WO2023050916A1 - Pucch功率控制方法、终端、装置及存储介质 - Google Patents

Pucch功率控制方法、终端、装置及存储介质 Download PDF

Info

Publication number
WO2023050916A1
WO2023050916A1 PCT/CN2022/100437 CN2022100437W WO2023050916A1 WO 2023050916 A1 WO2023050916 A1 WO 2023050916A1 CN 2022100437 W CN2022100437 W CN 2022100437W WO 2023050916 A1 WO2023050916 A1 WO 2023050916A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
pucch
control factor
difference
transmit power
Prior art date
Application number
PCT/CN2022/100437
Other languages
English (en)
French (fr)
Inventor
李晓皎
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023050916A1 publication Critical patent/WO2023050916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a PUCCH power control method, terminal, device and storage medium.
  • the uplink power control in the wireless system is very important.
  • the user equipment (User Equipment, UE) in the cell can not only ensure the quality of the uplink transmitted data, but also reduce the interference to other users in the system as much as possible. , to extend the battery life of the UE.
  • the power control of the Physical Uplink Control Channel (PUCCH) may be related to the maximum transmit power of the user.
  • the user's maximum transmission power only depends on the user's capability, which reduces the accuracy of PUCCH power control.
  • Embodiments of the present disclosure provide a PUCCH power control method, terminal, device, and storage medium to solve the problem in the prior art that the maximum transmission power of a user only depends on the user's ability, which reduces the accuracy of PUCCH power control, and achieves the maximum The transmission power depends on the number of RBs and the UE level, which improves the accuracy of PUCCH power control.
  • an embodiment of the present disclosure provides a PUCCH power control method
  • the determining the maximum transmission power at the target transmission time according to the first number of RBs configured at the target transmission time and the UE level includes:
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value .
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the second maximum transmit power limit value sent by the network device is received.
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single physical resource block PRB;
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the determining the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time includes:
  • the first PUCCH closed-loop for determining the target transmission time Power control factors including:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the determining the first PUCCH closed-loop power at the target transmission time Control factors including:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not met, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is equal to the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the first difference and the TPC cumulative value; wherein, the first setting condition includes that the second transmission power at the previous transmission time of the target transmission time has reached the previous transmission time of the target transmission time The maximum transmit power at the time of transmission.
  • the determining the first PUCCH closed-loop power at the target transmission moment Control factors including:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the determination of the first PUCCH at the target transmission time Closed-loop power control factors, including:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not met, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop The power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • determining the first transmit power at the target transmission time according to the maximum transmit power at the target transmission time and the first PUCCH closed-loop power control factor include:
  • the first transmit power at the target transmission time is determined according to the fifth maximum transmit power limit value and the maximum transmit power at the target transmission time ,include:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P′ CMAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u Indicates the target power value set index;
  • indicates the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the determining the maximum transmission power at the target transmission time according to the first number of RBs configured at the target transmission time and the UE level includes:
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the obtaining the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the second maximum transmit power limit value sent by the network device is received.
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single physical resource block PRB;
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the determining the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time includes:
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not satisfied, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is equal to the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the first difference and the TPC cumulative value; wherein, the first setting condition includes that the second transmission power at the previous transmission time of the target transmission time has reached the previous transmission time of the target transmission time The maximum transmit power at the time of transmission.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • the determining the first transmit power at the target transmission moment according to the maximum transmit power at the target transmission moment and the first PUCCH closed-loop power control factor includes:
  • the determining the first transmit power at the target transmission moment according to the fifth maximum transmit power limit value and the maximum transmit power at the target transmission moment includes:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P′ CMAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u Indicates the target power value set index;
  • indicates the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission
  • an embodiment of the present disclosure provides a PUCCH power control device, including:
  • the first determining unit is configured to determine the maximum transmission power at the target transmission time according to the number of first resource block RBs configured at the target transmission time and the level of the terminal UE;
  • the second determining unit is configured to determine the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time.
  • the first determining unit includes:
  • a first determining subunit configured to determine a first maximum transmit power limit value according to the UE level
  • An acquisition subunit configured to acquire a second maximum transmit power limit value corresponding to the first number of RBs
  • the second determination subunit is configured to determine the maximum transmit power at the target transmission time according to the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the obtaining subunit is specifically configured to:
  • the second maximum transmit power limit value sent by the network device is received.
  • the obtaining subunit is specifically configured to:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single physical resource block PRB;
  • the obtaining subunit is specifically configured to:
  • the second determination unit includes:
  • the third determination subunit is configured to determine the first PUCCH closed-loop power control factor at the target transmission time according to the first number of RBs and the second number of RBs configured at the previous transmission time of the target transmission time ;
  • the fourth determination subunit is configured to determine the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time and the first PUCCH closed-loop power control factor.
  • the third determining subunit is specifically configured to:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the third determining subunit is specifically configured to:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not satisfied, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the third determining subunit is specifically configured to:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the third determining subunit is specifically configured to:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not met, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop The power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • the fourth determining subunit includes:
  • a first determining module configured to determine a fifth maximum transmit power limit value according to the first PUCCH closed-loop power control factor
  • the second determination module is configured to determine the first transmission power at the target transmission time according to the fifth maximum transmission power limit value and the maximum transmission power at the target transmission time.
  • the second determining module is specifically configured to:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P′ CMAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u Indicates the target power value set index;
  • indicates the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission
  • an embodiment of the present disclosure provides a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above-mentioned first aspect. Steps of the PUCCH power control method described above.
  • an embodiment of the present disclosure provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is used to enable the computer to execute the PUCCH described in the first aspect above. Steps of a power control method.
  • an embodiment of the present disclosure provides a chip system, the chip system includes at least one processor, a memory, and an interface circuit, and the memory, the interface circuit, and the at least one processor are interconnected through a line, and the Instructions are stored in at least one memory; when the instructions are executed by the processor, the steps of the PUCCH power control method described in the first aspect above are implemented.
  • an embodiment of the present disclosure provides a computer program product, the computer program product includes instructions, and when the computer program product is run on a computer, the computer performs the PUCCH power control described in the first aspect above method steps.
  • the maximum transmit power can be determined according to the number of first RBs configured at the target transmission time and the level of the terminal UE. The maximum transmit power at the moment, and then determine the first transmit power at the target transmission moment according to the maximum transmit power at the target transmission moment, thereby improving the accuracy of PUCCH power control.
  • FIG. 1 is one of the schematic flowcharts of a PUCCH power control method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a PUCCH power control device provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • the uplink power control in the wireless system is very important. Through the uplink power control, the UE in the cell can not only ensure the quality of the uplink data sent, but also reduce the interference to other users in the system as much as possible, and prolong the battery life of the UE. .
  • the UE performs the process of PUCCH power control, as shown in the following formula
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment
  • P CMAX,f,c (i ) represents the maximum transmission power at the i-th transmission moment, which is determined by the UE level reported by the user
  • P O_PUCCH,b,f,c (q u ) represents the target power value, and q u represents the set index of the target power value
  • represents the carrier spacing configuration
  • PL b,f,c (q d ) represents the path loss value
  • q d represents the reference signal RS resource index
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission moment
  • g b, f, c (ii 0 , l) represents the PUCCH closed-loop power control factor at the ii 0th transmission moment
  • ⁇ PUCCH, b, f, c receives the downlink control information (Downlink Control Information, DCI) in The information in the transmission power control (Transmission Power Control, TPC) indication field is obtained.
  • DCI Downlink Control Information
  • TPC Transmission Power Control
  • c(C i ) is the first K PUCCH (ii 0 )-1 symbols from the PUCCH transmission time ii 0 to the first K PUCCH (i) at the PUCCH transmission time i Between symbols, where i 0 greater than 0 is the smallest integer satisfying that K PUCCH (ii 0 ) symbol positions before time ii 0 are earlier than K PUCCH (i) symbol positions before time i.
  • Radio Resource Control Radio Resource Control, RRC
  • RRC Radio Resource Control
  • the maximum transmit power of the user since the PUCCH power control is related to the maximum transmit power of the user, the maximum transmit power of the user only depends on the capability of the user (that is, the UE level reported by the user). But for high frequency, since the limit of transmit power is also variable when the number of resource blocks (Resource Block, RB) is variable, the maximum transmit power under different RB numbers will also change. If it is only determined by the UE level reported by the user The way of the maximum transmit power under the current RB configuration may make the transmit power on each RB higher than the high frequency power limit for a single RB.
  • Resource Block Resource Block
  • the closed-loop power control factor in the above PUCCH power control may be accumulated and calculated, and the high-level signaling changes the number of RBs scheduled by the user at this time.
  • the embodiments of the present disclosure provide a PUCCH power control method, terminal, device, and storage medium, which can determine the maximum transmission power at the target transmission time according to the number of first RBs configured at the target transmission time and the level of the terminal UE , according to the maximum transmission power at the target transmission time, determine the first transmission power at the target transmission time, and improve the accuracy of PUCCH power control.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment may also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • Fig. 1 is one of the schematic flowcharts of a PUCCH power control method provided by an embodiment of the present disclosure, and the PUCCH power control method can be applied to a terminal.
  • the PUCCH power control method may include the following steps:
  • Step 101 Determine the maximum transmit power at the target transmission time according to the first number of RBs configured at the target transmission time and the UE class.
  • Step 102 Determine the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time.
  • the UE level may refer to the UE level reported by the user, that is, the capability of the user.
  • the first number of RBs may be the number of transmission RBs configured by the current UE, that is, the number of RBs configured by the network device through high-level signaling.
  • the maximum transmission power it is not only related to user capabilities, but also related to the number of RBs configured by high-layer signaling.
  • high frequency can refer to the number of PRBs as a set of variable continuous integers, which are configured to different UEs by high-level signaling, and the maximum value of PRB is Corresponds to the maximum transmit power.
  • PRB Physical Resource Block
  • the maximum transmit power of the UE at this time cannot reach the maximum transmit power corresponding to its UE level, which corresponds to the maximum transmit power under the PRB, so when determining the maximum transmit power, It is not only related to user capabilities, but also related to the number of RBs configured by high-layer signaling.
  • the maximum transmit power can be determined according to the number of first RBs configured at the target transmission time and the level of the terminal UE to determine the maximum transmit power at the target transmission time, and then according to the target transmission time.
  • the maximum transmission power determines the first transmission power at the target transmission time, thereby improving the accuracy of PUCCH power control.
  • the determining the maximum transmission power at the target transmission time according to the first number of RBs configured at the target transmission time and the UE level includes:
  • the first maximum transmit power limit value is determined by the UE level reported by the user;
  • the second maximum transmit power limit value is the maximum transmit power limit under the currently configured RB, and is determined by the number of RBs configured by high-layer signaling.
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value.
  • P′ CMAX,f,c (i) represents the maximum transmission power
  • P CMAX,f,c (i) represents the first maximum transmission power limit value
  • P CMAX,f,c,RB (i) represents the second maximum Send power limit value
  • the minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value may be selected as the maximum transmit power.
  • the obtaining the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the second maximum transmit power limit value sent by the network device is received.
  • the terminal can directly acquire the maximum transmit power limit value from the network device.
  • the network device sends the second maximum transmit power limit value to the terminal through high-layer signaling.
  • the higher layer signaling may be RRC signaling, Medium Access Control, Control Element (MAC-CE), or other signaling.
  • the obtaining the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single PRB;
  • the terminal may acquire the third maximum transmit power limit value from the network device, and calculate the second maximum transmit power limit value according to the third maximum transmit power limit value. Its implementation process is shown in the following formula:
  • P CMAX, f, c, 1RB represents the third maximum transmission power limit value
  • P CMAX, f, c, RB (i) represents the second maximum transmission power limit value
  • the maximum transmit power limit value of a single PRB can also be obtained from the network device, and then the second maximum transmit power limit value can be calculated, which improves the speed of obtaining the second maximum transmit power. Limit value flexibility.
  • the obtaining the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the terminal obtains the fourth maximum transmit power limit value that is, the transmit power limit value under the unit bandwidth (1MHZ)
  • its specific process of determining the second maximum transmit power limit value may include:
  • Occupied bandwidth size number of first RBs ⁇ number of SCSs for each RB.
  • the number of SCSs may be notified by the network device to the terminal in advance through signaling.
  • the second maximum transmit power limit value the size of the occupied bandwidth ⁇ the fourth maximum transmit power limit value.
  • the maximum transmit power limit value per unit bandwidth can also be obtained from the network device, and then the second maximum transmit power limit value can be calculated, which improves the speed of obtaining the second maximum transmit power limit value. Flexibility in power limit values.
  • the determining the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time includes:
  • the first number of RBs may be the number of RBs configured at the i-th transmission moment (ie, the target transmission moment), and the second number of RBs may be the number of RBs configured at the transmission moment of ii0 (ie, the previous transmission moment of the target transmission moment). Number of RBs.
  • the first PUCCH closed-loop power control factor it can be determined according to the second number of RBs and the first number of RBs, so that the first PUCCH closed-loop power control factor can be determined in combination with the RB change state.
  • the RB change state can include the following four change states:
  • State 1 the second number of RBs is equal to the first number of RBs.
  • State 3 the second number of RBs is greater than the first number of RBs.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the first PUCCH closed-loop power control factor is an accumulation value
  • the accumulation method is as shown in the following formula:
  • g b,f,c (ii 0 ,l) represents the PUCCH closed-loop power control factor at the ii 0th transmission moment
  • ⁇ PUCCH,b,f,c is obtained by receiving information in the TPC indication field in the DCI.
  • Table 2 the mapping relationship between the TPC command field in the DCI format and ⁇ PUCCH, b, f, c ⁇ PUCCH, b, f, c is shown in Table 2 below:
  • c(C i ) is the first K PUCCH (ii 0 )-1 symbol from the PUCCH transmission time ii 0 to the previous PUCCH transmission time i Among K PUCCH (i) symbols, where i 0 is greater than 0 is the smallest integer satisfying that K PUCCH (ii 0 ) symbol positions before time ii 0 are earlier than K PUCCH (i) symbol positions before time i.
  • the first PUCCH closed-loop power control factor when determining the first PUCCH closed-loop power control factor, it may include but not limited to the following implementations:
  • the above target power value may refer to the signal power that the network device needs to receive. It is related to the detection performance of the network equipment, that is, the network equipment needs to receive this power signal to meet the detection performance requirements
  • the first PUCCH closed-loop can be determined according to whether the second transmission power at the last transmission moment or whether the target power value has been adjusted.
  • the power control factor improves the accuracy of determining the first PUCCH closed-loop power control factor.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not satisfied, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is equal to the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the first difference and the TPC cumulative value; wherein, the first setting condition includes that the second transmission power at the previous transmission time of the target transmission time has reached the previous transmission time of the target transmission time The maximum transmit power at the time of transmission.
  • the determination methods may include but are not limited to the following:
  • Mode 2-2 The maximum power is reached at the previous transmission moment, and the power value is guaranteed to remain unchanged.
  • the current accumulated value is equal to the previous accumulated value minus the power difference (positive number) caused by the increase in the number of RBs.
  • g b, f, c (ii 0 , l) is the second PUCCH closed-loop power control factor
  • g b, f, c (i, l) is the first difference
  • g b, f, c (i, l) is the first difference
  • g b, f, c (i, l) is the second difference
  • Indicates the number of RBs configured at the ii0th transmission moment that is, the second number of RBs
  • Indicates the number of RBs configured at the i-th transmission moment that is, the first number of RBs.
  • the first difference and the second difference are used in the above method 2-2 to ensure that the output power value is consistent with the previous output power value, and the granularity of TPC cannot be guaranteed to be accumulated according to 1 RB.
  • the TPC may actually be less than 1dB, so it needs to be adjusted based on the number of RBs.
  • Mode 2-4 Ensure that the transmit power at the target transmission moment is equal to the power at the previous transmission moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (positive number) caused by the increase in the number of RBs.
  • Equation 2-5 Ensure that the transmit power at the current moment is equal to the power at the previous moment and add this accumulated value, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (positive number) caused by the increase in the number of RBs, and then Add this accumulative value.
  • any of the above methods can be used to determine the first PUCCH closed-loop power control factor, which improves the accuracy of determining the first PUCCH closed-loop power control factor , to avoid power jumps.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the determination methods may include but are not limited to the following:
  • Mode 3-2 When the minimum power value is reached at the previous transmission moment, the power value is guaranteed to remain unchanged, and the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the decrease in the number of RBs.
  • g b, f, c (ii 0 , l) is the second PUCCH closed-loop power control factor
  • g b, f, c (i, l) is the third difference
  • is the fourth difference Indicates the number of RBs configured at the ii0th transmission moment (that is, the second number of RBs);
  • the third difference and the fourth difference in the above method 3-2 are used to ensure that the output power value is consistent with the previous output power value, and the granularity of TPC cannot be guaranteed to be accumulated according to 1 RB.
  • the TPC may actually be less than 1dB, so it needs to be adjusted based on the number of RBs.
  • Mode 3-3 Ensure that the transmission power at the current moment is equal to the power at the previous moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the decrease in the number of RBs.
  • Method 3-4 Ensure that the transmit power at the current moment is equal to the power at the previous moment and superimpose the accumulated value this time, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the smaller number of RBs, plus The last accumulative value.
  • any of the above methods can be used to determine the first PUCCH closed-loop power control factor, which improves the accuracy of determining the first PUCCH closed-loop power control factor , to avoid power jumps.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not met, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop The power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • the determination methods may include but are not limited to the following:
  • Mode 4-2 The maximum power or minimum power is reached at the current transmission moment, and the output power is guaranteed to remain unchanged, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the decrease in the number of RBs.
  • g b, f, c (ii 0 , l) is the second PUCCH closed-loop power control factor
  • g b, f, c (i, l) is the fifth difference
  • is the sixth difference Indicates the number of RBs configured at the ii0th transmission moment (that is, the second number of RBs);
  • the fifth difference and the sixth difference in the above method 4-2 are used to ensure that the output power value is consistent with the previous output power value, and the granularity of TPC cannot be guaranteed to be accumulated according to 1 RB.
  • the TPC may actually be less than 1dB, so it needs to be adjusted based on the number of RBs.
  • Mode 4-3 When the maximum power is reached at the current moment, the accumulation is stopped at the current moment, and the accumulated value remains unchanged.
  • Mode 4-4 The minimum power is reached at the current moment, and the output power is guaranteed to remain unchanged, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the decrease in the number of RBs.
  • Mode 4-5 Ensure that the transmission power at the current moment is equal to the power at the previous moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the change of the number of RBs.
  • Mode 4-6 Ensure that the transmission power at the current moment is equal to the power at the previous moment and superimpose the accumulated value, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the change in the number of RBs, plus the accumulated value this time value.
  • any of the above methods can be used to determine the first PUCCH closed-loop power control factor, which improves the efficiency of determining the first PUCCH closed-loop power control factor. accuracy, avoiding power jumps.
  • the determining the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time and the first PUCCH closed-loop power control factor includes:
  • the first PUCCH closed-loop power control factor can be determined according to the first PUCCH closed-loop power control factor.
  • factor to calculate the fifth maximum transmit power limit value the calculation process is shown in the following formula
  • P1 represents the fifth maximum transmission power limit value at the i-th transmission moment
  • P O_PUCCH,b,f,c (q u ) represents the target power value
  • q u represents the set index of the target power value
  • represents the carrier spacing configuration
  • PL b,f,c (q d ) represents the path loss value
  • q d represents the reference signal RS resource index
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission moment
  • g b,f,c (i,l) represents the first PUCCH closed-loop power control factor at the i-th transmission moment
  • b represents the bandwidth Partial BWP index
  • l represents PUCCH power control adjustment state index.
  • the first PUCCH closed-loop power control factor after determining the first PUCCH closed-loop power control factor at the target transmission time according to the second number of RBs configured at the previous transmission time of the target transmission time and the first number of RBs, the first PUCCH closed-loop power control factor can be determined according to the first PUCCH
  • the closed-loop power control factor calculates the fifth maximum transmit power limit value, and determines the first transmit power at the target transmission time according to the fifth maximum transmit power limit value and the maximum transmit power at the target transmission time, thereby increasing the PUCCH power control accuracy.
  • the determining the first transmit power at the target transmission moment according to the fifth maximum transmit power limit value and the maximum transmit power at the target transmission moment includes:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P C ′ MAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u represents the target power value set index;
  • represents the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission moment
  • the first transmission power at the target transmission time can be calculated by using the first formula, which improves the efficiency of determining the first transmission power at the target transmission time.
  • Example 1 Determine the maximum transmit power of the UE
  • the standard protocol determines the maximum transmission power values of different UE classes.
  • the terminal reports the UE level, and the base station determines PCMAX,f,c (i) according to the UE level.
  • the base station configures the number of RBs occupied by the PUCCH of the UE through high-level signaling.
  • the base station calculates the maximum transmission power value of the UE under the current number of RBs according to the transmission power limit PCMAX, 1RB and the number of occupied RBs of a single PRB in the frequency band that the UE accesses:
  • the terminal calculates the maximum transmit power of the UE, that is,
  • Example 2 Determine the maximum transmit power of the UE
  • the standard protocol determines the maximum transmission power values of different UE classes.
  • the terminal reports the UE level, and the base station determines PCMAX,f,c (i) according to the UE level.
  • the base station configures the number of RBs occupied by the PUCCH of the UE through high-level signaling.
  • the base station notifies the UE of the transmission power limit PCMAX,1RB of a single PRB in the access frequency band through high-layer signaling.
  • the terminal calculates the maximum transmission power value of the UE under the current number of RBs according to PCMAX, 1RB and the number of occupied RBs, namely
  • the terminal calculates the maximum transmit power of the UE, namely
  • Example 3 Determine the maximum transmit power of the UE
  • the standard protocol determines the maximum transmission power values of different UE classes.
  • the terminal reports the UE level, and the base station determines PCMAX,f,c (i) according to the UE level.
  • the base station configures the number of RBs occupied by the PUCCH of the UE through high-level signaling.
  • the base station notifies the UE of the maximum transmission power limit value under the unit bandwidth (1MHZ) through high-layer signaling.
  • the terminal calculates the size of the occupied bandwidth according to the number of RBs occupied by the UE and the size of the SCS.
  • the terminal calculates the maximum transmit power value PCMAX,f,c,RB (i) of the UE under the current number of RBs according to the occupied bandwidth and the maximum transmit power limit value under the unit bandwidth (1MHZ).
  • the terminal calculates the maximum transmit power of the UE, that is,
  • Example 4 Determine the closed-loop power control factor (the number of RBs becomes larger and smaller and processed separately)
  • the terminal stores the transmit power P PUCCH,b,f,c (ii 0 ,q u ,q d ,l) at the previous moment ii 0, and stores the number of RBs at the previous moment ii 0
  • Method 1 Set the accumulative value to zero.
  • Method 2 The maximum power was reached at the previous moment, and the accumulation is stopped at the current moment, and the accumulated value remains unchanged.
  • Method 3 Ensure that the transmission power at the current moment is equal to the power at the previous moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (positive number) caused by the increase in the number of RBs.
  • Method 4 Ensure that the transmission power at the current moment is equal to the power at the previous moment and superimpose the accumulated value this time, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (positive number) caused by the increase in the number of RBs, plus This accumulated value.
  • Method 1 Set the accumulative value to zero.
  • Method 2 When the minimum power value is reached at the previous moment, the power value is guaranteed to remain unchanged.
  • Method 3 Ensure that the transmission power at the current moment is equal to the power at the previous moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the decrease in the number of RBs.
  • Method 4 Ensure that the transmission power at the current moment is equal to the power at the previous moment and superimpose the accumulated value this time, that is, the current accumulated value is equal to the previous accumulated value minus the power difference (negative number) caused by the smaller number of RBs, plus this accumulated value.
  • Example 5 Determine the closed-loop power control factor (the number of RBs becomes larger and smaller and processed uniformly)
  • the terminal stores the transmit power P PUCCH,b,f,c (ii 0 ,q u ,q d ,l) at the previous moment ii 0, and stores the number of RBs at the previous moment ii 0
  • Method 1 Set the accumulative value to zero.
  • Method 2a The maximum power or minimum power is reached at the current moment, and the output power is guaranteed to remain unchanged, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the decrease in the number of RBs.
  • Method 2b When the maximum power is reached at the current moment, stop accumulating at the current moment, and the accumulated value remains unchanged; when the minimum power is reached at the current moment, the output power remains unchanged, that is, the current accumulated value is equal to the previous accumulated value minus the value due to the RB number change Small resulting power difference (negative number).
  • Method 3 Ensure that the transmission power at the current moment is equal to the power at the previous moment, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the change in the number of RBs.
  • Method 4 Ensure that the transmission power at the current moment is equal to the power at the previous moment and add this accumulated value, that is, the current accumulated value is equal to the previous accumulated value minus the power difference caused by the change in the number of RBs, plus this accumulated value.
  • the PUCCH power control device provided by the embodiment of the present disclosure, as shown in FIG. 2 below, is specifically used to execute the process of the above method embodiment.
  • FIG. 2 is specifically used to execute the process of the above method embodiment.
  • FIG. 2 is a schematic structural diagram of a PUCCH power control device provided by an embodiment of the present disclosure.
  • the PUCCH power control device can be used to implement the PUCCH power control method shown in FIG. 1; as shown in FIG. 2, the PUCCH power control device Can include:
  • the first determining unit 21 is configured to determine the maximum transmission power at the target transmission time according to the number of first resource block RBs configured at the target transmission time and the level of the terminal UE;
  • the second determining unit 22 is configured to determine the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time.
  • the first determining unit 21 includes:
  • a first determining subunit configured to determine a first maximum transmit power limit value according to the UE level
  • An acquisition subunit configured to acquire a second maximum transmit power limit value corresponding to the first number of RBs
  • the second determination subunit is configured to determine the maximum transmit power at the target transmission time according to the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the obtaining subunit is specifically configured to:
  • the second maximum transmit power limit value sent by the network device is received.
  • the obtaining subunit is specifically configured to:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single physical resource block PRB;
  • the obtaining subunit is specifically configured to:
  • the second determination unit 22 includes:
  • the third determination subunit is configured to determine the first PUCCH closed-loop power control factor at the target transmission time according to the first number of RBs and the second number of RBs configured at the previous transmission time of the target transmission time ;
  • the fourth determination subunit is configured to determine the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time and the first PUCCH closed-loop power control factor.
  • the third determining subunit is specifically configured to:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the third determining subunit is specifically configured to:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not satisfied, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the third determining subunit is specifically configured to:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the third determining subunit is specifically configured to:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not met, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop The power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • the fourth determining subunit includes:
  • a first determining module configured to determine a fifth maximum transmit power limit value according to the first PUCCH closed-loop power control factor
  • the second determination module is configured to determine the first transmission power at the target transmission time according to the fifth maximum transmission power limit value and the maximum transmission power at the target transmission time.
  • the second determining module is specifically configured to:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P′ CMAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u Indicates the target power value set index;
  • indicates the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the terminal provided by the embodiment of the present disclosure is specifically used to execute the process of the above method embodiment.
  • the process of the above method embodiment is specifically used to execute the process of the above method embodiment.
  • Fig. 3 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • the terminal device can be used to execute the PUCCH power control method shown in FIG. 1 .
  • the transceiver 300 is configured to receive and send data under the control of a processor 310 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 310 and various circuits of the memory represented by the memory 320 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and thus will not be further described in this disclosure.
  • the bus interface provides the interface.
  • Transceiver 300 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 330 may also be an interface capable of connecting externally and internally to required devices, and the connected devices include but not limited to keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 may store data used by the processor 310 when performing operations.
  • the processor 310 can be a CPU (central device), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device , complex programmable logic device), the processor can also adopt a multi-core architecture.
  • CPU central device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device , complex programmable logic device
  • the processor 310 is used to perform the following operations according to the obtained executable instructions by calling the computer program stored in the memory 320:
  • the determining the maximum transmission power at the target transmission time according to the first number of RBs configured at the target transmission time and the UE level includes:
  • the maximum transmit power at the target transmission moment is a minimum value between the first maximum transmit power limit value and the second maximum transmit power limit value.
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the second maximum transmit power limit value sent by the network device is received.
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the network device receiving a third maximum transmit power limit value sent by the network device, where the third maximum transmit power limit value is the maximum transmit power limit value of a single physical resource block PRB;
  • the acquiring the second maximum transmit power limit value corresponding to the first number of RBs includes:
  • the determining the first transmission power at the target transmission time according to the maximum transmission power at the target transmission time includes:
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the transmission power control TPC accumulation value corresponding to the target transmission time is greater than or equal to 0, it is determined that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment; or,
  • the second transmit power has reached the minimum transmit power at the previous transmission moment of the target transmission moment, and the accumulated TPC value is less than or equal to 0, then determine the first PUCCH closed-loop power control factor and the first PUCCH closed-loop power control factor
  • the two PUCCH closed-loop power control factors are the same; or,
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a first difference, and the first difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the second difference and the second difference, the second difference is the transmit power calculated according to the second number of RBs when the second number of RBs is less than the first number of RBs and the The difference between the transmit power calculated by the first number of RBs;
  • the first setting condition is not satisfied, then determine the first PUCCH closed-loop power control factor as the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the target transmission moment of the previous transmission moment Maximum transmit power;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is equal to the second PUCCH closed-loop power control factor; if the first setting condition is not met, then determine the first PUCCH closed-loop power control factor
  • the power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the first setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the specified The maximum transmission power at the previous transmission moment of the target transmission moment;
  • the first setting condition determines that the first PUCCH closed-loop power control factor is the first difference; if the first setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the first difference and the TPC cumulative value; wherein, the first setting condition includes that the second transmission power at the previous transmission time of the target transmission time has reached the previous transmission time of the target transmission time The maximum transmit power at the time of transmission.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the first PUCCH closed-loop power control factor is determined to be a third difference, and the third difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment
  • the difference between the fourth difference and the fourth difference where the fourth difference is the transmit power calculated according to the second number of RBs and according to the The difference between the transmit power calculated by the first number of RBs; if the second setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the difference between the second PUCCH closed-loop power control factor and the set The sum of the TPC accumulated values corresponding to the target transmission moment; wherein, the second setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the Minimum transmit power;
  • the first PUCCH closed-loop power control factor is the third difference; if the second setting condition is not satisfied, then the first PUCCH closed-loop power control factor is determined to be the first difference.
  • the determining the first PUCCH closed-loop power control factor at the target transmission moment includes:
  • the third setting condition determines that the first PUCCH closed-loop power control factor is a fifth difference, and the fifth difference is the second PUCCH closed-loop power control factor at the previous transmission moment of the target transmission moment The difference between the sixth difference and the sixth difference, where the sixth difference is the transmit power calculated according to the second number of RBs and the The difference between the transmit power calculated by the first number of RBs; if the third setting condition is not satisfied, then determine that the first PUCCH closed-loop power control factor is the second PUCCH closed-loop power control factor and The sum of TPC accumulated values corresponding to the target transmission moment; wherein, the third setting condition includes that the second transmission power at the previous transmission moment of the target transmission moment has reached the previous transmission moment of the target transmission moment The maximum transmit power or the minimum transmit power;
  • the fourth setting condition determines that the first PUCCH closed-loop power control factor is the same as the second PUCCH closed-loop power control factor; if the fourth setting condition is not met, then determine the first PUCCH closed-loop The power control factor is the sum of the second PUCCH closed-loop power control factor and the TPC accumulated value; wherein, the fourth setting condition includes that the second transmission power has reached the last transmission time of the target transmission time The maximum transmit power;
  • the fifth setting condition determines that the first PUCCH closed-loop power control factor is the fifth difference; if the fifth setting condition is not met, then determine that the first PUCCH closed-loop power control factor is The sum of the second PUCCH closed-loop power control factor and the TPC cumulative value; wherein, the fifth setting condition includes that the second transmission power has reached the minimum transmission power at the previous transmission time at the target transmission time ;
  • the determining the first transmit power at the target transmission moment according to the maximum transmit power at the target transmission moment and the first PUCCH closed-loop power control factor includes:
  • the determining the first transmit power at the target transmission moment according to the fifth maximum transmit power limit value and the maximum transmit power at the target transmission moment includes:
  • the first formula includes:
  • P PUCCH,b,f,c (i,q u ,q d ,l) represents the first transmission power of the terminal at the carrier f in the primary cell c at the i-th transmission moment;
  • P1 represents the i-th transmission The fifth maximum transmit power limit value at time;
  • P′ CMAX,f,c (i) represents the maximum transmit power at the ith transmission time;
  • P O_PUCCH,b,f,c (q u ) represents the target power value, q u Indicates the target power value set index;
  • indicates the carrier spacing configuration; Represents the number of RBs configured at the i-th transmission moment;
  • PL b,f,c (q d ) represents the path loss value, q d represents the reference signal RS resource index;
  • ⁇ F_PUCCH (F) represents the PUCCH format offset value;
  • ⁇ TF ,b,f,c (i) represents the dynamic power adjustment factor at the i-th transmission
  • terminal equipment provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned PUCCH power control method embodiments, and can achieve the same technical effect, and the method and methods in this embodiment will not be described here. The same parts and beneficial effects of the embodiments are described in detail.
  • the embodiments of the present disclosure further provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above-mentioned embodiments.
  • methods including:
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (e.g., CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage e.g., floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage e.g., CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • an embodiment of the present disclosure also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is used to enable the computer to execute the steps of the above PUCCH power control method, specifically Please refer to the content of the foregoing PUCCH power control method embodiment for details, and details are not repeated here.
  • an embodiment of the present disclosure provides a chip system, the chip system includes at least one processor, a memory, and an interface circuit, the memory, the interface circuit, and the at least one processor are interconnected through a line, and the Instructions are stored in at least one memory; when the instructions are executed by the processor, the steps of the above PUCCH power control method are implemented.
  • the chip system includes at least one processor, a memory, and an interface circuit, the memory, the interface circuit, and the at least one processor are interconnected through a line, and the Instructions are stored in at least one memory; when the instructions are executed by the processor, the steps of the above PUCCH power control method are implemented.
  • the content of the above PUCCH power control method embodiment which will not be repeated here.
  • an embodiment of the present disclosure provides a computer program product, the computer program product includes an instruction, and when the computer program product is run on a computer, it causes the computer to execute the steps of the above PUCCH power control method.
  • the computer program product includes an instruction, and when the computer program product is run on a computer, it causes the computer to execute the steps of the above PUCCH power control method.
  • the content of the above PUCCH power control method embodiment will not be repeated here.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to magnetic disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to magnetic disk storage, optical storage, etc.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本公开实施例提供一种PUCCH功率控制方法、终端、装置及存储介质,该方法包括:根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。因此,本公开实现了最大发送功率取决于RB个数和UE等级,提高了PUCCH功率控制的准确性。

Description

PUCCH功率控制方法、终端、装置及存储介质
相关申请的交叉引用
本申请要求于2021年09月30日提交的申请号为2021111660109,发明名称为“PUCCH功率控制方法、终端、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种PUCCH功率控制方法、终端、装置及存储介质。
背景技术
无线系统中的上行功率控制是非常重要的,通过上行功率控制,可以使得小区中的用户设备(User Equipment,UE)既保证上行所发送数据的质量,又尽可能减少对系统中其他用户的干扰,延长UE电池的使用时间。目前,物理上行控制信道(Physical Uplink Control Channel,PUCCH)功率控制可以和用户的最大发送功率有关。但是,用户最大发送功率只取决于用户的能力,降低了PUCCH功率控制的准确性。
发明内容
本公开实施例提供一种PUCCH功率控制方法、终端、装置及存储介质,用以解决现有技术中用户最大发送功率只取决于用户的能力,降低PUCCH功率控制的准确性的问题,实现了最大发送功率取决于RB个数和UE等级,提高了PUCCH功率控制的准确性。
第一方面,本公开实施例提供一种PUCCH功率控制方法,
根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一 发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
根据所述UE等级确定第一最大发送功率限制值;
获取所述第一RB个数对应的第二最大发送功率限制值;
根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的所述第二最大发送功率限制值。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率, 包括:
根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
可选地,根据本公开一个实施例的PUCCH功率控制方法,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件, 则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相等;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,在所述第二RB个数大于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所 述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
可选地,根据本公开一个实施例的PUCCH功率控制方法,所述根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000001
Figure PCTCN2022100437-appb-000002
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000003
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
第二方面,本公开实施例提供一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
根据所述UE等级确定第一最大发送功率限制值;
获取所述第一RB个数对应的第二最大发送功率限制值;
根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
在一种可能的实现方式中,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大 发送功率限制值,包括:
接收网络设备发送的所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
在一种可能的实现方式中,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相等;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
在一种可能的实现方式中,在所述第二RB个数大于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
在一种可能的实现方式中,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000004
Figure PCTCN2022100437-appb-000005
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000006
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
第三方面,本公开实施例提供一种PUCCH功率控制装置,包括:
第一确定单元,用于根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
第二确定单元,用于根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述第一确定单元包括:
第一确定子单元,用于根据所述UE等级确定第一最大发送功率限制值;
获取子单元,用于获取所述第一RB个数对应的第二最大发送功率限制值;
第二确定子单元,用于根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
在一种可能的实现方式中,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述第二确定单元包括:
第三确定子单元,用于根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
第四确定子单元,用于根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数相等的情况下,所述第三确定子单元具体用于:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若确定所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
在一种可能的实现方式中,在所述第二RB个数小于所述第一RB个数的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
在一种可能的实现方式中,在所述第二RB个数大于所述第一RB个数的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数不相等的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所 述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
在一种可能的实现方式中,所述第四确定子单元包括:
第一确定模块,用于根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
第二确定模块,用于根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述第二确定模块具体用于:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000007
Figure PCTCN2022100437-appb-000008
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000009
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索 引。
第四方面,本公开实施例提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面所述的PUCCH功率控制方法的步骤。
第五方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使所述计算机执行如上所述第一方面所述的PUCCH功率控制方法的步骤。
第六方面,本公开实施例提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,实现如上所述第一方面所述的PUCCH功率控制方法的步骤。
第七方面,本公开实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述计算机程序产品在计算机上运行时,使得计算机执行如上所述第一方面所述的PUCCH功率控制方法的步骤。
本公开实施例提供的PUCCH功率控制方法、终端、装置及存储介质,在PUCCH功率控制时,其最大发送功率可以根据目标传输时刻配置的第一RB个数、以及终端UE等级,确定在目标传输时刻的最大发送功率,进而根据目标传输时刻的最大发送功率,确定目标传输时刻的第一发送功率,从而提高了PUCCH功率控制的准确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种PUCCH功率控制方法的流程示意图之一;
图2是本公开实施例提供的一种PUCCH功率控制装置的结构示意图;
图3是本公开实施例提供的终端设备的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
无线系统中的上行功率控制是非常重要的,通过上行功率控制,可以使得小区中的UE既保证上行所发送数据的质量,又尽可能减少对系统中其他用户的干扰,延长UE电池的使用时间。
其中,UE进行PUCCH功率控制的过程,如下述公式所示
Figure PCTCN2022100437-appb-000010
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的发送功率;P CMAX,f,c(i)表示第i个传输时刻的最大发送功率,该最大发送功率由用户上报的UE等级决定;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000011
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
针对g b,f,c(i,l),其是一个累加值,累加方式如下述公式所示:
Figure PCTCN2022100437-appb-000012
其中,g b,f,c(i-i 0,l)示第i-i 0个传输时刻的PUCCH闭环功率控制因子,δ PUCCH,b,f,c通过接收下行控制信息(Downlink Control Information,DCI)中的传输功率控制(Transmission Power Control,TPC)指示域中的信息来获取。其中,DCI格式的TPC命令字段到δ PUCCH,b,f,c的映射关系如下述表1所示:
表1
TPC命令字段 δ PUCCH,b,f,c
0 -1dB
1 0dB
2 1dB
3 3dB
Figure PCTCN2022100437-appb-000013
是集合C i内的TPC命令字的累加值,c(C i)是从PUCCH传输时刻i-i 0的前K PUCCH(i-i 0)-1个符号到PUCCH传输时刻i的前K PUCCH(i)个符号之间,其中i 0大于0是满足i-i 0时刻前K PUCCH(i-i 0)个符号位置早于i时刻前K PUCCH(i)个符号位置的最小整数。
当UE在i-i 0传输时刻已经达到最大功率,并且
Figure PCTCN2022100437-appb-000014
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
当UE在i-i 0传输时刻已经达到最小功率,并且
Figure PCTCN2022100437-appb-000015
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
如果当前时刻无线资源控制(Radio Resource Control,RRC)层调整了用户的目标功率值P O_PUCCH,b,f,c(q u),则g b,f,c(i,l)=0,k=0,1,...,i。
但是,由于PUCCH功率控制和用户的最大发送功率有关,用户最大发送功率只取决于用户的能力(即用户上报的UE等级)。但对于高频来说,由于资源块(Resource Block,RB)数可变时发送功率限制也可变,所以不同RB数下的最大发送功率也会改变,若只通过用户上报的UE等级来决定当前 RB配置下的最大发送功率的方式,可能会使得每个RB上的发送功率高于高频对于单个RB的功率限制。
由于在高频中可以通过高层信令改变用户的调度RB数,因此上述PUCCH功率控制中的闭环功率控制因子可能在累加计算时,高层信令改变了此时用户调度的RB个数。在进行功率计算时,需要考虑RB变化对于发送功率的影响,避免计算出的发送功率不符合要求或者避免出现功率跳变。
为此,本公开实施例提供了一种PUCCH功率控制方法、终端、装置及存储介质,可以根据目标传输时刻配置的第一RB个数、以及终端UE等级,确定在目标传输时刻的最大发送功率,根据目标传输时刻的最大发送功率,确定目标传输时刻的第一发送功率,提高了PUCCH功率控制的准确性。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设 备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、 移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
图1是本公开实施例提供的一种PUCCH功率控制方法的流程示意图之一,该PUCCH功率控制方法可以应用于终端。如图1所示,该PUCCH功率控制方法可以包括如下步骤:
步骤101、根据目标传输时刻配置的第一RB个数、以及UE等级,确定在目标传输时刻的最大发送功率。
步骤102、根据目标传输时刻的最大发送功率,确定目标传输时刻的第一发送功率。
具体地,UE等级可以指的是用户上报的UE等级即用户的能力,第一RB个数可以是当前UE配置的发送RB个数,即网络设备通过高层信令配置的RB个数,这样在确定最大发送功率时,不仅与用户能力相关,还与高层信令配置的RB个数相关。
其中,由于单个物理资源块(Physical Resource Block,PRB)的功率受限,高频可以指的是PRB数为一组可变的连续的整数,由高层信令配置给不同的UE,PRB最大值对应最大发送功率。当高层信令配置的不是PRB最大值时,此时UE的最大发送功率达不到其UE等级对应的最大发送功率,对应的是该PRB下的最大发送功率,所以在确定最大发送功率时,不仅与用户能力相关,还与高层信令配置的RB个数相关。
由上述实施例可见,在PUCCH功率控制时,其最大发送功率可以根据目标传输时刻配置的第一RB个数、以及终端UE等级,确定在目标传输时刻的最大发送功率,进而根据目标传输时刻的最大发送功率,确定目标传输时刻的第一发送功率,从而提高了PUCCH功率控制的准确性。
可选地,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
根据所述UE等级确定第一最大发送功率限制值;
获取所述第一RB个数对应的第二最大发送功率限制值;
根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
具体地,第一最大发送功率限制值是由用户上报的UE等级决定的;第二最大发送功率限制值是当前配置RB下的最大发送功率限制,是由高层信令配置的RB个数决定。
由上述实施例可见,在确定最大发送功率时,可以根据第一最大发送功率限制值和第二最大发送功率限制值来确定,提高了最大发送功率的可靠性。
可选地,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
具体地,针对最大发送功率,其确定方式如下述公式所示:
Figure PCTCN2022100437-appb-000016
其中,P′ CMAX,f,c(i)表示最大发送功率,P CMAX,f,c(i)表示第一最大发送功率限制值,P CMAX,f,c,RB(i)表示第二最大发送功率限制值。
由上述实施例可见,在确定最大发送功率时,可以选取第一最大发送功率限制值和第二最大发送功率限制值之间的最小值作为最大发送功率。
可选地,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的所述第二最大发送功率限制值。
具体地,终端可以直接从网络设备获取最大发送功率限制值。比如:网络设备通过高层信令将第二最大发送功率限制值发送至终端。其中,高层信令可以为RRC信令、媒体接入控制控制单元(Medium Access Control,Control Element,MAC-CE)、或其他信令等。
由上述实施例可见,在获取第二最大发送功率限制值时,可以直接从网络设备获取,提高了获取第二最大发送功率限制值的效率。
可选地,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
具体地,终端可以从网络设备获取第三最大发送功率限制值,在根据该第三最大发送功率限制值计算第二最大发送功率限制值。其实现过程如下述公式所示:
Figure PCTCN2022100437-appb-000017
其中,P CMAX,f,c,1RB表示第三最大发送功率限制值,P CMAX,f,c,RB(i)表示第二最大发送功率限制值,
Figure PCTCN2022100437-appb-000018
表示第i个传输时刻配置的RB个数,即第一RB个数。
由上述实施例可见,在获取第二最大发送功率限制值时,还可以从网络设备获取单个PRB的最大发送功率限制值,再计算第二最大发送功率限制值,提高了获取第二最大发送功率限制值的灵活性。
可选地,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
具体地,终端获取第四最大发送功率限制值,即单位带宽(1MHZ)下的发送功率限制值后,其确定第二最大发送功率限制值的具体过程可以包括:
(1)根据第一RB个数和子载波间隔(sub-carrier space,SCS)大小,计算占用带宽大小。即:
占用带宽大小=第一RB个数×每个RB的SCS个数。
其中,SCS个数可以是网络设备提前通过信令通知终端的。
(2)根据占用带宽大小和第四最大发送功率限制值,计算第二最大发送功率限制值。即:
第二最大发送功率限制值=占用带宽大小×第四最大发送功率限制值。
由上述实施例可见,在获取第二最大发送功率限制值时,还可以从网络设备获取单位带宽下的最大发送功率限制值,再计算第二最大发送功率限制值,提高了获取第二最大发送功率限制值的灵活性。
可选地,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
具体地,第一RB个数可以是第i传输时刻(即目标传输时刻)配置的RB个数,第二RB个数可以是i-i 0(即目标传输时刻的上一传输时刻)传输时刻配置的RB个数。在确定第一PUCCH闭环功率控制因子时,可以根据第二RB个数和第一RB个数来确定,这样可以结合RB变化状态来决定第一PUCCH闭环功率控制因子。
比如:RB变化状态可以包括以下四种变化状态:
状态1:第二RB个数和第一RB个数相等。
状态2:第二RB个数小于第一RB个数。
状态3:第二RB个数大于第一RB个数。
状态4:第二RB个数和第一RB个数不相等。
由上述实施例可见,可以根据第二RB个数和第一RB个数来确定,这样可以结合RB变化状态来决定第一PUCCH闭环功率控制因子,这样避免了RB变化对于发送功率的影响,以及避免了出现功率跳变。
可选地,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制 因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
具体地,第一PUCCH闭环功率控制因子,其是一个累加值,累加方式如下述公式所示:
Figure PCTCN2022100437-appb-000019
其中,g b,f,c(i-i 0,l)示第i-i 0个传输时刻的PUCCH闭环功率控制因子,δ PUCCH,b,f,c通过接收DCI中的TPC指示域中的信息来获取。示例性的,DCI格式的TPC命令字段到δ PUCCH,b,f,cδ PUCCH,b,f,c的映射关系如下述表2所示:
表2
TPC命令字段 δ PUCCH,b,f,c
0 -1dB
1 0dB
2 1dB
3 3dB
Figure PCTCN2022100437-appb-000020
是集合C i内的TPC命令字的累加值(即TPC累加值),c(C i)是从PUCCH传输时刻i-i 0的前K PUCCH(i-i 0)-1个符号到PUCCH传输时刻i的前K PUCCH(i)个符号之间,其中i 0大于0是满足i-i 0时刻前K PUCCH(i-i 0)个符号位置早于i时刻前K PUCCH(i)个符号位置的最小整数。
其中,在确定第一PUCCH闭环功率控制因子时,可以包括但不限于以下实现方式:
方式1-1:当UE在i-i 0传输时刻已经达到最大功率,UE在传输时刻i与 i-i 0传输时刻i-i 0这两个传输时刻的高层信令配置的RB数不变,并且
Figure PCTCN2022100437-appb-000021
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
方式1-2:当UE在i-i 0传输时刻已经达到最小功率,UE在传输时刻i与i-i 0传输时刻i-i 0这两个传输时刻的高层信令配置的RB数不变,并且
Figure PCTCN2022100437-appb-000022
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
方式1-3:如果当前时刻RRC层调整了用户的目标功率值P O_PUCCH,b,f,c(q u),则g b,f,c(i,l)=0,k=0,1,...,i。
需要说明的是,上述目标功率值可以指的是网络设备需要接收到的信号功率。其和网络设备的检测性能有关,即网络设备需要接收达到这个功率信号才能满足检测性能要求
由上述实施例可见,在第二RB个数和第一RB个数相等的情况下,可以根据上一传输时刻的第二发送功率的大小或目标功率值是否发生了调整来确定第一PUCCH闭环功率控制因子,提高了确定第一PUCCH闭环功率控制因子的准确性。
可选地,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相等;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
具体地,若高层信令配置的RB数发生了改变,比如:第二RB个数小于第一RB个数,即RB个数变大,此时可以包括但不限于以下确定方式:
方式2-1:累加值置零,即确定第一PUCCH闭环功率控制因子为0。即g b,f,c(k,l)=0,k=0,1,…,i。
由于如果RB数增大,会使得公式(5)中第二项变大,此时再叠加同样的累加值并不合理,此时可以采用重新开始累加的方式2-1,这种方式效率较低但能保证UE的功率不会突然变得过大。
方式2-2:前一传输时刻达到最大功率,保证功率值不变,当前累加值等于前一累加值减去由于RB数变大造成的功率差值(正数)。即:
如果UE在i-i 0传输时刻已经达到最大功率P′ CMAX,f,c(i-i 0),且TPC累加值即
Figure PCTCN2022100437-appb-000023
则:
Figure PCTCN2022100437-appb-000024
其余情况,则:
Figure PCTCN2022100437-appb-000025
其中,g b,f,c(i-i 0,l)为第二PUCCH闭环功率控制因子;g b,f,c(i,l)为第一差值,
Figure PCTCN2022100437-appb-000026
为第二差值,
Figure PCTCN2022100437-appb-000027
表示第i-i 0个传输时刻配置的RB个数(即第二RB个数);
Figure PCTCN2022100437-appb-000028
表示第i个传输时刻配置的RB个数(即第一RB个数)。
上述方式2-2中采用第一差值和第二差值,是为了保证输出的功率值和前一次的输出功率值一致,TPC的颗粒度没法保证按照1个RB累加,就是如果RB数变化了1个,这个TPC实际上有可能小于1dB,所以还需要基于RB个数进行调整。
方式2-3:前一传输时刻达到最大功率,目标传输时刻停止累加,累加值保持不变。即:
如果UE在i-i 0传输时刻已经达到最大功率P′ CMAX,f,c(i-i 0),且
Figure PCTCN2022100437-appb-000029
则:
g b,f,c(i,l)=g b,f,c(i-i 0,l)
其余情况,则:
Figure PCTCN2022100437-appb-000030
方式2-4:保证目标传输时刻的发送功率等于前一传输时刻的功率,即当前累加值等于前一累加值减去由于RB数变大造成的功率差值(正数)。即:
Figure PCTCN2022100437-appb-000031
式2-5:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数变大造成的功率差值(正数),再加上此次累加值。即:
如果UE在i-i 0传输时刻已经达到最大功率P′ CMAX,f,c(i-i 0),且
Figure PCTCN2022100437-appb-000032
则:
Figure PCTCN2022100437-appb-000033
其余情况,则:
Figure PCTCN2022100437-appb-000034
由上述实施例可见,在第二RB个数小于第一RB个数的情况下,可以采用上述任一方式确定第一PUCCH闭环功率控制因子,提高了确定第一PUCCH闭环功率控制因子的准确性,避免了出现功率跳变。
可选地,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包 括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
具体地,若高层信令配置的RB数发生了改变,比如:第二RB个数大于第一RB个数,即RB个数变小,此时可以包括但不限于以下确定方式:
方式3-1:累加值置零,即确定第一PUCCH闭环功率控制因子为0。即g b,f,c(k,l)0,k=0,1,…,i。
方式3-2:前一传输时刻达到最小功率值时,保证功率值不变,当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数)。
如果UE在i-i 0传输时刻已经达到最小功率,则:
Figure PCTCN2022100437-appb-000035
其余情况,则:
Figure PCTCN2022100437-appb-000036
其中,g b,f,c(i-i 0,l)为第二PUCCH闭环功率控制因子;g b,f,c(i,l)为第三差值,
Figure PCTCN2022100437-appb-000037
为第四差值,
Figure PCTCN2022100437-appb-000038
表示第i-i 0个传输时刻配置的RB个数(即第二RB个数);
Figure PCTCN2022100437-appb-000039
表示第i个传输时刻配置的RB个数(即第一RB个数)。
上述方式3-2中采用第三差值和第四差值,是为了保证输出的功率值和前一次的输出功率值一致,TPC的颗粒度没法保证按照1个RB累加,就是如果RB数变化了1个,这个TPC实际上有可能小于1dB,所以还需要基于RB个数进行调整。
方式3-3:保证当前时刻的发送功率等于前一时刻的功率,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数)。即:
Figure PCTCN2022100437-appb-000040
方法3-4:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负 数),再加上此次累加值。即:
如果UE在i-i 0传输时刻已经达到最小功率,则
Figure PCTCN2022100437-appb-000041
其余情况,则:
Figure PCTCN2022100437-appb-000042
由上述实施例可见,在第二RB个数大于第一RB个数的情况下,可以采用上述任一方式确定第一PUCCH闭环功率控制因子,提高了确定第一PUCCH闭环功率控制因子的准确性,避免了出现功率跳变。
可选地,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子 与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
具体地,若高层信令配置的RB数发生了改变,即第二RB个数和所述第一RB个数不相等,此时可以包括但不限于以下确定方式:
方式4-1:累加值置零,即确定第一PUCCH闭环功率控制因子为0。即g b,f,c(k,l)=0,k=0,1,…,i。
方式4-2:当前一传输时刻达到最大功率或者最小功率,保证输出功率不变,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值。即:
如果UE在i-i 0传输时刻已经达到最大功率或者最小功率,则:
Figure PCTCN2022100437-appb-000043
其余情况,则:
Figure PCTCN2022100437-appb-000044
其中,g b,f,c(i-i 0,l)为第二PUCCH闭环功率控制因子;g b,f,c(i,l)为第五差值,
Figure PCTCN2022100437-appb-000045
为第六差值,
Figure PCTCN2022100437-appb-000046
表示第i-i 0个传输时刻配置的RB个数(即第二RB个数);
Figure PCTCN2022100437-appb-000047
表示第i 个传输时刻配置的RB个数(即第一RB个数)。
上述方式4-2中采用第五差值和第六差值,是为了保证输出的功率值和前一次的输出功率值一致,TPC的颗粒度没法保证按照1个RB累加,就是如果RB数变化了1个,这个TPC实际上有可能小于1dB,所以还需要基于RB个数进行调整。
方式4-3:当前一时刻达到最大功率,当前时刻停止累加,累加值保持不变。即:
如果UE在i-i 0传输时刻已经达到最大功率,
g b,f,c(i,l)=g b,f,c(i-i 0,l);
其余情况,则:
Figure PCTCN2022100437-appb-000048
方式4-4:当前一时刻达到最小功率,保证输出功率不变,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数)。即:
如果UE在i-i 0传输时刻已经达到最小功率,
Figure PCTCN2022100437-appb-000049
其余情况,则:
Figure PCTCN2022100437-appb-000050
方式4-5:保证当前时刻的发送功率等于前一时刻的功率,即当前累加值等于前一累加值减去由于RB数改变造成的功率差值。即:
Figure PCTCN2022100437-appb-000051
方式4-6:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数改变造成的功率差值,再加上此次累加值。即:
Figure PCTCN2022100437-appb-000052
由上述实施例可见,在第二RB个数和第一RB个数不相等的情况下,可以采用上述任一方式确定第一PUCCH闭环功率控制因子,提高了确定第一PUCCH闭环功率控制因子的准确性,避免了出现功率跳变。
可选地,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
具体地,在根据目标传输时刻的上一传输时刻配置的第二RB个数和第一RB个数,确定目标传输时刻的第一PUCCH闭环功率控制因子之后,可以根据该第一PUCCH闭环功率控制因子计算第五最大发送功率限制值,其计算过程如下述公式所示
Figure PCTCN2022100437-appb-000053
其中,P1表示第i个传输时刻的第五最大发送功率限制值;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000054
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
由上述实施例可见,在根据目标传输时刻的上一传输时刻配置的第二RB个数和第一RB个数,确定目标传输时刻的第一PUCCH闭环功率控制因子之后,可以根据该第一PUCCH闭环功率控制因子计算第五最大发送功率限制值,根据该第五最大发送功率限制值和所述目标传输时刻的最大发送功率, 确定所述目标传输时刻的第一发送功率,从而提高了PUCCH功率控制的准确性。
可选地,所述根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000055
Figure PCTCN2022100437-appb-000056
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000057
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
由上述实施例可见,可以通过第一公式计算目标传输时刻的第一发送功率,提高了确定目标传输时刻的第一发送功率的效率。
下面通过五个示例来具体说明上述PUCCH功率控制的实现过程:
示例一:确定UE最大发送功率
(1)标准协议确定不同UE等级的最大发送功率值。
(2)终端上报UE等级,基站根据UE等级确定P CMAX,f,c(i)。
(3)基站通过高层信令配置UE的PUCCH占用的RB数。
(4)基站根据UE接入频段的单个PRB的传输功率限制值P CMAX,1RB和占用的RB数,算出UE在当前RB数下的最大发送功率值即:
Figure PCTCN2022100437-appb-000058
通过高层信令通知UE该P CMAX,f,c,RB(i)。
(5)终端计算UE最大发送功率,即
Figure PCTCN2022100437-appb-000059
示例二:确定UE最大发送功率
(1)标准协议确定不同UE等级的最大发送功率值。
(2)终端上报UE等级,基站根据UE等级确定P CMAX,f,c(i)。
(3)基站通过高层信令配置UE的PUCCH占用的RB数。
(4)基站通过高层信令通知UE接入频段的单个PRB的传输功率限制值P CMAX,1RB
(5)终端根据P CMAX,1RB和占用的RB数,算出UE在当前RB数下的最大发送功率值,即
Figure PCTCN2022100437-appb-000060
(6)终端计算UE最大发送功率,即
Figure PCTCN2022100437-appb-000061
示例三:确定UE最大发送功率
(1)标准协议确定不同UE等级的最大发送功率值。
(2)终端上报UE等级,基站根据UE等级确定P CMAX,f,c(i)。
(3)基站通过高层信令配置UE的PUCCH占用的RB数。
(4)基站通过高层信令通知UE单位带宽(1MHZ)下的最大发送功率限制值。
(5)终端根据UE占用的RB数和SCS大小,计算占用带宽大小。
(6)终端根据占用带宽大小和单位带宽(1MHZ)下的最大发送功率限制值,算出UE在当前RB数下的最大发送功率值P CMAX,f,c,RB(i)。
(7)终端计算UE最大发送功率,即
Figure PCTCN2022100437-appb-000062
示例四:确定闭环功控因子(RB个数变大和变小分别处理)
(1)终端存储前一时刻i-i 0的发送功率P PUCCH,b,f,c(i-i 0,q u,q d,l),存储前一时刻i-i 0的RB个数
Figure PCTCN2022100437-appb-000063
(2)如果RB个数不变,即
Figure PCTCN2022100437-appb-000064
当UE在i-i 0传输时刻已经达到最大功率P CMAX,f,c(i-i 0),并且
Figure PCTCN2022100437-appb-000065
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
当UE在i-i 0传输时刻已经达到最小功率,并且
Figure PCTCN2022100437-appb-000066
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
如果当前时刻RRC层调整了用户的目标功率值P O_PUCCH,b,f,c(q u),则g b,f,c(k,l)=0,k=0,1,…,i。
(3)如果RB个数变大,即
Figure PCTCN2022100437-appb-000067
则可以采用如下方法之一计算闭环功率控制因子:
方法一:累加值置零。
方法二:前一时刻达到最大功率,当前时刻停止累加,累加值保持不变。
方法三:保证当前时刻的发送功率等于前一时刻的功率,即当前累加值等于前一累加值减去由于RB数变大造成的功率差值(正数)。
方法四:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数变大造成的功率差值(正数),再加上此次累加值。
(4)如果RB个数变小,即
Figure PCTCN2022100437-appb-000068
则可以采用如下方法之一计算闭环功率控制因子:
方法一:累加值置零。
方法二:前一时刻达到最小功率值时,保证功率值不变。
方法三:保证当前时刻的发送功率等于前一时刻的功率,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数)。
方法四:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数), 再加上此次累加值。
示例五:确定闭环功控因子(RB个数变大和变小统一处理)
(1)终端存储前一时刻i-i 0的发送功率P PUCCH,b,f,c(i-i 0,q u,q d,l),存储前一时刻i-i 0的RB个数
Figure PCTCN2022100437-appb-000069
(2)如果RB个数不变,即
Figure PCTCN2022100437-appb-000070
当UE在i-i 0传输时刻已经达到最大功率P′ CMAX,f,c(i-i 0),并且
Figure PCTCN2022100437-appb-000071
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
当UE在i-i 0传输时刻已经达到最小功率,并且
Figure PCTCN2022100437-appb-000072
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
如果当前时刻RRC层调整了用户的目标功率值P O_PUCCH,b,f,c(q u),则g b,f,c(k,l)=0,k=0,1,…,i。
(3)如果RB个数改变,即
Figure PCTCN2022100437-appb-000073
则可以采用如下方法之一计算闭环功率控制因子:
方法一:累加值置零。
方法二a:当前一时刻达到最大功率或者最小功率,保证输出功率不变,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值。
方法二b:当前一时刻达到最大功率,当前时刻停止累加,累加值保持不变;当前一时刻达到最小功率,保证输出功率不变,即当前累加值等于前一累加值减去由于RB数变小造成的功率差值(负数)。
方法三:保证当前时刻的发送功率等于前一时刻的功率,即当前累加值等于前一累加值减去由于RB数改变造成的功率差值。
方法四:保证当前时刻的发送功率等于前一时刻的功率叠加此次累加值,即当前累加值等于前一累加值减去由于RB数改变造成的功率差值,再加上此次累加值。
本公开实施例提供的PUCCH功率控制装置,如下述图2所示,具体用于执行上述方法实施例流程,具体请详见上述PUCCH功率控制方法实施例的内容,在此不再赘述。
图2是本公开实施例提供的一种PUCCH功率控制装置的结构示意图,该PUCCH功率控制装置可以用于执行上述图1所示的PUCCH功率控制方法;如图2所示,该PUCCH功率控制装置可以包括:
第一确定单元21,用于根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
第二确定单元22,用于根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述第一确定单元21包括:
第一确定子单元,用于根据所述UE等级确定第一最大发送功率限制值;
获取子单元,用于获取所述第一RB个数对应的第二最大发送功率限制值;
第二确定子单元,用于根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
在一种可能的实现方式中,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取子单元具体用于:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述第二确定单元22包括:
第三确定子单元,用于根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
第四确定子单元,用于根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数相等的情况下,所述第三确定子单元具体用于:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若确定所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
在一种可能的实现方式中,在所述第二RB个数小于所述第一RB个数的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件 包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
在一种可能的实现方式中,在所述第二RB个数大于所述第一RB个数的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件 包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数不相等的情况下,所述第三确定子单元具体用于:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已 经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
在一种可能的实现方式中,所述第四确定子单元包括:
第一确定模块,用于根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
第二确定模块,用于根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述第二确定模块具体用于:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000074
Figure PCTCN2022100437-appb-000075
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000076
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源 索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述PUCCH功率控制方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例提供的终端,如下述图3所示,具体用于执行上述方法实施例流程,具体请详见上述PUCCH功率控制方法实施例的内容,在此不再赘述。
图3是本公开实施例提供的终端设备的结构示意图。该终端设备可以用于执行图1所示的PUCCH功率控制方法。如图3所示,收发机300,用于在处理器310的控制下接收和发送数据。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本公开不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
可选的,处理器310可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器310通过调用存储器320存储的计算机程序,用于按照获得的可执行指令执行以下操作:
根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
根据所述UE等级确定第一最大发送功率限制值;
获取所述第一RB个数对应的第二最大发送功率限制值;
根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
在一种可能的实现方式中,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
在一种可能的实现方式中,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
根据所述第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输 功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
若所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
在一种可能的实现方式中,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相等;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的 最大发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第一差值;
或,
若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
在一种可能的实现方式中,在所述第二RB个数大于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第三差值;
或,
若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控 制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
在一种可能的实现方式中,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
确定所述第一PUCCH闭环功率控制因子为0;
或,
若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
或,
若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
或,
若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻 的上一传输时刻的最小发送功率;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值;
或,
确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
在一种可能的实现方式中,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
在一种可能的实现方式中,所述根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
Figure PCTCN2022100437-appb-000077
Figure PCTCN2022100437-appb-000078
其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
Figure PCTCN2022100437-appb-000079
表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索 引。
在此需要说明的是,本公开实施例提供的终端设备,能够实现上述PUCCH功率控制方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,包括:
根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另一方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序用于使所述计算机执行上述PUCCH功率控制方法的步骤,具体请详见上述PUCCH功率控制方法实施例的内容,在此不再赘述。
另一方面,本公开实施例提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,实现上述PUCCH功率控制方法的步骤,具体请详见上述PUCCH功率控制方法实施例的内容,在此不再赘述。
另一方面,本公开实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述计算机程序产品在计算机上运行时,使得计算机执行上 述PUCCH功率控制方法的步骤,具体请详见上述PUCCH功率控制方法实施例的内容,在此不再赘述。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (40)

  1. 一种上行控制信道PUCCH功率控制方法,其特征在于,包括:
    根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
    根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
  2. 根据权利要求1所述的PUCCH功率控制方法,其特征在于,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
    根据所述UE等级确定第一最大发送功率限制值;
    获取所述第一RB个数对应的第二最大发送功率限制值;
    根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
  3. 根据权利要求2所述的PUCCH功率控制方法,其特征在于,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
  4. 根据权利要求2所述的PUCCH功率控制方法,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的所述第二最大发送功率限制值。
  5. 根据权利要求2所述的PUCCH功率控制方法,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
    根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
  6. 根据权利要求2所述的PUCCH功率控制方法,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率 限制值为单位带宽下的最大发送功率限制值;
    根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
  7. 根据权利要求1所述的PUCCH功率控制方法,其特征在于,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
    根据第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
    根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
  8. 根据权利要求7所述的PUCCH功率控制方法,其特征在于,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
    若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
    若所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
  9. 根据权利要求7所述的PUCCH功率控制方法,其特征在于,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相等;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第一差值;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
  10. 根据权利要求7所述的PUCCH功率控制方法,其特征在于,在所述第二RB个数大于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第三差值;
    或,
    若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
  11. 根据权利要求7所述的PUCCH功率控制方法,其特征在于,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件, 则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
    或,
    若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
  12. 根据权利要求7所述的PUCCH功率控制方法,其特征在于,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
    根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
    根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
  13. 根据权利要求12所述的PUCCH功率控制方法,其特征在于,所述 根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
    利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
    Figure PCTCN2022100437-appb-100001
    Figure PCTCN2022100437-appb-100002
    其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
    Figure PCTCN2022100437-appb-100003
    表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
  14. 一种终端,其特征在于,包括存储器,收发机,处理器:
    所述存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
    根据所述目标传输时刻的最大发送功率,确定在所述目标传输时刻的第一发送功率。
  15. 根据权利要求14所述的终端,其特征在于,所述根据目标传输时刻配置的第一RB个数、以及UE等级,确定在所述目标传输时刻的最大发送功率,包括:
    根据所述UE等级确定第一最大发送功率限制值;
    获取所述第一RB个数对应的第二最大发送功率限制值;
    根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
  16. 根据权利要求15所述的终端,其特征在于,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
  17. 根据权利要求15所述的终端,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的所述第二最大发送功率限制值。
  18. 根据权利要求15所述的终端,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
    根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
  19. 根据权利要求15所述的终端,其特征在于,所述获取所述第一RB个数对应的第二最大发送功率限制值,包括:
    接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
    根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
  20. 根据权利要求14所述的终端,其特征在于,所述根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
    根据第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
    根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
  21. 根据权利要求20所述的终端,其特征在于,在所述第二RB个数和所述第一RB个数相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
    若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
    若确定所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
  22. 根据权利要求20所述的终端,其特征在于,在所述第二RB个数小于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第一差值;
    或,
    若满足第一设定条件,则所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
  23. 根据权利要求20所述的终端,其特征在于,在所述第二RB个数大于所述第一RB个数的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第三差值;
    或,
    若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
  24. 根据权利要求20所述的终端,其特征在于,在所述第二RB个数和所述第一RB个数不相等的情况下,所述确定所述目标传输时刻的第一PUCCH闭环功率控制因子,包括:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
    或,
    若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
  25. 根据权利要求20所述的终端,其特征在于,所述根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率,包括:
    根据所述第一PUCCH闭环功率控制因子确定第五最大发送功率限制值;
    根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
  26. 根据权利要求25所述的终端,其特征在于,所述根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率,包括:
    利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
    Figure PCTCN2022100437-appb-100004
    Figure PCTCN2022100437-appb-100005
    其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率 值,q u表示目标功率值集合索引;μ表示载波间隔配置;
    Figure PCTCN2022100437-appb-100006
    表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
  27. 一种上行控制信道PUCCH功率控制装置,其特征在于,包括:
    第一确定单元,用于根据目标传输时刻配置的第一资源块RB个数、以及终端UE等级,确定在所述目标传输时刻的最大发送功率;
    第二确定单元,用于根据所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
  28. 根据权利要求27所述的PUCCH功率控制装置,其特征在于,所述第一确定单元包括:
    第一确定子单元,用于根据所述UE等级确定第一最大发送功率限制值;
    获取子单元,用于获取第一RB个数对应的第二最大发送功率限制值;
    第二确定子单元,用于根据所述第一最大发送功率限制值和所述第二最大发送功率限制值确定所述目标传输时刻的最大发送功率。
  29. 根据权利要求28所述的PUCCH功率控制装置,其特征在于,所述目标传输时刻的最大发送功率为所述第一最大发送功率限制值和所述第二最大发送功率限制值之间的最小值。
  30. 根据权利要求28所述的PUCCH功率控制装置,其特征在于,所述获取子单元具体用于:
    接收网络设备发送的所述第二最大发送功率限制值。
  31. 根据权利要求28所述的PUCCH功率控制装置,其特征在于,所述获取子单元具体用于:
    接收网络设备发送的第三最大发送功率限制值,所述第三最大发送功率限制值为单个物理资源块PRB的最大发送功率限制值;
    根据所述第三最大发送功率限制值和所述第一RB个数,确定所述第二 最大发送功率限制值。
  32. 根据权利要求28所述的PUCCH功率控制装置,其特征在于,所述获取子单元具体用于:
    接收网络设备发送的第四最大发送功率限制值,所述第四最大发送功率限制值为单位带宽下的最大发送功率限制值;
    根据所述第四最大发送功率限制值和所述第一RB个数,确定所述第二最大发送功率限制值。
  33. 根据权利要求27所述的PUCCH功率控制装置,其特征在于,所述第二确定单元包括:
    第三确定子单元,用于根据第一RB个数,以及所述目标传输时刻的上一传输时刻配置的第二RB个数,确定所述目标传输时刻的第一PUCCH闭环功率控制因子;
    第四确定子单元,用于根据所述目标传输时刻的最大发送功率和所述第一PUCCH闭环功率控制因子确定所述目标传输时刻的第一发送功率。
  34. 根据权利要求33所述的PUCCH功率控制装置,其特征在于,在所述第二RB个数和所述第一RB个数相等的情况下,所述第三确定子单元具体用于:
    若所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率、且所述目标传输时刻对应的传输功率控制TPC累加值大于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子相同;或者,
    若所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率、且所述TPC累加值小于或等于0,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;或者,
    若确定所述目标传输时刻的目标功率值发生了调整,则确定所述第一PUCCH闭环功率控制因子为0。
  35. 根据权利要求33所述的PUCCH功率控制装置,其特征在于,在所 述第二RB个数小于所述第一RB个数的情况下,所述第三确定子单元具体用于:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子为第一差值,所述第一差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第二差值之间的差值,所述第二差值为所述第二RB个数小于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第一设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第一差值;
    或,
    若满足第一设定条件,则所述第一PUCCH闭环功率控制因子为所述第一差值;若不满足所述第一设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第一差值与所述TPC累加值之和;其中,所述第一设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率。
  36. 根据权利要求33所述的PUCCH功率控制装置,其特征在于,在所述第二RB个数大于所述第一RB个数的情况下,所述第三确定子单元具体用于:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第二设定条件,则确定所述第一PUCCH闭环功率控制因子为第三差值,所述第三差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第四差值之间的差值,所述第四差值为所述第二RB个数大于所述第一RB个数时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第三差值;
    或,
    若满足第二设定条件,则所述第一PUCCH闭环功率控制因子为所述第三差值;若不满足所述第二设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第三差值与所述TPC累加值之和;其中,所述第二设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率。
  37. 根据权利要求33所述的PUCCH功率控制装置,其特征在于,在所述第二RB个数和所述第一RB个数不相等的情况下,所述第三确定子单元具体用于:
    确定所述第一PUCCH闭环功率控制因子为0;
    或,
    若满足第三设定条件,则确定所述第一PUCCH闭环功率控制因子为第 五差值,所述第五差值为所述目标传输时刻的上一传输时刻的第二PUCCH闭环功率控制因子与第六差值之间的差值,所述第六差值为所述第二RB个数和所述第一RB个数不同时,根据所述第二RB个数计算的发送功率和根据所述第一RB个数计算的发送功率之间的差值;若不满足所述第三设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述目标传输时刻对应的TPC累加值之和;其中,所述第三设定条件包括所述目标传输时刻的上一传输时刻的第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率或最小发送功率;
    或,
    若满足第四设定条件,则确定所述第一PUCCH闭环功率控制因子与所述第二PUCCH闭环功率控制因子相同;若不满足所述第四设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第四设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最大发送功率;
    或,
    若满足第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第五差值;若不满足所述第五设定条件,则确定所述第一PUCCH闭环功率控制因子为所述第二PUCCH闭环功率控制因子与所述TPC累加值之和;其中,所述第五设定条件包括所述第二发送功率已经达到所述目标传输时刻的上一传输时刻的最小发送功率;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值;
    或,
    确定所述第一PUCCH闭环功率控制因子为所述第五差值与所述TPC累加值之和。
  38. 根据权利要求33所述的PUCCH功率控制装置,其特征在于,所述第四确定子单元包括:
    第一确定模块,用于根据所述第一PUCCH闭环功率控制因子确定第五 最大发送功率限制值;
    第二确定模块,用于根据所述第五最大发送功率限制值和所述目标传输时刻的最大发送功率,确定所述目标传输时刻的第一发送功率。
  39. 根据权利要求38所述的PUCCH功率控制装置,其特征在于,所述第二确定模块具体用于:
    利用第一公式进行PUCCH功率控制;其中,所述第一公式包括:
    Figure PCTCN2022100437-appb-100007
    Figure PCTCN2022100437-appb-100008
    其中,P PUCCH,b,f,c(i,q u,q d,l)表示终端在主小区c内的载波f上,第i个传输时刻的第一发送功率;P1表示第i个传输时刻的第五最大发送功率限制值;P′ CMAX,f,c(i)表示第i个传输时刻的最大发送功率;P O_PUCCH,b,f,c(q u)表示目标功率值,q u表示目标功率值集合索引;μ表示载波间隔配置;
    Figure PCTCN2022100437-appb-100009
    表示第i个传输时刻配置的RB个数;PL b,f,c(q d)表示路损值,q d表示参考信号RS资源索引;Δ F_PUCCH(F)表示PUCCH格式偏移值;Δ TF,b,f,c(i)表示第i个传输时刻的动态功率调整因子;g b,f,c(i,l)表示第i个传输时刻的第一PUCCH闭环功率控制因子;b表示带宽部分BWP的索引;l表示PUCCH功率控制调整状态索引。
  40. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至13中任一项所述的方法。
PCT/CN2022/100437 2021-09-30 2022-06-22 Pucch功率控制方法、终端、装置及存储介质 WO2023050916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166010.9A CN115915369A (zh) 2021-09-30 2021-09-30 Pucch功率控制方法、终端、装置及存储介质
CN202111166010.9 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023050916A1 true WO2023050916A1 (zh) 2023-04-06

Family

ID=85750369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100437 WO2023050916A1 (zh) 2021-09-30 2022-06-22 Pucch功率控制方法、终端、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115915369A (zh)
WO (1) WO2023050916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169758A (zh) * 2023-04-25 2023-05-26 厦门英麦科芯集成科技有限公司 输出功率的调整方法以及充电器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895976A (zh) * 2010-07-21 2010-11-24 北京交通大学 一种基于LTE-Advanced系统的上行功率调整方法
CN102239733A (zh) * 2008-12-08 2011-11-09 夏普株式会社 用于上行链路功率控制的系统和方法
US20170201950A1 (en) * 2014-09-28 2017-07-13 Huawei Technologies Co., Ltd. Uplink Power Control Method and Apparatus
US20170245218A1 (en) * 2016-02-23 2017-08-24 Spidercloud Wireless, Inc. System and method for closed loop uplink power control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239733A (zh) * 2008-12-08 2011-11-09 夏普株式会社 用于上行链路功率控制的系统和方法
CN101895976A (zh) * 2010-07-21 2010-11-24 北京交通大学 一种基于LTE-Advanced系统的上行功率调整方法
US20170201950A1 (en) * 2014-09-28 2017-07-13 Huawei Technologies Co., Ltd. Uplink Power Control Method and Apparatus
US20170245218A1 (en) * 2016-02-23 2017-08-24 Spidercloud Wireless, Inc. System and method for closed loop uplink power control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116169758A (zh) * 2023-04-25 2023-05-26 厦门英麦科芯集成科技有限公司 输出功率的调整方法以及充电器
CN116169758B (zh) * 2023-04-25 2024-05-03 厦门英麦科芯集成科技有限公司 输出功率的调整方法以及充电器

Also Published As

Publication number Publication date
CN115915369A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2019062998A1 (zh) 功率控制方法及装置
WO2018202169A1 (zh) 一种功率控制方法和装置
EP4395222A2 (en) Channel monitoring and control method and apparatus thereof
WO2018228536A1 (zh) 功率余量的确定方法及网络设备
WO2018210195A1 (zh) 一种发送和接收指示信息的方法、设备和系统
WO2019157895A1 (zh) 一种多波束传输时pucch功率的控制方法及装置
CN108632970B (zh) 功率控制方法、终端和网络设备
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2023050916A1 (zh) Pucch功率控制方法、终端、装置及存储介质
WO2019096278A1 (zh) 信号测量的方法和设备
US20230180147A1 (en) Power reporting for integrated access and backhaul networks
WO2018127100A1 (zh) 上行功率控制的方法和通信设备
US10251135B2 (en) Method for controlling power of carrier signal, user equipment, and base station
US10841883B2 (en) Network node and method for UE specific power handling
WO2020199023A1 (zh) 一种通信方法及设备
WO2022151980A1 (zh) 资源指示方法、装置和存储介质
CN112217618B (zh) 信息传输方法及装置
CN112217617B (zh) 信息传输方法及装置
CN111867013B (zh) 一种节能及其控制方法及装置
WO2023131291A1 (zh) 一种随机接入的方法、终端、装置及存储介质
KR20220158098A (ko) 추가 srs에 대한 전력 헤드룸 보고
WO2023020032A1 (zh) 一种信号发射功率控制方法及装置
WO2022078205A1 (zh) 功率控制方法、网络设备、终端、装置及存储介质
WO2020087548A1 (zh) 一种功率控制方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE