WO2017177867A1 - 通信设备、参考信号发送方法和信道估计方法 - Google Patents

通信设备、参考信号发送方法和信道估计方法 Download PDF

Info

Publication number
WO2017177867A1
WO2017177867A1 PCT/CN2017/079793 CN2017079793W WO2017177867A1 WO 2017177867 A1 WO2017177867 A1 WO 2017177867A1 CN 2017079793 W CN2017079793 W CN 2017079793W WO 2017177867 A1 WO2017177867 A1 WO 2017177867A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
communication device
indication information
reference signal
power value
Prior art date
Application number
PCT/CN2017/079793
Other languages
English (en)
French (fr)
Inventor
武露
黄逸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017177867A1 publication Critical patent/WO2017177867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present invention relates to the field of wireless communications technologies, and in particular, to a communications device, a reference signal transmitting method, and a channel estimating method.
  • Massive MIMO Multiple Input Multiple Output
  • Massive MIMO technology uses large-scale antennas (such as hundreds of antennas) to enhance spectral efficiency in systems.
  • 5G 5th Generation
  • Massive MIMO technology may be adopted.
  • Second-level precoding is a research hotspot of Massive MIMO technology. It implements spatial dimension reduction through first-level precoding and multi-user interference suppression through second-level precoding.
  • the secondary precoding can reduce the implementation complexity and cost of the communication device by reducing the dimension.
  • CSI-RS channel state information-reference signal
  • LTE Long Term Evolution
  • R Frequency Division Duplexing
  • the user equipment measures and transmits the equivalent channel information to the base station based on the beamformed CSI-RS (Beamformed CSI-RS) sent by the base station after the first stage precoding, and the base station is further based on The received equivalent channel information performs second-level precoding and downlink data transmission when using MU-MIMO technology.
  • the second-stage precoding when the beam direction of the Beamformed CSI-RS transmitted by the base station on different ports is the same, for example, the same vertical direction is transmitted.
  • the beam then the equivalent channel of each port has a similar beam gain. Therefore, when the power is transmitted, the accuracy of the channel estimation obtained by the UE after receiving the CSI-RS on each port is similar.
  • the base station transmits different Beams of the Beamformed CSI-RS on different ports, for example, including three-dimensional (3 Dimension, 3D) beams in the horizontal direction and the vertical direction
  • the beam direction of the CSI-RS transmitted on each port is The deviations to the user's channel direction (eg, the direction of the primary path of multiple paths from the base station to the UE signal propagation) are different, and thus the beam gains of the equivalent channels of different ports may be different.
  • the transmit powers of the CSI-RSs transmitted on the respective ports are equal, and the beam directions of the CSI-RSs transmitted on the respective ports are different, the power of the useful signal received by the user equipment when estimating the equivalent channel of each port
  • the signal noise ratio (SNR) will be different, and the accuracy of the channel estimation result will be higher for a port with a larger SNR, and the accuracy of the channel estimation result will be higher for a port with a lower SNR. It is low, so the SNR difference on different ports may result in inconsistent accuracy of the channel estimation results obtained by the user equipment based on the CSI-RS transmitted on different ports.
  • the error of the channel estimation result obtained at these ports is larger.
  • the receiving device of the reference signal performs channel estimation according to the reference signal.
  • the accuracy of the channel estimation results on the obtained ports is inconsistent.
  • the embodiment of the invention provides a communication device, a reference signal sending method and a channel estimation method, which are used to solve the problem that the reference signal received by the beam is different when the beam direction of the reference signal transmitted on the plurality of antenna ports is different.
  • the problem of channel estimation results on each port is inconsistent.
  • an embodiment of the present invention provides a reference signal sending method, in which a first communications device sends a beamformed reference signal to a second communications device, and the second communications device performs a channel according to the received reference signal. estimate.
  • the first communication device determines, for each antenna port of the first communication device, the transmit power of the beam-formed reference signal sent to the second communication device on the antenna port according to the direction deviation of the antenna port. a value; where the direction deviation is a deviation between a beam direction of the reference signal transmitted on one antenna port and a channel direction of the second communication device;
  • the first communications device Transmitting, by the first communications device, the reference signal on the antenna port according to the determined transmit power value of the reference signal on the antenna port; and the first communications device to the second communications
  • the device sends the first indication information, where the first indication information is used to indicate: a numerical relationship between the transmit power values of the reference signals on the respective antenna ports of the first communications device;
  • the second communication device receives the beamformed reference signal from each of the antenna ports of the first communication device, and receives the first indication information from the first communication device;
  • the second communication device performs channel estimation according to the reference signal and the first indication information respectively received from each antenna port of the first communication device.
  • the first communication device determines the transmit power value of the reference signal at the antenna port according to the direction deviation of the antenna port when transmitting the beam-formed reference signal, so that the second communication device can receive the received information from each antenna port.
  • the SNRs of the reference signals are similar, such that the accuracy of the channel estimation results on the respective antenna ports are similar;
  • the transmit power of the reference signal on each antenna port is different.
  • the second communication device obtains the actual channel estimation result on one antenna port
  • the actual transmit power of the reference signal on the antenna port needs to be known. Therefore, the first communication device will First indication information indicating a numerical relationship between transmission power values of reference signals on respective antenna ports of the first communication device is sent to the second communication device, such that the second communication device can be based on the received antennas
  • the reference signal on the port and the first indication information obtain the actual channel estimation result.
  • the second communication device can obtain accurate channel estimation results of the respective antenna ports, and the accuracy of the channel estimation results of the respective antenna ports is relatively consistent.
  • the second communication device When the second communication device performs channel estimation, it may be implemented in one of a plurality of ways including the following two methods:
  • the second communication device performs channel estimation according to the reference signal received from the antenna port for each antenna port of the first communication device, to obtain a first channel estimation result value of the antenna port;
  • the second communication device adjusts the obtained first channel estimation result value of each antenna port of the first communication device according to the first indication information, to obtain each of the first communication devices.
  • the second channel estimation result value in the antenna port is the obtained first channel estimation result value of each antenna port of the first communication device according to the first indication information, to obtain each of the first communication devices.
  • the second communications device adjusts the channel estimation result value according to the first indication information to obtain an accurate channel estimation result.
  • the second communication device adjusts the reference signal on each of the received antenna ports of the first communication device according to the first indication information
  • the second communication device performs channel estimation according to the adjusted reference signal on the antenna port for each antenna port of the first communication device.
  • the second communication device adjusts the reference signal according to the first indication information, and performs channel estimation according to the adjusted reference signal, so that an accurate channel estimation result can also be obtained.
  • the first communication device determines the transmit power of the reference signal on each antenna port
  • various alternative implementations including the following methods may be employed:
  • the first communication device divides the antenna port into a plurality of antenna port groups, and the transmit power values of the reference signals on the antenna ports in one antenna port group are equal, and the first communication device respectively determines the reference signals corresponding to each antenna port group. Transmit power.
  • the first communication device may determine that the antenna ports of the first communication device belong to M antenna port groups, respectively, and the M is an integer not less than 2, and is smaller than the number of antenna ports of the first communication device. Sorting according to the direction deviation, the ordering of each antenna port belonging to the same antenna port group is continuous;
  • the reference signal satisfies between transmit power values on respective antenna ports of the first communication device:
  • the reference signal has the same transmit power value on each antenna port belonging to the same antenna port group; the greater the deviation of the direction of the antenna port in the antenna port group between different antenna port groups, the reference signal is at the antenna The higher the transmit power value on the antenna port in the port group.
  • the number of information bits of the first indication information can be reduced, but the accuracy is not high.
  • the first communications device determines a transmit power value of the reference signal on each antenna port of the first communications device. It is satisfied that the larger the direction deviation of the antenna port, the larger the transmission power value of the reference signal on the antenna port.
  • the direction deviation is the deviation between the beam direction of the reference signal transmitted on one antenna port and the channel direction of the terminal device; the larger the direction deviation of one antenna port, the channel estimation of the channel estimation by the terminal device according to the reference signal on the antenna port
  • the larger the error of the result the smaller the precision.
  • the first communication device For a power determination manner in which the value of the reference signal is larger, the power transmission value of the reference signal is larger, in an optional implementation manner, the first communication device according to the beam gain of the reference signal on the antenna port, Determining a transmit power value of the reference signal on the antenna port; wherein a beam gain of the reference signal on one antenna port, a beam transmitted by the reference signal in a channel direction of the second communication device Power gain.
  • the larger the direction deviation the smaller the beam gain of the beam transmitted by the reference signal on the antenna port in the channel direction of the terminal device, and the transmission of the reference signal on the antenna port according to the beam gain of the reference signal on one antenna port.
  • the power value can achieve the purpose that the above-mentioned direction deviation is larger, and the transmission power of the reference signal on the antenna port is larger.
  • the first communication device is configured to each antenna in the antenna port group according to the reference signal. An average of beam gains on the port, determining a transmit power value of the reference signal on each of the antenna port groups;
  • the beam gain of the reference signal on one antenna port is the power gain of the beam transmitted by the reference signal in the channel direction of the second communication device.
  • the first indication information sent by the first communications device includes: S-1 second indication information, in an optional implementation manner, where the first communications device determines the sending power value.
  • the S is the number of the antenna ports of the first communication device, which is an integer not less than 2, and the second indication information corresponds to one antenna port of the first communication device;
  • the second indication information is used to indicate: a first ratio of a transmit power value of the reference signal on an antenna port corresponding to the second indication information to a transmit power value on a reference antenna port;
  • the reference antenna port is an antenna port of the first communications device, and is configured to provide a reference value of the reference signal sending power value for other antenna ports of the first communications device;
  • the second communication device may adjust the channel estimation result to the first channel of the antenna port for each antenna port of the first communication device. And a value obtained by dividing the square root of the first ratio indicated by the second indication information corresponding to the antenna port;
  • the second communication device when adjusting the reference signal, may receive the received antenna port on the antenna port for each antenna port of the first communication device. And dividing the reference signal by a value after the square root of the first ratio indicated by the second indication information corresponding to the antenna port.
  • the second indication information includes: M-1 third indication information, in an optional implementation manner, where the first communications device determines the sending power value.
  • the M is smaller than the number of antenna ports of the first communication device, the antenna ports of the first communication device belong to M antenna port groups, and the M is an integer not less than 2; one third indication information Corresponding to one of the M antenna port groups, the reference signal has the same transmit power value on each of the antenna ports of the group of antenna ports;
  • the third indication information is used to indicate: a transmit power value of the reference signal on each antenna port in the antenna port group corresponding to the third indication information, and the reference signal in the reference antenna port group a second ratio of transmit power values on an antenna port;
  • the reference antenna port group is one of the M antenna port groups, and is used to provide a reference value of the reference signal transmission power value for an antenna port in another antenna port group of the first communication device.
  • the second communication device may adjust the channel estimation result to the first channel of the antenna port for each antenna port of the first communication device.
  • the estimated result value is divided by the square root of the second ratio indicated by the third indication information corresponding to the antenna port group to which the antenna port belongs.
  • the second communication device when adjusting the reference signal, may receive the received antenna port on the antenna port for each antenna port of the first communication device. And dividing the reference signal by the second ratio indicated by the third indication information corresponding to the antenna port group to which the antenna port belongs The value after the square root.
  • the first communications device sends fourth indication information to the second communications device;
  • the fourth indication information is used to indicate: a sending power value of data sent by the first communications device to the second communications device and a third sending power value of the reference signal on the reference antenna port ratio;
  • the second communication device determines, according to the received fourth indication information, a transmit power value of data sent by the first communications device to the second communications device.
  • the first communications device sends the fifth indication information to the second communications device;
  • the fifth indication information is used to indicate that a sending power value of data sent by the first communications device to the second communications device and the reference signal are on an antenna port of the reference antenna port group a fourth ratio of the transmitted power value;
  • the second communication device determines, according to the fifth indication information, a transmit power value of data sent by the first communications device to the second communications device.
  • a method is provided for the second communication device to determine a transmit power value of data transmitted by the first communication device.
  • an embodiment of the present invention provides a first communications device, where the first communications device has a function of implementing behavior of the first communications device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the first communication device includes a processor and a transmitter, and the processor is configured to support the first communication device to perform a corresponding function in the foregoing method.
  • the transmitter is configured to support the first communication device to send the message or data involved in the foregoing method to the second communication device.
  • the first communication device may further include a receiver, configured to receive from the second communication device. The message or data involved in the above method.
  • the first communication device can also include a memory for coupling with a processor that retains program instructions and data necessary for the first communication device.
  • an embodiment of the present invention provides a second communications device, where the second communications device has a function of implementing behavior of the second communications device in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the second communications device includes a receiver configured to support the second communications device to receive the message or data involved in the foregoing method from the first communications device; the first transmitter And for supporting the second communication device to send the message or data involved in the foregoing method to the first communication device; optionally, the second communication device further includes a processor configured to support the first communication device to perform the foregoing method The corresponding function.
  • the second communication device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the second communication device.
  • an embodiment of the present invention provides a wireless communication system, where the wireless communication system includes the second communication device and the first communication device according to any one of the first to third aspects.
  • an embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use by the first communications device of any of the first to fourth aspects, including The procedures involved in the above aspects.
  • the embodiment of the present invention provides a computer storage medium, configured to store computer software instructions for use in the second communication device of any of the first to fourth aspects, including The above aspects The procedures involved.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a channel estimation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a beamformed reference signal transmitted at multiple antenna ports according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a first communications device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of the first communication device shown in FIG. 4 in an optional implementation manner
  • FIG. 6 is a schematic structural diagram of a second communications device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of the second communication device shown in FIG. 6 in an optional implementation manner.
  • system and “network” are often used interchangeably in embodiments of the invention.
  • the term “and/or” in the embodiment of the present invention is merely an association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist simultaneously. There are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the first communication device determines, according to the direction deviation of the antenna port, the transmit power value of the beam-formed reference signal sent to the second communication device on the antenna port for each antenna port of the antenna device.
  • the direction deviation is the deviation between the beam direction of the reference signal transmitted on one antenna port and the channel direction of the second communication device.
  • the first communication device Transmitting, by the first communication device, a reference signal on a transmit power value of the determined reference signal on the antenna port on each of the antenna ports; and the first communication device transmitting the first indication information to the second communication device, the first indication information For indicating a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device.
  • the second communication device respectively receives the beamformed reference signal from each antenna port of the first communication device; the second communication device receives the first indication information from the first communication device.
  • the second communication device performs channel estimation based on the first indication information and the reference signals respectively received from each of the antenna ports of the first communication device.
  • the first communication device determines the transmit power value of the reference signal at the antenna port according to the direction deviation of the antenna port when transmitting the beam-formed reference signal, so that the second communication device can receive the received information from each antenna port.
  • the SNRs of the reference signals are similar, such that the accuracy of the channel estimation results on the respective antenna ports are similar;
  • the transmit power of the reference signal on each antenna port is different.
  • the second communication device obtains the actual channel estimation result on one antenna port
  • the actual transmit power of the reference signal on the antenna port needs to be known. Therefore, the first communication device will Means indicating that a reference signal is between transmit power values on respective antenna ports of the first communication device
  • the first indication information of the numerical relationship is sent to the second communication device, so that the second communication device can obtain the actual channel estimation result according to the received reference signal on each antenna port and the first indication information.
  • the second communication device can obtain accurate channel estimation results of the respective antenna ports, and the channel estimation results of the respective antenna ports are more accurate.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention. As shown in FIG. 1, the wireless communication system includes: a first communication device 101 and a second communication device 102, where
  • a first communication device 101 configured to send a beamformed reference signal on multiple antenna ports
  • the second communication device 102 is configured to receive the reference signal sent on the multiple antenna ports, and perform channel estimation according to the received reference signal.
  • the communication system used for communication between the first communication device 101 and the second communication device 102 includes, but is not limited to, Global System of Mobile communication (GSM), code division. Code Division Multiple Access (CDMA) IS-95, Code Division Multiple Access (CDMA) 2000, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), broadband Wideband Code Division Multiple Access (WCDMA), Time Division Duplexing-Long Term Evolution (TDD LTE), Frequency Division Duplexing-Long Term Evolution (FDD) LTE), Long Term Evolution-Advanced (LTE-advanced), Personal Handy-phone System (PHS), Wireless Fidelity (WiFi) specified by the 802.11 series of protocols, Global Microwave Worldwide Interoperability for Microwave Access (WiMAX), and future evolution Various wireless communication systems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wide
  • the first communication device 101 is a network device
  • the second communication device 102 is a terminal device
  • the reference signal is a downlink reference signal
  • the channel estimation is a downlink channel estimation
  • the first communication device 101 is a terminal device, and the second communication device 102 is a network device.
  • the reference signal is an uplink reference signal
  • the channel estimation is an uplink channel estimation
  • the first communication device 101 and the second communication device 102 are both network devices;
  • the first communication device 101 and the second communication device 102 are both terminal devices.
  • the terminal device in the above description may be a wireless terminal, which may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a Remote Terminal.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the network device in the above description may include a base station, or a radio resource management device for controlling the base station, or include a base a station and a radio resource management device for controlling a base station; wherein the base station may be a macro station or a small station, such as a small cell, a pico cell, etc., and the base station may also be a home base station, such as a home node. B (Home NodeB, HNB), Home eNodeB (HeNB), etc., the base station may also include a relay node or the like.
  • the foregoing network device in the wireless communication system shown in FIG. 1 may be an evolved Node B (eNodeB), and the foregoing terminal device may be a UE;
  • the SCDMA system or the WCDMA system the network device may include: a Node B (NodeB) and/or a Radio Network Controller (RNC), the terminal device may be a UE;
  • the network device may include a base station a base transceiver station (BTS) and/or a base station controller (BSC), the terminal device is a mobile station (MS);
  • the network device may include: an access point ( Access Point (AP) and/or Access Controller (AC).
  • the above terminal device can be a station (STAtion, STA).
  • FIG. 2 shows a flow diagram of interaction between the first communication device 101 and the second communication device 102. As shown in Figure 2, the process includes the following steps:
  • the first communication device 101 determines, for each antenna port of the UE, a transmit power value of the beamformed reference signal transmitted to the second communications device 102 on the antenna port according to the direction deviation of the antenna port.
  • the direction deviation is a deviation between a beam direction of the reference signal transmitted on one antenna port and a channel direction of the second communication device 102;
  • S202 The first communications device 101 determines first indication information.
  • the first indication information is used to indicate a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device 101.
  • the first communications device 101 sends a reference signal to each antenna port according to the transmit power value on each antenna port determined in step S201.
  • the first communications device 101 sends the first indication information to the second communications device 102.
  • the first communication device 101 performs data transmission to the first communication device 101 through the antenna port of the first communication device 101 according to the result of the channel estimation received from the second communication device 102.
  • step S202 may be performed first, then step S203 may be performed first, or step S203 may be performed first, then step S202 may be performed; or two steps may be performed simultaneously.
  • the first communication device 101 determines, for each antenna port of its own, a transmit power value of the beamformed reference signal transmitted to the second communication device 102 on the antenna port.
  • the first communication device 101 determines the implementation of the transmission power value of the reference signal.
  • the following manners and two modes are taken as an example for description.
  • the first communication device 101 sets the transmission power of the reference signal to each of its own antenna ports.
  • the first communication device 101 can be pre-negotiated with the second communication device 102, or in accordance with the second communication device 102.
  • the antenna port of the first communication device 101 is divided into a plurality of antenna port groups as defined in the protocol followed.
  • a set of antenna ports is defined as a reference antenna port group by a preset or through a related protocol.
  • the transmit power values of the reference signals on the respective antenna ports in one antenna port group are equal, and the first communication device 101 sets the transmit power of the reference signal on the antenna port for each antenna port group.
  • the first communication device 101 can determine the transmit power value of the reference signal on the antenna port according to the beam gain on one antenna port.
  • the beam gain refers to the power gain of the beam transmitted by the reference signal on the antenna port in the channel direction of the second communication device 102.
  • the reference signal transmitted by the first communication device 101 to the second communication device 102 on one antenna port is also typically transmitted to the second communication device 102 over a plurality of paths.
  • the above channel direction generally refers to a primary path among a plurality of paths on which the attenuation of the reference signal is minimal.
  • the first communication device 101 is a base station
  • the second communication device 102 is a terminal device.
  • the final precoding matrix F after the second precoding can be as shown in the following formula 1:
  • the first precoding matrix C is a matrix of N rows and S columns, S and N are positive integers, and S is smaller than N.
  • the first level precoding matrix C is used to implement spatial compression, and the S column vectors of C represent S beam directions, which point to the direction of S primary users within the service range.
  • the transmit beam when the first communication device 101 transmits the reference signal on each antenna port is a 3D beam including horizontal and vertical directions.
  • the first level precoding matrix C may be determined based on the spatially relevant information of the second communication device 102 based on the maximum capacity criterion.
  • the second-stage precoding matrix W is determined based on the equivalent channel after spatial compression of the first-stage precoding matrix C, and can be obtained by using a conventional channel precoding method, such as a zero-forcing algorithm.
  • the base station implements channel measurement of the above-mentioned equivalent channel by the terminal device by transmitting a beamformed reference signal (for example, CSI-RS) on each antenna port.
  • a beamformed reference signal for example, CSI-RS
  • the base station transmits the reference signal on the S antenna ports after the spatial compression.
  • the base station can separately transmit the reference signals on its own N antenna ports.
  • the beam sent on each antenna port is a beam obtained according to the first-stage precoding matrix C, that is, the beams on the antenna ports of the S antenna ports respectively correspond to the first, second, ... of the first-stage precoding matrix C.
  • the number of the S antenna ports is: 15, 16, ... S+14, and each antenna port is referred to as "port 15, port 16, ..., portS + 14".
  • the following describes the method for setting the reference signal transmission power value of the base station in two modes.
  • the base station sets the transmit power values of the CSI-RSs on the antenna ports port 15 , port 16 , . . . , port S+14 respectively: p 0 , p 1 , . . . , p S-1 , as shown in FIG. 3 .
  • the channel direction vector of the terminal device is v;
  • the channel direction vector v may take the feature vector corresponding to the maximum eigenvalue of the channel spatial correlation matrix between the base station and the terminal device, or may be the array response vector corresponding to the Angle of Departure (AOD).
  • AOD Angle of Departure
  • H denotes transposition
  • denotes the Frobenius norm
  • ⁇ i denotes the beam gain on porti
  • the direction deviation is the deviation between the beam direction of the reference signal transmitted on one antenna port and the channel direction of the terminal device; the larger the direction deviation, the beam transmitted by the reference signal on the antenna port is at the terminal device
  • the CSI-RS with a relatively large angle between the beam direction and the channel direction of the terminal device, and the channel estimation result obtained at the port when the terminal device performs channel estimation based on the CSI-RS transmitted on the port The error will be even greater.
  • the larger the deviation of the direction of one antenna port the larger the error of the channel estimation result of the channel estimation by the terminal device according to the reference signal on the antenna port, the smaller the precision, and the greater the deviation of the reference signal in these directions by increasing the reference signal.
  • the transmission power on the antenna port can cause the second communication device 102 to reduce the error of the channel estimation based on the reference signals on the antenna ports, and the accuracy is improved.
  • the first communication device 101 sets the transmission power value of the reference signal for each antenna port group.
  • S antenna ports are divided into M groups.
  • S can be divisible by M, and the number of antenna ports included in each antenna port group is equal.
  • the device 101 sets the reference signal to have the same transmit power value on these antenna ports, and the transmit power value on each antenna port is qj .
  • the transmit power values of the reference signals corresponding to the M antenna port groups are respectively: q 0 , . . . , q M-1 .
  • each antenna port is separately set to the transmit power value, that is, square Formula one.
  • the channel direction vector of the terminal device is v;
  • the array response vector v may take the feature vector corresponding to the maximum eigenvalue of the channel spatial correlation matrix between the base station and the terminal device, or may be the array response vector corresponding to the Angle of Departure (AOD).
  • AOD Angle of Departure
  • the transmission power value of the reference signal is determined according to the direction deviation of the antenna port, so as to ensure that the accuracy of the channel estimation obtained by the second communication device 102 on each antenna port is similar.
  • the transmission power values are respectively set, the transmission power values of the reference signals on different antenna ports may be different, and the second communication device 102 needs to know the reference if it is to accurately know the relationship between the channel states of the respective antenna ports.
  • the first communication device 101 transmits the first indication information in step S202 to indicate a numerical relationship between the transmission power values on the respective antenna ports.
  • step S202 will be described in detail.
  • S202 The first communication device 101 determines the first indication information.
  • the second communication device 102 needs to feed back the channel information of each antenna port, and is used to indicate the channel state of each antenna port, so that the first communication device 101 goes to the second through each antenna port.
  • the communication device 102 can adopt a suitable data transmission manner for different antenna ports according to the channel state of different antenna ports, such as Modulation and Coding Scheme (MCS), to obtain maximum data transmission. effectiveness.
  • MCS Modulation and Coding Scheme
  • the first communication device 101 can notify the second communication device 102 of the numerical relationship between the transmission power values of the reference signals on the respective antenna ports, so that the second communication device 102 can be based on the reference signals received on the respective antenna ports and The above numerical relationship accurately knows the relationship between the channel states of the respective antenna ports.
  • the first communications device 101 sends the first indication information to the second communications device 102, where the first indication information is used to indicate:
  • the first communication device 101 in step S201, two different manners of determining the transmission power value of the reference signal, the first communication device 101 also has two different manners when transmitting the first indication information, respectively:
  • the first mode corresponds to the mode one in step S201;
  • the second mode corresponds to the second mode in step S201.
  • the first indication information includes: S-1 second indication information, and one second indication information corresponds to one antenna port of the first communication device.
  • a second indication information configured to indicate: a first ratio of a transmit power value of the reference signal on the antenna port corresponding to the second indication information to a transmit power value on the reference antenna port;
  • the reference antenna port is an antenna port of the first communication device 101 for providing a reference value of the reference signal transmission power value for the other antenna ports of the first communication device 101.
  • the first communication device 101 and the second communication device 102 may pre-negotiate the reference antenna port, or specify which one of the plurality of antenna ports is the reference antenna in a protocol commonly followed by the first communication device 101 and the second communication device 102 port.
  • the antenna ports of the base station are: port 15 , port 16 , ..., port S+14 ; the reference antenna port is port 15 ;
  • the first indication information includes: S-1 second indication information: ⁇ 1 , ⁇ 2 , . . . , ⁇ S-1 , respectively corresponding to antenna ports port 16 , . . . , port S+14 , respectively for indicating
  • S-1 second indication information ⁇ 1 , ⁇ 2 , . . . , ⁇ S-1 , respectively corresponding to antenna ports port 16 , . . . , port S+14 , respectively for indicating
  • Equation 4 The first ratio between p 1 ,...,p S-1 and p0 is shown in Equation 4 below:
  • the first indication information includes: M-1 third indication information; and one third indication information corresponds to one of the M antenna port groups;
  • the third indication information is used to indicate: a transmit power value of the reference signal on one of the antenna port groups corresponding to the third indication information and a transmit power value of the reference signal on one of the reference antenna port groups Second ratio
  • the reference antenna port group is one of the M antenna port groups, and is used to provide a reference value of the reference signal transmission power value for the antenna ports in the other antenna port groups of the M antenna port groups.
  • the first communication device 101 and the second communication device 102 may pre-negotiate the reference antenna port group, or specify which of the plurality of antenna port groups, which one of the plurality of antenna port groups, in a protocol commonly followed by the first communication device 101 and the second communication device 102 Refer to the antenna port group.
  • the antenna port group where the port number 15 is located is the reference signal group, and the transmission power value of each reference signal in the reference signal group is q 0 , and the terminal device is instructed to indicate each antenna port in the remaining antenna port groups.
  • the transmission power value of the upper reference signal and the second ratio ⁇ 1 to ⁇ M-1 of q 0 are as shown in the following formula 5:
  • the first communication device 101 uses the first ratio between the transmit power value of the reference signal on the other antenna port and the transmit power value on the reference antenna port as the first indication information.
  • the second communication device 102 can learn the transmit power value of the reference signal on each antenna port of the first communication device 101 according to a first ratio between the transmit power values of the reference signals between the other antenna ports and the reference antenna port.
  • the first communication device 101 sends a reference signal at each antenna port according to the transmit power value on each antenna port determined in step S201.
  • the first communication device 101 sends the first indication information to the second communication device 102.
  • the first communication device 101 may send the first indication information by using high layer signaling, such as Radio Resource Control (RRC) signaling; or
  • RRC Radio Resource Control
  • the first communication device 101 may also send the first indication information by using physical layer signaling, such as Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first communication device 101 needs to send the first indication information of the S-1 bit to the second communication device 102.
  • the first communication device 101 The first indication information of the M-1 bit needs to be transmitted to the second communication device 102.
  • the second communication device 102 receives the first indication information sent by the first communication device 101.
  • the second communication device 102 performs channel estimation on each antenna port of the first communication device 101 according to the reference signal received from the antenna port, to obtain a first channel estimation result value of the antenna port;
  • the second communication device 102 adjusts the obtained first channel estimation result value of each antenna port of the first communication device 101 according to the first indication information, to obtain a second channel in each antenna port of the first communication device 101. Estimate the result value.
  • the second communication device 102 adjusts the reference signal on each antenna port of the received first communication device 101 according to the first indication information
  • the second communication device 102 performs channel estimation for each antenna port of the first communication device 101 according to the adjusted received power value of the reference signal on the antenna port.
  • the first indication information includes: S-1 pieces of second indication information.
  • the first channel estimation result value of the antenna port may be divided by the antenna port for each antenna port of the first communication device 101.
  • the value after the square root of the first ratio indicated by the second indication information obtains the second channel estimation result value.
  • the first communication device 101 is a base station
  • the second communication device 102 is a terminal device.
  • the terminal device determines, for each antenna port of the base station, a first channel estimation result value of the antenna port according to a reference signal received from the antenna port (a method for using a currently existing channel estimation), and the first of the S antenna ports
  • the channel estimation result value constitutes an equivalent channel h of Sx1 (S row 1 column), and the terminal device adjusts h according to the S-1 first ratios ⁇ 1 to ⁇ S-1 to restore the actual equivalent channel.
  • Equation 6 As shown in Equation 6 below:
  • the first indication information includes: M-1 third indication information
  • the first channel estimation result value of the antenna port may be divided by the antenna port group to which the antenna port belongs for each antenna port of the first communication device 101.
  • the value of the second ratio value indicated by the corresponding third indication information is square rooted to obtain a second channel estimation result value.
  • the first communication device 101 is a base station
  • the second communication device 102 is a terminal device.
  • the terminal device determines, for each antenna port of the base station, a first channel estimation result value of the antenna port according to a reference signal received from the antenna port (a method for using a currently existing channel estimation), and the first of the S antenna ports
  • the channel estimation result value constitutes an equivalent channel h of Sx1 (S row 1 column), and the terminal device adjusts h according to M-1 second ratio values ⁇ 1 ⁇ ⁇ M-1 to restore the actual equivalent channel.
  • formula seven As shown in the following formula seven:
  • the first indication information includes: S-1 pieces of second indication information.
  • the received information may be received for each antenna port of the first communication device 101.
  • the reference signal on the antenna port is divided by the value after the square root of the first ratio indicated by the second indication information corresponding to the antenna port.
  • the second communication device 102 uses the current channel estimation method to determine the channel estimation result of each antenna port by using the adjusted reference signal.
  • the first indication information includes: M-1 third indication information
  • the second communication device 102 may adjust for each antenna port of the first communication device 101 when the received power value of the reference signal on each antenna port of the received first communication device 101 is adjusted according to the first indication information. And dividing the received reference signal on the antenna port by a square root value of the second ratio indicated by the third indication information corresponding to the antenna port group to which the antenna port belongs.
  • the second communication device 102 uses the current channel estimation method to determine the channel estimation result of each antenna port by using the adjusted reference signal.
  • the second communication device 102 may select an optimal rank, a Precoding Matrix Indication (PMI), and a channel quality indicator (CQI: Channel Quality) based on the obtained channel estimation result values for the multiple antenna ports. Indication) is sent to the first communication device and sent to the first communication device 101 as a result of channel estimation.
  • PMI Precoding Matrix Indication
  • CQI Channel Quality indicator
  • the first communication device 101 performs data transmission to the first communication device 101 through the plurality of antenna ports of the first communication device 101 according to the result of the channel estimation received from the second communication device 102.
  • This step may refer to a method in which a base station performs downlink data transmission on multiple antenna ports.
  • the first communication device 101 can also indicate to the second communication device 102 the transmission power value of the data.
  • the first communication device 101 may send the fourth indication information to the second communication device 102, and the fourth indication information is used to indicate that the first communication device 101 sends the data to the second communication device 102.
  • the first communication device 101 may send the fifth indication information to the second communication device 102, and the fifth indication information is used to indicate: the data sent by the first communication device 101 to the second communication device 102.
  • the first communication device 101 is a base station
  • the second communication device 102 is a terminal device
  • the reference antenna port is p15 or the reference antenna port group is an antenna port group where p15 is located.
  • the data is carried on a Physical Downlink Shared CHannel (PDSCH), and the reference signal is a CSI-RS.
  • PDSCH Physical Downlink Shared CHannel
  • the first communication device 101 may set the type of power control before performing the above S201:
  • the power setting is performed on each antenna port by using the method provided by the embodiment of the present invention.
  • the first communication device 101 can indicate the type of power control described above to the second communication device 102 through higher layer signaling, such as RRC signaling.
  • the second communication device 102 performs channel estimation based on the reference signal in accordance with the method specified in the current protocol.
  • the second communication device 102 can perform channel estimation according to the reference signal according to the method provided by the embodiment of the present application.
  • the first communication device 101 is a base station, and the second communication device 102 is a terminal device.
  • the first communication device 101 may also be a terminal device, and the second communication device 102 Is based Station and so on.
  • the embodiment of the present invention may be employed to improve the accuracy of the channel estimation.
  • FIG. 4 is a schematic structural diagram of a first communications device according to an embodiment of the present invention. As shown, the device includes:
  • the processing module 401 is configured to determine, according to a direction deviation of the antenna port, a transmit power value of a beam-formed reference signal sent to the second communications device on the antenna port, according to a direction deviation of the antenna port;
  • the direction deviation is: a deviation between a beam direction of the reference signal transmitted on one antenna port and a channel direction of the second communication device;
  • the sending module 402 is configured to send, at each antenna port of the first communications device, a reference signal according to a transmit power value of the determined reference signal on the antenna port;
  • the sending module 402 is further configured to send the first indication information to the second communications device.
  • the first indication information is used to indicate a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device.
  • processing module 401 is specifically configured to:
  • processing module 401 is specifically configured to:
  • the beam gain of the reference signal on one antenna port is the power gain of the beam transmitted by the reference signal in the channel direction of the second communication device.
  • the first indication information includes: S-1 second indication information;
  • S is the number of antenna ports of the first communication device, is an integer not less than 2, and a second indication information corresponds to one antenna port of the first communication device;
  • a second indication information configured to indicate: a first ratio of a transmit power value of the reference signal on the antenna port corresponding to the second indication information to a transmit power value on the reference antenna port;
  • the reference antenna port is an antenna port of the first communication device for providing a reference value of the reference signal transmission power value for the other antenna ports of the first communication device.
  • the sending module 402 is further configured to send fourth indication information to the second communications device.
  • the fourth indication information is used to indicate that the first communication device sends the third ratio of the transmission power value of the data to the second transmission device and the transmission power value of the reference signal on the reference antenna port.
  • the processing module 401 is further configured to: before determining the transmit power value of the reference signal on one antenna port, determine that the antenna ports of the first communications device belong to the M antenna port groups respectively, where M is an integer not less than 2, And smaller than the number of antenna ports of the first communication device; sorted by direction deviation, the order of each antenna port belonging to the same antenna port group is continuous;
  • the processing module 401 is specifically configured to: determine that the reference signal meets between the transmit power values of the antenna ports of the first communications device:
  • the reference signals have equal transmit power values on the respective antenna ports belonging to the same antenna port group;
  • the direction deviation of the antenna port in the antenna port group is larger, and the transmission power value of the reference signal on the antenna port in the antenna port group is larger.
  • processing module 401 is specifically configured to:
  • the beam gain of the reference signal on one antenna port is the power gain of the beam transmitted by the reference signal in the channel direction of the second communication device.
  • the first indication information includes: M-1 third indication information; and one third indication information corresponds to one of the M antenna port groups;
  • the third indication information is used to indicate: a transmit power value of the reference signal on one of the antenna port groups corresponding to the third indication information and a transmit power value of the reference signal on one of the reference antenna port groups Second ratio
  • the reference antenna port group is one of the M antenna port groups, and is used to provide a reference value of the reference signal transmission power value for the antenna ports in the other antenna port groups of the M antenna port groups.
  • the sending module 402 is further configured to: send the fifth indication information to the second communications device;
  • a fifth indication information configured to indicate: a fourth ratio of a transmit power value of the data sent by the first communications device to the second communications device to a transmit power value of the reference signal on one of the reference antenna port groups.
  • the other optional implementation manners of the first communication device may refer to the foregoing implementation of the first communication device 101, where the processing module 401 may be used to implement a processing operation of the first communication device 101, and the sending module 402 may be used to implement the first communication device. 101 send operation.
  • the first communications device may further include a receiving module, configured to receive channel estimation results and other information and/or data sent by the second communications device.
  • the first communication device may further include a network interface module, configured to communicate with other network devices.
  • FIG. 5 is a schematic structural diagram of the first communication device shown in FIG. 4 in an optional implementation manner. As shown, the device includes:
  • the processor 501 is configured to determine, according to a direction deviation of the antenna port, a transmit power value of a beam-formed reference signal sent to the second communications device on the antenna port, according to a direction deviation of the antenna port;
  • the direction deviation is: a deviation between a beam direction of the reference signal transmitted on one antenna port and a channel direction of the second communication device;
  • the transmitter 502 is configured to send, at each antenna port of the first communications device, a reference signal according to a transmit power value of the determined reference signal on the antenna port;
  • the transmitter 502 is further configured to send the first indication information to the second communications device.
  • the first indication information is used to indicate a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device.
  • the processor 501 can be used to implement the operation of the processing module 401
  • the transmitter 502 can be used to implement the operation of the sending module 402
  • the signal sent by the transmitter 502 can be sent out through one or more antennas included in the first communications device.
  • a receiver may be further configured to implement operation of a receiving module included in the first communications device, where the receiver may receive a channel estimate sent by the second communications device by using one or more antennas included in the first communications device Results, as well as other information and/or data.
  • the first communications device is a network device
  • the first communications device may further include a network interface, where the network interface is configured to implement operation of the network interface module, that is, used by the first communications device to communicate with other network devices. .
  • FIG. 6 is a schematic structural diagram of a second communications device according to an embodiment of the present invention. As shown, the device includes:
  • the receiving module 601 is configured to separately receive a beamformed reference from each antenna port of the first communications device. And receiving the first indication information from the first communication device;
  • the first indication information is used to indicate a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device;
  • the processing module 602 is configured to perform channel estimation according to the reference signal received by the receiving module 601 from each antenna port of the first communications device and the first indication information.
  • processing module 602 is specifically configured to:
  • the second communication device adjusts the first channel estimation result value of each antenna port of the obtained first communication device according to the first indication information, to obtain a second channel estimation result value in each antenna port of the first communication device. .
  • the first indication information includes: S-1 second indication information;
  • S is the number of antenna ports of the first communication device, is an integer not less than 2, and a second indication information corresponds to one antenna port of the first communication device;
  • the second indication information is used to indicate: a first ratio of a transmit power value of the reference signal on the antenna port corresponding to the second indication information and a transmit power value of the reference signal on the reference antenna port;
  • the reference antenna port is an antenna port of the first communication device, and is used to provide a reference value of the reference signal transmission power value for the other antenna ports of the first communication device;
  • the processing module 602 is specifically configured to:
  • the first channel estimation result value of the antenna port is divided by the value after the square root of the first ratio indicated by the second indication information corresponding to the antenna port.
  • the first indication information includes: M-1 third indication information;
  • M is smaller than the number of antenna ports of the first communication device, the antenna ports of the first communication device belong to M antenna port groups, respectively, and M is an integer not less than 2; a third indication information corresponds to one of the M antenna port groups Group, the reference signal has the same transmit power value on each antenna port in a group of antenna port groups;
  • the third indication information is used to indicate: a transmit power value of the reference signal on each of the antenna port groups corresponding to the third indication information and a transmit power value of the reference signal on one of the reference antenna port groups Second ratio;
  • the reference antenna port group is one of the M antenna port groups for providing a reference value of the reference signal transmission power value for the antenna port in the other antenna port group of the first communication device;
  • the processing module 602 is specifically configured to:
  • the first channel estimation result value of the antenna port is divided by the value after the square root of the second ratio indicated by the third indication information corresponding to the antenna port group to which the antenna port belongs.
  • processing module 602 is specifically configured to:
  • channel estimation is performed according to the adjusted reference signal on the antenna port.
  • the first indication information includes: S-1 second indication information;
  • S is the number of antenna ports of the first communication device, is an integer not less than 2, and a second indication information corresponds to one antenna port of the first communication device;
  • the second indication information is used to indicate: a first ratio of a transmit power value of the reference signal on the antenna port corresponding to the second indication information and a transmit power value of the reference signal on the reference antenna port;
  • the reference antenna port is an antenna port of the first communication device, and is used to provide a reference value of the reference signal transmission power value for the other antenna ports of the first communication device;
  • the processing module 602 is specifically configured to:
  • the reference signal on the antenna port received by the receiving module 601 is divided by the square root of the first ratio indicated by the second indication information corresponding to the antenna port.
  • the first indication information includes: M-1 third indication information;
  • M is smaller than the number of antenna ports of the first communication device, the antenna ports of the first communication device belong to M antenna port groups, respectively, and M is an integer not less than 2; a third indication information corresponds to one of the M antenna port groups Group, the reference signal has the same transmit power value on each antenna port in a group of antenna port groups;
  • the third indication information is used to indicate: a transmit power value of the reference signal on each of the antenna port groups corresponding to the third indication information and a transmit power value of the reference signal on one of the reference antenna port groups Second ratio;
  • the reference antenna port group is one of the M antenna port groups for providing a reference value of the reference signal transmission power value for the antenna port in the other antenna port group of the first communication device;
  • the processing module 602 is specifically configured to:
  • the reference signal on the antenna port received by the receiving module 601 is divided by the second ratio indicated by the third indication information corresponding to the antenna port group to which the antenna port belongs. The value.
  • the receiving module 601 is further configured to receive fourth indication information from the first communications device.
  • a fourth indication information configured to indicate: a third ratio of a transmit power value of the data sent by the first communications device to the second communications device and a transmit power value of the reference signal on the reference antenna port;
  • the processing module 602 is further configured to determine, according to the fourth indication information, a transmit power value of data sent by the first communications device to the second communications device.
  • the receiving module 601 is further configured to:
  • a fifth indication information configured to indicate: a fourth ratio of a transmit power value of the data sent by the first communications device to the second communications device to a transmit power value of the reference signal on one of the reference antenna port groups;
  • the processing module 602 is further configured to determine, according to the fifth indication information, a transmit power value of data sent by the first communications device to the second communications device.
  • the second communication device may further comprise a transmitting module, a channel estimation result for transmitting to the first communication device, and other information and/or data.
  • the second communication device may further include a network interface module, configured to communicate with other network devices.
  • FIG. 7 is a schematic structural diagram of the second communication device shown in FIG. 6 in an optional implementation manner. As shown, the device includes:
  • a receiver 701 configured to receive a beamformed reference signal from each antenna port of the first communication device And receiving the first indication information from the first communication device;
  • the first indication information is used to indicate a numerical relationship between the transmission power values of the reference signals on the respective antenna ports of the first communication device;
  • the processor 702 is configured to perform channel estimation according to the reference signal received by the receiver 701 from each antenna port of the first communication device and the first indication information.
  • the processor 702 can be used to implement the operation of the processing module 602, and the receiver 701 can be used to implement the operation of the receiving module 601.
  • the receiver can receive the first communication device by using one or more antennas included in the second communication device. Instructions, as well as other information and/or data.
  • a transmitter may be further included to implement a sending operation of the sending module in the second communications device. The signal transmitted by the transmitter can be transmitted through one or more antennas included in the first communication device.
  • the second communication device is a network device
  • the second communication device may further include a network interface, where the network interface is used to implement operation of the network interface module, that is, used by the second communication device to communicate with other network devices. .
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

涉及无线通信技术领域,尤其涉及通信设备、参考信号发送方法和信道估计方法。第一通信设备包括:处理模块,用于根据天线端口的方向偏差,确定波束赋形后的参考信号在该天线端口上的发送功率值;发送模块,用于按照确定的发送功率值发送参考信号,以及发送用于指示参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系的第一指示信息。第一通信设备按照天线端口的方向偏差确定参考信号在该天线端口的发送功率值,保证第二通信设备从各个天线端口上收到的参考信号的信噪比SNR相近,从而使得各个天线端口上的信道估计结果精度相近;第二通信设备根据接收到的各个天线端口上的参考信号和第一指示信息获得实际的信道估计结果。

Description

通信设备、参考信号发送方法和信道估计方法
本申请要求在2016年04月11日提交中国专利局、申请号为201610223357.5、申请名称为“通信设备、参考信号发送方法和信道估计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种通信设备、参考信号发送方法和信道估计方法。
背景技术
大规模多入多出(Massive Multiple Input Multiple Output,Massive MIMO)技术中,使用大规模天线(比如:数以百计的天线)以提升频谱效率系统中。比如:未来的第五代(5th Generation,5G)移动通信系统中就可能采用Massive MIMO技术。二级预编码是Massive MIMO技术的一个研究热点,通过第一级预编码实现空间降维,通过第二级预编码实现多用户干扰抑制。二级预编码通过降维可以减少通信设备的实现复杂度和成本。
此外,目前长期演进(Long Term Evolution,LTE)版本(Release,R)13标准支持的信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)端口(port)数量最大为16,要支持频分复用(Frequency Division Duplexing,FDD)LTE系统中的大规模天线的信道信息的测量,也需要使用二级预编码。其中,用户设备(User Equipment,UE)基于基站在第一级预编码之后发送的波束赋形后的CSI-RS(Beamformed CSI-RS)来测量和向基站反馈等价的信道信息,基站再基于接收到的等价信道信息进行第二级预编码和采用MU-MIMO技术时的下行数据发送。
无论是未来5G移动通信系统,还是R13规定的LTE系统,若采用二级预编码,当基站在不同的port上发送的Beamformed CSI-RS的波束方向相同的情况下,比如均发送相同的垂直方向的波束,则各个port的等价信道具有相似的波束增益。因此,等功率发送时,UE在收到各port上的CSI-RS后进行信道估计得到的信道估计的结果的精度相似。
但是,当基站在不同的port上发送的Beamformed CSI-RS的发送波束不同,比如:包括水平方向和垂直方向的三维(3 Dimension,3D)波束,各个port上发送的CSI-RS的波束方向与到用户的信道方向(比如:基站到UE信号传播中多个路径的主路径的方向)之间的偏差不同,因此不同port的等价信道的波束增益可能不同。
若在各个port上发送的CSI-RS的发送功率相等,而各个port上发送的CSI-RS的波束方向不同,则用户设备对各port的等价信道进行估计时,接收到的有用信号的功率会不同,从而信噪比(Signal Noise Ratio,SNR)会不同,对于SNR较大的port,信道估计的结果的精度会较高,而对于SNR较低的port,信道估计的结果的精度会较低,因此不同port上的SNR不同会导致用户设备基于不同port上发送的CSI-RS进行信道估计得到的信道估计的结果的精度不一致。尤其对于波束方向与用户的信道方向之间的偏差比较大的CSI-RS,UE基于这些port上发送的CSI-RS进行信道估计时,在这些port上得到的信道估计结果的误差会更大。
综上,波束赋形后的参考信号在多个天线端口上发送的波束方向不同的情况下,若各个端口上的参考信号的发送功率相等,则参考信号的接收设备根据参考信号进行信道估计时,得到的各个端口上的信道估计结果精度不一致。
发明内容
本发明实施例提供一种通信设备、参考信号发送方法和信道估计方法,用以解决波束赋形后的参考信号在多个天线端口上发送的波束方向不同的情况下,参考信号的接收设备得到的各个端口上的信道估计结果精度不一致的问题。
第一方面,本发明实施例提供一种参考信号发送方法,该方法中,第一通信设备向第二通信设备发送波束赋形后的参考信号,第二通信设备根据接收到的参考信号进行信道估计。
其中,第一通信设备针对所述第一通信设备的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值;这里,所述方向偏差为所述参考信号在一个天线端口上发送的波束方向与所述第二通信设备的信道方向之间的偏差;
所述第一通信设备在每一个天线端口上,按照确定的所述参考信号在该天线端口上的发送功率值,发送所述参考信号;并且,所述第一通信设备向所述第二通信设备发送第一指示信息;所述第一指示信息用于指示:所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系;
第二通信设备从第一通信设备的每一个天线端口上分别接收波束赋形后的参考信号,并从所述第一通信设备接收第一指示信息;
所述第二通信设备根据从所述第一通信设备的每一个天线端口上分别接收到的所述参考信号以及所述第一指示信息进行信道估计。
其中,第一通信设备在发送波束赋形后的参考信号时,按照天线端口的方向偏差确定参考信号在该天线端口的发送功率值,这样能够保证第二通信设备从各个天线端口上收到的参考信号的SNR相近,从而使得各个天线端口上的信道估计结果的精度相近;
此外,各个天线端口上参考信号的发送功率不同,第二通信设备要获得一个天线端口上实际的信道估计结果时,需要获知该天线端口上参考信号的实际发射功率,因此,第一通信设备将用于指示参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系的第一指示信息发给第二通信设备,这样第二通信设备可根据接收到的各个天线端口上的参考信号以及第一指示信息获得实际的信道估计结果。
这样,第二通信设备可获得各个天线端口的准确的信道估计结果,且各个天线端口的信道估计结果的精度较一致。
第二通信设备进行信道估计时,可采用包括下列两种方式在内的多种方式之一实现:
方式一
所述第二通信设备针对所述第一通信设备的每一个天线端口,根据从该天线端口上接收到的所述参考信号进行信道估计,得到该天线端口的第一信道估计结果值;
所述第二通信设备根据所述第一指示信息,对得到的所述第一通信设备的每一个天线端口的所述第一信道估计结果值进行调整,得到所述第一通信设备的每一个天线端口中的第二信道估计结果值。
方式一中,第二通信设备根据第一指示信息,对信道估计结果值进行调整,以得到精确的信道估计结果。
方式二
所述第二通信设备根据所述第一指示信息对接收到的所述第一通信设备的每一个天线端口上的所述参考信号进行调整;
所述第二通信设备针对所述第一通信设备的每一个天线端口,根据调整后的该天线端口上的所述参考信号进行信道估计。
方式二中,第二通信设备根据第一指示信息,对参考信号进行调整,再根据调整后的参考信号进行信道估计,也能够得到精确的信道估计结果。
第一通信设备在确定各个天线端口上的参考信号的发射功率时,可采用包括下列方式在内的多种可选实现方式:
方式一
第一通信设备针对每一个天线端口确定参考信号的发送功率值;
方式二
第一通信设备将天线端口分为多个天线端口组,一个天线端口组内的各天线端口上的参考信号的发送功率值相等,第一通信设备分别确定每个天线端口组对应的参考信号的发送功率。
其中,所述第一通信设备可确定所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数,且小于所述第一通信设备的天线端口的数量;按照所述方向偏差排序,属于同一个天线端口组的各个天线端口的排序连续;
所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:
所述参考信号在属于同一个天线端口组的各个天线端口上的发送功率值相等;不同天线端口组之间,天线端口组中天线端口的所述方向偏差越大,所述参考信号在该天线端口组中的天线端口上的发送功率值越大。
方式二与方式一相比,可减少第一指示信息的信息比特数,但精度没有方式一高。
对于第一通信设备确定发射功率值的方式一,在一种可选的实现方式中,所述第一通信设备确定所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:天线端口的方向偏差越大,所述参考信号该天线端口上的发送功率值越大。
方向偏差为参考信号在一个天线端口上发送的波束方向与终端设备的信道方向之间的偏差;一个天线端口的方向偏差越大,终端设备根据该天线端口上的参考信号进行信道估计的信道估计的结果的误差越大,精度越小,通过提高参考信号在这些方向偏差大的天线端口上的发送功率,可使得第二通信设备根据这些天线端口上的参考信号进行信道估计的结果误差变小,精度提高。
对于上述方向偏差越大,参考信号的发送功率值越大的功率确定方式,在一种可选的实现方式中,所述第一通信设备根据所述参考信号在该天线端口上的波束增益,确定所述参考信号在该天线端口上的发送功率值;其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
方向偏差越大,参考信号在该天线端口上发送的波束在终端设备的信道方向上的波束增益越小,根据参考信号在一个天线端口上的波束增益来确定参考信号在该天线端口上的发送功率值,可实现上述方向偏差越大,参考信号在天线端口上的发送功率越大的目的。
对于第一通信设备确定发射功率值的方式二,在一种可选的实现方式中,对于一个天线端口组,所述第一通信设备根据所述参考信号在该天线端口组中的每一个天线端口上的波束增益的平均值,确定所述参考信号在该天线端口组中的每一个天线端口上的发送功率值;
其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
对于第一通信设备确定发送功率值的方式一,在一种可选的实现方式中,第一通信设备发送的所述第一指示信息包括:S-1个第二指示信息;
所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
所述第二指示信息,用于指示:所述参考信号在所述第二指示信息所对应的天线端口上的发送功率值与在参考天线端口上的发送功率值的第一比值;
所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值;
若第二通信设备采用方式一进行信道估计,则第二通信设备在对信道估计结果进行调整时,可针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值,除以该天线端口对应的所述第二指示信息所指示的所述第一比值开平方根后的数值;
若第二通信设备采用方式二进行信道估计,则所述第二通信设备在对参考信号进行调整时,可针对所述第一通信设备的每一个天线端口,将接收到的该天线端口上的所述参考信号,除以该天线端口对应的所述第二指示信息所指示的所述第一比值的开平方根后的数值。
对于第一通信设备确定发送功率值的方式二,在一种可选的实现方式中,所述第一指示信息包括:M-1个第三指示信息;
所述M小于所述第一通信设备的天线端口的数量,所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数;一个所述第三指示信息对应于所述M个天线端口组中的一组,所述参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
所述参考天线端口组为所述M个天线端口组中的一个,用于为所述第一通信设备的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值。
若第二通信设备采用方式一进行信道估计,则第二通信设备在对信道估计结果进行调整时,可针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开平方根后的数值。
若第二通信设备采用方式二进行信道估计,则所述第二通信设备在对参考信号进行调整时,可针对所述第一通信设备的每一个天线端口,将接收到的该天线端口上的所述参考信号,除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开 平方根后的数值。
若所述第一指示信息包括:S-1个第二指示信息,则在一种可选的实现方式中,所述第一通信设备向所述第二通信设备发送第四指示信息;
所述第四指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口上的发送功率值的第三比值;
所述第二通信设备根据收到的所述第四指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
若所述第一指示信息包括:M-1个第三指示信息,则在一种可选的实现方式中,所述第一通信设备向所述第二通信设备发送第五指示信息;
所述第五指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口组中的一个天线端口上的发送功率值的第四比值;
所述第二通信设备根据所述第五指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
这里,提供了一种第二通信设备确定第一通信设备发送的数据的发送功率值的方法。
第二方面,本发明实施例提供一种第一通信设备,该第一通信设备具有实现上述方法中第一通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第一通信设备的结构中包括处理器和发送器,所述处理器被配置为支持第一通信设备执行上述方法中相应的功能。所述发送器用于支持第一通信设备向第二通信设备发送上述方法中所涉及的消息或数据,可选地,该第一通信设备还可包括接收器,用于从第二通信设备处接收上述方法中涉及的消息或数据。所述第一通信设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第一通信设备必要的程序指令和数据。
第三方面,本发明实施例提供一种第二通信设备,该第二通信设备具有实现上述方法中第二通信设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方案中,该第二通信设备的结构中包括接收器,用于支持第二通信设备从第一通信设备处接收上述方法中所涉及的消息或数据;第一发送器,用于支持第二通信设备向第一通信设备发送上述方法中所涉及的消息或数据;可选地,该第二通信设备还包括处理器,被配置为支持第一通信设备执行上述方法中相应的功能。所述第二通信设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第二通信设备必要的程序指令和数据。
第四方面,本发明实施例提供了一种无线通信系统,该无线通信系统包括上述第一方面至第三方面任一方面所述第二通信设备和第一通信设备。
第五方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的第一通信设备所用的计算机软件指令,其包含用于执行上述方面所涉及的程序。
第六方面,本发明实施例提供了一种计算机存储介质,用于储存为上述第一方面至第四方面的任一方面所述的第二通信设备所用的计算机软件指令,其包含用于执行上述方面 所涉及的程序。
附图说明
图1为本发明实施例提供的无线通信系统的结构示意图;
图2为本发明实施例提供的一种信道估计方法的流程图;
图3为本发明实施例中,波束赋形后的参考信号在多个天线端口发送的示意图;
图4为本发明实施例提供的一种第一通信设备的结构示意图;
图5为图4所示的第一通信设备在一种可选实现方式下的结构示意图;
图6为本发明实施例提供的一种第二通信设备的结构示意图;
图7为图6所示的第二通信设备在一种可选实现方式下的结构示意图。
具体实施方式
为了更好地理解本发明实施例的上述目的、方案和优势,下文提供了详细描述。该详细描述通过使用框图、流程图等附图和/或示例,阐明了装置和/或方法的各种实施方式。在这些框图、流程图和/或示例中,包含一个或多个功能和/或操作。本领域技术人员将理解到:这些框图、流程图或示例内的各个功能和/或操作,能够通过各种各样的硬件、软件、固件单独或共同实施,或者通过硬件、软件和固件的任意组合实施。
术语“系统”和“网络”在本发明实施例中常被可互换使用。本发明实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明实施例中,第一通信设备针对自身的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值。该方向偏差为:参考信号在一个天线端口上发送的波束方向与第二通信设备的信道方向之间的偏差。
第一通信设备在每一个天线端口上,按照确定的参考信号在该天线端口上的发送功率值发送参考信号;以及第一通信设备向第二通信设备发送第一指示信息,该第一指示信息用于指示:参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系。
第二通信设备从第一通信设备的每一个天线端口上分别接收上述波束赋形后的参考信号;第二通信设备从第一通信设备接收上述第一指示信息。
第二通信设备根据第一指示信息以及从所述第一通信设备的每一个天线端口上分别接收到的所述参考信号进行信道估计。
其中,第一通信设备在发送波束赋形后的参考信号时,按照天线端口的方向偏差确定参考信号在该天线端口的发送功率值,这样能够保证第二通信设备从各个天线端口上收到的参考信号的SNR相近,从而使得各个天线端口上的信道估计结果的精度相近;
此外,各个天线端口上参考信号的发送功率不同,第二通信设备要获得一个天线端口上实际的信道估计结果时,需要获知该天线端口上参考信号的实际发射功率,因此,第一通信设备将用于指示参考信号在所述第一通信设备的各个天线端口上的发送功率值之间 的数值关系的第一指示信息发给第二通信设备,这样第二通信设备可根据接收到的各个天线端口上的参考信号以及第一指示信息获得实际的信道估计结果。
采用本发明实施例,第二通信设备可获得各个天线端口的准确的信道估计结果,且各个天线端口的信道估计结果的精度较一致。
下面,结合附图对本发明实施例进行详细说明。
图1示出了本发明实施例提供的无线通信系统的结构示意图。如图1所示,该无线通信系统包括:第一通信设备101和第二通信设备102,其中,
第一通信设备101,用于在多个天线端口上发送波束赋形后的参考信号;
第二通信设备102,用于接收上述多个天线端口上发送的参考信号,并根据接收的参考信号进行信道估计。
图1所示的无线通信系统中,第一通信设备101和第二通信设备102之间通信所采用的通信制式包括但不限于:全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX),以及未来演进的各种无线通信系统。
其中,可选地,第一通信设备101为网络设备,第二通信设备102为终端设备;此时,参考信号为下行参考信号,信道估计为下行信道估计;或者
第一通信设备101为终端设备,第二通信设备102为网络设备,此时,参考信号为上行参考信号,信道估计为上行信道估计;再或者
第一通信设备101和第二通信设备102均为网络设备;再或者
第一通信设备101和第二通信设备102均为终端设备。
上述描述中的终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户设备(User Equipment)。
上述描述中的网络设备可包括基站,或用于控制基站的无线资源管理设备,或包括基 站和用于控制基站的无线资源管理设备;其中基站可为宏站或小站,比如:小小区(small cell)、微小区(pico cell)等,基站也可为家庭基站,比如:家庭节点B(Home NodeB,HNB)、家庭演进节点B(Home eNodeB,HeNB)等,基站也可包括中继节点(relay)等。
比如:对于TDD LTE、FDD LTE或LTE-A等LTE系统,图1所示的无线通信系统中的上述网络设备可为演进节点B(evolved NodeB,eNodeB),上述终端设备可为UE;对于TD-SCDMA系统或WCDMA系统,上述网络设备可包括:节点B(NodeB)和/或无线网络控制器(Radio Network Controller,RNC),上述终端设备可为UE;对于GSM系统,上述网络设备可包括基站收发台(Base Transceiver Station,BTS)和/或基站控制器(Base Station Controller,BSC),上述终端设备为移动台(Mobile Station,MS);对于WiFi系统,上述网络设备可包括:接入点(Access Point,AP)和/或接入控制器(Access Controller,AC),上述终端设备可为站点(STAtion,STA)。
图2示出了第一通信设备101和第二通信设备102交互的流程图。如图2所示,该流程包括如下步骤:
S201:第一通信设备101针对自身的每一个天线端口,根据该天线端口的方向偏差,确定向第二通信设备102发送的波束赋形后的参考信号在该天线端口上的发送功率值;
其中,方向偏差为参考信号在一个天线端口上发送的波束方向与第二通信设备102的信道方向之间的偏差;
S202:第一通信设备101确定第一指示信息;
该第一指示信息用于指示:参考信号在所述第一通信设备101的各个天线端口上的发送功率值之间的数值关系。
S203:第一通信设备101按照步骤S201中确定的各个天线端口上的发送功率值,在各个天线端口发送参考信号;
S204:第一通信设备101向第二通信设备102发送第一指示信息;
S205:第二通信设备102在从第一通信设备101的每一个天线端口上分别接收波束赋形后的参考信号后,根据从各个天线端口上接收的参考信号,以及收到的上述第一指示信息进行信道估计。
S206:第二通信设备102向第一通信设备101反馈信道估计的结果;
S207:第一通信设备101根据从第二通信设备102收到的信道估计的结果,通过第一通信设备101的天线端口向第一通信设备101进行数据发送。
其中,步骤S202和步骤S203之间的先后不做限定,可以先执行步骤S202,后执行步骤S203,或先执行步骤S203,再执行步骤S202;或者两个步骤同时执行。
下面,对上述各步骤进行详细说明。
S201:第一通信设备101针对自身的每一个天线端口,确定向第二通信设备102发送的波束赋形后的参考信号在该天线端口上的发送功率值。
第一通信设备101确定参考信号的发送功率值的实现方式有多种,本发明实施例中,以下面的方式一和方式二为例加以说明。
方式一
第一通信设备101分别对自身的每一个天线端口设置参考信号的发送功率。
方式二
第一通信设备101可与第二通信设备102预先协商,或者按照与第二通信设备102均 遵循的协议中的定义,将第一通信设备101的天线端口分为多个天线端口组。并预先设定或通过相关协议定义一组天线端口为参考天线端口组。
参考信号在一个天线端口组中的各天线端口上的发送功率值相等,第一通信设备101分别针对每一个天线端口组,设置参考信号在天线端口上的发送功率。
上述两种方式中,第一通信设备101可根据一个天线端口上的波束增益确定参考信号在该天线端口上的发送功率值。
其中,波束增益是指:参考信号在该天线端口上发送的波束在第二通信设备102的信道方向上的功率增益。
由于无线通信系统中的多径效应,一个通信设备发给另一个通信设备的信号通常在多个路径上传输。因此,第一通信设备101在一个天线端口上发送给第二通信设备102的参考信号通常也是通过多个路径发送至第二通信设备102。上述信道方向通常是指多个路径中的主路径,在该路径上,参考信号的衰减最小。
以前述的二级预编码为例,第一通信设备101为基站,第二通信设备102为终端设备。
假设基站的端口数为N,采用二级预编码时,经过二级预编码后的最终的预编码矩阵F可如由下面的公式一所示:
F=CW        公式一
其中,第一级预编码矩阵C是N行S列的矩阵,S、N为正整数,S小于N。
第一级预编码矩阵C用于实现空间压缩,C的S个列向量表示S个波束方向,它们指向了服务范围内的S个主要用户的方向。第一通信设备101在各个天线端口上发送参考信号时的发送波束是包括水平和垂直方向在内的3D波束。第一级预编码矩阵C可基于最大容量准则,根据第二通信设备102的空间相关信息来确定。
第二级预编码矩阵W是基于第一级预编码矩阵C进行空间压缩后的等价信道来确定的,可采用传统的信道预编码的方法得到,比如:迫零算法等。
基站通过在各个天线端口上发送波束赋形后的参考信号(比如:CSI-RS),实现终端设备对上述等价信道的信道测量。
这里,由于采用了二级预编码,基站是在空间压缩后的S个天线端口上发送参考信号。
对于没有采用二级预编码的情形,基站可在自身的N个天线端口上分别发送参考信号。
其中,各个天线端口上发送的波束是根据第一级预编码矩阵C得到的波束,即S个天线端口上各个天线端口上的波束分别对应第一级预编码矩阵C的第1,2,…S列。
假设这S个天线端口的编号从15开始,则这S个天线端口的编号依次为:15,16,…S+14,将各个天线端口称为“port15、port16,…,portS+14”。
假设:CSI-RS在S个天线端口上的总的发送功率值为P。
下面分别说明两种方式下基站设置参考信号发送功率值的方法。
方式一、
基站分别设置天线端口port15、port16,…,portS+14上CSI-RS的发送功率值为:p0、p1,…,pS-1,如图3所示。
终端设备的信道方向向量为v;
C(:,i+1)表示第一级预编码矩阵C的第i+1列即porti上的发送波束向量,i为整数,i=0,1,…S-1;
信道方向向量v可以取基站和终端设备之间的信道空间相关矩阵的最大特征值对应的特征向量,也可以是离开角(Angle of Departure,AOD)对应的阵列响应向量。
porti上的波束增益越大,参考信号在porti上的发送功率越小,由下面的公式二可计算得到:
Figure PCTCN2017079793-appb-000001
其中,
Figure PCTCN2017079793-appb-000002
H表示取转置,||  ||表示求Frobenius范数,αi表示porti上的波束增益,方向偏差越大,αi越小,因此pi越小。
如前所述,方向偏差为参考信号在一个天线端口上发送的波束方向与终端设备的信道方向之间的偏差;方向偏差越大,则参考信号在该天线端口上发送的波束在终端设备的信道方向上的波束增益越小,根据上述公式二,波束增益越小,则参考信号在天线端口上的发送功率越大,因此实现了上述方向偏差越大,参考信号在天线端口上的发送功率越大的目的。
如前所述,波束方向与终端设备的信道方向之间的角度比较大的CSI-RS,终端设备基于这些port上发送的CSI-RS进行信道估计时,在这些port上得到的信道估计结果的误差会更大。
因此可得知,一个天线端口的方向偏差越大,终端设备根据该天线端口上的参考信号进行信道估计的信道估计的结果的误差越大,精度越小,通过提高参考信号在这些方向偏差大的天线端口上的发送功率,可使得第二通信设备102根据这些天线端口上的参考信号进行信道估计的结果误差变小,精度提高。
一个天线端口的方向偏差越大,该天线端口上发送的参考信号的发送功率值越大,这样就能够实现各个天线端口对应的信道估计的结果精度趋于一致。
方式二、
方式二中,第一通信设备101分别针对每一个天线端口组,设置参考信号的发送功率值。
假设S个天线端口共分为M组,这里,假设S可以被M整除,各天线端口组中包括的天线端口的数量相等。
假设编号为jS/M+15,...,(j+1)S/M+14的天线端口属于同一个天线端口组,j=0,1,...,M-1,第一通信设备101设置参考信号在这些天线端口上的发送功率值相同,在每一个天线端口上的发送功率值为qj。M个天线端口组分别对应的参考信号的发送功率值为:q0,...,qM-1
其中,1<M≤S。当M=S时,每一个天线端口分别进行发送功率值的设置,即为方 式一。
终端设备的信道方向向量为v;
C(:,i+1)表示第一级预编码矩阵C的第i+1列即porti上的发送波束向量,i为整数,i=0,1,…S-1;
阵列响应向量v可以取基站和终端设备之间的信道空间相关矩阵的最大特征值对应的特征向量,也可以是离开角(Angle of Departure,AOD)对应的阵列响应向量。
编号为jS/M+15~(j+1)S/M+14的port中每一个port上的发送功率值均为qj,可根据这些port上的波束增益的平均值得到,如之间的关系成反比,由下面的公式三所示:
Figure PCTCN2017079793-appb-000003
其中,
Figure PCTCN2017079793-appb-000004
通过上述步骤S201,实现了按照天线端口的方向偏差确定参考信号的发送功率值,这样可尽量保证第二通信设备102在各个天线端口上获得的信道估计的结果精度相近。
但是,由于分别设置了发送功率值,因此参考信号在不同的天线端口上的发送功率值可能不同,第二通信设备102若要准确获知各个天线端口的信道状态之间的关系,则需要知道参考信号在各个天线端口上的发送功率值之间的数值关系。
第一通信设备101就是通过步骤S202发送第一指示信息来指示各个天线端口上的发送功率值之间的数值关系。下面,详细介绍步骤S202。
S202:第一通信设备101确定第一指示信息。
通常,第二通信设备102在对各个天线端口进行信道估计后,需要反馈各个天线端口的信道信息,用于指示各个天线端口的信道状态,这样第一通信设备101在通过各个天线端口向第二通信设备102进行数据发送时,才能够根据不同天线端口的信道状态,针对不同的天线端口采用适合的数据发送方式,比如:调制编码方案(Modulation and Coding Scheme,MCS),以获得最大的数据传输效率。
可选地,第一通信设备101可通知第二通信设备102各个天线端口上参考信号的发送功率值之间的数值关系,这样,第二通信设备102才能基于各个天线端口上接收的参考信号以及上述数值关系,准确获知各个天线端口的信道状态之间的关系。
可选地,第一通信设备101向第二通信设备102发送第一指示信息,该第一指示信息用于指示:
参考信号在第一通信设备101的各个天线端口上的发送功率值之间的数值关系。
按照第一通信设备101在步骤S201中,确定参考信号的发送功率值的两种不同的方式,第一通信设备101在发送第一指示信息时也有两种不同的方式,分别为:
方式一,对应于步骤S201中的方式一;
方式二,对应于步骤S201中的方式二。
下面分别加以介绍。
方式一
第一指示信息包括:S-1个第二指示信息,一个第二指示信息对应于第一通信设备的一个天线端口。
第二指示信息,用于指示:参考信号在第二指示信息所对应的天线端口上的发送功率值与在参考天线端口上的发送功率值的第一比值;
参考天线端口为第一通信设备101的一个天线端口,用于为第一通信设备101的其他天线端口提供参考信号发送功率值的参考值。
第一通信设备101和第二通信设备102可预先协商参考天线端口,或在第一通信设备101和第二通信设备102共同遵守的协议中规定多个天线端口中,哪一个天线端口为参考天线端口。
仍以前述的二级预编码为例,基站的天线端口分别为:port15、port16,…,portS+14;参考天线端口为port15
则第一指示信息包括:S-1个第二指示信息:τ1,τ2,...,τS-1,分别对应于天线端口port16,…,portS+14,分别用于指示p1,…,pS-1与p0之间的第一比值,如下面的公式四所示:
Figure PCTCN2017079793-appb-000005
方式二
第一指示信息包括:M-1个第三指示信息;一个第三指示信息对应于M个天线端口组中的一组;
第三指示信息,用于指示:参考信号在第三指示信息对应的天线端口组中的一个天线端口上的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
其中,参考天线端口组为M个天线端口组中的一个,用于为M个天线端口组中的其他天线端口组中的天线端口提供参考信号发送功率值的参考值。
第一通信设备101和第二通信设备102可预先协商参考天线端口组,或在第一通信设备101和第二通信设备102共同遵守的协议中规定多个天线端口组中,哪一个天线端口组为参考天线端口组。
假设编号为15的port所在的天线端口组为参考信号组,参考信号组中的每一个参考信号的发送功率值均为q0,确定并向终端设备指示其余天线端口组中的每一个天线端口上参考信号的发送功率值与q0的第二比值ρ1~ρM-1,如下面的公式五所示:
Figure PCTCN2017079793-appb-000006
第一通信设备101将参考信号在其他天线端口上的发送功率值与在参考天线端口上的发送功率值之间的第一比值作为第一指示信息。
这样,第二通信设备102可根据其他天线端口与参考天线端口之间的参考信号的发送功率值之间的第一比值,获知参考信号在第一通信设备101的各个天线端口上的发送功率值之间的数值关系。
S203:第一通信设备101按照步骤S201中确定的各个天线端口上的发送功率值,在各个天线端口发送参考信号。
S204:第一通信设备101向第二通信设备102发送第一指示信息。
其中,第一通信设备101可通过高层信令,比如无线资源控制(Radio Resource Control,RRC)信令发送第一指示信息;或者
第一通信设备101也可通过物理层信令,比如:下行控制指示(Downlink Control Information,DCI)发送第一指示信息。
无论是高层信令,还是物理层信令,对于上述方式一,第一通信设备101需向第二通信设备102发送S-1比特的第一指示信息;对于上述方式二,第一通信设备101需向第二通信设备102发送M-1比特的第一指示信息。
第二通信设备102接收第一通信设备101发送的第一指示信息。
S205:第二通信设备102在从第一通信设备101的每一个天线端口上分别接收波束赋形后的参考信号后,根据从各个天线端口上接收的参考信号,以及收到的上述第一指示信息进行信道估计。
第二通信设备102进行信道估计中,可采用包括下列两种方式在内的多种方式:
方式A
第二通信设备102针对第一通信设备101的每一个天线端口,根据从该天线端口上接收到的参考信号进行信道估计,得到该天线端口的第一信道估计结果值;
第二通信设备102根据第一指示信息,对得到的第一通信设备101的每一个天线端口的第一信道估计结果值进行调整,得到第一通信设备101的每一个天线端口中的第二信道估计结果值。
方式B
第二通信设备102根据第一指示信息对接收到的第一通信设备101的每一个天线端口上的参考信号进行调整;
第二通信设备102针对第一通信设备101的每一个天线端口,根据调整后的该天线端口上的参考信号的接收功率值进行信道估计。
下面分别对方式A和方式B加以说明。
方式A
若采用上述步骤S201中的发送功率值设置的方式一,以及步骤S202中确定第一指示信息的方式一,即第一指示信息包括:S-1个第二指示信息。
第二通信设备102在对第一信道估计结果值进行调整时,可针对第一通信设备101的每一个天线端口,可将该天线端口的第一信道估计结果值,除以该天线端口对应的第二指示信息所指示的第一比值开平方根后的数值,得到第二信道估计结果值。
仍以前述的二级预编码为例,第一通信设备101为基站,第二通信设备102为终端设备。
终端设备针对基站的每一个天线端口,根据从该天线端口接收的参考信号确定该天线端口的第一信道估计结果值(可采用目前已有的信道估计的方法),S个天线端口的第一信道估计结果值组成Sx1(S行1列)等价信道h,终端设备根据S-1个第一比值τ1~τS-1,对h进行调整,恢复实际等价信道
Figure PCTCN2017079793-appb-000007
如下面的公式六所示:
Figure PCTCN2017079793-appb-000008
若采用上述步骤S201中的发送功率值设置的方式二,以及步骤S202中确定第一指示信息的方式二,即第一指示信息包括:M-1个第三指示信息;
第二通信设备102在对第一信道估计结果值进行调整时,可针对第一通信设备101的每一个天线端口,将该天线端口的第一信道估计结果值除以该天线端口所属天线端口组对应的第三指示信息所指示的第二比值开平方根后的数值,得到第二信道估计结果值。
仍以前述的二级预编码为例,第一通信设备101为基站,第二通信设备102为终端设备。
终端设备针对基站的每一个天线端口,根据从该天线端口接收的参考信号确定该天线端口的第一信道估计结果值(可采用目前已有的信道估计的方法),S个天线端口的第一信道估计结果值组成Sx1(S行1列)等价信道h,终端设备根据M-1个第二比值ρ1~ρM-1,对h进行调整,恢复实际等价信道
Figure PCTCN2017079793-appb-000009
如下面的公式七所示:
Figure PCTCN2017079793-appb-000010
方式B
若采用上述步骤S201中的发送功率值设置的方式一,以及步骤S202中确定第一指示信息的方式一,即第一指示信息包括:S-1个第二指示信息。
第二通信设备102根据第一指示信息对接收到的第一通信设备101的每一个天线端口上的参考信号进行调整时,可针对第一通信设备101的每一个天线端口,将接收到的该天线端口上的参考信号,除以该天线端口对应的第二指示信息所指示的第一比值开平方根后的数值。
然后,第二通信设备102再采用目前信道估计的方法,利用调整后的参考信号确定每一个天线端口的信道估计结果。
若采用上述步骤S201中的发送功率值设置的方式二,以及步骤S202中确定第一指示信息的方式二,即第一指示信息包括:M-1个第三指示信息;
第二通信设备102在根据第一指示信息对接收到的第一通信设备101的每一个天线端口上的参考信号的接收功率值进行调整时,可针对第一通信设备101的每一个天线端口,将接收到的该天线端口上的参考信号,除以该天线端口所属天线端口组对应的第三指示信息所指示的第二比值开平方根后的数值。
然后,第二通信设备102再采用目前信道估计的方法,利用调整后的参考信号确定每一个天线端口的信道估计结果。
S206:第二通信设备102向第一通信设备101反馈信道估计的结果。
第二通信设备102可基于得到的针对所述多个天线端口的信道估计结果值,中,选择最优的秩、预编码矩阵指示(PMI:Precoding Matrix Indication)和信道质量指示(CQI:Channel Quality Indication)并发送给所述第一通信设备,作为信道估计的结果发给第一通信设备101。
S207:第一通信设备101根据从第二通信设备102收到的信道估计的结果,通过第一通信设备101的多个天线端口向第一通信设备101进行数据发送。
该步骤可参考目前基站在多个天线端口上进行下行数据发送的方法。
此外,第一通信设备101还可以向第二通信设备102指示数据的发送功率值。
比如:对于前述的方式一,第一通信设备101可向第二通信设备102发送第四指示信息;第四指示信息,用于指示:第一通信设备101向第二通信设备102发送数据的发送功率值与参考信号在参考天线端口上的发送功率值的第三比值。
再比如:对于前述的方式二,第一通信设备101可向第二通信设备102发送第五指示信息;第五指示信息,用于指示:第一通信设备101向第二通信设备102发送的数据的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第四比值。
以上述二级预编码为例,第一通信设备101为基站,第二通信设备102为终端设备,参考天线端口为p15或参考天线端口组为p15所在的天线端口组。
数据承载在物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)上,参考信号为CSI-RS。
以第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)技术规范(Technical Specification,TS)36.213(比如:版本号v12.7.0)的7.2.5节中定义的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)每个资源单元的能量(Energy Per Resource Element,EPRE和CSI-RS EPRE的比值Pc,修改为PDSCH EPRE和port 15 CSI-RS的EPRE的比值,即上述第四比值和第五比值。
此外,可在执行上述S201之前,第一通信设备101设置功率控制的类型:
类型一
以3GPP TS36.213 v12.7.0中的5.2节的规定为例,对于第一通信设备101的所有天线端口,采用相同的发送功率值发送参考信号;
类型二
采用本发明实施例提供的方法,对各个天线端口分别进行功率设置。
第一通信设备101可通过高层信令,比如RRC信令向第二通信设备102指示上述功率控制的类型。
若指示为类型一,则第二通信设备102按照目前协议中规定的方法,根据参考信号进行信道估计。
若指示为类型二,则第二通信设备102可按照本申请的实施例提供的方法,根据参考信号进行信道估计。
需要说明的是,上述部分描述中,以第一通信设备101为基站,第二通信设备102为终端设备为例,但实际上,第一通信设备101也可以是终端设备,第二通信设备102是基 站等等。只要是第一通信设备101在多个天线端口上发送参考信号,第二通信设备102接收参考信号进行信道估计,都可以采用本发明实施例,以提高信道估计的精度。
图4为本发明实施例提供的一种第一通信设备的结构示意图。如图所示,该设备包括:
处理模块401,用于针对第一通信设备的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值;
方向偏差为:参考信号在一个天线端口上发送的波束方向与第二通信设备的信道方向之间的偏差;
发送模块402,用于在第一通信设备的每一个天线端口上,按照确定的参考信号在该天线端口上的发送功率值,发送参考信号;
发送模块402,还用于向第二通信设备发送第一指示信息;
第一指示信息用于指示:参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系。
可选地,处理模块401具体用于:
确定参考信号在第一通信设备的各个天线端口上的发送功率值之间满足:
天线端口的方向偏差越大,参考信号该天线端口上的发送功率值越大。
可选地,处理模块401具体用于:
根据参考信号在该天线端口上的波束增益,确定参考信号在该天线端口上的发送功率值;
其中,参考信号在一个天线端口上的波束增益,为参考信号发送的波束在第二通信设备的信道方向上的功率增益。
可选地,第一指示信息包括:S-1个第二指示信息;
S为第一通信设备的天线端口的数量,为不小于2的整数,一个第二指示信息对应于第一通信设备的一个天线端口;
第二指示信息,用于指示:参考信号在第二指示信息所对应的天线端口上的发送功率值与在参考天线端口上的发送功率值的第一比值;
参考天线端口为第一通信设备的一个天线端口,用于为第一通信设备的其他天线端口提供参考信号发送功率值的参考值。
可选地,发送模块402,还用于向第二通信设备发送第四指示信息;
第四指示信息,用于指示:第一通信设备向第二通信设备发送数据的发送功率值与参考信号在参考天线端口上的发送功率值的第三比值。
可选地,处理模块401还用于:在确定参考信号在一个天线端口上的发送功率值之前,确定第一通信设备的天线端口分别属于M个天线端口组,M为不小于2的整数,且小于第一通信设备的天线端口的数量;按照方向偏差排序,属于同一个天线端口组的各个天线端口的排序连续;
处理模块401具体用于:确定参考信号在第一通信设备的各个天线端口上的发送功率值之间满足:
参考信号在属于同一个天线端口组的各个天线端口上的发送功率值相等;
不同天线端口组之间,天线端口组中天线端口的方向偏差越大,参考信号在该天线端口组中的天线端口上的发送功率值越大。
可选地,处理模块401具体用于:
对于一个天线端口组,根据参考信号在该天线端口组中的每一个天线端口上的波束增益的平均值,确定参考信号在该天线端口组中的每一个天线端口上的发送功率值;
其中,参考信号在一个天线端口上的波束增益,为参考信号发送的波束在第二通信设备的信道方向上的功率增益。
可选地,第一指示信息包括:M-1个第三指示信息;一个第三指示信息对应于M个天线端口组中的一组;
第三指示信息,用于指示:参考信号在第三指示信息对应的天线端口组中的一个天线端口上的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
其中,参考天线端口组为M个天线端口组中的一个,用于为M个天线端口组中的其他天线端口组中的天线端口提供参考信号发送功率值的参考值。
可选地,发送模块402还用于:向第二通信设备发送第五指示信息;
第五指示信息,用于指示:第一通信设备向第二通信设备发送的数据的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第四比值。
该第一通信设备的其他可选实现方式可参考前述的第一通信设备101的实现,其中,处理模块401可用于实现第一通信设备101的处理操作,发送模块402可用于实现第一通信设备101的发送操作。可选地,第一通信设备还可包括接收模块,用于接收第二通信设备发送的信道估计结果以及其他信息和/或数据。
可选地,若第一通信设备为网络设备,则该第一通信设备还可包括网络接口模块,用于与其他网络设备通信。
图5为图4所示的第一通信设备在一种可选实现方式下的结构示意图。如图所示,该设备包括:
处理器501,用于针对第一通信设备的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值;
方向偏差为:参考信号在一个天线端口上发送的波束方向与第二通信设备的信道方向之间的偏差;
发送器502,用于在第一通信设备的每一个天线端口上,按照确定的参考信号在该天线端口上的发送功率值,发送参考信号;
发送器502,还用于向第二通信设备发送第一指示信息;
第一指示信息用于指示:参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系。
其中,处理器501可用于实现处理模块401的操作,发送器502可用于实现发送模块402的操作,发送器502发送的信号可通过第一通信设备包括的一副或多副天线发送出去。可选地,还可包括接收器,用于实现第一通信设备包括的接收模块的操作,该接收器可通过第一通信设备包括的一副或多副天线接收第二通信设备发送的信道估计结果,以及其他信息和/或数据。可选地,若第一通信设备为网络设备,则该第一通信设备还可包括网络接口,该网络接口用于实现上述网络接口模块的操作,即用于第一通信设备与其他网络设备通信。
图6为本发明实施例提供的一种第二通信设备的结构示意图。如图所示,该设备包括:
接收模块601,用于从第一通信设备的每一个天线端口上分别接收波束赋形后的参考 信号;以及从第一通信设备接收第一指示信息;
第一指示信息用于指示:参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系;
处理模块602,用于根据接收模块601从第一通信设备的每一个天线端口上分别接收到的参考信号以及第一指示信息进行信道估计。
可选地,处理模块602具体用于:
针对第一通信设备的每一个天线端口,根据接收模块601从该天线端口上接收到的参考信号进行信道估计,得到该天线端口的第一信道估计结果值;
第二通信设备根据第一指示信息,对得到的第一通信设备的每一个天线端口的第一信道估计结果值进行调整,得到第一通信设备的每一个天线端口中的第二信道估计结果值。
可选地,第一指示信息包括:S-1个第二指示信息;
S为第一通信设备的天线端口的数量,为不小于2的整数,一个第二指示信息对应于第一通信设备的一个天线端口;
第二指示信息,用于指示:参考信号在第二指示信息对应的天线端口上的发送功率值与参考信号在参考天线端口上的发送功率值的第一比值;
参考天线端口为第一通信设备的一个天线端口,用于为第一通信设备的其他天线端口提供参考信号发送功率值的参考值;
处理模块602具体用于:
针对第一通信设备的每一个天线端口,将该天线端口的第一信道估计结果值,除以该天线端口对应的第二指示信息所指示的第一比值开平方根后的数值。
可选地,第一指示信息包括:M-1个第三指示信息;
M小于第一通信设备的天线端口的数量,第一通信设备的天线端口分别属于M个天线端口组,M为不小于2的整数;一个第三指示信息对应于M个天线端口组中的一组,参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
第三指示信息,用于指示:参考信号在第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
参考天线端口组为M个天线端口组中的一个,用于为第一通信设备的其他天线端口组中的天线端口提供参考信号发送功率值的参考值;
处理模块602具体用于:
针对第一通信设备的每一个天线端口,将该天线端口的第一信道估计结果值除以该天线端口所属天线端口组对应的第三指示信息所指示的第二比值开平方根后的数值。
可选地,处理模块602具体用于:
根据第一指示信息对接收模块601接收到的第一通信设备的每一个天线端口上的参考信号进行调整;
针对第一通信设备的每一个天线端口,根据调整后的该天线端口上的参考信号进行信道估计。
可选地,第一指示信息包括:S-1个第二指示信息;
S为第一通信设备的天线端口的数量,为不小于2的整数,一个第二指示信息对应于第一通信设备的一个天线端口;
第二指示信息,用于指示:参考信号在第二指示信息对应的天线端口上的发送功率值与参考信号在参考天线端口上的发送功率值的第一比值;
参考天线端口为第一通信设备的一个天线端口,用于为第一通信设备的其他天线端口提供参考信号发送功率值的参考值;
处理模块602具体用于:
针对第一通信设备的每一个天线端口,将接收模块601接收到的该天线端口上的参考信号,除以该天线端口对应的第二指示信息所指示的第一比值的开平方根后的数值。
可选地,第一指示信息包括:M-1个第三指示信息;
M小于第一通信设备的天线端口的数量,第一通信设备的天线端口分别属于M个天线端口组,M为不小于2的整数;一个第三指示信息对应于M个天线端口组中的一组,参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
第三指示信息,用于指示:参考信号在第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
参考天线端口组为M个天线端口组中的一个,用于为第一通信设备的其他天线端口组中的天线端口提供参考信号发送功率值的参考值;
处理模块602具体用于:
针对第一通信设备的每一个天线端口,将接收模块601接收到的该天线端口上的参考信号,除以该天线端口所属天线端口组对应的第三指示信息所指示的第二比值开平方根后的数值。
可选地,接收模块601,还用于从第一通信设备接收第四指示信息;
第四指示信息,用于指示:第一通信设备向第二通信设备发送的数据的发送功率值与参考信号在参考天线端口上的发送功率值的第三比值;
处理模块602,还用于根据第四指示信息,确定第一通信设备向第二通信设备发送的数据的发送功率值。
可选地,接收模块601,还用于:
从第一通信设备接收第五指示信息;
第五指示信息,用于指示:第一通信设备向第二通信设备发送的数据的发送功率值与参考信号在参考天线端口组中的一个天线端口上的发送功率值的第四比值;
处理模块602,还用于根据第五指示信息,确定第一通信设备向第二通信设备发送的数据的发送功率值。
该第二通信设备的其他可选实现方式可参考前述的第二通信设备102的实现,其中,处理模块602可用于实现第二通信设备102的处理操作,接收模块601可用于实现第二通信设备102的接收操作。可选地,第二通信设备还可包括发送模块,用于向第一通信设备发送的信道估计结果以及其他信息和/或数据。
可选地,若第二通信设备为网络设备,则该第二通信设备还可包括网络接口模块,用于与其他网络设备通信。
图7为图6所示的第二通信设备在一种可选实现方式下的结构示意图。如图所示,该设备包括:
接收器701,用于从第一通信设备的每一个天线端口上分别接收波束赋形后的参考信 号;以及从第一通信设备接收第一指示信息;
第一指示信息用于指示:参考信号在第一通信设备的各个天线端口上的发送功率值之间的数值关系;
处理器702,用于根据接收器701从第一通信设备的每一个天线端口上分别接收到的参考信号以及第一指示信息进行信道估计。
其中,处理器702可用于实现处理模块602的操作,接收器701可用于实现接收模块601的操作,该接收器可通过第二通信设备包括的一副或多副天线接收第一通信设备发送的指示信息,以及其他信息和/或数据。可选地,还可包括发送器,用于实现第二通信设备中发送模块的发送操作。发射器发送的信号可通过第一通信设备包括的一副或多副天线发送出去。可选地,若第二通信设备为网络设备,则该第二通信设备还可包括网络接口,该网络接口用于实现上述网络接口模块的操作,即用于第二通信设备与其他网络设备通信。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (36)

  1. 一种第一通信设备,其特征在于,包括:
    处理模块,用于针对所述第一通信设备的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值;
    所述方向偏差为:所述参考信号在一个天线端口上发送的波束方向与所述第二通信设备的信道方向之间的偏差;
    发送模块,用于在所述第一通信设备的每一个天线端口上,按照确定的所述参考信号在该天线端口上的发送功率值,发送所述参考信号;
    所述发送模块,还用于向所述第二通信设备发送第一指示信息;
    所述第一指示信息用于指示:所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系。
  2. 如权利要求1所述的设备,其特征在于,所述处理模块具体用于:
    确定所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:
    天线端口的方向偏差越大,所述参考信号该天线端口上的发送功率值越大。
  3. 如权利要求2所述的设备,其特征在于,所述处理模块具体用于:
    根据所述参考信号在该天线端口上的波束增益,确定所述参考信号在该天线端口上的发送功率值;
    其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
  4. 如权利要求2或3所述的设备,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息所对应的天线端口上的发送功率值与在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值。
  5. 如权利要求4所述的设备,其特征在于,所述发送模块,还用于向所述第二通信设备发送第四指示信息;
    所述第四指示信息,用于指示:所述第一通信设备向所述第二通信设备发送数据的发送功率值与所述参考信号在所述参考天线端口上的发送功率值的第三比值。
  6. 如权利要求1所述的设备,其特征在于,
    所述处理模块还用于:在确定所述参考信号在一个天线端口上的发送功率值之前,确定所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数,且小于所述第一通信设备的天线端口的数量;按照所述方向偏差排序,属于同一个天线端口组的各个天线端口的排序连续;
    所述处理模块具体用于:确定所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:
    所述参考信号在属于同一个天线端口组的各个天线端口上的发送功率值相等;
    不同天线端口组之间,天线端口组中天线端口的所述方向偏差越大,所述参考信号在该天线端口组中的天线端口上的发送功率值越大。
  7. 如权利要求6所述的设备,其特征在于,所述处理模块具体用于:
    对于一个天线端口组,根据所述参考信号在该天线端口组中的每一个天线端口上的波束增益的平均值,确定所述参考信号在该天线端口组中的每一个天线端口上的发送功率值;
    其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
  8. 如权利要求6或7所述的设备,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;一个所述第三指示信息对应于所述M个天线端口组中的一组;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    其中,所述参考天线端口组为所述M个天线端口组中的一个,用于为所述M个天线端口组中的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值。
  9. 如权利要求8所述的设备,其特征在于,所述发送模块还用于:向所述第二通信设备发送第五指示信息;
    所述第五指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口组中的一个天线端口上的发送功率值的第四比值。
  10. 一种第二通信设备,其特征在于,包括:
    接收模块,用于从第一通信设备的每一个天线端口上分别接收波束赋形后的参考信号;以及从所述第一通信设备接收第一指示信息;
    所述第一指示信息用于指示:所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系;
    处理模块,用于根据所述接收模块从所述第一通信设备的每一个天线端口上分别接收到的所述参考信号以及所述第一指示信息进行信道估计。
  11. 如权利要求10所述的设备,其特征在于,所述处理模块具体用于:
    针对所述第一通信设备的每一个天线端口,根据所述接收模块从该天线端口上接收到的所述参考信号进行信道估计,得到该天线端口的第一信道估计结果值;
    所述第二通信设备根据所述第一指示信息,对得到的所述第一通信设备的每一个天线端口的所述第一信道估计结果值进行调整,得到所述第一通信设备的每一个天线端口中的第二信道估计结果值。
  12. 如权利要求11所述的设备,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息对应的天线端口上的发送功率值与所述参考信号在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值;
    所述处理模块具体用于:
    针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值,除以该天线端口对应的所述第二指示信息所指示的所述第一比值开平方根后的数值。
  13. 如权利要求11所述的设备,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;
    所述M小于所述第一通信设备的天线端口的数量,所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数;一个所述第三指示信息对应于所述M个天线端口组中的一组,所述参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    所述参考天线端口组为所述M个天线端口组中的一个,用于为所述第一通信设备的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值;
    所述处理模块具体用于:
    针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开平方根后的数值。
  14. 如权利要求10所述的设备,其特征在于,所述处理模块具体用于:
    根据所述第一指示信息对所述接收模块接收到的所述第一通信设备的每一个天线端口上的所述参考信号进行调整;
    针对所述第一通信设备的每一个天线端口,根据调整后的该天线端口上的所述参考信号进行信道估计。
  15. 如权利要求14所述的设备,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息对应的天线端口上的发送功率值与所述参考信号在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值;
    所述处理模块具体用于:
    针对所述第一通信设备的每一个天线端口,将所述接收模块接收到的该天线端口上的所述参考信号,除以该天线端口对应的所述第二指示信息所指示的所述第一比值的开平方根后的数值。
  16. 如权利要求14所述的设备,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;
    所述M小于所述第一通信设备的天线端口的数量,所述第一通信设备的天线端口分别 属于M个天线端口组,所述M为不小于2的整数;一个所述第三指示信息对应于所述M个天线端口组中的一组,所述参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    所述参考天线端口组为所述M个天线端口组中的一个,用于为所述第一通信设备的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值;
    所述处理模块具体用于:
    针对所述第一通信设备的每一个天线端口,将所述接收模块接收到的该天线端口上的所述参考信号,除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开平方根后的数值。
  17. 如权利要求12或15所述的设备,其特征在于,所述接收模块,还用于从所述第一通信设备接收第四指示信息;
    所述第四指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口上的发送功率值的第三比值;
    所述处理模块,还用于根据所述第四指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
  18. 如权利要求13或16所述的设备,其特征在于,所述接收模块,还用于:
    从所述第一通信设备接收第五指示信息;
    所述第五指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口组中的一个天线端口上的发送功率值的第四比值;
    所述处理模块,还用于根据所述第五指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
  19. 一种参考信号发送方法,其特征在于,包括:
    第一通信设备针对所述第一通信设备的每一个天线端口,根据该天线端口的方向偏差,确定发给第二通信设备的波束赋形后的参考信号在该天线端口上的发送功率值;
    所述方向偏差为:所述参考信号在一个天线端口上发送的波束方向与所述第二通信设备的信道方向之间的偏差;
    所述第一通信设备在每一个天线端口上,按照确定的所述参考信号在该天线端口上的发送功率值,发送所述参考信号;
    所述第一通信设备向所述第二通信设备发送第一指示信息;
    所述第一指示信息用于指示:所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系。
  20. 如权利要求19所述的方法,其特征在于,所述第一通信设备确定所述参考信号在一个天线端口上的发送功率值,包括:
    所述第一通信设备确定所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:
    天线端口的方向偏差越大,所述参考信号该天线端口上的发送功率值越大。
  21. 如权利要求20所述的方法,其特征在于,所述第一通信设备确定所述参考信号在一个天线端口上的发送功率值,包括:
    所述第一通信设备根据所述参考信号在该天线端口上的波束增益,确定所述参考信号在该天线端口上的发送功率值;
    其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
  22. 如权利要求20或21所述的方法,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息所对应的天线端口上的发送功率值与在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值。
  23. 如权利要求22所述的方法,其特征在于,还包括:所述第一通信设备向所述第二通信设备发送第四指示信息;
    所述第四指示信息,用于指示:所述第一通信设备向所述第二通信设备发送数据的发送功率值与所述参考信号在所述参考天线端口上的发送功率值的第三比值。
  24. 如权利要求19所述的方法,其特征在于,
    在所述第一通信设备确定所述参考信号在一个天线端口上的发送功率值之前,还包括:
    所述第一通信设备确定所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数,且小于所述第一通信设备的天线端口的数量;按照所述方向偏差排序,属于同一个天线端口组的各个天线端口的排序连续;
    所述第一通信设备确定所述参考信号在一个天线端口上的发送功率值,包括:
    所述第一通信设备确定所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间满足:
    所述参考信号在属于同一个天线端口组的各个天线端口上的发送功率值相等;
    不同天线端口组之间,天线端口组中天线端口的所述方向偏差越大,所述参考信号在该天线端口组中的天线端口上的发送功率值越大。
  25. 如权利要求24所述的方法,其特征在于,所述第一通信设备确定所述参考信号在一个天线端口上的发送功率值,包括:
    对于一个天线端口组,所述第一通信设备根据所述参考信号在该天线端口组中的每一个天线端口上的波束增益的平均值,确定所述参考信号在该天线端口组中的每一个天线端口上的发送功率值;
    其中,所述参考信号在一个天线端口上的波束增益,为所述参考信号发送的波束在所述第二通信设备的信道方向上的功率增益。
  26. 如权利要求24或25所述的方法,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;一个所述第三指示信息对应于所述M个天线端口组中的一组;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    其中,所述参考天线端口组为所述M个天线端口组中的一个,用于为所述M个天线端口组中的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值。
  27. 如权利要求26所述的方法,其特征在于,还包括:所述第一通信设备向所述第二通信设备发送第五指示信息;
    所述第五指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口组中的一个天线端口上的发送功率值的第四比值。
  28. 一种信道估计方法,其特征在于,包括:
    第二通信设备从第一通信设备的每一个天线端口上分别接收波束赋形后的参考信号;
    所述第二通信设备从所述第一通信设备接收第一指示信息,所述第一指示信息用于指示:所述参考信号在所述第一通信设备的各个天线端口上的发送功率值之间的数值关系;
    所述第二通信设备根据从所述第一通信设备的每一个天线端口上分别接收到的所述参考信号以及所述第一指示信息进行信道估计。
  29. 如权利要求28所述的方法,其特征在于,所述第二通信设备进行信道估计,包括:
    所述第二通信设备针对所述第一通信设备的每一个天线端口,根据从该天线端口上接收到的所述参考信号进行信道估计,得到该天线端口的第一信道估计结果值;
    所述第二通信设备根据所述第一指示信息,对得到的所述第一通信设备的每一个天线端口的所述第一信道估计结果值进行调整,得到所述第一通信设备的每一个天线端口中的第二信道估计结果值。
  30. 如权利要求29所述的方法,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息对应的天线端口上的发送功率值与所述参考信号在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值;
    所述第二通信设备根据所述第一指示信息,对得到的所述第一通信设备的每一个天线端口的所述第一信道估计结果值进行调整,包括:
    所述第二通信设备针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值,除以该天线端口对应的所述第二指示信息所指示的所述第一比值开平方根后的数值。
  31. 如权利要求29所述的方法,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;
    所述M小于所述第一通信设备的天线端口的数量,所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数;一个所述第三指示信息对应于所述M 个天线端口组中的一组,所述参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    所述参考天线端口组为所述M个天线端口组中的一个,用于为所述第一通信设备的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值;
    所述第二通信设备根据所述第一指示信息,对得到的所述第一通信设备的每一个天线端口的所述第一信道估计结果值进行调整,包括:
    所述第二通信设备针对所述第一通信设备的每一个天线端口,将该天线端口的所述第一信道估计结果值除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开平方根后的数值。
  32. 如权利要求28所述的方法,其特征在于,所述第二通信设备进行信道估计,包括:
    所述第二通信设备根据所述第一指示信息对接收到的所述第一通信设备的每一个天线端口上的所述参考信号进行调整;
    所述第二通信设备针对所述第一通信设备的每一个天线端口,根据调整后的该天线端口上的所述参考信号进行信道估计。
  33. 如权利要求32所述的方法,其特征在于,
    所述第一指示信息包括:S-1个第二指示信息;
    所述S为所述第一通信设备的天线端口的数量,为不小于2的整数,一个所述第二指示信息对应于所述第一通信设备的一个天线端口;
    所述第二指示信息,用于指示:所述参考信号在所述第二指示信息对应的天线端口上的发送功率值与所述参考信号在参考天线端口上的发送功率值的第一比值;
    所述参考天线端口为所述第一通信设备的一个天线端口,用于为所述第一通信设备的其他天线端口提供所述参考信号发送功率值的参考值;
    所述第二通信设备根据所述第一指示信息对接收到的所述第一通信设备的每一个天线端口上的所述参考信号进行调整,包括:
    所述第二通信设备针对所述第一通信设备的每一个天线端口,将接收到的该天线端口上的所述参考信号,除以该天线端口对应的所述第二指示信息所指示的所述第一比值的开平方根后的数值。
  34. 如权利要求32所述的方法,其特征在于,
    所述第一指示信息包括:M-1个第三指示信息;
    所述M小于所述第一通信设备的天线端口的数量,所述第一通信设备的天线端口分别属于M个天线端口组,所述M为不小于2的整数;一个所述第三指示信息对应于所述M个天线端口组中的一组,所述参考信号在一组天线端口组中的各天线端口上的发送功率值相同;
    所述第三指示信息,用于指示:所述参考信号在所述第三指示信息对应的天线端口组中的每一个天线端口上的发送功率值与所述参考信号在参考天线端口组中的一个天线端口上的发送功率值的第二比值;
    所述参考天线端口组为所述M个天线端口组中的一个,用于为所述第一通信设备的其他天线端口组中的天线端口提供所述参考信号发送功率值的参考值;
    所述第二通信设备根据所述第一指示信息对接收到的所述第一通信设备的每一个天线端口上的所述参考信号进行调整,包括:
    所述第二通信设备针对所述第一通信设备的每一个天线端口,将接收到的该天线端口上的所述参考信号,除以该天线端口所属天线端口组对应的所述第三指示信息所指示的所述第二比值开平方根后的数值。
  35. 如权利要求30或33所述的方法,其特征在于,还包括:
    所述第二通信设备从所述第一通信设备接收第四指示信息;
    所述第四指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口上的发送功率值的第三比值;
    所述第二通信设备根据所述第四指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
  36. 如权利要求31或34所述的方法,其特征在于,还包括:
    所述第二通信设备从所述第一通信设备接收第五指示信息;
    所述第五指示信息,用于指示:所述第一通信设备向所述第二通信设备发送的数据的发送功率值与所述参考信号在所述参考天线端口组中的一个天线端口上的发送功率值的第四比值;
    所述第二通信设备根据所述第五指示信息,确定所述第一通信设备向所述第二通信设备发送的数据的发送功率值。
PCT/CN2017/079793 2016-04-11 2017-04-07 通信设备、参考信号发送方法和信道估计方法 WO2017177867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610223357.5 2016-04-11
CN201610223357.5A CN107294588B (zh) 2016-04-11 2016-04-11 通信设备、参考信号发送方法和信道估计方法

Publications (1)

Publication Number Publication Date
WO2017177867A1 true WO2017177867A1 (zh) 2017-10-19

Family

ID=60042310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079793 WO2017177867A1 (zh) 2016-04-11 2017-04-07 通信设备、参考信号发送方法和信道估计方法

Country Status (2)

Country Link
CN (1) CN107294588B (zh)
WO (1) WO2017177867A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756255B (zh) * 2017-11-01 2022-04-05 华为技术有限公司 一种信道测量方法和用户设备
CN110035441B (zh) * 2018-01-12 2021-02-09 华为技术有限公司 确定波束的方法及通信装置
CN110149697B (zh) * 2018-02-11 2022-04-15 大唐移动通信设备有限公司 上行相位跟踪参考信号的发送功率指示方法及相关设备
US10797810B2 (en) * 2018-08-21 2020-10-06 Futurewei Technologies, Inc. System and method for communications with multi-antenna panel devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
US20150043673A1 (en) * 2013-08-07 2015-02-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157182A2 (zh) * 2011-06-03 2011-12-22 华为技术有限公司 发送信道状态信息的方法和设备及系统
US9204434B2 (en) * 2012-03-19 2015-12-01 Qualcomm Incorporated Enhanced sounding reference signal (SRS) operation
US9661508B2 (en) * 2012-05-14 2017-05-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for determining a signal estimate by scaling
CN104717753B (zh) * 2013-12-17 2019-09-13 北京三星通信技术研究有限公司 一种非正交通信方法、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
CN103812546A (zh) * 2012-11-07 2014-05-21 华为技术有限公司 一种基于天线阵列的参考信号映射方法、装置及系统
US20150043673A1 (en) * 2013-08-07 2015-02-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备

Also Published As

Publication number Publication date
CN107294588B (zh) 2020-06-02
CN107294588A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
US11588601B2 (en) System and method for control signaling
US10547364B2 (en) Quasi co-location for beamforming
EP3787359B1 (en) Beam training method, apparatus, and system
WO2020073794A1 (zh) 一种上行功率控制方法、终端设备及网络设备
EP3672126A1 (en) Linear precoding in full-dimensional mimo systems and dynamic vertical sectorization
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
JPWO2016199768A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US10826664B2 (en) Reference signal sending method, related device, and communications system
WO2019157895A1 (zh) 一种多波束传输时pucch功率的控制方法及装置
WO2017177867A1 (zh) 通信设备、参考信号发送方法和信道估计方法
CN110999196B (zh) 无线通信方法、用户设备和基站
EP2989844B1 (en) Method and network node for link adaptation in a wireless communications network
US9713101B2 (en) Access method and device
CN111587556A (zh) 用户装置和无线通信方法
CN106105328B (zh) 一种终端、网络设备和协作多点传输协作集选择方法
WO2020024289A1 (en) Methods and devices for reducing channel state information feedback overhead
US9906346B2 (en) System and method for intelligent channel state information selection
US20180310287A1 (en) Terminal device, network device, data transmission method, and wireless communications system
WO2016179801A1 (en) Method and apparatus for channel state information feedback for full dimensional mimo
JP2019527969A (ja) チャネル情報を伝送する装置および方法、ならびにシステム
WO2017092383A1 (zh) 一种共小区网络下的多天线传输方法及基站
CN114158059B (zh) 一种信息处理方法、装置、终端设备及网络侧设备
US20210119683A1 (en) Data transmission method and apparatus
EP3461167B1 (en) Csi-rs transmission method, network device, and user equipment
WO2020107423A1 (en) Method, device and computer readable medium for sinr measurement

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781843

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781843

Country of ref document: EP

Kind code of ref document: A1