WO2021083234A1 - 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法 - Google Patents

一种二氧化碳甲烷化合成天然气的均温工艺系统及方法 Download PDF

Info

Publication number
WO2021083234A1
WO2021083234A1 PCT/CN2020/124530 CN2020124530W WO2021083234A1 WO 2021083234 A1 WO2021083234 A1 WO 2021083234A1 CN 2020124530 W CN2020124530 W CN 2020124530W WO 2021083234 A1 WO2021083234 A1 WO 2021083234A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tube
heat exchanger
inlet
reactor
Prior art date
Application number
PCT/CN2020/124530
Other languages
English (en)
French (fr)
Inventor
王晓龙
郜时旺
何忠
程阿超
肖天存
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2021083234A1 publication Critical patent/WO2021083234A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Definitions

  • the invention belongs to the technical field of coal-to-natural gas, and specifically relates to a temperature equalization process system and method for synthesizing natural gas by the methanation of carbon dioxide.
  • the CO 2 methanation reaction is a typical strong exothermic reaction.
  • the adiabatic temperature rise for every 1% of CO 2 conversion is about 60°C; the conversion rate of the CO 2 methanation reaction decreases with the increase of temperature.
  • the reaction temperature is higher than 500 At °C, it will be beneficial to the side reactions such as reverse water gas reaction, shift reaction and carbon deposition reaction; at the same time, the carbon dioxide methanation reaction is a reaction with reduced volume, and pressurization is beneficial to the production of CH 4 products.
  • the usual methanation process requires the use of multiple adiabatic fixed-bed reactors connected in series. After each stage of the reactor, multiple heat exchangers are used to cool down, and then enter the next stage of reactor. Generally, 3 to 4 stages of such reactors and 8 ⁇ 10 heat exchangers can completely convert CO 2. Such a long process and multiple sets of reaction heat exchange devices cause high investment and complex operation of the methanation process.
  • the purpose of the present invention is to provide a temperature equalization process system and method for synthesizing natural gas by carbon dioxide methanation.
  • the system has a reasonable design, low energy consumption, convenient operation, and high catalytic reaction efficiency.
  • the invention discloses a temperature equalization process system for the methanation of carbon dioxide to synthesize natural gas, which includes a steam drum, a first gas-liquid separator, a second gas-liquid separator, an adiabatic reactor, a tube-and-tube temperature equalization reactor, and a first tube Type heat exchanger, second heat exchanger, third heat exchanger, fourth heat exchanger, first heater, second heater and circulating compressor;
  • the raw material gas inlet pipe is connected with the first raw gas branch and the second raw gas branch.
  • the first raw gas branch is respectively connected with the tube pass inlet of the first tubular heat exchanger and the inlet of the first heater.
  • the tube-side outlet of the tube heat exchanger is connected with the inlet of the first heater, the inlet of the first heater is also connected with a medium-pressure steam inlet pipe, the outlet of the first heater is connected with the inlet of the adiabatic reactor, the adiabatic reactor
  • the outlet is connected with the first mixed gas branch and the second mixed gas branch, the first mixed gas branch is connected with the shell side inlet of the first tube heat exchanger, and the shell side outlet of the first tube heat exchanger is connected with
  • the inlet of the second heat exchanger is connected, the outlet of the second heat exchanger is connected with the inlet of the first gas-liquid separator, the gas-phase outlet of the first gas-liquid separator is connected with the inlet of the circulating compressor, and the outlet of the circulating compressor is connected with
  • the second mixed gas branch is connected to the inlet of the third heat exchanger, the outlet of the third heat exchanger and the second raw gas branch are connected to the inlet of the second heater, and the outlet of the second heater is connected to the tube type.
  • the tube side inlet of the warm reactor is connected, the tube side outlet of the tube-and-tube uniform temperature reactor is connected with the inlet of the fourth heat exchanger, the outlet of the fourth heat exchanger is connected with the inlet of the second gas-liquid separator, and the second The gas phase outlet of the gas-liquid separator is connected with an SNG discharge pipe;
  • the cooling medium inlet of the fourth heat exchanger is connected with a desalinated water inlet pipe, and the cooling medium outlet of the fourth heat exchanger is connected with the steam drum through the water supplement pipe.
  • the shell side forms a circulating waterway.
  • a buffer tank is provided between the outlet of the circulating compressor and the first feed gas branch.
  • the methanation catalyst in the middle of the bed in the adiabatic reactor is HN-1, and the upper and lower parts of the bed are filled with high-temperature alumina ceramic balls.
  • the methanation catalyst HN-1 is a special-shaped four-hole, the diameter of a single high-temperature alumina ceramic ball is 5 mm, and the filling height of the high-temperature alumina ceramic ball at the upper and lower portions of the bed is 100-200 mm.
  • the methanation catalyst filled in the tubes of the tube-and-tube uniform temperature reactor is HN-2, and the upper and lower parts of the tubes are filled with high-temperature alumina ceramic balls.
  • the methanation catalyst HN-2 is a spherical shape with a diameter of 3 mm, the diameter of a single high-temperature alumina ceramic ball is 5 mm, and the filling height of the high-temperature alumina ceramic ball at the upper and lower parts of the tube is 100-200 mm.
  • the steam outlet pipe of the steam drum is connected with the medium-pressure steam inlet pipe, and the steam outlet pipe is provided with a steam flow regulating valve for sending out steam from the steam drum.
  • the first raw material gas branch is provided with a first raw material gas flow regulating valve; the second raw gas branch is provided with a second raw gas flow regulating valve; between the first raw gas branch and the inlet of the first heater Equipped with a cold shock gas flow regulating valve; a medium pressure steam flow regulating valve on the medium pressure steam inlet pipe; a steam drum liquid level flow regulating valve on the demineralized water inlet pipe; a system pressure regulating valve on the SNG discharge pipe.
  • the present invention discloses a method for preparing synthetic natural gas by adopting the above-mentioned uniform temperature process system for the methanation of carbon dioxide to synthesize natural gas, including:
  • the raw material gas enters the system from the raw gas inlet pipe and is divided into the first raw gas branch and the second raw gas branch.
  • the raw gas in the first raw gas branch is mixed with the circulating gas at the outlet of the circulating compressor and then enters the first tube type.
  • the heat exchange temperature rises in the tube side of the heat exchanger, and then it is mixed with the medium pressure steam from the medium pressure steam pipe and then enters the first heater for heating, and then enters the adiabatic reactor for the methanation catalytic reaction to generate a mixed gas;
  • the mixed gas is discharged from the outlet of the adiabatic reactor and divided into a first mixed gas branch and a second mixed gas branch.
  • the gas in the first mixed gas branch enters the shell side of the first tubular heat exchanger for heat exchange and enters the second
  • the second heat exchanger enters the first gas-liquid separator after heat exchange, and the gas enters the circulating compressor to cool down and merges with the raw material gas in the first raw gas branch to form a circulating loop;
  • the gas in the second mixed gas branch is heated by the third heat exchanger and then mixed with the gas in the second raw material gas branch. After being heated by the second heater, it enters the tube side of the tubular uniform temperature reactor. Deep methanation catalytic reaction, the heat released by the reaction is taken away through the circulating water path between the shell side of the tubular uniform temperature reactor and the steam drum, and the desalinated water enters the fourth heat exchanger and then enters the steam drum for deep methanation.
  • the product of the catalytic reaction passes through the fourth heat exchanger to cool down and enters the second gas-liquid separator. After gas-liquid separation, the obtained SNG is discharged out of the system through the SNG discharge pipe.
  • the bed temperature of the adiabatic reactor is too high, the input of the medium pressure steam in the medium pressure steam pipe is cut off, the flow of the second raw material gas is reduced and the flow of the first raw gas is increased, so that the gas entering the adiabatic reactor The temperature is lower than the activation temperature of the catalyst in the adiabatic reactor.
  • the present invention has the following beneficial technical effects:
  • the present invention discloses a uniform temperature process system for synthesizing natural gas by carbon dioxide methanation, which adopts a process system in which an adiabatic reactor and a tubular uniform temperature reactor are connected in series, wherein the adiabatic reactor adopts a cyclic and cold shock process; adiabatic reaction
  • the mixed gas at the outlet of the reactor is divided into two parts, which are respectively mixed with two raw material gases.
  • One is used as the inlet reactant gas of the adiabatic reactor, and the other is used as the inlet reactant gas of the tubular uniform temperature reactor; the process system can effectively dilute the raw materials
  • the gas composition reduces the carbon load of each stage of the reaction process.
  • the inlet of the adiabatic reactor is also designed with a cold shock gas pipeline, which can effectively control the hot spot temperature of the adiabatic reactor bed and avoid the loss of the methanation catalyst due to high temperature sintering.
  • Live; the tube-type uniform temperature reactor and the steam drum form a cyclic heat exchange to maintain the uniform temperature of the tube-type uniform temperature reactor, which not only improves the production capacity of the process system, but also increases the concentration of methane in the product gas, and produces Qualified synthetic natural gas products.
  • the design of the process system is reasonable, which reduces the number of equipment in the system, thereby reducing investment, reducing operation difficulty and high production efficiency.
  • the methanation catalyst in the adiabatic reactor adopts HN-1, which has high activity and high hydrothermal stability.
  • the upper and lower parts of the bed are filled with high-temperature alumina ceramic balls to maintain the stability of the hot spot temperature of the catalyst bed.
  • the catalyst HN-1 is a special-shaped four-hole, which not only improves the mechanical strength of the catalyst, but also strengthens the gas distribution in the reactor bed.
  • the use of high-temperature alumina ceramic balls with a diameter of 5mm is conducive to the distribution of raw gas , High-temperature alumina ceramic balls are filled with 100-200mm to support and protect the catalyst bed.
  • the methanation catalyst in the tube-type uniform temperature reactor adopts HN-2, which has the characteristics of high temperature resistance and carbon deposition.
  • the upper and lower parts of the tube are filled with high-temperature alumina ceramic balls to maintain the hot spot temperature of the catalyst bed. stable.
  • the catalyst HN-2 is a spherical shape with a diameter of 3mm, which is conducive to the uniform division of the catalyst bed of the tubular reactor.
  • the use of high-temperature alumina ceramic balls with a diameter of 5mm is conducive to the distribution of raw material gas and is resistant to high temperatures.
  • the alumina ceramic balls are filled with 100-200mm to support and protect the catalyst bed.
  • the steam outlet pipe of the steam drum is connected with the medium-pressure steam inlet pipe, which is mixed with the inlet gas of the adiabatic reactor, participates in the methanation reaction in the adiabatic reactor, and inhibits the carbon deposition of the methanation catalyst;
  • the steam flow control valve sent outside the steam drum It is used to control the pressure of the steam drum and maintain the uniform temperature of the tube-type uniform temperature reactor.
  • a first feed gas flow regulating valve and a second feed gas flow regulating valve are provided, which can control the methanation reaction load of the inlet gas of the adiabatic reactor and the tubular homogeneous temperature reactor; and the cold shock gas flow regulating valve can be adjusted Cold shock gas flow; set a medium pressure steam flow control valve, which can control the concentration of water vapor in the reactor inlet gas and inhibit the carbon deposition reaction of the methanation catalyst; set a steam drum liquid level flow control valve, which can control the liquid level of the steam drum , To maintain the stability of the liquid level of the steam drum; set the system pressure regulating valve, which can control the pressure of the entire system and maintain the balance of the system reaction.
  • the method for preparing synthetic natural gas by adopting the above-mentioned uniform temperature process system of carbon dioxide methanation to synthesize natural gas disclosed by the present invention has high catalytic efficiency, energy saving and simple operation.
  • the temperature of the gas entering the adiabatic reactor can be reduced to below the activation temperature of the catalyst in the adiabatic reactor to suppress the hot spot temperature of the reactor bed. Continue to fly warm.
  • Fig. 1 is an overall schematic diagram of the uniform temperature process system for synthesizing natural gas by carbon dioxide methanation of the present invention.
  • V101-steam drum V102-first gas-liquid separator, V103-buffer tank, V104-second gas-liquid separator, R1-adiabatic reactor, R2-tubular uniform temperature reactor, E101-first One-tube heat exchanger, E102-second heat exchanger, E103-third heat exchanger, E104-fourth heat exchanger, E201-first heater, E202-second heater, C101-circulating compressor , FIQ101-first raw material gas flow control valve, FIQ102-second raw gas flow control valve, FIQ103-cold shock gas flow control valve, FIQ104-medium pressure steam flow control valve, FIQ105-steam drum delivery steam flow control valve, FIQ106-Drum level and flow regulating valve, FIQ107-system pressure regulating valve.
  • Fig. 1 is a temperature equalization process system for synthesizing natural gas by carbon dioxide methanation of the present invention.
  • the feed gas inlet pipe is connected with a first feed gas branch and a second feed gas branch, and the first feed gas branch is provided with a first feed gas flow rate.
  • the second feed gas branch is provided with a second feed gas flow regulating valve FIQ102;
  • the first feed gas branch is respectively connected with the tube side inlet of the first tube heat exchanger E101 and the inlet of the first heater E201 ,
  • the inlet of a heater E201 is also connected with a medium-pressure steam inlet pipe, and the medium-pressure steam inlet pipe is equipped with a medium-pressure steam flow regulating valve FIQ104;
  • the outlet of the first heater E201 is connected with the inlet of the adiabatic reactor R1, the adiabatic reactor
  • the outlet of R1 is connected to the first mixed gas branch and the second mixed gas branch.
  • the first mixed gas branch is connected to the shell side inlet of the first tube heat exchanger E101, and the shell of the first tube heat exchanger E101
  • the outlet of the process is connected with the inlet of the second heat exchanger E102
  • the outlet of the second heat exchanger E102 is connected with the inlet of the first gas-liquid separator V102
  • the gas-phase outlet of the first gas-liquid separator V102 is connected with the inlet of the circulating compressor C101
  • the outlet of the circulating compressor C101 is connected to the first feed gas branch, and a buffer tank V103 is provided between the outlet of the circulating compressor C101 and the first feed gas branch;
  • the middle of the bed of the adiabatic reactor R1 is filled with a special-shaped four-hole methanation catalyst HN-1, and the upper and lower parts of the bed are both filled with high-temperature alumina ceramic balls with a height of 100-200 mm.
  • HN-1 catalyst NiO 35%-60%, La 2 O 3 2%-10%, M O O 3 0.5%-5%, K 2 O 0.2-2%, CaO 2%-10%, MgO 2%-10%, Al 2 O 3 30%-50%, graphite 1%-2%.
  • the second mixed gas branch is connected with the inlet of the third heat exchanger E103, the outlet of the third heat exchanger E103 and the second raw gas branch are connected with the inlet of the second heater E202, and the outlet of the second heater E202 is connected with
  • the tube side inlet of the tube-and-tube homogenization reactor R2 is connected, the tube side exit of the tube-and-tube homogenization reactor R2 is connected with the inlet of the fourth heat exchanger E104, and the outlet of the fourth heat exchanger E104 is connected with the second gas-liquid
  • the inlet of the separator V104 is connected, and the gas-phase outlet of the second gas-liquid separator V104 is connected with an SNG discharge pipe, and the SNG discharge pipe is provided with a system pressure regulating valve FIQ107.
  • the tube of the tube-and-tube uniform temperature reactor R2 is filled with ⁇ 3 spherical methanation catalyst HN-2, and the upper and lower parts of the tube are both filled with ⁇ 5 high-temperature alumina ceramic balls with a height of 100-200mm.
  • HN-2 catalyst NiO 10-30%, La 2 O 3 2-5%, MoO 3 2-5%, CeO 2 0.2-2%, CaO 2-10%, MgO 2-10%, Al 2 O 3 45-80%, graphite 1-2%.
  • the cooling medium inlet of the fourth heat exchanger E104 is connected with a desalinated water inlet pipe, and the desalinated water inlet pipe is equipped with a steam drum liquid level and flow regulating valve FIQ106; the cooling medium outlet of the fourth heat exchanger E104 is connected to the steam drum V101 through the water supply pipe Connected, the steam drum V101 forms a circulating water path through the shell side of the tube-type uniform temperature reactor R2 through the riser and downcomer.
  • the steam outlet pipe of the steam drum V101 is connected with the medium pressure steam inlet pipe.
  • the steam outlet pipe is equipped with a steam flow control valve FIQ105 for sending out steam from the steam drum.
  • Part of the intermediate pressure steam produced by the steam drum V101 enters the medium pressure steam inlet pipe, and most of the rest The medium-pressure steam is directly sent to other sections for recycling and reuse.
  • the condensate separated by the first gas-liquid separator V102 and the second gas-liquid separator V104 is discharged to other sections for recycling.
  • the raw material gas enters the system from the raw gas inlet pipe and is divided into the first raw gas branch and the second raw gas branch.
  • the raw gas in the first raw gas branch is mixed with the circulating gas at the outlet of the circulating compressor C101 and then enters the first pipe
  • the heat exchange in the tube side of the heat exchanger E101 is heated up, and then mixed with the medium pressure steam from the medium pressure steam tube, and then enters the first heater E201 for heating, and then enters the adiabatic reactor R1 for methanation catalytic reaction to generate mixed gas;
  • the bed temperature of the adiabatic reactor R1 is too high, cut off the input of the medium pressure steam in the medium pressure steam pipe, reduce the flow of the second raw material gas and increase the flow of the first raw gas, so that the temperature of the gas entering the adiabatic reactor R1 Less than the activation temperature of the catalyst in the adiabatic reactor R1.
  • the mixed gas is discharged from the outlet of the adiabatic reactor R1 and divided into the first mixed gas branch and the second mixed gas branch.
  • the gas in the first mixed gas branch enters the first tube heat exchanger E101 after the shell side heat exchange After entering the second heat exchanger E102 for heat exchange, it enters the first gas-liquid separator V102.
  • the gas enters the circulating compressor C101 to cool down and merges with the raw gas in the first raw gas branch to form a circulation loop.
  • the gas in the second mixed gas branch is exchanged and cooled by the third heat exchanger E103 and mixed with the gas in the second raw gas branch, heated by the second heater E202, and then enters the tube-type uniform temperature reactor R2 tube
  • the process of deep methanation catalytic reaction the heat released by the reaction is taken away through the circulating water path between the shell side of the tubular uniform temperature reactor R2 and the steam drum V101, and the desalinated water enters the fourth heat exchanger E104 after heat exchange.
  • the product of the deep methanation catalytic reaction is cooled by the fourth heat exchanger E104 and then enters the second gas-liquid separator V104. After gas-liquid separation, the obtained SNG is discharged out of the system through the SNG discharge pipe.
  • the feed gas at the entrance of the system is a syngas rich in carbon dioxide and hydrogen.
  • the carbon dioxide comes from the decarbonization section, and the hydrogen comes from the renewable energy electrolysis of water to produce hydrogen and the purge gas section to purify hydrogen;
  • the temperature of the feed gas is 40°C and the pressure 3MPa, the composition is: H 2 80%, CO 2 20%
  • the raw material gas is divided into two paths, of which the raw material gas I is controlled by the first raw gas flow regulating valve FIQ101 to control the flow to 2489Nm 3 /h, and it is circulated through the circulating compressor C101
  • the gas flow rate is 3072Nm 3 /h
  • the composition of the circulating gas is: H 2 5.744%, CO 0.344%, H 2 O 0.103%, CO 2 1.777%, CH 4 28.36%
  • the medium pressure steam passes through the medium pressure steam flow regulating valve FIQ104 Adjust the flow rate to 1601Nm 3 /h; after the raw material gas I is mixed with the circulating gas, it
  • the adiabatic reactor R1 At 266°C, it is passed into the adiabatic reactor R1, where it undergoes a methanation catalytic reaction with the catalyst HN-1 in the adiabatic reactor R1.
  • the large amount of heat released by the methanation reaction causes the bed temperature of the adiabatic reactor R1 to rise to 622°C;
  • the intermediate pressure steam pipeline can be directly cut off by the intermediate pressure steam flow regulating valve FIQ104, and the inlet gas temperature of the adiabatic reactor R1 can be controlled by the second raw material gas flow regulating valve FIQ102, which will reduce a large amount of unpredicted
  • the hot cold shock gas is directly introduced into the first heater E201, and the temperature of the inlet gas of the adiabatic reactor R1 is reduced to below the activation temperature to prevent the hot spot temperature of the bed of the adiabatic reactor R1 from continuing to fly.
  • the mixed gas at the outlet of the thermal reactor R1 is divided into two parts, which are mixed gas I and mixed gas II.
  • the mixed gas I is recycled and heat exchanged as circulating gas and mixed with raw material gas I and fed into the thermal reactor R1;
  • the gas II is controlled by the second raw gas flow regulating valve FIQ102 to control the flow to 1508Nm 3 /h.
  • the composition of the mixed gas II and raw gas II after mixing H 2 58.15%, CO 0.24%, H 2 O 6.71%, CO 2 14.36% , CH 4 20.53%, the temperature rises to 291 °C through the second heater E202, is passed into the tube in the tube and tube uniform temperature reactor R2, and the methanation catalyst HN in the tube and tube uniform temperature reactor R2 -2 Carry out deep methanation catalytic reaction.
  • the heat released by the reaction is quickly removed by the circulating water in the shell side to maintain the uniform temperature of the reactor bed.
  • the outlet gas of the tubular uniform temperature reactor R2 is cooled by the fourth heat exchanger E104 After the gas-liquid separation in the second gas-liquid separator V104, the condensate is discharged to other sections for recycling to separate the synthetic natural gas SNG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明公开的一种二氧化碳甲烷化合成天然气的均温工艺系统及方法,属于煤制天然气技术领域。采用一个绝热反应器与一个列管式均温反应器串联的工艺系统,绝热反应器采用循环、冷激的工艺;绝热反应器出口的混合气分为两部分,一路作为绝热反应器的入口反应气,另一路作为列管式均温反应器的入口反应气;有效稀释原料气的组分,降低每一段的碳负荷,绝热反应器入口还设计了冷激气管线,列管式均温反应器与汽包形成循环换热,维持列管式均温反应器温度均一,不仅提高了工艺系统的生产能力,而且增大了产品气中甲烷的浓度,生产出合格的合成天然气产品。该工艺系统设计合理,减少了系统中的设备数量,从而减少了投资,降低了操作难度,生产效率高。

Description

一种二氧化碳甲烷化合成天然气的均温工艺系统及方法 技术领域
本发明属于煤制天然气技术领域,具体涉及一种二氧化碳甲烷化合成天然气的均温工艺系统及方法。
背景技术
当今环境问题日趋严峻,温室效应产生的全球变暖、自然灾害和恶劣天气越来越引起了人类的关注,降低碳排放逐渐引起当今国际社会的重视;利用二氧化碳甲烷化合成天然气,是降低碳排放的有效途径,而且可以实现二氧化碳资源的再利用。
CO 2甲烷化反应是典型的强放热反应,每转化1%的CO 2绝热温升是60℃左右;CO 2甲烷化反应的转化率随温度的升高而降低,当反应温度高于500℃时,将有利于逆水煤气反应、变换反应和积碳反应等副反应;同时,二氧化碳甲烷化反应是一个体积减小的反应,加压有利于生成CH 4产物。通常的甲烷化工艺需要使用多个串联的绝热固定床反应器,每段反应器后采用多个换热器降温,再进入下一级反应器,一般需要3~4级这样的反应器和8~10个换热器才能将CO 2完全转化。这样的长流程、多套反应换热装置造成甲烷化工艺投资高、运行复杂。
发明内容
为了解决上述现有问题,本发明的目的在于提供一种二氧化碳甲烷化合成天然气的均温工艺系统及方法,系统构成设计合理,具有能耗低、操作方便、催化反应效率高等特点。
本发明通过以下技术方案来实现:
本发明公开了一种二氧化碳甲烷化合成天然气的均温工艺系统,包括汽包、第一气液分离器、第二气液分离器、绝热反应器、列管式均温反应器、第一管 式换热器、第二换热器、第三换热器、第四换热器、第一加热器、第二加热器和循环压缩机;
原料气进气管连接有第一原料气支路和第二原料气支路,第一原料气支路分别与第一管式换热器的管程入口和第一加热器的入口连接,第一管式换热器的管程出口与第一加热器的入口连接,第一加热器的入口还连接有中压蒸汽进气管,第一加热器的出口与绝热反应器的入口连接,绝热反应器的出口连接有第一混合气支路和第二混合气支路,第一混合气支路与第一管式换热器的壳程入口连接,第一管式换热器的壳程出口与第二换热器的入口连接,第二换热器的出口与第一气液分离器的入口连接,第一气液分离器的气相出口与循环压缩机的入口连接,循环压缩机的出口与第一原料气支路连接;
第二混合气支路与第三换热器的入口连接,第三换热器的出口和第二原料气支路与第二加热器的入口连接,第二加热器的出口与列管式均温反应器的管程入口连接,列管式均温反应器的管程出口与第四换热器的入口连接,第四换热器的出口与第二气液分离器的入口连接,第二气液分离器的气相出口连接有SNG排出管;
第四换热器的冷却介质入口连接有脱盐水进水管,第四换热器的冷却介质出口通过补水管与汽包连接,汽包通过上升管和下降管与列管式均温反应器的壳程形成循环水路。
优选地,循环压缩机的出口与第一原料气支路之间设有缓冲罐。
优选地,绝热反应器内床层中部的甲烷化催化剂为HN-1,床层上部和下部均装填有耐高温氧化铝瓷球。
进一步优选地,甲烷化催化剂HN-1为异型四孔,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在床层上部和下部的填充高度均为100~200mm。
优选地,列管式均温反应器的列管内装填的甲烷化催化剂为HN-2,列管上部和下部均装填有耐高温氧化铝瓷球。
进一步优选地,甲烷化催化剂HN-2为直径3mm的球型,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在列管上部和下部的填充高度均为100~200mm。
优选地,汽包的蒸汽出口管与中压蒸汽进气管连接,蒸汽出口管上设有汽包外送蒸汽流量调节阀。
优选地,第一原料气支路上设有第一原料气流量调节阀;第二原料气支路上设有第二原料气流量调节阀;第一原料气支路与第一加热器的入口之间设有冷激气流量调节阀;中压蒸汽进气管上设有中压蒸汽流量调节阀;脱盐水进水管上设有汽包液位流量调节阀;SNG排出管上设有系统压力调节阀。
本发明公开了采用上述二氧化碳甲烷化合成天然气的均温工艺系统制取合成天然气的方法,包括:
原料气由原料气进气管进入系统分为第一原料气支路和第二原料气支路,第一原料气支路内的原料气与循环压缩机出口的循环气混合后进入第一管式换热器管程内换热升温,然后与来自中压蒸汽管的中压蒸汽混合后进入第一加热器进行加热,然后进入绝热反应器进行甲烷化催化反应,生成混合气;
混合气从绝热反应器的出口排出后分为第一混合气支路和第二混合气支路,第一混合气支路中的气体进入第一管式换热器壳程换热后进入第二换热器换热后进入第一气液分离器,气体进入循环压缩机降温后再次与第一原料气支路内的原料气汇合,形成循环回路;
第二混合气支路内的气体经第三换热器换热降温后与第二原料气支路中的气体混合,经第二加热器加热后进入列管式均温反应器管程,进行深度甲烷化催化反应,反应放出的热量通过列管式均温反应器的壳程与汽包之间的循环水路带走,脱盐水进入第四换热器换热后进入汽包,深度甲烷化催化反应的产物通过第四换热器降温后进入第二气液分离器,气液分离后,得到的SNG经SNG排出管排出系统。
优选地,当绝热反应器的床层温度飞温时,切断中压蒸汽管中的中压蒸汽输入,减少第二原料气的流量并增加第一原料气的流量,使进入绝热反应器的气体温度小于绝热反应器内催化剂的起活温度。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的一种二氧化碳甲烷化合成天然气的均温工艺系统,采用一个绝热反应器与一个列管式均温反应器串联的工艺系统,其中绝热反应器采用循环、冷激的工艺;绝热反应器出口的混合气分为两部分,分别与两路原料气混合,一路作为绝热反应器的入口反应气,另一路作为列管式均温反应器的入口反应气;该工艺系统可以有效稀释原料气的组分,降低每一段反应工艺的碳负荷,其中绝热反应器入口还设计了冷激气管线,可以有效控制绝热反应器床层热点温度的飞温,避免甲烷化催化剂由于高温烧结而失活;列管式均温反应器与汽包形成循环换热,维持列管式均温反应器温度均一,不仅提高了工艺系统的生产能力,而且增大了产品气中甲烷的浓度,生产出合格的合成天然气产品。该工艺系统设计合理,减少了系统中的设备数量,从而减少了投资,降低了操作难度,生产效率高。
进一步地,通过设置缓冲罐,能够缓冲整个系统中的压力波动,使系统工作更平稳安全。
进一步地,绝热反应器中的甲烷化催化剂采用HN-1,具有高活性、高的水热稳定性,床层上部和下部装填耐高温氧化铝瓷球,维持催化剂床层热点温度的稳定。
更进一步地,催化剂HN-1为异型四孔,不仅提高了催化剂的机械强度,而且强化了反应器床层的气体分布,采用直径为5mm的耐高温氧化铝瓷球,有利于原料气的分布,耐高温氧化铝瓷球填充100~200mm,支撑和保护催化剂床层。
进一步地,列管式均温反应器中的甲烷化催化剂采用HN-2,具有耐高温、抗积碳等特性,列管上部和下部装填耐高温氧化铝瓷球,维持催化剂床层热点 温度的稳定。
更进一步地,催化剂HN-2为直径3mm的球型,有利于列管反应器催化剂床层的均匀分部,采用直径为5mm的耐高温氧化铝瓷球,有利于原料气的分布,耐高温氧化铝瓷球填充100~200mm,支撑和保护催化剂床层。
进一步地,汽包的蒸汽出口管与中压蒸汽进气管连接,与绝热反应器入口气混合,参与绝热反应器中的甲烷化反应,抑制甲烷化催化剂积碳;汽包外送蒸汽流量调节阀用于控制汽包的压力,维持列管式均温反应器温度均一。
进一步地,设置第一原料气流量调节阀和第二原料气流量调节阀,能够控制绝热反应器和列管式均温反应器入口气甲烷化反应负荷;设置冷激气流量调节阀,能够调节冷激气流量;设置中压蒸汽流量调节阀,能够控制反应器入口气中水蒸气的浓度,抑制甲烷化催化剂的积碳反应;设置汽包液位流量调节阀,能够控制汽包的液位,维持汽包的液位稳定;设置系统压力调节阀,能够控制整个系统的压力,维持系统反应平衡。
本发明公开的采用上述二氧化碳甲烷化合成天然气的均温工艺系统制取合成天然气的方法,催化效率高,节能且操作简便。
进一步地,当绝热反应器的床层温度飞温时,通过一系列操作,能够使进入绝热反应器的气体温度降低到绝热反应器内催化剂的起活温度以下,以抑制反应器床层热点温度继续飞温。
附图说明
图1为本发明的二氧化碳甲烷化合成天然气的均温工艺系统整体示意图。
图中:V101-汽包、V102-第一气液分离器、V103-缓冲罐、V104-第二气液分离器、R1-绝热反应器、R2-列管式均温反应器、E101-第一管式换热器、E102-第二换热器、E103-第三换热器、E104-第四换热器、E201-第一加热器、E202-第二加热器、C101-循环压缩机、FIQ101-第一原料气流量调节阀、FIQ102-第二原料气流量调节阀、FIQ103-冷激气流量调节阀、FIQ104-中压蒸汽流量调节阀、 FIQ105-汽包外送蒸汽流量调节阀、FIQ106-汽包液位流量调节阀、FIQ107-系统压力调节阀。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细描述,其内容是对本发明的解释而不是限定:
图1为本发明的二氧化碳甲烷化合成天然气的均温工艺系统,原料气进气管连接有第一原料气支路和第二原料气支路,第一原料气支路上设有第一原料气流量调节阀FIQ101,第二原料气支路上设有第二原料气流量调节阀FIQ102;第一原料气支路分别与第一管式换热器E101的管程入口和第一加热器E201的入口连接,第一原料气支路与第一加热器E201的入口之间设有冷激气流量调节阀FIQ103,第一管式换热器E101的管程出口与第一加热器E201的入口连接,第一加热器E201的入口还连接有中压蒸汽进气管,中压蒸汽进气管上设有中压蒸汽流量调节阀FIQ104;第一加热器E201的出口与绝热反应器R1的入口连接,绝热反应器R1的出口连接有第一混合气支路和第二混合气支路,第一混合气支路与第一管式换热器E101的壳程入口连接,第一管式换热器E101的壳程出口与第二换热器E102的入口连接,第二换热器E102的出口与第一气液分离器V102的入口连接,第一气液分离器V102的气相出口与循环压缩机C101的入口连接,循环压缩机C101的出口与第一原料气支路连接,循环压缩机C101的出口与第一原料气支路之间设有缓冲罐V103;
绝热反应器R1的床层中部填充异型四孔甲烷化催化剂HN-1,床层上部和下部均装填100~200mm高度的耐高温氧化铝瓷球。HN-1催化剂的组成成分:NiO 35%-60%、La 2O 3 2%-10%、M OO 3 0.5%-5%、K 2O 0.2-2%、CaO 2%-10%、MgO 2%-10%、Al 2O 3 30%-50%、石墨1%-2%。
第二混合气支路与第三换热器E103的入口连接,第三换热器E103的出口和第二原料气支路与第二加热器E202的入口连接,第二加热器E202的出口与 列管式均温反应器R2的管程入口连接,列管式均温反应器R2的管程出口与第四换热器E104的入口连接,第四换热器E104的出口与第二气液分离器V104的入口连接,第二气液分离器V104的气相出口连接有SNG排出管,SNG排出管上设有系统压力调节阀FIQ107。
列管式均温反应器R2的列管内装填φ3球型甲烷化催化剂HN-2,列管上部和下部均装填100~200mm高度的φ5耐高温氧化铝瓷球。HN-2催化剂的组成成分:NiO 10-30%、La 2O 3 2-5%、Mo0 3 2-5%、CeO 2 0.2-2%、CaO 2-10%、MgO 2-10%、Al 2O 3 45-80%、石墨1-2%。
第四换热器E104的冷却介质入口连接有脱盐水进水管,脱盐水进水管上设有汽包液位流量调节阀FIQ106;第四换热器E104的冷却介质出口通过补水管与汽包V101连接,汽包V101通过上升管和下降管与列管式均温反应器R2的壳程形成循环水路。汽包V101的蒸汽出口管与中压蒸汽进气管连接,蒸汽出口管上设有汽包外送蒸汽流量调节阀FIQ105,汽包V101产生的中压蒸汽一部分进入中压蒸汽进气管,其余大部分中压蒸汽直接外送到其它工段循环再利用。第一气液分离器V102和第二气液分离器V104分离出的冷凝液外排到其它工段循环再利用。
本发明的二氧化碳甲烷化合成天然气的均温工艺系统在工作时:
原料气由原料气进气管进入系统分为第一原料气支路和第二原料气支路,第一原料气支路内的原料气与循环压缩机C101出口的循环气混合后进入第一管式换热器E101管程内换热升温,然后与来自中压蒸汽管的中压蒸汽混合后进入第一加热器E201进行加热,然后进入绝热反应器R1进行甲烷化催化反应,生成混合气;当绝热反应器R1的床层温度飞温时,切断中压蒸汽管中的中压蒸汽输入,减少第二原料气的流量并增加第一原料气的流量,使进入绝热反应器R1的气体温度小于绝热反应器R1内催化剂的起活温度。
混合气从绝热反应器R1的出口排出后分为第一混合气支路和第二混合气支 路,第一混合气支路中的气体进入第一管式换热器E101壳程换热后进入第二换热器E102换热后进入第一气液分离器V102,气体进入循环压缩机C101降温后再次与第一原料气支路内的原料气汇合,形成循环回路。
第二混合气支路内的气体经第三换热器E103换热降温后与第二原料气支路中的气体混合,经第二加热器E202加热后进入列管式均温反应器R2管程,进行深度甲烷化催化反应,反应放出的热量通过列管式均温反应器R2的壳程与汽包V101之间的循环水路带走,脱盐水进入第四换热器E104换热后进入汽包V101,深度甲烷化催化反应的产物通过第四换热器E104降温后进入第二气液分离器V104,气液分离后,得到的SNG经SNG排出管排出系统。
下面以一个具体实施例对本发明进行进一步的解释:
系统入口的原料气是富含二氧化碳和氢气的合成气,其中二氧化碳来自于脱碳工段,氢气来自于可再生能源电解水制氢以及驰放气工段提纯制得氢气;原料气温度40℃,压力3MPa,组成为:H 2 80%,CO 2 20%,原料气分为两路,其中原料气Ⅰ通过第一原料气流量调节阀FIQ101控制流量为2489Nm 3/h,通过循环压缩机C101的循环气流量为3072Nm 3/h,循环气的组成为:H 2 5.744%,CO 0.344%,H 2O 0.103%,CO 2 1.777%,CH 4 28.36%,中压蒸汽通过中压蒸汽流量调节阀FIQ104调节流量至1601Nm 3/h;原料气Ⅰ与循环气混合后通过第一管式换热器E101换热升温,换热后的合成气与中压蒸汽混合后再通过第一加热器E201加热达到266℃,通入到绝热反应器R1中,在绝热反应器R1中与催化剂HN-1进行甲烷化催化反应,甲烷化反应放出的大量热量使绝热反应器R1床层温度上升到622℃;当绝热反应器R1床层温度飞温时,可以通过中压蒸汽流量调节阀FIQ104直接切断中压蒸汽管线,并通过第二原料气流量调节阀FIQ102控制绝热反应器R1入口气温度,将大量未预热的冷激气直接通入到第一加热器E201中,将绝热反应器R1入口气的温度降低到起活温度以下,以抑制绝热反应器R1床层热点温度继续飞温。热反应器R1出口的混合气分成两部分,分别 为混合气Ⅰ和混合气Ⅱ,其中混合气Ⅰ经过循环、换热后作为循环气与原料气Ⅰ混合通入到热反应器R1中;原料气Ⅱ通过第二原料气流量调节阀FIQ102控制流量为1508Nm 3/h,混合气Ⅱ与原料气Ⅱ混合后的组成:H 2 58.15%,CO 0.24%,H 2O 6.71%,CO 2 14.36%,CH 4 20.53%,通过第二加热器E202温度上升到291℃,通入到列管式均温反应器R2中的列管中,与列管式均温反应器R2中的甲烷化催化剂HN-2进行深度甲烷化催化反应,反应放出的热量通过壳程的循环水迅速移走,维持反应器床层温度均一,列管式均温反应器R2的出口气通过第四换热器E104降温、第二气液分离器V104气液分离后,冷凝液外排到其它工段循环再利用,分离产出合成天然气SNG。
需要说明的是,以上所述仅为本发明实施方式之一,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

Claims (10)

  1. 一种二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,包括汽包(V101)、第一气液分离器(V102)、第二气液分离器(V104)、绝热反应器(R1)、列管式均温反应器(R2)、第一管式换热器(E101)、第二换热器(E102)、第三换热器(E103)、第四换热器(E104)、第一加热器(E201)、第二加热器(E202)和循环压缩机(C101);
    原料气进气管连接有第一原料气支路和第二原料气支路,第一原料气支路分别与第一管式换热器(E101)的管程入口和第一加热器(E201)的入口连接,第一管式换热器(E101)的管程出口与第一加热器(E201)的入口连接,第一加热器(E201)的入口还连接有中压蒸汽进气管,第一加热器(E201)的出口与绝热反应器(R1)的入口连接,绝热反应器(R1)的出口连接有第一混合气支路和第二混合气支路,第一混合气支路与第一管式换热器(E101)的壳程入口连接,第一管式换热器(E101)的壳程出口与第二换热器(E102)的入口连接,第二换热器(E102)的出口与第一气液分离器(V102)的入口连接,第一气液分离器(V102)的气相出口与循环压缩机(C101)的入口连接,循环压缩机(C101)的出口与第一原料气支路连接;
    第二混合气支路与第三换热器(E103)的入口连接,第三换热器(E103)的出口和第二原料气支路与第二加热器(E202)的入口连接,第二加热器(E202)的出口与列管式均温反应器(R2)的管程入口连接,列管式均温反应器(R2)的管程出口与第四换热器(E104)的入口连接,第四换热器(E104)的出口与第二气液分离器(V104)的入口连接,第二气液分离器(V104)的气相出口连接有SNG排出管;
    第四换热器(E104)的冷却介质入口连接有脱盐水进水管,第四换热器(E104)的冷却介质出口通过补水管与汽包(V101)连接,汽包(V101)通过上升管和下降管与列管式均温反应器(R2)的壳程形成循环水路。
  2. 根据权利要求1所述的二氧化碳甲烷化合成天然气的均温工艺系统,其 特征在于,循环压缩机(C101)的出口与第一原料气支路之间设有缓冲罐(V103)。
  3. 根据权利要求1所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,绝热反应器(R1)内床层中部的甲烷化催化剂为HN-1,床层上部和下部均装填有耐高温氧化铝瓷球。
  4. 根据权利要求3所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,甲烷化催化剂HN-1为异型四孔,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在床层上部和下部的填充高度均为100~200mm。
  5. 根据权利要求1所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,列管式均温反应器(R2)的列管内装填的甲烷化催化剂为HN-2,列管上部和下部均装填有耐高温氧化铝瓷球。
  6. 根据权利要求5所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,甲烷化催化剂HN-2为直径3mm的球型,单个耐高温氧化铝瓷球的直径为5mm,耐高温氧化铝瓷球在列管上部和下部的填充高度均为100~200mm。
  7. 根据权利要求1所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,汽包(V101)的蒸汽出口管与中压蒸汽进气管连接,蒸汽出口管上设有汽包外送蒸汽流量调节阀(FIQ105)。
  8. 根据权利要求1所述的二氧化碳甲烷化合成天然气的均温工艺系统,其特征在于,第一原料气支路上设有第一原料气流量调节阀(FIQ101);第二原料气支路上设有第二原料气流量调节阀(FIQ102);第一原料气支路与第一加热器(E201)的入口之间设有冷激气流量调节阀(FIQ103);中压蒸汽进气管上设有中压蒸汽流量调节阀(FIQ104);脱盐水进水管上设有汽包液位流量调节阀(FIQ106);SNG排出管上设有系统压力调节阀(FIQ107)。
  9. 采用权利要求1~8任意一项所述二氧化碳甲烷化合成天然气的均温工艺系统制取合成天然气的方法,其特征在于,包括:
    原料气由原料气进气管进入系统分为第一原料气支路和第二原料气支路, 第一原料气支路内的原料气与循环压缩机(C101)出口的循环气混合后进入第一管式换热器(E101)管程内换热升温,然后与来自中压蒸汽管的中压蒸汽混合后进入第一加热器(E201)进行加热,然后进入绝热反应器(R1)进行甲烷化催化反应,生成混合气;
    混合气从绝热反应器(R1)的出口排出后分为第一混合气支路和第二混合气支路,第一混合气支路中的气体进入第一管式换热器(E101)壳程换热后进入第二换热器(E102)换热后进入第一气液分离器(V102),气体进入循环压缩机(C101)降温后再次与第一原料气支路内的原料气汇合,形成循环回路;
    第二混合气支路内的气体经第三换热器(E103)换热降温后与第二原料气支路中的气体混合,经第二加热器(E202)加热后进入列管式均温反应器(R2)管程,进行深度甲烷化催化反应,反应放出的热量通过列管式均温反应器(R2)的壳程与汽包(V101)之间的循环水路带走,脱盐水进入第四换热器(E104)换热后进入汽包(V101),深度甲烷化催化反应的产物通过第四换热器(E104)降温后进入第二气液分离器(V104),气液分离后,得到的SNG经SNG排出管排出系统。
  10. 根据权利要求9所述的制取合成天然气的方法,其特征在于,当绝热反应器(R1)的床层温度飞温时,切断中压蒸汽管中的中压蒸汽输入,减少第二原料气的流量并增加第一原料气的流量,使进入绝热反应器(R1)的气体温度小于绝热反应器(R1)内催化剂的起活温度。
PCT/CN2020/124530 2019-10-29 2020-10-28 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法 WO2021083234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911040225.9 2019-10-29
CN201911040225.9A CN110655961A (zh) 2019-10-29 2019-10-29 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法

Publications (1)

Publication Number Publication Date
WO2021083234A1 true WO2021083234A1 (zh) 2021-05-06

Family

ID=69042181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124530 WO2021083234A1 (zh) 2019-10-29 2020-10-28 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法

Country Status (2)

Country Link
CN (1) CN110655961A (zh)
WO (1) WO2021083234A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655961A (zh) * 2019-10-29 2020-01-07 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法
CN111718760B (zh) * 2020-06-23 2021-03-02 中国华能集团清洁能源技术研究院有限公司 一种煤制天然气的耐硫甲烷化系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774663A (zh) * 2015-04-27 2015-07-15 中国五环工程有限公司 一步法煤制合成天然气及其系统
CN105779048A (zh) * 2016-04-26 2016-07-20 中国华能集团清洁能源技术研究院有限公司 一种低温制取合成天然气的甲烷化方法
CN109111967A (zh) * 2018-08-02 2019-01-01 中国华能集团有限公司 一种焦炉气制天然气的甲烷化系统及方法
CN110237680A (zh) * 2019-06-17 2019-09-17 中国华能集团有限公司 一种合成气还原二氧化硫的均温系统及工艺
CN110655961A (zh) * 2019-10-29 2020-01-07 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法
CN210765205U (zh) * 2019-10-29 2020-06-16 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774663A (zh) * 2015-04-27 2015-07-15 中国五环工程有限公司 一步法煤制合成天然气及其系统
CN105779048A (zh) * 2016-04-26 2016-07-20 中国华能集团清洁能源技术研究院有限公司 一种低温制取合成天然气的甲烷化方法
CN109111967A (zh) * 2018-08-02 2019-01-01 中国华能集团有限公司 一种焦炉气制天然气的甲烷化系统及方法
CN110237680A (zh) * 2019-06-17 2019-09-17 中国华能集团有限公司 一种合成气还原二氧化硫的均温系统及工艺
CN110655961A (zh) * 2019-10-29 2020-01-07 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法
CN210765205U (zh) * 2019-10-29 2020-06-16 中国华能集团有限公司 一种二氧化碳甲烷化合成天然气的均温工艺系统

Also Published As

Publication number Publication date
CN110655961A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
US4865624A (en) Method for steam reforming methanol and a system therefor
WO2021083234A1 (zh) 一种二氧化碳甲烷化合成天然气的均温工艺系统及方法
CN100526273C (zh) 以焦炉气为原料一体化生产液氨和甲醇和/或二甲醚的方法
CN102234213B (zh) 一种合成气完全甲烷化反应装置
WO2009052764A1 (fr) Appareillage de réaction composite et procédé chimique de production utilisant celui-ci
AU2016294487B2 (en) Device and method for producing synthetic gas
CN101508922A (zh) 一种利用焦炉气制备合成天然气的甲烷化反应工艺
US20100256246A1 (en) System and method for conditioning biomass-derived synthesis gas
CN107162912A (zh) 一种采用分段式绝热固定床反应器制备乙酸甲酯的方法
CN103421561B (zh) 合成气甲烷化反应的方法
CN102337160A (zh) 一种高水气比饱和热水塔分股co变换工艺
CN210765205U (zh) 一种二氧化碳甲烷化合成天然气的均温工艺系统
CN111718760B (zh) 一种煤制天然气的耐硫甲烷化系统及方法
CN106115700B (zh) 束管式水床移热复合型co变换装置及变换工艺
CN102010767A (zh) 一种合成天然气工艺
CN102453564B (zh) 无碳排放一步法合成人工天然气的方法和设备
CN101723324A (zh) 一种利用热量耦合型固定床装置制合成气的方法
CN107164007A (zh) 一种非化学计量比等温合成天然气的方法
US20140120033A1 (en) Non-co2 emitting manufacturing method for synthesis gas
CN109111967B (zh) 一种焦炉气制天然气的甲烷化系统及方法
CN107974319B (zh) 一种制备煤制替代天然气的耐硫甲烷化工艺
CN110436413A (zh) 一种沼气和太阳能互补的两段式合成气制备系统及方法
CN117903855A (zh) 一种多段返氢冷激甲烷化生产方法及系统
CN110894062B (zh) 一种用于煤制氢及合成氨的耐硫变换方法及装置
CN219730850U (zh) 一种富氢合成气甲烷化制天然气的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883518

Country of ref document: EP

Kind code of ref document: A1