-temperature alumina ceramic balls.
  • the methanation catalyst HN-2 and the sulfur-resistant methanation catalyst HN-4 have a spherical structure with a diameter of 3mm.
  • the diameter of a single high-temperature alumina ceramic ball is 5mm.
  • the high-temperature alumina ceramic ball is located on the upper and lower parts of the tube.
  • the filling height is 100 ⁇ 200mm.
  • the composition of the methanation catalyst HN-2 is: NiO 10-30%, La 2 O 3 2-5%, MoO 3 2-5%, CeO 2 0.2-2%, CaO 2 in mass fraction -10%, MgO 2-10%, Al 2 O 3 45-80%, graphite 1-2%;
  • the composition of sulfur-resistant methanation catalyst HN-4 is: in mass fraction, Al 2 O 3 40%- 75%, MoO 3 10%-25%, ZrO 2 2%-11%, MgO2%-11%, CaO2%-11%, CeO 2 0.5%-6%, K 2 O0.5%-6%, SiO 2 0.5-6% and P 2 O 5 0.5%-6%.
  • sulfur-tolerant methanation catalyst HN-3 and the sulfur-tolerant methanation catalyst HN-4 belong to the molybdenum series catalysts, and have both methanation catalytic performance and shift catalytic performance;
  • the method for preparing synthetic natural gas by adopting the above-mentioned coal-to-natural gas sulfur-resistant methanation system includes:
  • the qualified coal particles prepared in the coal preparation section are distributed to the crushed coal gasification process.
  • the pulverized coal and unqualified coal particles produced during the screening process are further processed and then distributed to the pulverized coal or coal water slurry gasification process.
  • the two-channel gasification process generates After being mixed, the raw gas is passed into series-parallel adiabatic sulfur-resistant methanation reactors and uniform temperature sulfur-resistant methanation reactors through heat exchange for sulfur-resistant methanation; the synthesis gas after sulfur-resistant methanation is passed through low-temperature methanol The sulfide and carbon dioxide in the crude gas are eluted, and the purified synthesis gas is passed into the series-connected adiabatic methanation reactor and uniform temperature methanation reactor for supplementary methanation reaction to generate qualified synthetic natural gas;
  • the heat at the outlet of the adiabatic sulfur-resistant methanation reactor is gradually reduced to the activation temperature of the sulfur-resistant methanation catalyst through the steam superheater I and the gas-to-gas heat exchanger I in turn;
  • the heat released by the homogeneous temperature sulfur-resistant methanation reaction mainly passes through the reactor
  • the circulating water in the shell side and the steam drum establish a heat exchange of circulating water to quickly remove the heat released by the reaction to avoid excessive temperature of the bed;
  • the heat at the outlet of the supplementary adiabatic methanation reactor is exchanged through the steam superheater II and the gas-gas heat exchanger II in turn.
  • a part of the synthesis gas at the outlet of the steam superheater II is used as circulating gas to exchange heat through the gas-gas heat exchanger II, and then pass
  • the high-temperature circulating compressor circulates and mixes with the synthesis gas at the outlet of the low-temperature methanol washing process to dilute the concentration of carbon monoxide in the synthesis gas, reduce the methanation load in the adiabatic reactor, and avoid bed temperature flying; supplement the bed of the homogeneous methanation reactor
  • the heat is mainly through the shell side circulating water and the steam drum to establish the circulating water heat exchange, and the heat released by the reaction is quickly removed to avoid excessive temperature of the bed.
  • the gasification process supporting the coal-to-natural gas technology of the present invention is the optimized reorganization of the crushed coal pressurized gasification and pulverized coal gasification process or the coal-water slurry gasification technology, which realizes the comprehensive utilization of raw coal, and the mixed gasification process can target different coals.
  • Combining coal gasification characteristics and coal lump rate and other properties optimize the number of two types of gasifiers to achieve high-efficiency and high-quality utilization of raw coal; and the combination of crushed coal gasification technology and pulverized coal gasification technology can be optimized
  • the number of two types of gasifiers can be used to upgrade existing coal-to-natural gas plants.
  • the introduction of the sulfur-tolerant methanation process can reduce the flow of crude gas, so there is no need to change subsequent sections.
  • the production load of the pulverized coal gasification furnace can be increased by a certain number of pulverized coal gasifiers to realize the stable operation of the original process, that is, the process gas added by the pulverized coal gasification process can supplement the process gas volume reduced by the sulfur-resistant methanation process.
  • Balance the production load changes of the entire process system; it can be seen that the use of pulverized coal gasification or the mixed gasification technology of coal-water slurry gasification and crushed coal gasification increases the effective gas content in the crude gas and increases the production load of the entire coal-to-natural gas process. It has realized the full utilization of raw coal and realized the purpose of improving quality and efficiency.
  • Adiabatic methanation reactor and uniform temperature methanation reactor are connected in series; the adiabatic methanation reactor can effectively improve the degree of syngas methanation reaction, and realize the high-load production of methanation reaction; the methanation catalyst HN filled in the adiabatic reactor -1 It has high temperature resistance and carbon deposition resistance.
  • the special-shaped four-hole catalyst structure is more suitable for heat diffusion and improves the mass and heat transfer effects of the catalyst surface; the shell side of the homogeneous temperature reactor and the steam drum form a cyclic heat exchange to maintain uniformity
  • the bed temperature of the warm reactor is uniform, which is more beneficial to the thermodynamic balance of methanation, prolongs the service life of the catalyst, not only improves the production capacity of the process system, but also increases the concentration of methane in the product gas to produce qualified synthetic natural gas Product;
  • the supplementary adiabatic methanation reactor and the uniform temperature methanation reactor series process system design is reasonable, compared with the traditional three-stage methanation process, reducing the number of reactor equipment, thereby reducing investment, reducing the difficulty of operation, production High efficiency;
  • the HN-2 methanation catalyst filled in the homogeneous temperature methanation reactor has high thermal stability and high strength performance.
  • the size is a spherical shape with a diameter of 3mm, which is beneficial to the uniformity of the catalyst bed and
  • the sulfur-tolerant methanation catalyst HN-3 and the sulfur-tolerant methanation catalyst HN-4 have both methanation catalytic performance and shift catalytic performance, which can directly synthesize methane from crude gas, effectively increase the concentration of methane in the synthesis gas, and reduce the production of subsequent processes Load; and the shift catalytic performance of the catalyst can adjust the content of hydrogen and carbon monoxide in the crude gas, making the optimized crude gas more suitable for subsequent supplementary methanation processes.
  • the process system fully optimizes and utilizes the large amount of heat released by the methanation reaction, and uses hierarchical heat exchange to realize comprehensive utilization of the heat released by each reactor. It produces medium-pressure steam while producing high-quality supersaturated steam for external delivery; at the same time, A part of the medium pressure steam is directly mixed with the inlet gas of the adiabatic methanation reactor to maintain a stable reactor bed temperature, supplement the water consumed by the catalyst decarbonization reaction at the initial stage of the reaction, and inhibit the carbon deposition of the methanation catalyst; the other part of the medium pressure steam is passed into In the coal gasification process, it participates in the coal gasification process to supplement the water vapor consumption required by the coal gasification process.
  • the method for preparing synthetic natural gas by adopting the sulfur-resistant methanation process system of coal-to-natural gas disclosed by the present invention has high catalytic efficiency, energy saving and simple operation.
  • Figure 1 is a schematic diagram of the coal-to-natural gas methanation process of the present invention.
  • Figure 1 is a new process system for sulfur-resistant methanation of coal-to-natural gas according to the present invention.
  • the qualified coal particles prepared in the coal preparation section are distributed to the crushed coal gasification process 1, and the remaining pulverized coal and unqualified coal particles are processed and distributed to pulverized coal or Coal-water slurry gasification process 2, the raw gas mixed pipeline generated by the two-way gasification process passes through the gas-gas heat exchanger I3 and then passes into the series-parallel adiabatic sulfur-resistant methanation reactor 4 and uniform temperature sulfur-resistant methanation.
  • the sulfur-resistant methanation reaction is carried out in the reactor 6, and the crude gas after the sulfur-resistant methanation reaction is subjected to the low-temperature methanol washing process 10 to remove sulfide and carbon dioxide, and the purified synthesis gas is passed to the series adiabatic methanation reactor 12 and A supplementary methanation reaction is performed in the uniform temperature methanation reactor 16 to generate qualified synthetic natural gas.
  • the crude gas at the outlet of the adiabatic sulfur-resistant methanation reactor 4 is cooled down in sequence through the steam superheater I5 and the gas-to-gas heat exchanger I3 to reach the activation temperature of the sulfur-resistant methanation catalyst;
  • the heat released by the homogeneous temperature sulfur-resistant methanation reaction is mainly passed through
  • the circulating water in the shell side of the reactor and the steam drum I8 establish a heat exchange of circulating water, which can quickly remove the heat released by the reaction to avoid excessive temperature of the bed;
  • the middle of the bed of the adiabatic sulfur-resistant methanation reactor 4 is filled with a special-shaped four-hole sulfur-resistant methanation catalyst HN-3, and the upper and lower parts of the bed are filled with high-temperature alumina ceramic balls with a height of 100 ⁇ 200mm;
  • the composition of the HN-3 catalyst Composition 50%-85% Al 2 O 3 , 5%-15% MoO 3 , 2%-11% ZrO 2 , 2%-11% MgO, 2%-15% CaO, 0.5%- 6% CeO 2 , 0.5%-6% K 2 O, 0.5-6wt% SiO 2 , 0.5%-6% P 2 O 5 ;
  • the tube of the homogeneous temperature sulfur-resistant methanation reactor 6 is filled with ⁇ 3 balls
  • Type sulfur-resistant methanation catalyst HN-4 the upper and lower parts of the tube are filled with ⁇ 5 high-temperature alumina ceramic balls with a height of 100 ⁇ 200mm;
  • the composition of the HN-4 catalyst 40%-75% Al 2 O
  • the heat at the outlet of the supplementary adiabatic methanation reactor 12 is first exchanged through the steam superheater II13, and the cooled synthesis gas is divided into two branches, all of which pass into the series-connected homogeneous temperature methanation reactor 16 for deep methanation. In the reaction, the other branch is used as the circulating gas to exchange heat sequentially through the gas-to-gas heat exchanger II 11.
  • the cooled circulating gas is cyclically pressurized by the high-temperature circulating compressor 15 and mixed with the synthesis gas at the outlet of the low-temperature methanol washing process 10 to dilute the synthesis gas
  • concentration of CO reduces the reaction load of methanation in the adiabatic methanation reactor 12, and avoids bed temperature flying;
  • the supplementary heat of the bed of the homogeneous methanation reactor 16 is mainly established by the circulating water and steam drum II18 in the shell side of the reactor Circulating water exchanges heat, quickly removes the heat released by the reaction, and avoids excessive temperature of the bed.
  • the middle of the bed of the adiabatic methanation reactor 12 is filled with a special-shaped four-hole methanation catalyst HN-1, and the upper and lower parts of the bed are both filled with high-temperature alumina ceramic balls with a height of 100-200 mm.
  • the composition of HN-1 catalyst NiO 35%-60%, La 2 O 3 2%-10%, M O O 3 0.5%-5%, K 2 O 0.2-2%, CaO 2%-10%, MgO 2%-10%, Al 2 O 3 30%-50%, graphite 1%-2%; the tube of homogeneous temperature methanation reactor 16 is filled with ⁇ 3 spherical methanation catalyst HN-2, the upper and lower parts of the tube All are filled with ⁇ 5 high temperature resistant alumina ceramic balls with a height of 100 ⁇ 200mm.
  • the composition of HN-2 catalyst NiO 10-30%, La 2 O 3 2-5%, Mo0 3 2-5%, CeO 2 0.2-2%, CaO 2-10%, MgO 2-10%, Al 2 O 3 45-80%, graphite 1-2%.
  • the boiler water at the inlet of the system exchanges heat through the boiler water preheater I7, and then enters the steam drum I8 to supplement the water vapor consumed by the steam drum, maintain the liquid level of the steam drum I8 stable, and the boiling water in the steam drum I8 drops through
  • the pipes and risers exchange heat with the circulating water in the 6-shell side of the uniform temperature sulfur-resistant methanation reactor, absorb the heat released by the sulfur-resistant methanation reaction, and convert it into medium-pressure steam, which is added to the medium-pressure steam main pipe in the system;
  • the other part of the boiler water passes through the boiler water preheater II17 for heat exchange and then passes into the steam drum II18 to supplement the water vapor consumed by the steam drum II18, maintain the liquid level of the steam drum II18 stable, and the boiling water in the steam drum II18 passes down
  • the pipes and risers exchange heat with the circulating water in the shell side of the uniform temperature methanation reactor 16 and absorb the heat released by the methanation reaction to convert it into medium pressure
  • Drum I 8 and drum II 18 produce a large amount of medium pressure steam, which is discharged to the medium pressure steam main pipe of the process system.
  • the outlet of the medium pressure steam main pipe mainly has four branches, the first medium pressure steam branch and the gas-to-gas heat exchanger.
  • the shell side outlet pipelines of II11 are combined and lead to the adiabatic methanation reactor 12, which is used for the water consumed by the discontinuous catalyst decarbonization reaction at the start of the adiabatic methanation reactor 12 and to maintain the temperature of the methanation bed layer; the second medium pressure
  • the steam branch and the steam superheater I5 heat up and turn into high-quality supersaturated steam, which is passed into the supersaturated steam header;
  • the third medium-pressure steam branch and the steam superheater II13 heat up and turn into high-quality supersaturated steam.
  • the supersaturated steam is passed into the supersaturated steam main pipe, and the high-quality supersaturated steam is discharged to other sections for comprehensive utilization;
  • the fourth medium-pressure steam branch is connected with the coal gasification process inlet to participate in the coal gasification process and supplement the gas The steam consumed in the chemical process; the excess medium-pressure steam is sent to other sections.
  • the crude gas at the outlet of the homogeneous temperature and sulfur-resistant methanation reactor 6 is passed through the gas-liquid separator I9 to separate the condensed water;
  • the circulating compressor 15 is passed to the gas-liquid separator II14 to separate the condensed water;
  • the product gas generated by the homogeneous methanation reactor 16 is cooled by heat exchange and then separated by the gas-liquid separator III19 to separate the condensed water;
  • the condensed water produced by the liquid separator is pumped by the water pump 20 to the circulating water section for recycling.
  • the effective components of the crude gas produced by the crushed coal gasification process 1 are: H 2 21.19%, CO 48.31%, CO 2 6.78%, CH 4 6.78%, H 2 O 16.95%, gas volume is 12000 Nm 3 /h, two-stage powder
  • the effective components of the crude gas produced by the coal gasification process are: H 2 19.39%, CO 58.16%, CO 2 5.56%, CH 4 0.03%, H 2 O 16.86%.
  • the gas volume is 8000 Nm 3 /h, and the two gasification process outlets are mixed
  • the effective components of the crude gas are: H 2 20.23%, CO 52.26%, CO 2 6.41%, CH 4 3.36%, H 2 O 16.84%.
  • the gas volume is 20000Nm 3 /h.
  • the mixed crude gas is filtered through dust removal and filtering.
  • the temperature is raised to 320°C through gas-gas heat exchanger I3, and it is passed into series-parallel adiabatic sulfur-resistant methanation reactor 4 and uniform temperature sulfur-resistant methanation reactor 6, where sulfur-resistant methanation catalysts HN-3 and HN- 4 Under the action of catalysis, shift reaction and sulfur-resistant methanation reaction occur, which convert part of the synthesis gas into methane, increase the content of methane in the synthesis gas, and adjust the content of hydrogen and carbon monoxide in the synthesis gas; synthesis at the exit of the sulfur-resistant methanation process
  • the low-temperature methanol washing process 10 removes a large amount of carbon dioxide and sulfur-containing gas, and is passed into the adiabatic methanation reactor 12 and the homogeneous methanation reactor 16 in series, where the methanation catalysts HN-1 and HN-2 catalyze Under the action, the supplementary methanation reaction is carried out.
  • the effective components at the inlet of the adiabatic methanation reactor 12 are: H 2 48.39%, CO 11.9%, CO 2 2.00%, CH 4 21.83%, H 2 O 15.23%, and the gas volume is 15000Nm 3 /h, part of the synthesis gas at the outlet of the adiabatic methanation reactor is used as circulating gas through heat exchange, and is mixed with the synthesis gas at the low temperature methanol wash outlet through the high-temperature circulation compressor 15 and then passed into the adiabatic methanation reactor, and the other part is passed to the adiabatic methanation reactor Into the homogeneous temperature methanation reactor 16 for supplementary methanation reaction, the reacted gas is separated by gas-liquid separator III 19 to produce qualified natural gas SNG with methane content greater than 97%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种煤制天然气耐硫甲烷化系统及方法,属于煤制天然气技术领域;首先采用碎煤气化与粉煤气化相结合的煤气化工艺,利用绝热反应器与均温反应器相结合的耐硫甲烷化工艺对粗煤气进行甲烷合成,以提高合成气中甲烷的有效含量,降低后续工段的反应负荷,再通过常规净化工艺脱除原料气中的硫化物和二氧化碳,最后通过绝热反应器与均温反应器相结合的深度甲烷化工艺生产合格的民用天然气;该工艺系统实现了原煤的综合利用,并有效降低了甲烷化工艺的生产负荷,减小了反应器和管道设备尺寸,提高了单位产能,并充分利用甲烷化反应的强放热特点生产中压蒸汽和高品质的过饱和蒸汽,对工艺系统中的热量进行了合理利用,降低了能耗,生产效率高。

Description

一种煤制天然气的耐硫甲烷化系统及方法 技术领域
本发明属于煤制天然气技术领域,涉及一种原煤综合利用的甲烷化工艺,具体涉及一种煤制天然气的耐硫甲烷化系统及方法。
背景技术
当今环境问题日趋严峻,化石能源的大量使用导致温室效应加剧,为此产生的全球变暖、自然灾害和恶劣天气已经越来越引起了人类的关注,实现煤炭的综合、高效利用,减少污染气体排放,提高能源利用率是目前能源发展形成的共识;利用煤制天然气技术可以将煤炭转变成更加清洁的天然气,大大减少污染物排放量,实现煤炭资源的高效利用。
目前工业化成熟的煤制天然气工艺技术主要采用碎煤加压气化技术,汽化炉产生的粗煤气中甲烷含量约占8-13%,粗煤气中甲烷含量的增加可以有效降低后续工段的反应负荷;但是碎煤加压气化技术对原煤粒度要求控制在6-50mm,这就造成块煤不足、粉煤过剩等问题,造成很大的资源浪费;另外,碎煤加压气化技术的废水处理技术也不够成熟,容易造成环境污染。
技术问题
CO甲烷化反应是典型的强放热反应,每转化1%的CO绝热温升是72℃左右;CO甲烷化反应的转化率随温度的升高而降低,当反应温度高于500℃时,将有利于逆水煤气反应、变换反应和积碳反应等副反应;同时,一氧化碳甲烷化反应是一个体积减小的反应,加压有利于生成CH 4产物;通常的甲烷化工艺需要使用多个串联的绝热固定床反应器,每段反应器后串联多个换热器,降温后再进入下一级反应器,整套工艺一般需要3~4级这样的反应器和8~10个换热器才能将CO完全转化。这样的长流程、多套反应换热装置造成甲烷化工艺投资高、运行复杂。
技术解决方案
一种煤制天然气的耐硫甲烷化系统,包括碎煤气化工艺、粉煤或者水煤浆气化工艺、气气换热器Ⅰ、绝热耐硫甲烷化反应器、蒸汽过热器Ⅰ、均温耐硫甲烷化反应器、锅炉水预热器Ⅰ、汽包Ⅰ、气液分离器Ⅰ、低温甲醇洗工艺、气气换热器Ⅱ、绝热甲烷化反应器、蒸汽过热器Ⅱ、气液分离器Ⅱ、高温循环压缩机、均温甲烷化反应器、锅炉水预热器Ⅱ、汽包Ⅱ、汽液分离器Ⅲ和水泵;
备煤工段出口分别与碎煤气化工艺入口和粉煤或者水煤浆气化工艺入口相连接,碎煤气化工艺出口和粉煤或者水煤浆气化工艺出口合并后与气气换热器Ⅰ的壳程入口相连,气气换热器Ⅰ的壳程出口分别与绝热耐硫甲烷化反应器入口和均温耐硫甲烷化反应器管程入口相连,绝热耐硫甲烷化反应器出口与蒸汽过热器Ⅰ的壳程入口相连,蒸汽过热器Ⅰ的壳程出口与气气换热器Ⅰ管程入口相连接,气气换热器Ⅰ管程出口与均温耐硫甲烷化反应器管程入口相连接,均温耐硫甲烷化反应器的管程出口与锅炉水预热器Ⅰ壳程入口相连接,锅炉水预热器Ⅰ壳程出口与气液分离器Ⅰ入口相连接,气液分离器Ⅰ上部的气相出口与低温甲醇洗工艺入口相连接,低温甲醇洗工艺管线出口和高温循环压缩机出口管线合并后与气气换热器Ⅱ管程入口相连接,气气换热器Ⅱ管程的出口和中压蒸汽管线合并后与绝热甲烷化反应器入口相连接,绝热甲烷化反应器出口与蒸汽过热器Ⅱ壳层入口相连接,蒸汽过热器Ⅱ壳程出口分为两条支路,其中一条支路与均温甲烷化反应器管程入口相连接,另一条支路与气气换热器Ⅱ壳程入口相连接,气气换热器Ⅱ壳程出口与气液分离器Ⅱ入口相连接,气液分离器Ⅱ上部气相出口与高温循环压缩机入口相连接;均温甲烷化反应器管程出口与锅炉水预热器Ⅱ壳程入口相连接,锅炉水预热器Ⅱ壳程出口与气液分离器Ⅲ入口相连接,气液分离器Ⅲ上部气相出口为合格的合成天然气。
锅炉水入口分别与锅炉水预热器Ⅰ和锅炉水预热器Ⅱ管程入口相连接,锅炉水预热器Ⅱ管程出口与汽包Ⅱ入口相连接,锅炉水预热器Ⅰ管程出口与汽包Ⅰ入口相连接;汽包Ⅰ通过上升管和下降管与均温耐硫甲烷化反应器的壳程建立水循环,汽包Ⅱ通过上升管和下降管与均温甲烷化反应器的壳程建立水循环;汽包Ⅰ与汽包Ⅱ产生大量的中压蒸汽,中压蒸汽管线出口主要有四条支路,第一中压蒸汽支路和气气换热器Ⅱ管程出口合并后通入到绝热甲烷化反应器中,第二中压蒸汽支路与蒸汽过热器Ⅰ管程入口相连,蒸汽过热器Ⅰ管程出口与过饱和蒸汽主管线入口相连接,第三中压蒸汽支路与蒸汽过热器Ⅱ管程入口相连,蒸汽过热器Ⅱ管程出口与过饱和蒸汽主管线入口相连接,产生高品质的过饱和中压蒸汽,第四中压蒸汽支路与煤气化工艺入口相连,参与煤的气化过程,多余的中压蒸汽外送到其它工段;气液分离器Ⅰ、气液分离器Ⅱ和气液分离器Ⅲ产生的冷凝液通过水泵抽走送到循环水工段。
进一步地,绝热甲烷化反应器内床层中部的甲烷化催化剂为HN-1,绝热耐硫甲烷化反应器内床层中部的耐硫甲烷化催化剂为HN-3,床层上部和下部均装填有耐高温氧化铝瓷球。
进一步地,甲烷化催化剂HN-1和耐硫甲烷化催化剂HN-3都为异型四孔结构,且单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在床层上部和下部的填充高度均为100~200mm。
进一步地,甲烷化催化剂HN-1的组成成分为:以质量分数计,NiO 35%-60%、La 2O 3 2%-10%、M OO 3 0.5%-5%、K 2O 0.2-2%、CaO 2%-10%、MgO 2%-10%、Al 2O 3 30%-50%和石墨1%-2%;耐硫甲烷化催化剂HN-3的组成成分为:以质量分数计,Al 2O 350%-85%、MoO 35%-15%、ZrO 22%-11%、MgO2%-11%、CaO2%-15%、CeO 20.5%-6%、K 2O0.5%-6%、SiO 20.5-6%和P 2O 50.5%-6%。
进一步地,均温甲烷化反应器的列管内装填的甲烷化催化剂为HN-2,均温耐硫甲烷化反应器的列管内装填的耐硫甲烷化催化剂为HN-4,列管上部和下部均装填有耐高温氧化铝瓷球。
进一步地,甲烷化催化剂HN-2和耐硫甲烷化催化剂HN-4为直径3mm的球型结构,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在列管上部和下部的填充高度均为100~200mm。
进一步地,甲烷化催化剂HN-2的组成成分为:以质量分数计,NiO 10-30%、La 2O 3 2-5%、Mo0 3 2-5%、CeO 2 0.2-2%、CaO 2-10%、MgO 2-10%、Al 2O 3 45-80%、石墨1-2%;耐硫甲烷化催化剂HN-4的组成成分为:以质量分数计,Al 2O 340%-75%、MoO 310%-25%、ZrO 22%-11%、MgO2%-11%、CaO2%-11%、CeO 20.5%-6%、K 2O0.5%-6%、SiO 20.5-6%和P 2O 50.5%-6%。
进一步地,耐硫甲烷化催化剂HN-3和耐硫甲烷化催化剂HN-4属于钼系催化剂,同时具有甲烷化催化性能和变换催化性能;
采用上述煤制天然气耐硫甲烷化系统制取合成天然气的方法,包括:
备煤工段制备的合格煤粒配送到碎煤气化工艺,筛分过程中产生的煤粉和不合格的煤粒进一步加工后配送到粉煤或水煤浆气化工艺,两路气化工艺生成的粗煤气混合后通过换热通入到串并联的绝热耐硫甲烷化反应器和均温耐硫甲烷化反应器中进行耐硫甲烷化反应;耐硫甲烷化反应后的合成气通过低温甲醇洗脱除粗煤气中的硫化物和二氧化碳,净化合格的合成气通入到串联的绝热甲烷化反应器和均温甲烷化反应器中进行补充甲烷化反应,生成合格的合成天然气;
其中绝热耐硫甲烷化反应器出口的热量依次通过蒸汽过热器Ⅰ和气气换热器Ⅰ逐步降低到耐硫甲烷化催化剂的起活温度;均温耐硫甲烷化反应放出的热量主要通过反应器壳程的循环水与汽包建立循环水换热,将反应放出的热量迅速移走,避免床层飞温;
补充的绝热甲烷化反应器出口的热量依次通过蒸汽过热器Ⅱ和气气换热器Ⅱ换热,其中蒸汽过热器Ⅱ出口的合成气一部分作为循环气通过气气换热器Ⅱ换热,再通过高温循环压缩机循环,与低温甲醇洗工艺出口的合成气混合,以稀释合成气中一氧化碳的浓度,降低绝热反应器中甲烷化负荷,避免床层飞温;补充均温甲烷化反应器床层的热量主要通过壳程循环水与汽包建立循环水换热,将反应放出的热量迅速移走,避免床层飞温。
有益效果
本发明的煤制天然气技术配套的气化工艺是碎煤加压气化与粉煤气化工艺或者水煤浆气化技术的优化重组,实现了原煤的综合利用,混合气化工艺可以针对不同煤种,结合煤的气化特性和煤质成块率等性质,优化两类气化炉的数量,实现原煤的高效、优质利用;并且,碎煤气化技术与粉煤气化技术的结合,通过优化两类气化炉的数量可以对现有煤制天然气工厂进行升级改造,由于甲烷化反应是体积减小的反应,耐硫甲烷化工艺的引入可以减小粗煤气的流量,这样无需改变后续工段的生产负荷,在原有基础上增加一定数量的粉煤气化炉即可实现原有工艺的稳定运行,即粉煤气化工艺所增加的工艺气体可以补充耐硫甲烷化工艺所减小的工艺气量,平衡整套工艺系统的生产负荷变化;可见,利用粉煤气化或者水煤浆气化与碎煤气化混合气化技术,增加了粗煤气中有效气体含量,提高了整套煤制天然气工艺的生产负荷,实现了原煤的全部利用,实现提质增效的目的。
绝热甲烷化反应器与均温甲烷化反应器串联工艺;其中绝热甲烷化反应器可以有效提高合成气甲烷化反应程度,实现甲烷化反应的高负荷生产;绝热反应器中装填的甲烷化催化剂HN-1具有耐高温、抗积碳性能,异型四孔的催化剂结构更适合热量的扩散,提高催化剂表面的传质、传热效果;均温反应器壳程与汽包形成循环换热,维持均温反应器床层温度均一,更有益于甲烷化的热力学平衡,延长了催化剂的使用寿命,不仅提高了工艺系统的生产能力,而且增大了产品气中甲烷的浓度,生产出合格的合成天然气产品;补充的绝热甲烷化反应器与均温甲烷化反应器串联工艺系统设计合理,相对于传统三段式甲烷化工艺减少了反应器的设备数量,从而减少了投资,降低了操作难度,生产效率高;均温甲烷化反应器中装填的HN-2甲烷化催化剂,具有高热稳定性和高强度性能,尺寸为直径3mm的球型,有利于列管反应器催化剂床层和原料气的均匀分部。
耐硫甲烷化催化剂HN-3和耐硫甲烷化催化剂HN-4同时具有甲烷化催化性能和变换催化性能,可以利用粗煤气直接合成甲烷,有效提高合成气中甲烷的浓度,降低后续工艺的生产负荷;并且该催化剂的变换催化性能可以调节粗煤气中的氢气与一氧化碳的含量,使优化后的粗煤气更适用于后续的补充甲烷化工艺。
该工艺系统充分优化和利用甲烷化反应放出的大量热量,利用分级换热将各个反应器放出的热量实现综合利用,在生产中压蒸汽的同时生产高品质的过饱和蒸汽实现外送;同时,一部分中压蒸汽直接与绝热甲烷化反应器入口气混合,维持反应器床层温度稳定,补充反应初期催化剂消碳反应所消耗的水,抑制甲烷化催化剂积碳;另一部分中压蒸汽通入到煤气化工艺中,参与煤的气化过程,以补充煤气化工艺所需的水蒸气消耗。
本发明公开的采用上述煤制天然气耐硫甲烷化工艺系统制取合成天然气的方法,催化效率高,节能且操作简便。
附图说明
图1为本发明的煤制天然气甲烷化流程示意图。
图中:1-碎煤气化工艺、2-粉煤或者水煤浆气化工艺、3-气气换热器Ⅰ、4-绝热耐硫甲烷化反应器、5-蒸汽过热器Ⅰ、6-均温耐硫甲烷化反应器、7-锅炉水预热器Ⅰ、8-汽包Ⅰ、9-气液分离器Ⅰ、10-低温甲醇洗工艺、11-气气换热器Ⅱ、12-绝热甲烷化反应器、13-蒸汽过热器Ⅱ、14-气液分离器Ⅱ、15-高温循环压缩机、16-均温甲烷化反应器、17-锅炉水预热器Ⅱ、18-汽包Ⅱ、19-气液分离器Ⅲ、20-水泵。
本发明的最佳实施方式
下面结合附图和具体实施例对本发明做进一步详细描述,其内容是对本发明的解释而不是限定:
图1为本发明的煤制天然气耐硫甲烷化新工艺系统,备煤工段制备的合格煤粒配送到碎煤气化工艺1,剩余的粉煤和不合格的煤粒加工后配送到粉煤或水煤浆气化工艺2,两路气化工艺生成的粗煤气混合管线通过气气换热器Ⅰ3换热后通入到串并联的绝热耐硫甲烷化反应器4和均温耐硫甲烷化反应器6中进行耐硫甲烷化反应,耐硫甲烷化反应后的粗煤气通过低温甲醇洗工艺10脱除硫化物和二氧化碳,净化合格的合成气通入到串联的绝热甲烷化反应器12和均温甲烷化反应器16中进行补充甲烷化反应,生成合格的合成天然气。
其中绝热耐硫甲烷化反应器4出口的粗煤气通过蒸汽过热器Ⅰ5和气气换热器Ⅰ3依次降温,达到耐硫甲烷化催化剂的起活温度;均温耐硫甲烷化反应放出的热量主要通过反应器壳程的循环水与汽包Ⅰ8建立循环水换热,将反应放出的热量迅速移走,避免床层飞温;
绝热耐硫甲烷化反应器4的床层中部填充异型四孔耐硫甲烷化催化剂HN-3,床层上部和下部均装填100~200mm高度的耐高温氧化铝瓷球;HN-3催化剂的组成成分:50%-85%的Al 2O 3、5%-15%的MoO 3、2%-11%的ZrO 2、2%-11%的MgO、2%-15%的CaO、0.5%-6%的CeO 2、0.5%-6%的K 2O、0.5-6wt%的SiO 2、0.5%-6%的P 2O 5;均温耐硫甲烷化反应器6的列管内装填φ3球型耐硫甲烷化催化剂HN-4,列管上部和下部均装填100~200mm高度的φ5耐高温氧化铝瓷球;HN-4催化剂的组成成分:40%-75%的Al 2O 3、10%-25%的MoO 3、2%-11%的ZrO 2、2%-11%的MgO、2%-11%的CaO、0.5%-6%的CeO 2、0.5%-6%的K 2O、0.5-6wt%的SiO 2、0.5%-6%的P 2O 5
其中补充绝热甲烷化反应器12出口的热量首先通过蒸汽过热器Ⅱ13换热,降温后的合成气分为两条支路,一路通入到串联的均温甲烷化反应器16中进行深度甲烷化反应,另一支路作为循环气依次通过气气换热器Ⅱ11换热,降温后的循环气通过高温循环压缩机15循环加压与低温甲醇洗工艺10出口的合成气混合,稀释合成气中CO的浓度,降低绝热甲烷化反应器12中甲烷化的反应负荷,避免床层飞温;补充均温甲烷化反应器16床层的热量主要通过反应器壳程的循环水与汽包Ⅱ18建立循环水换热,将反应放出的热量迅速移走,避免床层飞温。
绝热甲烷化反应器12的床层中部填充异型四孔甲烷化催化剂HN-1,床层上部和下部均装填100~200mm高度的耐高温氧化铝瓷球。HN-1催化剂的组成成分:NiO 35%-60%、La 2O 3 2%-10%、M OO 3 0.5%-5%、K 2O 0.2-2%、CaO 2%-10%、MgO 2%-10%、Al 2O 3 30%-50%、石墨1%-2%;均温甲烷化反应器16的列管内装填φ3球型甲烷化催化剂HN-2,列管上部和下部均装填100~200mm高度的φ5耐高温氧化铝瓷球。HN-2催化剂的组成成分:NiO 10-30%、La 2O 3 2-5%、Mo0 3 2-5%、CeO 2 0.2-2%、CaO 2-10%、MgO 2-10%、Al 2O 3 45-80%、石墨1-2%。
系统入口的锅炉水通过锅炉水预热器Ⅰ7换热,通入到汽包Ⅰ8中,补充汽包所消耗的水蒸汽,维持汽包Ⅰ8的液位稳定,汽包Ⅰ8中的沸腾水通过下降管和上升管与均温耐硫甲烷化反应器6壳程的循环水进行循环换热,吸收耐硫甲烷化反应放出的热量转变成中压蒸汽,补充到系统中的中压蒸汽总管中;另一部分锅炉水通过锅炉水预热器Ⅱ17进行换热后通入到汽包Ⅱ18中,补充汽包Ⅱ18所消耗的水蒸气,维持汽包Ⅱ18液位稳定,汽包Ⅱ18中的沸腾水通过下降管和上升管与均温甲烷化反应器16壳程的循环水进行循环换热,吸收甲烷化反应放出的热量转变成中压蒸汽,补充到系统中的中压蒸汽总管中。
汽包Ⅰ8与汽包Ⅱ18产生大量的中压蒸汽,外排到工艺系统的中压蒸汽总管,中压蒸汽总管线的出口主要有四条支路,第一中压蒸汽支路和气气换热器Ⅱ11的壳程出口管线合并后通入到绝热甲烷化反应器12中,用于绝热甲烷化反应器12开工间断催化剂消碳反应所消耗的水和维持甲烷化床层温度稳定;第二中压蒸汽支路与蒸汽过热器Ⅰ5换热升温后转变成高品质的过饱和蒸汽,通入到过饱和蒸汽总管中;第三中压蒸汽支路与蒸汽过热器Ⅱ13换热升温后转变成高品质的过饱和蒸汽,通入到过饱和蒸汽总管中,高品质过饱和蒸汽外排到其它工段综合利用;第四中压蒸汽支路与煤气化工艺入口相连,参与煤的气化过程,补充煤气化过程所消耗的水蒸气;多余的中压蒸汽外送到其它工段。
均温耐硫甲烷化反应器6出口的粗煤气在进低温甲醇洗工艺10之前先通过气液分离器Ⅰ9分离出冷凝水;绝热甲烷化反应器12出口的循环气通过分级换热在进入高温循环压缩机15之前先通入到气液分离器Ⅱ14中分离出冷凝水;均温甲烷化反应器16生成的产品气通过换热降温后通过气液分离器Ⅲ19分离出冷凝水;三台气液分离器产生的冷凝水通过水泵20抽走送到循环水工段实现循环利用。
下面以一个具体实施例对本发明进行进一步的解释:
碎煤气化工艺1生产的粗煤气有效组分为:H 2 21.19%,CO 48.31%,CO 2 6.78%,CH 4 6.78%,H 2O16.95%气量是12000Nm 3/h,两段式粉煤气化工艺生成的粗煤气有效组分为:H 2 19.39%,CO 58.16%,CO 2 5.56%,CH 4 0.03%,H 2O 16.86%气量是8000Nm 3/h,两路气化工艺出口混合后的粗煤气有效组分为:H 2 20.23%,CO 52.26%,CO 2 6.41%,CH 4 3.36%,H 2O 16.84%气量是20000Nm 3/h,混合后的粗煤气通过除尘过滤后先通过气气换热器Ⅰ3升温到320℃,通入到串并联的绝热耐硫甲烷化反应器4和均温耐硫甲烷化反应器6中,在耐硫甲烷化催化剂HN-3和HN-4催化作用下,发生变换反应和耐硫甲烷化反应,将一部分合成气转化为甲烷,提高合成气中甲烷的含量,并调节合成气中氢气和一氧化碳的含量;耐硫甲烷化工艺出口的合成气通过低温甲醇洗工艺10脱除大量的二氧化碳和含硫气体,通入到串联的绝热甲烷化反应器12和均温甲烷化反应器16中,在甲烷化催化剂HN-1和HN-2催化作用下,进行补充甲烷化反应,其中绝热甲烷化反应器12入口有效组分为:H 2 48.39%,CO 11.9%,CO 2 2.00%,CH 4 21.83%,H 2O 15.23%气量是15000Nm 3/h,绝热甲烷化反应器出口的合成气一部分通过换热作为循环气,通过高温循环压缩机15循环与低温甲醇洗出口的合成气混合后通入到绝热甲烷化反应器中,另一部分通入到均温甲烷化反应器16中进行补充甲烷化反应,反应后的气体通过气液分离器Ⅲ19分离后,生产甲烷含量大于97%的合格天然气SNG。
需要说明的是,以上所述仅为本发明实施方式之一,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

Claims (8)

  1. 一种煤制天然气的耐硫甲烷化系统,其特征在于,包括碎煤气化工艺(1)、粉煤或者水煤浆气化工艺(2)、气气换热器Ⅰ(3)、绝热耐硫甲烷化反应器(4)、蒸汽过热器Ⅰ(5)、均温耐硫甲烷化反应器(6)、锅炉水预热器Ⅰ(7)、汽包Ⅰ(8)、气液分离器Ⅰ(9)、低温甲醇洗工艺(10)、气气换热器Ⅱ(11)、绝热甲烷化反应器(12)、蒸汽过热器Ⅱ(13)、气液分离器Ⅱ(14)、高温循环压缩机(15)、均温甲烷化反应器(16)、锅炉水预热器Ⅱ(17)、汽包Ⅱ(18)、汽液分离器Ⅲ(19)和水泵(20);
    备煤工段出口分别与碎煤气化工艺(1)入口和粉煤或者水煤浆气化工艺(2)入口相连接,碎煤气化工艺(1)出口和粉煤或者水煤浆气化工艺(2)出口合并后与气气换热器Ⅰ(3)的壳程入口相连,气气换热器Ⅰ(3)的壳程出口分别与绝热耐硫甲烷化反应器(4)入口和均温耐硫甲烷化反应器(6)管程入口相连,绝热耐硫甲烷化反应器(4)出口与蒸汽过热器Ⅰ(5)的壳程入口相连,蒸汽过热器Ⅰ(5)的壳程出口与气气换热器Ⅰ(3)管程入口相连接,气气换热器Ⅰ(3)管程出口与均温耐硫甲烷化反应器(6)管程入口相连接,均温耐硫甲烷化反应器(6)的管程出口与锅炉水预热器Ⅰ(7)壳程入口相连接,锅炉水预热器Ⅰ(7)壳程出口与气液分离器Ⅰ(9)入口相连接,气液分离器Ⅰ(9)上部的气相出口与低温甲醇洗工艺(10)入口相连接,低温甲醇洗工艺(10)管线出口和高温循环压缩机(15)出口管线合并后与气气换热器Ⅱ(11)管程入口相连接,气气换热器Ⅱ(11)管程的出口和中压蒸汽管线合并后与绝热甲烷化反应器(12)入口相连接,绝热甲烷化反应器(12)出口与蒸汽过热器Ⅱ(13)壳层入口相连接,蒸汽过热器Ⅱ(13)壳程出口分为两条支路,其中一条支路与均温甲烷化反应器(16)管程入口相连接,另一条支路与气气换热器Ⅱ(11)壳程入口相连接,气气换热器Ⅱ(11)壳程出口与气液分离器Ⅱ(14)入口相连接,气液分离器Ⅱ(14)上部气相出口与高温循环压缩机(15)入口相连接;均温甲烷化反应器(16)管程出口与锅炉水预热器Ⅱ(17)壳程入口相连接,锅炉水预热器Ⅱ(17)壳程出口与气液分离器Ⅲ(19)入口相连接,气液分离器Ⅲ(19)上部气相出口为合格的合成天然气;
    锅炉水入口分别与锅炉水预热器Ⅰ(7)和锅炉水预热器Ⅱ(17)管程入口相连接,锅炉水预热器Ⅱ(17)管程出口与汽包Ⅱ(18)入口相连接,锅炉水预热器Ⅰ(7)管程出口与汽包Ⅰ(8)入口相连接;汽包Ⅰ(8)通过上升管和下降管与均温耐硫甲烷化反应器(6)的壳程建立水循环,汽包Ⅱ(18)通过上升管和下降管与均温甲烷化反应器(16)的壳程建立水循环;汽包Ⅰ(8)与汽包Ⅱ(18)的中压蒸汽出口连接至中压蒸汽管线,中压蒸汽管线出口包括四条支路,第一中压蒸汽支路和气气换热器Ⅱ(11)管程出口合并后通入到绝热甲烷化反应器(12)中,第二中压蒸汽支路与蒸汽过热器Ⅰ(5)管程入口相连,蒸汽过热器Ⅰ(5)管程出口与过饱和蒸汽主管线入口相连接,第三中压蒸汽支路与蒸汽过热器Ⅱ(13)管程入口相连,蒸汽过热器Ⅱ(13)管程出口与过饱和蒸汽主管线入口相连接,第四中压蒸汽支路与碎煤气化工艺(1)入口和粉煤或者水煤浆气化工艺(2)的入口相连;气液分离器Ⅰ(9)、气液分离器Ⅱ(14)和气液分离器Ⅲ(19)的冷凝液出口通过水泵20连接至循环水工段。
  2. 根据权利要求1所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,绝热甲烷化反应器(12)内床层中部的甲烷化催化剂为HN-1,绝热耐硫甲烷化反应器(4)内床层中部的耐硫甲烷化催化剂为HN-3,床层上部和下部均装填有耐高温氧化铝瓷球。
  3. 根据权利要求2所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,甲烷化催化剂HN-1和耐硫甲烷化催化剂HN-3均为异型四孔结构,且单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在床层上部和下部的填充高度均为100~200mm。
  4. 根据权利要求2所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,甲烷化催化剂HN-1的组成成分为:以质量分数计,NiO 35%-60%、La 2O 3 2%-10%、M OO 3 0.5%-5%、K 2O 0.2-2%、CaO 2%-10%、MgO 2%-10%、Al 2O 3 30%-50%和石墨1%-2%;耐硫甲烷化催化剂HN-3的组成成分为:以质量分数计,Al 2O 350%-85%、MoO 35%-15%、ZrO 22%-11%、MgO2%-11%、CaO2%-15%、CeO 20.5%-6%、K 2O0.5%-6%、SiO 20.5-6%和P 2O 50.5%-6%。
  5. 根据权利要求1所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,均温甲烷化反应器(16)的列管内装填的甲烷化催化剂为HN-2,均温耐硫甲烷化反应器(6)的列管内装填的耐硫甲烷化催化剂为HN-4,列管上部和下部均装填有耐高温氧化铝瓷球。
  6. 根据权利要求5所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,甲烷化催化剂HN-2和耐硫甲烷化催化剂HN-4为直径3mm的球型结构,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在列管上部和下部的填充高度均为100~200mm。
  7. 根据权利要求5所述的一种煤制天然气的耐硫甲烷化系统,其特征在于,甲烷化催化剂HN-2的组成成分为:以质量分数计,NiO 10-30%、La 2O 3 2-5%、Mo0 3 2-5%、CeO 2 0.2-2%、CaO 2-10%、MgO 2-10%、Al 2O 3 45-80%、石墨1-2%;耐硫甲烷化催化剂HN-4的组成成分为:以质量分数计,Al 2O 340%-75%、MoO 310%-25%、ZrO 22%-11%、MgO2%-11%、CaO2%-11%、CeO 20.5%-6%、K 2O0.5%-6%、SiO 20.5-6%和P 2O 50.5%-6%。
  8. 一种采用权利要求1所述的煤制天然气的耐硫甲烷化系统合成天然气的方法,其特征在于,备煤工段制备的合格煤粒配送到碎煤气化工艺(1),筛分过程中产生的煤粉和不合格的煤粒进一步加工后配送到粉煤或水煤浆气化工艺(2),两路气化工艺生成的粗煤气混合后通过换热通入到串并联的绝热耐硫甲烷化反应器(4)和均温耐硫甲烷化反应器(6)中进行耐硫甲烷化反应;耐硫甲烷化反应后的合成气通过低温甲醇洗工艺(10)脱除粗煤气中的硫化物和二氧化碳,净化合格的合成气通入到串联的绝热甲烷化反应器(12)和均温甲烷化反应器(16)中进行补充甲烷化反应,生成合格的合成天然气;
    其中绝热耐硫甲烷化反应器(4)出口的热量依次通过蒸汽过热器Ⅰ(5)和气气换热器Ⅰ(3)逐步降低到耐硫甲烷化催化剂的起活温度;均温耐硫甲烷化反应放出的热量主要通过反应器壳程的循环水与汽包建立循环水换热,将反应放出的热量迅速移走,避免床层飞温;
    绝热甲烷化反应器(12)出口的热量依次通过蒸汽过热器Ⅱ(13)和气气换热器Ⅱ(11)换热,其中蒸汽过热器Ⅱ(13)出口的合成气一部分作为循环气通过气气换热器Ⅱ(11)换热,再通过高温循环压缩机(15)循环,与低温甲醇洗工艺(10)出口的合成气混合,以稀释合成气中一氧化碳的浓度,降低绝热反应器中甲烷化负荷,避免床层飞温;均温甲烷化反应器(16)床层的热量主要通过壳程循环水与汽包建立循环水换热,将反应放出的热量迅速移走,避免床层飞温。
PCT/CN2021/100602 2020-06-23 2021-06-17 一种煤制天然气的耐硫甲烷化系统及方法 WO2021259130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021000236.8T DE112021000236T5 (de) 2020-06-23 2021-06-17 System und Verfahren zur schwefelbeständigen Methanisierung von auf Kohle basierendem Erdgas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010581449.7 2020-06-23
CN202010581449.7A CN111718760B (zh) 2020-06-23 2020-06-23 一种煤制天然气的耐硫甲烷化系统及方法

Publications (1)

Publication Number Publication Date
WO2021259130A1 true WO2021259130A1 (zh) 2021-12-30

Family

ID=72568463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100602 WO2021259130A1 (zh) 2020-06-23 2021-06-17 一种煤制天然气的耐硫甲烷化系统及方法

Country Status (3)

Country Link
CN (1) CN111718760B (zh)
DE (1) DE112021000236T5 (zh)
WO (1) WO2021259130A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718760B (zh) * 2020-06-23 2021-03-02 中国华能集团清洁能源技术研究院有限公司 一种煤制天然气的耐硫甲烷化系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004557A (zh) * 2014-03-05 2014-08-27 新疆龙宇能源准东煤化工有限责任公司 碎煤加压气化联合水煤浆气化生产煤制天然气的方法
KR20150075227A (ko) * 2013-12-24 2015-07-03 재단법인 포항산업과학연구원 고효율의 합성천연가스 제조방법 및 제조장치
CN111718760A (zh) * 2020-06-23 2020-09-29 中国华能集团清洁能源技术研究院有限公司 一种煤制天然气的耐硫甲烷化系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273785A (zh) * 2014-06-09 2016-01-27 辽宁大唐国际阜新煤制天然气有限责任公司 碎煤加压气化联合干法气流床气化生产天然气的方法及装置
CN104357117A (zh) * 2014-10-31 2015-02-18 西南化工研究设计院有限公司 一种煤制合成天然气和液化天然气的无循环甲烷化工艺
CN107974319B (zh) * 2016-10-25 2020-05-12 中国石化工程建设有限公司 一种制备煤制替代天然气的耐硫甲烷化工艺
CN108219879B (zh) * 2016-12-14 2020-08-04 中国石化工程建设有限公司 煤制替代天然气的无循环耐硫甲烷化工艺
CN110550601B (zh) * 2019-08-08 2023-03-14 中石化宁波工程有限公司 一种用于高浓度co原料气的变换工艺
CN110655961A (zh) * 2019-10-29 2020-01-07 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150075227A (ko) * 2013-12-24 2015-07-03 재단법인 포항산업과학연구원 고효율의 합성천연가스 제조방법 및 제조장치
CN104004557A (zh) * 2014-03-05 2014-08-27 新疆龙宇能源准东煤化工有限责任公司 碎煤加压气化联合水煤浆气化生产煤制天然气的方法
CN111718760A (zh) * 2020-06-23 2020-09-29 中国华能集团清洁能源技术研究院有限公司 一种煤制天然气的耐硫甲烷化系统及方法

Also Published As

Publication number Publication date
CN111718760A (zh) 2020-09-29
DE112021000236T5 (de) 2022-10-27
CN111718760B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CN105385473B (zh) 一种基于化学链气化的煤制氢气及甲烷的工艺
CN100526273C (zh) 以焦炉气为原料一体化生产液氨和甲醇和/或二甲醚的方法
CN102079685A (zh) 两级气化炉煤气化制甲烷的方法
CN101338231A (zh) 煤制类天然气或氢气
US20100256246A1 (en) System and method for conditioning biomass-derived synthesis gas
CN204211707U (zh) 利用焦炉煤气与高炉煤气联合生产天然气与液氨的装置
CN101993730B (zh) 基于化石燃料化学能适度转化的多功能能源系统
CN111646430A (zh) 一种水煤浆气化制甲醇装置一氧化碳变换系统及方法
WO2021259130A1 (zh) 一种煤制天然气的耐硫甲烷化系统及方法
WO2021083234A1 (zh) 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法
CN104987892B (zh) 一种分级气化化工未反应气适度循环型化工‑动力多联产系统
CN101985574A (zh) 一种利用合成气制备天然气的工艺方法
CN104804787B (zh) 一种制合成天然气的甲烷化方法和装置
CN109810739B (zh) 一种耐硫甲烷合成工艺和装置
CN213231512U (zh) 一种天然气制氢中温变换系统
WO2012058903A1 (zh) 一种利用秸秆气制备合成天然气的方法
CN100358851C (zh) 以气态烃和煤为原料生产甲醇合成气的方法
CN210419228U (zh) 水煤浆气化制氢制氨的变换系统
CN217418188U (zh) 集成化学链焦炉煤气重整的合成气制甲醇联产氢气系统
CN219003010U (zh) 一种二氧化碳加氢制甲醇合成系统
CN210528461U (zh) 晋华炉/航天炉煤气化的制氢制氨变换系统
CN217127311U (zh) 一种双碳加氢合成甲醇的装置
CN220887417U (zh) 一种高效煤碳基原料化工—动力多联产装置
CN219559567U (zh) 一种合成气甲烷化生产甲烷的系统
CN114604827B (zh) 基于沼气干湿重整耦合甲醇裂解制备合成气系统与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829923

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21829923

Country of ref document: EP

Kind code of ref document: A1