WO2023020032A1 - 一种信号发射功率控制方法及装置 - Google Patents

一种信号发射功率控制方法及装置 Download PDF

Info

Publication number
WO2023020032A1
WO2023020032A1 PCT/CN2022/092025 CN2022092025W WO2023020032A1 WO 2023020032 A1 WO2023020032 A1 WO 2023020032A1 CN 2022092025 W CN2022092025 W CN 2022092025W WO 2023020032 A1 WO2023020032 A1 WO 2023020032A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
path loss
transmission
direct link
transmit power
Prior art date
Application number
PCT/CN2022/092025
Other languages
English (en)
French (fr)
Inventor
任晓涛
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023020032A1 publication Critical patent/WO2023020032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a signal transmission power control method and device.
  • the downlink positioning reference signal and the uplink positioning reference signal are defined in the air interface between the base station and the terminal, while the PC5 interface between the terminal and the terminal In , the through-link positioning reference signal is not defined, so that the terminal needs to rely on the base station for positioning, and the positioning process cannot be completed in the through-link.
  • NR New Radio Access
  • terminal 1 As shown in FIG. 1 , it is a schematic diagram of terminal 1 sending a direct link positioning reference signal to terminal 2 to terminal 4 so as to realize the positioning process of terminal 1 .
  • terminal 1 may be referred to as a sending terminal, or a transmitting terminal.
  • Terminals 2 to 4 may be referred to as receiving terminals.
  • Terminal 1 can use the preset fixed transmission power to send (Sidelink Positioning Reference Signal, S-PRS) to Terminal 2 ⁇ Terminal 4, after Terminal 2 ⁇ Terminal 4 receives the S-PRS, send -
  • S-PRS Segment Positioning Reference Signal
  • the PRS performs measurement and sends the measurement result to UE1 to assist UE1 to complete the positioning calculation.
  • the terminal uses a fixed power to transmit the direct link positioning reference signal without controlling the S-PRS transmission power
  • the distance between the S-PRS transmitting terminal and the receiving terminal is relatively close (terminal 1 in Figure 1 and terminal 2)
  • the path loss of the through link is very small, which will cause the S-PRS transmission power of the terminal to exceed the required power, thus causing serious mutual interference between the S-PRS between the terminals. This affects the positioning accuracy of the through link.
  • Embodiments of the present disclosure provide a signal transmission power control method and device, which are used to control the transmission power of a direct link positioning reference signal through transmission power control parameters, thereby improving the positioning accuracy of the direct link.
  • a signal transmission power control method provided by an embodiment of the present disclosure includes:
  • the transmission power of the direct link positioning reference signal S-PRS is determined.
  • the transmit power control parameter is determined; according to the transmit power control parameter, the transmit power of the direct link positioning reference signal S-PRS is determined, and the transmit terminal sends the S-PRS to the receive terminal by using the transmit power, thereby
  • the control of the transmission power of the positioning reference signal of the direct link is realized, thereby improving the positioning accuracy of the direct link.
  • the transmit power control parameters include one or a combination of the following parameters:
  • the transmit power of the direct link physical shared channel is the transmit power of the direct link physical shared channel.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is the function value of the independent variable
  • i is an integer greater than or equal to 0.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is the function value of the independent variable
  • i is an integer greater than or equal to 0.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the through link path loss;
  • i is an integer greater than or equal to 0.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the through link path loss;
  • i is an integer greater than or equal to 0.
  • the PS-PRS,D (i) is determined in the following manner:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL ;
  • i is an integer greater than or equal to 0.
  • the PS-PRS,SL (i) is determined in the following manner:
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • PL SL is the path loss of the through link
  • i is an integer greater than or equal to 0.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i;
  • i is an integer greater than or equal to 0.
  • the S-PRS and the physical direct link shared channel PSSCH are not sent on the same symbol.
  • determining the transmit power of the S-PRS according to a transmit power control parameter includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i;
  • i is an integer greater than or equal to 0.
  • the S-PRS and the physical direct link shared channel PSSCH are sent on the same symbol.
  • the S-PRS is not sent on the same symbol as at least one of the physical direct link control channel PSCCH and the physical direct link feedback channel PSFCH.
  • an apparatus for controlling signal transmission power includes:
  • the processor is used to call the program instructions stored in the memory, and execute according to the obtained program:
  • the transmission power of the direct link positioning reference signal S-PRS is determined.
  • the transmit power control parameters include one or a combination of the following parameters:
  • the transmit power of the direct link physical shared channel is the transmit power of the direct link physical shared channel.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is the function value of the independent variable
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is the function value of the independent variable
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the through link path loss;
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the through link path loss;
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to determine the PS-PRS,D (i) in the following manner:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL ;
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to determine the PS-PRS,SL (i) in the following manner:
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • PL SL is the path loss of the through link
  • i is an integer greater than or equal to 0.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i;
  • i is an integer greater than or equal to 0.
  • the S-PRS and the physical direct link shared channel PSSCH are not sent on the same symbol.
  • the processor is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i;
  • i is an integer greater than or equal to 0.
  • the S-PRS and the physical direct link shared channel PSSCH are sent on the same symbol.
  • the S-PRS is not sent on the same symbol as at least one of the physical direct link control channel PSCCH and the physical direct link feedback channel PSFCH.
  • another device for controlling signal transmission power includes:
  • a first unit configured to determine a transmit power control parameter
  • the second unit is configured to determine the transmit power of the direct link positioning reference signal S-PRS according to the transmit power control parameter.
  • Another embodiment of the present disclosure provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Do any of the above methods.
  • Another embodiment of the present disclosure provides a computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer perform any one of the above-mentioned methods.
  • FIG. 1 is a schematic diagram of sending a direct link positioning reference signal provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a direct link positioning reference signal power control solution provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a signal transmission power control method on the sending terminal side provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a signal transmission power control device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an apparatus for controlling signal transmission power at a transmitting terminal side according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a signal transmission power control method and device, which are used to control the transmission power of a direct link positioning reference signal through transmission power control parameters, thereby improving the positioning accuracy of the direct link.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), general Universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system and 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS general Universal mobile telecommunications system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called user equipment (user equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks via RAN, wireless terminal equipment can be mobile terminal equipment, such as mobile phones (or called "cellular" phones) and computers with mobile terminal equipment, for example, can be portable , pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the radio access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert received over-the-air frames to and from Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiment of the present disclosure may be a network device (base transceiver station, BTS) in a global system for mobile communications (GSM) or a code division multiple access (code division multiple access, CDMA) ), or a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional node B, eNB or e-NodeB), the 5G base station in the 5G network architecture (next generation system), or the home evolution base station (home evolved node B, HeNB), relay node (relay node), home base station ( femto), pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • WCDMA wide-band code division multiple access
  • a power control scheme for direct link positioning reference signals applicable to direct links is proposed.
  • the transmitting terminal can determine the transmission power of the direct link positioning reference signal S-PRS according to the transmission power control parameters, and use the Transmit power, to send the S-PRS to the receiving terminal.
  • the transmit power control parameters include, for example, the maximum transmit power P CMAX of the transmitting terminal, the power control configuration parameter P 0 of the direct link positioning reference signal, the partial path loss compensation factor ⁇ of the direct link positioning reference signal, and the direct link positioning reference signal.
  • Number of resource blocks M occupied by channel positioning reference signals, direct link path loss PL SL , downlink path loss PL DL , uplink path loss PL UL , channel busy ratio CBR, direct link physical shared channel transmit power P PSSCH One or more of such information, using one or more of these information to determine the transmit power PS-PRS of the direct link positioning reference signal.
  • the embodiment of the present disclosure uses this method, so that the terminal can determine the appropriate transmission power of the direct link positioning reference signal, which reduces the mutual interference between the direct link positioning reference signals sent between the terminals, and improves the terminal's positioning of the direct link. accuracy.
  • the terminal controls the S-PRS transmission power according to various power control parameters, when the distance between the S-PRS transmitting terminal and the receiving terminal is relatively close (terminal 1 and terminal 2 in Figure 1 The situation between), at this time, the path loss of the direct link is very small, and the terminal uses a small S-PRS transmission power, thereby avoiding serious mutual interference between the S-PRS between the terminals, and ensuring a sufficiently high The positioning accuracy of the through-link.
  • the path loss of the direct link is very large at this time, and the terminal uses a long
  • the large S-PRS transmission power ensures the coverage of the S-PRS and ensures a sufficiently high positioning accuracy of the direct link.
  • the terminal calculates the transmission power of S-PRS, it can also consider the downlink path loss or uplink path loss between the base station and the base station, so that the terminal can avoid the transmission of S-PRS between the base station and the terminal. The impact of air interface communication.
  • the direct link path loss PL SL refers to the direct path loss between the S-PRS sending terminal and the S-PRS receiving terminal.
  • the downlink path loss PL DL refers to an air interface downlink path loss from a base station or a cell to an S-PRS sending terminal.
  • the uplink path loss PL UL refers to the air interface uplink path loss from the S-PRS transmitting terminal to the base station or cell.
  • S-PRS power control scheme 1 (single path loss determination method + no CBR):
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS; this factor is optional and can not be configured, that is, when this option is not configured, it means full path loss compensation.
  • the full path loss compensation refers to: when calculating the S-PRS transmission power, according to the path loss between the S-PRS transmitting end and the receiving end, all the path loss values are compensated into the transmitting power, for example :
  • the path loss is 100dB, so the transmit power should be increased by 100dB accordingly, not a value less than 100dB.
  • the partial path loss compensation refers to 0 ⁇ S-PRS ⁇ 1.
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • S-PRS power control scheme 2 (single path loss determination method + CBR):
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to CBR (Channel Busy Ratio, channel busy rate) of the sending terminal;
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS; this factor is optional and can not be configured, that is, when this option is not configured, it means full path loss compensation.
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to CBR (Channel Busy Ratio) of the sending terminal
  • P S-PRS,D (i) is the transmission power of the S-PRS at the S-PRS transmission moment in the time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • PSSCH Physical Sidelink Shared Channel
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • Applicable scenario S-PRS and PSSCH are transmitted simultaneously.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • i described in the embodiments of the present disclosure is any integer greater than or equal to 0, and i described in different positions in the text may have different values.
  • the sending terminal uses the above S-PRS power control schemes 1 to 5 to control the transmission power of the S-PRS;
  • the sending terminal uses the above S-PRS power control scheme 6 to control the transmission power of the S-PRS.
  • S-PRS and at least one physical sidelink control channel Physical Sidelink Control Channel, PSCCH
  • Physical Direct link feedback channel Physical Sidelink Feedback Channel, PSFCH
  • Channels are not sent on the same symbol.
  • Embodiment 1 S-PRS power control scheme 1 (single path loss determination method + no CBR)):
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any one of the direct link path loss PL SL , the downlink path loss PL DL , and the uplink path loss PL UL , or any combination of multiple path losses.
  • the sending terminal calculates the transmit power of its S-PRS according to the above parameters
  • PL in the above formula is the path loss of any one of the direct link path loss, downlink path loss, and uplink path loss, or the direct link path loss, downlink path loss, and uplink path loss At least one path loss in is the function value of the independent variable.
  • the so-called any combination of multiple path losses refers to the direct link path loss PL SL , the downlink path loss PL DL , the uplink path loss PL UL At least one path loss in is a parameter, and a certain mixed path loss is calculated.
  • the terminal can flexibly determine the appropriate transmission power of the direct link positioning reference signal according to various specific parameters of its wireless transmission and the mixed path loss, The mutual interference between through-link positioning reference signals sent between terminals is reduced, and the accuracy of through-link positioning by terminals is improved.
  • Embodiment 2 S-PRS power control scheme 2 (single path loss determination method + CBR)):
  • the number of resource blocks M , the direct link path loss PL SL , the downlink path loss PL DL , the uplink path loss PL UL , and the channel busy ratio CBR to determine the transmit power PS-PRS of the direct link positioning reference signal.
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to CBR (Channel Busy Ratio) of the sending terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any one of the direct link path loss PL SL , the downlink path loss PL DL , and the uplink path loss PL UL , or any combination of multiple path losses.
  • the sending terminal calculates the transmit power of its S-PRS according to the above parameters
  • the parameter CBR means that the terminal measures the channel occupancy ratio in a resource pool within a historical time window, which is used as a characterization parameter of the congestion degree of the current resource pool.
  • Different CBR value ranges correspond to different maximum transmit powers of terminals. For example, the corresponding relationship between CBR and P MAX, CBR is shown in the following table:
  • PL in the above formula is the path loss of any one of the direct link path loss, downlink path loss, and uplink path loss, or the direct link path loss, downlink path loss, and uplink path loss At least one path loss in is the function value of the independent variable.
  • the so-called any combination of multiple path losses refers to the direct link path loss PL SL , the downlink path loss PL DL , the uplink path loss PL UL
  • the terminal can flexibly determine the appropriate transmission power of the direct link positioning reference signal according to various specific parameters of its wireless transmission, CBR and hybrid path loss , which reduces mutual interference between through-link positioning reference signals sent between terminals, and improves the accuracy of through-link positioning performed by terminals.
  • Embodiment 3 S-PRS power control scheme 3 (double path loss determination method + no CBR):
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the S-PRS power control scheme described in this embodiment adopts the method of first calculating the transmit power P S-PRS,D (i ) and P S-PRS,SL (i), and then calculate the final S-PRS transmission power according to the above formula.
  • PS-PRS,D (i) and PS -PRS,SL (i) are as follows:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL .
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • the sending terminal calculates the transmit power of its S-PRS according to the above parameters
  • the terminal can flexibly determine the appropriate through link according to the specific parameters of its wireless transmission and the downlink path loss/through link path loss.
  • the transmission power of the link positioning reference signal reduces the mutual interference between the direct link positioning reference signals sent between the terminals, and improves the accuracy of the direct link positioning by the terminal.
  • Embodiment 4 S-PRS power control scheme 4 (double path loss determination method + CBR):
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to CBR (Channel Busy Ratio) of the sending terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the S-PRS power control scheme described in this embodiment adopts the method of first calculating the transmit power P S-PRS,D (i ) and P S-PRS,SL (i), and then calculate the final S-PRS transmission power according to the above formula.
  • PS-PRS,D (i) and PS -PRS,SL (i) are as follows:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL .
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • the sending terminal calculates the transmit power of its S-PRS according to the above parameters
  • the parameter CBR means that the terminal measures the channel occupancy ratio in a resource pool within a historical time window, which is used as a characteristic parameter of the congestion degree of the current resource pool.
  • Different CBR value ranges correspond to different maximum transmit powers of terminals. For example, the corresponding relationship between CBR and P MAX, CBR is shown in the following table:
  • the terminal can flexibly determine the appropriate
  • the transmit power of the direct link positioning reference signal reduces the mutual interference between the direct link positioning reference signals sent between the terminals, and improves the accuracy of the direct link positioning by the terminal.
  • Embodiment 5 S-PRS power control scheme 5 (data channel determination method + different symbol transmission):
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS transmission power control scheme described in this embodiment is an indirect power control scheme, that is, the transmission power of S-PRS is not controlled by various parameters configured by pre-configuration or high-layer signaling. It is obtained by calculation, but through the transmission power of the PSSCH data channel sent in the same time slot i, combined with the number of resource blocks (Resource Block, RB) occupied by S-PRS and PSSCH, to indirectly obtain the S-PRS transmit power.
  • Resource Block, RB Resource Block
  • the S-PRS and the PSSCH are sent in the same time slot i, they do not occupy the same symbols, so the maximum possible transmit power of the S-PRS is PCMAX .
  • the terminal can combine the number of RBs occupied by the S-PRS and the PSSCH according to the transmission power of the PSSCH data channel sent in the same time slot i, To obtain the transmission power of S-PRS indirectly, reduce the mutual interference between the direct link positioning reference signals sent by the terminals, improve the accuracy of the direct link positioning by the terminal, and do not need to obtain a large number of power control parameters in advance , the signaling overhead is relatively small.
  • Embodiment 6 S-PRS power control scheme 6 (data channel determination method+same symbol transmission):
  • the sending terminal sends the direct link positioning reference signal S-PRS with the determined transmit power PS-PRS.
  • the sending terminal determines the S-PRS transmission power PS- PRS (i) of the S-PRS transmission opportunity in the time slot i (i is an integer greater than or equal to 0):
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS transmission power control scheme described in this embodiment is an indirect power control scheme, that is, the transmission power of S-PRS is not controlled by various parameters configured by pre-configuration or high-layer signaling. The calculation is obtained, but the transmission power of the S-PRS is indirectly obtained by combining the transmission power of the PSSCH data channel transmitted in the same time slot i, combined with the number of RBs occupied by the S-PRS and the PSSCH.
  • the terminal can combine the number of RBs occupied by the S-PRS and the PSSCH according to the transmission power of the PSSCH data channel sent in the same time slot i, To obtain the transmission power of S-PRS indirectly, reduce the mutual interference between the direct link positioning reference signals sent by the terminals, improve the accuracy of the direct link positioning by the terminal, and do not need to obtain a large number of power control parameters in advance , the signaling overhead is relatively small.
  • Embodiment 7 (multiplexing scheme of channels such as S-PRS and PSSCH/PSCCH/PSFCH):
  • the terminal selects the appropriate S-PRS power control scheme according to the same symbol multiplexing of S-PRS and PSSCH:
  • the terminal uses the above S-PRS power control schemes 1 to 5 to control the transmission power of the S-PRS;
  • the terminal uses the above S-PRS power control scheme 6 to control the transmission power of S-PRS;
  • the above S-PRS power control selection scheme is adopted because the S-PRS and the PSSCH may be transmitted in frequency division multiplexing on the same symbol, or may be transmitted in time division multiplexing on different symbols with the PSSCH. If the S-PRS and the PSSCH are not sent on the same symbol, the maximum transmission power of the S-PRS is P CMAX . If the S-PRS and the PSSCH are sent on the same symbol, the maximum transmission power of the S-PRS is P CMAX -P PSSCH (i).
  • At least one channel such as S-PRS, PSCCH and PSFCH is not sent on the same symbol. In this way, the S-PRS transmission can avoid occupying the power of the control channel, and can also avoid interference to the control channel.
  • an appropriate multiplexing scheme can be flexibly selected according to different direct link channel types, which can ensure that S-PRS has Sufficient time-frequency resources are available, and the transmission success rate of the control channel can be guaranteed.
  • a signal transmission power control method provided by an embodiment of the present disclosure includes:
  • the transmit power control parameters include one or a combination of the following parameters:
  • the transmit power of the direct link physical shared channel is the transmit power of the direct link physical shared channel.
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the PS-PRS,D (i) is determined in the following manner:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL .
  • the PS-PRS,SL (i) is determined in the following manner:
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS and the physical direct link shared channel PSSCH are not sent on the same symbol.
  • determining the transmission power of the S-PRS according to the transmission power control parameter specifically includes:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS and the physical direct link shared channel PSSCH are sent on the same symbol.
  • the S-PRS is not sent on the same symbol as at least one of the physical direct link control channel PSCCH and the physical direct link feedback channel PSFCH.
  • a signal transmission power control device provided by an embodiment of the present disclosure includes:
  • memory 620 for storing program instructions
  • the processor 600 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the transmission power of the direct link positioning reference signal S-PRS is determined.
  • the transmit power control parameters include one or a combination of the following parameters:
  • the transmit power of the direct link physical shared channel is the transmit power of the direct link physical shared channel.
  • processor 600 is specifically configured to execute:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • processor 600 is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • S-PRS is the power control configuration parameter P 0 of S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ S-PRS is the partial path loss compensation factor of S-PRS
  • PL is any path loss in the direct link path loss, the downlink path loss, and the uplink path loss, or at least one of the direct link path loss, the downlink path loss, and the uplink path loss
  • path loss is a function of the independent variable.
  • processor 600 is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min (P CMAX , min (P S-PRS, D (i), P S-PRS, SL (i))) [dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • processor 600 is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P S-PRS (i) min(P CMAX ,P MAX,CBR ,min(P S-PRS,D (i),P S-PRS,SL (i)))[dBm];
  • PCMAX is the maximum transmit power of the transmitting terminal
  • P MAX,CBR is the maximum transmission power related to the channel busy rate CBR of the sending terminal
  • P S-PRS,D (i) is the transmit power of the S-PRS at the S-PRS transmission moment in time slot i determined by the transmitting terminal according to the downlink path loss;
  • P S-PRS,SL (i) is the transmit power of the S-PRS at the time slot i when the S-PRS is transmitted determined by the transmitting terminal according to the path loss of the through link.
  • the processor 600 is specifically configured to determine the PS-PRS,D (i) in the following manner:
  • P 0,D is the power control parameter P 0 related to the downlink of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ D is the partial path loss compensation factor related to the downlink of S-PRS
  • PL D is the downlink path loss PL DL .
  • the PS-PRS,SL (i) is determined in the following manner:
  • P 0,SL is the power control parameter P 0 related to the direct link of the S-PRS
  • is a parameter related to the subcarrier spacing used by the sending terminal when sending S-PRS; when the subcarrier spacing is 15, 30, 60, and 120KHz, ⁇ is equal to 0, 1, 2, and 3 respectively;
  • ⁇ SL is the partial path loss compensation factor related to the through link of S-PRS
  • processor 600 is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS and the physical direct link shared channel PSSCH are not sent on the same symbol.
  • processor 600 is specifically configured to execute:
  • the transmission power P S- PRS (i) of the S- PRS that determines the S-PRS transmission opportunity in time slot i is:
  • P PSSCH (i) is the transmission power of the direct link data channel P PSSCH in the PSSCH transmission opportunity i.
  • the S-PRS and the physical direct link shared channel PSSCH are sent on the same symbol.
  • the S-PRS is not sent on the same symbol as at least one of the physical direct link control channel PSCCH and the physical direct link feedback channel PSFCH.
  • the processor 600 is further configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the S-PRS is measured, and the measurement result is sent to the sending terminal, so as to assist the sending terminal in positioning.
  • the transceiver 610 is used for receiving and sending data under the control of the processor 600 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media.
  • the user interface 630 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 can be a CPU (Central Office), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device , Complex Programmable Logic Devices).
  • CPU Central Office
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device , Complex Programmable Logic Devices.
  • a signal transmission power control device provided by an embodiment of the present disclosure includes:
  • the first unit 11 is configured to determine a transmit power control parameter
  • the second unit 12 is configured to determine the transmit power of the direct link positioning reference signal S-PRS according to the transmit power control parameter.
  • the second unit 12 determines the transmission power of the S-PRS can be determined according to the process described in the above method, and details are not repeated here.
  • the apparatus described in the embodiments of the present disclosure can be used as a sending terminal or as a receiving terminal, and can have functions of a sending terminal and a receiving terminal at the same time.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • An embodiment of the present disclosure provides a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), and the like.
  • the computing device may include a central processing unit (Center Processing Unit, CPU), memory, input/output devices, etc.
  • the input device may include a keyboard, mouse, touch screen, etc.
  • the output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), cathode ray tube (Cathode Ray Tube, CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any one of the methods provided in the embodiments of the present disclosure.
  • the processor invokes the program instructions stored in the memory, and the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained program instructions.
  • An embodiment of the present disclosure provides a computer storage medium for storing computer program instructions used by the apparatus provided by the above-mentioned embodiments of the present disclosure, which includes a program for executing any method provided by the above-mentioned embodiments of the present disclosure.
  • the computer storage medium can be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the methods provided by the embodiments of the present disclosure may be applied to terminal devices, and may also be applied to network devices.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), mobile station (Mobile Station, referred to as “MS”), mobile terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • the terminal can It has the ability to communicate with one or more core networks via a radio access network (Radio Access Network, RAN), for example, a terminal can be a mobile phone (or called a "cellular" phone), or a computer with a mobile nature, etc.,
  • a terminal may also be a portable, pocket, hand-held, computer-built-in, or vehicle-mounted mobile device.
  • a network device may be a base station (for example, an access point), and refers to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface.
  • the base station can be used to convert received over-the-air frames to and from IP packets, acting as a router between the wireless terminal and the rest of the access network, which can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station may also coordinate attribute management for the air interface.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be the gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the processing flow of the above method can be realized by a software program, and the software program can be stored in a storage medium, and when the stored software program is invoked, the steps of the above method are executed.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发射功率控制方法及装置,用以通过发射功率控制参数实现对直通链路定位参考信号的发射功率的控制,进而提高直通链路的定位精度。本公开提供的一种信号发射功率控制方法,包括:确定发射功率控制参数;根据发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。

Description

一种信号发射功率控制方法及装置
相关申请的交叉引用
本公开要求在2021年08月16日提交中国专利局、申请号为202110934629.3、申请名称为“一种信号发射功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种信号发射功率控制方法及装置。
背景技术
在相关的新无线接入(New Radio Access,NR)定位技术中,仅仅在基站与终端之间的空口中定义了下行定位参考信号与上行定位参考信号,而在终端与终端之间的PC5接口中,并没有定义直通链路定位参考信号,导致终端需要依赖于基站实现定位,而在直通链路中无法完成定位流程。
考虑到直通链路定位的需求,需要引入直通链路定位参考信号,从而使得终端可以不依赖于基站,而直接在直通链路中完成定位流程。
如图1所示,是终端1向终端2~终端4发送直通链路定位参考信号,从而实现对终端1的定位过程的示意图。其中,终端1可以称为发送终端,或者发射终端。终端2~4可以称为接收终端。
如图1所示,终端1可以使用预设的固定的发射功率,发送(Sidelink Positioning Reference Signal,S-PRS)给终端2~终端4,终端2~终端4收到S-PRS之后,对S-PRS进行测量并将测量结果再发送给UE1,来协助UE1完成定位计算。
但是,如果终端采用固定的功率发射直通链路定位参考信号,而不对S-PRS发射功率进行控制的话,当S-PRS的发射终端和接收终端距离比较近的情况下(如图1中终端1与终端2之间的情况),这时直通链路路径损耗很 小,会导致终端的S-PRS发射功率超出了需求功率,从而导致了终端之间的S-PRS之间的严重互相干扰,而影响了直通链路的定位精度。另一方面,当S-PRS的发射终端和接收终端距离比较远的情况下(如图1中终端1与终端3之间的情况),这时直通链路路径损耗很大,会导致终端的S-PRS发射功率未能达到需求功率,从而导致了S-PRS覆盖不足,而影响了直通链路的定位精度。
发明内容
本公开实施例提供了一种信号发射功率控制方法及装置,用以通过发射功率控制参数实现对直通链路定位参考信号的发射功率的控制,进而提高直通链路的定位精度。
在发送终端侧,本公开实施例提供的一种信号发射功率控制方法,包括:
确定发射功率控制参数;
根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
通过该方法,确定发射功率控制参数;根据发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率,采用所述发射功率,发送终端将所述S-PRS发送给接收终端,从而通过发射功率控制参数实现了对直通链路定位参考信号的发射功率的控制,进而提高了直通链路的定位精度。
可选地,所述发射功率控制参数包括下列参数之一或组合:
发送终端的最大发射功率;
直通链路定位参考信号的功率控制配置参数;
直通链路定位参考信号的部分路径损耗补偿因子;
直通链路定位参考信号占用的资源块数量;
直通链路路径损耗;
下行链路路径损耗;
上行链路路径损耗;
信道繁忙率;
直通链路物理共享信道发射功率。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000001
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000002
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
i为大于或等于0的整数。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000003
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000004
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
i为大于或等于0的整数。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
i为大于或等于0的整数。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
i为大于或等于0的整数。
可选地,采用如下方式确定所述P S-PRS,D(i):
Figure PCTCN2022092025-appb-000005
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000006
为发送终端在发送S-PRS时所使用的资源块数量;
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
i为大于或等于0的整数。
可选地,采用如下方式确定所述P S-PRS,SL(i):
Figure PCTCN2022092025-appb-000007
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000008
为发送终端在发送S-PRS时所使用的资源块数量;
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗;
i为大于或等于0的整数。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000009
其中:
Figure PCTCN2022092025-appb-000010
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000011
为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
i为大于或等于0的整数。
可选地,所述S-PRS与物理直通链路共享信道PSSCH不在同一个符号上发送。
可选地,根据发射功率控制参数,确定所述S-PRS的发射功率,包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000012
其中:
Figure PCTCN2022092025-appb-000013
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000014
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
i为大于或等于0的整数。
可选地,所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
可选地,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH中的至少一个信道不在同一个符号上发送。
在终端侧,本公开实施例提供的一种信号发射功率控制装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定发射功率控制参数;
根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
可选地,所述发射功率控制参数包括下列参数之一或组合:
发送终端的最大发射功率;
直通链路定位参考信号的功率控制配置参数;
直通链路定位参考信号的部分路径损耗补偿因子;
直通链路定位参考信号占用的资源块数量;
直通链路路径损耗;
下行链路路径损耗;
上行链路路径损耗;
信道繁忙率;
直通链路物理共享信道发射功率。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000015
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000016
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
i为大于或等于0的整数。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000017
Figure PCTCN2022092025-appb-000018
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000019
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
i为大于或等于0的整数。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
i为大于或等于0的整数。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
i为大于或等于0的整数。
可选地,所述处理器具体被配置为采用如下方式确定所述P S-PRS,D(i):
Figure PCTCN2022092025-appb-000020
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000021
为发送终端在发送S-PRS时所使用的资源块数量;
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
i为大于或等于0的整数。
可选地,所述处理器具体被配置为采用如下方式确定所述P S-PRS,SL(i):
Figure PCTCN2022092025-appb-000022
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000023
为发送终端在发送S-PRS时所使用的资源块数量;
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗;
i为大于或等于0的整数。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000024
其中:
Figure PCTCN2022092025-appb-000025
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000026
为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
i为大于或等于0的整数。
可选地,所述S-PRS与物理直通链路共享信道PSSCH不在同一个符号上发送。
可选地,所述处理器具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000027
其中:
Figure PCTCN2022092025-appb-000028
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000029
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
i为大于或等于0的整数。
可选地,所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
可选地,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH中的至少一个信道不在同一个符号上发送。
在发送终端侧,本公开实施例提供的另一种信号发射功率控制装置,包 括:
第一单元,用于确定发射功率控制参数;
第二单元,用于根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
本公开另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本公开另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的直通链路定位参考信号发送示意图;
图2为本公开实施例提供的直通链路定位参考信号功率控制方案示意图;
图3为本公开实施例提供的发送终端侧的一种信号发射功率控制方法的流程示意图;
图4为本公开实施例提供的一种信号发射功率控制装置的结构示意图;
图5为本公开实施例提供的发送终端侧的一种信号发射功率控制装置的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并 不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种信号发射功率控制方法及装置,用以通过发射功率控制参数实现对直通链路定位参考信号的发射功率的控制,进而提高直通链路的定位精度。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数 字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。
下面结合说明书附图对本公开各个实施例进行详细描述。需要说明的是,本公开实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本公开实施例中提出适用于直通链路的终端直通链路定位参考信号的功率控制方案,发送终端可以根据发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率,并采用该发射功率,将S-PRS发送给接收终端。
其中,所述发射功率控制参数,例如包括发送终端的最大发射功率P CMAX、直通链路定位参考信号的功率控制配置参数P 0、直通链路定位参考信号的部分路径损耗补偿因子α,直通链路定位参考信号占用的资源块数量M、直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL、信道繁忙率CBR、直通链路物理共享信道发射功率P PSSCH等信息中的一种或多种,利用这些信息中的一种或多种确定直通链路定位参考信号的发射功率P S-PRS
本公开实施例使用该方法,使得终端可以确定合适的直通链路定位参考信号发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度。
如图2所示,如果终端根据各种功率控制参数,对S-PRS发射功率进行控制,当S-PRS的发射终端和接收终端距离比较近的情况下(如图1中终端1与终端2之间的情况),这时直通链路路径损耗很小,终端使用了较小的S-PRS发射功率,从而避免了终端之间的S-PRS之间的严重互相干扰,进而保证了足够高的直通链路的定位精度。另一方面,当S-PRS的发射终端和接收终端距离比较远的情况下(如图1中终端1与终端3之间的情况),这时直通链路路径损耗很大,终端使用了较大的S-PRS发射功率,从而保证了S-PRS的覆盖,而保证了足够高的直通链路的定位精度。而终端在计算S-PRS的发射功率时,还可以同时考虑与基站之间的下行链路路径损耗或上行链路路径损耗,从而可以避免终端在发射S-PRS时对基站与终端之间的空口通信的影响。
其中,上述三种路径损耗的定义如下:
所述直通链路路径损耗PL SL是指S-PRS发送终端与S-PRS接收终端之间的直通路径损耗。
所述下行链路路径损耗PL DL是指从基站或小区到S-PRS发送终端的空口下行路径损耗。
所述上行链路路径损耗PL UL是指从S-PRS发送终端到基站或小区的空口上行路径损耗。
S-PRS的功率控制具体方案如下:
一、S-PRS功率控制方案1(单路损确定法+无CBR):
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000030
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000031
为发送终端在发送S-PRS时所使用的资源块数量。
α S-PRS为S-PRS的部分路径损耗补偿因子;该因子是可选项,可以不配置,即该选项不配置时表示完全路径损耗补偿。
其中,所述的完全路径损耗补偿,是指:在计算S-PRS发射功率时,根据S-PRS发送端和接收端之间的路径损耗,将全部的路径损耗数值补偿到发送功率中,例如:路损损耗是100dB,那么发射功率就要相应的增加100dB,而不是小于100dB的一个数值。
以下面的公式为例,完全路径损耗补偿就是指α S-PRS=1,或者是指没有α S-PRS这个因子。而部分路径损耗补偿是指0<α S-PRS<1。
Figure PCTCN2022092025-appb-000032
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
二、S-PRS功率控制方案2(单路损确定法+有CBR):
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机 的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000033
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与CBR(Channel Busy Ratio,信道繁忙率)有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000034
为发送终端在发送S-PRS时所使用的资源块数量。
α S-PRS为S-PRS的部分路径损耗补偿因子;该因子是可选项,可以不配置,即该选项不配置时表示完全路径损耗补偿。
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
三、S-PRS功率控制方案3(双路损确定法+无CBR):
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
四、S-PRS功率控制方案4(双路损确定法+有CBR):
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与CBR(Channel Busy Ratio)有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
五、S-PRS功率控制方案5(数据信道确定法+不同符号发送):
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000035
其中:
Figure PCTCN2022092025-appb-000036
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000037
为物理直通链路共享信道(Physical Sidelink Shared Channel,PSSCH)传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
六、S-PRS功率控制方案6(数据信道确定法+同符号发送):
适用场景:S-PRS与PSSCH同时传输。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000038
其中:
Figure PCTCN2022092025-appb-000039
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000040
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
需要说明的是,本公开实施例中所述的i是任意大于等于0的整数,文中不同位置描述的i可以取值不同。
七、S-PRS与PSSCH/PSCCH/PSFCH等信道的复用方案:
发送终端根据S-PRS与PSSCH的同符号复用情况,选择使用合适的S-PRS功率控制方案:
当S-PRS与PSSCH不在同一个符号上发送时,发送终端使用上述S-PRS功率控制方案1~方案5,对S-PRS进行发射功率控制;
当S-PRS与PSSCH在同一个符号上发送时,发送终端使用上述S-PRS功率控制方案6,对S-PRS进行发射功率控制。
为了避免S-PRS对直通链路控制信道的影响,S-PRS与物理直通链路控制信道(Physical Sidelink Control Channel,PSCCH)、物理直通链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)等至少一个信道不在同一个符号上发送。
下面给出几个具体实施例的举例说明:
实施例1(S-PRS功率控制方案1(单路损确定法+无CBR)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号的功率控制配置参数P 0、直通链路定位参考信号的部分路径损耗补偿因子α,直通链路定位参考信号占用的资源块数量M、直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL等信息,确定直通链路定位参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000041
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000042
为发送终端在发送S-PRS时所使用的资源块数量。
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL中的任一项路径损耗或多项路径损耗的任意一种组合。
具体来讲,发送终端在根据以上参数计算其S-PRS的发射功率时,以上的参数(除了PL之外)可以通过预配置或高层信令配置的方式来获取。如果参数P O,S-PRS没有被预配置或者高层信令配置的话,那么P S-PRS(i)=P CMAX。如果参数α S-PRS没有被预配置或者高层信令配置的话,那么α S-PRS=1。
上式中的PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值,所谓多项路径损耗的任意一种组合是指以直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL中的至少一项路径损耗为参数,计算得到的某种混合路径损耗。例如:PL=min(PL SL,PL DL,PL UL),PL=max(PL SL,PL DL,PL UL)或者,PL=mean(PL SL,PL DL,PL UL)。
采用本实施例中所述的直通链路定位参考信号的功率控制方法,使得终端可以根据其无线传输的各项具体参数以及混合路径损耗,灵活地确定合适的直通链路定位参考信号发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度。
实施例2(S-PRS功率控制方案2(单路损确定法+有CBR)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号的功率控制配置参数P 0、直通链路定位参考信号的部分路径损耗补偿因子α,直通链路定位参考信号占用的资源块数量M、直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL以及信道繁忙率CBR等信息,确定直通链路定位参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000043
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与CBR(Channel Busy Ratio)有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000044
为发送终端在发送S-PRS时所使用的资源块数量。
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL中的任一项路径损耗或多项路径损耗的任意一种组合。
具体来讲,发送终端在根据以上参数计算其S-PRS的发射功率时,以上的参数(除了PL之外)可以通过预配置或高层信令配置的方式来获取。如果参数P O,S-PRS没有被预配置或者高层信令配置的话,那么P S-PRS(i)=P CMAX。如果参数α S-PRS没有被预配置或者高层信令配置的话,那么α S-PRS=1。
另外,参数CBR是指终端测量一段历史时间窗口内的一个资源池中的信道占用比例,作为当前资源池拥塞程度的表征参数。不同的CBR数值区间会对应到不同的终端最大发射功率。例如CBR与P MAX,CBR之间的对应关系如下 表所示:
Figure PCTCN2022092025-appb-000045
上式中的PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值,所谓多项路径损耗的任意一种组合是指以直通链路路径损耗PL SL、下行链路路径损耗PL DL、上行链路路径损耗PL UL中的至少一项路径损耗为参数,计算得到的某种混合路径损耗。例如:PL=min(PL SL,PL DL,PL UL)。
采用本实施例所述的直通链路定位参考信号的功率控制方法,使得终端可以根据其无线传输的各项具体参数、CBR以及混合路径损耗,灵活地确定合适的直通链路定位参考信号发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度。
实施例3(S-PRS功率控制方案3(双路损确定法+无CBR)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号的功率控制配置参数P 0、直通链路定位参考信号的部分路径损耗补偿因子α,直通链路定位参考信号占用的资源块数量M、直通链路路径损耗PL SL、下行链路路径损耗 PL DL等信息,确定直通链路定位参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
具体来讲,该实施例中所描述的S-PRS功率控制方案是采用了先分别根据下行链路路径损耗和直通链路路径损耗计算得到S-PRS的发射功率P S-PRS,D(i)与P S-PRS,SL(i),然后根据上式计算获得最终的S-PRS的发射功率。
而P S-PRS,D(i)与P S-PRS,SL(i)的计算方法如下所示:
Figure PCTCN2022092025-appb-000046
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000047
为发送终端在发送S-PRS时所使用的资源块数量。
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
Figure PCTCN2022092025-appb-000048
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000049
为发送终端在发送S-PRS时所使用的资源块数量。
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗。
另外,发送终端在根据以上参数计算其S-PRS的发射功率时,以上的参数(除了PL之外)可以通过预配置或高层信令配置的方式来获取。如果参数P O,D没有被预配置或者高层信令配置的话,那么P S-PRS,D(i)=P CMAX。如果参数P O,SL没有被预配置或者高层信令配置的话,那么P S-PRS,SL(i)=P CMAX。如果参数α D没有被预配置或者高层信令配置的话,那么α D=1。如果参数α SL没有被预配置或者高层信令配置的话,那么α SL=1。
采用本实施例中所述的直通链路定位参考信号的功率控制方法,使得终端可以根据其无线传输的各项具体参数以及下行链路路径损耗/直通链路路径损耗,灵活地确定合适的直通链路定位参考信号发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度。
实施例4(S-PRS功率控制方案4(双路损确定法+有CBR)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号的功率控制配置参数P 0、直通链路定位参考信号的部分路径损耗补偿因子α,直通链路定位参考信号占用的资源块数量M、直通链路路径损耗PL SL、下行链路路径损耗PL DL以及信道繁忙率CBR等信息,确定直通链路定位参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与CBR(Channel Busy Ratio)有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
具体来讲,该实施例中所描述的S-PRS功率控制方案是采用了先分别根据下行链路路径损耗和直通链路路径损耗计算得到S-PRS的发射功率P S-PRS,D(i)与P S-PRS,SL(i),然后根据上式计算获得最终的S-PRS的发射功率。
而P S-PRS,D(i)与P S-PRS,SL(i)的计算方法如下所示:
Figure PCTCN2022092025-appb-000050
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000051
为发送终端在发送S-PRS时所使用的资源块数量。
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
Figure PCTCN2022092025-appb-000052
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000053
为发送终端在发送S-PRS时所使用的资源块数量。
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗。
另外,发送终端在根据以上参数计算其S-PRS的发射功率时,以上的参数(除了PL之外)可以通过预配置或高层信令配置的方式来获取。如果参数P O,D没有被预配置或者高层信令配置的话,那么P S-PRS,D(i)=P CMAX。如果参数P O,SL没有被预配置或者高层信令配置的话,那么P S-PRS,SL(i)=P CMAX。如果参数α D没有被预配置或者高层信令配置的话,那么α D=1。如果参数α SL没有被预配置或者高层信令配置的话,那么α SL=1。
此外,参数CBR是指终端测量一段历史时间窗口内的一个资源池中的信道占用比例,作为当前资源池拥塞程度的表征参数。不同的CBR数值区间会对应到不同的终端最大发射功率。例如CBR与P MAX,CBR之间的对应关系如下表所示:
Figure PCTCN2022092025-appb-000054
采用本实施例所述的直通链路定位参考信号的功率控制方法,使得终端可以根据其无线传输的各项具体参数、CBR以及下行链路路径损耗/直通链路路径损耗,灵活地确定合适的直通链路定位参考信号发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度。
实施例5(S-PRS功率控制方案5(数据信道确定法+不同符号发送)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号占用的资源块数量M、直通链路物理共享信道发射功率P PSSCH等信息,确定直通链路定位 参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000055
其中:
Figure PCTCN2022092025-appb-000056
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000057
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
值得指出的是,该实施例中所描述的S-PRS发射功率控制方案是一种间接功率控制方案,即:S-PRS的发射功率并不是通过预配置或高层信令配置的各种参数来计算获得的,而是通过在同一个时隙i中发送的PSSCH数据信道的发射功率,结合S-PRS与PSSCH所占用的资源块(Resource Block,RB)个数,来间接获得S-PRS的发射功率。
该实施例中,假设了S-PRS与PSSCH虽然会在同一个时隙i中进行发送,但并不会占用相同的符号,所以S-PRS的最大可能发射功率就是P CMAX
采用本实施例所述的直通链路定位参考信号的功率控制方法,使得终端可以根据同一个时隙i中发送的PSSCH数据信道的发射功率,结合S-PRS与PSSCH所占用的RB个数,来间接获得S-PRS的发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度,并且无需事先获取到大量的功率控制参数,信令开销比较小。
实施例6(S-PRS功率控制方案6(数据信道确定法+同符号发送)):
根据发送终端的最大发射功率P CMAX、直通链路定位参考信号占用的资源块数量M、直通链路物理共享信道发射功率P PSSCH等信息,确定直通链路定位参考信号的发射功率P S-PRS。发送终端以该确定的发射功率P S-PRS,发送直通链路定位参考信号S-PRS。
发送终端确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000058
其中:
Figure PCTCN2022092025-appb-000059
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000060
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
值得指出的是,该实施例中所描述的S-PRS发射功率控制方案是一种间接功率控制方案,即:S-PRS的发射功率并不是通过预配置或高层信令配置的各种参数来计算获得的,而是通过在同一个时隙i中发送的PSSCH数据信道的发射功率,结合S-PRS与PSSCH所占用的RB个数,来间接获得S-PRS的发射功率。
该实施例中,假设了S-PRS与PSSCH不但会在同一个时隙i中进行发送,而且是占用相同的符号,所以S-PRS的最大可能发射功率就是P CMAX-P PSSCH(i)。
采用本实施例所述的直通链路定位参考信号的功率控制方法,使得终端可以根据同一个时隙i中发送的PSSCH数据信道的发射功率,结合S-PRS与PSSCH所占用的RB个数,来间接获得S-PRS的发射功率,降低了终端之间发送的直通链路定位参考信号之间的互相干扰,提升了终端进行直通链路定位的精度,并且无需事先获取到大量的功率控制参数,信令开销比较小。
实施例7(S-PRS与PSSCH/PSCCH/PSFCH等信道的复用方案):
关于S-PRS与PSSCH数据信道的复用情况,终端根据S-PRS与PSSCH的同符号复用情况,选择使用合适的S-PRS功率控制方案:
当S-PRS与PSSCH不在同一个符号上发送时,终端使用上述S-PRS功率控制方案1~方案5,对S-PRS进行发射功率控制;
当S-PRS与PSSCH在同一个符号上发送时,终端使用上述S-PRS功率控 制方案6,对S-PRS进行发射功率控制;
之所以采用上面的S-PRS功率控制选择方案,这是因为S-PRS可能与PSSCH同符号频分复用进行传输,也可能与PSSCH在不同的符号上进行时分复用传输。如果S-PRS与PSSCH不在同一个符号上发送时,S-PRS的最大发射功率为P CMAX。如果S-PRS与PSSCH在同一个符号上发送时,S-PRS的最大发射功率为P CMAX-P PSSCH(i)。
关于S-PRS与PSCCH/PSFCH等控制信道的复用情况,为了避免S-PRS对直通链路控制信道的影响,S-PRS与PSCCH与PSFCH等至少一个信道不在同一个符号上发送。这样做,可以避免S-PRS传输占用控制信道的功率,也可以避免对控制信道的干扰。
采用本实施例中所述的S-PRS与PSSCH/PSCCH/PSFCH等信道的复用方案,可以根据不同的直通链路信道类型,灵活的选择合适的复用方案,既能保证S-PRS有足够的时频资源可以使用,又能保证控制信道的传输成功率。
综上所述,参见图3,在发送终端侧,本公开实施例提供的一种信号发射功率控制方法,包括:
S101、确定发射功率控制参数;
S102、根据发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
可选地,所述发射功率控制参数包括下列参数之一或组合:
发送终端的最大发射功率;
直通链路定位参考信号的功率控制配置参数;
直通链路定位参考信号的部分路径损耗补偿因子;
直通链路定位参考信号占用的资源块数量;
直通链路路径损耗;
下行链路路径损耗;
上行链路路径损耗;
信道繁忙率;
直通链路物理共享信道发射功率。
可选地(对应上述方案1),根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000061
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000062
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
可选地(对应上述方案2,根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000063
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载 波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000064
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
可选地(对应上述方案3),根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
可选地(对应上述方案4),根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS 传输时刻的S-PRS的发射功率。
可选地,采用如下方式确定所述P S-PRS,D(i):
Figure PCTCN2022092025-appb-000065
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000066
为发送终端在发送S-PRS时所使用的资源块数量;
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
可选地,采用如下方式确定所述P S-PRS,SL(i):
Figure PCTCN2022092025-appb-000067
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000068
为发送终端在发送S-PRS时所使用的资源块数量;
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗。
可选地(对应上述方案5),根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000069
其中:
Figure PCTCN2022092025-appb-000070
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000071
为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
可选地(使用上述方案1~方案5时的复用情况),所述S-PRS与物理直通链路共享信道PSSCH不在同一个符号上发送。
可选地(对应上述方案6),根据发射功率控制参数,确定所述S-PRS的发射功率,具体包括:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000072
其中:
Figure PCTCN2022092025-appb-000073
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000074
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
可选地(使用上述方案6时的复用情况),所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
可选地,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH至少一个信道不在同一个符号上发送。
参见图4,在终端侧,本公开实施例提供的一种信号发射功率控制装置,包括:
存储器620,用于存储程序指令;
处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定发射功率控制参数;
根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
可选地,所述发射功率控制参数包括下列参数之一或组合:
发送终端的最大发射功率;
直通链路定位参考信号的功率控制配置参数;
直通链路定位参考信号的部分路径损耗补偿因子;
直通链路定位参考信号占用的资源块数量;
直通链路路径损耗;
下行链路路径损耗;
上行链路路径损耗;
信道繁忙率;
直通链路物理共享信道发射功率。
可选地,所述处理器600具体被配置为执行:
确定在时隙i(i为大于或等于0的整数)中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000075
其中:
P CMAX为发送终端的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000076
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
可选地,所述处理器600具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000077
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P O,S-PRS为S-PRS的功率控制配置参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000078
为发送终端在发送S-PRS时所使用的资源块数量;
α S-PRS为S-PRS的部分路径损耗补偿因子;
PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值。
可选地,所述处理器600具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
可选地,所述处理器600具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))[dBm];
其中:
P CMAX为发送终端的最大发射功率;
P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率。
可选地,所述处理器600具体被配置为采用如下方式确定所述P S-PRS,D(i):
Figure PCTCN2022092025-appb-000079
其中:
P O,D为S-PRS的与下行链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000080
为发送终端在发送S-PRS时所使用的资源块数量;
α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
PL D为下行链路路径损耗PL DL
可选地,采用如下方式确定所述P S-PRS,SL(i):
Figure PCTCN2022092025-appb-000081
其中:
P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
Figure PCTCN2022092025-appb-000082
为发送终端在发送S-PRS时所使用的资源块数量;
α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
PL SL为直通链路路径损耗。
可选地,所述处理器600具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000083
其中:
Figure PCTCN2022092025-appb-000084
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000085
为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
可选地,所述S-PRS与物理直通链路共享信道PSSCH不在同一个符号上发送。
可选地,所述处理器600具体被配置为执行:
确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
Figure PCTCN2022092025-appb-000086
其中:
Figure PCTCN2022092025-appb-000087
为S-PRS传输时机i中用于S-PRS传输的资源块数量;
Figure PCTCN2022092025-appb-000088
为PSSCH传输时机i中用于PSSCH传输的资源块数量;
P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率。
可选地,所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
可选地,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH中的至少一个信道不在同一个符号上发送。
可选地,处理器600,还用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收在发送终端与接收终端之间传输的直通链路定位参考信号S-PRS;
对所述S-PRS进行测量,并将测量结果发送给所述发送终端,用以辅助所述发送终端进行定位。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体 由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
参见图5,在发送终端侧,本公开实施例提供的一种信号发射功率控制装置,包括:
第一单元11,用于确定发射功率控制参数;
第二单元12,用于根据发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
需要说明的是,上述第二单元12关于具体如何确定S-PRS的发射功率,可以按照上述方法中所述的流程进行确定,具体不再赘述。
本公开实施例中所述的装置,即可以作为发送终端,也可以作为接收终端,可以同时具有发送终端和接收终端的功能。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本公开实施例中,存储器可以用于存储本公开实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本公开实施例提供的任一所述方法。
本公开实施例提供了一种计算机存储介质,用于储存为上述本公开实施例提供的装置所用的计算机程序指令,其包含用于执行上述本公开实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD)) 等。
本公开实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本公开实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信号发射功率控制方法,其中,该方法包括:
    确定发射功率控制参数;
    根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
  2. 根据权利要求1所述的方法,其中,所述发射功率控制参数包括下列参数之一或组合:
    发送终端的最大发射功率;
    直通链路定位参考信号的功率控制配置参数;
    直通链路定位参考信号的部分路径损耗补偿因子;
    直通链路定位参考信号占用的资源块数量;
    直通链路路径损耗;
    下行链路路径损耗;
    上行链路路径损耗;
    信道繁忙率;
    直通链路物理共享信道发射功率。
  3. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100001
    其中:
    P CMAX为发送终端的最大发射功率;
    P O,S-PRS为S-PRS的功率控制配置参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100002
    为发送终端在发送S-PRS时所使用的资源块数量;
    α S-PRS为S-PRS的部分路径损耗补偿因子;
    PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
    i为大于或等于0的整数。
  4. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100003
    其中:
    P CMAX为发送终端的最大发射功率;
    P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
    P O,S-PRS为S-PRS的功率控制配置参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100004
    为发送终端在发送S-PRS时所使用的资源块数量;
    α S-PRS为S-PRS的部分路径损耗补偿因子;
    PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
    i为大于或等于0的整数。
  5. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))  [dBm]
    其中:
    P CMAX为发送终端的最大发射功率;
    P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    i为大于或等于0的整数。
  6. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))  [dBm];
    其中:
    P CMAX为发送终端的最大发射功率;
    P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
    P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    i为大于或等于0的整数。
  7. 根据权利要求5或6所述的方法,其中,采用如下方式确定所述P S-PRS,D(i):
    Figure PCTCN2022092025-appb-100005
    其中:
    P O,D为S-PRS的与下行链路相关的功率控制参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100006
    为发送终端在发送S-PRS时所使用的资源块数量;
    α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
    PL D为下行链路路径损耗PL DL
    i为大于或等于0的整数。
  8. 根据权利要求5或6所述的方法,其中,采用如下方式确定所述P S-PRS,SL(i):
    Figure PCTCN2022092025-appb-100007
    其中:
    P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100008
    为发送终端在发送S-PRS时所使用的资源块数量;
    α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
    PL SL为直通链路路径损耗;
    i为大于或等于0的整数。
  9. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100009
    其中:
    Figure PCTCN2022092025-appb-100010
    为S-PRS传输时机i中用于S-PRS传输的资源块数量;
    Figure PCTCN2022092025-appb-100011
    为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
    P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
    i为大于或等于0的整数。
  10. 根据权利要求2~6、9任一权项所述的方法,其中,所述S-PRS与物 理直通链路共享信道PSSCH不在同一个符号上发送。
  11. 根据权利要求1所述的方法,其中,所述根据所述发射功率控制参数,确定所述S-PRS的发射功率,包括:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100012
    其中:
    Figure PCTCN2022092025-appb-100013
    为S-PRS传输时机i中用于S-PRS传输的资源块数量;
    Figure PCTCN2022092025-appb-100014
    为PSSCH传输时机i中用于PSSCH传输的资源块数量;
    P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
    i为大于或等于0的整数。
  12. 根据权利要求11所述的方法,其中,所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
  13. 根据权利要求1所述的方法,其中,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH中的至少一个信道不在同一个符号上发送。
  14. 一种信号发射功率控制装置,其中,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定发射功率控制参数;
    根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
  15. 根据权利要求14所述的装置,其中,所述发射功率控制参数包括下列参数之一或组合:
    发送终端的最大发射功率;
    直通链路定位参考信号的功率控制配置参数;
    直通链路定位参考信号的部分路径损耗补偿因子;
    直通链路定位参考信号占用的资源块数量;
    直通链路路径损耗;
    下行链路路径损耗;
    上行链路路径损耗;
    信道繁忙率;
    直通链路物理共享信道发射功率。
  16. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100015
    其中:
    P CMAX为发送终端的最大发射功率;
    P O,S-PRS为S-PRS的功率控制配置参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100016
    为发送终端在发送S-PRS时所使用的资源块数量;
    α S-PRS为S-PRS的部分路径损耗补偿因子;
    PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
    i为大于或等于0的整数。
  17. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100017
    其中:
    P CMAX为发送终端的最大发射功率;
    P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
    P O,S-PRS为S-PRS的功率控制配置参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100018
    为发送终端在发送S-PRS时所使用的资源块数量;
    α S-PRS为S-PRS的部分路径损耗补偿因子;
    PL为直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的任一项路径损耗,或以直通链路路径损耗、下行链路路径损耗、上行链路路径损耗中的至少一项路径损耗为自变量的函数值;
    i为大于或等于0的整数。
  18. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    P S-PRS(i)=min(P CMAX,min(P S-PRS,D(i),P S-PRS,SL(i)))  [dBm];
    其中:
    P CMAX为发送终端的最大发射功率;
    P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    i为大于或等于0的整数。
  19. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    P S-PRS(i)=min(P CMAX,P MAX,CBR,min(P S-PRS,D(i),P S-PRS,SL(i)))  [dBm];
    其中:
    P CMAX为发送终端的最大发射功率;
    P MAX,CBR为发送终端与信道繁忙率CBR有关的最大发射功率;
    P S-PRS,D(i)为发送终端根据下行链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    P S-PRS,SL(i)为发送终端根据直通链路路径损耗确定的在时隙i中的S-PRS传输时刻的S-PRS的发射功率;
    i为大于或等于0的整数。
  20. 根据权利要求18或19所述的装置,其中,所述处理器具体被配置为采用如下方式确定所述P S-PRS,D(i):
    Figure PCTCN2022092025-appb-100019
    其中:
    P O,D为S-PRS的与下行链路相关的功率控制参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100020
    为发送终端在发送S-PRS时所使用的资源块数量;
    α D为S-PRS的与下行链路相关的部分路径损耗补偿因子;
    PL D为下行链路路径损耗PL DL
    i为大于或等于0的整数。
  21. 根据权利要求18或19所述的装置,其中,所述处理器具体被配置为采用如下方式确定所述P S-PRS,SL(i):
    Figure PCTCN2022092025-appb-100021
    其中:
    P O,SL为S-PRS的与直通链路相关的功率控制参数P 0
    μ是与发送终端在发送S-PRS时所使用的子载波间隔有关的参数;当子载波间隔分别为15、30、60、120KHz时,μ分别等于0、1、2、3;
    Figure PCTCN2022092025-appb-100022
    为发送终端在发送S-PRS时所使用的资源块数量;
    α SL为S-PRS的与直通链路相关的部分路径损耗补偿因子;
    PL SL为直通链路路径损耗;
    i为大于或等于0的整数。
  22. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100023
    其中:
    Figure PCTCN2022092025-appb-100024
    为S-PRS传输时机i中用于S-PRS传输的资源块数量;
    Figure PCTCN2022092025-appb-100025
    为物理直通链路共享信道PSSCH传输时机i中用于PSSCH传输的资源块数量;
    P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
    i为大于或等于0的整数。
  23. 根据权利要求16~19、22任一权项所述的装置,其中,所述S-PRS与物理直通链路共享信道PSSCH不在同一个符号上发送。
  24. 根据权利要求14所述的装置,其中,所述处理器具体被配置为执行:
    确定在时隙i中的S-PRS传输时机的S-PRS的发射功率P S-PRS(i)为:
    Figure PCTCN2022092025-appb-100026
    其中:
    Figure PCTCN2022092025-appb-100027
    为S-PRS传输时机i中用于S-PRS传输的资源块数量;
    Figure PCTCN2022092025-appb-100028
    为PSSCH传输时机i中用于PSSCH传输的资源块数量;
    P PSSCH(i)为PSSCH传输时机i中直通链路数据信道P PSSCH的发射功率;
    i为大于或等于0的整数。
  25. 根据权利要求24所述的装置,其中,所述S-PRS与物理直通链路共享信道PSSCH在同一个符号上发送。
  26. 根据权利要求14所述的装置,其中,所述S-PRS与物理直通链路控制信道PSCCH、物理直通链路反馈信道PSFCH中的至少一个信道不在同一个符号上发送。
  27. 一种信号发射功率控制装置,其中,包括:
    第一单元,用于确定发射功率控制参数;
    第二单元,用于根据所述发射功率控制参数,确定直通链路定位参考信号S-PRS的发射功率。
  28. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至13任一项所述的方法。
PCT/CN2022/092025 2021-08-16 2022-05-10 一种信号发射功率控制方法及装置 WO2023020032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110934629.3A CN115707077A (zh) 2021-08-16 2021-08-16 一种信号发射功率控制方法及装置
CN202110934629.3 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023020032A1 true WO2023020032A1 (zh) 2023-02-23

Family

ID=85180295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092025 WO2023020032A1 (zh) 2021-08-16 2022-05-10 一种信号发射功率控制方法及装置

Country Status (2)

Country Link
CN (1) CN115707077A (zh)
WO (1) WO2023020032A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149689A (zh) * 2018-02-11 2019-08-20 华为技术有限公司 一种功率控制的方法和装置
CN111436036A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 功率控制方法及功率控制装置
CN112020131A (zh) * 2019-05-31 2020-12-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备
US20210080532A1 (en) * 2018-02-12 2021-03-18 Nokia Technologies Oy Coordinated Precoding and Beamforming of Position Purpose Signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149689A (zh) * 2018-02-11 2019-08-20 华为技术有限公司 一种功率控制的方法和装置
US20210080532A1 (en) * 2018-02-12 2021-03-18 Nokia Technologies Oy Coordinated Precoding and Beamforming of Position Purpose Signals
CN111436036A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 功率控制方法及功率控制装置
CN112020131A (zh) * 2019-05-31 2020-12-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备

Also Published As

Publication number Publication date
CN115707077A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2020220803A1 (zh) 信号传输、信号测量上报、定位方法及装置
US11832293B2 (en) Data transmission method and device
US20200022185A1 (en) Signal transmission method and device
EP3131349B1 (en) Power configuration method, user equipment and base station
WO2021000872A1 (zh) 信号传输方法及装置
WO2021164409A1 (zh) 信道监听及其控制方法及装置
WO2021012996A1 (zh) 信息传输方法及装置
WO2021013022A1 (zh) 信息传输方法及装置
US10411851B2 (en) Wireless communication method, device and system
WO2022237740A1 (zh) 一种小区切换及其控制方法及装置
WO2021168852A1 (zh) 通信方法、装置及设备
WO2019096278A1 (zh) 信号测量的方法和设备
WO2020088204A1 (zh) 一种数据传输的方法及装置
WO2023050916A1 (zh) Pucch功率控制方法、终端、装置及存储介质
WO2023020032A1 (zh) 一种信号发射功率控制方法及装置
WO2021036423A1 (zh) 信息传输方法及装置
WO2021129120A1 (zh) 通信方法以及终端设备
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
WO2015168930A1 (zh) 控制载波信号的功率的方法、用户设备和基站
CN111867013B (zh) 一种节能及其控制方法及装置
WO2024017082A1 (zh) 配置信息的指示方法及装置
WO2023131291A1 (zh) 一种随机接入的方法、终端、装置及存储介质
WO2021203993A1 (zh) 数据传输方法及装置
WO2023221838A1 (zh) 交互方法和相关设备
WO2021017604A1 (zh) 资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857349

Country of ref document: EP

Effective date: 20240318