WO2021258905A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2021258905A1
WO2021258905A1 PCT/CN2021/093700 CN2021093700W WO2021258905A1 WO 2021258905 A1 WO2021258905 A1 WO 2021258905A1 CN 2021093700 W CN2021093700 W CN 2021093700W WO 2021258905 A1 WO2021258905 A1 WO 2021258905A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
indication information
transmission power
transmit power
time slot
Prior art date
Application number
PCT/CN2021/093700
Other languages
English (en)
French (fr)
Inventor
张健
薛祎凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022579091A priority Critical patent/JP2023532240A/ja
Priority to EP21828627.6A priority patent/EP4156799A4/en
Priority to US18/009,807 priority patent/US20230247560A1/en
Priority to KR1020237000570A priority patent/KR20230019970A/ko
Publication of WO2021258905A1 publication Critical patent/WO2021258905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method and device.
  • the signal to interference plus noise ratio (SINR) of the uplink signal of the uplink signal received by the base station from the terminal device is poor.
  • SINR value from the terminal device is lower than the demodulation threshold of the network device, the base station will not be able to correctly demodulate the uplink information sent by the terminal device.
  • the network device can estimate the uplink channel of the terminal device according to the uplink reference signal sent by the terminal device in an uplink time slot (slot), restore the channel model of the uplink channel of the terminal device, and eliminate the interference in the channel. , Improve the signal quality of the uplink signal from the terminal equipment. Since the characteristics of electromagnetic waves are that the higher the frequency, the greater the attenuation. Therefore, in a communication system using high frequency, the attenuation of the uplink signal sent by the terminal device is greater, and the uplink coverage problem is more prominent.
  • the present application provides a power control method and device, which solves the problem of poor uplink signal quality of terminal equipment in the prior art.
  • a power control method including:
  • the terminal equipment determines the first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal equipment; the first transmission power is the transmission power corresponding to the phase jump of the uplink signal of the terminal equipment;
  • the network device sends the first instruction information.
  • the terminal device reports the first indication information to the network device, and the network device determines the transmission power of the terminal device according to the first indication information and whether the network device is performing joint channel estimation. Take control. It can avoid that the transmitting power of the terminal device reaches the power jump point when the network device performs the joint channel estimation, which causes the network device to perform the joint channel estimation inaccurately.
  • the network device determines the joint channel estimation strategy of the network device according to the first indication information and whether the network device is performing joint channel estimation.
  • the network device does not perform joint channel estimation when the transmission power of the terminal device reaches the power jump point. Avoid the failure of the network equipment to perform joint channel estimation due to the phase jump of the uplink signal of the terminal equipment.
  • the first indication information includes one or more first values; one or more first values have a one-to-one correspondence with one or more first transmit powers; first The value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power. Based on this, the terminal device directly reports the difference between the first transmit power and the current transmit power to the network device, and the network device can directly determine the adjusted power for the phase jump of the terminal device’s uplink signal based on the difference, and generate it for the network device. Uplink power control (transimit power control, TPC), or joint channel estimation provides a direct basis.
  • TPC transmit power control
  • one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is one of the multiple transmission power intervals.
  • Phase jump refers to when the terminal device's transmit power is adjusted between different transmit intervals, the phase of the terminal device's uplink signal jumps.
  • the first indication information indicates the transmission power interval when the terminal device undergoes a phase jump, and the network device may determine the transmission power interval according to the first transmission power in the first indication information.
  • the transmission power of the terminal equipment is controlled to be adjusted within a transmission power interval, which can avoid the phase jump of the uplink signal of the terminal equipment.
  • the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • the network device can determine the endpoint of each transmit power interval, avoiding the terminal device from reporting the first indication information multiple times.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include two first transmit powers with the smallest difference from the second transmit power.
  • the network device can determine the end points of the two closest transmission power intervals. The network device can adjust the transmitting power of the terminal device up or down to avoid adjusting the transmitting power of the terminal device to the power jump point.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include the first transmit power with the smallest difference from the second transmit power.
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include greater than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power the terminal device can report the first transmission power when the transmission power of the terminal device is in an upward trend, so as to avoid the mismatch between the first transmission power reported by the terminal device and the transmission power trend of the terminal device adjusted by the network device.
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include less than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power the terminal device can report the first transmission power when the transmission power of the terminal device is in a downward trend, so as to avoid mismatch between the first transmission power reported by the terminal device and the transmission power trend of the terminal device adjusted by the network device.
  • the terminal device determines whether the absolute value of the smallest difference between the current transmit power and the endpoints of each transmit power interval of the plurality of transmit power intervals is less than or equal to the first A threshold; if so, the terminal device sends the first indication information to the network device. In this way, the terminal device reports the first indication information when the transmission power is close to the closest first transmission power, which can reduce the number of first indication information reported by the terminal device, and further reduce the signaling overhead of the terminal device.
  • the terminal device receives the second instruction information from the network device; the second instruction information is used to instruct the terminal device to send the first instruction information; the second instruction information is carried in any of the following One item: radio resource control (RRC) message, media access control control element (Media Access Control-control element, MAC CE), or downlink control information (DCI); in response to the first 2.
  • RRC radio resource control
  • MAC CE media access control control element
  • DCI downlink control information
  • the terminal device sends the first indication information to the network device; the first indication information is carried in the MAC CE sent by the terminal device; the MAC CE carrying the first indication information is any one of the following: carrying power headroom report PHR MAC CE; newly added MAC CE; or, MAC CE sent in the uplink time slot scheduled by DCI including transmit power control (transimit power control, TPC).
  • the terminal device reports the first indication information according to the instructions of the network device, which can reduce the number of the first indication information reported by the terminal device, thereby reducing the signaling overhead of the terminal device.
  • the second indication information is used to instruct the terminal device to periodically report the first indication information; or, the second indication information is used to indicate that the terminal device is currently transmitting Sending the first indication information to the network device when the absolute value of the minimum difference between the power and the endpoint of each of the multiple transmission power intervals is less than or equal to the first threshold; Alternatively, the second indication information is used to instruct the terminal device to report the first indication information at a preset time point. In this way, the terminal device can report the first indication information in different forms, which improves the applicable scenarios of the method.
  • the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • the network device can determine the first transmission power in the first indication information according to the terminal device and according to the second indication information.
  • a power control method including:
  • the network device receives the first indication information from the terminal device; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission power is the transmission power corresponding to the phase jump of the uplink signal of the terminal device .
  • the first indication information includes one or more first values; one or more first values have a one-to-one correspondence with one or more first transmit powers; first The value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is one of the multiple transmission power intervals.
  • End point; Phase jump refers to when the terminal device's transmit power is adjusted between different transmit intervals, the phase of the terminal device's uplink signal jumps.
  • the network device instructs the terminal device to adjust the transmission power of the terminal device within the first power interval; the first power interval is multiple The transmitting power interval includes the transmitting power interval of the current transmitting power of the terminal device.
  • the network device determines the first time slot.
  • the transmission power of the terminal device is adjusted outside the first power interval, and the first power interval is more than
  • the first transmission power interval includes the current transmission power transmission power interval of the terminal device; the network device does not perform joint channel estimation with the time slot before the first time slot on the first time slot.
  • the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include two first transmit powers with the smallest difference from the second transmit power.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include the first transmit power with the smallest difference from the second transmit power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include greater than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include less than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the network device sends second instruction information to the terminal device, the second instruction information is used to instruct the terminal device to send the first instruction information; the first instruction information is carried by the terminal device to send In the MAC CE; the second indication information is carried in any of the following: RRC message, MAC CE, or DCI.
  • the second indication information is used to instruct the terminal device to report the first indication information periodically;
  • the first indication information is sent to the network device; or the second indication information is used to indicate the terminal The device reports the first indication information at the preset time point.
  • the second indication information is also used to indicate the correspondence between one or more first transmission powers in the first indication information and the N first transmission powers .
  • a power control method including:
  • the terminal device determines a first time window, and the first time window is a time period during which the network device performs joint channel estimation.
  • the terminal device adjusts the transmission power of the terminal device in the first power interval; the first power interval is the interval in which the current transmission power of the terminal device is included among multiple transmission power intervals; the terminal device is at multiple transmission powers When the transmission power of the terminal device is adjusted in any transmission power interval in the interval, the phase jump of the uplink signal of the terminal device does not occur.
  • the terminal device controls the uplink signal of the terminal device not to undergo phase jump when the network device performs joint channel estimation. Therefore, the problem of inaccurate joint channel estimation by network equipment caused by the phase jump of the uplink signal of the terminal equipment is solved.
  • the terminal device receives third indication information from the network device, and the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the network device performs The number of time slots required for a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1, and the terminal device determines the first time window according to the third indication information. In this way, the terminal device can determine the length of the first time window according to the third indication information.
  • the start time point of the first time window is located at the H-th time slot; wherein the H-th time slot satisfies any of the following: the H-1th time slot is Scheduled downlink time slot, and the H-th time slot is a scheduled uplink time slot; or, the H-1th time slot is an unscheduled time slot, and the H-th time slot is a scheduled uplink time slot; or, the network
  • the device completes a joint channel estimation from the HLth time slot to H-1, and the Hth time slot is the scheduled uplink time slot. In this way, the terminal device determines the starting condition of the first time window, and the terminal device determines the first time window according to the starting condition and the length of the first time window.
  • the first time window includes the Hth time slot to the H+Qth time slot, and Q is a positive integer greater than or equal to 1 and less than or equal to L;
  • the H time slots to the H+Qth time slots are all scheduled uplink time slots.
  • the network device performs joint channel estimation from the Hth time slot to the H+Qth time slot, and the terminal device can determine that the Hth time slot to the H+Qth time slot are the first time window.
  • the terminal device adjusts the transmission power of the terminal device according to the TPC sent by the network device in the first time slot after the first time window. In this way, after the first time window, the terminal device immediately adjusts the transmission power of the terminal device according to the TPC sent by the network device, which can ensure that the transmission power of the terminal device matches the transmission demand.
  • the terminal device determines a first difference, where the first difference is the absolute value of the difference between the current transmit power of the terminal device and the third transmit power of the terminal device;
  • the third transmit power is the transmit power after the network device instructs the terminal device to adjust the transmit power; if the first difference is less than or equal to the first threshold, the terminal device adjusts the transmit power of the terminal device between the first power intervals.
  • the terminal equipment can be in the first Adjust the transmitting power of the terminal equipment within the power interval to avoid the phase jump of the uplink signal of the terminal equipment.
  • the terminal device determines the first difference; in the case that the first difference is greater than the first threshold, the terminal device adjusts the transmission power of the terminal device to the third transmission power .
  • the terminal device adjusts the generated power according to the instruction of the network device, which can avoid the failure of the uplink.
  • the terminal device receives fourth indication information from the network device, and the fourth indication information is used to instruct the network device to enable joint channel estimation.
  • the terminal device executes the above solution when the network device enables the joint channel estimation, which can avoid the failure of the network device joint channel estimation.
  • the terminal device determines whether the second difference is less than or equal to the second threshold; the second difference is the absolute value of the difference between the current transmit power of the terminal device and the first transmit power Value; if so, the terminal device sends fifth indication information to the network device, and the fifth indication information is used to indicate that the second difference is less than the second threshold. In this way, the terminal device reports the situation when the transmit power is close to the power jump point, which can prevent the network device from performing joint channel estimation for a period of time, avoiding the failure of joint channel estimation.
  • a power control method including:
  • the network device sends third indication information to the terminal device.
  • the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the first time window is the time period during which the network device performs joint channel estimation; the network device performs one time
  • the number of time slots required for joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1.
  • the start time point of the first time window is located at the H-th time slot; wherein the H-th time slot satisfies any of the following: the H-1th time slot is Scheduled downlink time slot, and the H-th time slot is a scheduled uplink time slot; or, the H-1th time slot is an unscheduled time slot, and the H-th time slot is a scheduled uplink time slot; or, the network
  • the device completes a joint channel estimation from the HLth time slot to H-1, and the Hth time slot is the scheduled uplink time slot.
  • the first time window includes the H-th time slot to the H+Q-th time slot, and Q is a positive integer greater than or equal to 1 and less than or equal to L;
  • the H time slots to the H+Qth time slots are all scheduled uplink time slots.
  • the method further includes: the network device sends fourth instruction information to the terminal device, where the fourth instruction information is used to instruct the network device to enable joint channel estimation.
  • the network device receives fifth indication information from the terminal device, where the fifth indication information is used to indicate that the second difference is less than the second threshold; the second difference is the terminal The absolute value of the difference between the current transmitting power of the device and the first transmitting power.
  • a communication device including: a processing unit and a communication unit.
  • the processing unit is configured to determine the first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission power is the transmission power corresponding to the phase jump of the uplink signal of the terminal device.
  • the communication unit is configured to send the first instruction information to the network device.
  • the first indication information includes one or more first values; one or more first values have a one-to-one correspondence with one or more first transmit powers; first The value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is one of the multiple transmission power intervals.
  • End point; Phase jump refers to when the terminal device's transmit power is adjusted between different transmit intervals, the phase of the terminal device's uplink signal jumps.
  • the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include two first transmit powers with the smallest difference from the second transmit power.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include the first transmit power with the smallest difference from the second transmit power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include greater than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit powers include less than the second transmit power and have the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the processing unit is further configured to: determine the absolute value of the smallest difference between the current transmission power and the endpoints of each transmission power interval of the plurality of transmission power intervals Whether it is less than or equal to the first threshold value; the processing unit is also used to instruct the communication unit to send the first instruction information to the network device.
  • the communication unit is further configured to receive second instruction information from the network device; the second instruction information is used to instruct the terminal device to send the first instruction information; the second instruction information It is carried in any of the following: RRC message, MAC CE, or DCI.
  • the processing unit is also used to instruct the communication unit to send the first indication information to the network device; the first indication information is carried in the MAC CE sent by the terminal device; the MAC CE carrying the first indication information is any one of the following: bearer power headroom The MAC CE that reports the PHR; the newly added MAC CE; or the MAC CE sent in the uplink time slot scheduled by the DCI including the TPC.
  • the second indication information is used to instruct the terminal device to periodically report the first indication information; or, the second indication information is used to indicate that the terminal device is currently transmitting Sending the first indication information to the network device when the absolute value of the minimum difference between the power and the endpoint of each of the multiple transmission power intervals is less than or equal to the first threshold; Alternatively, the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • a communication device including: a processing unit and a communication unit.
  • the processing unit is used to instruct the communication unit to receive the first indication information from the terminal equipment; the first indication information is used to indicate one or more first transmission powers of the terminal equipment; the first transmission power is the phase jump of the uplink signal of the terminal equipment Transmit power corresponding to the change.
  • the first indication information includes one or more first values; one or more first values have a one-to-one correspondence with one or more first transmit powers; first The value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is one of the multiple transmission power intervals.
  • End point; Phase jump refers to when the terminal device's transmit power is adjusted between different transmit intervals, the phase of the terminal device's uplink signal jumps.
  • the processing unit is further configured to: if the network device is performing joint channel estimation, instruct the terminal device to adjust the transmission power of the terminal device within the first power interval;
  • a power interval is a transmission power interval that includes the current transmission power of the terminal device among multiple transmission power intervals.
  • the first time slot is determined.
  • the transmission power of the terminal device is adjusted outside the first power interval, and the first power interval includes multiple transmissions.
  • the power interval includes the transmission power interval of the current transmission power of the terminal device; the joint channel estimation is not performed on the first time slot with the time slot before the first time slot.
  • the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • the current transmit power of the terminal device is the second transmit power
  • the one or more first transmit powers include two first transmit powers with the smallest difference from the second transmit power .
  • the current transmission power of the terminal device is the second transmission power
  • the one or more first transmission powers include the first transmission power with the smallest difference from the second transmission power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit power includes greater than the second transmit power and has the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the current transmit power of the terminal device is the second transmit power
  • one or more of the first transmit power includes less than the second transmit power and has the smallest difference from the second transmit power.
  • One of the first transmit power is the second transmit power
  • the communication unit is further configured to: send second instruction information to the terminal device, the second instruction information is used to instruct the terminal device to send the first instruction information; the first instruction information It is carried in the MAC CE sent by the terminal device.
  • the second indication information is used to instruct the terminal device to periodically report the first indication information; or, the second indication information is used to indicate that the terminal device is at the current transmit power and multiple
  • the first indication information is sent to the network device; or the second indication information is used to indicate the terminal The device reports the first indication information at the preset time point.
  • the second indication information is also used to indicate the correspondence between one or more first transmission powers in the first indication information and the N first transmission powers .
  • a communication device including: a processing unit; and a processing unit, configured to determine a first time window, where the first time window is a time period for a network device to perform joint channel estimation.
  • the processing unit is further configured to adjust the transmit power of the terminal device in the first power interval within the first time window; the first power interval is an interval in which the current transmit power of the terminal device is included among multiple transmit power intervals; the terminal device is in When the transmit power of the terminal device is adjusted in any one of the multiple transmit power intervals, the uplink signal of the terminal device does not undergo a phase jump.
  • the communication device further includes: a communication unit; the communication unit is configured to receive third indication information from the network device, and the third indication information is used to indicate the first time window
  • the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any of the following: the H-1th time slot is Scheduled downlink time slot, and the H-th time slot is a scheduled uplink time slot; or, the H-1th time slot is an unscheduled time slot, and the H-th time slot is a scheduled uplink time slot; or, the network
  • the device completes a joint channel estimation from the HLth time slot to H-1, and the Hth time slot is the scheduled uplink time slot.
  • the first time window includes the Hth time slot to the H+Qth time slot, and Q is a positive integer greater than or equal to 1 and less than or equal to L;
  • the H time slots to the H+Qth time slots are all scheduled uplink time slots.
  • the processing unit is further configured to: adjust the transmission power of the terminal device according to the TPC sent by the network device in the first time slot after the first time window.
  • the processing unit is specifically configured to: determine a first difference, where the first difference is the difference between the current transmit power of the terminal device and the third transmit power of the terminal device The absolute value of the value, the third transmit power is the transmit power after the network device instructs the terminal device to adjust the transmit power; when the first difference is less than or equal to the first threshold, adjust the transmit power of the terminal device between the first power interval power.
  • the processing unit is further configured to: determine a first difference; if the first difference is greater than the first threshold, adjust the transmit power of the terminal device to the first Three transmit power.
  • the communication unit is further configured to: receive fourth indication information from the network device, where the fourth indication information is used to instruct the network device to enable joint channel estimation.
  • the processing unit is further configured to determine whether the second difference is less than or equal to a second threshold; the second difference is the difference between the current transmit power of the terminal device and the first transmit power The absolute value of the difference; the processing unit is further configured to instruct the communication unit to send fifth indication information to the network device, and the fifth indication information is used to indicate that the second difference is less than the second threshold.
  • a communication device including: a processing unit and a communication unit; the processing unit is used to instruct the communication unit to send third indication information to a terminal device, and the third indication information is used to indicate the maximum consecutive time included in the first time window
  • the number of time slots L; the first time window is the time period for the network equipment to perform joint channel estimation; the number of time slots required for the network equipment to perform a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is greater than or equal to 1 Positive integer.
  • the starting time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: the H-1th time slot is Scheduled downlink time slot, and the H-th time slot is a scheduled uplink time slot; or, the H-1th time slot is an unscheduled time slot, and the H-th time slot is a scheduled uplink time slot; or, the network
  • the device completes a joint channel estimation from the HLth time slot to H-1, and the Hth time slot is the scheduled uplink time slot.
  • the first time window includes the Hth time slot to the H+Qth time slot, and Q is a positive integer greater than or equal to 1 and less than or equal to L;
  • the H time slots to the H+Qth time slots are all scheduled uplink time slots.
  • the communication unit is further configured to send fourth instruction information to the terminal device, and the fourth instruction information is used to instruct the network device to enable joint channel estimation.
  • the communication unit is further configured to receive fifth indication information from the terminal device, where the fifth indication information is used to indicate that the second difference is less than the second threshold; second The difference is the absolute value of the difference between the current transmitting power of the terminal device and the first transmitting power.
  • the present application provides a communication device, including: a processor and a storage medium; at least one processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor Or send the signal from the processor to another communication device other than the communication device, and the processor is used to implement the first aspect and any one of the possible implementation manners described in the first aspect through logic circuits or execution code instructions method.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the present application provides a communication device, including: a processor and a storage medium; at least one processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor Or send the signal from the processor to another communication device other than the communication device, and the processor is used to implement the second aspect and any one of the possible implementation manners described in the second aspect through logic circuits or execution code instructions method.
  • the communication device can be a network device or a chip in the network device.
  • the present application provides a communication device, including: a processor and a storage medium; at least one processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor
  • the processor or the signal from the processor is sent to other communication devices other than the communication device, and the processor is used to implement the third aspect and any one of the possible implementation manners described in the third aspect through logic circuits or execution code instructions.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the present application provides a communication device, including: a processor and a storage medium; at least one processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor
  • the processor or the signal from the processor is sent to another communication device other than the communication device, and the processor is used to implement the fourth aspect and any one of the possible implementation manners described in the fourth aspect through logic circuits or executing code instructions.
  • the communication device can be a network device or a chip in the network device.
  • the present application provides a communication system including a first communication device and a second communication device.
  • the first communication device is used to execute the method described in any one of the first aspect and the first aspect;
  • the second communication device is used to execute any one of the second aspect and the second aspect Possible implementations are described in the method.
  • this application provides a communication system including a third communication device and a fourth communication device.
  • the third communication device is used to execute the method described in any one of the possible implementations of the third aspect and the third aspect;
  • the fourth communication device is used to execute any one of the fourth aspect and the fourth aspect Possible implementations are described in the method.
  • this application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium.
  • the instructions When the instructions are run on a computer, the computer executes any one of the first aspect and the first aspect.
  • the present application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium.
  • the instructions run on a computer, the computer executes any of the second aspect and the second aspect. The methods described in one possible implementation.
  • the present application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium.
  • the instructions When the instructions are run on a computer, the computer executes any one of the third aspect and the third aspect.
  • the present application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium.
  • the instructions When the instructions are run on a computer, the computer executes any one of the fourth aspect and the fourth aspect.
  • this application provides a computer program product containing instructions, when the computer program product is run on a computer, the computer can execute as described in the first aspect and any one of the possible implementations of the first aspect Methods.
  • this application provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer executes as described in the second aspect and any one of the possible implementations of the second aspect Methods.
  • this application provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer can execute as described in the third aspect and any one of the possible implementation manners of the third aspect. Described method.
  • this application provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer can execute as described in the fourth aspect and any one of the possible implementation manners of the fourth aspect. Described method.
  • FIG. 1 is a system architecture diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a power control method provided by an embodiment of the application
  • FIG. 3a is a schematic flowchart of another power control method provided by an embodiment of the application.
  • FIG. 3b is a schematic flowchart of another power control method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of another power control method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a first time window provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another power control method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of another power control method provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the hardware structure of another communication device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the hardware structure of a network device provided by an embodiment of the application.
  • the communication system 100 includes a network device 10 and a terminal device 20.
  • the terminal device 20 is used to send uplink data to the network device 10.
  • the network device 10 is configured to receive uplink data from the terminal device 20 and perform power control on the transmission power of the terminal device 20.
  • the communication systems in the embodiments of this application include, but are not limited to, long term evolution (LTE) systems, fifth-generation (5th-generation, 5G) systems, new radio (NR) systems, and wireless local area networks (wireless local area networks). area networks, WLAN) systems and future evolution systems or multiple communication fusion systems.
  • LTE long term evolution
  • 5th-generation 5G
  • NR new radio
  • wireless local area networks wireless local area networks
  • area networks WLAN
  • the method provided in the embodiments of the present application can be specifically applied to the evolved-universal terrestrial radio access network (E-UTRAN) and the next generation-radio access network (next generation-radio access network). , NG-RAN) system.
  • E-UTRAN evolved-universal terrestrial radio access network
  • next generation-radio access network next generation-radio access network
  • NG-RAN next generation-radio access network
  • the network device in the embodiment of the present application is an entity on the network side that is used to send signals, receive signals, or send signals and receive signals.
  • the network equipment may be a device deployed in a radio access network (RAN) to provide wireless communication functions for terminal equipment, for example, it may be a TRP, a base station (for example, an evolved NodeB, eNB or eNodeB), Next generation node base station (gNB), next generation eNB (ng-eNB), etc.), various forms of control nodes (for example, network controllers, wireless controllers (for example, cloud wireless access) Access to the network (cloud radio access network, wireless controller in CRAN) scenarios), roadside unit (RSU), etc.
  • RAN radio access network
  • the network equipment may be various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points (access points, AP), etc., and may also be antenna panels of base stations.
  • the control node may be connected to multiple base stations and configure resources for multiple terminal devices covered by the multiple base stations.
  • RAT radio access technologies
  • the names of devices with base station functions may be different. For example, it may be called eNB or eNodeB in the LTE system, and it may be called gNB in the 5G system or NR system.
  • the specific name of the base station is not limited in this application.
  • the network equipment may also be the network equipment in the public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • the terminal device in the embodiment of the present application is an entity on the user side that is used to receive signals, or send signals, or receive signals and send signals.
  • Terminal equipment is used to provide users with one or more of voice services and data connectivity services.
  • Terminal equipment can also be called user equipment (UE), terminal, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user Device.
  • UE user equipment
  • the terminal device can be a vehicle to everything (V2X) device, for example, a smart car (smart car or intelligent car), a digital car (digital car), an unmanned car (unmanned car or driverless car or pilotless car or automobile), Autonomous car (self-driving car or autonomous car), pure electric vehicle (pure EV or Battery EV), hybrid electric vehicle (HEV), range extended EV (REEV), plug-in hybrid Plug-in HEV (PHEV), new energy vehicle (new energy vehicle), etc.
  • the terminal device may also be a device-to-device (D2D) device, such as an electric meter, a water meter, and so on.
  • D2D device-to-device
  • the terminal device can also be a mobile station (MS), subscriber unit (subscriber unit), drone, Internet of things (IoT) equipment, station (ST) in WLAN, and cellular phone (cellular phone).
  • phone smart phone (smart phone), cordless phone, wireless data card, tablet computer, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital processing ( personal digital assistant (PDA) devices, laptop computers, machine type communication (MTC) terminals, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicles Devices, wearable devices (also called wearable smart devices).
  • the terminal device may also be a terminal device in a next-generation communication system, for example, a terminal device in a 5G system or a terminal device in a future evolved PLMN, a terminal device in an NR system, and so on.
  • Power Headroom represents the difference between the maximum transmission power allowed by the terminal device and the transmission power of the terminal indicated by the network device.
  • the transmission power of the terminal indicated by the network device is determined according to the transmission rate of the uplink transmission required by the network device.
  • the method for the terminal to transmit the transmission power of the PUSCH indicated by the network equipment is: the network equipment determines the transmission power of the terminal equipment to transmit the PUSCH according to the required transmission rate of the PUSCH.
  • the transmission power of the terminal indicated by the network device is greater than the maximum transmission power allowed by the terminal device. In other words, there are cases where the value of PH is negative.
  • the value of PH is a positive value.
  • the terminal device still has a power headroom that can be allocated.
  • the network device allocates transmission resources for the terminal device, the number of transmission resources allocated for the terminal device can continue to be increased.
  • the value of PH is a negative value.
  • the transmission power required by the network equipment for the uplink transmission rate scheduled for the terminal equipment has exceeded the maximum transmission power allowed by the terminal equipment.
  • the network equipment needs to reduce the transmission allocation for the terminal equipment. The number of resources.
  • the terminal device can send uplink data at one of multiple different transmission powers.
  • the terminal device adjusts the transmit power of the terminal device in the current slot according to the TPC sent by the network device to the terminal device and the path loss measured by the terminal device.
  • the terminal device can adjust the transmission power of the terminal device according to the corresponding relationship shown in Table 1 below.
  • TPC Command Field TPC Command Field issued by the network device to the terminal device, including four values of "0", “1", "2", and "3".
  • the second column in Table 1 is the cumulative power correction value.
  • the terminal device adjusts the PUSCH transmit power ( ⁇ PUSCH, b, f, c ) or adjusts the SRS transmit power ( ⁇ SRS, b, f, c ) according to the TPC control command field issued by the network device.
  • the transmission power of the terminal device is reduced by 1dB; when the value of the TPC control command field is 1, the transmission power of the terminal device remains unchanged; when the value of the TPC control command field is 2, The transmitting power of the terminal device is increased by 1dB; when the value of the control command field is 3, the transmitting power of the terminal device is increased by 3dB.
  • the third column in Table 1 is the absolute power correction value.
  • the absolute power correction value is similar to the cumulative power correction value. The difference is that the cumulative power correction value gradually adjusts the transmission power of the terminal device to the target transmission power based on the previous power adjustment. The transmit power of the terminal device is adjusted to the target transmit power.
  • the power jump point is also called the power cut point, which is the transmit power that causes the phase jump of the uplink signal of the terminal device among the multiple transmit powers of the terminal device.
  • jump refers to the phase jump of the uplink signal of the terminal equipment.
  • Gear switching refers to the switching of the power supply voltage of the PA of the terminal equipment from one gear to another.
  • phase of the uplink signal of the terminal device is related to the power supply voltage of the terminal device's PA.
  • the phase of the uplink signal of the terminal device will jump.
  • the phase of the uplink signal of the terminal device does not jump.
  • the power supply voltage of the PA of the terminal equipment is related to the transmitting power of the terminal equipment.
  • the terminal device corresponds to power supply voltages of multiple PAs, and the multiple power supply voltages correspond to multiple transmit power intervals corresponding to the terminal device in a one-to-one correspondence.
  • the power supply voltage of the PA of the terminal device does not change.
  • the power supply voltage of the PA of the terminal device changes. That is, the power supply voltage of the PA of the terminal device is also adjusted from the power supply voltage corresponding to one transmission power interval to the power supply voltage corresponding to another transmission power interval.
  • the power supply voltage of the terminal device PA may be cut, which may cause the phase jump of the uplink signal of the terminal device.
  • Channel estimation means that the network device determines the channel matrix of the uplink channel of the terminal device in the slot according to the terminal device sending the uplink reference signal in a slot, and restores the channel model of the terminal device's uplink channel according to the channel matrix of the uplink signal to eliminate The interference in the uplink channel of the terminal equipment improves the SINR sent by the terminal equipment.
  • an embodiment of the present application provides a multi-slot joint channel estimation (hereinafter referred to as joint channel estimation) method.
  • the network device performs joint estimation based on the channel estimation results in each uplink slot among multiple scheduled continuous uplink slots to determine the SINR of the uplink signal sent by the device.
  • the network equipment uses joint channel estimation to estimate the uplink channels in multiple slots, which can obtain better channel estimation results.
  • the terminal equipment will be based on the TPC sent by the network equipment to the terminal equipment and the path loss measured by the terminal equipment.
  • the terminal device will adjust the power supply voltage of the power amplifier, causing the phase jump of the uplink signal, which causes the network device to perform joint channel estimation inaccurately.
  • the embodiment of the present application provides a power control method in which a terminal device reports one or more first transmit powers of the terminal device to a network device. When the transmitting power of the terminal device reaches the first transmitting power, the uplink signal of the terminal device will undergo a phase jump.
  • the network equipment determines the transmission power corresponding to the terminal equipment when the uplink signal of the terminal equipment will undergo a phase jump, and performs power control on the terminal equipment according to the first transmission power, or according to the first transmission power One transmit power, which controls the joint channel estimation of network equipment.
  • the terminal device reports the first indication information to the network device, and the network device determines the transmission power of the terminal device according to the first indication information and whether the network device is performing joint channel estimation. Take control. It can avoid the transmission power of the terminal device from skipping gears when the network device performs the joint channel estimation, which causes the network device to perform the joint channel estimation inaccurately.
  • the power control method provided by the embodiment of the present application includes:
  • the terminal device sends first indication information to the network device.
  • the network device receives the first indication information from the terminal device.
  • the first indication information is used to indicate one or more first transmit powers of the terminal device; the first transmit power is the transmit power corresponding to the phase jump of the uplink signal of the terminal device (that is, the power jump point corresponding to the terminal device) .
  • one or more first transmission powers in the first indication information correspond to multiple transmission power intervals, and the first transmission power is an end point of one transmission power interval among the multiple transmission power intervals .
  • the phase jump refers to the phase jump of the uplink signal of the terminal device when the transmission power of the terminal device is adjusted between different transmission intervals.
  • the terminal device can indirectly indicate one or more transmit power intervals of the terminal device through the first indication information. So that the network equipment can perform power control on the terminal equipment or perform joint channel estimation according to the power transmission interval.
  • the first indication information includes one or more first values, and the one or more first values have a one-to-one correspondence with the one or more first transmit powers.
  • the first indication information may specifically indicate one or more first transmission powers in the form of a first value.
  • the terminal device indicates the first transmission power of the terminal device by reporting the first indication information to the network device, that is, indicates to the network device the power at which the terminal device undergoes a phase jump. Jump point.
  • the network device can perform joint channel estimation or perform power control on the terminal device according to the first indication information, avoiding the phase change of the uplink signal of the terminal device when the network device performs the joint channel estimation, thereby solving the problem of the network device performing joint channel estimation.
  • Channel estimation is not accurate.
  • the network device may determine the power jump point of the terminal device according to the first indication information. In this way, when the network device performs joint channel estimation, it can control the transmission power of the terminal device not to reach the power jump point, so as to ensure that the phase of the uplink signal of the terminal device does not jump. Alternatively, the network device may not perform joint channel estimation when the transmit power of the terminal device reaches the power jump point. This solves the problem of inaccurate joint channel estimation performed by the network equipment due to the jump in the phase of the uplink signal of the terminal equipment.
  • the network device receives the first indication information, whether the network device performs joint channel estimation or performs power control on the terminal device according to the first indication information is not limited in the embodiment of the present application.
  • the power control method provided in the embodiment of the present application further includes:
  • S202 The terminal device determines the first indication information.
  • the first indication information may be generated by the terminal device according to the current transmission power of the terminal device and various transmission power intervals of the terminal device.
  • the first indication information may be pre-stored in the terminal device, or the terminal device may determine the first indication information in other ways, which is not limited in this application.
  • the terminal device may generate the first indication information according to any of the conditions described in S201. Instructions.
  • the terminal device may pre-store the first indication information corresponding to each situation described in S201, and set corresponding trigger conditions respectively.
  • the terminal device sends corresponding first indication information to the network device.
  • the value of the first numerical value includes the following two cases, respectively: Case A, the first numerical value is The difference between the first transmit power and the current transmit power. Case B. The first value is the actual value of the first transmit power.
  • example 1 is: the terminal device has 20 transmission powers, which are 0-19 respectively.
  • the 20 transmission powers are divided into four power intervals, and the four power intervals respectively correspond to the four power supply voltages of the terminal device.
  • Table 2 The relationship between the transmitting power of the terminal equipment, the transmitting power interval and the supply voltage is shown in Table 2 below:
  • Supply voltage Transmit power range Transmit power First supply voltage First interval 0, 1, 2, 3, 4, 5 Second supply voltage Second interval 6, 7, 8, 9, 10, 11
  • the third supply voltage Third interval 12 13, 14, 15, 16, 17 Fourth supply voltage Fourth interval 18, 19
  • the first value is the difference between the first transmit power and the current transmit power.
  • first indication information in this application may include all the first values in Table 3 above, or include part of the first values in Table 3 above. The following is a description of each situation:
  • the current transmit power of the terminal device refers to the transmit power of the terminal device in the current time slot before the terminal device receives the TPC issued by the network device.
  • the value of the first value is the difference between the left end point and the right end point of each transmission power interval described above and the current transmission power of the terminal device.
  • the first numerical values included in the first indication information are all the first numerical values shown in Table 3 above.
  • the value of the first value is the difference between the left end of each transmission power interval mentioned above and the current transmission power of the terminal device.
  • the first numerical value included in the first indication information is shown in Table 4 below:
  • the value of the first value is the difference between the right end of each transmission power interval and the current transmission power of the terminal device.
  • the first value included in the first indication information is shown in Table 5 below:
  • Case A4 The value of the first value is the difference between the left end point and the right end point of the transmit power interval to which the current transmit power of the terminal device belongs and the current transmit power of the terminal device.
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval
  • the first value included in the first indication information is as shown in Table 6 below:
  • the value of the first value is the difference between the first endpoint and the current transmit power of the terminal device.
  • the first endpoint is the endpoint with the smallest difference between the current transmission power of the terminal device and the current transmission power of the terminal device in the transmission power interval to which the current transmission power of the terminal device belongs.
  • the transmit power interval to which the current transmit power of the terminal device belongs is the second interval
  • the endpoint with the smallest difference between the current transmit power of the terminal device in the second interval and the current transmit power of the terminal device is the right endpoint 11.
  • the value of the first value is the right end of the transmit power interval to which the current transmit power belongs, and the terminal The difference in the current transmit power of the device.
  • M is a positive integer.
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval
  • the first value included in the first indication information is as shown in Table 8 below:
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval
  • the first value included in the first indication information is as shown in Table 9 below:
  • Case A8 The value of the first value is the difference between the second endpoint and the current transmit power of the terminal device.
  • the second end point is an end point adjacent to the transmit power interval to which the current transmit power belongs among the adjacent power intervals of the transmit power interval to which the current transmit power of the terminal device belongs.
  • the number of the second terminal is one or more.
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval
  • the second end point includes: the end point 5 in the first interval adjacent to the second interval (that is, the right end point of the first interval), and the first interval Among the three intervals, it is adjacent to the end point 12 of the second interval (that is, the left end point of the third interval).
  • the value of the first value is the difference between the third endpoint and the current transmit power of the terminal device.
  • the third endpoint is the second endpoint with the smallest absolute value of the difference between the current transmit power of the terminal device and the one or more second endpoints.
  • the second end point includes: the end point 5 in the first interval adjacent to the second interval (that is, the right end point of the first interval), and the end point 12 in the third interval adjacent to the second interval (that is, the third The left end of the interval).
  • the second endpoint with the smallest absolute value of the difference between the two second endpoints and the current transmit power (10) of the terminal device is the left endpoint 12 of the third interval. Therefore, the third end point is the left end point 12 of the third interval.
  • Case A10 If the network device instructs the terminal device to increase the transmit power for the most recent M times before the terminal device determines the first indication information, the first value is the difference between the fourth endpoint and the current transmit power of the terminal device.
  • the fourth end point is the left end point of the adjacent interval on the right side of the current transmit power interval of the terminal device.
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval, and the fourth end point is the left end point 12 of the third interval.
  • the first value is the difference between the fifth endpoint and the current transmit power of the terminal device.
  • the fifth end point is the right end point of the adjacent interval to the left of the current transmit power interval of the terminal device.
  • the transmission power interval to which the current transmission power of the terminal device belongs is the second interval, and the fifth end point is the right end point 5 of the first interval.
  • the first value included in the first indication information is as shown in Table 13 below:
  • the transmission power interval corresponding to the first value included in the first indication information is listed.
  • the first indication information actually reported by the terminal device may only include the first value without including the transmit power interval corresponding to the first value, so as to reduce the signaling overhead of the terminal device.
  • case A the terminal device directly indicates the difference between the first transmission power and the current transmission power.
  • the terminal device can indicate the power adjustment interval in which the phase of the uplink signal of the terminal device does not jump according to the first value.
  • the network device may control the power adjustment value in the TPC sent to the terminal device to be within the power adjustment interval when performing joint channel estimation. In this way, when the network equipment performs joint channel estimation, the phase of the uplink signal of the terminal equipment does not jump.
  • the network device may not perform joint channel estimation when the power adjustment value in the TPC sent to the terminal device exceeds the power adjustment interval. In this way, when the phase of the uplink signal of the terminal device jumps, the network device does not perform joint channel estimation. This solves the problem of inaccurate joint channel estimation performed by the network equipment due to the jump in the phase of the uplink signal of the terminal equipment.
  • the value of the first value has the following situations:
  • the value of the first value is the value of the left end point of each transmission power interval mentioned above.
  • the first value included in the first indication information is shown in Table 14 below:
  • the value of the first value is the value of the two left end points that have the smallest difference with the current transmit power of the terminal device among the left end points of each of the foregoing transmit power intervals.
  • the terminal device corresponds to N first transmission powers
  • one or more of the first transmission powers in the first indication information are two of the N first transmission powers with the smallest difference from the current transmission power of the terminal device. Transmit power.
  • the first numerical value included in the first indication information is as shown in Table 15 below:
  • the value of the first value is the value of the left end point that has the smallest difference with the current transmit power of the terminal device among the left end points of each of the foregoing transmit power intervals.
  • the terminal device can send either of the two first transmission powers to the network device, or the terminal device can send the network device to the network device. Send one of the two first transmission powers that meets the condition.
  • the first numerical value included in the first indication information is shown in Table 16 below:
  • Case B4 The value of the first value is the value of the left end point that is greater than the current transmit power of the terminal device and has the smallest difference with the current transmit power of the terminal device among the left end points of the foregoing respective transmit power intervals.
  • the network device instructs the terminal device to increase the transmit power for the most recent M times before the terminal device determines the first indication information, the terminal device determines the first indication information according to the first value recorded in the situation B4, and Report the first indication information to the network device.
  • the first value included in the first indication information is as shown in Table 17 below:
  • the value of the first value is the value of the left end point that is less than the current transmit power of the terminal device and has the smallest difference with the current transmit power of the terminal device among the left end points of each of the foregoing transmit power intervals.
  • the network device instructs the terminal device to reduce the transmit power for the most recent M times before the terminal device determines the first indication information, the terminal determines the first indication information according to the first value recorded in the situation B4, and sends it to The network device reports the first indication information.
  • the first value included in the first indication information is as shown in Table 18 below:
  • the first value in the first indication information sent by the terminal device to the network device is the left end of the transmission power interval as an example, and various cases of the value of the first transmission power in case B have been carried out. instruction.
  • the multiple first transmission powers sent by the terminal device to the network device may include both the left end of the transmission power interval and the right end of the transmission power interval.
  • the first value in the first indication information sent by the terminal device to the network device is as shown in Table 19 below:
  • the multiple first transmission powers sent by the terminal device to the network device may include the right end of the transmission power interval.
  • the first value in the first indication information sent by the terminal device to the network device is as shown in Table 20 below:
  • the multiple first transmission powers sent by the terminal device to the network device may include both the left end of the transmission power interval and the right end of the transmission power interval; and the multiple first transmission powers sent by the terminal device to the network device may include the transmission power
  • the realization process of the right end of the interval is similar to the above process in which the multiple first transmission powers sent by the terminal device to the network device include the left end of the transmission power interval, which is not repeated in this application.
  • the terminal device and the network device can determine to report the left endpoint of each interval according to the agreement, or report The right endpoint of each interval.
  • the terminal device determines to report the left end point of each interval or the right end point of each interval according to the instructions of the network device.
  • the terminal device determines to report the left endpoint of each interval to the network device, or reports the right endpoint of each interval to the network device
  • the terminal device sends an indication message to the network device to indicate that the report is for each interval.
  • the left end or the right end of the transmit power range
  • the terminal device adds a 1-bit indicator bit to the first indicator information, and the indicator bit is used to indicate whether the first transmission power in the first indicator information reported this time is the left end or the right end of the power interval.
  • the value of this bit when the value of this bit is 0, it means that the first transmission power in the first indication information is the left end of the terminal device; when the value of this bit is 1, it means that the first transmission power in the first indication information is The first transmit power is the right end of the terminal device.
  • the network device can determine according to the left end of each power interval The right end of each power interval.
  • the network device determines that the left endpoints of each interval reported by the terminal device are: the left endpoint 0 of the first interval, the second interval is the left endpoint 6, the left endpoint 13 of the third interval, and the left endpoint 18 of the fourth interval
  • the network device determines that the right end point of the first interval is 1 less than the left end point of the second interval
  • the network device determines that the right end point of the first interval is 5
  • the same sending network device can determine that the right end point of the second interval is 12
  • the right end point of the third interval is 17, and the network device determines that the right end point of the fourth interval is the maximum power 19 corresponding to the terminal device.
  • the first indication information may be carried in the MAC CE sent by the terminal device.
  • the MAC CE may be the MAC CE that carries the PHR.
  • the MAC CE is a newly defined MAC CE.
  • the MAC CE is the MAC CE sent in the uplink time slot scheduled by the DCI including the TPC issued by the network device; the above TPC is the reference power of the power command word sent by the network device to the terminal device.
  • the first indication information and the first value in the first indication information are illustrated by examples. It should be pointed out that the above is only an exemplary illustration, and the first indication information may also indicate the first transmission power in other ways. , This application does not limit this.
  • the network device after the network device receives the first instruction information from the terminal device, the network device performs operations according to the first instruction information, including the following scenario 1 and scenario 2.
  • Scenarios the following is a detailed description of Scenario 1 and Scenario 2:
  • the network device instructs the terminal device to adjust the transmission power of the terminal device within the first power interval.
  • the first power interval is a transmission power interval that includes the current transmission power of the terminal device among the multiple transmission power intervals.
  • the network device is specifically configured to perform the following S301 to S303.
  • the network device generates sixth indication information when performing joint channel estimation.
  • the sixth indication information is used to instruct the terminal device to adjust the transmit power of the terminal device within the first power interval.
  • the network device sends sixth indication information to the terminal device.
  • the terminal device receives the sixth indication information from the network device.
  • the terminal device adjusts the transmit power of the terminal device according to the sixth indication information.
  • the sixth indication information is a TPC generated by the network device.
  • the network device needs to send the TPC to the terminal device, the network device generates the first TPC according to information such as the channel quality of the current uplink transmission channel of the terminal device, and the first TPC includes the power adjustment value of the terminal device.
  • the network device determines, according to the first indication information reported by the terminal device, whether the transmission power of the uplink signal sent by the terminal device will jump after the terminal adjusts the transmission power according to the power adjustment value indicated by the first TPC.
  • the network device adjusts the power adjustment value in the first TPC to generate the second TPC.
  • the network device sends the second TPC to the terminal device.
  • the terminal device receives the second TPC from the network device.
  • the transmit power of the uplink signal sent by the terminal device will not transmit jump.
  • the network device directly sends the first TPC to the terminal device.
  • the network equipment controls the terminal equipment to avoid phase hopping during its joint channel estimation process. After the joint channel estimation of the network equipment ends, the network equipment then performs normal power control on the terminal equipment.
  • the first value in the first indication information indication is as shown in Table 10.
  • Table 10 the power adjustment interval for the network equipment to determine that the uplink signal of the terminal equipment does not undergo phase hopping is shown in Table 21 below:
  • the terminal device indicates to the network device through the first indication information that when the transmission power of the terminal device drops by 5 or the transmission power of the terminal device rises by 2, the phase of the uplink signal of the terminal device will jump.
  • the network device may determine according to the instructions of the first indication information that when the transmission power of the terminal device drops by 5 or the transmission power of the terminal device rises by 2, the phase of the uplink signal of the terminal device will jump.
  • the power adjustment value in the first TPC generated by the network device is +3.
  • the network device determines that the power adjustment value +3 is outside the power value adjustment interval indicated by the first indication information (-5, +2), and the network device further determines the uplink sent by the terminal device after the terminal device adjusts the power according to the first TPC The transmit power of the signal will transmit jump.
  • the network device generates the second TPC according to the first TPC, and the power adjustment value in the second TPC is adjusted to +1.
  • the network device determines that the power adjustment value is +1 and the power value adjustment interval indicated by the first indication information is within (-5, +2). After the terminal device adjusts the transmit power according to the power adjustment value, the value of the uplink signal sent by the terminal device is The transmit power does not jump.
  • the network device sends the second TPC to the terminal device.
  • the power adjustment interval during which the network device determines that the uplink signal of the terminal device does not undergo a phase jump is as shown in the foregoing Table 21.
  • the power adjustment value in the first TPC generated by the network device is +1.
  • the network device determines that the power adjustment value +1 is within the power value adjustment interval indicated by the first indication information as (-5, +2), and after the terminal device adjusts the transmission power according to the power adjustment value, the transmission of the uplink signal sent by the terminal device The power does not transmit jumps.
  • the network device sends the first TPC to the terminal device.
  • the first value indicated in the first indication information is as shown in Table 14.
  • Table 14 the adjusted power interval in which the network equipment determines that the uplink signal of the terminal equipment does not undergo phase jump is shown in Table 22 below:
  • the terminal device indicates to the network device through the first indication information that when the transmission power of the terminal device is lower than 6, or the transmission power of the terminal device is higher than 11, the phase of the uplink signal of the terminal device will jump.
  • the network device may determine according to the instructions of the first indication information that when the transmission power of the terminal device is lower than 6 or the transmission power of the terminal device is higher than 11, the phase of the uplink signal of the terminal device will jump.
  • the network device determines that the transmit power adjusted by the terminal device according to the first TPC is 13, and the transmit power 13 is higher than 11. At this time, the transmit power of the uplink signal sent by the terminal device will transmit jump.
  • the network device generates the second TPC according to the first TPC, and the power adjustment value in the second TPC is adjusted to +1.
  • the network device determines that the transmit power adjusted by the terminal device according to the second TPC is 11. At this time, the transmit power of the uplink signal sent by the terminal device will not transmit jump.
  • the network device sends the second TPC to the terminal device.
  • the adjusted power interval after the network device determines that the uplink signal of the terminal device does not undergo a phase jump is as shown in the following Table 22:
  • the power adjustment value in the first TPC generated by the network device is +1.
  • the network device determines that the transmit power adjusted by the terminal device according to the first TPC is 11. At this time, the transmit power of the uplink signal sent by the terminal device will not transmit jump. The network device sends the first TPC to the terminal device.
  • Scenario 2 When the power of the terminal device reaches the first transmit power, the network device does not perform joint channel estimation.
  • the network device is used to perform the following S304 and S305.
  • the network device determines the first time slot.
  • the transmission power of the terminal device is adjusted outside the first power interval, and the first power interval is a transmission power interval including the current transmission power of the terminal device among the multiple transmission power intervals.
  • the first time slot is a time slot in which the transmission power of the terminal device is adjusted to outside the first power interval.
  • the first time slot is a time slot for the terminal device to adjust the power according to the TPC. After the terminal device adjusts the transmission power according to the TPC, the uplink signal of the terminal device will undergo a phase jump.
  • the network device does not perform joint channel estimation with the time slot before the first time slot in the first time slot.
  • the network device does not perform joint channel estimation with the time slot before the time slot on the time slot at the first time point. In the time slot and the time slot after the time slot, if the terminal device is still transmitting uplink data, the network device can perform joint channel estimation normally in the time slot and the time slot after the time slot.
  • a power jump point corresponding to the terminal device is 6, and the network device determines that the current transmit power of the terminal device is 5.
  • the network equipment determines that the transmission quality of the current transmission link is poor, and the terminal equipment needs to adjust the transmission power to 8 in the seventh uplink transmission time slot. At this time, the network equipment determines that the uplink signal of the terminal equipment will undergo a phase jump on the seventh time slot.
  • the network device determines not to perform joint channel estimation with the previous first to sixth time slots on the seventh time slot. If the terminal device transmits uplink data in the following time slots such as the 8th time slot and the 9th time slot, and the transmission power of the terminal device does not reach the power jump point, the terminal device can be used in the 7th time slot and the 8th time slot. Joint channel estimation is performed on the 9th time slot and the 9th time slot.
  • the network device can instruct the terminal device to adjust the transmission power when the network device performs joint channel estimation, adjust the transmission power within the preset transmission power interval, Avoid the phase jump of the uplink signal of the terminal device; or the network device does not perform joint channel estimation when the phase jump of the uplink signal of the terminal device occurs. Avoid inaccurate joint channel estimation by network equipment.
  • the method further includes:
  • S203 The network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information is used to instruct the terminal device to send the first indication information.
  • the second indication information is also used to indicate the correspondence between one or more first transmission powers in the first indication information and the N first transmission powers.
  • the second indication information indicates that the first value in the first indication information reported by the terminal device is a first value in the above case A1-case A11, or the first transmission power corresponding to the first value is the above case B1-B5 One of the first transmit power.
  • the second indication information is carried in any of the following: RRC message, MAC CE, or DCI.
  • the second indication information is used to instruct the terminal device to periodically report the first indication information.
  • the second indication information is used to instruct the terminal device to send a notification to the terminal device when the absolute value of the minimum difference between the current transmission power and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first threshold value.
  • the network device sends the first instruction information.
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • the terminal device executes the foregoing S201.
  • the second indication information is used to indicate that the absolute value of the difference between the current transmit power and the endpoint of each transmit power interval of the plurality of transmit power intervals is less than or equal to the first threshold.
  • the method further includes:
  • the terminal device determines whether the absolute value of the smallest difference between the current transmit power and the endpoint of each transmit power interval of the plurality of transmit power intervals is less than or equal to the first threshold;
  • the terminal device sends the first indication information to the network device.
  • the terminal device does not send the first instruction information to the network device.
  • the terminal device determines that the absolute value of the minimum difference between the current transmission power and the endpoint of each transmission power interval of the multiple transmission power intervals is less than or equal to the first threshold value, the transmission of the terminal device The power is more likely to be adjusted from one power range to another. At this time, the terminal device needs to report the first indication information to the network device, so that the network device determines that the phase jump of the uplink signal may occur when the terminal device sends uplink data later.
  • An embodiment of the present application provides a power control method, where a network device instructs a terminal device to perform a first time window for the network device to perform joint channel estimation. In the first time window, the terminal device adjusts the transmit power of the terminal device in the power interval where the phase jump of the uplink signal does not occur.
  • the terminal device controls the uplink signal of the terminal device not to undergo phase jump when the network device performs joint channel estimation. Therefore, the problem of inaccurate joint channel estimation by network equipment caused by the phase jump of the uplink signal of the terminal equipment is solved.
  • the power adjustment method provided by the embodiment of the present application further includes:
  • the terminal device determines a first time window.
  • the first time window is the time period during which the network device performs joint channel estimation.
  • the terminal device may determine the maximum window length of the first time window through the third instruction information issued by the network device to the terminal device. Alternatively, the terminal device may determine the maximum window length of the first time window according to the provisions of the agreement. Alternatively, the terminal device may determine the maximum window length of the first time window according to the pre-configuration information. This application does not limit this.
  • the network device may use multiple methods to indicate the maximum window length of the first time window.
  • the first time window includes multiple uplink time slots
  • the network device indicates the maximum number of consecutive time slots L included in the first time window through the third indication information.
  • the third indication information indicates the maximum window length of the first time window by indicating the maximum number of consecutive time slots included in the first time window.
  • the network device indicates through the third indication information that the maximum window length of the first time window is A milliseconds (ms). A is greater than 0. Among them, the time required for the network equipment to perform a joint channel estimation is greater than or equal to 0 ms and less than or equal to Ams.
  • the third indication information may be carried in the RRC sent by the network device to the terminal device, or the third indication information may be carried in the MAC CE sent by the network device, which is not limited in this application.
  • the network device indicating the maximum number of consecutive time slots L included in the first time window through the third indication information as an example.
  • the first time window for the network device to perform the joint channel estimation is the time period during which the terminal device sends uplink data in multiple consecutive time slots.
  • the network device needs to perform joint channel estimation on 3 consecutive time slots, that is, the time length of the first time window is the time length of 3 time slots.
  • the network device will perform a joint channel estimation on the consecutive 3 time slots.
  • the network device will perform two joint channel estimations on the consecutive 6 time slots. In other words, the network device performs a joint channel estimation on the first 3 time slots of the 6 consecutive time slots, and performs a joint channel estimation on the last 3 time slots of the 6 consecutive time slots.
  • the network device will perform two joint channel estimations on the consecutive 6 time slots. In other words, the network device performs a joint channel estimation on the first 3 time slots of the 5 consecutive time slots, and the terminal performs a joint channel estimation on the last 2 time slots of the 5 consecutive time slots.
  • the terminal device performs one of the following processes: not adjusting the transmission power; adjusting the transmission power to the fourth transmission power; or adjusting the transmission power in the first power interval.
  • the second transmit power is the transmit power of the terminal device before the terminal device receives the TPC sent by the network device in the current time slot.
  • the first power interval includes the current transmit power of the terminal, and when the transmit power of the terminal device is adjusted within the first transmit power interval, the phase of the uplink signal of the terminal device does not jump.
  • the terminal device If the process performed by the terminal device is: the transmission power is not adjusted in the first time window, the terminal device always keeps the transmission power of the terminal device at 10 in the first time window.
  • the terminal device If the process performed by the terminal device is: adjust the transmit power of the terminal device to the fourth transmit power in the first time window, and the value of the fourth transmit power is 10, then the terminal device always keeps the terminal device’s power in the first time window.
  • the transmit power is 10.
  • the terminal device determines that the terminal device adjusts the transmission power according to the TPC, Whether the adjusted transmit power is within the first power interval.
  • the terminal device adjusts the transmitting power of the terminal device according to the TPC.
  • the terminal device determines whether the TPC is used to instruct the terminal device to increase the transmission power or to instruct the terminal device to decrease the transmission power.
  • the terminal device adjusts the transmission power to the right end of the second interval. That is, the terminal device adjusts the transmit power to 11.
  • the terminal device adjusts the transmission power to the left end of the second interval. That is, the terminal device adjusts the transmit power to 6.
  • the terminal device controls the uplink signal of the terminal device not to undergo phase jump when the network device performs joint channel estimation. Therefore, the problem of inaccurate joint channel estimation by network equipment caused by the phase jump of the uplink signal of the terminal equipment is solved.
  • the method further includes S402 and S403.
  • the network device sends third indication information to the terminal device.
  • the terminal device receives the third indication information from the network device.
  • S403 The network device sends fourth instruction information to the terminal device.
  • the terminal device receives the fourth instruction information from the network device.
  • the fourth indication information is used to instruct the network device to enable joint channel estimation.
  • the fourth indication information is used to indicate that the network equipment is performing joint channel estimation.
  • the terminal equipment needs to determine the first time window, and adjust the transmission of the terminal equipment in the first power interval within the first time window. power.
  • the third indication information and the fourth indication information may be located in the same signaling message sent by the network device to the terminal device, or may be located in different signaling messages sent by the network device to the terminal device. News.
  • the signaling message sent by the network device to the terminal device is used to instruct the network device to enable joint channel estimation, It is also used to instruct the network equipment to perform the first time window for joint channel estimation.
  • the signaling message carrying the fourth indication information in the two signaling messages is used to instruct the network device to enable the joint channel It is estimated that the signaling message used to carry the third indication information in the two signaling messages is used to indicate the maximum number of consecutive time slots L included in the first time window for the network device to perform joint channel estimation.
  • the two signaling messages may not be sent at the same time. For example, when the terminal device initially accesses the network device, the network device sends a signaling message for carrying the third indication information to the terminal device. When the terminal device starts to perform uplink transmission, the network device sends a signaling message for carrying the fourth indication information to the terminal device.
  • the time for the network equipment to perform joint channel estimation is related to the time slot in which the terminal equipment sends uplink data. If the terminal device sends uplink data in L consecutive time slots, the network device can perform joint channel estimation on the L time slots.
  • the time for the network equipment to perform joint channel estimation is related to the time slot for the terminal equipment to send uplink data.
  • the network device indicates the length of time for the network device to perform joint channel estimation to the terminal device.
  • the terminal device determines the first time window according to the length of time for the network device to perform the joint channel estimation and the start time point of the network device to perform the joint channel estimation.
  • the terminal device determines that the start time point of the first time window is the H-th time slot.
  • the H-th time slot satisfies any of the following: the H-1th time slot is a scheduled downlink time slot, and the H-th time slot is a scheduled uplink time slot (denoted as condition 1), or the H-th time slot -1 time slot is an unscheduled time slot, and the H-th time slot is a scheduled uplink time slot (denoted as condition 2), or the network equipment completes a joint channel from the HL-th time slot to H-1 Estimated, and the H-th time slot is the scheduled uplink time slot (denoted as condition 3).
  • the terminal device determines that the first time window for the network device to perform the joint channel estimation includes Q consecutive scheduled uplink time slots with the H-th time slot as the starting time slot.
  • Q is a positive integer less than or equal to L.
  • the terminal device adjusts the transmission power of the terminal device in the first power interval on consecutive Q uplink time slots with the H-th time slot as the starting time slot. That is to say, the terminal equipment adjusts the transmitting power of the terminal equipment in the first power interval from the H-th time slot to the H+Q-th time slot.
  • the process of determining the first time window by the terminal device will be described by taking the maximum window length of the first time window being 3 time slots as an example:
  • Fig. 5 shows 11 consecutive time slots, which are respectively marked as the first time slot from left to right, the second time slot...the 11th time slot.
  • the first time slot is a downlink time slot.
  • the network device does not perform joint channel estimation, and the terminal device determines that this time slot is not the start time slot of the first time window.
  • the second time slot is an uplink time slot
  • the first time slot is a downlink time slot, which meets the above condition 1. Therefore, the terminal device determines that the second time slot is the start time slot of the first time window #1.
  • the third time slot is also an uplink time slot, and the terminal equipment determines that the third time slot is the second time slot in the first time window #1.
  • the fourth time slot is an unscheduled time slot, on which the network equipment does not perform joint channel estimation, and the terminal equipment determines that the fourth time slot is not a time slot in the first time window #1.
  • the first time window #1 ends in the third time slot.
  • the fifth time slot is an uplink time slot
  • the fourth time slot is an unscheduled time slot, which meets the above condition 2. Therefore, the terminal device determines that the fifth time slot is the start time slot of the first time window #2.
  • the 6th time slot and the 7th time slot are both uplink time slots, and the terminal equipment determines that the 6th time slot and the 7th time slot are both time slots in the first time window #2. Since the maximum window length of the first time window is 3 time slots, the terminal device determines that the first time window #2 ends in the seventh time slot.
  • the 8th time slot is the uplink time slot
  • the 7th time slot is the time slot that the last first time window ends (that is, the network equipment completes a joint channel from the 5th time slot to the 7th time slot Estimated), in line with the above condition 3. Therefore, the terminal device determines that the eighth time slot is the start time slot of the first time window #3.
  • the ninth time slot and the tenth time slot are both uplink time slots, and the terminal equipment determines that the ninth time slot and the tenth time slot are both time slots in the first time window #3. Since the maximum window length of the first time window is 3 time slots, the terminal device determines that the first time window #3 ends in the 10th time slot.
  • the eleventh time slot is a downlink time slot, on which the network equipment does not perform joint channel estimation, and the terminal equipment determines that this time slot is not the starting time slot of the first time window.
  • the terminal device can determine the first time window for the network device to perform the joint channel estimation according to the number of consecutive time slots required for the network device to perform the joint channel estimation and the time slot from which the network device performs the joint channel estimation.
  • the method further includes:
  • the terminal device adjusts the transmission power of the terminal device according to the TPC sent by the network device.
  • the terminal device performs uplink data transmission in K consecutive time slots, and the consecutive K time slots include multiple first time windows; the terminal device performs the first time window after the first time window ends. Adjust the transmit power of the terminal equipment in each time slot.
  • K is a positive integer greater than or equal to 2L.
  • the terminal device performs uplink data transmission in 10 consecutive time slots, and the value of L is 3.
  • the continuous 10 time slots include three first time windows, which are the first time window #4 composed of the first time slot to the third time slot, and the fourth time slot to the sixth time slot.
  • the first time window #5 is composed of slots
  • the first time window #6 is composed of the 7th time slot to the 9th time slot.
  • the network device performs joint channel estimation in the first time window #4, the first time window #5, and the first time window #6, respectively, in the three first time windows.
  • the terminal device adjusts the transmitting power of the terminal device according to the TPC sent by the network device in the first time slot (ie, the fourth time slot) after the first time window #4 ends.
  • the terminal device adjusts the transmitting power of the terminal device according to the TPC sent by the network device in the first time slot (ie, the seventh time slot) after the end of the first time window #5.
  • the terminal device adjusts the transmission power of the terminal device according to the TPC sent by the network device in the first time slot (ie, the 10th time slot) after the end of the first time window #6.
  • the terminal device TPC adjust the transmit power of the terminal device in the first power interval.
  • the terminal equipment does not trigger the power hopping point on the three time slots.
  • the network device sends a TPC to the terminal device, regardless of whether the terminal device adjusts the transmission power of the terminal device according to the power adjustment value indicated by the TPC, whether the power jump point is triggered,
  • the terminal equipment adjusts the transmitting power of the terminal equipment according to the power adjustment value indicated by the TPC.
  • the terminal device can adjust the transmission power of the terminal device in time when the network device completes the joint channel estimation, which improves the quality of the uplink data sent by the terminal device.
  • the method further includes:
  • the terminal device determines the first difference.
  • the first difference is the absolute value of the difference between the current transmission power of the terminal device and the third transmission power of the terminal device.
  • the third transmission power is the transmission power after the network device instructs the terminal device to adjust the transmission power.
  • S406 The terminal device determines whether the first difference value is less than or equal to the first threshold value.
  • the first threshold may be pre-configured for the terminal device, or may be indicated by the network device to the terminal device through instruction information, which is not limited in this application.
  • the terminal device determines to adjust the transmission power within the preset interval, so that the phase of the uplink signal of the terminal device does not jump, so that the network device can perform joint channel estimation normally.
  • the difference between the current transmission power of the terminal device and the third transmission power of the terminal device is relatively large. At this time, the link quality of the uplink of the terminal device is poor. If the terminal device does not adjust the uplink transmission power, the uplink may fail. In this case, the terminal device adjusts the current transmission power to the third transmission power to ensure that the uplink transmission link does not fail first.
  • the terminal device executes S400 and S401, so that the network device can perform joint channel estimation normally.
  • the terminal device executes S407 to ensure the link quality of the uplink transmission link of the terminal device.
  • the terminal device adjusts the transmission power of the terminal device to the third transmission power.
  • the first threshold of the terminal device is 2.
  • the current transmitting power of the terminal device is 10, and the power cut-off point is 11.
  • the network device instructs the terminal device to adjust the third transmission power to be 18 or 19, then the first difference is less than or equal to the first threshold. At this time, the terminal device still uses 17 as the transmission power to send uplink data.
  • the terminal network device instructs the terminal device to adjust the third transmit power after the transmit power is greater than 19, the first difference is greater than the first threshold, and the terminal device adjusts the transmit power of the terminal device to the third transmit power at this time.
  • the terminal device when the network device instructs the terminal device to adjust the transmission power to 18 or 19, the terminal device still uses 17 as the transmission power to send uplink data.
  • the terminal device adjusts the transmit power according to the instruction of the network device.
  • the terminal device adjusts the transmission according to the transmission power adjustment value indicated by the network device. power. The problem of uplink failure caused by the low transmit power of the terminal device can be avoided.
  • the method further includes:
  • the terminal device sends fifth indication information to the network device when the second difference value is less than or equal to the second threshold value.
  • the network device receives the fifth indication information from the terminal device.
  • the second difference is the absolute value of the difference between the current transmission power of the terminal device and each first transmission power of the terminal device.
  • the second threshold may be pre-configured for the terminal device, or may be indicated by the network device to the terminal device through instruction information, which is not limited in this application.
  • the fifth indication information is used to indicate that the second difference is less than or equal to the second threshold.
  • the second difference is less than or equal to the second threshold, it means that the current transmit power of the terminal device is close to the first transmit power. If the network device instructs the terminal device to adjust the transmit power, the uplink signal of the terminal device is more likely to have phase Jump. At this time, the network device does not perform joint channel estimation when instructing the terminal device to adjust the transmit power next time.
  • the terminal device can determine that the current transmission power of the terminal device is close to the first transmission power by sending the fifth indication information to the network device, and the network device may not perform joint channel estimation when instructing the terminal device to adjust the transmission power next time.
  • each network element for example, a network device and a terminal device, includes at least one of a hardware structure and a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiment of the present application may divide the network device and the terminal device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a possible structural schematic diagram of the communication device (denoted as the communication device 80) involved in the above embodiment.
  • the communication device 80 includes a processing unit 801 and a communication unit 802. , May also include a storage unit 803.
  • the schematic structural diagram shown in FIG. 8 may be used to illustrate the structures of the network equipment and the terminal equipment involved in the foregoing embodiment.
  • the processing unit 801 is used to control and manage the actions of the terminal device, for example, to control the terminal device to execute S201 and S201 in FIG.
  • the processing unit 801 may communicate with other network entities through the communication unit 802, for example, communicate with the network device shown in FIG. 1.
  • the storage unit 803 is used to store the program code and data of the terminal device.
  • the communication device 80 may be a terminal device or a chip in the terminal device.
  • the processing unit 801 is used to control and manage the actions of the network device, for example, to control the network device to execute S201 and S201 in FIG. 2 S203, S201, S203, S301, S302 in Figure 3a, S201, S203, S304, and S305 in Figure 3b, S501 in Figure 4, S402 and S403 in Figure 6, S402, S403, and S408 in Figure 7, And/or actions performed by the terminal device in other processes described in the embodiments of this application.
  • the processing unit 801 may communicate with other network entities through the communication unit 802, for example, communicate with the network device shown in FIG. 1.
  • the storage unit 803 is used to store the program code and data of the terminal device.
  • the communication device 80 may be a network device or a chip in the network device.
  • the processing unit 801 may be a processor or a controller, and the communication unit 802 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and the like.
  • the communication interface is a general term and may include one or more interfaces.
  • the storage unit 803 may be a memory.
  • the processing unit 801 may be a processor or a controller, and the communication unit 802 may be an input interface and/or output interface, a pin or a circuit, etc.
  • the storage unit 803 may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit located outside the chip in a terminal device or a network device (for example, a read-only memory (ROM for short)). ), random access memory (random access memory, RAM for short), etc.).
  • ROM read-only memory
  • RAM random access memory
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 80 can be regarded as the communication unit 802 of the communication device 80, and the processor with processing function can be regarded as the processing unit 801 of the communication device 80.
  • the device for implementing the receiving function in the communication unit 802 may be regarded as a receiving unit, which is used to perform the receiving steps in the embodiment of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, and the like.
  • the integrated unit in FIG. 8 is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the unit in FIG. 8 may also be referred to as a module, for example, the processing unit may be referred to as a processing module.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (denoted as the communication device 90). See FIG. 9 or FIG. ⁇ Memory 902.
  • the communication device 90 further includes a transceiver 903.
  • the processor 901, the memory 902, and the transceiver 903 are connected by a bus.
  • the transceiver 903 is used to communicate with other devices or a communication network.
  • the transceiver 903 may include a transmitter and a receiver.
  • the device used for implementing the receiving function in the transceiver 903 can be regarded as a receiver, and the receiver is used to perform the receiving steps in the embodiment of the present application.
  • the device used in the transceiver 903 to implement the sending function can be regarded as a transmitter, and the transmitter is used to perform the sending steps in the embodiment of the present application.
  • FIG. 9 may be used to illustrate the structure of the network device or the terminal device involved in the foregoing embodiment.
  • the processor 901 is used to control and manage the actions of the terminal device.
  • the processor 901 is used to support the terminal device to execute the diagram.
  • S201, S202, and S203 in Figure 2 S201, S202, S203, S302, and S303 in Figure 3a, S201, S202, and S203 in Figure 3b, S400, S401, S402, and S403 in Figure 4, and S400 in Figure 6 , S401, S402, S403, S404, S405, S406, and S407, S400, S401, S402, S403, and S408 in FIG.
  • the processor 901 may communicate with other network entities through the transceiver 903, for example, communicate with the network device shown in FIG. 1.
  • the memory 902 is used to store program codes and data of the terminal device.
  • the processor 901 is used to control and manage the actions of the network device.
  • the processor 901 is used to support the network device to execute the diagram. S201 and S203 in Figure 2, S201, S203, S301, S302 in Figure 3a, S201, S203, S304, and S305 in Figure 3b, S501 in Figure 4, S402 and S403 in Figure 6, S402 in Figure 7 , S403 and S408, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 901 may communicate with other network entities through the transceiver 903, for example, communicate with the terminal device shown in FIG. 1.
  • the memory 902 is used to store program codes and data of the network device.
  • the processor 901 includes a logic circuit and at least one of an input interface and an output interface. Among them, the output interface is used to execute the sending action in the corresponding method, and the input interface is used to execute the receiving action in the corresponding method.
  • the schematic structural diagram shown in FIG. 10 may be used to illustrate the structure of the network device or the terminal device involved in the foregoing embodiment.
  • the processor 901 is used to control and manage the actions of the terminal device.
  • the processor 901 is used to support the terminal device to execute the diagram.
  • S201, S202, and S203 in Figure 2 S201, S202, S203, S302, and S303 in Figure 3a, S201, S202, and S203 in Figure 3b, S400, S401, S402, and S403 in Figure 4, and S400 in Figure 6 , S401, S402, S403, S404, S405, S406, and S407, S400, S401, S402, S403, and S408 in FIG.
  • the processor 901 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the network device shown in FIG. 1.
  • the memory 902 is used to store program codes and data of the terminal device.
  • the processor 901 is used to control and manage the actions of the network device.
  • the processor 901 is used to support the network device to execute the diagram. S201 and S203 in Figure 2, S201, S203, S301, S302 in Figure 3a, S201, S203, S304, and S305 in Figure 3b, S501 in Figure 4, S402 and S403 in Figure 6, S402 in Figure 7 , S403 and S408, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 901 may communicate with other network entities through at least one of the input interface and the output interface, for example, communicate with the terminal device shown in FIG. 1.
  • the memory 902 is used to store program codes and data of the network device.
  • FIG. 9 and FIG. 10 may also illustrate the system chip in the network device.
  • the actions performed by the above-mentioned network device can be implemented by the system chip, and the specific actions performed can be referred to above, which will not be repeated here.
  • Figures 9 and 10 can also illustrate the system chip in the terminal device. In this case, the actions performed by the above-mentioned terminal device can be implemented by the system chip, and the specific actions performed can be referred to above, and will not be repeated here.
  • the embodiment of the present application also provides a schematic diagram of the hardware structure of a terminal device (denoted as a terminal device 110) and a network device (denoted as a network device 120). For details, refer to FIG. 11 and FIG. 12 respectively.
  • FIG. 11 is a schematic diagram of the hardware structure of the terminal device 110.
  • the terminal device 110 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, control the terminal device to execute S201, S202, and S203 in Figure 2, Figure 3a S201, S202, S203, S302, and S303 in Figure 3b, S201, S202, and S203 in Figure 3b, S400, S401, S402, and S403 in Figure 4, S400, S401, S402, S403, S404, S405, S406 and S407, S400, S401, S402, S403, and S408 in FIG. 7, and/or actions performed by the terminal device in other processes described in the embodiments of the present application.
  • the memory is mainly used to store software programs and data.
  • the control circuit (also called a radio frequency circuit) is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna. send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 11 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 12 is a schematic diagram of the hardware structure of the network device 120.
  • the network device 120 may include one or more radio frequency units, such as a remote radio unit (RRU for short) 1201 and one or more baseband units (BBU for short) (also known as digital units (digital unit, for short) DU)) 1202.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1201 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1211 and a radio frequency unit 1212.
  • the RRU1201 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the RRU 1201 and the BBU 1202 may be physically arranged together or separately, for example, a distributed base station.
  • the BBU 1202 is the control center of the network equipment, and can also be called the processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU 1202 can be composed of one or more single boards, and multiple single boards can jointly support a single access standard radio access network (such as an LTE network), or can respectively support different access standard radio access networks. Access network (such as LTE network, 5G network or other network).
  • the BBU 1202 also includes a memory 1221 and a processor 1222, and the memory 1221 is used to store necessary instructions and data.
  • the processor 1222 is used to control the network device to perform necessary actions.
  • the memory 1221 and the processor 1222 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 120 shown in Figure 12 can execute S201 and S203 in Figure 2, S201, S203, S301, and S302 in Figure 3a, S201, S203, S304 and S305 in Figure 3b, and S501 in Figure 4 , S402 and S403 in FIG. 6, S402, S403, and S408 in FIG. 7, and/or actions performed by the network device in other processes described in the embodiments of the present application.
  • the operations, functions, or operations and functions of each module in the network device 120 are respectively set to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or Various computing devices running software such as artificial intelligence processors.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). System), or it can be integrated into the ASIC as a built-in processor of an ASIC, and the ASIC integrated with the processor can be packaged separately or together with other circuits.
  • the processor can also include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any of the above-mentioned methods.
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on a computer, causes the computer to execute any of the above-mentioned methods.
  • An embodiment of the present application also provides a communication system, including: the above-mentioned network equipment and terminal equipment.
  • An embodiment of the present application also provides a chip that includes a processor and an interface circuit, the interface circuit is coupled to the processor, and the processor is used to run a computer program or instruction to implement the above method, and the interface circuit is used to communicate with Modules other than the chip communicate.
  • the computer can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, referred to as DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or may include one or more data storage devices such as a server or a data center that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • Embodiment 1 A power control method, which includes:
  • the terminal device determines the first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission power is caused by the phase jump of the uplink signal of the terminal device Corresponding transmit power;
  • the terminal device sends the first indication information to the network device.
  • Embodiment 2 The method according to embodiment 1, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 3 The method according to embodiment 1 or 2, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmit power interval in; the phase jump means that when the transmit power of the terminal device is adjusted between different transmit intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 4 The method according to embodiment 3, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 5 The method according to embodiment 3, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference from the second transmission power. Two of the first transmit powers.
  • Embodiment 6 The method according to embodiment 3, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference from the second transmission power. One of said first transmit power.
  • Embodiment 7 The method according to embodiment 3, wherein the current transmit power of the terminal device is a second transmit power, and the one or more first transmit powers include greater than the second transmit power and are different from all The first transmission power with the smallest second transmission power difference.
  • Embodiment 8 The method according to embodiment 3, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include less than the second transmission power, and are different from the current transmission power. The first transmission power with the smallest second transmission power difference.
  • Embodiment 9 The method according to any one of embodiments 4-8, further comprising:
  • the terminal device sends the first indication information to the network device.
  • Embodiment 10 The method according to any one of embodiments 1-9, wherein before the terminal device sends the first indication information to the network device, the method further includes:
  • the terminal device receives second instruction information from the network device; the second instruction information is used to instruct the terminal device to send the first instruction information; the second instruction information is carried in any of the following : RRC message, MAC CE, or DCI;
  • the terminal device In response to the second indication information, the terminal device sends the first indication information to the network device; the first indication information is carried in the MAC CE sent by the terminal device, where the first indication information is carried.
  • the MAC CE of an indication information is any one of the following: MAC CE carrying PHR; newly added MAC CE; or MAC CE sent in the uplink time slot scheduled by DCI including TPC.
  • Embodiment 11 The method according to embodiment 10, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 12 The method according to embodiment 11, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 13 A power control method, including:
  • the network device receives the first indication information from the terminal device; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission power is the uplink signal generation of the terminal device The transmit power corresponding to the phase jump.
  • Embodiment 14 The method according to embodiment 13, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 15 The method according to embodiment 13 or 14, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmission power interval in; the phase jump means that when the transmission power of the terminal device is adjusted between different transmission intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 16 The method according to embodiment 15, which further includes:
  • the network device instructs the terminal device to adjust the transmission power of the terminal device within a first power interval; the first power interval is the multiple transmission power intervals The transmit power interval including the current transmit power of the terminal device.
  • Embodiment 17 The method according to embodiment 15, which further includes:
  • the network device determines a first time slot, and in the first time slot, the transmission power of the terminal device is adjusted outside the first power interval, and the first power interval is among the multiple transmission power intervals A transmission power interval including the current transmission power of the terminal device;
  • the network device does not perform joint channel estimation with a time slot before the first time slot on the first time slot.
  • Embodiment 18 The method according to any one of embodiments 15-17, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 19 The method according to any one of embodiments 15-17, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The two first transmission powers with the smallest power difference.
  • Embodiment 20 The method according to any one of embodiments 15-17, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The first transmission power with the smallest power difference.
  • Embodiment 21 The method according to any one of embodiments 15-17, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 22 The method according to any one of embodiments 15-17, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power. Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 23 The method according to any one of embodiments 13-22, further comprising:
  • the network device sends second instruction information to the terminal device, where the second instruction information is used to instruct the terminal device to send the first instruction information; the first instruction information is carried in the MAC CE sent by the terminal device Medium;
  • the second indication information is carried in any of the following: RRC message, MAC CE, or DCI.
  • Embodiment 24 The method according to embodiment 23, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 25 The method according to embodiment 24, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 26 A communication device, including: a processing unit and a communication unit,
  • the processing unit is configured to determine first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal equipment; the first transmission power is the phase of the uplink signal generation of the terminal equipment Transmit power corresponding to the jump;
  • the communication unit is configured to send the first indication information to a network device.
  • Embodiment 27 The device of embodiment 26, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 28 The device according to embodiment 26 or 27, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmission power interval in; the phase jump means that when the transmission power of the terminal device is adjusted between different transmission intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 29 The device according to embodiment 28, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 30 The apparatus according to embodiment 28, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference from the second transmission power. Two of the first transmit powers.
  • Embodiment 31 The apparatus according to embodiment 28, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the smallest difference with the second transmission power. One of said first transmit power.
  • Embodiment 32 The apparatus according to embodiment 28, wherein the current transmit power of the terminal device is a second transmit power, and the one or more first transmit powers include greater than the second transmit power and are incompatible with all The first transmission power with the smallest second transmission power difference.
  • Embodiment 33 The apparatus according to embodiment 28, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power and are incompatible with the current transmission power. The first transmission power with the smallest second transmission power difference.
  • Embodiment 34 The device according to any one of embodiments 29-33, wherein the processing unit is further configured to:
  • the processing unit is further configured to instruct the communication unit to send the first instruction information to the network device.
  • Embodiment 35 The device according to any one of embodiments 26-34, wherein the communication unit is further configured to receive second indication information from the network device; the second indication information is used to indicate The terminal device sends the first indication information; the second indication information is carried in any one of the following: RRC message, MAC CE, or DCI; the processing unit is also used to instruct the communication unit to send the The network device sends the first indication information; the first indication information is carried in the MAC CE sent by the terminal device, where the MAC CE carrying the first indication information is any one of the following: MAC carrying PHR CE; newly added MAC CE; or, MAC CE sent in the uplink time slot scheduled by the DCI including the TPC.
  • the communication unit is further configured to receive second indication information from the network device; the second indication information is used to indicate The terminal device sends the first indication information; the second indication information is carried in any one of the following: RRC message, MAC CE, or DCI; the processing unit is also used to instruct the communication unit to send the The network device sends the first
  • Embodiment 36 The apparatus according to embodiment 35, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 37 The device according to embodiment 36, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 38 A communication device, including: a processing unit and a communication unit;
  • the processing unit is used to instruct the communication unit to receive first indication information from a terminal device; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission The power is the transmit power corresponding to the phase jump of the uplink signal of the terminal device.
  • Embodiment 39 The device of embodiment 38, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 40 The device according to embodiment 38 or 39, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmit power interval in; the phase jump means that when the transmit power of the terminal device is adjusted between different transmit intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 41 The device according to embodiment 40, wherein the processing unit is further configured to:
  • the network device is performing joint channel estimation, instruct the terminal device to adjust the transmission power of the terminal device within a first power interval; the first power interval is that the terminal is included in the multiple transmission power intervals The transmit power interval of the current transmit power of the device.
  • Embodiment 42 The device according to embodiment 40, wherein the processing unit is further configured to:
  • the transmission power of the terminal device is adjusted to be outside the first power interval, and the first power interval is the plurality of transmission power intervals including the terminal The transmit power interval of the current transmit power of the device;
  • Joint channel estimation is not performed on the first time slot with the time slot before the first time slot.
  • Embodiment 43 The device according to any one of embodiments 40-42, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 44 The apparatus according to any one of embodiments 40-42, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The two first transmission powers with the smallest power difference.
  • Embodiment 45 The apparatus according to any one of embodiments 40-42, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The first transmission power with the smallest power difference.
  • Embodiment 46 The apparatus according to any one of embodiments 40-42, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 47 The apparatus according to any one of embodiments 40-42, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power. Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 48 The device according to any one of embodiments 38-47, wherein the communication unit is further configured to:
  • Embodiment 49 The apparatus according to embodiment 48, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 50 The device according to embodiment 49, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 51 A communication device, wherein the communication device may be a terminal device or a chip or a system on a chip in the terminal device.
  • the communication device includes a processor and a memory, the memory stores instructions, and when the instructions are executed by the processor , The communication apparatus is caused to perform the following steps: determine the first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal equipment; the first transmission power is the uplink signal generation of the terminal equipment Transmitting power corresponding to the phase jump; sending the first indication information to the network device.
  • Embodiment 52 The device of embodiment 51, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 53 The device according to embodiment 51 or 52, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmit power interval in; the phase jump means that when the transmit power of the terminal device is adjusted between different transmit intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 54 The device according to embodiment 53, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 55 The apparatus according to embodiment 53, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference between the first transmission power and the second transmission power. Two of the first transmit powers.
  • Embodiment 56 The apparatus according to embodiment 53, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the one with the smallest difference from the second transmission power. One of said first transmit power.
  • Embodiment 57 The apparatus according to embodiment 53, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include greater than the second transmission power and are different from the current transmission power. The first transmission power with the smallest second transmission power difference.
  • Embodiment 58 The apparatus according to embodiment 53, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power and are incompatible with the current transmission power. The first transmission power with the smallest second transmission power difference.
  • Embodiment 59 The device according to any one of the embodiments 54-58, wherein the communication device is further configured to perform the following step: determine the current transmission power and each transmission power in the plurality of transmission power intervals Whether the absolute value of the minimum difference between the end points of the interval is less than or equal to the first threshold; sending the first indication information to the network device.
  • Embodiment 60 The device according to any one of embodiments 51-59, wherein the communication device is further configured to perform the following steps: receiving second instruction information from the network device; and the second instruction information Used to instruct the terminal device to send the first indication information; the second indication information is carried in any of the following: RRC message, MAC CE, or DCI; send the first indication information to the network device
  • the first indication information is carried in the MAC CE sent by the terminal device, where the MAC CE carrying the first indication information is any one of the following: MAC CE carrying PHR; newly added MAC CE; or , MAC CE sent in the uplink time slot scheduled by DCI including TPC.
  • Embodiment 61 The apparatus according to embodiment 60, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 62 The device according to embodiment 61, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 63 A communication device, wherein the communication device may be a network device or a chip or a system on a chip in the network device.
  • the communication device includes a processor and a memory, and the memory stores instructions, and when the instructions are executed by the processor ,
  • the communication apparatus is caused to perform the following steps: receiving first indication information from a terminal device; the first indication information is used to indicate one or more first transmission powers of the terminal device; the first transmission power is the The transmit power corresponding to the phase jump of the uplink signal of the terminal equipment.
  • Embodiment 64 The device of embodiment 63, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmit powers One-to-one correspondence
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 65 The device according to embodiment 63 or 64, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission power intervals An end point of a transmit power interval in; the phase jump means that when the transmit power of the terminal device is adjusted between different transmit intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 66 The device according to embodiment 65, wherein the communication device is further configured to perform the following step: if the network device is performing joint channel estimation, instruct the terminal device to adjust within the first power interval The transmission power of the terminal device; the first power interval is a transmission power interval that includes the current transmission power of the terminal device among the multiple transmission power intervals.
  • Embodiment 67 The device according to embodiment 65, wherein the communication device is further configured to perform the following steps: determine the first time slot, and in the first time slot, calculate the transmit power of the terminal device Adjusted to be outside the first power interval, where the first power interval is a transmission power interval that includes the current transmission power of the terminal device among the multiple transmission power intervals;
  • Joint channel estimation is not performed on the first time slot with the time slot before the first time slot.
  • Embodiment 68 The device according to any one of embodiments 65-67, wherein the one or more first transmission powers include an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 69 The apparatus according to any one of embodiments 65-67, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The two first transmission powers with the smallest power difference.
  • Embodiment 70 The apparatus according to any one of embodiments 65-67, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include the same as the second transmission power. The first transmission power with the smallest power difference.
  • Embodiment 71 The apparatus according to any one of embodiments 65-67, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 72 The apparatus according to any one of embodiments 65-67, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power. Power, and the first transmit power with the smallest difference from the second transmit power.
  • Embodiment 73 The device according to any one of embodiments 63-72, wherein the communication device is further configured to perform the following step: sending second indication information to the terminal device, where the second indication information is used to indicate The terminal device sends the first indication information; the first indication information is carried in the MAC CE sent by the terminal device; the second indication information is carried in any of the following: RRC message, MAC CE, Or DCI.
  • Embodiment 74 The apparatus according to embodiment 73, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 75 The device according to embodiment 74, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information.
  • Embodiment 76 A communication system, including terminal equipment and network equipment.
  • the terminal equipment is used to determine first indication information; the first indication information is used to indicate one or more first transmission powers of the terminal equipment; the first transmission power is the phase jump of the uplink signal of the terminal equipment Change the corresponding transmit power; the terminal device sends the first indication information to the network device.
  • the network device is used to receive the first indication information from the terminal device.
  • Embodiment 77 The communication system according to embodiment 76, wherein the first indication information includes one or more first values; the one or more first values and the one or more first transmissions Power one-to-one correspondence;
  • the first value is used to characterize the difference between the first transmission power corresponding to the first value and the current transmission power.
  • Embodiment 78 The communication system according to embodiment 76 or 77, wherein the one or more first transmission powers correspond to multiple transmission power intervals, and the first transmission power is the multiple transmission powers An end point of a transmit power interval in the interval; the phase jump refers to that when the transmit power of the terminal device is adjusted between different transmit intervals, the phase of the uplink signal of the terminal device jumps.
  • Embodiment 79 The communication system according to embodiment 78, wherein the one or more first transmission power includes an end point of each transmission power interval of the plurality of transmission power intervals.
  • Embodiment 80 The communication system according to embodiment 78, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference with the second transmission power. The first transmission power of the two.
  • Embodiment 81 The communication system according to embodiment 78, wherein the current transmission power of the terminal device is the second transmission power, and the one or more first transmission powers include the smallest difference with the second transmission power. One of said first transmit power.
  • Embodiment 82 The communication system according to embodiment 78, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include greater than the second transmission power and are compared with The first transmission power with the smallest difference in the second transmission power.
  • Embodiment 83 The communication system according to embodiment 78, wherein the current transmission power of the terminal device is a second transmission power, and the one or more first transmission powers include less than the second transmission power and are compared with The first transmission power with the smallest difference in the second transmission power.
  • Embodiment 84 The communication system according to any one of embodiments 79-83, wherein the terminal device is further configured to determine the current transmission power and the endpoint of each transmission power interval of the plurality of transmission power intervals Whether the absolute value of the minimum difference between is less than or equal to the first threshold value. If so, the terminal device sends the first indication information to the network device.
  • the network device is also used to receive first indication information from the terminal device.
  • Embodiment 85 The communication system according to any one of embodiments 76-84, wherein the network device is further configured to send second indication information to the terminal device; the second indication information is used to indicate The terminal device sends the first indication information; the second indication information is carried in any one of the following: RRC message, MAC CE, or DCI;
  • the terminal device is further configured to receive second instruction information from the network device; in response to the second instruction information, send the first instruction information to the network device; the first instruction information is carried on Among the MAC CEs sent by the terminal device, the MAC CE carrying the first indication information is any one of the following: MAC CE carrying PHR; newly added MAC CE; or, scheduled in DCI including TPC MAC CE sent in the uplink time slot.
  • Embodiment 86 The communication system according to embodiment 85, wherein the second indication information is used to instruct the terminal device to periodically report the first indication information;
  • the second indication information is used to indicate that the absolute value of the smallest difference between the current transmission power of the terminal device and the endpoint of each transmission power interval of the plurality of transmission power intervals is less than or equal to the first
  • the threshold value is set, send the first indication information to the network device;
  • the second indication information is used to instruct the terminal device to report the first indication information at a preset time point.
  • Embodiment 87 The communication system according to embodiment 86, wherein the second indication information is further used to indicate a reporting manner of the first indication information and the number of first transmission powers in the first indication information .
  • Embodiment 88 The communication system according to any one of claims 76-86, wherein the network device is further configured to, if the network device is performing joint channel estimation, instruct the terminal device to operate at the first power Adjust the transmit power of the terminal device within an interval; the first power interval is a transmit power interval that includes the current transmit power of the terminal device among the plurality of transmit power intervals;
  • the terminal device is also used to adjust the transmit power of the terminal device in the first power interval.
  • Embodiment 89 The communication system according to any one of claims 76-86, wherein the network device is further configured to determine a first time slot, and on the first time slot, the terminal device transmits Adjusting the power to outside the first power interval, where the first power interval is a transmission power interval that includes the current transmission power of the terminal device among the plurality of transmission power intervals;
  • the network device does not perform joint channel estimation with a time slot before the first time slot on the first time slot.
  • Embodiment 90 The communication system according to any one of claims 76-88, wherein the terminal device is a mobile phone, and the network device is a base station.
  • Embodiment 91 A computer program product, when it runs on a computer, enables the computer to execute the method involved in any one of the foregoing Embodiments 1 to 25.
  • Embodiment 92 A computer-readable storage medium having instructions stored in the computer-readable storage medium, when running on a computer, enables the computer to execute any of the above-mentioned Embodiments 1 to 25 method.
  • Embodiment 93 A chip including a processor.
  • the processor executes an instruction
  • the processor is used to execute the method involved in any one of the foregoing Embodiments 1 to 25.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes an input and output circuit.
  • Embodiment 94 A power control method, including:
  • the terminal device determines a first time window, where the first time window is a time period for the network device to perform joint channel estimation;
  • the terminal device adjusts the transmit power of the terminal device in a first power interval; the first power interval is a plurality of transmit power intervals, including the current transmit power of the terminal device
  • the terminal device adjusts the transmit power of the terminal device in any one of the multiple transmit power intervals, the uplink signal of the terminal device does not undergo a phase jump.
  • Embodiment 95 The method according to embodiment 94, wherein the method further includes:
  • the terminal device receives third indication information from the network device, where the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the network device needs to perform a joint channel estimation
  • the number of time slots is greater than 1, but less than or equal to L; L is a positive integer greater than 1;
  • the terminal device determines the first time window according to the third indication information.
  • Embodiment 96 The method according to embodiment 95, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: H-1 Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 97 The method according to embodiment 96, wherein the first time window includes the H-th time slot to the H+Q-th time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 98 The method according to any one of embodiments 94-96, wherein the method further comprises:
  • the terminal device adjusts the transmission power of the terminal device according to the TPC sent by the network device in the first time slot after the first time window.
  • Embodiment 99 The method according to any one of embodiments 94-98, wherein, in the first time window, the terminal device adjusts the transmit power of the terminal device in the first power interval, include:
  • the terminal device determines a first difference, where the first difference is the absolute value of the difference between the current transmit power of the terminal device and the third transmit power of the terminal device; the third transmit power is The network device instructs the terminal device to adjust the transmission power of the transmission power;
  • the terminal device adjusts the transmit power of the terminal device between the first power intervals.
  • Embodiment 100 The method according to embodiment 99, wherein the method further comprises:
  • the terminal device determines the first difference
  • the terminal device adjusts the transmission power of the terminal device to a third transmission power.
  • Embodiment 101 The method according to any one of embodiments 94-100, further comprising:
  • the terminal device receives fourth indication information from the network device, where the fourth indication information is used to instruct the network device to enable joint channel estimation.
  • Embodiment 102 The method according to any one of the embodiments 94-101, wherein the method further includes:
  • the terminal device determines whether the second difference is less than or equal to a second threshold; the second difference is the absolute value of the difference between the current transmit power of the terminal device and the first transmit power;
  • the terminal device sends fifth indication information to the network device, where the fifth indication information is used to indicate that the second difference is less than the second threshold.
  • Embodiment 103 A power control method, including:
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the first time window is the time period during which the network device performs joint channel estimation; The number of time slots required for the network device to perform a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1.
  • Embodiment 104 The method according to embodiment 103, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 105 The method according to embodiment 104, wherein the first time window includes the Hth time slot to the H+Qth time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 106 The method according to any one of embodiments 103-105, wherein the method further includes: the network device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate The network equipment enables joint channel estimation.
  • Embodiment 107 The method according to any one of embodiments 103-106, wherein the method further comprises:
  • the network device receives fifth indication information from the terminal device, where the fifth indication information is used to indicate that the second difference is less than a second threshold; the second difference is the current transmit power of the terminal device and the first The absolute value of the difference in transmit power.
  • a communication device including: a processing unit;
  • the processing unit is configured to determine a first time window, where the first time window is a time period during which a network device performs joint channel estimation;
  • the processing unit is further configured to adjust the transmit power of the terminal device in a first power interval within the first time window; the first power interval is a plurality of transmit power intervals, including the current terminal device Transmit power interval; when the terminal device adjusts the transmit power of the terminal device in any one of the multiple transmit power intervals, no phase jump occurs in the uplink signal of the terminal device.
  • Embodiment 109 The device according to embodiment 108, further comprising: a communication unit;
  • the communication unit is configured to receive third indication information from a network device, where the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the network device performs a joint channel estimation
  • the required number of time slots is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1;
  • the processing unit is further configured to determine the first time window according to the third indication information.
  • Embodiment 110 The device according to embodiment 109, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: H-1 Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 111 The device according to embodiment 110, wherein the first time window includes the Hth time slot to the H+Qth time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 112. The device according to any one of embodiments 108-111, wherein the processing unit is further configured to:
  • the transmit power of the terminal device is adjusted according to the TPC sent by the network device.
  • Embodiment 113 The device according to any one of embodiments 108-112, wherein the processing unit is specifically configured to:
  • the first difference is the absolute value of the difference between the current transmit power of the terminal device and the third transmit power of the terminal device, and the third transmit power is the network device Instruct the terminal device to adjust the transmission power of the transmission power; if the first difference is less than or equal to a first threshold, adjust the transmission power of the terminal device between the first power intervals.
  • Embodiment 114 The device according to embodiment 113, wherein the processing unit is further configured to:
  • the transmission power of the terminal device is adjusted to the third transmission power.
  • Embodiment 115 The device according to any one of embodiments 108-114, wherein the communication unit is further configured to: receive fourth indication information from the network device, where the fourth indication information is used to indicate The network equipment enables joint channel estimation.
  • Embodiment 116 The device according to any one of embodiments 108-115, wherein the processing unit is further configured to determine whether the second difference is less than or equal to a second threshold; the second difference is the The absolute value of the difference between the current transmitting power of the terminal device and the first transmitting power;
  • the processing unit is further configured to instruct the communication unit to send fifth indication information to the network device, where the fifth indication information is used to indicate that the second difference value is less than the second threshold value.
  • Embodiment 117 A communication device, including: a processing unit and a communication unit;
  • the processing unit is configured to instruct the communication unit to send third indication information to the terminal device, where the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the first time window is The time period during which the network device performs joint channel estimation; the number of time slots required for the network device to perform one joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1.
  • Embodiment 118 The device according to embodiment 117, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 119 The device according to embodiment 118, wherein the first time window includes the Hth time slot to the H+Qth time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 120 The device according to any one of embodiments 117-119, wherein the communication unit is further configured to send fourth indication information to the terminal device, and the fourth indication information is used to indicate the The network device enables joint channel estimation.
  • Embodiment 121 The device according to any one of embodiments 117-120, wherein the communication unit is further configured to:
  • the fifth indication information is used to indicate that the second difference is less than a second threshold; the second difference is the difference between the current transmit power of the terminal device and the first transmit power The absolute value of the value.
  • Embodiment 122 A communication device, where the communication device may be a terminal device or a chip or a system on a chip in the terminal device.
  • the communication device includes a processor and a memory, and the memory stores instructions, and when the instructions are executed by the processor , The communication device is caused to perform the following steps: determine a first time window, the first time window being the time period for the network equipment to perform joint channel estimation; within the first time window, adjust the terminal equipment’s Transmit power; the first power interval is an interval that includes the current transmit power of the terminal device among a plurality of transmit power intervals; the terminal device adjusts the current transmit power of the terminal device in any one of the plurality of transmit power intervals When the transmitting power of the terminal device is described, the uplink signal of the terminal device does not undergo a phase jump.
  • Embodiment 123 The device according to embodiment 122, wherein the communication device is further configured to perform the following step: receiving third indication information from a network device, where the third indication information is used to indicate the first The maximum number of consecutive time slots included in the time window L; the number of time slots required by the network device to perform a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1, according to the first Three indication information to determine the first time window.
  • Embodiment 124 The device according to embodiment 123, wherein the start time point of the first time window is located in the Hth time slot; wherein the Hth time slot satisfies any one of the following: H-1 Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 125 The device according to embodiment 124, wherein the first time window includes the H-th time slot to the H+Q-th time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 126 The device according to any one of the embodiments 122-125, wherein the communication device is further configured to perform the following steps: in the first time slot after the first time window, according to the network
  • the TPC sent by the device adjusts the transmit power of the terminal device.
  • Embodiment 127 The device according to any one of embodiments 122-126, wherein the communication device is further configured to perform the following step: determine a first difference value, where the first difference value is the current value of the terminal device The absolute value of the difference between the transmit power and the third transmit power of the terminal device, where the third transmit power is the transmit power after the network device instructs the terminal device to adjust the transmit power; in the first In a case where the difference is less than or equal to the first threshold, the transmit power of the terminal device is adjusted between the first power intervals.
  • Embodiment 128 The device according to embodiment 127, wherein the communication device is further configured to perform the following steps: determine a first difference; in a case where the first difference is greater than the first threshold, The transmission power of the terminal device is adjusted to the third transmission power.
  • Embodiment 129 The device according to any one of embodiments 122-128, wherein the communication device is further configured to perform the following steps: receiving fourth instruction information from the network device, the fourth instruction information Used to instruct the network device to enable joint channel estimation.
  • Embodiment 130 The device according to any one of embodiments 122-129, wherein the communication device is further configured to perform the following steps: determining whether the second difference is less than or equal to a second threshold; the second difference The value is the absolute value of the difference between the current transmission power of the terminal device and the first transmission power; sending fifth indication information to the network device, where the fifth indication information is used to indicate that the second difference is less than the The second threshold.
  • Embodiment 131 A communication device, where the communication device may be a network device or a chip or a system on a chip in the network device, the communication device includes a processor and a memory, the memory stores instructions, and when the instructions are executed by the processor , The communication apparatus is caused to perform the following steps: instruct the communication unit to send third indication information to the terminal device, the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the first time window The time period for the network device to perform joint channel estimation; the number of time slots required for the network device to perform a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is a positive integer greater than or equal to 1.
  • Embodiment 132 The device according to embodiment 131, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: H-1 Time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 133 The device according to embodiment 132, wherein the first time window includes the Hth time slot to the H+Qth time slot, and Q is greater than or equal to 1 and less than or equal to L A positive integer; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 134 The device according to any one of embodiments 131-133, wherein the communication device is further configured to perform the following steps: send fourth instruction information to the terminal device, and the fourth instruction information is used To instruct the network device to enable joint channel estimation.
  • Embodiment 135. The device according to any one of embodiments 131 to 134, wherein the communication device is further configured to perform the following steps: receiving fifth instruction information from the terminal device, and the fifth instruction information is used To indicate that the second difference is less than the second threshold; the second difference is the absolute value of the difference between the current transmit power of the terminal device and the first transmit power.
  • Embodiment 136 A communication system, including a terminal device and a network device.
  • a terminal device configured to determine a first time window, where the first time window is a time period during which a network device performs joint channel estimation
  • the terminal device adjusts the transmit power of the terminal device in a first power interval; the first power interval is a plurality of transmit power intervals, including the current transmit power of the terminal device
  • the terminal device adjusts the transmit power of the terminal device in any one of the multiple transmit power intervals, the uplink signal of the terminal device does not undergo a phase jump.
  • Embodiment 137 The communication system according to embodiment 136, wherein the network device is configured to send third indication information to the terminal device, and the third indication information is used to indicate the maximum continuous time included in the first time window.
  • the number of slots L; the first time window is the time period for the network device to perform joint channel estimation; the number of time slots required for the network device to perform a joint channel estimation is greater than or equal to 1, and less than or equal to L; L is greater than or A positive integer equal to 1.
  • the terminal device is configured to receive third indication information from a network device, where the third indication information is used to indicate the maximum number of consecutive time slots L included in the first time window; the network device performs a joint channel estimation The number of required time slots is greater than 1, but less than or equal to L; L is a positive integer greater than 1, and the terminal device is further configured to determine the first time window according to the third indication information.
  • Embodiment 138 The communication system according to embodiment 136 or 137, wherein the start time point of the first time window is located in the H-th time slot; wherein the H-th time slot satisfies any one of the following: H-1 time slots are scheduled downlink time slots, and the H-th time slot is a scheduled uplink time slot;
  • the H-1th time slot is an unscheduled time slot, and the Hth time slot is a scheduled uplink time slot;
  • the network equipment completes a joint channel estimation from H-Lth time slot to H-1, and the Hth time slot is a scheduled uplink time slot.
  • Embodiment 139 The communication system according to any one of embodiments 136-138, wherein the first time window includes the H-th time slot to the H+Q-th time slot, and Q is greater than or equal to 1. And a positive integer less than or equal to L; the Hth time slot to the H+Qth time slot are all scheduled uplink time slots.
  • Embodiment 140 The communication system according to any one of embodiments 136 to 139, wherein the network device is further configured to send a TPC to a terminal device.
  • the terminal device is further configured to adjust the transmission power of the terminal device according to the TPC sent by the network device in the first time slot after the first time window.
  • Embodiment 141 The communication system according to any one of embodiments 136-140, wherein the terminal device is further configured to determine a first difference value, and the first difference value is the current transmit power of the terminal device and The absolute value of the difference between the third transmit power of the terminal device; the third transmit power is the transmit power after the network device instructs the terminal device to adjust the transmit power; when the first difference is less than Or equal to the first threshold, adjusting the transmit power of the terminal device between the first power interval.
  • Embodiment 142 The communication system according to any one of embodiments 136 to 141, wherein the terminal device is further configured to determine a first difference; in a case where the first difference is greater than the first threshold Next, adjust the transmitting power of the terminal device to the third transmitting power.
  • Embodiment 143 The communication system according to embodiment 142, wherein the terminal device is further configured to determine a first difference; when the first difference is greater than the first threshold, the terminal The device adjusts the transmission power of the terminal device to the third transmission power.
  • Embodiment 144 The communication system according to any one of embodiments 136-143, wherein the network device is further configured to send fourth indication information to the terminal device, and the fourth indication information is used to indicate The network equipment enables joint channel estimation.
  • the terminal device is further configured to receive fourth instruction information from the network device, where the fourth instruction information is used to instruct the network device to enable joint channel estimation.
  • Embodiment 145 The communication system according to any one of embodiments 136 to 144, wherein the terminal device is further configured to determine whether the second difference is less than or equal to a second threshold; the second difference is The absolute value of the difference between the current transmitting power of the terminal device and the first transmitting power;
  • the terminal device sends fifth indication information to the network device, where the fifth indication information is used to indicate that the second difference is less than the second threshold; the second difference is the terminal device The absolute value of the difference between the current transmission power and the first transmission power;
  • the network device is further configured to receive fifth indication information from the terminal device.
  • Embodiment 146 A computer program product, when it runs on a computer, enables the computer to execute the method involved in any one of the foregoing Embodiments 94 to 107.
  • Embodiment 147 A computer-readable storage medium having instructions stored in the computer-readable storage medium, when running on a computer, enables the computer to execute any of the above-mentioned Embodiments 94 to 107 method.
  • Embodiment 148 A chip includes a processor, and when the processor executes an instruction, the processor is used to execute the method involved in any one of the foregoing Embodiments 94 to 107.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes an input and output circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率控制方法及装置,涉及通信技术领域。该方法包括:终端设备确定第一指示信息(S202);第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率;终端设备向网络设备发送第一指示信息(S201)。网络设备(10)能够根据第一指示信息确定终端设备(20)的功率跳变点,调整终端设备(20)的功率控制或者调整网络设备(10)的联合信道估计,避免网络设备(10)联合信道估计失败,进而提高终端设备(20)的上行信号质量。

Description

功率控制方法及装置
本申请要求于2020年06月22日提交国家知识产权局、申请号为202010570506.1、申请名称为“一种提供辅助信息的方法及UE”的中国专利申请,以及2020年09月04日提交国家知识产权局、申请号为202010923712.6、申请名称为“功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法及装置。
背景技术
由于终端设备的发射功率远低于基站,因此基站收到的来自终端设备的上行信号的上行信号的信干噪比(signal to interference plus Noise Ratio,SINR)较差。当来自终端设备的上行SINR值低于网络设备的解调门限时,基站将无法正确解调终端设备发送的上行信息。
为了解决该问题,网络设备可以根据终端设备在一个上行时隙(slot)内发送的上行参考信号,对终端设备的上行信道进行信道估计,还原终端设备上行信道的信道模型,消除信道中的干扰,提高来自终端设备的上行信号的信号质量。由于电磁波的特性是频率越高,衰减越大,因此在使用高频的通信系统中,终端设备发送的上行信号的衰减较大,上行覆盖问题更加突出。
发明内容
本申请提供一种功率控制方法及装置,解决了现有技术中由于终端设备上行信号质量较差的问题。
为解决上述技术问题,本申请采用如下技术方案:
第一方面,提供一种功率控制方法,包括:
终端设备确定第一指示信息;第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率;终端设备向网络设备发送第一指示信息。
基于上述技术方案,本申请实施例提供的功率控制方法,终端设备向网络设备上报第一指示信息,网络设备根据第一指示信息,以及网络设备是否在进行联合信道估计,对终端设备的发射功率进行控制。能够避免终端设备的发射功率在网络设备进行联合信道估计时达到功率跳变点,导致网络设备进行联合信道估计不准确。
此外,网络设备根据第一指示信息,以及网络设备是否在进行联合信道估计,确定网络设备的联合信道估计策略,网络设备在终端设备的发射功率达到功率跳变点时不进行联合信道估计,可以避免由于终端设备的上行信号发生相位跳变导致网络设备进行联合信道估计失败。
结合上述第一方面,在一种可能的实现方式中,第一指示信息包括一个或多个第 一数值;一个或多个第一数值与一个或多个第一发射功率一一对应;第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。基于此,终端设备直接向网络设备上报第一发射功率和当前发射功率之间的差值,网络设备可以根据该差值直接确定终端设备的上行信号发生相位跳变的调整功率,为网络设备生成上行功率控制(transimit power control,TPC),或者进行联合信道估计提供直接依据。
结合上述第一方面,在一种可能的实现方式中,一个或多个第一发射功率对应多个发射功率区间,且,第一发射功率为多个发射功率区间中的一个发射功率区间的一个端点;相位跳变指当终端设备的发射功率在不同的发射区间之间调整时,终端设备的上行信号的相位发生跳变。基于此,第一指示信息指示了终端设备发生相位跳变时的发射功率区间,网络设备可以根据第一指示信息中的第一发射功率确定发射功率区间。网络设备控制终端设备的发射功率时,控制终端设备的发射功率在一个发射功率区间之内调整,可以避免终端设备的上行信号发生相位跳变。
结合上述第一方面,在一种可能的实现方式中,一个或多个第一发射功率包括多个发射功率区间中的每个发射功率区间的端点。这样,网络设备可以确定每个发射功率区间的端点,避免终端设备多次上报第一指示信息。
结合上述第一方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的两个第一发射功率。这样,可以降低第一指示信息占用的比特位,降低信令开销。同时,网络设备可以确定最接近的两个发射功率区间的端点。使网络设备向上或向下调整终端设备的发射功率均可以避免将终端设备的发射功率调整至功率跳变点。
结合上述第一方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的一个第一发射功率。这样,可以进一步降低第一指示信息占用的比特位,降低信令开销。
结合上述第一方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括大于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。这样,终端设备可以在终端设备的发射功率处于上升趋势的情况下,上报该第一发射功率,避免终端设备上报的第一发射功率与网络设备调整的终端设备的发射功率的趋势不匹配。
结合上述第一方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括小于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。这样,终端设备可以在终端设备的发射功率处于下降趋势的情况下,上报该第一发射功率,避免终端设备上报的第一发射功率与网络设备调整的终端设备的发射功率的趋势不匹配。
结合上述第一方面,在一种可能的实现方式中,终端设备确定当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;若是,则终端设备向网络设备发送第一指示信息。这样,终端设备在发射功率临近最接近的第一发射功率时上报第一指示信息,可以降低终端设备上报的第一指示信息的数量,进一步降低终端设备的信令开销。
结合上述第一方面,在一种可能的实现方式中,终端设备接收来自网络设备的第 二指示信息;第二指示信息用于指示终端设备发送第一指示信息;第二指示信息承载在以下任一项中:无线资源控制(radio resource control,RRC)消息、媒体接入层控制控制元素(Media Access Control–control element,MAC CE)、或者下行控制信息(downlink control information,DCI);响应于第二指示信息,终端设备向网络设备发送第一指示信息;第一指示信息承载在终端设备发送的MAC CE中;承载第一指示信息的MAC CE为以下任一项:承载功率余量报告PHR的MAC CE;新增的MAC CE;或者,在包括传输功率控制(transimit power control,TPC)的DCI所调度的上行时隙中发送的MAC CE。这样,终端设备根据网络设备的指示上报第一指示信息,可以降低终端设备上报的第一指示信息的数量,进而降低终端设备的信令开销。
结合上述第一方面,在一种可能的实现方式中,第二指示信息用于指示终端设备周期性上报第一指示信息;或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;或者,第二指示信息用于指示终端设备在预设时间点上报第一指示信息。这样,终端设备可以采用不同的形式上报第一指示信息,提高该方法的适用场景。
结合上述第一方面,在一种可能的实现方式中,第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。这样,网络设备可以根据终端设备可以根据第二指示信息,确定第一指示信息中的第一发射功率。
第二方面,提供一种功率控制方法,包括:
网络设备接收来自终端设备的第一指示信息;第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率。
结合上述第二方面,在一种可能的实现方式中,第一指示信息包括一个或多个第一数值;一个或多个第一数值与一个或多个第一发射功率一一对应;第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
结合上述第二方面,在一种可能的实现方式中,一个或多个第一发射功率对应多个发射功率区间,且,第一发射功率为多个发射功率区间中的一个发射功率区间的一个端点;相位跳变指当终端设备的发射功率在不同的发射区间之间调整时,终端设备的上行信号的相位发生跳变。
结合上述第二方面,在一种可能的实现方式中,若网络设备正在进行联合信道估计,网络设备指示终端设备在第一功率区间之内调整终端设备的发射功率;第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间。
结合上述第二方面,在一种可能的实现方式中,网络设备确定第一时隙,在第一时隙上,终端设备的发射功率调整至第一功率区间之外,第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间;网络设备在第一时隙上不与第一时隙之前的时隙进行联合信道估计。
结合上述第二方面,在一种可能的实现方式中,一个或多个第一发射功率包括多个发射功率区间中的每个发射功率区间的端点。
结合上述第二方面,在一种可能的实现方式中,终端设备当前发射功率为第二发 射功率,一个或多个第一发射功率包括与第二发射功率差值最小的两个第一发射功率。
结合上述第二方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的一个第一发射功率。
结合上述第二方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括大于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第二方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括小于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第二方面,在一种可能的实现方式中,网络设备向终端设备发送第二指示信息,第二指示信息用于指示终端设备发送第一指示信息;第一指示信息承载在终端设备发送的MAC CE中;第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
结合上述第二方面,在一种可能的实现方式中,第二指示信息用于指示终端设备周期性上报第一指示信息;或者,第二指示信息用于指示终端设备在当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向网络设备发送第一指示信息;或者,第二指示信息用于指示终端设备在预设时间点上报第一指示信息。
结合上述第二方面,在一种可能的实现方式中,第二指示信息还用于指示第一指示信息中的一个或多个第一发射功率,与N个第一发射功率之间的对应关系。
第三方面,提供一种功率控制方法,包括:
终端设备确定第一时间窗,第一时间窗为网络设备进行联合信道估计的时间段。
在第一时间窗内,终端设备在第一功率区间内调整终端设备的发射功率;第一功率区间为多个发射功率区间中,包括终端设备当前发射功率的区间;终端设备在多个发射功率区间中的任一个发射功率区间内调整终端设备的发射功率时,终端设备的上行信号的不发生相位跳变。
基于上述技术方案,终端设备在网络设备进行联合信道估计时,控制终端设备的上行信号不发生相位跳变。从而解决了由于终端设备的上行信号的相位跳变,导致的网络设备进行联合信道估计不准确的问题。
结合上述第三方面,在一种可能的实现方式中,终端设备接收来自网络设备的第三指示信息,第三指示信息用于指示第一时间窗包括的最大连续时隙数L;网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;终端设备根据第三指示信息,确定第一时间窗。这样,终端设备可以根据第三指示信息,确定第一时间窗的时长。
结合上述第三方面,在一种可能的实现方式中,第一时间窗的开始时间点位于第H个时隙;其中第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。这样,终端设备确定第一时间窗的开始条件,终端 设备根据该开始条件以及第一时间窗的时长,确定第一时间窗。
结合上述第三方面,在一种可能的实现方式中,第一时间窗包括第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;第H个时隙至第H+Q个时隙均为调度的上行时隙。这样,网络设备在第H个时隙至第H+Q个时隙上进行联合信道估计,终端设备可以确定第H个时隙至第H+Q个时隙为第一时间窗。
结合上述第三方面,在一种可能的实现方式中,终端设备在第一时间窗之后的第一个时隙上,根据网络设备发送的TPC,调整终端设备的发射功率。这样,在第一时间窗之后,终端设备立即根据网络设备发送的TPC,调整终端设备的发射功率,可以保证终端设备的发射功率与传输需求相匹配。
结合上述第三方面,在一种可能的实现方式中,终端设备确定第一差值,第一差值为终端设备当前发射功率与终端设备的第三发射功率之间的差值的绝对值;第三发射功率为网络设备指示终端设备调整发射功率后的发射功率;在第一差值小于或等于第一阈值的情况下,终端设备在第一功率区间之间调整终端设备的发射功率。这样,在终端终端设备当前发射功率与网络设备需要调整的终端设备的发射功率之间的差值较小时,终端设备当前的发射功率与上行传输的功率需求差别较小,终端设备可以在第一功率区间内调整终端设备的发射功率,避免终端设备的上行信号发生相位跳变。
结合上述第三方面,在一种可能的实现方式中,终端设备确定第一差值;在第一差值大于第一阈值的情况下,终端设备将终端设备的发射功率调整为第三发射功率。这样,在终端终端设备当前发射功率与网络设备需要调整的终端设备的发射功率之间的差值较大时,若终端设备不按照网络设备的指示调整发生功率,可能会导致上行链路的失败。此时,终端设备按照网络设备的指示调整发生功率,可以避免上行链路的失败。
结合上述第三方面,在一种可能的实现方式中,终端设备接收来自网络设备的第四指示信息,第四指示信息用于指示网络设备使能联合信道估计。这样,终端设备在网络设备使能联合信道估计的情况下执行上述方案,可以避免网络设备联合信道估计失败。
结合上述第三方面,在一种可能的实现方式中,终端设备确定第二差值是否小于或等于第二阈值;第二差值为终端设备当前发射功率与第一发射功率的差值的绝对值;若是,终端设备向网络设备发送第五指示信息,第五指示信息用于指示第二差值小于第二阈值。这样,终端设备在发射功率接近功率跳变点时上报该情况,可以使网络设备在之后的一段时间内不进行联合信道估计,避免联合信道估计失败的情况发生。
第四方面,提供一种功率控制方法,包括:
网络设备向终端设备发送第三指示信息,第三指示信息用于指示第一时间窗包括的最大连续时隙数L;第一时间窗为网络设备进行联合信道估计的时间段;网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
结合上述第四方面,在一种可能的实现方式中,第一时间窗的开始时间点位于第H个时隙;其中第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;或者,第H-1个时隙为未调度的时隙,第H个时隙为调 度的上行时隙;或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
结合上述第四方面,在一种可能的实现方式中,第一时间窗包括第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;第H个时隙至第H+Q个时隙均为调度的上行时隙。
结合上述第四方面,在一种可能的实现方式中,方法还包括:网络设备向终端设备发送第四指示信息,第四指示信息用于指示网络设备使能联合信道估计。
结合上述第四方面,在一种可能的实现方式中,网络设备接收来自终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;第二差值为终端设备当前发射功率与第一发射功率的差值的绝对值。
第五方面,提供一种通信装置,包括:处理单元和通信单元。
处理单元,用于确定第一指示信息;第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率。
通信单元,用于向网络设备发送第一指示信息。
结合上述第五方面,在一种可能的实现方式中,第一指示信息包括一个或多个第一数值;一个或多个第一数值与一个或多个第一发射功率一一对应;第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
结合上述第五方面,在一种可能的实现方式中,一个或多个第一发射功率对应多个发射功率区间,且,第一发射功率为多个发射功率区间中的一个发射功率区间的一个端点;相位跳变指当终端设备的发射功率在不同的发射区间之间调整时,终端设备的上行信号的相位发生跳变。
结合上述第五方面,在一种可能的实现方式中,一个或多个第一发射功率包括多个发射功率区间中的每个发射功率区间的端点。
结合上述第五方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的两个第一发射功率。
结合上述第五方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的一个第一发射功率。
结合上述第五方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括大于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第五方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括小于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第五方面,在一种可能的实现方式中,处理单元,还用于:确定当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;处理单元,还用于指示通信单元向网络设备发送第一指示信息。
结合上述第五方面,在一种可能的实现方式中,通信单元,还用于接收来自网络 设备的第二指示信息;第二指示信息用于指示终端设备发送第一指示信息;第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。处理单元,还用于指示通信单元向网络设备发送第一指示信息;第一指示信息承载在终端设备发送的MAC CE中;承载第一指示信息的MAC CE为以下任一项:承载功率余量报告PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
结合上述第五方面,在一种可能的实现方式中,第二指示信息用于指示终端设备周期性上报第一指示信息;或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;或者,第二指示信息用于指示终端设备在预设时间点上报第一指示信息。
结合上述第五方面,在一种可能的实现方式中,第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
第六方面,提供一种通信装置包括:处理单元和通信单元。
处理单元,用于指示通信单元接收来自终端设备的第一指示信息;第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率。
结合上述第六方面,在一种可能的实现方式中,第一指示信息包括一个或多个第一数值;一个或多个第一数值与一个或多个第一发射功率一一对应;第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
结合上述第六方面,在一种可能的实现方式中,一个或多个第一发射功率对应多个发射功率区间,且,第一发射功率为多个发射功率区间中的一个发射功率区间的一个端点;相位跳变指当终端设备的发射功率在不同的发射区间之间调整时,终端设备的上行信号的相位发生跳变。
结合上述第六方面,在一种可能的实现方式中,处理单元,还用于:若网络设备正在进行联合信道估计,则指示终端设备在第一功率区间之内调整终端设备的发射功率;第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间。
结合上述第六方面,在一种可能的实现方式中,确定第一时隙,在第一时隙上,终端设备的发射功率调整至第一功率区间之外,第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间;在第一时隙上不与第一时隙之前的时隙进行联合信道估计。
结合上述第六方面,在一种可能的实现方式中,一个或多个第一发射功率包括多个发射功率区间中的每个发射功率区间的端点。
结合上述第六方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的两个第一发射功率。
结合上述第六方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括与第二发射功率差值最小的一个第一发射功率。
结合上述第六方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括大于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第六方面,在一种可能的实现方式中,终端设备当前发射功率为第二发射功率,一个或多个第一发射功率包括小于第二发射功率,且与第二发射功率差值最小的一个第一发射功率。
结合上述第六方面,在一种可能的实现方式中,通信单元,还用于:向终端设备发送第二指示信息,第二指示信息用于指示终端设备发送第一指示信息;第一指示信息承载在终端设备发送的MAC CE中。
结合上述第六方面,在一种可能的实现方式中,第二指示信息用于指示终端设备周期性上报第一指示信息;或者,第二指示信息用于指示终端设备在当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向网络设备发送第一指示信息;或者,第二指示信息用于指示终端设备在预设时间点上报第一指示信息。
结合上述第六方面,在一种可能的实现方式中,第二指示信息还用于指示第一指示信息中的一个或多个第一发射功率,与N个第一发射功率之间的对应关系。
第七方面,提供一种通信装置,包括:处理单元;处理单元,用于确定第一时间窗,第一时间窗为网络设备进行联合信道估计的时间段。
处理单元,还用于在第一时间窗内,在第一功率区间内调整终端设备的发射功率;第一功率区间为多个发射功率区间中,包括终端设备当前发射功率的区间;终端设备在多个发射功率区间中的任一个发射功率区间内调整终端设备的发射功率时,终端设备的上行信号的不发生相位跳变。
结合上述第七方面,在一种可能的实现方式中,该通信装置还包括:通信单元;通信单元,用于接收来自网络设备的第三指示信息,第三指示信息用于指示第一时间窗包括的最大连续时隙数L;网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;处理单元,还用于根据第三指示信息,确定第一时间窗。
结合上述第七方面,在一种可能的实现方式中,第一时间窗的开始时间点位于第H个时隙;其中第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
结合上述第七方面,在一种可能的实现方式中,第一时间窗包括第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;第H个时隙至第H+Q个时隙均为调度的上行时隙。
结合上述第七方面,在一种可能的实现方式中,处理单元,还用于:在第一时间窗之后的第一个时隙上,根据网络设备发送的TPC,调整终端设备的发射功率。
结合上述第七方面,在一种可能的实现方式中,处理单元,具体用于:确定第一差值,第一差值为终端设备当前发射功率与终端设备的第三发射功率之间的差值的绝对值,第三发射功率为网络设备指示终端设备调整发射功率后的发射功率;在第一差值小于或等于第一阈值的情况下,在第一功率区间之间调整终端设备的发射功率。
结合上述第七方面,在一种可能的实现方式中,处理单元,还用于:确定第一差 值;在第一差值大于第一阈值的情况下,将终端设备的发射功率调整为第三发射功率。
结合上述第七方面,在一种可能的实现方式中,通信单元,还用于:接收来自网络设备的第四指示信息,第四指示信息用于指示网络设备使能联合信道估计。
结合上述第七方面,在一种可能的实现方式中,处理单元,还用于确定第二差值是否小于或等于第二阈值;第二差值为终端设备当前发射功率与第一发射功率的差值的绝对值;处理单元,还用于指示通信单元向网络设备发送第五指示信息,第五指示信息用于指示第二差值小于第二阈值。
第八方面,提供一种通信装置,包括:处理单元和通信单元;处理单元,用于指示通信单元向终端设备发送第三指示信息,第三指示信息用于指示第一时间窗包括的最大连续时隙数L;第一时间窗为网络设备进行联合信道估计的时间段;网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
结合上述第八方面,在一种可能的实现方式中,第一时间窗的开始时间点位于第H个时隙;其中第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
结合上述第八方面,在一种可能的实现方式中,第一时间窗包括第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;第H个时隙至第H+Q个时隙均为调度的上行时隙。
结合上述第八方面,在一种可能的实现方式中,通信单元,还用于向终端设备发送第四指示信息,第四指示信息用于指示网络设备使能联合信道估计。
结合上述第八方面,在一种可能的实现方式中,通信单元,还用于接收来自终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;第二差值为终端设备当前发射功率与第一发射功率的差值的绝对值。
第九方面,本申请提供了一种通信装置,包括:处理器和存储介质;至少一个处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面和第一方面的任一种可能的实现方式中所描述的方法。该通信装置可以是终端设备,也可以是终端设备中的芯片。
第十方面,本申请提供了一种通信装置,包括:处理器和存储介质;至少一个处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第二方面和第二方面的任一种可能的实现方式中所描述的方法。该通信装置可以是网络设备,也可以是网络设备中的芯片。
第十一方面,本申请提供了一种通信装置,包括:处理器和存储介质;至少一个处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第三方面和第三方面的任一种可能的实现方式中 所描述的方法。该通信装置可以是终端设备,也可以是终端设备中的芯片。
第十二方面,本申请提供了一种通信装置,包括:处理器和存储介质;至少一个处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第四方面和第四方面的任一种可能的实现方式中所描述的方法。该通信装置可以是网络设备,也可以是网络设备中的芯片。
第十三方面,本申请提供一种通信系统,包括第一通信装置和第二通信装置。其中,第一通信装置用于执行如第一方面和第一方面的任一种可能的实现方式中所描述的方法;第二通信装置用于执行如第二方面和第二方面的任一种可能的实现方式中所描述的方法。
第十四方面,本申请提供一种通信系统,包括第三通信装置和第四通信装置。其中,第三通信装置用于执行如第三方面和第三方面的任一种可能的实现方式中所描述的方法;第四通信装置用于执行如第四方面和第四方面的任一种可能的实现方式中所描述的方法。
第十五方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第一方面和第一方面的任一种可能的实现方式中所描述的方法。
第十六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第二方面和第二方面的任一种可能的实现方式中所描述的方法。
第十七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第三方面和第三方面的任一种可能的实现方式中所描述的方法。
第十八方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第四方面和第四方面的任一种可能的实现方式中所描述的方法。
第十九方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第一方面和第一方面的任一种可能的实现方式中所描述的方法。
第二十方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第二方面和第二方面的任一种可能的实现方式中所描述的方法。
第二十一方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第三方面和第三方面的任一种可能的实现方式中所描述的方法。
第二十二方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第四方面和第四方面的任一种可能的实现方式中所描述的方法。
应当理解的是,本申请中对技术特征、技术方案、有益效果或类似语言的描述并 不是暗示在任意的单个实施例中可以实现所有的特点和优点。相反,可以理解的是对于特征或有益效果的描述意味着在至少一个实施例中包括特定的技术特征、技术方案或有益效果。因此,本说明书中对于技术特征、技术方案或有益效果的描述并不一定是指相同的实施例。进而,还可以任何适当的方式组合本实施例中所描述的技术特征、技术方案和有益效果。本领域技术人员将会理解,无需特定实施例的一个或多个特定的技术特征、技术方案或有益效果即可实现实施例。在其他实施例中,还可在没有体现所有实施例的特定实施例中识别出额外的技术特征和有益效果。
附图说明
图1为本申请实施例提供的一种通信系统的系统架构图;
图2为本申请实施例提供的一种功率控制方法的流程示意图;
图3a为本申请实施例提供的另一种功率控制方法的流程示意图;
图3b为本申请实施例提供的另一种功率控制方法的流程示意图;
图4为本申请实施例提供的另一种功率控制方法的流程示意图;
图5为本申请实施例提供的第一时间窗的示意图;
图6为本申请实施例提供的另一种功率控制方法的流程示意图;
图7为本申请实施例提供的另一种功率控制方法的流程示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的一种通信装置的硬件结构示意图;
图10为本申请实施例提供的另一种通信装置的硬件结构示意图;
图11为本申请实施例提供的一种终端设备的硬件结构示意图;
图12为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的功率控制方法,应用于如图1所示的通信系统100中,如图1所示,该通信系统100包括网络设备10和终端设备20。终端设备20用于向网络设备10发送上行数据。网络设备10用于接收来自终端设备20的上行数据,并对终端设备20的发射功率进行功率控制。
本申请实施例中的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、新空口(new radio,NR)系统,无线局域网(wireless local area networks,WLAN)系统以及未来演进系统或者多种通信融合系 统。示例性的,本申请实施例提供的方法具体可应用于演进的全球陆地无线接入网络(evolved-universal terrestrial radio access network,E-UTRAN)和下一代无线接入网(next generation-radio access network,NG-RAN)系统。
本申请实施例中的网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,例如可以为TRP、基站(例如,演进型基站(evolved NodeB,eNB或eNodeB)、下一代基站节点(next generation node base station,gNB)、下一代eNB(next generation eNB,ng-eNB)等)、各种形式的控制节点(例如,网络控制器、无线控制器(例如,云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器))、路侧单元(road side unit,RSU)等。具体的,网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以为基站的天线面板。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端设备配置资源。在采用不同的无线接入技术(radio access technology,RAT)的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
本申请实施例中的终端设备是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备还可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备可以是车联网(vehicle to everything,V2X)设备,例如,智能汽车(smart car或intelligent car)、数字汽车(digital car)、无人汽车(unmanned car或driverless car或pilotless car或automobile)、自动汽车(self-driving car或autonomous car)、纯电动汽车(pure EV或Battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended EV,REEV)、插电式混合动力汽车(plug-in HEV,PHEV)、新能源汽车(new energy vehicle)等。终端设备也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备还可以是移动站(mobile station,MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备还可以为下一代通信系统中的终端设备,例如,5G系统中的终端设备或者未来演进的PLMN中的终端设备,NR系统中的终端设备等。
为了使得本申请更加的清楚,首先对本申请涉及到的部分概念做简单介绍。
1、功率余量报告(power headroom report,PHR)
功率余量(Power Headroom,PH)表示终端设备允许的最大传输功率与网络设备指示的终端的传输功率之间的差值。
网络设备指示的终端的传输功率根据网络设备所需的上行传输的传输速率确定的。例如,网络设备指示的终端传输PUSCH的传输功率的方法为:网络设备根据所需的PUSCH的传输速率,确定终端设备传输该PUSCH的传输功率。
PH中存在网络设备指示的终端的传输功率,大于终端设备允许的最大传输功率的情况。也即是说,存在PH的取值为负值的情况。
具体来说,在终端设备允许的最大传输功率,大于网络设备指示的终端的传输功率的情况下,PH的取值为正值。此时,终端设备还有功率余量可以分配,在网络设备为终端设备分配传输资源时,可以继续增加为终端设备分配的传输资源数量。
在终端设备允许的最大传输功率,小于网络设备指示的终端的传输功率的情况下,PH的取值为负值。此时,网络设备为终端设备调度的上行传输速率所需的传输功率已超过终端设备允许的最大传输功率,在之后网络设备为终端设备分配传输资源时,网络设备需要减少为终端设备分配的传输资源数量。
2、功率调整
目前,在终端设备发送上行数据时,终端设备可以以多个不同发射功率中的一个发送上行数据。终端设备根据网络设备向终端设备发送的TPC,和终端设备测量到的路损(Path loss),调整当前slot终端设备的发射功率。
在连续上行传输过程中,终端设备可以根据如下表1所示的对应关系,调整终端设备的发射功率。
如下表1所示,表1第一列为网络设备向终端设备下发的TPC控制命令域(TPC Command Field),包括“0”,“1”,“2”,“3”四个值。
表1中的第二列为累计功率修正值。终端设备根据网络设备下发的TPC控制命令域调整PUSCH的发射功率(δ PUSCH,b,f,c),或者调整SRS的发射功率(δ SRS,b,f,c)。在TPC控制命令域的值为0时,终端设备的发射功率降低1dB;在TPC控制命令域的值为1时,终端设备的发射功率保持不变;在TPC控制命令域的值为2时,终端设备的发射功率增加1dB;在控制命令域的值为3时,终端设备的发射功率增加3dB。
表1中的第三列为绝对功率修正值。绝对功率修正值与累计功率修正值类似,区别在于累计功率修正值以在之前功率调整的基础上以累计的方式逐步将终端设备的发射功率调整至目标发射功率,而绝对功率修正值是直接将终端设备的发射功率调整至目标发射功率。
表1
Figure PCTCN2021093700-appb-000001
3、功率跳变点
功率跳变点也叫功率切档点,是终端设备的多个发射功率中的引起终端设备的上行信号发生相位跳变的发射功率。
其中,跳变是指终端设备的上行信号发生相位跳变。切档是指终端设备的PA的供电电压由一个档位切换到另外一个档位。
终端设备的上行信号的相位是否发生跳变,与终端设备的PA的供电电压有关。当终端终端设备的PA的供电电压发生变化时,终端设备的上行信号的相位将发生跳变。当终端终端设备的PA的供电电压不发生变化时,终端设备的上行信号的相位不发生跳变。
终端设备的PA的供电电压,与终端设备的发射功率有关。终端设备对应多个PA的供电电压,该多个供电电压与终端设备对应的多个发射功率区间一一对应。当终端设备的发射功率在一个发射功率区间内调整时,终端设备的PA的供电电压不变。当终端设备的发射功率由一个发射功率区间调整至另一个发射功率区间时,终端设备的PA的供电电压发生变化。即终端设备的PA的供电电压也由一个发射功率区间对应的供电电压,调整至另一个发射功率区间对应的供电电压。
当终端设备的发射功率由其他发射功率调整至功率跳变点之后,终端设备PA的供电电压可能会切档,进而导致终端设备的上行信号可能发生相位跳变。
4、信道估计
信道估计是指网络设备根据终端设备在一个slot内发送上行参考信号,确定在该slot内终端设备的上行信道的信道矩阵,并根据该上行信号的信道矩阵还原终端设备上行信道的信道模型,消除终端设备的上行信道中的干扰,提高终端设备发送的SINR的方法。
以上是对本申请涉及到的部分概念的简单介绍。
为了解决当前的信道估计方法无法进一步提高终端设备的上行信号质量的问题,本申请实施例提供了一种多slot联合信道估计(以下简称联合信道估计)的方法。网络设备根据多个调度的连续上行slot中,每个上行slot内的信道估计结果进行联合估计,确定设备发送的上行信号SINR。
网络设备采用联合信道估计对多个slot内的上行信道进行估计,可以得到更好的信道估计结果。
但是在多slot联合信道估计中,要求终端在联合信道估计的slot中发射上行信号的相位必须是连续的,不能发生跳变。而在当前的终端设备中,终端设备会根据网络设备向终端设备发送的TPC,和终端设备测量到的路损。当终端的发射功率达到功率跳变点时,终端设备的将会调整功率放大器的供电电压,引起上行信号的相位跳变,从而导致网络设备进行联合信道估计不准确。
基于上述由于终端设备的功率达到功率跳变点,终端设备的上行信号的将会发生相位跳变,而导致的网络设备进行联合信道估计不准确的问题。本申请实施例提供了一种功率控制方法,终端设备向网络设备上报终端设备一个或多个第一发射功率。终端设备的发射功率达到第一发射功率时,终端设备的上行信号将会发生相位跳变。网络设备根据该一个多个第一发射功率,确定终端设备的上行信号将会发生相位跳变时, 终端设备对应的发射功率,并根据第一发射功率,对终端设备进行功率控制,或者根据第一发射功率,对网络设备的联合信道估计进行控制。
基于上述技术方案,本申请实施例提供的功率控制方法,终端设备向网络设备上报第一指示信息,网络设备根据第一指示信息,以及网络设备是否在进行联合信道估计,对终端设备的发射功率进行控制。能够避免终端设备的发射功率在网络设备进行联合信道估计时跳档,导致网络设备进行联合信道估计不准确。
实施例一
如图2所示,本申请实施例提供的功率控制方法包括:
S201、终端设备向网络设备发送第一指示信息。相应的,网络设备接收来自终端设备的第一指示信息。
第一指示信息用于指示终端设备的一个或多个第一发射功率;第一发射功率为终端设备的上行信号发生相位跳变所对应的发射功率(也即终端设备对应的功率跳变点)。
一种可能的实现方式中,第一指示信息中的一个或多个第一发射功率对应多个发射功率区间,且,第一发射功率为多个发射功率区间中的一个发射功率区间的一个端点。相位跳变指当终端设备的发射功率在不同的发射区间之间调整时,终端设备的上行信号的相位发生跳变。
这样,终端设备可以通过第一指示信息间接指示终端设备的一个或多个发射功率区间。以便于网络设备能够根据功率发射区间,对终端设备进行功率控制,或者进行联合信道估计。
一种具体的实现方式中,第一指示信息中包括一个或多个第一数值,一个或多个第一数值与一个或多个第一发射功率一一对应。这样,第一指示信息可以具体以第一数值的形式指示一个或多个第一发射功率。
基于上述技术方案,本申请实施例提供的功率控制方法,终端设备通过向网络设备上报第一指示信息,指示终端设备的第一发射功率,也即向网络设备指示终端设备发生相位跳变的功率跳变点。这样,网络设备可以根据第一指示信息进行联合信道估计或者对终端设备进行功率控制,避免在网络设备进行联合信道估计时,终端设备的上行信号的相位发生跳变,从而解决了网络设备进行联合信道估计不准确的问题。
需要指出的是,在本申请实施例中,网络设备接收到来自终端设备的第一指示信息之后,网络设备可以根据第一指示信息,确定终端设备的功率跳变点。这样,网络设备在进行联合信道估计时,可以通过控制终端设备的发射功率不到达功率跳变点,以保证终端设备的上行信号的相位不发生跳变。或者,网络设备可以在终端设备的发射功率到达功率跳变点时,不进行联合信道估计。从而解决了由于终端设备的上行信号的相位发生跳变,而导致的网络设备进行联合信道估计不准确的问题。
可以理解的是,在网络设备接收到第一指示信息之后,网络设备是否根据第一指示信息进行联合信道估计,或者对终端设备进行功率控制,本申请实施例不做限定。
在本申请实施例的一种可能的实现方式中,如图2所示,在S201之前,本申请实施例提供的功率控制方法还包括:
S202、终端设备确定第一指示信息。
需要指出的是,第一指示信息可以是终端设备根据终端设备当前的发射功率,以 及终端设备的各个发射功率区间生成的。或者,第一指示信息可以是预先存储在终端设备中的,或者终端设备可以通过其他方式确定第一指示信息,本申请对此不做限定。
举例来说,在第一指示信息是终端设备根据终端设备当前的发射功率,以及终端设备的各个发射功率区间生成的情况下,终端设备可以根据上述S201中所记载的任一种情况生成第一指示信息。
在第一指示信息是预先存储在终端设备中的情况下,终端设备可以预先存储上述S201中所记载的各个情况所对应的第一指示信息,并分别设置相应的触发条件。在满足触发条件时,终端设备向网络设备发送相应的第一指示信息。
在S201的一种可能的实现方式中,在第一指示信息包括一个或多个第一数值的场景下,第一数值的取值包括如下两种情况,分别为:情况A、第一数值为第一发射功率和当前发射功率之间的差值。情况B、第一数值为第一发射功率的实际值。
以下结合示例1,分别对情况A和情况B进行详细说明。
其中,示例1为:终端设备具有20个发射功率,分别为0-19。该20个发射功率被划分为四个功率区间,该四个功率区间分别对应终端设备的四个供电电压。终端设备的发射功率,发射功率区间以及供电电压之间的关系如下表2所示:
表2
供电电压 发射功率区间 发射功率
第一供电电压 第一区间 0、1、2、3、4、5
第二供电电压 第二区间 6、7、8、9、10、11
第三供电电压 第三区间 12、13、14、15、16、17
第四供电电压 第四区间 18、19
情况A、第一数值为第一发射功率和当前发射功率之间的差值。
在情况A中,结合示例1,终端设备当前的发射功率为10。此时,第一数值与发射功率区间之间的对应关系如下表3所示:
表3
发射功率区间 第一数值
第一区间 -10、-5
第二区间 -4、1
第三区间 2、7
第四区间 8、9
需要指出的是,本申请中的第一指示信息,可以包括上述表3中的全部第一数值,或者包括上述表3中的部分第一数值。以下,分情况进行说明:
其中,终端设备的当前发射功率指的是终端设备在当前时隙上,终端设备接收到网络设备下发的TPC之前的发射功率。
情况A1、第一数值的取值为上述各个发射功率区间的左端点以及右端点,与终端设备当前发射功率的差值。
在该情况下,第一指示信息中包括的第一数值为如上述表3中所示的全部第一数值。
情况A2、第一数值的取值为上述各个发射功率区间的左端点,分别与终端设备当 前发射功率差值。
在该情况下,第一指示信息中包括的第一数值如下表4所示:
表4
发射功率区间 第一数值
第一区间 -10
第二区间 -4
第三区间 2
第四区间 8
情况A3、第一数值的取值为上述各个发射功率区间的右端点,分别与终端设备当前发射功率差值。
在该情况下,第一指示信息中包括的第一数值如下表5所示:
表5
发射功率区间 第一数值
第一区间 -5
第二区间 1
第三区间 7
第四区间 9
情况A4、第一数值的取值为终端设备当前发射功率所属的发射功率区间的左端点和右端点,与终端设备当前发射功率的差值。
在该情况下,终端设备当前发射功率所属的发射功率区间为第二区间,则第一指示信息中包括的第一数值如下表6所示:
表6
发射功率区间 第一数值
第二区间 -4、1
情况A5、第一数值的取值为第一端点,与终端设备当前发射功率的差值。
第一端点为终端设备当前发射功率所属的发射功率区间中与终端设备当前发射功率的差值最小的端点。
在该情况下,终端设备当前发射功率所属的发射功率区间为第二区间,第二区间中与终端设备当前发射功率差值最小的端点为右端点11,则第一指示信息中包括的第一数值如下表7所示:
表7
发射功率区间 第一数值
第二区间 1
情况A6、若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备提高发射功率,则第一数值的取值为当前发射功率所属的发射功率区间的右端点,与终端设备当前发射功率的差值。M为正整数。
在该情况下,终端设备当前发射功率所属的发射功率区间为第二区间,则第一指示信息中包括的第一数值如下表8所示:
表8
发射功率区间 第一数值
第二区间 1
情况A7、若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备降低发射功率,则第一数值的取值为当前发射功率所属的发射功率区间的左端点,与终端设备当前发射功率的差值。
在该情况下,终端设备当前发射功率所属的发射功率区间为第二区间,则第一指示信息中包括的第一数值如下表9所示:
表9
发射功率区间 第一数值
第二区间 -4
情况A8、第一数值的取值为第二端点,与终端设备当前发射功率的差值。
第二端点为终端设备当前发射功率所属的发射功率区间的相邻功率区间中,邻近当前发射功率所属的发射功率区间的端点。第二端点的数量为一个或多个。
在该情况下,终端设备当前发射功率所属的发射功率区间为第二区间,则第二端点包括:第一区间中邻近第二区间的端点5,(即第一区间的右端点),以及第三区间中邻近第二区间的端点12(即第三区间的左端点)。
此时,第一指示信息中包括的第一数值如下表10所示:
表10
发射功率区间 第一数值
第一区间 -5
第三区间 2
情况A9、第一数值的取值为第三端点,与终端设备当前发射功率的差值。
第三端点为一个或多个第二端点中,与终端设备当前发射功率的差值的绝对值最小的第二端点。
例如,结合上述情况A8,第二端点包括:第一区间中邻近第二区间的端点5,(即第一区间的右端点),以及第三区间中邻近第二区间的端点12(即第三区间的左端点)。该两个第二端点中与终端设备当前发射功率(10)的差值的绝对值最小的第二端点为第三区间的左端点12。因此,第三端点为第三区间的左端点12。
此时,第一指示信息中包括的第一数值如下表11所示:
表11
发射功率区间 第一数值
第三区间 2
情况A10、若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备提高发射功率,则第一数值的取值为第四端点,与终端设备当前发射功率的差值。
第四端点为终端设备当前发射功率区间的右侧相邻区间的左端点。
终端设备当前发射功率所属的发射功率区间为第二区间,则第四端点为第三区间的左端点12。
此时,第一指示信息中包括的第一数值如下表12所示:
表12
发射功率区间 第一数值
第三区间 2
情况A11、若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备降低发射功率,则第一数值的取值为第五端点,与终端设备当前发射功率的差值。
第五端点为终端设备当前发射功率区间的左侧相邻区间的右端点。
终端设备当前发射功率所属的发射功率区间为第二区间,则第五端点为第一区间的右端点5。
此时,第一指示信息中包括的第一数值如下表13所示:
表13
发射功率区间 第一数值
第一区间 -5
需要指出的是,在上述情况A1至A11所示出的表格中,为了便于理解,列出了第一指示信息中包括的第一数值对应的发射功率区间。在终端设备实际上报的第一指示信息中,可以只包括第一数值而不包括第一数值对应的发射功率区间,以降低终端设备的信令开销。
以上,为对情况A的详细说明。在情况A中,终端设备直接指示第一发射功率与当前发射功率的差值。终端设备能够根据第一数值,指示终端设备的上行信号的相位不发生跳变的功率调整区间。
网络设备可以在进行联合信道估计时,控制向终端设备发送的TPC中的功率调整值位于该功率调整区间之内。这样,在网络设备进行联合信道估计时,终端设备的上行信号的相位不发生跳变。
或者,网络设备可以在向终端设备发送的TPC中的功率调整值超过该功率调整区间时,不进行联合信道估计。这样,在终端设备的上行信号的相位发生跳变时,网络设备不进行联合信道估计。从而解决了由于终端设备的上行信号的相位发生跳变,而导致的网络设备进行联合信道估计不准确的问题。
情况B、第一数值为第一发射功率的实际值
在第一数值用于表征第一发射功率的实际值的情况下,以第一发射功率为各个发射功率区间的左端点为例,第一数值的取值存在以下几种情况:
情况B1、第一数值的取值为上述各个发射功率区间的左端点的值。
在该情况下,第一指示信息中包括的第一数值如下表14所示:
表14
发射功率区间 第一数值
第一区间 0
第二区间 6
第三区间 12
第四区间 18
情况B2、第一数值的取值为上述各个发射功率区间的左端点中,与终端设备当前发射功率差值最小的两个左端点的值。
也即是说,终端设备对应有N个第一发射功率,第一指示信息中的一个或多个第一发射功率为N个第一发射功率中与终端设备当前发射功率差值最小的两个发射功率。
在该情况下,第一指示信息中包括的第一数值如下表15所示:
表15
发射功率区间 第一数值
第二区间 6
第三区间 12
情况B3、第一数值的取值为上述各个发射功率区间的左端点中,与终端设备当前发射功率差值最小的左端点的值。
需要指出的是,若与当前发射功率差值最小的第一发射功率包括两个发射功率,则终端设备可以向网络设备发送该两个第一发射功率中的任一个,或者终端设备向网络设备发送该两个第一发射功率中满足条件的一个。
在该情况下,第一指示信息中包括的第一数值如下表16所示:
表16
发射功率区间 第一数值
第二区间 6
情况B4、第一数值的取值为上述各个发射功率区间的左端点中,大于终端设备当前发射功率,且与终端设备当前发射功率差值最小的左端点的值。
需要指出的是,若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备提高发射功率,则终端设备根据该情况B4中记载的第一数值确定第一指示信息,并向网络设备上报该第一指示信息。
在该情况下,第一指示信息中包括的第一数值如下表17所示:
表17
发射功率区间 第一数值
第三区间 12
情况B5、第一数值的取值为上述各个发射功率区间的左端点中,小于终端设备当前发射功率,且与终端设备当前发射功率差值最小的左端点的值。
需要指出的是,若在终端设备确定第一指示信息之前的最近M次,网络设备均指示终端设备降低发射功率,则终端根据该情况B4中记载的第一数值确定第一指示信息,并向网络设备上报该第一指示信息。
在该情况下,第一指示信息中包括的第一数值如下表18所示:
表18
发射功率区间 第一数值
第二区间 6
需要指出的是,以上终端设备向网络设备发送的第一指示信息中的第一数值为发射功率区间的左端点为例,对情况B中的第一发射功率的取值的各种情况进行了说明。
在实际运用中,终端设备向网络设备发送的多个第一发射功率可以既包括发射功 率区间的左端点,又包括发射功率区间的右端点。例如,结合上述示例1,终端设备向网络设备发送的第一指示信息中的第一数值如下表19所示:
表19
发射功率区间 第一数值
第一区间 0、5
第二区间 6、11
第三区间 12、17
第四区间 18、19
或者,终端设备向网络设备发送的多个第一发射功率可以包括发射功率区间的右端点。例如,结合上述示例1,终端设备向网络设备发送的第一指示信息中的第一数值如下表20所示:
表20
发射功率区间 第一数值
第一区间 5
第二区间 11
第三区间 17
第四区间 19
终端设备向网络设备发送的多个第一发射功率可以既包括发射功率区间的左端点,又包括发射功率区间的右端点;以及终端设备向网络设备发送的多个第一发射功率可以包括发射功率区间的右端点的实现过程与以上终端设备向网络设备发送的多个第一发射功率包括发射功率区间的左端点的过程类似,本申请对此不在赘述。
需要指出的是,在终端设备仅向网络设备上报多个区间中的每个区间的一个端点的情况下,终端设备和网络设备可以根据协议规定,确定上报每个区间的左端点,或者是上报每个区间的右端点。
或者,终端设备根据网络设备的指示,确定上报每个区间的左端点,或者是上报每个区间的右端点。
又或者,在终端设备确定向网络设备上报每个区间的左端点,或者是向网络设备上报每个区间的右端点之后,终端设备向网络设备发送一个指示信息,以指示本次上报的是各个发射功率区间左端点或是右端点。
举例来说,终端设备在第一指示信息中增加1比特的指示位,该指示位用于指示本次上报的第一指示信息中的第一发射功率为功率区间的左端点还是右端点。
更为具体的,在该比特位的值为0时,表示第一指示信息中的第一发射功率为终端设备的左端点;在该比特位的值为1时,表示第一指示信息中的第一发射功率为终端设备的右端点。
需要说明的是,由于终端设备的发送功率是连续的,因此,在终端设备向网络设备发送的第一发射功率为各个功率区间的左端点时,网络设备可以根据各个功率区间的左端点,确定各个功率区间的右端点。
例如,在网络设备确定终端设备上报的各个区间的左端点分别为:第一区间的左 端点0,第二区间为左端点6,第三区间的左端点13,以及第四区间的左端点18时,网络设备确定第一区间的右端点比第二区间的左端点小1,这样网络设备确定第一区间的右端点为5,根据同样的发送网络设备可以确定第二区间的右端点为12,第三区间的右端点为17,网络设备确定第四区间的右端点为终端设备对应的功率最大值19。
以上,结合情况A和情况B,以及示例1,对第一指示信息指示第一发射功率的形式进行了说明。
在终端设备向网络设备发送第一指示信息时,第一指示信息可以承载在终端设备发送的MAC CE中。
在第一指示信息承载在MAC CE中的情况下,该MAC CE可以为承载PHR的MAC CE。
或者,该MAC CE为新定义的MAC CE。
又或者,该MAC CE为在网络设备下发的包括TPC的DCI所调度的上行时隙中发送的MAC CE;上述TPC为网络设备向终端设备发送的功率命令字参考功率。
通过以上S201,对第一指示信息以及第一指示信息中的第一数值进行了举例说明,需要指出的是,以上仅为示例性说明,第一指示信息还可以通过其他方式指示第一发射功率,本申请对此不做限定。
在本申请实施例的一种可能的实现方式中,在网络设备接收到来自终端设备的第一指示信息之后,网络设备根据第一指示信息,所执行的操作包括以下场景1和场景2两种场景,以下分别对场景1和场景2进行详细说明:
场景1、若网络设备正在进行联合信道估计,网络设备指示终端设备在第一功率区间之内调整终端设备的发射功率。
第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间。
一种可能的实现方式中,结合图2,如图3a所示,在场景1中,网络设备具体用于执行以下S301至S303。
S301、网络设备在进行联合信道估计时,生成第六指示信息。
第六指示信息用于指示终端设备在第一功率区间之内调整终端设备的发射功率。
S302、网络设备向终端设备发送第六指示信息。相应的,终端设备接收来自网络设备的第六指示信息。
S303、终端设备根据第六指示信息调整终端设备的发射功率。
一种可能的实现方式中,第六指示信息为网络设备生成的TPC。在网络设备需要向终端设备发送TPC的情况下,网络设备根据终端设备当前的上行传输信道的信道质量等信息,生成第一TPC,第一TPC中包括终端设备的功率调整值。
网络设备根据终端设备上报的第一指示信息,确定终端根据第一TPC指示的功率调整值调整发射功率之后,终端设备发送的上行信号的发射功率是否会发射跳变。
若是,则网络设备调整第一TPC中的功率调整值,生成第二TPC。网络设备向终端设备发送第二TPC。相应的,终端设备接收来自网络设备的第二TPC。
终端设备根据第二TPC中的功率调整值调整终端设备的发送功率时,终端设备发送的上行信号的发射功率不会发射跳变。
若否,则网络设备直接向终端设备发送第一TPC。
也即是说,网络设备控制终端设备在其进行联合信道估计的过程中不发生相位跳变。在网络设备的联合信道估计结束之后,网络设备再对终端设备进行正常的功率控制。
一种示例,结合上述情况A中的情况A8,以及上述示例1,第一指示信息指示中的第一数值如表10所示。根据表10,网络设备确定终端设备的上行信号不发生相位跳变的功率调整区间如下述表21所示:
表21
功率调整区间 (-5,+2)
也即是说,终端设备通过第一指示信息向网络设备指示当终端设备的发射功率下降5,或者终端设备的发射功率上升2时,终端设备的上行信号的相位将会发生跳变。相应的,网络设备可以根据第一指示信息的指示确定当终端设备的发射功率下降5,或者终端设备的发射功率上升2时,终端设备的上行信号的相位将会发生跳变。
此时,网络设备生成的第一TPC中的功率调整值为+3。网络设备确定功率调整值+3在第一指示信息指示的功率值调整区间为(-5,+2)之外,进而网络设备进一步确定终端设备根据第一TPC调整发生功率之后终端设备发送的上行信号的发射功率将会发射跳变。
在该情况下,网络设备根据第一TPC生成第二TPC,第二TPC中的功率调整值调整为+1。网络设备确定功率调整值为+1在第一指示信息指示的功率值调整区间为(-5,+2)之内,终端设备根据该功率调整值调整发射功率之后,终端设备发送的上行信号的发射功率不会发射跳变。网络设备向终端设备发送第二TPC。
又一种示例,结合上述情况A,以及上述示例1,网络设备确定终端设备的上行信号不发生相位跳变的功率调整区间如上述表21所示。网络设备生成的第一TPC中的功率调整值为+1。
网络设备确定功率调整值+1在第一指示信息指示的功率值调整区间为(-5,+2)之内,终端设备根据该功率调整值调整发射功率之后,终端设备发送的上行信号的发射功率不会发射跳变。网络设备向终端设备发送第一TPC。
再一种示例,结合上述情况B1,以及上述示例1,第一指示信息指示中的第一数值如表14所示。根据表14,网络设备确定终端设备的上行信号不发生相位跳变的调整后的功率区间如下述表22所示:
表22
Figure PCTCN2021093700-appb-000002
也即是说,终端设备通过第一指示信息向网络设备指示当终端设备的发射功率低于6,或者终端设备的发射功率高于11时,终端设备的上行信号的相位将会发生跳变。相应的,网络设备可以根据第一指示信息的指示确定当终端设备的发射功率低于6,或者终端设备的发射功率高于11时,终端设备的上行信号的相位将会发生跳变。网络设备确定终端设备根据第一TPC调整后的发射功率为13,发射功率13高于11,此时终端设备发送的上行信号的发射功率将会发射跳变。
在该情况下,网络设备根据第一TPC生成第二TPC,第二TPC中的功率调整值 调整为+1。网络设备确定终端设备根据第二TPC调整后的发射功率为11,此时,终端设备发送的上行信号的发射功率不会发射跳变。网络设备向终端设备发送第二TPC。
再一种示例,结合上述情况B,上述示例1,网络设备确定终端设备的上行信号不发生相位跳变的调整后的功率区间如下述表22所示:
网络设备生成的第一TPC中的功率调整值为+1。
网络设备确定终端设备根据第一TPC调整后的发射功率为11,此时,终端设备发送的上行信号的发射功率不会发射跳变。网络设备向终端设备发送第一TPC。
场景2、网络设备在终端设备功率达到第一发射功率时,不进行联合信道估计。
一种可能的实现方式中,结合图2,如图3b所示,在场景2中,网络设备用于执行以下S304和S305。
S304、网络设备确定第一时隙。
在第一时隙上,终端设备的发射功率调整至第一功率区间之外,第一功率区间为多个发射功率区间中包括终端设备当前发射功率的发射功率区间。
第一时隙为终端设备的发射功率调整至第一功率区间之外的时隙。
具体来说,第一时隙为终端设备根据TPC进行功率调整的时隙,终端设备根据该TPC调整发射功率之后,终端设备的上行信号将会发生相位跳变。
S305、网络设备在第一时隙上不与第一时隙之前的时隙进行联合信道估计。
网络设备在第一时间点的时隙上不与该时隙之前的时隙进行联合信道估计。在该时隙以及该时隙之后的时隙上,如果终端设备仍在传输上行数据,则网络设备可以在该时隙以及该时隙之后的时隙上正常进行联合信道估计。
举例来说,终端设备对应的一个功率跳变点为6,网络设备确定终端设备当前发射功率为5。网络设备确定当前传输链路的传输质量较差,终端设备需要在第7个上行传输时隙上将发射功率调整至8。此时网络设备确定终端设备的上行信号的将会在第7个时隙上发生相位跳变。
此时,网络设备确定在第7个时隙上不与之前的第1个时隙至第6个时隙进行联合信道估计。若之后的第8个时隙、第9个时隙等时隙上终端设备传输上行数据,且终端设备的发射功率未达到功率跳变点,则终端设备可以在第7个时隙、第8个时隙、第9个时隙上进行联合信道估计。
基于上述技术方案,在网络设备接收到第一指示信息之后,网络设备可以在网络设备进行联合信道估计时,指示终端设备调整发射功率的过程中,在预设发射功率区间之内调整发射功率,避免终端设备的上行信号发生相位跳变;或者网络设备在终端设备的上行信号发生相位跳变时不进行联合信道估计。避免网络设备进行联合信道估计不准确。
一种可能的实现方式中,结合图2,在S202之前,该方法还包括:
S203、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的第二指示信息。
第二指示信息用于指示终端设备发送第一指示信息。可选的,第二指示信息还用于指示第一指示信息中的一个或多个第一发射功率,与N个第一发射功率之间的对应关系。例如,第二指示信息指示终端设备上报的第一指示信息中的第一数值为上述情 况A1-情况A11中的一个第一数值,或者第一数值对应的第一发射功率为上述情况B1-B5中的一个第一发射功率。
第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
第二指示信息用于指示终端设备周期性上报第一指示信息。
或者,第二指示信息用于指示终端设备在当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向网络设备发送第一指示信息。
或者,第二指示信息用于指示终端设备在预设时间点上报第一指示信息。
响应于第二指示信息,终端设备执行上述S201。
一种可能的实现方式中,在第二指示信息用于指示终端设备在当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间差值的绝对值小于或等于第一门限值时向网络设备发送第一指示信息的情况下,在终端设备向网络设备发送第一指示信息之前,该方法还包括:
终端设备确定当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;
若是,则终端设备向网络设备发送第一指示信息。
若否,则终端设备不向网络设备发送第一指示信息。
需要指出的是,在终端设备确定当前发射功率与多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,终端设备的发射功率由一个功率区间调整至另一个功率区间的可能性较大。此时,终端设备需要向网络设备上报第一指示信息,以使得网络设备确定终端设备在之后发送上行数据的过程中可能会出现上行信号的相位跳变的问题。
实施例二
基于上述由于终端设备的功率达到功率跳变点,终端设备的上行信号将会发生相位跳变,进而导致的网络设备进行联合信道估计不准确的问题。本申请实施例提供了一种功率控制方法,网络设备向终端设备指示网络设备进行联合信道估计的第一时间窗。在第一时间窗内,终端设备在上行信号不发生相位跳变的功率区间内调整终端设备的发射功率。
基于上述技术方案,终端设备在网络设备进行联合信道估计时,控制终端设备的上行信号不发生相位跳变。从而解决了由于终端设备的上行信号的相位跳变,导致的网络设备进行联合信道估计不准确的问题。
如图4所示,本申请实施例提供的功率调整方法,还包括:
S400、终端设备确定第一时间窗。
其中,第一时间窗为网络设备进行联合信道估计的时间段。
一种可能的实现方式中,终端设备可以通过网络设备向终端设备下发的第三指示信息确定第一时间窗的最大窗长。或者,终端设备可以根据协议规定,确定第一时间窗的最大窗长。又或者,终端设备可以根据预配置信息确定第一时间窗的最大窗长。本申请对此不做限定。
在网络设备通过第三指示信息向终端设备指示第一时间窗的最大窗长的情况下, 网络设备可以采用多种方式,指示第一时间窗的最大窗长。
一种示例,第一时间窗包括多个上行时隙,网络设备通过第三指示信息指示第一时间窗内包括的最大连续时隙数L。也即是说,第三指示信息通过指示第一时间窗包括的最大连续时隙的数量指示第一时间窗的最大窗长。其中,网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
又一种示例,网络设备通过第三指示信息指示第一时间窗的最大窗长为A毫秒(ms)。A大于0。其中,网络设备进行一次联合信道估计所需的时长大于或等于0ms,小于或等于Ams。
其中,第三指示信息可以承载在网络设备向终端设备发送的RRC中,或者第三指示信息可以承载在网络设备发送的MAC CE中,本申请对此不做限定。
以下,以第一时间窗包括多个上行时隙,网络设备通过第三指示信息指示第一时间窗内包括的最大连续时隙数L为例,进行详细说明。
在该情况下,网络设备进行联合信道估计的第一时间窗,为终端设备在连续多个时隙上发送上行数据的时间段。
举例来说,网络设备需要在连续的3个时隙上进行联合信道估计,也即是说,第一时间窗的时间长度为3个时隙的时间长度。
在终端设备在连续3个时隙上发送上行数据的情况下,网络设备将在该连续的3个时隙上进行一次联合信道估计。
在终端设备在连续6个时隙上发送上行数据的情况下,网络设备将在该连续的6个时隙上进行两次联合信道估计。也即是说,网络设备在该连续6个时隙的前3个时隙上进行一次联合信道估计,在该连续6个时隙的后3个时隙上进行一次联合信道估计。
在终端设备在连续5个时隙上发送上行数据的情况下,网络设备将在该连续的6个时隙上进行两次联合信道估计。也即是说,网络设备在该连续5个时隙的前3个时隙上进行一次联合信道估计,在该连续5个时隙的后2个时隙上终端进行一次联合信道估计。
S401、在第一时间窗内,终端设备执行以下过程中一种:不调整发射功率;将发射功率调整为第四发射功率;或者在第一功率区间内调整发射功率。
其中,第二发射功率为终端设备在当前时隙上接收到网络设备发送的TPC之前,终端设备的发射功率。第一功率区间中包括终端当前发射功率,且终端设备的发射功率在第一发射功率区间内调整时,终端设备的上行信号的相位不发生跳变。
以终端设备当前发射功率为10为例。
若终端设备执行的过程为:在第一时间窗内不调整发射功率,则终端设备在第一时间窗内始终保持终端设备的发射功率为10。
若终端设备执行的过程为:在第一时间窗内将终端设备的发射功率调整为第四发射功率,第四发射功率的值为10,则终端设备在第一时间窗内始终保持终端设备的发射功率为10。
若终端设备执行的过程为:在第一时间窗内在第一功率区间内调整终端设备的发射功率,则终端设备在接收到来自网络设备的TPC之后,确定终端设备根据该TPC 调整发射功率之后,调整后的发射功率是否位于第一功率区间之内。
若是,则终端设备根据该TPC调整终端设备的发射功率。
若否,则终端设备确定该TPC用于指示终端设备提升发射功率,还是指示终端设备降低发射功率。
若TPC指示终端设备提升发射功率,则终端设备将发射功率调整至第二区间的右端点。也即终端设备将发射功率调整为11。
若TPC指示终端设备降低发射功率,则终端设备将发射功率调整至第二区间的左端点。也即终端设备将发射功率调整为6。
基于上述技术方案,终端设备在网络设备进行联合信道估计时,控制终端设备的上行信号不发生相位跳变。从而解决了由于终端设备的上行信号的相位跳变,导致的网络设备进行联合信道估计不准确的问题。
一种可能的实现方式中,如图4所示,在S400之前,该方法还包括S402和S403。
S402、网络设备向终端设备发送第三指示信息。相应的,终端设备接收来自网络设备的第三指示信息。
关于第三指示信息的描述可以参照上述S400,此处不再赘述。
S403、网络设备向终端设备发送第四指示信息。相应的,终端设备接收来自网络设备的第四指示信息。
第四指示信息用于指示网络设备使能联合信道估计。也即是说,第四指示信息用于指示网络设备正在进行联合信道估计,此时终端设备需要确定第一时间窗,并在第一时间窗内,在第一功率区间内调整终端设备的发射功率。
需要说明的是,本申请实施例中,第三指示信息和第四指示信息可以位于网络设备向终端设备发送的同一个信令消息中,也可以位于网络设备向终端设备发送的不同的信令消息中。
在第三指示信息和第四指示信息位于网络设备向终端设备发送的同一个信令消息的情况下,网络设备向终端设备发送的该信令消息既用于指示网络设备使能联合信道估计,又用于指示网络设备进行联合信道估计的第一时间窗。
在第三指示信息和第四指示信息是网络设备发送的两条信令消息的情况下,该两条信令消息中的承载第四指示信息的信令消息用于指示网络设备使能联合信道估计,该两条信令消息中用于承载第三指示信息的信令消息用于指示网络设备进行联合信道估计的第一时间窗包括的最大连续时隙数L。在该情况下,该两条信令消息可以不同时发送,例如,网络设备在终端设备初始接入网络设备时,向终端设备发送用于承载第三指示信息的信令消息。网络设备在终端设备开始进行上行传输时,向终端设备发送用于承载第四指示信息的信令消息。
需要指出的是,网络设备进行联合信道估计的时间,与终端设备发送上行数据的时隙有关。若终端设备在连续的L个时隙上发送上行数据,则网络设备可以在该L个时隙上进行联合信道估计。
也即是说,网络设备进行联合信道估计的时间,与终端设备发送上行数据的时隙有关。
因此,网络设备向终端设备指示网络设备进行联合信道估计的时间长度。终端设 备根据网络设备进行联合信道估计的时间长度,以及网络设备进行联合信道估计的开始时间点,确定第一时间窗。
相应的,在S400的一种可能的实现方式中,终端设备确定第一时间窗的开始时间点为第H个时隙。
其中,第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙(记为条件1),或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙(记为条件2),或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙(记为条件3)。
终端设备确定网络设备进行联合信道估计的第一时间窗包括以第H个时隙为开始时隙的连续Q个调度的上行时隙。Q为小于或等于L的正整数。
此时,终端设备在以第H个时隙为开始时隙的连续Q个上行时隙上在第一功率区间内调整终端设备的发射功率。也即是说,在第H个时隙至第H+Q个时隙上终端设备在第一功率区间内调整终端设备的发射功率。
以下,结合图5,以第一时间窗的最大窗长为3个时隙为例对终端设备确定第一时间窗的过程进行说明:
如图5所示,图5示出了连续的11个时隙,该11个时隙从左至右分别记为第1个时隙,第2个时隙……第11个时隙。
第1个时隙为下行时隙,在该时隙上网络设备不进行联合信道估计,终端设备确定该时隙不是第一时间窗的开始时隙。
第2个时隙为上行时隙,且第一个时隙为下行时隙,符合上述条件1。因此,终端设备确定第2个时隙为第一时间窗#1的开始时隙。
第3个时隙同样为上行时隙,终端设备确定第3个时隙为第一时间窗#1内的第二个时隙。
第4个时隙为未调度时隙,在该时隙上网络设备不进行联合信道估计,终端设备确定第4个时隙不是第一时间窗#1内的时隙。第一时间窗#1在第3个时隙结束。
第5个时隙为上行时隙,且第4个时隙为未调度时隙,符合上述条件2。因此,终端设备确定第5个时隙为第一时间窗#2的开始时隙。
第6个时隙和第7个时隙均为上行时隙,终端设备确定第6个时隙和第7个时隙均为第一时间窗#2内的时隙。由于第一时间窗的最大窗长为3个时隙,终端设备确定第一时间窗#2在第7个时隙结束。
第8个时隙为上行时隙,且第7个时隙为上一个第一时间窗结束的时隙(也即网络设备在第5个时隙至第7个时隙上完成了一次联合信道估计),符合上述条件3。因此,终端设备确定第8个时隙为第一时间窗#3的开始时隙。
第9个时隙和第10个时隙均为上行时隙,终端设备确定第9个时隙和第10个时隙均为第一时间窗#3内的时隙。由于第一时间窗的最大窗长为3个时隙,终端设备确定第一时间窗#3在第10个时隙结束。
第11个时隙为下行时隙,在该时隙上网络设备不进行联合信道估计,终端设备确定该时隙不是第一时间窗的开始时隙。
基于上述技术方案,终端设备可以根据网络设备进行联合信道估计所需的连续的 时隙数量,以及网络设备进行联合信道估计开始的时隙,确定网络设备进行联合信道估计的第一时间窗。
一种可能的实现方式中,如图6所示,在S401之后,该方法还包括:
S404、在第一时间窗结束之后,终端设备根据网络设备发送的TPC,调整终端设备的发射功率。
一种可能的实现方式中,若终端设备在连续K个时隙上进行上行数据传输,连续K个时隙上包括多个第一时间窗;则终端设备在第一时间窗结束后的第一个时隙上调整终端设备的发射功率。K为大于等于2L的正整数。
举例来说,终端设备在连续的10个时隙上进行上行数据传输,L的取值为3。
此时该连续的10个时隙上包括3个第一时间窗,分别为第1个时隙至第3个时隙组成的第一时间窗#4,第4个时隙至第6个时隙组成的第一时间窗#5,第7个时隙至第9个时隙组成的第一时间窗#6。网络设备分别在第一时间窗#4、第一时间窗#5、第一时间窗#6,三个第一时间窗内进行联合信道估计。
终端设备在第一时间窗#4结束后的第一个时隙(即第4个时隙)上根据网络设备发送的TPC调整终端设备的发射功率。
终端设备在第一时间窗#5结束后的第一个时隙(即第7个时隙)上根据网络设备发送的TPC调整终端设备的发射功率。
终端设备在第一时间窗#6结束后的第一个时隙(即第10个时隙)上根据网络设备发送的TPC调整终端设备的发射功率。
需要指出的是,在第一时间窗#4(或者第一时间窗#5,第一时间窗#6)中的三个时隙上,若网络设备向终端设备发送TPC,则终端设备根据该TPC,在第一功率区间内调整终端设备的发射功率。终端设备在该三个时隙上不触发功率跳变点。
在第一时间窗#1结束后的第四个时隙内,网络设备向终端设备发送TPC,无论终端设备根据该TPC指示的功率调整值调整终端设备的发射功率后是否触发功率跳变点,终端设备均根据该TPC指示的功率调整值调整终端设备的发射功率。
基于上述技术方案,终端设备可以在网络设备完成联合信道估计的情况下,及时调整终端设备的发射功率,提高了终端设备发送上行数据的质量。
一种可能的实现方式中,如图6所示,在S403之后,该方法还包括:
S405、终端设备确定第一差值。
第一差值为终端设备当前发射功率与终端设备的第三发射功率之间的差值的绝对值。第三发射功率为网络设备指示终端设备调整发射功率后的发射功率。
S406、终端设备确定第一差值是否小于或等于第一阈值。
一种可能的实现方式中,该第一阈值可以是预先为终端设备配置的,也可以是网络设备通过指示信息向终端设备指示的,本申请对此不做限定。
需要指出的是,在第一差值小于或等于第一阈值的情况下,终端设备当前发射功率与终端设备的第三发射功率之间的差值较小。此时,终端设备调整发射功率对上行链路的链路质量影响也较小。在该情况下,终端设备确定在预设区间内调整发射功率,可以使终端设备上行信号的相位不发生跳变,以使网络设备可以正常进行联合信道估计。
在第一差值大于第一阈值的情况下,终端设备当前发射功率与终端设备的第三发射功率之间的差值较大。此时,终端设备的上行链路的链路质量较差,若终端设备不调整上行发射功率,很可能导致上行链路失败。在该情况下,终端设备将当前发射功率调整为第三发射功率,优先保证上行传输链路不失败。
因此,在第一差值小于或等于第一阈值的情况下,终端设备执行S400和S401,以使网络设备可以正常进行联合信道估计。
在第一差值大于第一阈值的情况下,终端设备执行S407,以保证终端设备上行传输链路的链路质量。
S407、终端设备将终端设备的发射功率调整为第三发射功率。
举例来说,终端设备第一阈值为2。终端设备当前的发射功率为10,功率切档点为11。
若网络设备指示终端设备调整发射功率后的第三发射功率为18或者19,则第一差值小于或等于第一阈值,此时终端设备仍以17为发射功率发送上行数据。
若终网络设备指示终端设备调整发射功率后的第三发射功率大于19,则第一差值大于第一阈值,此时终端设备将终端设备的发射功率调整为第三发射功率。
具体来说,在网络设备指示终端设备将发射功率调整为18或19的情况下,终端设备仍以17为发射功率发送上行数据。
在网络设备指示终端设备将发射功率调整为20及20以上的情况下,终端设备按照网络设备的指示调整发射功率。
基于上述技术方案,在终端设备的上行链路的信号质量较差的情况下,若网络设备指示终端设备的发射功率调整值较大,此时终端设备根据网络设备指示的发射功率调整值调整发射功率。可以避免因终端设备的发射功率较小导致的上行链路失败的问题。
一种可能的实现方式中,结合图5,如图7所示,在S401之后,该方法还包括:
S408、终端设备在第二差值小于或等于第二阈值的情况下,向网络设备发送第五指示信息。相应的,网络设备接收来自终端设备的第五指示信息。其中,第二差值为终端设备当前发射功率与终端设备的各个第一发射功率之间的差值的绝对值。第二阈值可以是预先为终端设备配置的,也可以是网络设备通过指示信息向终端设备指示的,本申请对此不做限定。
第五指示信息用于指示第二差值小于或等于第二阈值。
在第二差值小于或等于第二阈值的情况下,表示终端设备当前发射功率已经接近第一发射功率,若网络设备指示终端设备调整发射功率,则终端设备的上行信号有较大可能发生相位跳变。此时,网络设备在下次指示终端设备调整发射功率时不进行联合信道估计。
基于此,终端设备通过向网络设备发送第五指示信息,可以使网络设备确定终端设备当前发射功率接近第一发射功率,网络设备在下次指示终端设备调整发射功率时可以不进行联合信道估计。
本申请上述实施例中的各个方案在不矛盾的前提下,均可以进行结合。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理 解的是,各个网元,例如,网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的通信装置(记为通信装置80)的一种可能的结构示意图,该通信装置80包括处理单元801和通信单元802,还可以包括存储单元803。图8所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端设备的结构。当图8所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理单元801用于对终端设备的动作进行控制管理,例如,控制终端设备执行图2中的S201、S202和S203,图3a中的S201、S202、S203、S302和S303,图3b中的S201、S202和S203,图4中的S400、S401、S402和S403,图6中的S400、S401、S402、S403、S404、S405、S406和S407,图7中的S400、S401、S402、S403和S408,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元801可以通过通信单元802与其他网络实体通信,例如,与图1中示出的网络设备通信。存储单元803用于存储终端设备的程序代码和数据。
当图8所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,通信装置80可以是终端设备,也可以是终端设备内的芯片。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元801用于对网络设备的动作进行控制管理,例如,控制网络设备执行图2中的S201和S203,图3a中的S201、S203、S301、S302,图3b中的S201、S203、S304和S305,图4中的S501,图6中的S402和S403,图7中的S402、S403和S408,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元801可以通过通信单元802与其他网络实体通信,例如,与图1中示出的网络设备通信。存储单元803用于存储终端设备的程序代码和数据。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,通信装置80可以是网络设备,也可以是网络设备内的芯片。
其中,当通信装置80为终端设备或网络设备时,处理单元801可以是处理器或控制器,通信单元802可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元803可以是存储器。当通信装置80为终端设备或网络设备内的芯片时,处理单元801可以是处理器或控制器,通信单元802可以是输入接口和/或输出接口、管脚或电路等。存储单元803可以是该 芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备或网络设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,简称ROM)、随机存取存储器(random access memory,简称RAM)等)。
其中,通信单元也可以称为收发单元。通信装置80中的具有收发功能的天线和控制电路可以视为通信装置80的通信单元802,具有处理功能的处理器可以视为通信装置80的处理单元801。可选的,通信单元802中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。
图8中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
图8中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置(记为通信装置90)的硬件结构示意图,参见图9或图10,该通信装置90包括处理器901,可选的,还包括与处理器901连接的存储器902。
在第一种可能的实现方式中,参见图9,通信装置90还包括收发器903。处理器901、存储器902和收发器903通过总线相连接。收发器903用于与其他设备或通信网络通信。可选的,收发器903可以包括发射机和接收机。收发器903中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器903中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图9所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端设备的结构。
当图9所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器901用于对终端设备的动作进行控制管理,例如,处理器901用于支持终端设备执行图2中的S201、S202和S203,图3a中的S201、S202、S203、S302和S303,图3b中的S201、S202和S203,图4中的S400、S401、S402和S403,图6中的S400、S401、S402、S403、S404、S405、S406和S407,图7中的S400、S401、S402、S403和S408,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器901可以通过收发器903与其他网络实体通信,例如,与图1中示出的网络设备通信。存储器902用于存储终端设备的程序代码和数据。
当图9所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器901用于对网络设备的动作进行控制管理,例如,处理器901用于支持网络设备执行图2中的S201和S203,图3a中的S201、S203、S301、S302,图3b中的S201、 S203、S304和S305,图4中的S501,图6中的S402和S403,图7中的S402、S403和S408,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器901可以通过收发器903与其他网络实体通信,例如,与图1中示出的终端设备通信。存储器902用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器901包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图10,图10所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端设备的结构。
当图10所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器901用于对终端设备的动作进行控制管理,例如,处理器901用于支持终端设备执行图2中的S201、S202和S203,图3a中的S201、S202、S203、S302和S303,图3b中的S201、S202和S203,图4中的S400、S401、S402和S403,图6中的S400、S401、S402、S403、S404、S405、S406和S407,图7中的S400、S401、S402、S403和S408,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器901可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图1中示出的网络设备通信。存储器902用于存储终端设备的程序代码和数据。
当图10所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器901用于对网络设备的动作进行控制管理,例如,处理器901用于支持网络设备执行图2中的S201和S203,图3a中的S201、S203、S301、S302,图3b中的S201、S203、S304和S305,图4中的S501,图6中的S402和S403,图7中的S402、S403和S408,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器901可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图1中示出的终端设备通信。存储器902用于存储网络设备的程序代码和数据。
其中,图9和图10也可以示意网络设备中的系统芯片。该情况下,上述网络设备执行的动作可以由该系统芯片实现,具体所执行的动作可参见上文,在此不再赘述。图9和图10也可以示意终端设备中的系统芯片。该情况下,上述终端设备执行的动作可以由该系统芯片实现,具体所执行的动作可参见上文,在此不再赘述。
另外,本申请实施例还提供了一种终端设备(记为终端设备110)和网络设备(记为网络设备120)的硬件结构示意图,具体可分别参见图11和图12。
图11为终端设备110的硬件结构示意图。为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备110包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如,控制终端设备执行图2中的S201、S202和S203,图3a中的S201、S202、S203、S302和S303,图3b中的S201、S202和S203,图4中的S400、S401、S402和S403,图6中的S400、S401、S402、S403、S404、S405、S406和S407,图7中的S400、S401、S402、S403和S408,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。存储器主要用于存储软件程 序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图12为网络设备120的硬件结构示意图。网络设备120可包括一个或多个射频单元,如远端射频单元(remote radio unit,简称RRU)1201和一个或多个基带单元(basebandunit,简称BBU)(也可称为数字单元(digitalunit,简称DU))1202。
该RRU1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1211和射频单元1212。该RRU1201部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU1201与BBU1202可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU1202为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU1202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU1202还包括存储器1221和处理器1222,该存储器1221用于存储必要的指令和数据。该处理器1222用于控制网络设备进行必要的动作。该存储器1221和处理器1222可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图12所示的网络设备120能够执行图2中的S201和S203,图3a中的S201、S203、S301、S302,图3b中的S201、S203、S304和S305,图4中的S501,图6中的S402和S403,图7中的S402、S403和S408,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。网络设备120中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端设备。
本申请实施例还提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现上述方法,该接口电路用于与该芯片之外的其它模块进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该 计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
结合以上,本申请还提供如下实施例:
实施例1、一种功率控制方法,其中,包括:
终端设备确定第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;
所述终端设备向网络设备发送所述第一指示信息。
实施例2、根据实施例1所述的方法,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例3、根据实施例1或2所述的方法,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例4、根据实施例3所述的方法,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例5、根据实施例3所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例6、根据实施例3所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例7、根据实施例3所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例8、根据实施例3所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例9、根据实施例4-8任一项所述的方法,其中,还包括:
所述终端设备确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;
若是,则所述终端设备向所述网络设备发送所述第一指示信息。
实施例10、根据实施例1-9任一项所述的方法,其中,在所述终端设备向网络设备发送所述第一指示信息之前,还包括:
所述终端设备接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;
响应于所述第二指示信息,所述终端设备向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
实施例11、根据实施例10所述的方法,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例12、根据实施例11所述的方法,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例13、一种功率控制方法,其中,包括:
网络设备接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
实施例14、根据实施例13所述的方法,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例15、根据实施例13或14所述的方法,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例16、根据实施例15所述的方法,其中,还包括:
若所述网络设备正在进行联合信道估计,所述网络设备指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
实施例17、根据实施例15所述的方法,其中,还包括:
所述网络设备确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
所述网络设备在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
实施例18、根据实施例15-17任一项所述的方法,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例19、根据实施例15-17任一项所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例20、根据实施例15-17任一项所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例21、根据实施例15-17任一项所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例22、根据实施例15-17任一项所述的方法,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例23、根据实施例13-22任一项所述的方法,其中,还包括:
所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
实施例24、根据实施例23所述的方法,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例25、根据实施例24所述的方法,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例26、一种通信装置,其中,包括:处理单元和通信单元,
所述处理单元,用于确定第一指示信息;所述第一指示信息用于指示终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;
所述通信单元,用于向网络设备发送所述第一指示信息。
实施例27、根据实施例26所述的装置,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的 差值。
实施例28、根据实施例26或27所述的装置,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例29、根据实施例28所述的装置,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例30、根据实施例28所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例31、根据实施例28所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例32、根据实施例28所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例33、根据实施例28所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例34、根据实施例29-33任一项所述的装置,其中,所述处理单元,还用于:
确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;
所述处理单元,还用于指示所述通信单元向所述网络设备发送所述第一指示信息。
实施例35、根据实施例26-34任一项所述的装置,其中,所述通信单元,还用于接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;所述处理单元,还用于指示所述通信单元向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
实施例36、根据实施例35所述的装置,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例37、根据实施例36所述的装置,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例38、一种通信装置,其中,包括:处理单元和通信单元;
所述处理单元,用于指示所述通信单元接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
实施例39、根据实施例38所述的装置,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例40、根据实施例38或39所述的装置,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例41、根据实施例40所述的装置,其中,所述处理单元,还用于:
若网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
实施例42、根据实施例40所述的装置,其中,所述处理单元,还用于:
确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
实施例43、根据实施例40-42任一项所述的装置,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例44、根据实施例40-42任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例45、根据实施例40-42任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例46、根据实施例40-42任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例47、根据实施例40-42任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例48、根据实施例38-47任一项所述的装置,其中,所述通信单元,还用于:
向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
实施例49、根据实施例48所述的装置,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例50、根据实施例49所述的装置,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例51、一种通信装置,其中,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:确定第一指示信息;所述第一指示信息用于指示终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;向网络设备发送所述第一指示信息。
实施例52、根据实施例51所述的装置,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例53、根据实施例51或52所述的装置,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例54、根据实施例53所述的装置,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例55、根据实施例53所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例56、根据实施例53所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例57、根据实施例53所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例58、根据实施例53所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例59、根据实施例54-58任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;向所述网络设备发送所述 第一指示信息。
实施例60、根据实施例51-59任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
实施例61、根据实施例60所述的装置,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例62、根据实施例61所述的装置,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例63、一种通信装置,其中,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
实施例64、根据实施例63所述的装置,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例65、根据实施例63或64所述的装置,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例66、根据实施例65所述的装置,其中,所述通信装置,还用于执行以下步骤:若网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
实施例67、根据实施例65所述的装置,其中,所述通信装置,还用于执行以下步骤:确定第一时隙,在所述第一时隙上,将所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
实施例68、根据实施例65-67任一项所述的装置,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例69、根据实施例65-67任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例70、根据实施例65-67任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例71、根据实施例65-67任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例72、根据实施例65-67任一项所述的装置,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例73、根据实施例63-72任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
实施例74、根据实施例73所述的装置,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例75、根据实施例74所述的装置,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例76、一种通信系统,其中,包括终端设备和网络设备。
终端设备用于确定第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;所述终端设备向网络设备发送所述第一指示信息。
网络设备用于接收来自终端设备的第一指示信息。
实施例77、根据实施例76所述的通信系统,其中,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
实施例78、根据实施例76或77所述的通信系统,其中,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的 发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
实施例79、根据实施例78所述的通信系统,其中,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
实施例80、根据实施例78所述的通信系统,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
实施例81、根据实施例78所述的通信系统,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
实施例82、根据实施例78所述的通信系统,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例83、根据实施例78所述的通信系统,其中,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
实施例84、根据实施例79-83任一项所述的通信系统,其中,所述终端设备,还用于确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值。若是,则所述终端设备向所述网络设备发送所述第一指示信息。
所述网络设备,还用于接收来自所述终端设备的第一指示信息。
实施例85、根据实施例76-84任一项所述的通信系统,其中,所述网络设备,还用于向所述终端设备发送第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;
所述终端设备,还用于接收来自所述网络设备的第二指示信息;响应于所述第二指示信息,向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
实施例86、根据实施例85所述的通信系统,其中,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
实施例87、根据实施例86所述的通信系统,其中,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
实施例88、根据权利要求76-86任一项所述的通信系统,其中,所述网络设备, 还用于若所述网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
所述终端设备,还用于在第一功率区间内调整所述终端设备的发射功率。
实施例89、根据权利要求76-86任一项所述的通信系统,其中,所述网络设备,还用于确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
所述网络设备在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
实施例90、根据权利要求76-88任一项所述的通信系统,其中,所述终端设备为手机,所述网络设备为基站。
实施例91、一种计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述实施例1至实施例25任一实施例所涉及的方法。
实施例92、一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述实施例1至实施例25任一实施例所涉及的方法。
实施例93、一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述实施例1至实施例25任一实施例所涉及的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
实施例94、一种功率控制方法,其中,包括:
终端设备确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;
在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
实施例95、根据实施例94所述的方法,其中,还包括:
所述终端设备接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于1,小于或等于L;L为大于1的正整数;
所述终端设备根据所述第三指示信息,确定所述第一时间窗。
实施例96、根据实施例95所述的方法,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例97、根据实施例96所述的方法,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时 隙至所述第H+Q个时隙均为调度的上行时隙。
实施例98、根据实施例94-96任一项所述的方法,其中,所述方法还包括:
所述终端设备在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
实施例99、根据实施例94-98任一项所述的方法,其中,所述在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率,包括:
所述终端设备确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值;所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;
在所述第一差值小于或等于第一阈值的情况下,所述终端设备在所述第一功率区间之间调整所述终端设备的发射功率。
实施例100、根据实施例99所述的方法,其中,所述方法还包括:
所述终端设备确定第一差值;
在所述第一差值大于所述第一阈值的情况下,所述终端设备将所述终端设备的发射功率调整为第三发射功率。
实施例101、根据实施例94-100任一项所述的方法,其中,还包括:
所述终端设备接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例102、根据实施例94-101任一项所述的方法,其中,所述方法还包括:
所述终端设备确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
若是,所述终端设备向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
实施例103、一种功率控制方法,其中,包括:
网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
实施例104、根据实施例103所述的方法,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例105、根据实施例104所述的方法,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例106、根据实施例103-105任一项所述的方法,其中,所述方法还包括:所述网络设备向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络 设备使能联合信道估计。
实施例107、根据实施例103-106任一项所述的方法,其中,所述方法还包括:
所述网络设备接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
实施例108、一种通信装置,其中,包括:处理单元;
所述处理单元,用于确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;
所述处理单元,还用于在所述第一时间窗内,在第一功率区间内调整终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
实施例109、根据实施例108所述的装置,其中,还包括:通信单元;
所述通信单元,用于接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;
所述处理单元,还用于根据所述第三指示信息,确定所述第一时间窗。
实施例110、根据实施例109所述的装置,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例111、根据实施例110所述的装置,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例112、根据实施例108-111任一项所述的装置,其中,所述处理单元,还用于:
在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
实施例113、根据实施例108-112任一项所述的装置,其中,所述处理单元,具体用于:
确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值,所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
实施例114、根据实施例113所述的装置,其中,所述处理单元,还用于:
确定第一差值;
在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为 第三发射功率。
实施例115、根据实施例108-114任一项所述的装置,其中,所述通信单元,还用于:接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例116、根据实施例108-115任一项所述的装置,其中,所述处理单元,还用于确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
所述处理单元,还用于指示所述通信单元向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
实施例117、一种通信装置,其中,包括:处理单元和通信单元;
所述处理单元,用于指示所述通信单元向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
实施例118、根据实施例117所述的装置,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例119、根据实施例118所述的装置,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例120、根据实施例117-119任一项所述的装置,其中,所述通信单元,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例121、根据实施例117-120任一项所述的装置,其中,所述通信单元,还用于:
接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
实施例122、一种通信装置,其中,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;在所述第一时间窗内,在第一功率区间内调整终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
实施例123、根据实施例122所述的装置,其中,所述通信装置,还用于执行以 下步骤:接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;根据所述第三指示信息,确定所述第一时间窗。
实施例124、根据实施例123所述的装置,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例125、根据实施例124所述的装置,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例126、根据实施例122-125任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
实施例127、根据实施例122-126任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值,所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
实施例128、根据实施例127所述的装置,其中,所述通信装置,还用于执行以下步骤:确定第一差值;在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为第三发射功率。
实施例129、根据实施例122-128任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例130、根据实施例122-129任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
实施例131、一种通信装置,其中,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:指示所述通信单元向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
实施例132、根据实施例131所述的装置,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行 时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例133、根据实施例132所述的装置,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例134、根据实施例131-133任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例135、根据实施例131-134任一项所述的装置,其中,所述通信装置,还用于执行以下步骤:接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
实施例136、一种通信系统,其中,包括终端设备和网络设备。
终端设备,用于确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;
在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
实施例137、根据实施例136所述的通信系统,其中,所述网络设备,用于向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
所述终端设备,用于接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于1,小于或等于L;L为大于1的正整数;所述终端设备,还用于根据所述第三指示信息,确定所述第一时间窗。
实施例138、根据实施例136或137所述的通信系统,其中,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
实施例139、根据实施例136-138任一项所述的通信系统,其中,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
实施例140、根据实施例136-139任一项所述的通信系统,其中,所述网络设备,还用于向终端设备发送TPC。
所述终端设备,还用于在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
实施例141、根据实施例136-140任一项所述的通信系统,其中,所述终端设备,还用于确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值;所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
实施例142、根据实施例136-141任一项所述的通信系统,其中,所述终端设备,还用于确定第一差值;在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为第三发射功率。
实施例143、根据实施例142所述的通信系统,其中,所述终端设备,还用于确定第一差值;在所述第一差值大于所述第一阈值的情况下,所述终端设备将所述终端设备的发射功率调整为第三发射功率。
实施例144、根据实施例136-143任一项所述的通信系统,其中,所述网络设备,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
所述终端设备,还用于接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
实施例145、根据实施例136-144任一项所述的通信系统,其中,所述终端设备,还用于确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
若是,所述终端设备向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
所述网络设备,还用于接收来自所述终端设备的第五指示信息。
实施例146、一种计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述实施例94至实施例107任一实施例所涉及的方法。
实施例147、一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述实施例94至实施例107任一实施例所涉及的方法。
实施例148、一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述实施例94至实施例107任一实施例所涉及的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权 利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
需要说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (148)

  1. 一种功率控制方法,其特征在于,包括:
    终端设备确定第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;
    所述终端设备向网络设备发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  4. 根据权利要求3所述的方法,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  5. 根据权利要求3所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  6. 根据权利要求3所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  7. 根据权利要求3所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  8. 根据权利要求3所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,还包括:
    所述终端设备确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;
    若是,则所述终端设备向所述网络设备发送所述第一指示信息。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在所述终端设备向网络设备发送所述第一指示信息之前,还包括:
    所述终端设备接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:无线资源控制RRC消息、媒体接入层控制控制元素MAC CE、或者下行控制信息DCI;
    响应于所述第二指示信息,所述终端设备向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示 信息的MAC CE为以下任一项:承载功率余量报告PHR的MAC CE;新增的MAC CE;或者,在包括传输功率控制TPC的DCI所调度的上行时隙中发送的MAC CE。
  11. 根据权利要求10所述的方法,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  13. 一种功率控制方法,其特征在于,包括:
    网络设备接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
  14. 根据权利要求13所述的方法,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    若所述网络设备正在进行联合信道估计,所述网络设备指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
  17. 根据权利要求15所述的方法,其特征在于,还包括:
    所述网络设备确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
    所述网络设备在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  20. 根据权利要求15-17任一项所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最 小的一个所述第一发射功率。
  21. 根据权利要求15-17任一项所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  22. 根据权利要求15-17任一项所述的方法,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
  24. 根据权利要求23所述的方法,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  25. 根据权利要求24所述的方法,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  26. 一种通信装置,其特征在于,包括:处理单元和通信单元,
    所述处理单元,用于确定第一指示信息;所述第一指示信息用于指示终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;
    所述通信单元,用于向网络设备发送所述第一指示信息。
  27. 根据权利要求26所述的装置,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  28. 根据权利要求26或27所述的装置,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  29. 根据权利要求28所述的装置,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  30. 根据权利要求28所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  31. 根据权利要求28所述的装置,其特征在于,所述终端设备当前发射功率为第 二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  32. 根据权利要求28所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  33. 根据权利要求28所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  34. 根据权利要求29-33任一项所述的装置,其特征在于,所述处理单元,还用于:
    确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;
    所述处理单元,还用于指示所述通信单元向所述网络设备发送所述第一指示信息。
  35. 根据权利要求26-34任一项所述的装置,其特征在于,所述通信单元,还用于接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;所述处理单元,还用于指示所述通信单元向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
  36. 根据权利要求35所述的装置,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  37. 根据权利要求36所述的装置,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  38. 一种通信装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于指示所述通信单元接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
  39. 根据权利要求38所述的装置,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  40. 根据权利要求38或39所述的装置,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射 区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  41. 根据权利要求40所述的装置,其特征在于,所述处理单元,还用于:
    若网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
  42. 根据权利要求40所述的装置,其特征在于,所述处理单元,还用于:
    确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
    在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  44. 根据权利要求40-42任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  45. 根据权利要求40-42任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  46. 根据权利要求40-42任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  47. 根据权利要求40-42任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  48. 根据权利要求38-47任一项所述的装置,其特征在于,所述通信单元,还用于:
    向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
  49. 根据权利要求48所述的装置,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  50. 根据权利要求49所述的装置,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  51. 一种通信装置,其特征在于,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被 处理器执行时,使得通信装置执行以下步骤:确定第一指示信息;所述第一指示信息用于指示终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;向网络设备发送所述第一指示信息。
  52. 根据权利要求51所述的装置,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  53. 根据权利要求51或52所述的装置,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  54. 根据权利要求53所述的装置,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  55. 根据权利要求53所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  56. 根据权利要求53所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  57. 根据权利要求53所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  58. 根据权利要求53所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  59. 根据权利要求54-58任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;向所述网络设备发送所述第一指示信息。
  60. 根据权利要求51-59任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:接收来自所述网络设备的第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
  61. 根据权利要求60所述的装置,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射 功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  62. 根据权利要求61所述的装置,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  63. 一种通信装置,其特征在于,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:接收来自终端设备的第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率。
  64. 根据权利要求63所述的装置,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  65. 根据权利要求63或64所述的装置,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  66. 根据权利要求65所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:若网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间。
  67. 根据权利要求65所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:确定第一时隙,在所述第一时隙上,将所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
    在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
  68. 根据权利要求65-67任一项所述的装置,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  69. 根据权利要求65-67任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  70. 根据权利要求65-67任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  71. 根据权利要求65-67任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  72. 根据权利要求65-67任一项所述的装置,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  73. 根据权利要求63-72任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI。
  74. 根据权利要求73所述的装置,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  75. 根据权利要求74所述的装置,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  76. 一种通信系统,其特征在于,包括终端设备和网络设备;
    终端设备用于确定第一指示信息;所述第一指示信息用于指示所述终端设备的一个或多个第一发射功率;所述第一发射功率为所述终端设备的上行信号发生相位跳变所对应的发射功率;所述终端设备向网络设备发送所述第一指示信息;
    网络设备用于接收来自终端设备的第一指示信息。
  77. 根据权利要求76所述的通信系统,其特征在于,所述第一指示信息包括一个或多个第一数值;所述一个或多个第一数值与所述一个或多个第一发射功率一一对应;
    所述第一数值用于表征与该第一数值对应的第一发射功率和当前发射功率之间的差值。
  78. 根据权利要求76或77所述的通信系统,其特征在于,所述一个或多个第一发射功率对应多个发射功率区间,且,所述第一发射功率为所述多个发射功率区间中的一个发射功率区间的一个端点;所述相位跳变指当所述终端设备的发射功率在不同的发射区间之间调整时,所述终端设备的上行信号的相位发生跳变。
  79. 根据权利要求78所述的通信系统,其特征在于,所述一个或多个第一发射功率包括所述多个发射功率区间中的每个发射功率区间的端点。
  80. 根据权利要求78所述的通信系统,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的两个所述第一发射功率。
  81. 根据权利要求78所述的通信系统,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括与所述第二发射功率差值最小的一个所述第一发射功率。
  82. 根据权利要求78所述的通信系统,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括大于所述第二发射功率,且与所 述第二发射功率差值最小的一个第一发射功率。
  83. 根据权利要求78所述的通信系统,其特征在于,所述终端设备当前发射功率为第二发射功率,所述一个或多个第一发射功率包括小于所述第二发射功率,且与所述第二发射功率差值最小的一个第一发射功率。
  84. 根据权利要求79-83任一项所述的通信系统,其特征在于,所述终端设备,还用于确定当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值是否小于或等于第一门限值;若是,则所述终端设备向所述网络设备发送所述第一指示信息;
    所述网络设备,还用于接收来自所述终端设备的第一指示信息。
  85. 根据权利要求76-84任一项所述的通信系统,其特征在于,所述网络设备,还用于向所述终端设备发送第二指示信息;所述第二指示信息用于指示所述终端设备发送所述第一指示信息;所述第二指示信息承载在以下任一项中:RRC消息、MAC CE、或者DCI;
    所述终端设备,还用于接收来自所述网络设备的第二指示信息;响应于所述第二指示信息,向所述网络设备发送所述第一指示信息;所述第一指示信息承载在所述终端设备发送的MAC CE中,其中,承载所述第一指示信息的MAC CE为以下任一项:承载PHR的MAC CE;新增的MAC CE;或者,在包括TPC的DCI所调度的上行时隙中发送的MAC CE。
  86. 根据权利要求85所述的通信系统,其特征在于,所述第二指示信息用于指示所述终端设备周期性上报所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在当前发射功率与所述多个发射功率区间中的每个发射功率区间的端点之间的最小差值的绝对值小于或等于第一门限值时,向所述网络设备发送所述第一指示信息;
    或者,所述第二指示信息用于指示所述终端设备在预设时间点上报所述第一指示信息。
  87. 根据权利要求86所述的通信系统,其特征在于,所述第二指示信息还用于指示所述第一指示信息的上报方式和所述第一指示信息中第一发射功率的个数。
  88. 根据权利要求76-87任一项所述的通信系统,其特征在于,所述网络设备,还用于若所述网络设备正在进行联合信道估计,则指示所述终端设备在第一功率区间之内调整所述终端设备的发射功率;所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
    所述终端设备,还用于在第一功率区间内调整所述终端设备的发射功率。
  89. 根据权利要求76-87任一项所述的通信系统,其特征在于,所述网络设备,还用于确定第一时隙,在所述第一时隙上,所述终端设备的发射功率调整至第一功率区间之外,所述第一功率区间为所述多个发射功率区间中包括所述终端设备当前发射功率的发射功率区间;
    所述网络设备在所述第一时隙上不与所述第一时隙之前的时隙进行联合信道估计。
  90. 根据权利要求76-89任一项所述的通信系统,其特征在于,所述终端设备为手机,所述网络设备为基站。
  91. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机可以执行上述权利要求1至权利要求25任一权利要求所涉及的方法。
  92. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述权利要求1至权利要求25任一权利要求所涉及的方法。
  93. 一种芯片,其特征在于,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述权利要求1至权利要求25任一权利要求所涉及的方法;该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器;可选的,该芯片还包括输入输出电路。
  94. 一种功率控制方法,其特征在于,包括:
    终端设备确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;
    在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
  95. 根据权利要求94所述的方法,其特征在于,还包括:
    所述终端设备接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于1,小于或等于L;L为大于1的正整数;
    所述终端设备根据所述第三指示信息,确定所述第一时间窗。
  96. 根据权利要求95所述的方法,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;H为正整数;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  97. 根据权利要求96所述的方法,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  98. 根据权利要求94-97任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
  99. 根据权利要求94-98任一项所述的方法,其特征在于,所述在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率,包括:
    所述终端设备确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值;所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;
    在所述第一差值小于或等于第一阈值的情况下,所述终端设备在所述第一功率区 间之间调整所述终端设备的发射功率。
  100. 根据权利要求99所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第一差值;
    在所述第一差值大于所述第一阈值的情况下,所述终端设备将所述终端设备的发射功率调整为第三发射功率。
  101. 根据权利要求94-100任一项所述的方法,其特征在于,还包括:
    所述终端设备接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  102. 根据权利要求94-101任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
    若是,所述终端设备向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
  103. 一种功率控制方法,其特征在于,包括:
    网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
  104. 根据权利要求103所述的方法,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  105. 根据权利要求104所述的方法,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  106. 根据权利要求103-105任一项所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  107. 根据权利要求103-106任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
  108. 一种通信装置,其特征在于,包括:处理单元;
    所述处理单元,用于确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;
    所述处理单元,还用于在所述第一时间窗内,在第一功率区间内调整终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功 率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
  109. 根据权利要求108所述的装置,其特征在于,还包括:通信单元;
    所述通信单元,用于接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;
    所述处理单元,还用于根据所述第三指示信息,确定所述第一时间窗。
  110. 根据权利要求109所述的装置,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  111. 根据权利要求110所述的装置,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  112. 根据权利要求108-111任一项所述的装置,其特征在于,所述处理单元,还用于:
    在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
  113. 根据权利要求108-112任一项所述的装置,其特征在于,所述处理单元,具体用于:
    确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值,所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
  114. 根据权利要求113所述的装置,其特征在于,所述处理单元,还用于:
    确定第一差值;
    在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为第三发射功率。
  115. 根据权利要求108-114任一项所述的装置,其特征在于,所述通信单元,还用于:接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  116. 根据权利要求108-115任一项所述的装置,其特征在于,所述处理单元,还用于确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
    所述处理单元,还用于指示所述通信单元向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
  117. 一种通信装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于指示所述通信单元向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
  118. 根据权利要求117所述的装置,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  119. 根据权利要求118所述的装置,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  120. 根据权利要求117-119任一项所述的装置,其特征在于,所述通信单元,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  121. 根据权利要求117-120任一项所述的装置,其特征在于,所述通信单元,还用于:
    接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
  122. 一种通信装置,其特征在于,该通信装置可以为终端设备或者终端设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:确定第一时间窗,所述第一时间窗为网络设备进行联合信道估计的时间段;在所述第一时间窗内,在第一功率区间内调整终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
  123. 根据权利要求122所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:接收来自网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;根据所述第三指示信息,确定所述第一时间窗。
  124. 根据权利要求123所述的装置,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  125. 根据权利要求124所述的装置,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  126. 根据权利要求122-125任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
  127. 根据权利要求122-126任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值,所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
  128. 根据权利要求127所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:确定第一差值;在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为第三发射功率。
  129. 根据权利要求122-128任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  130. 根据权利要求122-129任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值。
  131. 一种通信装置,其特征在于,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统,该通信装置包括:处理器和存储器,存储器存储有指令,当指令被处理器执行时,使得通信装置执行以下步骤:指示所述通信单元向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数。
  132. 根据权利要求131所述的装置,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  133. 根据权利要求132所述的装置,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  134. 根据权利要求131-133任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  135. 根据权利要求131-134任一项所述的装置,其特征在于,所述通信装置,还用于执行以下步骤:接收来自所述终端设备的第五指示信息,所第五指示信息用于指示第二差值小于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值。
  136. 一种通信系统,其特征在于,包括终端设备和网络设备;
    所述终端设备,用于确定第一时间窗,所述第一时间窗为所述网络设备进行联合信道估计的时间段;
    在所述第一时间窗内,所述终端设备在第一功率区间内调整所述终端设备的发射功率;所述第一功率区间为多个发射功率区间中,包括所述终端设备当前发射功率的区间;所述终端设备在所述多个发射功率区间中的任一个发射功率区间内调整所述终端设备的发射功率时,所述终端设备的上行信号的不发生相位跳变。
  137. 根据权利要求136所述的通信系统,其特征在于,所述网络设备,用于向终端设备发送第三指示信息,所述第三指示信息用于指示第一时间窗包括的最大连续时隙数L;所述第一时间窗为网络设备进行联合信道估计的时间段;所述网络设备进行一次联合信道估计所需的时隙数大于或等于1,小于或等于L;L为大于或等于1的正整数;
    所述终端设备,用于接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述第一时间窗包括的最大连续时隙数L;所述网络设备进行一次联合信道估计所需的时隙数大于1,小于或等于L;L为大于1的正整数;所述终端设备,还用于根据所述第三指示信息,确定所述第一时间窗。
  138. 根据权利要求136或137所述的通信系统,其特征在于,所述第一时间窗的开始时间点位于第H个时隙;其中所述第H个时隙满足以下任一项:第H-1个时隙为调度的下行时隙,且第H个时隙为调度的上行时隙;
    或者,第H-1个时隙为未调度的时隙,第H个时隙为调度的上行时隙;
    或者,网络设备在第H-L个时隙至H-1上完成了一次联合信道估计,且第H个时隙为调度的上行时隙。
  139. 根据权利要求136-138任一项所述的通信系统,其特征在于,所述第一时间窗包括所述第H个时隙至第H+Q个时隙,Q为大于或等于1且小于或等于L的正整数;所述第H个时隙至所述第H+Q个时隙均为调度的上行时隙。
  140. 根据权利要求136-139任一项所述的通信系统,其特征在于,所述网络设备,还用于向终端设备发送TPC;
    所述终端设备,还用于在第一时间窗之后的第一个时隙上,根据所述网络设备发送的TPC,调整所述终端设备的发射功率。
  141. 根据权利要求136-140任一项所述的通信系统,其特征在于,所述终端设备,还用于确定第一差值,所述第一差值为所述终端设备当前发射功率与所述终端设备的第三发射功率之间的差值的绝对值;所述第三发射功率为所述网络设备指示所述终端设备调整发射功率后的发射功率;在所述第一差值小于或等于第一阈值的情况下,在所述第一功率区间之间调整所述终端设备的发射功率。
  142. 根据权利要求136-141任一项所述的通信系统,其特征在于,所述终端设备, 还用于确定第一差值;在所述第一差值大于所述第一阈值的情况下,将所述终端设备的发射功率调整为第三发射功率。
  143. 根据权利要求142所述的通信系统,其特征在于,所述终端设备,还用于确定第一差值;在所述第一差值大于所述第一阈值的情况下,所述终端设备将所述终端设备的发射功率调整为第三发射功率。
  144. 根据权利要求136-143任一项所述的通信系统,其特征在于,所述网络设备,还用于向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计;
    所述终端设备,还用于接收来自所述网络设备的第四指示信息,所述第四指示信息用于指示所述网络设备使能联合信道估计。
  145. 根据权利要求136-144任一项所述的通信系统,其特征在于,所述终端设备,还用于确定第二差值是否小于或等于第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
    若是,所述终端设备向所述网络设备发送第五指示信息,所述第五指示信息用于指示所述第二差值小于所述第二阈值;所述第二差值为所述终端设备当前发射功率与第一发射功率的差值的绝对值;
    所述网络设备,还用于接收来自所述终端设备的第五指示信息。
  146. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机可以执行上述权利要求94至权利要求107任一权利要求所涉及的方法。
  147. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述权利要求94至权利要求107任一权利要求所涉及的方法。
  148. 一种芯片,其特征在于,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述权利要求94至权利要求107任一权利要求所涉及的方法;该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器;可选的,该芯片还包括输入输出电路。
PCT/CN2021/093700 2020-06-22 2021-05-13 功率控制方法及装置 WO2021258905A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022579091A JP2023532240A (ja) 2020-06-22 2021-05-13 電力制御方法および装置
EP21828627.6A EP4156799A4 (en) 2020-06-22 2021-05-13 METHOD AND DEVICE FOR POWER CONTROL
US18/009,807 US20230247560A1 (en) 2020-06-22 2021-05-13 Power control method and apparatus
KR1020237000570A KR20230019970A (ko) 2020-06-22 2021-05-13 전력 제어 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010570506.1 2020-06-22
CN202010570506 2020-06-22
CN202010923712.6 2020-09-04
CN202010923712.6A CN113905431B (zh) 2020-06-22 2020-09-04 功率控制方法及装置

Publications (1)

Publication Number Publication Date
WO2021258905A1 true WO2021258905A1 (zh) 2021-12-30

Family

ID=79186186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093700 WO2021258905A1 (zh) 2020-06-22 2021-05-13 功率控制方法及装置

Country Status (6)

Country Link
US (1) US20230247560A1 (zh)
EP (1) EP4156799A4 (zh)
JP (1) JP2023532240A (zh)
KR (1) KR20230019970A (zh)
CN (2) CN117715166A (zh)
WO (1) WO2021258905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155206A1 (zh) * 2022-02-21 2023-08-24 北京小米移动软件有限公司 联合信道估计的最大持续时间的上报方法及其装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN103975633A (zh) * 2011-10-11 2014-08-06 瑞典爱立信有限公司 减少相对相位不连续的传送功率调整
CN110313199A (zh) * 2017-01-04 2019-10-08 诺基亚技术有限公司 多输入多输出无线系统的探测参考信号功率控制
CN110351054A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 信息传输方法、装置、网络设备及终端
CN111096001A (zh) * 2017-09-18 2020-05-01 高通股份有限公司 处理新无线电中的功率转换

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427896B2 (en) * 2003-01-13 2008-09-23 Telefonaktiebolaget L M Ericsson (Publ) Device and method for predistorting and input signal
CN101447812B (zh) * 2008-11-11 2013-02-13 华为技术有限公司 对用户站的发射功率进行调整的方法和装置
EP2214362B1 (en) * 2009-02-02 2012-08-01 Sony Corporation Receiving apparatus with frequency domain equalizer
BR112012003477A2 (pt) * 2009-08-17 2017-05-23 Alcatel Lucent "método para manter coerência de um canal de pré-codificação em uma rede de comunicação e aparelho associado."
CN104039002B (zh) * 2013-03-08 2017-12-29 华为技术有限公司 数据传输方法、终端设备、基站及通信系统
US9848347B2 (en) * 2013-09-25 2017-12-19 Apple Inc. System and method for adaptive wireless property calculations
CN104854887B (zh) * 2013-10-29 2018-09-21 华为技术有限公司 一种接收质量的测量方法及终端
CN106686740A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 一种下行控制信息的发送/检测方法、基站及用户设备
US11089550B2 (en) * 2016-11-04 2021-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuration restriction for radio frequency operation for shortened transmission time interval patterns
CN108810960B (zh) * 2017-04-28 2021-06-22 华为技术有限公司 一种小区切换、确定上行发送功率的方法及装置
CN109803361B (zh) * 2017-11-16 2021-06-04 华为技术有限公司 一种上行信道的发送方法及设备
CN109842926B (zh) * 2017-11-27 2021-06-29 华为技术有限公司 一种功率控制的方法、装置及系统
WO2019157897A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 一种上行数据的发送方法、接收方法和装置
CN110167173A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种上行数据的发送方法、接收方法和装置
CN110890950B (zh) * 2018-09-10 2022-06-14 上海华为技术有限公司 信号处理方法、接入网设备以及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130077571A1 (en) * 2011-09-27 2013-03-28 Samsung Electronics Co., Ltd. Method and apparatus for transmission power control for a sounding reference signal
CN103975633A (zh) * 2011-10-11 2014-08-06 瑞典爱立信有限公司 减少相对相位不连续的传送功率调整
CN110313199A (zh) * 2017-01-04 2019-10-08 诺基亚技术有限公司 多输入多输出无线系统的探测参考信号功率控制
CN111096001A (zh) * 2017-09-18 2020-05-01 高通股份有限公司 处理新无线电中的功率转换
CN110351054A (zh) * 2018-04-04 2019-10-18 中国移动通信有限公司研究院 信息传输方法、装置、网络设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156799A4

Also Published As

Publication number Publication date
US20230247560A1 (en) 2023-08-03
EP4156799A4 (en) 2023-11-15
CN113905431B (zh) 2023-11-03
CN113905431A (zh) 2022-01-07
CN117715166A (zh) 2024-03-15
KR20230019970A (ko) 2023-02-09
EP4156799A1 (en) 2023-03-29
JP2023532240A (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
EP4017177B1 (en) Resource multiplexing method and apparatus
US20220361129A1 (en) Time synchronization method, access network device, communication apparatus, computer storage medium, and communication system
EP3965441B1 (en) Direct link transmission method and terminal
WO2021030980A1 (zh) 一种通信方法、通信装置和系统
WO2019213979A1 (zh) 数据传输的方法和装置
WO2020244393A1 (zh) 一种数据传输方法及装置
WO2021031581A1 (zh) 一种定时同步方法及装置
WO2021258905A1 (zh) 功率控制方法及装置
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
WO2022110217A1 (zh) 一种通信方法、通信装置及网络设备
WO2022082458A1 (zh) 一种数据传输方法及通信装置
WO2020088204A1 (zh) 一种数据传输的方法及装置
WO2020087977A1 (zh) 数据传输方法和设备
WO2022088185A1 (zh) 通信方法及装置
US11218936B2 (en) Method and device for handover
WO2010073843A1 (ja) 無線通信システム、基地局、無線通信方法、プログラム
US20220369154A1 (en) Method and apparatus for indicating qos flow information
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2022027676A1 (zh) 通信方法及装置
WO2023020032A1 (zh) 一种信号发射功率控制方法及装置
WO2022021442A1 (zh) 通信方法及装置
CN112152764B (zh) 一种重复传输激活状态上报方法、确认方法和相关设备
WO2023184419A1 (zh) 功率控制方法、装置、设备及存储介质
WO2023000990A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000570

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021828627

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE