WO2019157895A1 - 一种多波束传输时pucch功率的控制方法及装置 - Google Patents

一种多波束传输时pucch功率的控制方法及装置 Download PDF

Info

Publication number
WO2019157895A1
WO2019157895A1 PCT/CN2019/071674 CN2019071674W WO2019157895A1 WO 2019157895 A1 WO2019157895 A1 WO 2019157895A1 CN 2019071674 W CN2019071674 W CN 2019071674W WO 2019157895 A1 WO2019157895 A1 WO 2019157895A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
reference signal
pucch
downlink
terminal
Prior art date
Application number
PCT/CN2019/071674
Other languages
English (en)
French (fr)
Inventor
林祥利
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2019157895A1 publication Critical patent/WO2019157895A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for controlling physical uplink control channel (PUCCH) power during multi-beam transmission.
  • PUCCH physical uplink control channel
  • the terminal may determine the PUCCH power control parameter by using physical uplink control channel spatial correlation indication information (PUCCH-Spatial-Relation-Info).
  • PUCCH-Spatial-Relation-Info physical uplink control channel spatial correlation indication information
  • the mapping relationship between PUCCH-Spatial-Relation-Info and PUCCH power control parameters is configured through higher layer signaling.
  • the PUCCH-Spatial-Relation-Info needs to be indicated in the MAC header, but whether the MAC header includes the PUCCH-Spatial-Relation-Info is optional.
  • the PUCCH power control parameter cannot be determined in the prior art.
  • the embodiment of the invention provides a method and a device for controlling PUCCH power in multi-beam transmission, which are used to solve the technical problem that the PUCCH power control parameter cannot be determined when the MAC header does not include the PUCCH-Spatial-Relation-Info.
  • a method for controlling PUCCH power in multi-beam transmission includes:
  • the PUCCH power control parameter is determined according to the beam management reference signal of the relevant downlink beam, where the related downlink beam is a bearer.
  • PDSCH Physical Downlink Shared Channel
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in the path loss measurement, and the PUCCH power control parameter is determined according to the beam management reference signal of the associated downlink beam, including:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is configured with a control resource set (CORESET).
  • CORESET control resource set
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in path loss measurement, and when the terminal is configured with two closed loop power control loops, according to a beam of the relevant downlink beam Management reference signals to determine PUCCH power control parameters, including:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is the downlink scheduling information and the TPC information. Downstream beam.
  • the PUCCH power control parameter includes a sequence number qu associated with the Po, where the Po is a PUCCH target power parameter of the terminal configured by a high layer, according to a beam management reference signal of the associated downlink beam, Determine PUCCH power control parameters, including:
  • Determining, by the sequence number of the Po association that the beam management reference signal matches, is the qu.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the PUCCH is determined according to the beam management reference signal of the associated downlink beam.
  • Power control parameters including:
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops is configured by higher layer signaling.
  • the beam management reference signal is a channel state information reference signal (CSI-RS) or a synchronization signal block (SS block).
  • CSI-RS channel state information reference signal
  • SS block synchronization signal block
  • a third aspect provides a method for controlling a physical uplink control channel PUCCH power in a multi-beam transmission, where the method includes:
  • the media access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info:
  • the high layer signaling is sent, where the high layer signaling is used to configure a mapping relationship between the beam management reference signal and the content associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number qu associated with the Po
  • the Po is a PUCCH target power parameter
  • the high layer signaling is used to configure the beam management reference signal in the terminal. A mapping relationship with the Po.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loops.
  • a terminal where the terminal includes:
  • a memory for storing instructions
  • the terminal When the terminal is configured as a multi-beam transmission, and the physical access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info, according to the beam management reference signal of the relevant downlink beam, Determining a PUCCH power control parameter, wherein the associated downlink beam is a beam carrying a physical downlink shared channel PDSCH.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in path loss measurement, and the processor performs a beam management reference signal according to the relevant downlink beam to determine a PUCCH power control parameter.
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitting in the DCI, the related downlink beam is configured to use the control resource set CORESET.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in path loss measurement, and when the terminal is configured with two closed loop power control loops, the processor performs correlation according to the correlation.
  • the beam management reference signal of the downlink beam determines the PUCCH power control parameters, including:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is the downlink scheduling information and the TPC information. Downstream beam.
  • the PUCCH power control parameter includes a sequence number qu associated with a Po, where the Po is a PUCCH target power parameter of the terminal configured by a higher layer, and the processor performs according to a related downlink beam.
  • the beam management reference signal determines the PUCCH power control parameters, including:
  • Determining, by the sequence number of the Po association that the beam management reference signal matches, is the qu.
  • the PUCCH power control parameter includes a closed loop power control ring number 1, and when the terminal is configured with two closed loop power control loops, the processor performs beam management according to the relevant downlink beam.
  • the reference signal determines the PUCCH power control parameters, including:
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops is configured by higher layer signaling.
  • the beam management reference signal is a channel state information reference signal CSI-RS or a synchronization signal block SS block.
  • a base station where the base station includes:
  • a memory for storing instructions
  • the high-level signaling is sent by the transceiver, and the high-layer signaling is It is used to configure a mapping relationship between the beam management reference signal and the content associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number qu associated with the Po
  • the Po is a PUCCH target power parameter
  • the high layer signaling is used to configure the beam management reference signal in the terminal. A mapping relationship with the Po.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loops.
  • a fifth aspect provides a terminal, where the terminal includes a PUCCH power control parameter determining module, configured to:
  • the media access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info:
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in path loss measurement
  • the PUCCH power control parameter determining module is configured to:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitting in the DCI, the related downlink beam is configured to use the control resource set CORESET.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number qd used in path loss measurement, and when the terminal is configured with two closed loop power control loops, the PUCCH power control parameter is determined.
  • the module is used to:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is the downlink scheduling information and the TPC information. Downstream beam.
  • the PUCCH power control parameter includes a sequence number qu associated with the Po, where the Po is a PUCCH target power parameter of the terminal configured by a high layer, and the PUCCH power control parameter determining module is configured to:
  • Determining, by the sequence number of the Po association that the beam management reference signal matches, is the qu.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the PUCCH power control parameter determining module is configured to:
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops is configured by higher layer signaling.
  • the beam management reference signal is a channel state information reference signal CSI-RS or a synchronization signal block SS block.
  • a sixth aspect provides a base station, where the base station includes a high layer signaling module, configured to:
  • the media access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info:
  • the high layer signaling is sent, where the high layer signaling is used to configure a mapping relationship between the beam management reference signal and the content associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number qu associated with the Po
  • the Po is a PUCCH target power parameter
  • the high layer signaling is used to configure the beam management reference signal in the terminal. A mapping relationship with the Po.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loops.
  • a computer readable storage medium wherein:
  • the computer readable storage medium stores computer instructions that, when executed on a computer, cause the computer to perform the method of the first aspect and/or the second aspect.
  • the PUCCH power control parameter is determined according to the beam management reference signal of the relevant downlink beam, where The downlink beam is a beam carrying a PDSCH.
  • the terminal can determine the PUCCH power control parameter.
  • the terminal can determine the PUCCH power control parameter and the correspondence between the uplink and downlink multiple beams. For a certain downlink beam, the terminal can transmit the best matching uplink beam transmission corresponding thereto.
  • FIG. 1 is a schematic flowchart of a method for controlling PUCCH power in multi-beam transmission according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a mapping relationship according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another method for controlling PUCCH power in multi-beam transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a base station according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a portable, portable, handheld, computer built-in or vehicle-mounted mobile device.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in TD-SCDMA or WCDMA, or may be an evolved base station (eNodeB or eNB or e- in LTE).
  • NodeB, evolutional Node B), or a base station (gNB) in 5G NR the present invention is not limited.
  • the PUCCH can perform power control on the PUCCH in the PUCCH transmission period i on the carrier f of the serving cell c by the following formula (1):
  • the P O_PUCCH, f, c (q u ) is a PUCCH target power configured by a higher layer, and is obtained by combining a cell-specific part and a UE-specific part;
  • PL f,c (q d ) is a path loss compensation parameter
  • q d is a reference signal resource number used in path loss measurement configured by high-level signaling, such as radio resource control (RRC) configuration
  • ⁇ F_PUCCH (F) is a power offset value of a different PUCCH format configured in a higher layer, and F is an index of a PUCCH formant;
  • ⁇ TF,f,c (i) is a power adjustment value associated with Uplink Control Information (UCI) bit number, UCI type, different coding gain, PUCCH format, coding scheme, and different effective code rates;
  • UCI Uplink Control Information
  • g f,c (i,l) is the closed-loop power adjustment parameter
  • l is the closed-loop power process number
  • the 5G system supports downlink and uplink beamforming transmission techniques. When multiple beamforming transmissions are used, corresponding downlink reference signals are respectively present on the downlink multiple beams for path loss estimation and downlink beam management.
  • the terminal needs to determine which one of the plurality of downlink reference signals is used for path loss measurement to determine a power control parameter setting of the PUCCH transmission; and determine a beam transmission of the uplink PUCCH corresponding to the downlink beam, and a closed loop power adjustment parameter Corresponding number.
  • the PUCCH power control parameter may be determined by using PUCCH-Spatial-Relation-Info indication information, and the mapping relationship between the PUCCH-Spatial-Relation-Info indication field and the power control parameter (such as q d , q u , l) is determined by the high layer signaling PUCCH PowerControl -Mapping configuration.
  • the terminal when multiple beam (multi-beam) transmission is configured, and PUCCH-Spatial-Relation-Info is not transmitted in the MAC header, the terminal cannot determine the configuration of the PUCCH power control parameter in multiple beam transmissions, and cannot effectively perform power. Control, and can not effectively select the uplink beam that matches the corresponding downlink beam for transmission.
  • the embodiment of the present invention provides a method for controlling PUCCH power during multi-beam transmission.
  • the method can be applied to a terminal, such as a mobile phone, a tablet computer, a personal computer, a notebook computer, a wearable electronic device, and the like.
  • the terminal implicitly determines relevant parameters for performing PUCCH power control.
  • the PUCCH power control parameter may be determined according to the beam management reference signal of the relevant downlink beam, and the related downlink beam is configured. It is the beam carrying the PDSCH.
  • the PUCCH power control parameter may be a parameter in the above formula (1), for example, one or more of the three parameters q d , q u , and l in the above formula (1).
  • the beam management reference signal can be a CSI-RS or an SS block, and the like.
  • the PUCCH power control parameter may be determined according to the flow shown in FIG. 1.
  • the process shown in Figure 1 includes the following steps:
  • Step 101 Determine that the terminal is configured to be multi-beam transmission, and the MAC header does not include PUCCH-Spatial-Relation-Info;
  • Step 102 Determine a PUCCH power control parameter according to a beam management reference signal of the associated downlink beam, where the related downlink beam is a PDSCH carrying beam.
  • the PUCCH power control parameter may include a downlink reference signal resource sequence number q d used in the path loss measurement, and determining a PUCCH power control parameter according to the beam management reference signal of the associated downlink beam may include the following steps. : determining a resource sequence number of the beam management reference signal of the related downlink beam, which is q d included in the PUCCH power control parameter.
  • the terminal can use the beam management reference signal of the relevant downlink beam as a reference signal for path loss measurement.
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitting in the DCI, the related downlink beam is A downlink beam configured by the CORESET for target PDSCH scheduling is configured.
  • TCI Transmission Configuration Indication
  • DCI Downlink Control Information
  • the DCI may correspond to multiple situations.
  • the DCI may be DCI in a previous downlink transmission period, or DCI in a current downlink transmission period, and for example, the DCI may be in the related downlink beam. DCI, or not the DCI in the associated downstream beam.
  • the PUCCH power control parameter may include a downlink reference signal resource sequence number q d used in the path loss measurement, and a beam management reference according to the relevant downlink beam when the terminal is configured with two closed loop power control loops.
  • the determining the PUCCH power control parameter may include the following steps: determining a resource sequence number of the beam management reference signal of the associated downlink beam, which is q d included in the PUCCH power control parameter.
  • the terminal can use the beam management reference signal of the relevant downlink beam as a reference signal for path loss measurement.
  • the relevant downlink beam is indicated by the TCI; when the TCI is not transmitting in the DCI, the related downlink beam is a downlink for receiving downlink scheduling information and Transmit Power Control (TPC) information. Beam.
  • TPC Transmit Power Control
  • the PUCCH power control parameter may include a sequence number q u associated with P o , and P o is a PUCCH target power parameter of the terminal configured by the upper layer, and determining a PUCCH according to a beam management reference signal of the associated downlink beam the power control parameters may include the steps of: determining the associated P o related to the downlink beam beam management number matching the reference signal for PUCCH power control parameter included in the q u.
  • the base station sends 4 downlink beams ⁇ Db0, Db1, Db2, Db3 ⁇ to the terminal, and the terminal can send 3 PUCCH beams ⁇ Ub0, Ub1, Ub2 ⁇ to the base station.
  • the reference signals corresponding to the beam management of the four downlink beams are ⁇ q d 0, q d 1, q d 2, q d 3 ⁇ , respectively, and the numbers q u corresponding to the uplink PUCCH beams are respectively ⁇ q u 0, q u 1, q u 2 ⁇ .
  • the high-level signaling may be configured: the beam-managed reference signal ⁇ q d 0, q d 1, q d 2, q d 3 ⁇ and the target power parameters of the three PUCCH beams.
  • a mapping relationship between Po(q u 0), Po(q u 1), and Po(q u 2) ⁇ , and the mapping relationship may be, for example, the mapping relationship shown in FIG. 2 .
  • the terminal when there is PDSCH transmission in Db0 and Db1, the terminal can determine the beam Db0 and Db1 as related downlink beams, and the terminal can determine the corresponding downlink beams Db0 and Db1 through the mapping relationship.
  • the uplink PUCCH beams are respectively ⁇ Ub0, Ub2 ⁇ , and the corresponding target transmission power parameters are ⁇ Po(q u 0), Po(q u 2) ⁇ , respectively.
  • the terminal uses the beam management reference signal q d 0 in the downlink beam Db0 as a parameter signal for path loss measurement in the uplink beam Ub0 power control, and uses the beam management reference signal q d 1 in the downlink beam Db1 as the uplink beam Ub2 power. Parameter signal for path loss measurement in control.
  • the PUCCH power control parameter may include a closed loop power control loop number 1 (ie, the number 1 of the closed loop power control loop association), when the terminal is configured with two closed loop power control loops, according to the relevant downlink beam
  • the beam management reference signal, determining the PUCCH power control parameter may include the steps of: determining a number of the closed loop power control loop associated with the beam management reference signal of the associated downlink beam in the two closed loop power control loops configured by the terminal,
  • the PUCCH power control parameter includes l.
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops may be configured by higher layer signaling.
  • the beam management reference signal is associated with one of the two closed loop power control loops.
  • the beam management reference signal is associated with one of the two closed loop power control loops and configured by higher layer signaling.
  • the terminal when the terminal is configured to transmit by multiple beams, and when the PUCCH-Spatial-Relation-Info is not transmitted in the MAC header, the terminal may implicitly determine the PUCCH power control parameter, and the PUCCH power control
  • the parameter is, for example, one or more of three parameters q d , q u , and l in the above formula (1). among them:
  • the terminal can determine P o based on the beam management reference signals of the associated downlink beams.
  • the terminal will transmit the beam-managed reference signal of the associated downlink beam of the PDSCH as a reference signal for path loss measurement.
  • the relevant downlink beam is indicated by the TCI; when the TCI is not transmitted in the DCI, the relevant downlink beam is configured to use the CORESET for the target PDSCH scheduling. Beam.
  • the terminal can determine P o according to the beam management reference signal of the associated downlink beam.
  • an embodiment of the present invention provides a method for controlling a physical uplink control channel PUCCH power in a multi-beam transmission, and the method may be applied to a base station, for example, the base station described in Embodiment 1. Specifically, the method includes:
  • the media access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info
  • the high-layer signaling is sent, and the high-layer signaling is used to configure the beam.
  • the mapping relationship between the reference signal and the content associated with the PUCCH power control parameter is managed.
  • the high level instruction may be the high level instruction described in the first embodiment.
  • the method can be performed according to the flow shown in FIG.
  • the process shown in Figure 3 includes the following steps:
  • Step 301 Determine that the terminal is configured to be multi-beam transmission, and the MAC header does not include PUCCH-Spatial-Relation-Info;
  • Step 302 Send high layer signaling, where the high layer signaling is used to configure a mapping relationship between the beam management reference signal and the content associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number q u associated with P o , where the P o is a PUCCH target power parameter, where the high layer signaling is used to configure the beam management reference signal in the terminal and the P o mapping relationship.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loop power control loops.
  • an embodiment of the present invention provides a terminal, where the terminal includes at least a memory and a processor, such as the terminal shown in FIG.
  • the terminal shown in FIG. 4 includes a memory 401, a processor 402, and a transceiver 403, wherein the memory 401 and the transceiver 403 can be connected to the processor 402 through a bus interface, or can also be connected to the processor 402 through a dedicated connection line.
  • the transceiver 403 can be configured to receive information sent by a device such as a base station, for example, to receive high layer signaling.
  • the memory 401 can be used to store instructions, and the processor 402 can be used to read instructions in the memory 401 to perform the following processes:
  • the PUCCH power control parameter is determined according to the beam management reference signal of the relevant downlink beam, where the relevant downlink beam is a bearer.
  • the beam of the PDSCH is determined according to the beam management reference signal of the relevant downlink beam, where the relevant downlink beam is a bearer.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number q d used in path loss measurement, and the processor 402 performs a beam management reference signal according to the relevant downlink beam to determine a PUCCH power control parameter.
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is a downlink beam configured with the CORESET for performing the target PDSCH scheduling.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number q d used in path loss measurement, and when the terminal is configured with two closed loop power control loops, the processor 402 performs correlation according to the correlation.
  • a beam management reference signal of the downlink beam determines a PUCCH power control parameter, including:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is a downlink beam that receives the downlink scheduling information and the TPC information.
  • the PUCCH power control parameter includes a sequence number q u associated with P o
  • the P o is a PUCCH target power parameter of the terminal configured in a higher layer
  • the processor 402 performs the downlink beam according to the correlation.
  • the beam management reference signal determines the PUCCH power control parameters, including:
  • Determining the sequence number of the P o associated with the beam management reference signal is the q u .
  • the PUCCH power control parameter includes a closed loop power control loop number 1.
  • the processor 402 performs a beam management reference signal according to the associated downlink beam. Determine PUCCH power control parameters, including:
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops is configured by high layer signaling.
  • the beam management reference signal is a CSI-RS or an SS block.
  • an embodiment of the present invention provides a base station including at least a memory and a processor and a transceiver, such as the base station shown in FIG.
  • the base station shown in FIG. 5 includes a memory 501, a processor 502, and a transceiver 503, wherein the memory 501 and the transceiver 503 can be connected to the processor 502 through a bus interface, or can also be connected to the processor 502 through a dedicated connection line.
  • the transceiver 503 can be used to transmit information, such as to send higher layer signaling. among them:
  • a memory 501 configured to store an instruction
  • the processor 502 is configured to read the instructions in the memory 501 and perform the following process:
  • the high-level signaling is sent by the transceiver 503, where the high-level signaling is used to configure the beam management reference signal to be associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number q u associated with P o , where the P o is a PUCCH target power parameter, where the high layer signaling is used to configure the beam management reference signal in the terminal and the P o mapping relationship.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loop power control loops.
  • an embodiment of the present invention provides a terminal, where the terminal includes a PUCCH power control parameter determining module, configured to:
  • the PUCCH power control parameter is determined according to the beam management reference signal of the relevant downlink beam, where the relevant downlink beam is a bearer.
  • the beam of the PDSCH is determined according to the beam management reference signal of the relevant downlink beam, where the relevant downlink beam is a bearer.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number q d used in path loss measurement
  • the PUCCH power control parameter determining module is configured to:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is a downlink beam configured with the CORESET for performing the target PDSCH scheduling.
  • the PUCCH power control parameter includes a downlink reference signal resource sequence number q d used in path loss measurement, and when the terminal is configured with two closed loop power control loops, the PUCCH power control parameter determining module is used by to:
  • the related downlink beam is indicated by the TCI; when the TCI is not transmitted by the DCI, the related downlink beam is a downlink beam that receives the downlink scheduling information and the TPC information.
  • the PUCCH power control parameter includes a sequence number q u associated with P o , where the P o is a PUCCH target power parameter of the terminal configured in a higher layer, and the PUCCH power control parameter determining module is configured to:
  • Determining the sequence number of the P o associated with the beam management reference signal is the q u .
  • the PUCCH power control parameter includes a closed loop power control loop number 1.
  • the PUCCH power control parameter determining module is configured to:
  • the closed loop power control loop associated with the beam management reference signal in the two closed loop power control loops is configured by high layer signaling.
  • the beam management reference signal is a CSI-RS or an SS block.
  • an embodiment of the present invention provides a base station, where the base station includes a high layer signaling sending module, and is configured to:
  • the media access control header MAC header does not include the physical uplink control channel spatial correlation indication information PUCCH-Spatial-Relation-Info:
  • the high layer signaling is used to configure a mapping relationship between the beam management reference signal and the content associated with the PUCCH power control parameter.
  • the PUCCH power control parameter includes a sequence number q u associated with P o , where P o is a PUCCH target power parameter, where the high layer signaling is used to configure the beam management reference signal in the terminal and the P o mapping relationship.
  • the PUCCH power control parameter includes a closed loop power control ring number 1.
  • the high layer signaling is used to configure the two closed loop power control loops.
  • an embodiment of the present invention provides a computer readable storage medium storing computer instructions that, when executed on a computer, cause the computer to execute the first embodiment and/or the second embodiment The method described.
  • the computer readable storage medium includes: a Universal Serial Bus flash drive (USB), a mobile hard disk, a Read-Only Memory (ROM), a random access memory ( Random Access Memory (RAM), disk or optical disc, and other storage media that can store program code.
  • USB Universal Serial Bus flash drive
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the PUCCH power control parameter is determined according to the beam management reference signal of the relevant downlink beam, where The downlink beam is a beam carrying a PDSCH.
  • the terminal can determine the PUCCH power control parameter.
  • the terminal can determine the PUCCH power control parameter and the correspondence between the uplink and downlink multiple beams. For a certain downlink beam, the terminal can transmit the best matching uplink beam transmission corresponding thereto.
  • the device embodiments described above are merely illustrative, wherein the units/modules described as separate components may or may not be physically separate, and the components displayed as units/modules may or may not be physical units/modules. , can be located in one place, or can be distributed to multiple network units/modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种多波束传输时PUCCH功率的控制方法及装置,用以解决当MAC header不包含PUCCH-Spatial-Relation-Info时,无法确定PUCCH功率控制参数的技术问题。所述方法包括:当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,该相关的下行波束为承载PDSCH的波束。

Description

一种多波束传输时PUCCH功率的控制方法及装置
本申请要求在2018年2月13日提交中国专利局、申请号为201810150989.2、发明名称为“一种多波束传输时PUCCH功率的控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种多波束传输时物理上行控制信道(Physical Uplink Control Channel,PUCCH)功率的控制方法及装置。
背景技术
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,ITU)和第三代产业合作计划(3rd Generation Partnership Project,3GPP)等组织都开始研究新的无线通信系统,例如第五代无线通信系统(5Generation New RAT,5G NR)。
5G NR中,当采用波束赋形技术时,终端可以通过物理上行控制信道空间相关性指示信息(PUCCH-Spatial-Relation-Info)来确定PUCCH功率控制参数。PUCCH-Spatial-Relation-Info与PUCCH功率控制参数的映射关系集合是通过高层信令配置。其中,PUCCH-Spatial-Relation-Info需要在媒体接入控制头(MAC header)中指示,但MAC header是否包含PUCCH-Spatial-Relation-Info是可选的。当MAC header中不包含PUCCH-Spatial-Relation-Info时,现有技术中无法确定PUCCH功率控制参数。
发明内容
本发明实施例提供一种多波束传输时PUCCH功率的控制方法及装置,用以解决当MAC header不包含PUCCH-Spatial-Relation-Info时,无法确定PUCCH功率控制参数的技术问题。
第一方面,提供一种多波束传输时PUCCH功率的控制方法,所述方法包括:
当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控 制参数,包括:
确定所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为配置了控制资源集合(CORESET)用于进行目标PDSCH调度的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,当所述终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定将所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为接收下行调度信息和TPC信息的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为高层配置的所述终端的PUCCH目标功率参数,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定所述波束管理参考信号所匹配的Po关联的序号,为所述qu。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定与所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环的编号,为所述l;
其中,由高层信令配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
在一种可能的实现方式中,所述波束管理参考信号为信道状态信息参考信号(CSI-RS)或同步信号块(SS block)。
第三方面,提供一种多波束传输时物理上行控制信道PUCCH功率的控制方法,所述方法包括:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为PUCCH目标功率参数,所述高层信令用于配置所述终端中所述波束管理参考信号 与所述Po的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述高层信令用于配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
第三方面,提供一种终端,所述终端包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
当所述终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道PDSCH的波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为配置了控制资源集合CORESET用于进行目标PDSCH调度的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,当所述终端配置有两个闭环功率控制环时,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定将所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为接收下行调度信息和TPC信息的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为高层配置的所述终端的PUCCH目标功率参数,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定所述波束管理参考信号所匹配的Po关联的序号,为所述qu。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定与所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环 的编号,为所述l;
其中,由高层信令配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
在一种可能的实现方式中,所述波束管理参考信号为信道状态信息参考信号CSI-RS或同步信号块SS block。
第四方面,提供一种基站,所述基站包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时,通过收发机发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为PUCCH目标功率参数,所述高层信令用于配置所述终端中所述波束管理参考信号与所述Po的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述高层信令用于配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
第五方面,提供一种终端,所述终端包括PUCCH功率控制参数确定模块,用于:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道PDSCH的波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,所述PUCCH功率控制参数确定模块用于:
确定所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为配置了控制资源集合CORESET用于进行目标PDSCH调度的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,当所述终端配置有两个闭环功率控制环时,所述PUCCH功率控制参数确定模块用于:
确定将所述波束管理参考信号的资源序号,为所述qd;
其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为接收下行调度信息和TPC信息的下行波束。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为高层配置的所述终端的PUCCH目标功率参数,所述PUCCH功率控制参数确定模块用于:
确定所述波束管理参考信号所匹配的Po关联的序号,为所述qu。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述PUCCH功率控制参数确定模块用于:
确定与所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环的编号,为所述l;
其中,由高层信令配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
在一种可能的实现方式中,所述波束管理参考信号为信道状态信息参考信号CSI-RS或同步信号块SS block。
第六方面,提供一种基站,所述基站包括高层信令发送模块,用于:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为PUCCH目标功率参数,所述高层信令用于配置所述终端中所述波束管理参考信号与所述Po的映射关系。
在一种可能的实现方式中,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述高层信令用于配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
第七方面,提供一种计算机可读存储介质,其中:
所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行第一方面和/或第二方面所述的方法。
本发明实施例中,当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,相关的下行波束为承载PDSCH的波束。通过该方法,当MAC header中不包含PUCCH-Spatial-Relation-Info时,终端可以确定PUCCH功率控制参数。并且, 通过本方法,终端可以确定PUCCH功率控制参数,以及上下行多个波束的对应关系,对于某一个下行波束,终端可以发送与其相对应的最匹配的上行波束传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例中一种多波束传输时PUCCH功率的控制方法的流程示意图;
图2为本发明实施例中一种映射关系的示意图;
图3为本发明实施例中另一种多波束传输时PUCCH功率的控制方法的流程示意图;
图4为本发明实施例中一种终端的示意图;
图5为本发明实施例中一种基站的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、 手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,在不做特别说明的情况下,一般表示前后关联对象是一种“或”的关系。
首先,对本发明实施例的应用场景进行介绍。
在5G中,PUCCH可以通过下面的公式(1)对服务小区c的载波f上PUCCH传输周期i中的PUCCH进行功率控制:
Figure PCTCN2019071674-appb-000001
其中,P O_PUCCH,f,c(q u)为高层配置的PUCCH目标功率,由小区专属部分和UE专属部分组合得到;
PL f,c(q d)为路径损耗补偿参数,q d为高层信令配置的路损测量中使用的参考信号资源序号,如无线资源控制(Radio Resource Control,RRC)配置的;
Δ F_PUCCH(F)为高层配置的不同PUCCH format的功率偏移值,F为PUCCH formant的索引;
Δ TF,f,c(i)为一个和上行控制信息(Uplink Control Information,UCI)比特数,UCI类型、不同编码增益、PUCCH格式、编码方案和不同的有效码率都相关的功率调整值;
g f,c(i,l)为闭环功率调整参数,l表示闭环功率进程编号。
5G系统支持下行和上行的波束赋形传输技术。当采用多个波束赋形传输时,下行多个波束上各自存在有对应的下行参考信号用于路径损耗估计和下行波束管理。终端需要确定 在所述多个下行参考信号中,哪一个参考信号用于路径损耗测量来决定PUCCH传输的功率控制参数设置;以及确定对应该下行波束的上行PUCCH的波束传输,以及闭环功率调整参数对应的编号。对于PUCCH功率控制参数可通过PUCCH-Spatial-Relation-Info指示信息来确定,PUCCH-Spatial-Relation-Info指示域与功率控制参数(如q d、q u、l)的映射关系由高层信令PUCCHPowerControl-Mapping配置。
5G中,当配置多个波束(multi-beam)传输,且PUCCH-Spatial-Relation-Info不在MAC header进行传输时,终端无法确定PUCCH功率控制参数在多个波束传输中的配置,不能有效进行功率控制,且不能有效选择与对应下行波束相匹配的上行波束进行传输。
实施例一
本发明实施例提供一种多波束传输时PUCCH功率的控制方法,该方法可以应用于终端,终端例如为手机、平板电脑、个人电脑、笔记本电脑、穿戴式电子设备等具有通信功能的设备。
本发明实施例中,对于多个波束(multi-beam)配置的传输,当PUCCH-Spatial-Relation-Info不在MAC header中进行传输时,终端隐式确定用于进行PUCCH功率控制的相关参数。
具体来说,当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,可以根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,该相关的下行波束为承载PDSCH的波束。
其中,PUCCH功率控制参数可以是上述公式(1)中的参数,例如为上述公式(1)中的q d、q u、l这三个参数中的一个或多个。
举例来说,波束管理参考信号可以是CSI-RS或SS block,等。
在一种可能的实施方式中,可以根据图1所示的流程确定PUCCH功率控制参数。图1所示的流程包括如下步骤:
步骤101:确定终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info;
步骤102:根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,该相关的下行波束为承载PDSCH的波束。
在一种可能的实施方式中,PUCCH功率控制参数可以包括路径损耗测量中使用的下行参考信号资源序号q d,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,可以包括如下步骤:确定该相关的下行波束的波束管理参考信号的资源序号,为PUCCH功率控制参数包括的q d
也就是说,当PUCCH-Spatial-Relation-Info不在MAC header中进行传输时,终端可以将相关的下行波束的波束管理参考信号,作为路径损耗测量的参考信号。
其中,承载PDSCH的波束可以有多个。
当传输配置指示(Transmission Configuration Indication,TCI)在下行控制信息(Downlink Control Information,DCI)中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行传输时,该相关的下行波束为配置了CORESET用于进行目标PDSCH调度的下行波束。
其中,该DCI可以对应于多种情况,例如,该DCI可以是前一个下行传输周期中的DCI,或当前下行传输周期中的DCI等,又例如,该DCI可以是该相关的下行波束中的DCI,或者不是该相关的下行波束中的DCI。
在一种可能的实施方式中,PUCCH功率控制参数可以包括路径损耗测量中使用的下行参考信号资源序号q d,当终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,可以包括如下步骤:确定该相关的下行波束的波束管理参考信号的资源序号,为PUCCH功率控制参数包括的q d
也就是说,当PUCCH-Spatial-Relation-Info不在MAC header中进行传输且终端配置了两个闭环功率控制环,则终端可以将相关的下行波束的波束管理参考信号,作为路径损耗测量的参考信号。
其中,承载PDSCH的波束可以有多个。
当TCI在DCI中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行传输时,该相关的下行波束为接收下行调度信息和发送功率控制(Transmit Power Control,TPC)信息的下行波束。
在一种可能的实施方式中,PUCCH功率控制参数可以包括与P o关联的序号q u,P o为高层配置的终端的PUCCH目标功率参数,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,可以包括如下步骤:确定该相关的下行波束的波束管理参考信号所匹配的P o关联的序号,为PUCCH功率控制参数包括的q u
其中,对于每个用于下行路径损耗测量的波束管理参考信号,有对应的P o配置用于PUCCH功率控制。
举例来说,假设基站发送4个下行波束{Db0,Db1,Db2,Db3}给终端,终端可以发送给基站3个PUCCH波束{Ub0,Ub1,Ub2}。其中,4个下行波束对应的波束管理的参考信号分别为{q d0,q d1,q d2,q d3},上行PUCCH波束对应的编号q u分别为{q u0,q u1,q u2}。在执行本发明实施例中的方法时,可以通过高层信令配置:波束管理的参考信号{q d0,q d1,q d2,q d3}与3个PUCCH波束的目标功率参数{Po(q u0),Po(q u1),Po(q u2)}的映射关系,该映射关系例如可以是图2所示的映射关系。
基于图2所示的映射关系,当Db0,Db1存在有PDSCH传输时,终端可确定波束Db0,Db1为相关的下行波束,且终端可以通过该映射关系确定与相关的下行波束Db0,Db1对应 的上行PUCCH波束分别为{Ub0,Ub2},其对应的目标发送功率参数分别为{Po(q u0),Po(q u2)},
并且,终端将下行波束Db0中的波束管理参考信号q d0作为上行波束Ub0功率控制中用于路径损耗测量的参数信号,将下行波束Db1中的波束管理参考信号q d1作为上行波束Ub2功率控制中用于路径损耗测量的参数信号。
在一种可能的实施方式中,PUCCH功率控制参数可以包括闭环功率控制环编号l(即闭环功率控制环关联的编号l),当终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,可以包括如下步骤:确定与终端配置的两个闭环功率控制环中与该相关的下行波束的波束管理参考信号关联的闭环功率控制环的编号,为PUCCH功率控制参数包括的l。其中,可以是由高层信令配置该两个闭环功率控制环中与波束管理参考信号关联的闭环功率控制环。
也就是说,对于每个用于下行路径损耗测量的波束管理参考信号,将该波束管理参考信号与该两个闭环功率控制环的其中一个进行关联。其中,该波束管理参考信号与该两个闭环功率控制环的其中一个进行关联由高层信令进行配置。
为便于理解,下面对前述的多波束传输时PUCCH功率的控制方法进行补充描述:
本发明实施例中,当终端配置为多个波束(multi-beam)传输,且当PUCCH-Spatial-Relation-Info不在MAC header中进行传输时,可以终端隐式确定PUCCH功率控制参数,PUCCH功率控制参数例如为上述公式(1)中的q d、q u、l这三个参数中的一个或多个。其中:
(1)关于确定PUCCH控制参数q u的部分:
由于用于波束管理的参考信号都配置了与其相关联的P o,终端可以根据相关的下行波束的波束管理参考信号来确定P o
(2)关于确定PUCCH控制参数q d的部分:
终端将传输PDSCH的相关的下行波束的波束管理的参考信号,作为路径损耗测量的参考信号。其中,在一种可能的实施方式中,当TCI在DCI进行传输时,相关的下行波束由TCI指示;当TCI不在DCI进行传输时,相关的下行波束为配置了CORESET用于目标PDSCH调度的下行波束。
(3)关于确定PUCCH控制参数l的部分:
当终端配置了两个闭环功率控制环,由于用于波束管理的参考信号都配置了与其相关联的P o,终端可以根据相关的下行波束的波束管理参考信号来确定P o
实施例二
基于同一发明构思,本发明实施例提供一种多波束传输时物理上行控制信道PUCCH功率的控制方法,该方法可以应用于基站,例如为实施例一中所述的基站。具体来说,该方 法包括:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时,发送高层信令,该高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
其中,该高层指令可以是实施例一中所述的高层指令。
在一种可能的实施方式中,可以根据图3所示的流程执行该方法。图3所示的流程包括如下步骤:
步骤301:确定终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info;
步骤302:发送高层信令,该高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实施方式中,该PUCCH功率控制参数包括与P o关联的序号q u,该P o为PUCCH目标功率参数,该高层信令用于配置该终端中该波束管理参考信号与该P o的映射关系。
在一种可能的实施方式中,该PUCCH功率控制参数包括闭环功率控制环编号l,当该终端配置有两个闭环功率控制环时,该高层信令用于配置该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环。
实施例三
基于同一发明构思,本发明实施例提供一种终端,该终端至少包括存储器和处理器,例如为图4所示的终端。图4所示的终端包括存储器401、处理器402和收发机403,其中,存储器401和收发机403可以通过总线接口与处理器402相连接,或者也可以通过专门的连接线与处理器402连接,收发机403可以用于接收基站等设备发送的信息,例如接收高层信令。
其中,存储器401可以用于存储指令,处理器402可以用于读取存储器401中的指令,执行下列过程:
当该终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,该相关的下行波束为承载PDSCH的波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号q d,该处理器402执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定该波束管理参考信号的资源序号,为该q d
其中,当TCI在DCI中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行 传输时,该相关的下行波束为配置了CORESET用于进行目标PDSCH调度的下行波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号q d,当该终端配置有两个闭环功率控制环时,该处理器402执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定将该波束管理参考信号的资源序号,为该q d
其中,当TCI在DCI中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行传输时,该相关的下行波束为接收下行调度信息和TPC信息的下行波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括与P o关联的序号q u,该P o为高层配置的该终端的PUCCH目标功率参数,该处理器402执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定该波束管理参考信号所匹配的P o关联的序号,为该q u
在一种可能的实施方式中,该PUCCH功率控制参数包括闭环功率控制环编号l,当终端配置有两个闭环功率控制环时,该处理器402执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
确定与该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环的编号,为该l;
其中,由高层信令配置该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环。
在一种可能的实施方式中,该波束管理参考信号为CSI-RS或SS block。
实施例四
基于同一发明构思,本发明实施例提供一种基站,该基站至少包括存储器和处理器和收发机,例如为图5所示的基站。图5所示的基站包括存储器501、处理器502和收发机503,其中,存储器501和收发机503可以通过总线接口与处理器502相连接,或者也可以通过专门的连接线与处理器502连接,收发机503可以用于发送信息,例如发送高层信令。其中:
存储器501,用于存储指令;
处理器502,用于读取该存储器501中的指令,执行下列过程:
当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,通过收发机503发送高层信令,该高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实施方式中,该PUCCH功率控制参数包括与P o关联的序号q u,该P o为PUCCH目标功率参数,该高层信令用于配置该终端中该波束管理参考信号与该P o的映射关系。
在一种可能的实施方式中,该PUCCH功率控制参数包括闭环功率控制环编号l,当该 终端配置有两个闭环功率控制环时,该高层信令用于配置该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环。
实施例五
基于同一发明构思,本发明实施例提供一种终端,该终端包括PUCCH功率控制参数确定模块,用于:
当终端配置为多波束传输,且媒体MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,该相关的下行波束为承载PDSCH的波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号q d,该PUCCH功率控制参数确定模块用于:
确定该波束管理参考信号的资源序号,为该q d
其中,当TCI在DCI中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行传输时,该相关的下行波束为配置了CORESET用于进行目标PDSCH调度的下行波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号q d,当该终端配置有两个闭环功率控制环时,该PUCCH功率控制参数确定模块用于:
确定将该波束管理参考信号的资源序号,为该q d
其中,当TCI在DCI中进行传输时,该相关的下行波束由TCI指示;当TCI不在DCI进行传输时,该相关的下行波束为接收下行调度信息和TPC信息的下行波束。
在一种可能的实施方式中,该PUCCH功率控制参数包括与P o关联的序号q u,该P o为高层配置的该终端的PUCCH目标功率参数,该PUCCH功率控制参数确定模块用于:
确定该波束管理参考信号所匹配的P o关联的序号,为该q u
在一种可能的实施方式中,该PUCCH功率控制参数包括闭环功率控制环编号l,当终端配置有两个闭环功率控制环时,该PUCCH功率控制参数确定模块用于:
确定与该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环的编号,为该l;
其中,由高层信令配置该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环。
在一种可能的实施方式中,该波束管理参考信号为CSI-RS或SS block。
实施例六
基于同一发明构思,本发明实施例提供一种基站,该基站包括高层信令发送模块,用于:
当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道 空间相关性指示信息PUCCH-Spatial-Relation-Info时:
发送高层信令,该高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
在一种可能的实现方式中,该PUCCH功率控制参数包括与P o关联的序号q u,该P o为PUCCH目标功率参数,该高层信令用于配置该终端中该波束管理参考信号与该P o的映射关系。
在一种可能的实现方式中,该PUCCH功率控制参数包括闭环功率控制环编号l,当该终端配置有两个闭环功率控制环时,该高层信令用于配置该两个闭环功率控制环中与该波束管理参考信号关联的闭环功率控制环。
实施例七
基于同一发明构思,本发明实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行实施例一和/或实施二所述的方法。
在具体的实施过程中,计算机可读存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive,USB)、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的存储介质。
上述的一个或多个技术方案,至少具有如下有益效果:
本发明实施例中,当终端配置为多波束传输,且MAC header中不包含PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,相关的下行波束为承载PDSCH的波束。通过该方法,当MAC header中不包含PUCCH-Spatial-Relation-Info时,终端可以确定PUCCH功率控制参数。并且,通过本方法,终端可以确定PUCCH功率控制参数,以及上下行多个波束的对应关系,对于某一个下行波束,终端可以发送与其相对应的最匹配的上行波束传输。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元/模块可以是或者也可以不是物理上分开的,作为单元/模块显示的部件可以是或者也可以不是物理单元/模块,即可以位于一个地方,或者也可以分布到多个网络单元/模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (21)

  1. 一种多波束传输时物理上行控制信道PUCCH功率的控制方法,其特征在于,所述方法包括:
    当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
    根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道PDSCH的波束。
  2. 如权利要求1所述的方法,其特征在于,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定所述波束管理参考信号的资源序号,为所述qd;
    其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为配置了控制资源集合CORESET用于进行目标PDSCH调度的下行波束。
  3. 如权利要求1所述的方法,其特征在于,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,当所述终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定将所述波束管理参考信号的资源序号,为所述qd;
    其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为接收下行调度信息和TPC信息的下行波束。
  4. 如权利要求1所述的方法,其特征在于,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为高层信令配置的所述终端的PUCCH目标功率参数,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定所述波束管理参考信号所匹配的Po关联的序号,为所述qu。
  5. 如权利要求1所述的方法,其特征在于,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定与所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环的编号,为所述l;
    其中,由高层信令配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述波束管理参考信号为信道状态信息参考信号CSI-RS或同步信号块SS block。
  7. 一种多波束传输时物理上行控制信道PUCCH功率的控制方法,其特征在于,所述方法包括:
    当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
    发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
  8. 如权利要求7所述的方法,其特征在于,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为PUCCH目标功率参数,所述高层信令用于配置所述终端中所述波束管理参考信号与所述Po的映射关系。
  9. 如权利要求7所述的方法,其特征在于,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述高层信令用于配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
  10. 一种终端,其特征在于,所述终端包括:
    存储器,用于存储指令;
    处理器,用于读取所述存储器中的指令,执行下列过程:
    当所述终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时,根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道PDSCH的波束。
  11. 如权利要求10所述的终端,其特征在于,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定所述波束管理参考信号的资源序号,为所述qd;
    其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为配置了控制资源集合CORESET用于进行目标PDSCH调度的下行波束。
  12. 如权利要求10所述的终端,其特征在于,所述PUCCH功率控制参数包括路径损耗测量中使用的下行参考信号资源序号qd,当所述终端配置有两个闭环功率控制环时,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定将所述波束管理参考信号的资源序号,为所述qd;
    其中,当传输配置指示TCI在下行控制信息DCI中进行传输时,所述相关的下行波束由 TCI指示;当TCI不在DCI进行传输时,所述相关的下行波束为接收下行调度信息和TPC信息的下行波束。
  13. 如权利要求10所述的终端,其特征在于,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为高层配置的所述终端的PUCCH目标功率参数,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定所述波束管理参考信号所匹配的Po关联的序号,为所述qu。
  14. 如权利要求10所述的终端,其特征在于,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述处理器执行根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,包括:
    确定与所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环的编号,为所述l;
    其中,由高层信令配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
  15. 如权利要求10-14中任一项所述的终端,其特征在于,所述波束管理参考信号为信道状态信息参考信号CSI-RS或同步信号块SS block。
  16. 一种基站,其特征在于,所述基站包括:
    存储器,用于存储指令;
    处理器,用于读取所述存储器中的指令,执行下列过程:
    当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时,通过收发机发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
  17. 如权利要求16所述的基站,其特征在于,所述PUCCH功率控制参数包括与Po关联的序号qu,所述Po为PUCCH目标功率参数,所述高层信令用于配置所述终端中所述波束管理参考信号与所述Po的映射关系。
  18. 如权利要求16所述的基站,其特征在于,所述PUCCH功率控制参数包括闭环功率控制环编号l,当所述终端配置有两个闭环功率控制环时,所述高层信令用于配置所述两个闭环功率控制环中与所述波束管理参考信号关联的闭环功率控制环。
  19. 一种终端,其特征在于,所述终端包括PUCCH功率控制参数确定模块,用于:
    当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
    根据相关的下行波束的波束管理参考信号,确定PUCCH功率控制参数,其中,所述相关的下行波束为承载物理下行共享信道PDSCH的波束。
  20. 一种基站,其特征在于,所述基站包括高层信令发送模块,用于:
    当终端配置为多波束传输,且媒体接入控制头MAC header中不包含物理上行控制信道空间相关性指示信息PUCCH-Spatial-Relation-Info时:
    发送高层信令,所述高层信令用于配置波束管理参考信号与PUCCH功率控制参数所关联内容之间的映射关系。
  21. 一种计算机可读存储介质,其特征在于:
    所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法。
PCT/CN2019/071674 2018-02-13 2019-01-14 一种多波束传输时pucch功率的控制方法及装置 WO2019157895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810150989.2A CN110167126B (zh) 2018-02-13 2018-02-13 一种多波束传输时pucch功率的控制方法及装置
CN201810150989.2 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157895A1 true WO2019157895A1 (zh) 2019-08-22

Family

ID=67620219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071674 WO2019157895A1 (zh) 2018-02-13 2019-01-14 一种多波束传输时pucch功率的控制方法及装置

Country Status (2)

Country Link
CN (1) CN110167126B (zh)
WO (1) WO2019157895A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473607A (zh) * 2020-03-31 2021-10-01 大唐移动通信设备有限公司 Pucch传输方法、装置、终端、网络侧和存储介质
TWI816093B (zh) * 2020-05-18 2023-09-21 大陸商大唐移動通信設備有限公司 一種確定和配置實體上行控制通道資源的方法、使用者終端、網路側設備、裝置及電腦程式介質
EP4096107A4 (en) * 2020-01-21 2024-01-17 Zte Corp METHOD AND DEVICE FOR DETERMINING POWER CONTROL PARAMETERS AND STORAGE MEDIUM

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277395B (zh) * 2020-01-20 2022-10-25 北京紫光展锐通信技术有限公司 一种路损参考信号的确定方法及装置
WO2021147001A1 (zh) * 2020-01-22 2021-07-29 Oppo广东移动通信有限公司 功率控制参数确定方法、终端、网络设备及存储介质
WO2021174558A1 (zh) * 2020-03-06 2021-09-10 Oppo广东移动通信有限公司 资源指示方法、终端设备和网络设备
US20230164699A1 (en) * 2020-04-17 2023-05-25 Qualcomm Incorporated Uplink power control (ulpc) indication by associating a ulpc configuration and a transmission configuration indicator (tci)
CN116867043A (zh) * 2022-03-25 2023-10-10 维沃移动通信有限公司 功率控制方法、装置及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080200196A1 (en) * 2007-02-19 2008-08-21 Tarik Muharemovic Transmission of prioritized information in the proximity of reference signals
CN103326809A (zh) * 2012-03-22 2013-09-25 中兴通讯股份有限公司 一种物理上行控制信道功率控制信令的通知方法及装置
CN103688580A (zh) * 2013-06-21 2014-03-26 华为技术有限公司 功率控制方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442795B (zh) * 2007-11-19 2012-06-06 中兴通讯股份有限公司 上行控制信道的功率控制方法
CN103370970B (zh) * 2010-11-03 2016-11-09 三星电子株式会社 具有载波聚合的下行链路的tdd系统中的harq-ack信息生成及harq-ack信号功率控制
US8582518B2 (en) * 2010-11-09 2013-11-12 Telefonaktiebolaget L M Ericsson (Publ) Power control for ACK/NACK formats with carrier aggregation
CN102291812B (zh) * 2011-09-13 2014-12-03 电信科学技术研究院 上行功控参数配置及上行功控方法、系统和设备
CN103929800B (zh) * 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
CN104349443B (zh) * 2013-08-09 2019-02-12 电信科学技术研究院 一种上行功率控制方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080200196A1 (en) * 2007-02-19 2008-08-21 Tarik Muharemovic Transmission of prioritized information in the proximity of reference signals
CN103326809A (zh) * 2012-03-22 2013-09-25 中兴通讯股份有限公司 一种物理上行控制信道功率控制信令的通知方法及装置
CN103688580A (zh) * 2013-06-21 2014-03-26 华为技术有限公司 功率控制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4096107A4 (en) * 2020-01-21 2024-01-17 Zte Corp METHOD AND DEVICE FOR DETERMINING POWER CONTROL PARAMETERS AND STORAGE MEDIUM
CN113473607A (zh) * 2020-03-31 2021-10-01 大唐移动通信设备有限公司 Pucch传输方法、装置、终端、网络侧和存储介质
CN113473607B (zh) * 2020-03-31 2024-01-09 大唐移动通信设备有限公司 Pucch传输方法、装置、终端、网络侧和存储介质
TWI816093B (zh) * 2020-05-18 2023-09-21 大陸商大唐移動通信設備有限公司 一種確定和配置實體上行控制通道資源的方法、使用者終端、網路側設備、裝置及電腦程式介質

Also Published As

Publication number Publication date
CN110167126B (zh) 2020-07-03
CN110167126A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019157895A1 (zh) 一种多波束传输时pucch功率的控制方法及装置
US10959183B2 (en) Uplink power control method and apparatus
US11026179B2 (en) Power control method and apparatus
WO2019134100A1 (zh) 功率控制的方法、终端设备和网络设备
CN106851809B (zh) 确定功率的方法及用户设备
WO2018228504A1 (zh) 功率控制方法及装置
WO2013155914A1 (zh) 功控信息通知及功控方法和设备
CN108964851B (zh) 一种发送和接收指示信息的方法、设备和系统
CN113613322B (zh) 用于确定发射功率的方法和装置
WO2015007151A1 (zh) 一种ue的上行发射功率控制方法、装置、ue及基站
WO2019157975A1 (zh) 上行功率控制的方法和装置
WO2019080132A1 (zh) 传输数据的方法、终端设备和网络设备
CN104854925A (zh) 上行功率控制方法及装置
WO2013104261A1 (zh) 上行发送功率确定方法及用户设备
CN107613557B (zh) 一种发射功率确定方法、终端、网络设备和系统
WO2017177867A1 (zh) 通信设备、参考信号发送方法和信道估计方法
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
US10251135B2 (en) Method for controlling power of carrier signal, user equipment, and base station
EP3113552B1 (en) Method for controlling uplink power, user equipment, and base stations
WO2018232719A1 (zh) 无线通信方法和设备
WO2019214331A1 (zh) 一种发送pucch的方法、装置及可读存储介质
WO2018059419A1 (zh) 上行功率控制方法和装置
WO2023206237A1 (zh) 定时提前的指示方法、装置、设备及存储介质
WO2020199129A9 (en) Mechanism for transmitting background data in uplink
WO2017193332A1 (zh) 传输信号的方法、终端和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754047

Country of ref document: EP

Kind code of ref document: A1