WO2019157975A1 - 上行功率控制的方法和装置 - Google Patents

上行功率控制的方法和装置 Download PDF

Info

Publication number
WO2019157975A1
WO2019157975A1 PCT/CN2019/074186 CN2019074186W WO2019157975A1 WO 2019157975 A1 WO2019157975 A1 WO 2019157975A1 CN 2019074186 W CN2019074186 W CN 2019074186W WO 2019157975 A1 WO2019157975 A1 WO 2019157975A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
target
control parameter
transmission configuration
value
Prior art date
Application number
PCT/CN2019/074186
Other languages
English (en)
French (fr)
Inventor
黄雯雯
花梦
张鹏
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019157975A1 publication Critical patent/WO2019157975A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the embodiments of the present application design a communication engineering technology, and in particular, a method and an apparatus for uplink power control.
  • the fifth generation (5G) mobile communication system and the future mobile communication system support a variety of service types, such as an eMBB service in an enhanced mobile broadband (eMBB) application scenario, with high reliability and low latency.
  • the URLLC service in the application scenario of the ultra reliable and low latency communications (URLLC), and the mMTC service in the application scenario of the massive machine type communications (mMTC).
  • URLLC ultra reliable and low latency communications
  • mMTC massive machine type communications
  • the reliability requirements of the eMBB service and the URLLC service are different.
  • the reliability of the URLLC service is higher than that of the eMBB service.
  • the data of the URLLC service needs to be accurately transmitted, that is, the power of the data sent by the terminal to the URLLC service needs to be accurately controlled.
  • the current power control does not distinguish whether the currently transmitted data is the data of the eMBB service or the data of the URLLC service.
  • the power of the data to be transmitted does not match the service type of the data to be transmitted. For example, the URLLC service is sent.
  • the power of the data is too low, and the correct transmission of the URLLC service cannot be guaranteed.
  • the power of sending the eMBB service is too high, which causes interference between the cells at the same frequency.
  • the embodiment of the present invention provides a method and an apparatus for uplink power control, which overcomes the technical problem that the power of the data to be transmitted does not match the service type of the data to be transmitted, and can meet the requirement of the transmission power of the service with different reliability.
  • an embodiment of the present application provides a method for uplink power control, including:
  • the reliability of the URLLC service is higher than that of the eMBB service.
  • the transmission power of the uplink information corresponding to the URLLC service needs to be higher than the transmission power of the uplink information corresponding to the eMBB service.
  • the terminal device can use multiple values of the power control parameter. Determining a correspondence between the plurality of scheduling request SR transmission configuration sets and a service type corresponding to the uplink information to be sent, determining a target value of the power control parameter from the plurality of values of the power control parameter, and further determining the sending according to the target value of the power control parameter Power can meet the needs of different reliability services.
  • the determining, according to the corresponding relationship and the multiple values of the power control parameter, the target value of the power control parameter including:
  • the determining, according to the correspondence, the multiple values of the power control parameter, and the target SR transmission configuration set, determining a target value of the power control parameter including:
  • a target value of the power control parameter is obtained according to a value of the power control parameter corresponding to the target SR transmission configuration set.
  • multiple SR transmission configuration sets correspond to multiple values of power control parameters
  • the terminal device may determine a target SR transmission configuration set from multiple SR transmission configuration sets according to the service type corresponding to the uplink information to be sent, and determine the target.
  • the value of the power control parameter corresponding to the SR transmission configuration set is the target value of the power control parameter, and the transmission power determined according to the target value of the power control parameter can meet the requirements of different reliability services.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the physical channel resource is a resource indicated by the network device and configured to send the uplink information.
  • the method further includes:
  • a target value of the power control parameter including:
  • the multiple values of the power control parameter corresponding to the multiple values of the power control parameter corresponding to the target physical channel resource and the multiple SR transmission configuration sets, the target SR transmission configuration set, and the target physical channel resource are determined from the target value of the power control parameters, including:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the method further includes:
  • a target value of the power control parameter including:
  • Determining a target value of the power control parameter according to a plurality of values of the power control parameter corresponding to the target beam and a plurality of SR transmission configuration sets, a target SR transmission configuration set, and a plurality of values of the power control parameters corresponding to the target beam.
  • determining, according to a correspondence between multiple values of a power control parameter corresponding to the target beam and a plurality of SR transmission configuration sets, a target SR transmission configuration set, and a plurality of values of power control parameters corresponding to the target beam determining power control The target value of the parameter, including:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate multiple offset values of the power control parameter Correspondence relationship with multiple SR transmission configuration sets;
  • the method further includes:
  • the determining, according to the correspondence, the multiple offset values of the power control parameter, the target SR transmission configuration set, and the reference value of the power control parameter, determining a target value of the power control parameter including:
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate respective power control parameters corresponding to the at least one beam Correspondence between multiple offset values and multiple SR transmission configuration sets;
  • the method further includes:
  • Determining a target value of the power control parameter according to a plurality of values of the plurality of values of the power control parameter corresponding to the target beam and the plurality of SR transmission configuration sets, the target SR transmission configuration set, and the plurality of values of the power control parameters corresponding to the target beam include:
  • a reference value of the power control parameter corresponding to the target beam, and determining a target value of the power control parameter including:
  • the SR transmission configuration set is any one or combination of the following:
  • the uplink information includes any one of the following:
  • SR information SR information and acknowledgment ACK information
  • SR information and channel state information CSI SR information and ACK information
  • CSI CSI
  • the power control parameter is any one or combination of the following: a cell-level target power, a user equipment UE-level target power, and an absolute power correction. Value or cumulative power correction value, parameters related to the PUCCH format, power control offset, maximum power allowed by the terminal device to transmit on the carrier and the serving cell;
  • the power control parameter is any one or combination of the following: cell level target power, user equipment UE level target power, absolute power correction value, or cumulative power correction. Value, path loss compensation factor, power control offset, maximum power that the terminal device allows to transmit on the carrier and serving cell.
  • the embodiment of the present application provides a method for uplink power control, including:
  • the first indication information is used to indicate a correspondence between the multiple values of the power control parameter and the multiple scheduling request SR transmission configuration set, where the correspondence relationship is used by the terminal device to obtain the power control parameter a target value, where the target value of the power control parameter is used by the terminal device to determine the power for transmitting the uplink information;
  • the reliability of the URLLC service is higher than that of the eMBB service.
  • the transmission power of the uplink information corresponding to the URLLC service needs to be higher than the transmission power of the uplink information corresponding to the eMBB service.
  • the network device can send the power control parameter to the terminal device.
  • Corresponding relationship between the multiple values and the plurality of scheduling request SR transmission configuration sets so that the terminal device according to the correspondence between the multiple values of the power control parameters and the multiple scheduling request SR transmission configuration sets and the service type corresponding to the uplink information to be sent,
  • the target value of the power control parameter is determined from a plurality of values of the power control parameter, and the transmission power determined according to the target value of the power control parameter can meet the requirements of different reliability services.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple scheduling request SR transmission configuration sets.
  • the method further includes:
  • Second indication information is used to indicate a correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets, the at least one physical channel resource and the multiple SR transmissions
  • Corresponding relationship of the configuration set is used by the terminal device to determine the target physical channel resource from the at least one physical channel resource, so that the terminal device determines multiple values of the power control parameter corresponding to the target physical channel resource and multiple SR transmission configuration sets. The corresponding relationship obtains the target value of the power control parameter.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the method further includes:
  • third indication information is used to indicate a target beam for transmitting uplink information, so that the terminal device determines multiple values and multiple SRs of the power control parameter corresponding to the target beam.
  • Corresponding relationship of the transmission configuration set acquires a target value of the power control parameter; the target beam is a beam in the at least one beam.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of the power control parameter and multiple SR transmission configuration sets;
  • the method further includes: transmitting, to the terminal device, the fourth indication information, where the fourth indication information is used to indicate a reference value of the power control parameter, where the reference value of the power control parameter is used by the terminal device to acquire the power control parameter. Target value.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets;
  • the method further includes:
  • the fifth indication information is sent to the terminal device, where the fifth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to acquire a target value of the power control parameter.
  • an apparatus for uplink power control including:
  • the receiving module is configured to receive first indication information from a network device, where the first indication information is used to indicate a correspondence between multiple values of the power control parameter and multiple scheduling request SR transmission configuration sets;
  • a determining module configured to determine a target value of the power control parameter according to the correspondence relationship and the plurality of values of the power control parameter
  • the determining module is further configured to determine, according to the target value of the power control parameter, a power for transmitting uplink information.
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • a target value of the power control parameter is obtained according to a value of the power control parameter corresponding to the target SR transmission configuration set.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the physical channel resource is a resource indicated by the network device and configured to send the uplink information.
  • the receiving module is further configured to:
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the receiving module is further configured to:
  • the determining module is specifically configured to:
  • Determining a target value of the power control parameter according to a plurality of values of the power control parameter corresponding to the target beam and a plurality of SR transmission configuration sets, a target SR transmission configuration set, and a plurality of values of the power control parameters corresponding to the target beam.
  • the determining module is specifically configured to:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate multiple offset values of the power control parameter Correspondence relationship with multiple SR transmission configuration sets;
  • the party receiving module is further configured to:
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate respective power control parameters corresponding to the at least one beam Correspondence between multiple offset values and multiple SR transmission configuration sets;
  • the receiving module is further configured to
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the SR transmission configuration set is any one or combination of the following:
  • the uplink information includes any one of the following:
  • SR information SR information and acknowledgment ACK information
  • SR information and channel state information CSI SR information and ACK information
  • CSI CSI
  • the power control parameter is any one or combination of the following: a cell-level target power, a user equipment UE-level target power, and an absolute power correction. Value or cumulative power correction value, parameters related to the PUCCH format, power control offset, maximum power allowed by the terminal device to transmit on the carrier and the serving cell;
  • the power control parameter is any one or combination of the following: cell level target power, user equipment UE level target power, absolute power correction value, or cumulative power correction. Value, path loss compensation factor, power control offset, maximum power that the terminal device allows to transmit on the carrier and serving cell.
  • the embodiment of the present application provides an apparatus for uplink power control, including:
  • a sending module configured to send, to the terminal device, first indication information, where the first indication information is used to indicate a correspondence between multiple values of the power control parameter and multiple scheduling request SR transmission configuration sets, where the corresponding relationship is used by the terminal Obtaining, by the device, a target value of the power control parameter, where the target value of the power control parameter is used by the terminal device to determine the power for transmitting the uplink information;
  • the receiving module is configured to receive uplink information sent by the terminal device, where the sending power of the uplink information is determined by the terminal device according to a target value of the power control parameter.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the sending module is further configured to:
  • Second indication information is used to indicate a correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets, the at least one physical channel resource and the multiple SR transmissions
  • Corresponding relationship of the configuration set is used by the terminal device to determine the target physical channel resource from the at least one physical channel resource, so that the terminal device determines multiple values of the power control parameter corresponding to the target physical channel resource and multiple SR transmission configuration sets. The corresponding relationship obtains the target value of the power control parameter.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the sending module is further configured to:
  • third indication information is used to indicate a target beam for transmitting uplink information, so that the terminal device determines multiple values and multiple SRs of the power control parameter corresponding to the target beam.
  • Corresponding relationship of the transmission configuration set acquires a target value of the power control parameter; the target beam is a beam in the at least one beam.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of the power control parameter and multiple SR transmission configuration sets;
  • the sending module is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power control The target value of the parameter.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets;
  • the sending module is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power control The target value of the parameter.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores a computer program, the computer program causing the processor to perform the method in any one of the first aspects.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program causes the processor to perform the method described in any one of the second aspects.
  • an embodiment of the present application provides a communications apparatus, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement the method in any of the first aspects.
  • an embodiment of the present application provides a communications apparatus, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement the method described in any one of the second aspects.
  • a ninth aspect, the embodiment of the present application provides a communication apparatus, including: a first memory and a processor;
  • the first memory is configured to store a first program instruction
  • the processor is configured to invoke a first program instruction stored in the first memory to call a second program instruction from a second memory to implement the method in any one of the first aspects;
  • the second memory is a memory external to the communication device, and the second program is stored in the second memory.
  • the embodiment of the present application provides a communication apparatus, including: a first memory and a processor;
  • the first memory is configured to store a first program instruction
  • the processor is configured to invoke a first program instruction stored in the first memory to call a second program instruction from a second memory to implement the method in any one of the second aspects;
  • the second memory is a memory external to the communication device, and the second program is stored in the second memory.
  • an embodiment of the present application provides a wireless communication apparatus, including at least one processor, where the at least one processor is coupled to at least one memory:
  • the at least one processor is configured to execute a computer program or instructions stored in the at least one memory to cause the wireless communication device to perform the method of the first aspect or the second aspect or any alternative embodiment described above.
  • the method for uplink power control includes: receiving first indication information from a network device, where the first indication information is used to indicate multiple values of a power control parameter and multiple scheduling request SR transmission configuration sets. Corresponding relationship; determining a target value of the power control parameter according to the corresponding relationship and the plurality of values of the power control parameter; determining a power for transmitting the uplink information according to the target value of the power control parameter.
  • the target device may determine the target value of the power control parameter from multiple values of the power control parameter according to the correspondence between the multiple values of the power control parameter and the multiple scheduling request SR transmission configuration set and the service type corresponding to the uplink information to be sent. Then, the transmission power determined according to the target value of the power control parameter can meet the requirements of different reliability services.
  • FIG. 1 is a system architecture diagram provided by an embodiment of the present application.
  • FIG. 2 is a signaling flowchart 1 of a method for uplink power control according to an embodiment of the present application
  • FIG. 3 is a signaling flowchart 2 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 5 is a signaling flowchart 4 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 6 is a signaling flowchart 5 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flowchart 6 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flowchart 7 of a method for uplink power control according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram 1 of an apparatus for uplink power control according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 2 of an apparatus for uplink power control according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • a terminal device which may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, User agent or user device.
  • UE user equipment
  • the terminal device may be a station (station, ST) in a wireless local area network (WLAN), and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, or a wireless local loop (wireless local Loop, WLL) station, personal digital assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, For example, a terminal device in a fifth-generation (5G) network or a terminal device in a future public land mobile network (PLMN) network, a new radio (NR) communication system Terminal equipment, etc.
  • 5G fifth-generation
  • PLMN public land mobile network
  • NR new radio
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also include a drone, such as an onboard communication device on the drone.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (AP) in the WLAN, a base transceiver station (BTS) in GSM or CDMA, or may be in WCDMA.
  • Base station (nodeB, NB) which may also be an evolved base station (evolutional node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device in a future 5G network or A network device in a future evolved PLMN network, or a new generation node B (gNodeB) in the NR system.
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • a base station corresponding to a cell
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (pico cell), femto cell, etc.
  • pico cell pico cell
  • femto cell etc.
  • a unit in this application refers to a functional unit or a logical unit. It can be in the form of software, which is implemented by the processor executing program code; it can also be in hardware form.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there can be three relationships, for example, A and / or B, can represent: separate There are three cases in which A and B exist, and B exists separately.
  • the character "/” generally indicates that the context of the context is an “or” relationship.
  • the range described by “above” or “below” includes the boundary point. .
  • the method for transmitting uplink information can be applied to a 5th generation (5th generation, 5G) and a subsequent evolved communication system, and can also be applied to other wireless communication networks.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • the scenario corresponding to the URLLC application includes unmanned driving, industrial control, etc., requiring low latency and high reliability.
  • the specific requirements for low latency are end-to-end 0.5 ms delay, air interface information exchanges back and forth 1 ms delay, and high reliability.
  • the requirement is that the block error rate (BLER) reaches 10 -5 , that is, the correct reception ratio of the data packet reaches 99.999%.
  • eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large transmission data and high transmission rate.
  • the corresponding time length is 0.5ms.
  • the corresponding BLER is 10 -1 and the reliability requirement is 90%, that is, the correct reception ratio of the data packet is 90%.
  • the reliability of the URLLC service in the URLLC application scenario is much higher than the reliability of the eMBB service.
  • the higher the reliability of the service the higher the power requirement for transmitting data.
  • the network device controls the power parameter to the terminal device
  • the uplink information to be sent by the terminal device does not depend on the URLLC service or the eMBB service. Therefore, when the terminal device uses the power control parameter sent by the network device to obtain power, The obtained power may not match the service type corresponding to the uplink information to be sent.
  • the uplink information to be sent corresponds to the URLLC service
  • the power obtained by the terminal device using the power control parameter sent by the network device may be too small, the correct transmission of the URLLC service cannot be guaranteed, or the uplink information to be sent is corresponding.
  • the power obtained by the terminal device using the power control parameters sent by the network device may be too large, which may cause interference between the cells at the same frequency.
  • the embodiment of the present application provides a method for uplink power control, which can determine power according to the service type corresponding to the uplink information.
  • the architecture includes a terminal device 10 and a network device 20, where the terminal device 10 can be, for example, a UE, and the network device 20 can be a base station, where the base station transmits to the terminal.
  • the process of data is downlink transmission, and the process of terminal 10 transmitting data to base station 20 is uplink transmission.
  • the network device 20 sends the first indication information to the terminal device 10, where the first indication information includes: a correspondence between multiple values of the power control parameter and a plurality of Scheduling Request (SR) transmission configuration sets;
  • the target value of one power control parameter is selected from multiple values of the power control parameters, where the specific process is: the terminal device 10 is to be sent according to
  • the service type of the uplink message determines a target SR transmission configuration set that matches the service type of the uplink message to be sent, and then uses the value of the control parameter corresponding to the target SR transmission configuration set as the target value of the power control parameter according to the correspondence. Then, according to the target value of the power control parameter, the power for transmitting the uplink information is determined.
  • FIG. 2 is a signaling flowchart 1 of a method for uplink power control according to an embodiment of the present disclosure; referring to FIG. 2, the method in this embodiment may include:
  • Step S201 The network device determines a correspondence between multiple values of the power control parameter and multiple SR transmission configuration sets.
  • the power control formula of the physical uplink control channel is as shown in the formula (1):
  • c is the serving cell
  • i is the transmission period of the PUCCH
  • l is the power control adjustment state index
  • f is the carrier
  • q d is the reference signal resource used by the terminal device
  • P PUCCH, f, c is the PUCCH in the serving cell
  • the transmission power, P CMAX, f, c is the maximum power that the terminal device allows to transmit on the carrier and the serving cell
  • P O_PUCCH, f, c represents the target power when the network device receives the data transmitted by the terminal device, and is the target power P of the cell level.
  • O_NOMINAL_PUCCH and the UE-level target P O_UE_PUCCH
  • q u is the identifier of the PUCCH target power
  • PL f,c is the path loss value
  • ⁇ F_PUCCH (F) is the parameter related to the PUCCH format (PUCCH format)
  • ⁇ TF, f,c (i) is the power control offset
  • the power of the PUCCH can be determined by the following power control parameter items: cell level target power, UE level target power, parameters related to the PUCCH format, power control offset, absolute power correction value, or cumulative power correction.
  • the power control formula of the physical uplink shared channel is as shown in formula (2):
  • c is the serving cell
  • i is the transmission period of the PUSCH
  • j is the identification information of the power control parameter
  • l is the power control adjustment state index
  • f is the carrier
  • q d is the reference signal resource used by the terminal device
  • P PUSCH, f c is the transmission power of the PUSCH in the serving cell
  • P CMAX, f, c is the maximum power that the terminal device allows to transmit on the carrier and the serving cell
  • P O_PUSCH, f, c are the targets when the network device receives the terminal device to send data.
  • the power is composed of the sum of the cell-level target power P O_NOMINAL_PUSCH and the UE-level target P O_UE_PUSCH .
  • the first indication information of the bandwidth allocation resource in the serving cell ⁇ f,c is the path loss compensation factor
  • PL f,c is the path loss value
  • ⁇ TF,f,c is the modulation mode offset
  • ⁇ TF, f, c is used to control the power of information transmitted in the PUSCH
  • the power of the PUSCH can be determined by the following power control parameter items: cell level target power, UE level target power, path loss compensation factor, power control offset, absolute power correction value or cumulative power correction. value.
  • the SR transmission configuration set may be any one or combination of the following: an SR configuration parameter set and an SR resource parameter set.
  • the SR configuration parameter set may include any one or combination of the following: an SR identifier, an SR maximum number of transmissions, an SR timing, and the like;
  • the SR resource parameter may include any one or combination of the following: an SR identifier, an SR resource. , SR cycle, SR offset and other parameters.
  • the terminal device configures multiple logical channels according to the priority or different requirements of the data.
  • the configuration parameters included in the configuration parameter set of each logical channel may include: SR identifier and logical channel priority, etc. Different priorities or requirements may be understood as different. Type of business. It is to be understood that, for the URLLC service and the eMBB service, since the reliability of the URLLC service is higher than that of the eMBB service, the URLLC service should correspond to a logical channel with a high priority, and the priority of the logical channel corresponding to the eMBB service should be lower than the URLLC service. The priority of the corresponding logical channel.
  • the terminal device after configuring multiple logical channels, sends a configuration parameter set of each logical channel to the network device, and the network device configures the SR configuration parameter set and the SR according to the configuration parameter of the logical channel.
  • the resource parameter set that is, the SR configuration parameter set and the SR resource parameter set corresponding to the configuration parameter set of the logical channel, wherein the SR configuration parameter set and the SR resource parameter set corresponding to the configuration parameter set of the same logical channel
  • the SR identifiers are the same, and are the same as the SR identifiers of the configuration parameter sets of the logical channels corresponding to the two.
  • the terminal device configures multiple logical channels according to the priority or different requirements of the data, and the network device also configures multiple SR configuration parameter sets.
  • the network device configures the SR configuration parameter set and the SR resource parameter set
  • the SR configuration parameter set and the SR resource parameter set are sent to the terminal device, and the terminal device further sets the SR configuration parameter set and the SR resource parameter set according to the SR. Configure the corresponding logical channel and configure the configuration parameter set of each logical channel.
  • the SR transmission configuration set is corresponding to the logical channel configured by the terminal, and one SR transmission configuration set can correspond to one or more logical channels. If one SR configuration parameter set corresponds to multiple logical channels, the multiple logics A channel is a logical channel group that carries data of the same or similar service requirements. It can be understood that the logical channel is related to the type of service, and therefore, the SR transmission configuration set is substantially related to the service type.
  • the power control parameters in this embodiment are any one or combination of the following: a cell-level target power, a UE-level target power, an absolute power correction value or an accumulated power correction value, a parameter related to a PUCCH format, a power control offset, The maximum power that the terminal device allows to transmit on the carrier and the serving cell.
  • the network device configures multiple values for at least one power control parameter item according to the uplink transmit power required by the data of different service types. For example, P 01 and P 02 are configured for the power control parameter item “UE level target power”.
  • the multiple values of the power control parameter include multiple values corresponding to “UE level target power” and “power control”. Multiple values corresponding to the offset.
  • the network device establishes a correspondence between the SR transmission configuration set and multiple values of the power control parameters. For example, if there is an SR transmission configuration set 1 and an SR transmission configuration set 2, the power control parameters only include: “UE level target power”, and the priority set of the logical channel corresponding to the SR transmission configuration set 1 is higher, and P 01 is larger, The SR transmission configuration set 1 is made to correspond to P 01 and the SR transmission configuration set 2 and P 02 , as shown in Table 1.
  • the power control parameter includes the “UE-level target power”, and the power control parameter items included in the power control parameter are not limited.
  • the network device determines a correspondence between multiple values of the power control parameter and multiple SR transmission configuration sets, and may also determine that multiple values of the at least one power control parameter item and multiple scheduling request SR transmission configuration sets are determined. Correspondence.
  • Step 202 The network device sends the first indication information to the terminal device, where the first indication information is used to indicate a correspondence between the multiple values of the power control parameter and the multiple SR transmission configuration sets.
  • the network device may send the first to the terminal device by using the RRC signaling, the Medium Access Control Control Element (MAC CE) signaling, or the Downlink Control Information (DCI) signaling.
  • Instructing information for example, the first indication information may occupy at least two bits in a field included in the DCI signaling, and the RRC signaling may send a value of P0 and an index corresponding thereto, for example, P 01 corresponds to index index #1. , P 02 corresponds to index #2.
  • the network device is configured with two SR transmission configuration sets: SR transmission configuration set 1 and SR transmission configuration set 2.
  • the power control parameters include a power control parameter "UE level target power", which is configured with two values P 01 , P 02 , the first indication information needs to occupy two bits in the field included in the DCI signaling.
  • the first A bit of 0 indicates that the SR transmission configuration set 1 corresponds to index #1, that is, the SR transmission configuration set 1 corresponds to P 01
  • the first bit is 1 indicating that the SR transmission configuration set 1 corresponds to index #2, that is, the SR transmission configuration set 1 corresponds to P 02
  • the second bit is 0, indicating that the SR transmission configuration set 2 corresponds to index #1, that is, the SR transmission configuration set 2 corresponds to P 01
  • the second bit is 1 indicates that the SR transmission configuration set 2 and index #2 Correspondingly, it means that the SR transmission configuration set 2 corresponds to P 02 .
  • the power control parameters include a power control parameter "UE level target power", which is configured with four values P 01 , P 02, P 03, P 04, the first indication information to be occupied by 4bit DCI signaling field included in the specific implementation is not repeated here.
  • Step 203 The terminal device determines a target value of the power control parameter according to a correspondence between multiple values of the power control parameter and the plurality of SR transmission configuration sets, and multiple values of the power control parameter.
  • the target value of the power control parameter is a target value of all corresponding power control parameter items, and is at least one value.
  • the terminal device Receiving, by the terminal device, the first indication information sent by the network device, indicating, according to the first indication information, a correspondence between the multiple values of the power control parameter and the multiple SR transmission configuration sets, and determining the power control parameter from the multiple values of the power control parameter. Target value.
  • the terminal device determines the target value of the power control parameter from the multiple values of the power control parameter according to the correspondence between the multiple values of the power control parameter and the multiple SR transmission configuration sets, including:
  • A1. Determine a target SR transmission configuration set from multiple SR transmission configuration sets
  • A2 Determine a target value of the power control parameter according to a correspondence between a plurality of values of the power control parameter and the plurality of SR transmission configuration sets, a target SR transmission configuration set, and a plurality of values of the power control parameter.
  • the terminal device determines the SR transmission configuration set including the SR identifier according to the SR identifier of the configuration parameter set of the logical channel corresponding to the service type corresponding to the current uplink information to be sent, where the SR transmission configuration set is the target SR transmission configuration set.
  • the SR identifier in the configuration parameter set of the logical channel corresponding to the service type corresponding to the current uplink information to be sent is SR1
  • the SR configuration identifier set in the multiple SR configuration parameter set is also the SR configuration parameter set of SR1
  • the SR is Configuration parameter set 1 is the target SR transport configuration set.
  • determining a target value of the power control parameter according to the corresponding relationship between the multiple values of the power control parameter and the multiple SR transmission configuration sets, the target SR transmission configuration set, and the power control parameter specifically:
  • the value of the power control parameter gives the target value of the power control parameter.
  • the value of the control parameter is the target value of the power control parameter.
  • the target SR transmission configuration set is the SR configuration parameter set 1 in Table 1 above, and the “UE level target power” corresponding to the SR configuration parameter set 1 is P 01 , then P 01 is the target value of “UE level target power”.
  • the "power control offset" corresponding to the SR configuration parameter set 1 is ⁇ 01 , then ⁇ 01 is the target value of the "power control offset", that is, determining at least one power control corresponding to the target SR transmission configuration set.
  • Step 204 The terminal device determines, according to the target value of the power control parameter, the power for transmitting the uplink information.
  • the uplink information includes any one of the following: SR information, SR information, and ACKnowledgment (ACK) information, SR information, and Channel State Information (CSI), SR information and ACK information, and CSI. .
  • the target value of "UE level target power” determined in step S203 is P 01
  • the target value of "power control offset amount" is ⁇ 01 .
  • the power control parameter item calculates the power of the uplink information sent on the PUCCH according to the formula (1), where the power of the power control parameter not included in the embodiment of the present application is determined when calculating the power for transmitting the uplink information.
  • the method for controlling the value of the parameter item is in accordance with the method in the prior art, and will not be described in detail in this embodiment.
  • the terminal device when the terminal device sends the SR information to the network device, it needs to send according to the information indicated by the configuration parameter in the target SR transmission configuration set.
  • the uplink information sent by the UE has X bits indicating which SR transmission configuration set is sent; if there are two SR transmission configuration sets (the SR transmission configuration set includes the SR configuration parameter set and the SR resource parameter set at this time) : SR transmission configuration set 1 and SR transmission configuration set 2, SR transmission configuration set 1 corresponds to the value P 01 of "UE level target power", and SR transmission configuration set 2 corresponds to the value P 02 of "UE level target power", UE The uplink information sent has 1 bit indicating which SR transmission configuration set is sent.
  • the SR information is sent according to the parameter corresponding to the SR transmission configuration set 1, and the corresponding transmission power of the SR information is used.
  • the target value of the power control parameter item is P 01 ; when the bit is set to 1, the indication SR information is sent according to the parameter corresponding to the SR transmission configuration set 2, and the corresponding power control parameter item used when acquiring the transmission power of the SR information of Standard value P 02.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the foregoing steps; if the uplink information simultaneously transmitted is the SR information and the CSI, the corresponding physical channel The transmit power is the transmit power determined according to the above steps; if the uplink information sent at the same time is the SR information and the ACK information and the CSI information, the transmit power on the corresponding physical channel is the transmit power determined according to the above steps.
  • the embodiment provides a method for controlling the uplink power.
  • the network device determines the correspondence between the multiple values of the power control parameter and the multiple SR transmission configuration sets according to the service type, and sends the first indication information to the terminal device, where the first indication information is used.
  • the terminal device may determine a target value of the power control parameter according to the service type, the correspondence, and the plurality of values of the power control parameter.
  • the terminal device since the network device determines the correspondence between the multiple values of the power control parameter and the multiple SR transmission configuration sets according to the service type, the terminal device receives more power control parameters according to the service type and the corresponding relationship. Among the values, the target value of the power control parameter for the user to obtain the uplink power is determined, so that the power requirement of different reliability services can be satisfied.
  • FIG. 3 is a signaling flowchart 2 of a method for uplink power control according to an embodiment of the present disclosure.
  • the difference between this embodiment and the previous embodiment is that each physical channel resource corresponds to multiple power control parameters in this embodiment.
  • the method in this embodiment may include:
  • Step S301 The network device determines a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the network device configures a plurality of physical channel resources for the terminal device, and the PUCCH resource is used as an example, and the PUCCH resource 1, the PUCCH resource 2, the PUCCH resource 3, and the like may be configured for the terminal device.
  • the network device configures multiple values for the power control parameter corresponding to the physical channel resource, that is, each of the at least one power control parameter item included in the power control parameter corresponding to the physical channel resource is configured with multiple values, for example,
  • the network device configures two physical channel resources for the terminal device: PUCCH resource 1 and PUCCH resource 2.
  • PUCCH resource 1 if the power control parameter includes only the power control parameter item “UE level target power”, the “UE level target power” is configured.
  • the values are P 01 and P 02 .
  • the values of the power control parameter item “UE level target power” are configured as P 03 and P 04 , P 03 can be equal to P 01 or P 02 , and P 04 can be combined with P 01 .
  • P 02 is equal, but P 03 and P 04 are not equal, and P 01 and P 02 are not equal.
  • SR SR resources configured to set the transmission parameter set for a PUCCH resource
  • configuration parameter set 1 and the SR resources corresponding to P 01, configuration parameter set 2 and the SR resources corresponding to P 02, 2 PUCCH resource corresponding to a power meter is the for the corresponding relationship between the multiple values of the control parameters and the plurality of SR resource parameter sets.
  • the principle of configuring the corresponding relationship is described in the previous embodiment, and details are not described in this embodiment.
  • the corresponding relationship between the multiple values of the power control parameters corresponding to the same PUCCH resource 2 and the plurality of SR resource parameter sets is as shown in Table 3.
  • the foregoing only illustrates the power control parameter item including the “UE level target power” as a power control parameter, and does not limit the power control parameter item included in the power control parameter.
  • the network device determines a correspondence between multiple values of power control parameters corresponding to each physical channel resource configured for the terminal and multiple SR transmission configuration sets.
  • Step S302 The network device sends the first indication information and the second indication information to the terminal device, where the first indication information is used to indicate that the multiple values of the power control parameters corresponding to the at least one physical channel resource correspond to the multiple SR transmission configuration sets.
  • the second indication information is used to indicate a correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets;
  • the second indication information can be sent before step S301.
  • the network device is configured with the PUCCH resource 1 and the PUCCH resource 2 for transmitting the uplink information
  • the network device is configured with the SR configuration parameter set 1 and the SR resource parameter set 1, and the SR identifiers included in the two are SR1, and the SR configuration parameter set 2 is configured.
  • the SR resource parameter set 2 the SR identifiers included in the two are SR2, and the network device is configured as follows: if the SR information is selected by the parameters of the SR configuration parameter 1 and the SR resource parameter set 1, the PUCCH resource 1 is used, and if the SR configuration parameter is selected 2 and the parameters of the SR resource parameter set 2 send SR information, and the PUCCH resource 2 is used.
  • the network device instructs the terminal device to use the PUCCH resource 1 if the SR information is selected by the parameters of the SR configuration parameter 1 and the SR resource parameter set 1.
  • the PUCCH resource 1 is the target physical resource channel, and the SR configuration parameter is selected. 2 and the parameters of the SR resource parameter set 2 transmit the SR information, then the PUCCH resource 2 is used, and at this time, the PUCCH resource 2 is the target physical resource channel. That is, the network device indicates the correspondence between the terminal device SR transmission configuration set (SR configuration parameter and/or SR resource parameter set) and physical channel resources.
  • the network device is sent to the terminal device.
  • the network device may send two indication information to the terminal device: the indication information A is used to indicate a correspondence between multiple values of the power control parameter corresponding to the PUCCH resource 1 and multiple SR transmission configuration sets,
  • the indication information B is used to indicate the correspondence between the multiple values of the power control parameters corresponding to the PUCCH resource 2 and the multiple SR transmission configuration sets.
  • the indication information may also be sent, and the indication information includes the power control corresponding to the PUCCH resource 1 A correspondence between a plurality of values of the parameter and a plurality of SR transmission configuration sets, and a correspondence between a plurality of values of the power control parameters corresponding to the PUCCH resource 2 and the plurality of SR transmission configuration sets.
  • the correspondence between the SR configuration parameter and the SR resource parameter set and the PUCCH resource includes the following two cases:
  • the network device configures the PUCCH resource 1, the PUCCH resource 2 PUCCH resource 3, and the PUCCH resource 4 to transmit the uplink information
  • the network device configures the SR configuration parameter 1 and the SR resource parameter set 1
  • the SR identifier is SR1
  • the SR configuration parameter 2 and the SR resource parameter set 2 are configured, and the SR identifiers included in the two are SR2.
  • the network device is configured as follows: If the parameters of the SR configuration parameter 1 and the SR resource parameter set 1 are selected The PUCCH resource 1 or the PUCCH resource 2 may be used to transmit the SR information. If the SR information is transmitted by selecting the parameters of the SR configuration parameter 2 and the SR resource parameter set 2, the PUCCH resource 3 or the PUCCH resource 4 may be used.
  • the network device indicates the terminal device, if the parameters of the SR configuration parameter 1 and the SR resource parameter set 1 are selected to send the SR information (that is, the target SR transmission configuration set is the SR configuration parameter 1 and/or the SR resource parameter set 1, the following types of the same type The expression is the same as the meaning of the sentence, and will not be described later.
  • the PUCCH resource 1 is used. In this case, the PUCCH resource 1 is the target physical resource channel. If the parameters of the SR configuration parameter 2 and the SR resource parameter set 2 are selected, the SR information is sent.
  • PUCCH resource 3 PUCCH resource 3 is the target physical resource channel at this time.
  • the network device indicates the terminal device
  • the PUCCH resource 2 is used, and the PUCCH resource 2 is the target physical resource channel, and if the SR configuration parameter is selected.
  • the SR information is transmitted with the parameter of the SR resource parameter set 2
  • the PUCCH resource 4 is the target physical resource channel.
  • the network device configures the SR configuration parameter 1 and the SR resource parameter set 1
  • the identifier is SR1
  • the SR configuration parameter 2 and the SR resource parameter set 2 are configured.
  • the SR identifiers included in the two are SR2.
  • the network device is configured as follows: If the SR configuration parameters 1 and the SR resource parameter set 1 parameters are selected, the SR information is sent. PUCCH resource 1 or PUCCH resource 2 may be used. If SR information is selected by selecting parameters of SR configuration parameter 2 and SR resource parameter set 2, PUCCH resource 2 or PUCCH resource 3 may be used.
  • the network device When the network device indicates the terminal device, if the SR information is selected by the parameters of the SR configuration parameter 1 and the SR resource parameter set 1, the PUCCH resource 2 is used, and the PUCCH resource 2 is the target physical resource channel, and if the SR configuration parameter 2 is selected, If the parameter of the SR resource parameter set 2 transmits the SR information, the PUCCH resource 2 is used, and the PUCCH resource 2 is the target physical resource channel.
  • the network device indicates the terminal device
  • the SR information is selected by the parameters of the SR configuration parameter 1 and the SR resource parameter set 1
  • the PUCCH resource 1 is used, and the PUCCH resource 1 is the target physical resource channel, and the SR configuration parameter is selected.
  • the SR information is transmitted by the parameter of the SR resource parameter set 2, and the PUCCH resource 3 is used, and the PUCCH resource 3 is the target physical resource channel.
  • Step 303 The terminal device determines, according to the correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets, the target physical channel resource from the at least one physical channel resource, and according to the multiple values of the power control parameter corresponding to the target physical channel resource. Determining a relationship between the plurality of SR transmission configuration sets and the plurality of values of the power control parameters corresponding to the target physical channel resources, determining a target value of the power control parameter; the target physical channel resource is a resource for transmitting the uplink information.
  • the terminal device determines, according to the SR identifier in the configuration parameter set of the logical channel corresponding to the service type corresponding to the current uplink information to be sent, the SR transmission configuration set including the SR identifier, where the SR transmission configuration set is the target SR transmission configuration set. .
  • Determining the target physical channel resource from the at least one physical channel resource according to the correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets including: according to the correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets, at least Determining, by a physical channel resource, a target physical channel resource corresponding to the target SR transmission configuration set, where the target physical channel resource is a resource for transmitting uplink information, that is, the physical channel resource corresponding to the target SR transmission configuration set is the target physical channel resource.
  • the correspondence between the SR transmission configuration set and the physical channel resource is indicated by the network device to the terminal.
  • the terminal device After determining the target physical channel resource, the terminal device according to the corresponding relationship between the multiple values of the power control parameter corresponding to the target physical channel resource and the multiple SR transmission configuration sets, and the multiple values of the power control parameter corresponding to the target physical channel resource, The target value of the power control parameter is determined.
  • the specific method refer to step S203 in the previous embodiment, and details are not described in this embodiment.
  • Step S304 The terminal device determines, according to the target value of the power control parameter, the power for transmitting the uplink information.
  • step S204 For details, refer to step S204 in the previous embodiment, and details are not described in this embodiment.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the foregoing steps; if the uplink information sent simultaneously is the SR information and the CSI, the corresponding physical channel is used.
  • the transmission power is the transmission power determined according to the above steps; if the uplink information transmitted at the same time is the SR information and the ACK information and the CSI, the transmission power on the corresponding physical channel is the transmission power determined according to the above steps.
  • the network device determines, according to the service type, the correspondence between the multiple values of the power control parameters corresponding to each physical channel resource and the multiple SR transmission configuration sets, and sends the first indication information to the terminal device, where the first indication information is used. Instructing the correspondence, the terminal device determines the target value of the power control parameter according to the multiple values of the correspondence, the service type, and the power control parameter, so as to meet the power requirement of different reliability services.
  • FIG. 4 is a signaling flowchart 3 of a method for uplink power control according to an embodiment of the present disclosure.
  • the difference between this embodiment and the previous embodiment is that each beam corresponds to multiple values of one power control parameter.
  • the method in this embodiment may include:
  • Step 401 The network device determines a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the network device configures multiple beams, such as beam 1, beam 2, for the terminal device.
  • the beam may include one of a port, a precoding, and a video code resource, and may be indicated by a parameter pucch-spatial-relation-info.
  • the network device configures multiple values for the power control parameters corresponding to the beam, that is, at least one power control parameter item included in the power control parameter corresponding to the beam is configured with multiple values, for example, the network device configures the terminal device.
  • beams beam 1, beam 2, for beam 1 if the power control parameter only includes the power control parameter item "UE level target power", the value of "UE level target power" is configured as P 01 and P 02 for beam 2
  • the value of the power control parameter item "UE level target power” is set to P 03 and P 04 , P 03 can be equal to P 01 or P 02 , P 04 can be equal to P 01 or P 02 , but P 03 and P 04 are not Equal, P 01 and P 02 are not equal.
  • the SR configuration transmission set is the SR resource parameter set, for the beam 1, the SR resource parameter set 1 corresponds to P 01 , and the SR resource parameter set 2 corresponds to P 02.
  • Table 4 is the power control parameter corresponding to the beam 1. The corresponding relationship between the multiple values and the multiple SR resource parameter sets, and the specific configuration of the corresponding relationship is described in the previous embodiment, and is not described in this embodiment. The corresponding relationship between the multiple values of the power control parameters corresponding to the same beam 2 and the plurality of SR resource parameter sets is as shown in Table 5.
  • the foregoing only illustrates the power control parameter item including the “UE level target power” as a power control parameter, and does not limit the power control parameter item included in the power control parameter.
  • the network device determines a correspondence between multiple values of power control parameters corresponding to each beam configured for the terminal and multiple SR transmission configuration sets.
  • Step 402 The network device sends the first indication information and the third indication information to the terminal device, where the first indication information is used to indicate a correspondence between the multiple values of the power control parameters corresponding to the at least one beam and the multiple SR transmission configuration sets.
  • the third indication information is used to indicate a target beam used for transmitting uplink information, where the target beam is a beam in at least one beam;
  • the third indication information can be sent before step S401.
  • Step 403 The terminal device determines a target value of the power control parameter according to the correspondence between the multiple values of the power control parameter corresponding to the target beam and the multiple SR transmission configuration sets, and the multiple values of the power control parameters corresponding to the target beam.
  • the terminal device determines, according to the SR identifier in the configuration parameter set of the logical channel corresponding to the service type corresponding to the current uplink information to be sent, the SR transmission configuration set including the SR identifier, where the SR transmission configuration set is the target SR transmission configuration set. .
  • Determining, by the terminal device, the target value of the power control parameter according to the corresponding relationship between the multiple values of the power control parameter corresponding to the target beam and the multiple SR transmission configuration sets, and the multiple values of the power control parameter corresponding to the target beam including: according to the target A plurality of values of the plurality of values of the power control parameters corresponding to the beam and the plurality of SR transmission configuration sets, the target SR transmission configuration set, and the plurality of values of the power control parameters corresponding to the target beam determine a target value of the power control parameter.
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • step S203 in the embodiment shown in FIG. 2, which is not repeatedly described in this embodiment.
  • Step 404 The terminal device determines, according to the target value of the power control parameter, the power for transmitting the uplink information.
  • step S204 in the embodiment shown in FIG. 2, which is not described in this embodiment.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the above steps; if the uplink information simultaneously transmitted is the SR information and the CSI information, the corresponding physical channel The transmit power is the transmit power determined according to the above steps; if the uplink information sent at the same time is the SR information and the ACK information and the CSI information, the transmit power on the corresponding physical channel is the transmit power determined according to the above steps.
  • the network device determines, according to the service type, the correspondence between the multiple values of the power control parameters corresponding to each beam and the multiple SR transmission configuration sets, and sends the first indication information to the terminal device, where the first indication information is used to indicate the Corresponding relationship, the terminal device determines the target value of the power control parameter according to the multiple values of the correspondence, the service type, and the power control parameter, so as to meet the power requirement of different reliability services.
  • FIG. 5 is a signaling flowchart 4 of a method for uplink power control according to an embodiment of the present disclosure.
  • the method in this embodiment may include:
  • Step S501 The network device determines a correspondence between a plurality of offset values of the power control parameter and the plurality of SR transmission configuration sets, and a reference value of the power control parameter.
  • the network device determines a reference value of the power control parameter and a plurality of offset values of the power control parameter.
  • the power control parameter includes a power control parameter item “UE level target power”, the reference value is configured as P, and the offset value is configured as P 1 and P 2 , where the corresponding ones of the P 1 and P 2 corresponding to the eMMB service may be 0. , but not all of them are 0.
  • the correspondence between "UE level target power" and multiple SR transmission configuration sets is shown in Table 6. The principle of configuring the corresponding relationship is the same as that of the foregoing embodiment, and details are not described herein again.
  • the power control parameter is not limited to include the power control parameter item.
  • Step S502 The network device sends the first indication information and the second indication information to the terminal device.
  • the first indication information is used to indicate a correspondence between the multiple offset values of the power control parameter and the multiple SR transmission configuration sets, and the second indication information A reference value used to indicate power control parameters.
  • the first indication information and the second indication information may be the same indication information, or may be two indication information.
  • the second indication information can also be sent before step S401.
  • Step S503 The terminal device determines a target offset value of the power control parameter according to a correspondence between multiple offset values of the power control parameter and the plurality of SR transmission configuration sets, and multiple offset values of the power control parameter; The target offset value of the parameter and the reference value of the power control parameter are obtained as the target value of the power control parameter.
  • the terminal device receives the first indication information and the second indication information, and determines the power according to the correspondence between the multiple offset values of the rate control parameter and the multiple SR transmission configuration sets, and the multiple offset values of the power control parameters.
  • the target offset value of the control parameter is specifically: determining, according to the correspondence, an offset value of the power control parameter corresponding to the target SR transmission configuration set among the multiple offset values of the power control parameter, according to the target SR transmission configuration set
  • the offset value of the corresponding power control parameter is obtained as the power control parameter target offset value;
  • the power control parameter target offset value is the offset value of the power control parameter corresponding to the target SR transmission configuration set.
  • the target value of the power control parameter is obtained, that is, the power control is obtained according to the sum of the target offset value of the power control parameter and the reference value of the power control parameter.
  • the target value of the parameter is obtained according to the sum of the target offset value of the power control parameter and the reference value of the power control parameter.
  • the power control parameter item of the power control parameter is “UE level target power”, the reference value is configured as P, the offset value is configured as P 1 and P 2 , and the determined target offset value is P 1 , then the power control parameter item “ The target value of the UE-level target power” is P+P 1 .
  • Step 504 Determine, according to a target value of the power control parameter, a power for transmitting the uplink information.
  • step S204 in the embodiment shown in FIG. 2, which is not described in this embodiment.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the foregoing steps; if the uplink information simultaneously transmitted is the SR information and the CSI, the corresponding physical channel The transmit power is the transmit power determined according to the above steps; if the uplink information sent at the same time is the SR information and the ACK information and the CSI information, the transmit power on the corresponding physical channel is the transmit power determined according to the above steps.
  • the network device determines, according to the service type, the correspondence between the multiple offset values of the power control parameter and the multiple scheduling request SR transmission configuration set, and the reference value of the power control parameter, and the terminal device sends the uplink according to the corresponding relationship.
  • the service type of the information determining a target offset value of the power control parameter from a plurality of offset values of the power control parameter, and then determining a target of the power control parameter according to the reference value of the power control parameter and the target offset value of the power control parameter Value, which can meet the power demand of different reliability services.
  • FIG. 6 is a signaling flow chart 5 of a method for uplink power control according to an embodiment of the present disclosure; referring to FIG. 6, the method in this embodiment may include:
  • Step S601 The network device determines a correspondence between a plurality of offset values of the power control parameters corresponding to the at least one beam and a plurality of SR transmission configuration sets, and a correspondence between the at least one beam and the reference value of the power control parameter.
  • the multiple offset values of the power control parameters corresponding to the SR transmission configuration set of the same SR identifier corresponding to each beam may be the same. For example, if there are two beams: beam 1 and beam 2, and multiple offset values of the power control parameter item "X" corresponding to the SR transmission configuration set 1 corresponding to the beam 1 are x1 and x2, then the SR transmission configuration set corresponding to the beam 2 A plurality of offset values of the corresponding power control parameter item "X" may also be x1 and x2; wherein the offset value corresponding to the eMMB service in x1 and x2 may be 0.
  • Step S602 The network device sends the first indication information, the third indication information, and the fifth indication information to the terminal device.
  • the first indication information is used to indicate multiple offset values of the power control parameter corresponding to the at least one beam and multiple SR transmissions.
  • the third indication information is used to indicate a target beam for transmitting uplink information, the target beam is a beam in the at least one beam, and the fifth indication information is used to indicate a reference of the at least one beam and the power control parameter Correspondence of values;
  • Step S603 Determine a target deviation of the power control parameter from multiple offset values of the power control parameter corresponding to the target beam according to the corresponding relationship between the multiple offset values of the power control parameter corresponding to the target beam and the multiple SR transmission configuration sets.
  • the value of the power control parameter is obtained according to the target offset value of the power control parameter and the reference value of the power control parameter corresponding to the target beam.
  • Step S604 determining the power for transmitting the uplink information according to the target value of the power control parameter.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the above steps; if the uplink information sent at the same time is the SR information and the CSI, then the corresponding physical channel is used.
  • the transmission power is the transmission power determined according to the above steps; if the uplink information transmitted at the same time is the SR information and the ACK information and the CSI information, the transmission power on the corresponding physical channel is the transmission power determined according to the above steps.
  • the network device determines, according to the service type, a correspondence between multiple offset values of power control parameters corresponding to each beam and multiple scheduling request SR transmission configuration sets, and a reference value of each beam power control parameter, and the terminal device Determining a target offset value of the power control parameter from the plurality of offset values of the power control parameter according to the correspondence and the service type of the uplink information to be sent, and then according to the reference value of the power control parameter and the target offset of the power control parameter The value determines the target value of the power control parameter to meet the power requirements of different reliability services.
  • FIG. 7 is a signaling flowchart of a method for uplink power control according to an embodiment of the present disclosure. Referring to FIG. 7, the method in this embodiment may include:
  • Step S701 The network device determines a correspondence between a search space configuration set of the terminal device and at least one value of the power control parameter.
  • the search space configuration set of the terminal device in this embodiment is a dedicated search space configuration set of the UE, that is, the network device configures a UE-specific search space to the UE.
  • the power control parameters are any one or combination of the following: cell-level target power, UE-level target power, parameters related to PUCCH format, power control offset, absolute power correction value, or cumulative power correction value. That is, the value of the power control parameter is the value of each power control parameter item included in the power control parameter.
  • the network device configures the search space SS of the terminal device through the high-level parameter, and the configuration parameters in the search space configuration set include: time information, detection period information, aggregation degree information, control channel candidate set information, and the like.
  • the first possible implementation manner is: the search space configuration set corresponds to a value of each power control parameter item in the power control parameter, that is, each power control parameter item included in the power control parameter is configured with only one value, for example, If the power control parameters include: cell-level target power, UE-level target power, PUCCH format-related parameters, power control offset, absolute power correction value, or cumulative power correction value, search space configuration set 1 and (P 1 , P 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 ) correspond, P 1 is the configured cell-level target power, P 2 is the configured UE-level target power, ⁇ 1 is the configured parameter related to the PUCCH format, and ⁇ 2 is The configured power control offset, ⁇ 1 is the configured absolute power correction value or cumulative power correction value.
  • the value of the power control parameter corresponding to the search space configuration set configuration is determined by the specific configuration parameter value in the search space configuration set, that is, the value of the power control parameter corresponding to the search space configuration set configuration is corresponding to the parameter value in the search space configuration set.
  • the type of business is configured.
  • the time indication information of the search space configuration set S1 configured by the network device is 10000000000000 (each bit represents one symbol bit, and 1 represents a symbol position that the SS can appear in one time slot), indicating that the network device can only be in the first symbol.
  • the control information is sent, it can be considered as corresponding to the eMBB service, and the power control parameter item "UE level target power" corresponding to the S1 can be configured as P01 ; if the time indication information of the search space S2 configured by the network device is 10001001001000, the network is indicated.
  • the device may send control information in multiple symbols, and is suitable for bursty data transmission. It is considered to correspond to the URLLC service.
  • the power control parameter item corresponding to the S2, the UE-level target power may be configured as P 02 , and P 02 is greater than P. 01 .
  • a second possible implementation manner is: searching for a plurality of values of each power control parameter item in the power control parameter corresponding to the space configuration set, that is, each power control parameter item included in the power control parameter may be configured with multiple values, where
  • the search space configuration set may include multiple aggregation degree information, each aggregation degree information corresponding to one value of each power control parameter item; when the power control parameter includes only “UE level target power” power control For the parameter item, the configured values are P 01 and P 02.
  • the aggregation degree information in the search space configuration set includes two types: one CCE and two CCEs.
  • the corresponding relationship can be configured as follows: aggregation degree information 1 CCE Corresponding to P 01 , the degree of aggregation level information corresponds to two CCEs and P 02 , and the correspondence is shown in Table 7.
  • the correspondence relationship shown in Table 7 is: the correspondence between the search space configuration set and the two values of the "UE level target power", which is reflected in the search space configuration set including two aggregation degree level information, and each aggregation degree level information Corresponds to a value of "UE level target power".
  • a third possible implementation manner is: searching for a plurality of values of each power control parameter item in the power control parameter corresponding to the space configuration set, that is, each power control parameter item included in the power control parameter may be configured with multiple values.
  • the search space configuration set may include a plurality of control channel candidate set information, each control channel candidate set information corresponding to a value of each power control parameter item; when the power control parameter includes only the “UE level target power” power
  • the control parameter item has a value of P 01 and P 02 configured therein
  • the search space configuration set includes two types of control channel candidate set information, and the following correspondence relationship can be configured: the second control channel candidate set information corresponds to P 01 , and the second The control channel candidate set information corresponds to P 02 .
  • the corresponding relationship is: a correspondence between the search space configuration set and the two values of the “UE level target power”, where the search space configuration set includes two control channel candidate set information, and each control channel candidate set information and “ A value of the UE-level target power” corresponds.
  • the network device determines a correspondence between the search space configuration set and the power control parameters.
  • Step S702 The network device sends the indication information to the terminal device, where the indication information is used to indicate a correspondence between the search space configuration set and at least one value of the power control parameter.
  • the form of the indication information may refer to the foregoing embodiment, and details are not described in this embodiment.
  • Step S703 The terminal device determines a target value of the power control parameter according to a correspondence between the search space configuration set and at least one value of the power control parameter.
  • the search space configuration set corresponds to one value of each power control parameter item in the power control parameter, searching for a value of the power control parameter corresponding to the spatial configuration set (all power control parameter items included in the power control parameter)
  • the value is the target value of the rate control parameter (the target value of all power control parameter items included in the power control parameter).
  • the network device after configuring the search space configuration set, the network device sends the search space configuration set to the terminal; the network device sends the uplink scheduling information to the terminal device in the search space corresponding to the search space configuration set, where the terminal device is The uplink scheduling information is detected on the resource corresponding to the search space configuration set.
  • the method includes a plurality of degree of aggregation level information, where each degree of aggregation level information corresponds to a value of each power control parameter item, and then, on which resource corresponding to the degree of aggregation level information, the terminal device detects uplink scheduling information,
  • the power control parameter item, the target value of the power control parameter item is the value of the power control parameter item corresponding to the aggregation degree level information; or the aggregation degree configuration information corresponding to the resource for determining the network device sending the uplink scheduling information is the target aggregation.
  • the search space configuration set corresponds to multiple values of each power control parameter item in the power control parameter
  • the corresponding relationship is the third possible implementation manner in step S701
  • the terminal device detects the uplink scheduling information on the resource corresponding to the control channel candidate set information
  • the target value of the power control parameter item is the value of the power control parameter item corresponding to the control channel candidate set information; or the control channel candidate corresponding to the resource that determines the network device to send the uplink scheduling information
  • the set information is the target control channel candidate set information; and the value of the power control parameter corresponding to the target control channel candidate set information is determined from at least one value of the power control parameter; and the value of the power control parameter corresponding to the target aggregation degree configuration information , get the target value of the power control parameter.
  • Step S704 determining the power for transmitting the uplink information according to the target value of the power control parameter.
  • the network device configures the value of the corresponding power control parameter for the search space configuration set according to the relationship between the service type and the search space configuration of the terminal device, and establishes the search space configuration set and the power according to the service type. Corresponding relationship between the values of the control parameters, so that the terminal device acquires a target value of the power control parameter for determining the transmission power according to the correspondence, so that the power requirement of different reliability services can be satisfied.
  • FIG. 8 is a signaling flowchart of a method for uplink power control according to an embodiment of the present disclosure. Referring to FIG. 8, the method in this embodiment may include:
  • Step S801 The network device determines a correspondence between multiple values of the power control parameter and multiple types of physical resources.
  • the network device determines the first type of physical resource of the cell where the terminal device is located, and indicates the first type of physical resource to the terminal by using RRC signaling, MAC CE signaling, or DCI signaling.
  • the first type of physical resource may be a resource corresponding to the priority bandwidth, that is, a part of the bandwidth (abbreviated as BWP) in the NR, or may be part of the BWP, and the first type of resource is preferentially used for the transmission priority.
  • the network device is configured for the cell where the terminal device is located Among all the resources, resources other than the first type of resources are referred to as second type physical resources.
  • the power control parameters are any one or combination of the following: a cell-level target power, a UE-level target power, a path loss compensation factor, a power control offset, an absolute power correction value, or an accumulated power correction value. That is, the value of the power control parameter is the value of all power control parameter items included in the power control parameter.
  • the network device configures, for the power control parameter, at least one first value (each power control parameter item corresponding to a first value) and at least one second value (each power control parameter item corresponds to a second And configuring the first type of physical resource to correspond to at least one first value of the power control parameter, the second type of physical resource corresponding to at least one second value of the power control parameter, that is, configuring the first type of physical resource and Corresponding relationship between the at least one first value of the power control parameter and the at least one second value of the second type of physical resource and the power control parameter
  • the power control parameters include: UE-level target power, and two values P 01 and P 02 are configured for the UE-level target power, P 01 is greater than P 02 , and the first-type physical resource is configured to correspond to P 01 , and the second-type physical resource is configured. Corresponds to P 02 .
  • the network device configures, for the power control parameter, at least one first value (each power control parameter item corresponding to a first value) and at least one second value (each power control parameter item corresponds to a second Value); and configure two SR configuration parameter sets and two SR resource parameter sets.
  • the specific configuration method is shown in the embodiment shown in FIG. 2 .
  • Corresponding relationship between multiple values of the network device configuration power control parameter and multiple types of resources is as follows: a correspondence between multiple values of the power control parameter and multiple combinations, at least one second of the second type of physical resource and power control parameter Corresponding values are combined into a combination of a first type of physical resource and an SR transmission configuration set; the SR transmission configuration set is an SR configuration parameter set and/or an SR resource parameter set.
  • the configured SR transmission configuration set includes an SR transmission configuration set 1 and an SR transmission configuration set 2, the SR transmission configuration set 1 corresponds to a logical channel of the URLLC service, and the SR transmission configuration set 2 corresponds to a logical channel of the eMMB service, and the power control parameter is more
  • the specific correspondence between the values and the multiple types of resources is as follows: the combination of the SR transmission configuration set 1 and the first type of physical resources corresponds to at least one first value of the power control parameter, and the SR transmission configuration set 2 and the first type physical resource The combination corresponds to at least one second value of the power control parameter, the second type of physical resource corresponding to at least one second value of the power control parameter.
  • the power control parameters include: UE-level target power and path loss compensation factor, and two values P 01 and P 02 are configured for the UE-level target power, P 01 is greater than P 02 , and two values ⁇ 1 are configured for the path loss compensation factor. ⁇ 2 , ⁇ 1 is greater than ⁇ 2 .
  • the combination of the first type of physical resource and the SR transmission configuration set 1 corresponds to P 01 and ⁇ 1
  • the combination of the first type of physical resource and the SR transmission configuration set 2 corresponds to P 02 and ⁇ 2
  • the second type of physical resource and At least one second value of the power control parameter corresponds to.
  • Step S802 The network device sends indication information to the terminal device, where the indication information is used to indicate a correspondence between multiple values of the power control parameter and multiple types of uplink transmission resources.
  • Step S803 The terminal device determines a target value of the power control parameter according to a correspondence between multiple values of the power control parameter and multiple types of resources.
  • step S801 if the correspondence between the multiple values of the power control parameters received by the terminal device and the multiple types of resources is the correspondence in the first implementation manner in step S801: at least the first type of physical resources and the power control parameters Corresponding relationship between a first value corresponding to the second type of physical resource and at least one second value of the power control parameter
  • the terminal device determines that the at least one first value of the power control parameter corresponding to the first resource is a target value of the power control parameter (the power control parameter includes The target value of all the power control parameter items, that is, the plurality of at least one first value); if the network device indicates that the resource that the terminal device sends the uplink information is the second type of physical resource, the terminal device determines the power control corresponding to the second resource At least one second value of the parameter is a target value of the power control parameter. Since the target value of the power control parameter is the target value of all power control parameter items included in the power control parameter, it is also at least one value.
  • step S801 the combination of the SR transmission configuration set 1 and the first type of physical resources Corresponding to at least one first value of the power control parameter, the combination of the SR transmission configuration set 2 and the first type of physical resource corresponds to at least one second value of the power control parameter, and the second type of physical resource and at least one second of the power control parameter Corresponding to the value; the step includes: determining a target SR transmission configuration set from the plurality of SR transmission configuration sets, and the target SR transmission configuration set is configured to send the SR information to the network device.
  • the target SR transmission configuration set is configured to send the SR information to the network device.
  • the target value of the power control parameter is determined from the plurality of values of the power control parameter according to the correspondence, the target SR transmission configuration set, and the target resource.
  • the target resource is the network device indicating that the terminal device sends the uplink information.
  • a resource which may be a first type of physical resource or a second type of physical resource.
  • Determining the target value of the power control parameter from the plurality of values of the power control parameter according to the correspondence, the target SR transmission configuration set, and the target resource includes:
  • the network device indicates that the resource that the terminal device sends the uplink information is the first type of physical resource, determining that the value of the power control parameter corresponding to the combination of the first type of physical resource and the target SR transmission configuration set is a target value of the power control parameter, that is, Determining at least one first value as a target value of the power control parameter.
  • the network device indicates that the resource for transmitting the uplink information by the terminal device is the second type of physical resource, determining that the value of the power control parameter corresponding to the second type of physical resource is a target value of the power control parameter, that is, at least one second value.
  • Step S804 determining the power for transmitting the uplink information according to the target value of the power control parameter.
  • the transmission power on the corresponding physical channel is the transmission power determined according to the foregoing steps; if the uplink information simultaneously transmitted is the SR information and the CSI, the corresponding physical channel The transmit power is the transmit power determined according to the above steps; if the uplink information sent at the same time is the SR information and the ACK information and the CSI information, the transmit power on the corresponding physical channel is the transmit power determined according to the above steps.
  • the network device determines, according to the relationship between the combination of the resource type or the resource type and the SR configuration transmission set and the service type, the correspondence between the multiple values of the power control parameter and the multiple types of resources, so that the terminal device according to the corresponding The relationship obtains a target value of a power control parameter for determining a transmission power, thereby satisfying a power requirement of different reliability services.
  • FIG. 9 is a schematic structural diagram 1 of an apparatus for uplink power control according to an embodiment of the present disclosure; referring to FIG. 9, the apparatus of this embodiment includes: a receiving module 21 and a determining module 22.
  • the receiving module 21 is configured to receive first indication information from the network device, where the first indication information is used to indicate a correspondence between multiple values of the power control parameter and multiple scheduling request SR transmission configuration sets;
  • a determining module 22 configured to determine a target value of the power control parameter according to the correspondence relationship and the plurality of values of the power control parameter
  • the determining module 22 is further configured to determine, according to the target value of the power control parameter, a power for transmitting uplink information.
  • the apparatus for the uplink power control provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the determining module 22 is specifically configured to:
  • the determining module is specifically configured to:
  • a target value of the power control parameter is obtained according to a value of the power control parameter corresponding to the target SR transmission configuration set.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the physical channel resource is a resource indicated by the network device and configured to send the uplink information.
  • the receiving module 21 is further configured to:
  • the determining module is specifically configured to:
  • the determining module 22 is specifically configured to:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the receiving module 21 is further configured to:
  • the determining module is specifically configured to:
  • Determining a target value of the power control parameter according to a plurality of values of the power control parameter corresponding to the target beam and a plurality of SR transmission configuration sets, a target SR transmission configuration set, and a plurality of values of the power control parameters corresponding to the target beam.
  • the determining module is specifically configured to:
  • the target value of the power control parameter is obtained according to the value of the power control parameter corresponding to the target SR transmission configuration set.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate multiple offset values of the power control parameter Correspondence relationship with multiple SR transmission configuration sets;
  • the party receiving module 21 is further configured to:
  • the determining module is specifically configured to:
  • the determining module 22 is specifically configured to:
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter; the first indication information is used to indicate respective power control parameters corresponding to the at least one beam Correspondence between multiple offset values and multiple SR transmission configuration sets;
  • the receiving module 21 is further configured to:
  • the determining module 22 is specifically configured to:
  • the determining module is specifically configured to:
  • the SR transmission configuration set is any one or combination of the following:
  • the uplink information includes any one of the following:
  • SR information SR information and acknowledgment ACK information
  • SR information and channel state information CSI SR information and ACK information
  • CSI CSI
  • the power control parameter is any one or combination of the following: a cell-level target power, a user equipment UE-level target power, and an absolute power correction. Value or cumulative power correction value, parameters related to the PUCCH format, power control offset, maximum power allowed by the terminal device to transmit on the carrier and the serving cell;
  • the power control parameter is any one or combination of the following: a cell-level target power, a UE-level target power, an absolute power correction value, or a cumulative power correction value, The road loss compensation factor, the power control offset, and the maximum power that the terminal device allows to transmit on the carrier and the serving cell.
  • the apparatus for the uplink power control provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of an apparatus for uplink power control according to an embodiment of the present disclosure.
  • the apparatus of the present embodiment includes: a sending module 31 and a receiving module 32.
  • the sending module 31 is configured to send first indication information to the terminal device, where the first indication information is used to indicate a correspondence between multiple values of the power control parameter and multiple scheduling request SR transmission configuration sets, where the correspondence relationship is used for
  • the terminal device acquires a target value of the power control parameter, where the target value of the power control parameter is used by the terminal device to determine the power for transmitting the uplink information;
  • the receiving module 32 is configured to receive uplink information sent by the terminal device, where the sending power of the uplink information is determined by the terminal device according to a target value of the power control parameter.
  • the apparatus for the uplink power control provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one physical channel resource and multiple SR transmission configuration sets.
  • the sending module 31 is further configured to:
  • Second indication information is used to indicate a correspondence between the at least one physical channel resource and the multiple SR transmission configuration sets, the at least one physical channel resource and the multiple SR transmissions
  • Corresponding relationship of the configuration set is used by the terminal device to determine the target physical channel resource from the at least one physical channel resource, so that the terminal device determines multiple values of the power control parameter corresponding to the target physical channel resource and multiple SR transmission configuration sets. The corresponding relationship obtains the target value of the power control parameter.
  • the first indication information is used to indicate a correspondence between multiple values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets.
  • the sending module 31 is further configured to:
  • third indication information is used to indicate a target beam for transmitting uplink information, so that the terminal device determines multiple values and multiple SRs of the power control parameter corresponding to the target beam.
  • Corresponding relationship of the transmission configuration set acquires a target value of the power control parameter; the target beam is a beam in the at least one beam.
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of the power control parameter and multiple SR transmission configuration sets;
  • the sending module 31 is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power.
  • the target value of the control parameter is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power.
  • the target value of the control parameter is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power.
  • the target value of the control parameter is further configured to send fourth indication information to the terminal device, where the fourth indication information is used to indicate a reference value of the power control parameter, and the reference value of the power control parameter is used by the terminal device to obtain power.
  • the target value of the control parameter is further configured to send fourth indication information to the
  • the multiple values of the power control parameter include: a plurality of offset values corresponding to the reference value of the power control parameter;
  • the first indication information is used to indicate a correspondence between multiple offset values of power control parameters corresponding to each of the at least one beam and multiple SR transmission configuration sets;
  • the sending module 31 is further configured to send, to the terminal device, fifth indication information, where the fifth indication information is used to indicate a correspondence between at least one beam and a reference value of the power control parameter, where the reference value of the power control parameter is used.
  • the target value of the power control parameter is obtained by the terminal device.
  • the apparatus for the uplink power control provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • each unit of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the sending unit may be a separately set processing element, or may be integrated in one of the chips of the device, or may be stored in the memory of the device in the form of a program, which is called by one of the processing elements of the device. Execute the function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above transmitting unit is a unit for controlling transmission, and information can be transmitted through a transmitting device of the device, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital singnal processors) , DSP), or, one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGAs field programmable gate arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device includes: a processor 110, a memory 120, and a transceiver 130.
  • the transceiver 130 can be coupled to an antenna.
  • the transceiver 130 receives the information transmitted by the base station through the antenna, and transmits the information to the processor 110 for processing.
  • the processor 110 processes the data of the terminal and transmits it to the base station through the transceiver 130.
  • the memory 120 is used to store the program of the above method embodiment, or the modules of the embodiment shown in FIG. 9, and the processor 110 calls the program to perform the operations of the above method embodiments to implement the modules shown in FIG.
  • part or all of the above modules may also be implemented by being embedded in a chip of the terminal in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above units may be configured to implement one or more integrated circuits of the above method, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or, one or more field programmable gate arrays (FPGAs), and the like.
  • ASICs application specific integrated circuits
  • DSP digital singnal processor
  • FPGAs field programmable gate arrays
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes an antenna 110, a radio frequency device 120, and a baseband device 130.
  • the antenna 110 is connected to the radio frequency device 120.
  • the radio frequency device 120 receives the information transmitted by the terminal through the antenna 110, and transmits the information sent by the terminal to the baseband device 130 for processing.
  • the baseband device 130 processes the information of the terminal and sends it to the radio frequency device 120.
  • the radio frequency device 120 processes the information of the terminal and sends the information to the terminal through the antenna 110.
  • each of the above modules is implemented in the form of a processing component scheduler, for example, baseband device 130 includes processing component 131 and storage component 132, and processing component 131 invokes a program stored by storage component 132 to perform the above method embodiments. method.
  • the baseband device 130 may further include an interface 133 for interacting with the radio frequency device 120, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the above modules may be one or more processing elements configured to implement the above methods, the processing elements being disposed on the baseband device 130, where the processing elements may be integrated circuits, such as: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the above various modules may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 130 includes a SOC chip for implementing the above method.
  • the processing element 131 and the storage element 132 may be integrated into the chip, and the functions of the above method or the above units may be implemented by the processing element 131 in the form of a stored program that calls the storage element 132; or, at least one integrated circuit may be integrated into the chip.
  • the functions of the above methods or the above units may be implemented; or, in combination with the above implementation manners, the functions of some units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above base station includes at least one processing element, a storage element and a communication interface, wherein at least one of the processing elements is used to perform the method provided by the above method embodiments.
  • the processing element may perform some or all of the steps in the above method embodiments in a manner of executing the program stored in the storage element in the first manner; or in the second manner: through the integrated logic circuit of the hardware in the processor element Some or all of the steps in the foregoing method embodiments are performed in combination with the instructions.
  • the methods provided in the foregoing method embodiments may also be implemented in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above methods, for example: one or more specific An application specific integrated circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more field programmable gate arrays (FPGAs) or the like.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the present application further provides a storage medium, comprising: a readable storage medium and a computer program, the computer program for implementing the method for uplink power control performed by the terminal device provided by any of the foregoing embodiments.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the terminal device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the terminal device implements the method of uplink power control provided by the various embodiments described above.
  • An embodiment of the present application further provides an apparatus for uplink power control, including at least one storage element and at least one processing element, where the at least one storage element is used to store a program, when the program is executed, to enable the uplink power control
  • the apparatus performs the operations of the terminal device in any of the above embodiments.
  • the device can be a terminal chip.
  • the present application further provides a storage medium comprising: a readable storage medium and a computer program, the computer program for implementing the method of uplink power control performed by the network device provided by any of the foregoing embodiments.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the base station can read the computer program from a readable storage medium, and the at least one processor executes the computer program to cause the network device to implement the method of uplink power control provided by the various embodiments described above.
  • An embodiment of the present application further provides an apparatus for uplink power control, including at least one storage element and at least one processing element, where the at least one storage element is used to store a program, when the program is executed, to enable the uplink power control
  • the apparatus performs the operations of the base station in any of the above embodiments.
  • the device can be a base station chip.
  • the embodiment of the present application further provides a communication device, including: a first memory and a processor;
  • the first memory is configured to store a first program instruction
  • the processor is configured to invoke a first program instruction stored in the first memory to call a second program instruction from a second memory to implement a method performed by a terminal device in the foregoing method embodiment.
  • the second memory is a memory external to the communication device, and the second memory stores a second program instruction.
  • the terminal device performs the method of uplink power control provided in the foregoing method embodiment.
  • the embodiment of the present application further provides a communication device, including: a first memory and a processor;
  • the first memory is configured to store a first program instruction
  • the processor is configured to invoke a first program instruction stored in the first memory to call a second program instruction from a second memory to implement a method performed by a network device in the foregoing method embodiment.
  • the second memory is a memory external to the communication device, and the second memory stores a second program instruction.
  • the network device performs the uplink power control method provided in the foregoing method embodiment.
  • All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (ROM), RAM, flash memory, hard disk, solid state hard disk , magnetic tape, floppy disk, optical disc, and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行功率控制的方法和装置,该方法包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;根据上述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;根据功率控制参数的目标值,确定发送上行信息的功率。由于本申请实施例的终端设备可根据功率控制参数的多个值与多个调度请求SR传输配置集的对应关系以及待发送上行信息对应的业务类型,从功率控制参数的多个值中确定功率控制参数的目标值,进而根据功率控制参数的目标值确定的发送功率可以满足不同可靠性业务的需求。

Description

上行功率控制的方法和装置
本申请要求于2018年2月13日提交中国专利局、申请号为201810151025.X、申请名称为“上行功率控制的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例设计通信工程技术,尤其涉及一种上行功率控制的方法和装置。
背景技术
第五代(the fifth generation,5G)移动通信系统以及未来的移动通信系统支持多种业务类型,比如:增强型移动宽带(enhanced mobile broadband,eMBB)应用场景下的eMBB业务,高可靠低时延通信(ultra reliable and low latency communications,URLLC)应用场景下的URLLC业务,以及海量机器类通信(massive machine type communications,mMTC)应用场景下的mMTC业务。
其中,eMBB业务和URLLC业务对可靠性的要求不同,URLLC业务对可靠性的要求高于eMBB业务,需要确保URLLC业务的数据准确传输,也就是需要精确控制终端发送URLLC业务的数据的功率。
而目前的功率控制并不区分当前传输的数据是eMBB业务的数据还是URLLC业务的数据,有可能出现发送待传输数据的功率与待传输数据的业务类型不匹配的情况,比如,发送URLLC业务的数据的功率过低,无法保证URLLC业务的正确传输,发送eMBB业务的功率过高,带来小区间同频的干扰。
发明内容
本申请实施例提供一种上行功率控制的方法和装置,克服了待传输数据的功率与待传输数据的业务类型不匹配的技术问题,可满足不同可靠性的业务对发送功率的需求。
第一方面,本申请实施例提供一种上行功率控制的方法,包括:
接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;
根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;
根据所述功率控制参数的目标值,确定发送上行信息的功率。
在本方案中,URLLC业务对可靠性的需求高于eMBB业务,URLLC业务对应的上行信息的发送功率需要高于eMBB业务对应的上行信息的发送功率;终端设备可根据功率控制参数的多个值与多个调度请求SR传输配置集的对应关系以及待发送上行信息对应的业务类型,从功率控制参数的多个值中确定功率控制参数的目标值,进而 根据功率控制参数的目标值确定的发送功率可以满足不同可靠性业务的需求。
可选地,所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
从多个SR传输配置集中确定目标SR传输配置集;
根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值。
可选地,所述根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值,包括:
根据所述对应关系,确定所述功率控制参数的多个值中与所述目标SR传输配置集对应的功率控制参数的值;
根据与所述目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
该方案中,多个SR传输配置集与功率控制参数的多个值对应,终端设备可根据待发送上行信息对应的业务类型,从多个SR传输配置集中确定目标SR传输配置集,确定与目标SR传输配置集对应的功率控制参数的值为功率控制参数的目标值,进而根据功率控制参数的目标值确定的发送功率可以满足不同可靠性业务的需求。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
所述物理信道资源为网络设备指示的能够用于发送所述上行信息的资源。
可选地,所述方法还包括:
接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系;
所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
从多个SR传输配置集中确定目标SR传输配置集;
根据至少一个物理信道资源与所述多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源;
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标物理信道资源对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的 功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述方法还包括:
接收来自网络设备发送的第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,所述目标波束为所述至少一个波束中的波束;
所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
从多个SR传输配置集中确定目标SR传输配置集;
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方法还包括:
接收来自网络设备的第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值;
根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值,包括:
根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值,包括:
根据所述对应关系,确定所述功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和所述功率控制参数的基准值,得到所述功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方法还包括:
接收来自网络设备的第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
所述根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值,包括:
根据所述目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到所述功率控制参数的目标值。
可选地,所述SR传输配置集为如下中的任一或组合:
SR配置参数集、SR资源参数集。
可选地,所述上行信息包括如下中的任一:
SR信息、SR信息和确认ACK信息、SR信息和信道状态信息CSI、SR信息和ACK信息和CSI。
可选地,若发送所述上行信息的物理信道为物理上行控制信道PUCCH,则所述功率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、与PUCCH格式相关的参数,功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率;
若发送所述上行信息的物理信道为物理上行共享信道PUSCH,所述功率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、路损补偿因子、功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率。
第二方面,本申请实施例提供一种上行功率控制的方法,包括:
向终端设备发送第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,所述对应关系用于终端设备获取功率控制参数的目标值,所述功率控制参数的目标值用于终端设备确定发送上行信息的功率;
接收终端设备发送的上行信息,所述上行信息的发送功率为所述终端设备根据所述功率控制参数的目标值确定的。
在本方案中,URLLC业务对可靠性的需求高于eMBB业务,URLLC业务对应的上行信息的发送功率需要高于eMBB业务对应的上行信息的发送功率;网络设备可向终端设备发送功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,以使终端设备根据功率控制参数的多个值与多个调度请求SR传输配置集的对应关系以及待发送上行信息对应的业务类型,从功率控制参数的多个值中确定功率控制参数的目标值,进而根据功率控制参数的目标值确定的发送功率可以满足不同可靠性业务的需求。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个调度请求SR传输配置集的对应关系。
可选地,所述方法还包括:
向终端设备发送第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系,所述至少一个物理信道资源与所述多个SR传输配置集的对应关系用于终端设备从至少一个物理信道资源中确定目标物理信道资源,以使所述终端设备确定采用目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述方法还包括:
向终端设备发送第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,以使所述终端设备确定采用目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值;所述目标波束为所述至少一个波束中的波束。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方法还包括:向终端设备发送第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方法还包括:
向终端设备发送第五指示信息,所述第五指示信息用于指示所述功率控制参数的基准值,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
第三方面,本申请实施例提供一种上行功率控制的装置,包括:
接收模块,所述接收模块用于接收来自网络设备的第一指示信息,所述第一指示 信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;
确定模块,用于根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;
所述确定模块,还用于根据所述功率控制参数的目标值,确定发送上行信息的功率。
可选地,所述确定模块,具体用于:
从多个SR传输配置集中确定目标SR传输配置集;
根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于:
根据所述对应关系,确定所述功率控制参数的多个值中与所述目标SR传输配置集对应的功率控制参数的值;
根据与所述目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
所述物理信道资源为网络设备指示的能够用于发送所述上行信息的资源。
可选地,所述接收模块,还用于:
接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系;
所述确定模块,具体用于:
从多个SR传输配置集中确定目标SR传输配置集;
根据至少一个物理信道资源与所述多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源;
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于,
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定所述功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述接收模块还用于:
接收来自网络设备发送的第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,所述目标波束为所述至少一个波束中的波束;
所述确定模块,具体用于,
从多个SR传输配置集中确定目标SR传输配置集;
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于,
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方接收模块还用于:
接收来自网络设备的第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值;
所述确定模块,具体用于,
根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于,
根据所述对应关系,确定所述功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和所述功率控制参数的基准值,得到所述功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述接收模块还用于,
接收来自网络设备的第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
所述确定模块,具体用于:
根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于:
根据所述目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个偏移值中与所述目标SR传输配置 集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到所述功率控制参数的目标值。
可选地,所述SR传输配置集为如下中的任一或组合:
SR配置参数集、SR资源参数集。
可选地,所述上行信息包括如下中的任一:
SR信息、SR信息和确认ACK信息、SR信息和信道状态信息CSI、SR信息和ACK信息和CSI。
可选地,若发送所述上行信息的物理信道为物理上行控制信道PUCCH,则所述功率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、与PUCCH格式相关的参数,功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率;
若发送所述上行信息的物理信道为物理上行共享信道PUSCH,所述功率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、路损补偿因子、功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率。
第四方面,本申请实施例提供一种上行功率控制的装置,包括:
发送模块,用于向终端设备发送第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,所述对应关系用于终端设备获取功率控制参数的目标值,所述功率控制参数的目标值用于终端设备确定发送上行信息的功率;
接收模块,用于接收终端设备发送的上行信息,所述上行信息的发送功率为所述终端设备根据所述功率控制参数的目标值确定的。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述发送模块,还用于,
向终端设备发送第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系,所述至少一个物理信道资源与所述多个SR传输配置集的对应关系用于终端设备从至少一个物理信道资源中确定目标物理信道资源,以使所述终端设备确定采用目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述发送模块还用于:
向终端设备发送第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,以使所述终端设备确定采用目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值;所述目标波束为所述至少一个 波束中的波束,。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述发送模块还用于,向终端设备发送第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述发送模块还用于,向终端设备发送第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得处理器执行第一方面任一实施方式中的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得处理器执行第二方面任一实施方式中所述的方法。
第七方面,本申请实施例提供一种通信装置,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现第一方面任一实施方式中的方法。
第八方面,本申请实施例提供一种通信装置,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现第二方面任一实施方式中所述的方法。
第九方面,本申请实施例提供一种通信装置,包括:第一存储器和处理器;
所述第一存储器,用于存储第一程序指令;
所述处理器,用于调用所述第一存储器中存储的第一程序指令从第二存储器中调用第二程序指令,以实现第一方面任一实施方式中所述的方法;
所述第二存储器为通信装置外部的存储器,第二存储器中存储有所述第二程序指令。
第十方面,本申请实施例提供一种通信装置,包括:第一存储器和处理器;
所述第一存储器,用于存储第一程序指令;
所述处理器,用于调用所述第一存储器中存储的第一程序指令从第二存储器中调用第二程序指令,以实现第二方面任一实施方式中所述的方法;
所述第二存储器为通信装置外部的存储器,第二存储器中存储有所述第二程序指令。
第十一方面,本申请实施例提供一种无线通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述无线通信装置执行上述第一方面或第二方面或任一可选实施方式中的方法。
本申请实施例提供的上行功率控制的方法,包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;根据功率控制参数的目标值,确定发送上行信息的功率。由于终端设备可根据功率控制参数的多个值与多个调度请求SR传输配置集的对应关系以及待发送上行信息对应的业务类型,从功率控制参数的多个值中确定功率控制参数的目标值,进而根据功率控制参数的目标值确定的发送功率可以满足不同可靠性业务的需求。
附图说明
图1为本申请实施例提供的系统架构图;
图2为本申请实施例提供的上行功率控制的方法的信令流程图一;
图3为本申请实施例提供的上行功率控制的方法的信令流程图二;
图4为本申请实施例提供的上行功率控制的方法的信令流程图三;
图5为本申请实施例提供的上行功率控制的方法的信令流程图四;
图6为本申请实施例提供的上行功率控制的方法的信令流程图五;
图7为本申请实施例提供的上行功率控制的方法的信令流程图六;
图8为本申请实施例提供的上行功率控制的方法的信令流程图七;
图9为本申请实施例提供的上行功率控制的装置的结构示意图一;
图10为本申请实施例提供的上行功率控制的装置的结构示意图二;
图11为本申请实施例提供的一种终端设备的结构示意图;
图12为本申请实施例提供的一种基站的结构示意图。
具体实施方式
首先对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
终端设备,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(wireless local area networks,WLAN)中的站点(station,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备,新空口 (new radio,NR)通信系统中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
另外,终端设备还可以包括无人机,如无人机上的机载通信设备等。
网络设备,可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new generation node B,gNodeB)等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本申请中的单元是指功能单元或逻辑单元。其可以为软件形式,通过处理器执行程序代码来实现其功能;也可以为硬件形式。
多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以上”或“以下”等所描述的范围包括边界点。
本领域技术人员可以理解,本申请实施例提供的上行信息的传输方法可以应用于第5代网络(5th generation,5G)和后续演进通信系统中,也可以运用到其他无线通信网络。
国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
其中,URLLC应用对应的场景包括无人驾驶、工业控制等,要求低时延高可靠,低时延的具体要求为端到端0.5ms时延,空口信息交互来回1ms时延,高可靠的具体要求为误块率(block error rate,BLER)达到10 -5,即数据包正确接收比例达到99.999%。eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual  reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高,对应的时间长度为0.5ms,相对应的BLER为10 -1,可靠性要求为90%,即数据包正确接收比例为90%。
可知,URLLC应用场景下的URLLC业务的可靠性要远远高于eMBB业务的可靠性,本领域技术人员可以理解,业务的可靠性越高,传输数据的功率要求就越高。而现有技术中网络设备向终端设备功率控制参数时,并不依赖于终端设备待发送的上行信息对应的是URLLC业务还是eMBB业务,因此,终端设备采用网络设备发送的功率控制参数获取功率时,得到的功率有可能与待发送的上行信息对应的业务类型不匹配。比如,若待发送的上行信息对应于URLLC业务,而终端设备采用网络设备发送的功率控制参数获取的功率有可能偏小,此时就无法保证URLLC业务的正确传输,或者待发送的上行信息对应于eMBB业务,而终端设备采用网络设备发送的功率控制参数获取的功率有可能偏大,此时会造成小区间同频的干扰。
本申请实施例基于上述情况,提出一种上行功率控制的方法,可实现根据上行信息对应的业务类型确定功率。
图1为本申请实施例提供的系统架构图;参见图1,该架构包括终端设备10和网络设备20其中,终端设备10例如可以为UE,网络设备20可以为基站,其中,基站向终端传输数据的过程为下行传输,终端10向基站20传输数据的过程为上行传输。
具体地,网络设备20向终端设备10发送第一指示信息,第一指示信息包括:功率控制参数的多个值与多个调度请求(Scheduling Request,简称SR)传输配置集的对应关系;终端设备10接收到功率控制参数的多个值与多个SR传输配置集的对应关后,从功率控制参数的多个值中选择一个功率控制参数的目标值,具体过程为:终端设备10根据待发送的上行消息的业务类型确定与待发送的上行消息的业务类型匹配的目标SR传输配置集,然后根据该对应关系将与目标SR传输配置集对应的控制参数的值,作为功率控制参数的目标值;接着根据功率控制参数的目标值,确定发送上行信息的功率。
下面采用具体的实施例对本申请的上行功率控制的方法,进行详细的说明。
图2为本申请实施例提供的上行功率控制的方法的信令流程图一;参见图2,本实施例的方法可以包括:
步骤S201、网络设备确定功率控制参数的多个值与多个SR传输配置集的对应关系;
具体地,在NR中,物理上行控制信道(physical uplink Control channel,PUCCH)的功率控制公式如公式(1)所示:
Figure PCTCN2019074186-appb-000001
其中,c为服务小区,i为PUCCH的传输周期,l为功率控制调整状态指数,f为载波,q d为终端设备利用的参考信号资源,P PUCCH,f,c为PUCCH在服务小区中的传输功率,P CMAX,f,c为终端设备允许在载波和服务小区上发射的最大功率,P O_PUCCH,f,c表示网络设备接收终端设备发送数据时的目标功率,是由小区级目标功率P O_NOMINAL_PUCCH和 UE级目标P O_UE_PUCCH之和组成的,q u是PUCCH目标功率的标识,PL f,c为路径损耗值,Δ F_PUCCH(F)是与PUCCH format(PUCCH格式)相关的参数,Δ TF,f,c(i)是功率控制偏移量,g f,c(i,l)为闭环功率控制调整状态,其中,g f,c(i,l)=g f,c(i-1,l)+δ PUCCH,f,c(i-K PUCCH,l),δ PUSCH,f,c为绝对功率修正值或累计功率修正值,i-K PUCCH发送δ PUCCH,f,c的子帧编号,μ为子载波间隔和循环前缀编号。
由公式(1)可知,PUCCH的功率可通过以下功率控制参数项确定:小区级目标功率、UE级目标功率、与PUCCH格式相关的参数、功率控制偏移量、绝对功率修正值或累计功率修正值、终端设备允许在载波和服务小区上发射的最大功率。
在NR中,物理上行共享信道(physical uplink shared channel,PUSCH)的功率控制公式如公式(2)所示:
Figure PCTCN2019074186-appb-000002
其中,c为服务小区,i为PUSCH的传输周期,j为功率控制参数的标识信息,l为功率控制调整状态指数,f为载波,q d为终端设备利用的参考信号资源,P PUSCH,f,c为PUSCH在服务小区中的传输功率,P CMAX,f,c为终端设备允许在载波和服务小区上发射的最大功率,P O_PUSCH,f,c为网络设备接收终端设备发送数据时的目标功率,是由小区级目标功率P O_NOMINAL_PUSCH和UE级目标P O_UE_PUSCH之和组成的,
Figure PCTCN2019074186-appb-000003
为PUSCH在服务小区中f资源分配带宽第一指示信息,α f,c为路径损耗补偿因子,PL f,c为路径损耗值,Δ TF,f,c为调制方式偏移量,Δ TF,f,c用于控制信息在PUSCH中传输时的功率,f f,c为闭环功率控制调整状态,其中,f f,c(i,l)=f f,c(i-1,l)+δ PUSCH,f,c(i-K PUSCH,l),δ PUSCH,f,c为绝对功率修正值或累计功率修正值,i-K PUSCH为发送δ PUSCH,f,c的子帧编号,μ为子载波间隔和循环前缀编号。
由公式(2)可知,在进行PUSCH的功率可通过以下功率控制参数项确定:小区级目标功率、UE级目标功率、路径损耗补偿因子、功率控制偏移量、绝对功率修正值或累计功率修正值。
下面以PUCCH信道为例,说明“网络设备确定功率控制参数的多个值与多个SR传输配置集的对应关系”的过程。
具体地,SR传输配置集可为如下内容中的任一或组合:SR配置参数集、SR资源参数集。其中,SR配置参数集可包括如下内容中的任一或组合:SR标识、SR最大发送次数、SR定时等参数值;SR资源参数可包括如下内容中的任一或组合:SR标识、SR资源、SR周期、SR偏移等参数。
终端设备会根据数据的优先级或者不同需求配置多个逻辑信道,每个逻辑信道的配置参数集中包括的配置参数可包括:SR标识和逻辑信道优先级等,不同优先级或者需求可以理解为不同的业务类型。可以理解的是,对于URLLC业务和eMBB业务而言,由于URLLC业务的可靠性高于eMBB业务,URLLC业务应该对应优先级高的逻辑信道,eMBB业务对应的逻辑信道的优先级应该低于URLLC业务对应的逻辑信道 的优先级。
在一种可能的实施方式中,终端设备在配置完多个逻辑信道后,会将每个逻辑信道的配置参数集发送至网络设备,网络设备根据逻辑信道的配置参数配置SR配置参数集和SR资源参数集,也就是根据逻辑信道的配置参数集配置与其相对应的SR配置参数集和SR资源参数集,其中,与同一个逻辑信道的配置参数集对应的SR配置参数集和SR资源参数集中的SR标识相同,均与两者对应的逻辑信道的配置参数集的SR标识相同。如上所述,终端设备会根据数据的优先级或者不同需求配置多个逻辑信道,那么网络设备也会配置多个SR配置参数集。
可以理解的是,也可以是网络设备配置SR配置参数集和SR资源参数集后,将SR配置参数集和SR资源参数集发送至终端设备,终端设备再根据SR配置参数集和SR资源参数集配置对应的逻辑信道,配置各逻辑信道的配置参数集。
由此可知,SR传输配置集是与终端配置的逻辑信道相对应的,一个SR传输配置集可对应一个或多个逻辑信道,若一个SR配置参数集对应多个逻辑信道,则该多个逻辑信道为承载业务需求相同或相近的数据的一个逻辑信道组。可以理解的是,逻辑信道是与业务类型相关的,因此,SR传输配置集实质上是与业务类型相关的。
本实施例中的功率控制参数为如下中的任一或组合:小区级目标功率、UE级目标功率、绝对功率修正值或累计功率修正值、与PUCCH格式相关的参数,功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率。
网络设备会根据不同的业务类型的数据需要的上行发射功率,为至少一个功率控制参数项配置多个值,比如为功率控制参数项“UE级目标功率”配置P 01和P 02
可以理解的是,若功率控制参数包括:“UE级目标功率”和“功率控制偏移量”,则功率控制参数的多个值包括“UE级目标功率”对应的多个值和“功率控制偏移量”对应的多个值。
接着,网络设备会建立SR传输配置集与功率控制参数的多个值之间的对应关系。比如有SR传输配置集1和SR传输配置集2,功率控制参数只包括:“UE级目标功率”,SR传输配置集1对应的逻辑信道的优先集较高,且P 01较大,则可使得SR传输配置集1与P 01、SR传输配置集2与P 02对应,如表1所示。
表1
SR传输配置集 功率控制偏移量
SR传输配置集1 P 01
SR传输配置集2 P 02
上述过程,仅是功率控制参数包括“UE级目标功率”这一项为例来说明,并不限定功率控制参数包括的功率控制参数项。
通过上述过程,网络设备确定了功率控制参数的多个值与多个SR传输配置集的对应关系,也可以说确定了至少一个功率控制参数项的多个值与多个调度请求SR传输配置集的对应关系。
步骤202、网络设备发送第一指示信息至终端设备,第一指示信息用于指示功率控制参数的多个值与多个SR传输配置集的对应关系。
具体地,网络设备可通过RRC信令、媒体介入控制控制元素(Medium Access  Control Control Element,简称MAC CE)信令、或者下行控制信息(Downlink Control Information,简称DCI)信令向终端设备发送第一指示信息,比如,该第一指示信息可占用DCI信令包括的字段中的至少两个比特(bit),RRC信令可以发送P0的值与其对应的索引,比如P 01与索引index#1对应,P 02与index#2对应。
例如:网络设备配置了两个SR传输配置集:SR传输配置集1和SR传输配置集2,功率控制参数包括一个功率控制参数“UE级目标功率”,被配置了两个值P 01、P 02,则第一指示信息需占用DCI信令包括的字段中的两比特,若第一比特表示SR传输配置集1相关的信息,第二比特表示SR传输配置集2相关的信息,则第一比特为0表示SR传输配置集1与index#1对应,即表示SR传输配置集1与P 01对应,第一比特为1表示SR传输配置集1与index#2对应,即表示SR传输配置集1与P 02对应,第二比特为0表示SR传输配置集2与index#1对应,即表示SR传输配置集2与P 01对应,第二比特为1表示SR传输配置集2与index#2对应,即表示SR传输配置集2与P 02对应。
同样的,若网络设备配置了两个SR传输配置集:SR传输配置集1和SR传输配置集2,功率控制参数包括一个功率控制参数“UE级目标功率”,被配置了四个值P 01、P 02、P 03、P 04,则第一指示信息需占用DCI信令包括的字段中的4bit,具体实现此处不再赘述。
步骤203、终端设备根据功率控制参数的多个值与多个SR传输配置集的对应关系,以及功率控制参数的多个值,确定功率控制参数的目标值。
具体地,可以理解的是功率控制参数的目标值为对应的所有功率控制参数项的目标值,为至少一个值。
终端设备接收网络设备发送的第一指示信息,根据第一指示信息指示功率控制参数的多个值与多个SR传输配置集的对应关系,从功率控制参数的多个值中确定功率控制参数的目标值。
其中,终端设备根据功率控制参数的多个值与多个SR传输配置集的对应关系,从功率控制参数的多个值中确定功率控制参数的目标值,包括:
a1、从多个SR传输配置集中确定目标SR传输配置集;
a2、根据功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及功率控制参数的多个值,确定功率控制参数的目标值。
对于a1、终端设备根据当前待发送上行信息对应的业务类型对应的逻辑信道的配置参数集中的SR标识,确定包括该SR标识的SR传输配置集,该SR传输配置集即为目标SR传输配置集。
比如,当前待发送上行信息对应的业务类型对应的逻辑信道的配置参数集中的SR标识为SR1,多个SR配置参数集中SR标识也为SR1的SR配置参数集为SR配置参数集1,则SR配置参数集1即为目标SR传输配置集。
对于a2、根据功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及功率控制参数的多个值,确定功率控制参数的目标值,具体可为:
根据功率控制参数的多个值与多个SR传输配置集的对应关系,确定功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;根据与目标SR传输配 置集对应的功率控制参数的值,得到功率控制参数的目标值。
具体地,根据第一指示信息指示的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标SR传输配置集对应的功率控制参数的值,目标SR传输配置集对应的功率控制参数的值即为功率控制参数的目标值。
比如:目标SR传输配置集为上述表1中的SR配置参数集1,SR配置参数集1对应的“UE级目标功率”为P 01,则P 01即为“UE级目标功率”的目标值,SR配置参数集1对应的“功率控制偏移量”为Δ 01,则Δ 01即为“功率控制偏移量”的目标值,也就是说确定目标SR传输配置集对应的至少一个功率控制参数项的各自的目标值。
步骤204、终端设备根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,上行信息为包括如下中的任一:SR信息、SR信息和确认(ACKnowledgment,简称ACK)信息、SR信息和信道状态信息(Channel State Information,简称CSI)、SR信息和ACK信息和CSI。
比如,按照步骤S203确定的“UE级目标功率”的目标值为P 01,“功率控制偏移量”的目标值为Δ 01
则根据功率控制参数项的目标值,按照公式(1)计算PUCCH上发送上行信息的功率,其中,在计算发送上行信息的功率时,确定不包括在本申请实施例中的功率控制参数的功率控制参数项的值的方法按照现有技术中的方法,本实施例中不再赘述。
本领域技术人员应当明白,终端设备向网络设备发送SR信息时需要根据目标SR传输配置集中的配置参数指示的信息发送。
可以理解的是,在SR信息和上行控制信息(Uplink Control Information,简称UCI)),同时在PUCCH上发送时,其它UCI比如可为ACK或者CSI,对于某些PUCCH格式(如PUCCH格式2,3,4),UE发送的上行信息中具有X比特指示发送的是哪一个SR传输配置集;若具有两个SR传输配置集(此时SR传输配置集包括SR配置参数集和SR资源参数集):SR传输配置集1和SR传输配置集2,SR传输配置集1与“UE级目标功率”的值P 01对应,SR传输配置集2与“UE级目标功率”的值P 02对应,UE发送的上行信息中具有1比特指示发送的是哪一个SR传输配置集,当该比特置0指示SR信息是根据SR传输配置集1对应的参数发送的,相应的获取SR信息的发送功率时采用的功率控制参数项的目标值为P 01;当该比特置1时,指示SR信息是根据SR传输配置集2对应的参数发送的,相应的获取SR信息的发送功率时采用的功率控制参数项的目标值为P 02
进一步地,若同时发送的上行信息为SR信息和确认ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和CSI,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和ACK信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例提供一种上行功率控制的方法,网络设备根据业务类型确定功率控制参数的多个值与多个SR传输配置集的对应关系,向终端设备发送第一指示信息,第一指示信息用于指示该对应关系,终端设备可根据业务类型、该对应关系以及功率控制参数的多个值,确定功率控制参数的目标值。由于本实施例中由于本实施例中网络设 备根据业务类型确定功率控制参数的多个值与多个SR传输配置集的对应关系,终端设备根据业务类型以及该对应关系,从功率控制参数的多个值中,确定用户获取上行功率的功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图3为本申请实施例提供的上行功率控制的方法的信令流程图二;本实施例与上一实施例不同的是,本实施例中每个物理信道资源对应一个功率控制参数的多个值与多个SR传输配置集的对应关系,参见图3,本实施例的方法可以包括:
步骤S301、网络设备确定至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;
具体地,网络设备为终端设备配置多个物理信道资源,以PUCCH资源为例,可为终端设备配置PUCCH资源1,PUCCH资源2,PUCCH资源3等。
对应每个物理信道资源,网络设备为该物理信道资源对应的功率控制参数配置多个值,即为该物理信道资源对应的功率控制参数包括的至少一个功率控制参数项各自配置多个值,比如网络设备为终端设备配置2个物理信道资源:PUCCH资源1,PUCCH资源2,对于PUCCH资源1,若功率控制参数只包括功率控制参数项“UE级目标功率”,配置“UE级目标功率”的值为P 01和P 02,对于PUCCH资源2,配置功率控制参数项“UE级目标功率”的值为P 03和P 04,P 03可与P 01或P 02相等,P 04可与P 01或P 02相等,但是P 03和P 04不相等,P 01和P 02不相等。
若SR配置传输集为SR资源参数集,对于PUCCH资源1,配置SR资源参数集1与P 01相对应,配置SR资源参数集2与P 02相对应,表2即为PUCCH资源1对应的功率控制参数的多个值与多个SR资源参数集的对应关系,具体配置上述对应关系的原理参照上一实施例中的阐述,本实施例中不再赘述。同样的PUCCH资源2对应的功率控制参数的多个值与多个SR资源参数集的对应关系,如表3所示。
表2
Figure PCTCN2019074186-appb-000004
表3
Figure PCTCN2019074186-appb-000005
上述仅仅是以功率控制参数包括“UE级目标功率”这一功率控制参数项为例来说明,并不限定功率控制参数包括的功率控制参数项。
通过上述过程,网络设备确定了为终端配置的每个物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
步骤S302、网络设备发送第一指示信息和第二指示信息至终端设备,第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;第二指示信息用于指示至少一个物理信道资源与多个SR传输配 置集的对应关系;
具体地,可以理解的是,第二指示信息可在步骤S301之前发送。
若网络设备为终端配置了PUCCH资源1和PUCCH资源2传输上行信息;网络设备配置了SR配置参数集1和SR资源参数集1,两者包括的SR标识为SR1,配置了SR配置参数集2和SR资源参数集2,两者包括的SR标识为SR2,网络设备配置如下关系:若选择SR配置参数1和SR资源参数集1的参数发送SR信息,采用PUCCH资源1,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,采用PUCCH资源2。
此时,网络设备会指示终端设备,若选择SR配置参数1和SR资源参数集1的参数发送SR信息,则采用PUCCH资源1,此时PUCCH资源1为目标物理资源信道,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,则采用PUCCH资源2,此时PUCCH资源2为目标物理资源信道。也就是网络设备会指示终端设备SR传输配置集(SR配置参数和/或SR资源参数集)与物理信道资源的对应关系。
PUCCH资源1对应的功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,以及PUCCH资源2对应的功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,网络设备都会发送至终端设备。
也就是说,上述举例情况下,网络设备可向终端设备发送两条指示信息:指示信息A用于指示PUCCH资源1对应的功率控制参数的多个值与多个SR传输配置集的对应关系,指示信息B用于指示PUCCH资源2对应的功率控制参数的多个值与多个SR传输配置集的对应关系;也可以发送一条指示信息,该指示信息中同时包括了PUCCH资源1对应的功率控制参数的多个值与多个SR传输配置集的对应关系,以及PUCCH资源2对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
此外,SR配置参数和SR资源参数集与PUCCH资源的对应关系还包括以下两种情况:
第一种情况,举例来说明,若网络设备为终端配置了PUCCH资源1、PUCCH资源2PUCCH资源3、PUCCH资源4来传输上行信息;网络设备配置了SR配置参数1和SR资源参数集1,两者包括的SR标识为SR1,配置了SR配置参数2和SR资源参数集2,两者包括的SR标识为SR2;网络设备配置如下关系:若选择SR配置参数1和SR资源参数集1的参数发送SR信息,可采用PUCCH资源1或PUCCH资源2,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,可采用PUCCH资源3或PUCCH资源4。
当网络设备指示终端设备,若选择SR配置参数1和SR资源参数集1的参数发送SR信息(即表示目标SR传输配置集为SR配置参数1和/或SR资源参数集1,以下相同类型的表述与该句表示的意思相同,后续不再赘述),则采用PUCCH资源1,此时PUCCH资源1为目标物理资源信道,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,则采用PUCCH资源3时,此时PUCCH资源3为目标物理资源信道。
或者,当网络设备指示终端设备,若选择SR配置参数1和SR资源参数集1的参数发送SR信息,则采用PUCCH资源2,此时PUCCH资源2为目标物理资源信道,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,则采用PUCCH资源 4时,此时PUCCH资源4为目标物理资源信道。
第二种情况,举例来说明,若网络设备为终端配置了PUCCH资源1、PUCCH资源2PUCCH资源3来传输上行信息;网络设备配置了SR配置参数1和SR资源参数集1,两者包括的SR标识为SR1,配置了SR配置参数2和SR资源参数集2,两者包括的SR标识为SR2;网络设备配置如下关系:若选择SR配置参数1和SR资源参数集1的参数发送SR信息,可采用PUCCH资源1或PUCCH资源2,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,可采用PUCCH资源2或PUCCH资源3。
当网络设备会指示终端设备,若选择SR配置参数1和SR资源参数集1的参数发送SR信息,则采用PUCCH资源2,此时PUCCH资源2为目标物理资源信道,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,则采用PUCCH资源2,此时PUCCH资源2为目标物理资源信道。
或者,当网络设备会指示终端设备,若选择SR配置参数1和SR资源参数集1的参数发送SR信息,则采用PUCCH资源1,此时PUCCH资源1为目标物理资源信道,若选择SR配置参数2和SR资源参数集2的参数发送SR信息,则采用PUCCH资源3,此时PUCCH资源3为目标物理资源信道。
步骤303、终端设备根据至少一个物理信道资源与多个SR传输配置集的对应关系,从至少一个物理信道资源中确定目标物理信道资源,并根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值;目标物理信道资源为用于发送上行信息的资源。
具体地,终端设备根据当前待发送上行信息对应的业务类型对应的逻辑信道的配置参数集中的SR标识,确定包括该SR标识的SR传输配置集,该SR传输配置集即为目标SR传输配置集。
根据至少一个物理信道资源与多个SR传输配置集的对应关系,从至少一个物理信道资源中确定目标物理信道资源包括:根据至少一个物理信道资源与多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源,目标物理信道资源为用于发送上行信息的资源,即与目标SR传输配置集对应的物理信道资源即为目标物理信道资源,如上所述,SR传输配置集与物理信道资源的对应关系是网络设备向终端指示的。
确定了目标物理信道资源后,终端设备根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值,具体方法参见上一实施例中的步骤S203,本实施例中不再赘述。
步骤S304、终端设备根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,该步骤的具体实现参见上一实施例中的步骤S204,本实施例中不再赘述。
进一步地,若同时发送的上行信息为SR信息和ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和CSI,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信 息为SR信息和ACK信息和CSI,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例中网络设备根据业务类型确定每个物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,向终端设备发送第一指示信息,第一指示信息用于指示该对应关系,终端设备根据该对应关系、业务类型和功率控制参数的多个值,确定功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图4为本申请实施例提供的上行功率控制的方法的信令流程图三;本实施例与上一实施例不同的是,本实施例中每个波束对应一个功率控制参数的多个值与多个SR传输配置集的对应关系,参见图4,本实施例的方法可以包括:
步骤401、网络设备确定至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;
具体地,网络设备为终端设备配置多个波束,比如波束1、波束2。其中,波束可以包括端口、预编码、视频码资源之一,可以通过参数pucch-spatial-relation-info指示。
对应每个波束,网络设备为该波束对应的功率控制参数配置多个值,即为该波束对应的功率控制参数包括的至少一个功率控制参数项各自配置多个值,比如网络设备为终端设备配置2个波束:波束1、波束2,对于波束1,若功率控制参数只包括功率控制参数项“UE级目标功率”,配置“UE级目标功率”的值为P 01和P 02,对于波束2,配置功率控制参数项“UE级目标功率”的值为P 03和P 04,P 03可与P 01或P 02相等,P 04可与P 01或P 02相等,但是P 03和P 04不相等,P 01和P 02不相等。
若SR配置传输集为SR资源参数集,对于波束1,配置SR资源参数集1与P 01相对应,配置SR资源参数集2与P 02相对应,表4即为波束1对应的功率控制参数的多个值与多个SR资源参数集的对应关系,具体配置上述对应关系的原理参照上一实施例中的阐述,本实施例中不再赘述。同样的波束2对应的功率控制参数的多个值与多个SR资源参数集的对应关系,如表5所示。
表4
Figure PCTCN2019074186-appb-000006
表5
Figure PCTCN2019074186-appb-000007
上述仅仅是以功率控制参数包括“UE级目标功率”这一功率控制参数项为例来说明,并不限定功率控制参数包括的功率控制参数项。
通过上述过程,网络设备确定了为终端配置的每个波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
步骤402、网络设备发送第一指示信息和第三指示信息至终端设备,第一指示信 息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;第三指示信息用于指示用于发送上行信息的目标波束,目标波束为至少一个波束中的波束;
具体地,可以理解的是,第三指示信息可在步骤S401之前发送。
步骤403、终端设备根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值;
具体地,终端设备根据当前待发送上行信息对应的业务类型对应的逻辑信道的配置参数集中的SR标识,确定包括该SR标识的SR传输配置集,该SR传输配置集即为目标SR传输配置集。
终端设备根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
具体实现方法参见图2所示的实施例中的步骤S203,本实施例中不再赘述。
步骤404、终端设备根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,该步骤具体实现参见图2所示实施例中的步骤S204,本实施例中不再赘述。
进一步地,若同时发送的上行信息为SR信息和ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和ACK信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例中网络设备根据业务类型确定每个波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,向终端设备发送第一指示信息,第一指示信息用于指示该对应关系,终端设备根据该对应关系、业务类型和功率控制参数的多个值,确定功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图5为本申请实施例提供的上行功率控制的方法的信令流程图四;参见图5,本实施例的方法可以包括:
步骤S501、网络设备确定功率控制参数的多个偏移值与多个SR传输配置集的对应关系以及功率控制参数的基准值;
具体地,网络设备确定功率控制参数的基准值,以及功率控制参数的多个偏移值。比如功率控制参数包括功率控制参数项“UE级目标功率”,基准值配置为P,偏移值配置为P 1和P 2,其中,P 1和P 2中与eMMB业务相对应的可为0,但不能全部都均为0。“UE级目标功率”与多个SR传输配置集的对应关系如表6所示。具体配置该对应关系的原理同上述实施例,此处不再赘述。
表6
Figure PCTCN2019074186-appb-000008
上述仅仅是以功率控制参数包括功率控制参数项“UE级目标功率”这一功率控制参数项的偏移值为例来说明,并不限定功率控制参数包括功率控制参数项。
步骤S502、网络设备发送第一指示信息和第二指示信息至终端设备;第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系,第二指示信息用于指示功率控制参数的基准值。
具体地,第一指示信息和第二指示信息可为同一个指示信息,也可为两个指示信息。
可以理解的是,第二指示信息也可在步骤S401前发送。
指示信息的具体形式可参见图2所示的实施例中的说明,本实施例中不再赘述。
步骤S503、终端设备根据功率控制参数的多个偏移值与多个SR传输配置集的对应关系,以及功率控制参数的多个偏移值,确定功率控制参数的目标偏移值;根据功率控制参数的目标偏移值和功率控制参数的基准值,得到功率控制参数的目标值。
具体地,终端设备接收第一指示信息和第二指示信息,根据率控制参数的多个偏移值与多个SR传输配置集的对应关系,以及功率控制参数的多个偏移值,确定功率控制参数的目标偏移值,具体为:根据该对应关系,确定功率控制参数的多个偏移值中与目标SR传输配置集对应的功率控制参数的偏移值,根据与目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数目标偏移值;功率控制参数目标偏移值即为与目标SR传输配置集对应的功率控制参数的偏移值。其中,目标SR传输配置集的确定详见上述实施例,本实施例中不再赘述。
接着,根据功率控制参数的目标偏移值和功率控制参数的基准值,得到功率控制参数的目标值,即根据功率控制参数的目标偏移值和功率控制参数的基准值之和,得到功率控制参数的目标值。
比如,功率控制参数的功率控制参数项“UE级目标功率”,基准值配置为P,偏移值配置为P 1和P 2,确定的目标偏移值为P 1,则功率控制参数项“UE级目标功率”的目标值为P+P 1
步骤504、根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,该步骤的具体实现参见图2所示的实施例中的步骤S204,本实施例中不再赘述。
进一步地,若同时发送的上行信息为SR信息和确认ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和 CSI,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和ACK信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例中网络设备根据业务类型确定功率控制参数的多个偏移值与多个调度请求SR传输配置集的对应关系,以及功率控制参数的基准值,终端设备根据该对应关系、待发送上行信息的业务类型,从功率控制参数的多个偏移值中确定功率控制参数的目标偏移值,接着根据功率控制参数的基准值和功率控制参数的目标偏移值,确定功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图6为本申请实施例提供的上行功率控制的方法的信令流程图五;参见图6,本实施例的方法可以包括:
步骤S601、网络设备确定至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系以及至少一个波束与功率控制参数的基准值的对应关系;
具体地,每个波束对应的相同SR标识的SR传输配置集对应的功率控制参数的多个偏移值可以相同。比如具有两个波束:波束1和波束2,波束1对应的SR传输配置集1对应的功率控制参数项“X”的多个偏移值为x1和x2,那么波束2对应的SR传输配置集1对应的功率控制参数项“X”的多个偏移值也可为x1和x2;其中,x1和x2中与eMMB业务对应的偏移值可为0。
步骤S602、网络设备发送第一指示信息、第三指示信息和第五指示信息至终端设备;第一指示信息用于指示至少一个波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,第三指示信息用于指示用于发送上行信息的目标波束,目标波束为所述至少一个波束中的波束;第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
步骤S603、根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,从目标波束对应的功率控制参数的多个偏移值中确定功率控制参数的目标偏移值;根据功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到功率控制参数的目标值。
步骤S604、根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,对于本实施例中的步骤S601~步骤S604,可结合图4所示的实施例和图5所示的实施例的介绍,本实施例中不再赘述。
另外,若同时发送的上行信息为SR信息和ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和CSI,则则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和ACK信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例中网络设备根据业务类型确定每个波束对应的功率控制参数的多个偏移值与多个调度请求SR传输配置集的对应关系,以及每个波束功率控制参数的基准值,终端设备根据该对应关系以及待发送上行信息的业务类型,从功率控制参数的多个偏移值中确定功率控制参数的目标偏移值,接着根据功率控制参数的基准值和功率控制 参数的目标偏移值,确定功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图7为本申请实施例提供的上行功率控制的方法的信令流程图五,参见图7,本实施例的方法可以包括:
步骤S701、网络设备确定终端设备的搜索空间配置集与功率控制参数的至少一个值的对应关系;
具体地,本实施例中的终端设备的搜索空间配置集为UE的专用搜索空间配置集,即网络设备向UE配置一个UE专用搜索空间。
以PUCCH为例,功率控制参数为如下中的任一或组合:小区级目标功率、UE级目标功率、与PUCCH format相关的参数、功率控制偏移量、绝对功率修正值或累计功率修正值。即功率控制参数的值为功率控制参数包括的每个功率控制参数项的值。
网络设备通过高层参数配置终端设备的搜索空间SS,搜索空间配置集中的配置参数包括:时间信息、检测周期信息、聚合度等级信息,控制信道候选集信息等等。
第一种可能的实施方式为:搜索空间配置集与功率控制参数中的每个功率控制参数项的一个值相对应,也就是功率控制参数包括的各功率控制参数项只配置一个值,比如,若功率控制参数包括:小区级目标功率、UE级目标功率、与PUCCH format相关的参数、功率控制偏移量、绝对功率修正值或累计功率修正值,则搜索空间配置集1与(P 1、P 2、Δ 1、Δ 2、δ 1)相对应,P 1为配置的小区级目标功率、P 2为配置的UE级目标功率、Δ 1为配置的与PUCCH格式相关的参数、Δ 2为配置的功率控制偏移量、δ 1为配置的绝对功率修正值或累计功率修正值。
搜索空间配置集配置对应的功率控制参数的值是与搜索空间配置集中具体的配置参数值决定的,也就是搜索空间配置集配置对应的功率控制参数的值是与搜索空间配置集中的参数值对应的业务类型配置的。
比如,网络设备配置的搜索空间配置集S1的时间指示信息为10000000000000(每一比特表示一个符号位,1表示一个时隙内SS可以出现的符号位置),表示网络设备只能在第一个符号发送控制信息,则可认为与eMBB业务对应,与该S1对应的功率控制参数项“UE级目标功率”可配置为P 01;若网络设备配置的搜索空间S2的时间指示信息为10001001001000,表示网络设备可以在多个符号发送控制信息,适合用于突发性数据传输,认为与URLLC业务对应,与该S2对应的功率控制参数项“UE级目标功率”可配置为P 02,P 02大于P 01
第二种可能的实施方式为:搜索空间配置集对应功率控制参数中的每个功率控制参数项的多个值,即为功率控制参数包括的各功率控制参数项可各配置多个值,此时,搜索空间配置集包括的聚合度等级信息可具有多个,每个聚合度等级信息对应每个功率控制参数项的一个值;当功率控制参数仅包括“UE级目标功率”这一功率控制参数项,为其配置的值为P 01、P 02,搜索空间配置集中的聚合度等级信息包括两种:1个CCE、2个CCE,可配置如下的对应关系:聚合度等级信息1个CCE与P 01对应,聚合度等级信息2个CCE与P 02对应,该对应关系详见表7。
表7
聚合度等级信息 UE级目标功率
1个CCE P 01
2个CCE P 02
表7所示的对应关系为:搜索空间配置集与“UE级目标功率”的两个值之间的对应关系,体现在搜索空间配置集包括两个聚合度等级信息,每个聚合度等级信息与“UE级目标功率”的一个值相对应。
第三种可能的实施方式为:搜索空间配置集对应功率控制参数中的每个功率控制参数项的多个值,即功率控制参数包括的各功率控制参数项可各配置多个值,此时,搜索空间配置集包括的控制信道候选集信息可具有多个,每个控制信道候选集信息对应每个功率控制参数项的一个值;当功率控制参数仅包括“UE级目标功率”这一功率控制参数项,为其配置的值为P 01、P 02,搜索空间配置集中包括两种控制信道候选集信息,可配置如下的对应关系:第二控制信道候选集信息与P 01对应,第二种控制信道候选集信息与P 02对应。
上述对应关系为:搜索空间配置集与“UE级目标功率”的两个值之间的对应关系,体现在搜索空间配置集包括两种控制信道候选集信息,每种控制信道候选集信息与“UE级目标功率”的一个值相对应。
通过上述各可能的实施方式,网络设备确定了搜索空间配置集与功率控制参数的对应关系。
步骤S702、网络设备发送指示信息至终端设备,指示信息用于指示搜索空间配置集与功率控制参数的至少一个值的对应关系。
具体地,指示信息的形式可参照上述实施例,本实施例中不再赘述。
步骤S703、终端设备根据搜索空间配置集与功率控制参数的至少一个值的对应关系,确定功率控制参数的目标值;
具体地,若搜索空间配置集与功率控制参数中的每个功率控制参数项的一个值相对应,则搜索空间配置集对应的功率控制参数的值(功率控制参数包括的所有功率控制参数项的值)就是率控制参数的目标值(功率控制参数包括的所有功率控制参数项的目标值)。
可以理解的是,网络设备在配置完搜索空间配置集后,会将搜索空间配置集发送给终端;网络设备会在搜索空间配置集对应的搜索空间上发送上行调度信息给终端设备,终端设备在搜索空间配置集对应的资源上检测上行调度信息。
对于搜索空间配置集对应功率控制参数中的每个功率控制参数项的多个值的情况,若其对应关系如步骤S701中的第二种可能的实施方式,即对应关系体现在搜索空间配置集包括多个聚合度等级信息,每个聚合度等级信息与每个功率控制参数项的一个值相对应,那么终端设备在哪个聚合度等级信息对应的资源上检测到上行调度信息,则对于每个功率控制参数项,功率控制参数项的目标值即为该聚合度等级信息对应的该功率控制参数项的值;或者说,确定网络设备发送上行调度信息的资源对应的聚合度配置信息为目标聚合度配置信息,从功率控制参数的至少一个值中,确定与目标聚合度配置信息对应的功率控制参数的值,根据与目标聚合度配置信息对应的功率控制参数的值,得到功率控制参数的目标值。
对于搜索空间配置集对应功率控制参数中的每个功率控制参数项的多个值的情况, 若其对应关系如步骤S701中的第三种可能的实施方式,即对应关系体现在搜索空间配置集包括多种控制信道候选集信息,每种控制信道候选集信息与每个功率控制参数项的一个值相对应,那么终端设备在哪个控制信道候选集信息对应的资源上检测到上行调度信息,则对于每个功率控制参数项,功率控制参数项的目标值即为该控制信道候选集信息对应的该功率控制参数项的值;或者说,确定网络设备发送上行调度信息的资源对应的控制信道候选集信息为目标控制信道候选集信息;从功率控制参数的至少一个值中,确定与目标控制信道候选集信息对应的功率控制参数的值;根据与目标聚合度配置信息对应的功率控制参数的值,得到功率控制参数的目标值。
步骤S704、根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,对于本实施例可参照上述实施例的介绍,本实施例中不再赘述。
本实施例中网络设备根据业务类型与终端设备的搜索空间配置集中各配置参数值的关系,为搜索空间配置集配置对应的功率控制参数的值,即根据业务类型建立搜索空间配置集与对功率控制参数的值的对应关系,以使终端设备根据该对应关系,获取用于确定发送功率的功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图8为本申请实施例提供的上行功率控制的方法的信令流程图七,参见图8,本实施例的方法可以包括:
步骤S801、网络设备确定功率控制参数的多个值与多种类型的物理资源的对应关系;
具体地,网络设备确定终端设备所在的小区的第一类型物理资源,并将第一类型物理资源通过RRC信令、MAC CE信令或者DCI信令指示给终端。其中,第一类型物理资源可为优先带宽对应的资源,即可以是NR中的部分带宽(bandwidth part,简称BWP),也可以是BWP中的部分资源,第一类型资源优先用于传输优先级较高的数据,或者第一类型资源的干扰水平低于第二类型物理资源,或者第一类型物理资源的信噪比要高于第二类型物理资源;网络设备为终端设备所在的小区配置的全部资源中,除了第一类型的资源以外的资源称为第二类型物理资源。
以PUSCH为例,功率控制参数为如下中的任一或组合:小区级目标功率、UE级目标功率、路径损耗补偿因子、功率控制偏移量、绝对功率修正值或累计功率修正值。即功率控制参数的值为功率控制参数包括的所有功率控制参数项的值。
在第一种实施方式中,网络设备为功率控制参数配置至少一个第一值(每个功率控制参数项对应一个第一值)和至少一个第二值(每个功率控制参数项对应一个第二值),并配置第一类型物理资源与功率控制参数的至少一个第一值相对应,第二类型物理资源与功率控制参数的至少一个第二值相对应,即配置了第一类型物理资源与功率控制参数的至少一个第一值对应、第二类型物理资源与功率控制参数的至少一个第二值对应的对应关系
比如,功率控制参数包括:UE级目标功率,为UE级目标功率配置两个值P 01和P 02,P 01大于P 02,配置第一类型物理资源与P 01对应,配置第二类型物理资源与P 02对应。
在第二种实施方式中,网络设备为功率控制参数配置至少一个第一值(每个功率 控制参数项对应一个第一值)和至少一个第二值(每个功率控制参数项对应一个第二值);并配置两个SR配置参数集和两个SR资源参数集,具体配置方法详见图2所示的实施例。
网络设备配置功率控制参数的多个值与多种类型的资源的对应关系如下:功率控制参数的多个值与多个组合的对应关系,第二类型物理资源与功率控制参数的至少一个第二值相对应,组合为第一类型物理资源与SR传输配置集的组合;SR传输配置集为SR配置参数集和/或SR资源参数集。
配置的SR传输配置集包括SR传输配置集1和SR传输配置集2,SR传输配置集1与URLLC业务的逻辑信道对应,SR传输配置集2与eMMB业务的逻辑信道对应,功率控制参数的多个值与多种类型的资源的具体对应关系如下:SR传输配置集1与第一类型物理资源的组合与功率控制参数的至少一个第一值对应,SR传输配置集2与第一类型物理资源的组合与功率控制参数的至少一个第二值对应,第二类型物理资源与功率控制参数的至少一个第二值对应。
比如:功率控制参数包括:UE级目标功率、路径损耗补偿因子,为UE级目标功率配置两个值P 01和P 02,P 01大于P 02,为路径损耗补偿因子配置两个值α 1和α 2,α 1大于α 2。配置第一类型物理资源与SR传输配置集1的组合与P 01和α 1对应,配置第一类型物理资源与SR传输配置集2的组合与P 02和α 2对应,第二类型物理资源与功率控制参数的至少一个第二值对应。
步骤S802、网络设备向终端设备发送指示信息,指示信息用于指示功率控制参数的多个值与多种类型的上行传输资源的对应关系;
步骤S803、终端设备根据功率控制参数的多个值与多种类型的资源的对应关系,确定功率控制参数的目标值。
具体地,若终端设备接收到的功率控制参数的多个值与多种类型的资源的对应关系为步骤S801中第一种实施方式中的对应关系:第一类型物理资源与功率控制参数的至少一个第一值对应、第二类型物理资源与功率控制参数的至少一个第二值对应的对应关系
若网络设备指示终端设备发送上行信息的资源为第一类型物理资源,则终端设备确定与第一资源对应的功率控制参数的至少一个第一值为功率控制参数的目标值(功率控制参数包括的所有功率控制参数项的目标值,也就是多个至少一个第一值);若网络设备指示终端设备发送上行信息的资源为第二类型物理资源,则终端设备确定与第二资源对应的功率控制参数的至少一个第二值为功率控制参数的目标值。由于功率控制参数的目标值为功率控制参数包括的所有功率控制参数项的目标值,也是至少一个值。
若终端设备接收到的功率控制参数的多个值与多种类型的资源的对应关系为步骤S801中第二种实施方式中的对应关系:SR传输配置集1与第一类型物理资源的组合与功率控制参数的至少一个第一值对应,SR传输配置集2与第一类型物理资源的组合与功率控制参数的至少一个第二值对应,第二类型物理资源与功率控制参数的至少一个第二值对应;则该步骤包括:从多个SR传输配置集中确定目标SR传输配置集,目标SR传输配置集用于向网络设备发送SR信息,具体实现参见图2所示的实施例,本 实施例中不再赘述;根据该对应关系、目标SR传输配置集和目标资源,从功率控制参数的多个值中确定功率控制参数的目标值;其中,目标资源为网络设备指示终端设备发送上行信息的资源,可能为第一类型物理资源,也可能为第二类型物理资源。
根据该对应关系、目标SR传输配置集和目标资源,从功率控制参数的多个值中确定功率控制参数的目标值包括:
若网络设备指示终端设备发送上行信息的资源为第一类型物理资源,则确定与第一类型物理资源和目标SR传输配置集的组合对应的功率控制参数的值为功率控制参数的目标值,即确定至少一个第一值,为功率控制参数的目标值。
若网络设备指示终端设备发送上行信息的资源为第二类型物理资源,则确定与第二类型物理资源对应的功率控制参数的值为功率控制参数的目标值,也就是至少一个第二值。
步骤S804、根据功率控制参数的目标值,确定发送上行信息的功率。
具体地,对于本实施例可参照上述实施例的介绍,本实施例中不再赘述。
进一步地,若同时发送的上行信息为SR信息和确认ACK信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和CSI,则相应物理信道上的发送功率为按照上述步骤确定的发送功率;若同时发送的上行信息为SR信息和ACK信息和CSI信息,则相应物理信道上的发送功率为按照上述步骤确定的发送功率。
本实施例中网络设备根据资源类型或者资源类型与SR配置传输集的组合与业务类型的关系,确定功率控制参数的多个值与多种类型的资源的对应关系,以使终端设备根据该对应关系,获取用于确定发送功率的功率控制参数的目标值,从而可满足不同可靠性业务对功率的需求。
图9为本申请实施例提供的一种上行功率控制的装置的结构示意图一;参见图9,本实施例的装置包括:接收模块21和确定模块22。
接收模块21,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;
确定模块22,用于根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;
所述确定模块22,还用于根据所述功率控制参数的目标值,确定发送上行信息的功率。
本申请实施例提供的上行功率控制的装置,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
可选地,所述确定模块22,具体用于:
从多个SR传输配置集中确定目标SR传输配置集;
根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于:
根据所述对应关系,确定所述功率控制参数的多个值中与所述目标SR传输配置 集对应的功率控制参数的值;
根据与所述目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
所述物理信道资源为网络设备指示的能够用于发送所述上行信息的资源。
可选地,所述接收模块21,还用于:
接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系;
所述确定模块,具体用于:
从多个SR传输配置集中确定目标SR传输配置集;
根据至少一个物理信道资源与所述多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源;
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述确定模块22,具体用于,
根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标物理信道资源对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述接收模块21还用于:
接收来自网络设备发送的第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,所述目标波束为所述至少一个波束中的波束;
所述确定模块,具体用于,
从多个SR传输配置集中确定目标SR传输配置集;
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于,
根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值 对应的多个偏移值;所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述方接收模块21还用于:
接收来自网络设备的第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值;
所述确定模块,具体用于,
根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述确定模块22,具体用于,
根据所述对应关系,确定所述功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和所述功率控制参数的基准值,得到所述功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述接收模块21还用于,
接收来自网络设备的第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
所述确定模块22,具体用于:
根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值。
可选地,所述确定模块,具体用于:
根据所述目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
根据所述功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到所述功率控制参数的目标值。
可选地,所述SR传输配置集为如下中的任一或组合:
SR配置参数集、SR资源参数集。
可选地,所述上行信息包括如下中的任一:
SR信息、SR信息和确认ACK信息、SR信息和信道状态信息CSI、SR信息和ACK信息和CSI。
可选地,若发送所述上行信息的物理信道为物理上行控制信道PUCCH,则所述功 率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、与PUCCH格式相关的参数,功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率;
若发送所述上行信息的物理信道为物理上行共享信道PUSCH,所述功率控制参数为如下中的任一或组合:小区级目标功率、UE级目标功率、绝对功率修正值或累计功率修正值、路损补偿因子、功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率。
本申请实施例提供的上行功率控制的装置,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
图10为本申请实施例提供的上行功率控制的装置的结构示意图二,参见图10,本实施的装置,包括:发送模块31和接收模块32。
发送模块31,用于向终端设备发送第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系,所述对应关系用于终端设备获取功率控制参数的目标值,所述功率控制参数的目标值用于终端设备确定发送上行信息的功率;
接收模块32,用于接收终端设备发送的上行信息,所述上行信息的发送功率为所述终端设备根据所述功率控制参数的目标值确定的。
本申请实施例提供的上行功率控制的装置,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述发送模块31,还用于,
向终端设备发送第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系,所述至少一个物理信道资源与所述多个SR传输配置集的对应关系用于终端设备从至少一个物理信道资源中确定目标物理信道资源,以使所述终端设备确定采用目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值。
在一种可能的实施方式中,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
可选地,所述发送模块31还用于:
向终端设备发送第三指示信息,所述第三指示信息用于指示用于发送上行信息的目标波束,以使所述终端设备确定采用目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系获取功率控制参数的目标值;所述目标波束为所述至少一个波束中的波束,。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述发送模块31还用于,向终端设备发送第四指示信息,所述第四指示信息用于 指示所述功率控制参数的基准值,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
在一种可能的实施方式中,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;
所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
所述发送模块31还用于,向终端设备发送第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系,所述功率控制参数的基准值用于终端设备获取功率控制参数的目标值。
本申请实施例提供的上行功率控制的装置,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在该装置的某一个芯片中实现,此外,也可以以程序的形式存储于装置的存储器中,由该装置的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元是一种控制发送的单元,可以通过该装置的发送装置,例如天线和射频装置发送信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图11为本申请实施例提供的一种终端设备的结构示意图。如图11所示,该终端设备包括:处理器110、存储器120、收发装置130。收发装置130可以与天线连接。在下行方向上,收发装置130通过天线接收基站发送的信息,并将信息发送给处理器110进行处理。在上行方向上,处理器110对终端的数据进行处理,并通过收发装置130发送给基站。
该存储器120用于存储实现以上方法实施例,或者图9所示实施例各个模块的程序,处理器110调用该程序,执行以上方法实施例的操作,以实现图9所示的各个模块。
或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该终端的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些单元可以 被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
图12为本申请实施例提供的一种基站的结构示意图。如图12所示,该基站包括:天线110、射频装置120、基带装置130。天线110与射频装置120连接。在上行方向上,射频装置120通过天线110接收终端发送的信息,将终端发送的信息发送给基带装置130进行处理。在下行方向上,基带装置130对终端的信息进行处理,并发送给射频装置120,射频装置120对终端的信息进行处理后经过天线110发送给终端。
在一种实现中,以上各个模块通过处理元件调度程序的形式实现,例如基带装置130包括处理元件131和存储元件132,处理元件131调用存储元件132存储的程序,以执行以上方法实施例中的方法。此外,该基带装置130还可以包括接口133,用于与射频装置120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,以上这些模块可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置130上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置130包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件131和存储元件132,由处理元件131调用存储元件132的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上基站包括至少一个处理元件,存储元件和通信接口,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(central processing unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实施例提供的终端设备执行的上行功率控制的方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得终端设备实施前述各种实施方式提供的上行功率控制的方法。
本申请实施例还提供了一种上行功率控制的装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述上行功率控制的装置执行上述任一实施例中的终端设备的操作。该装置可以是终端芯片。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实施例提供的网络设备执行的上行功率控制的方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。基站的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得网络设备实施前述各种实施方式提供的上行功率控制的方法。
本申请实施例还提供了一种上行功率控制的装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述上行功率控制的装置执行上述任一实施例中的基站的操作。该装置可以是基站芯片。
本申请实施例还提供了一种通信装置,包括:第一存储器和处理器;
所述第一存储器,用于存储第一程序指令;
所述处理器,用于调用所述第一存储器中存储的第一程序指令从第二存储器中调用第二程序指令以实现上述方法实施例中终端设备执行的方法。
其中,所述第二存储器为通信装置外部的存储器,第二存储器中存储有第二程序指令,第二程序指令被执行时,终端设备执行上述方法实施例中提供的上行功率控制的方法。
本申请实施例还提供一种通信装置,包括:第一存储器和处理器;
所述第一存储器,用于存储第一程序指令;
所述处理器,用于调用所述第一存储器中存储的第一程序指令从第二存储器中调用第二程序指令,以实现上述方法实施例中网络设备执行的方法。
其中,所述第二存储器为通信装置外部的存储器,第二存储器中存储有第二程序指令,第二程序指令被执行时,网路设备执行上述方法实施例中提供的上行功率控制的方法。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(magnetic tape)、软盘(floppy disk)、光盘(optical disc)及其任意组合。

Claims (30)

  1. 一种上行功率控制的方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;
    根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;
    根据所述功率控制参数的目标值,确定发送上行信息的功率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
    从多个SR传输配置集中确定目标SR传输配置集;
    根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值,包括:
    根据所述对应关系,确定所述功率控制参数的多个值中与所述目标SR传输配置集对应的功率控制参数的值;
    根据与所述目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
  4. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;
    所述物理信道资源为网络设备指示的能够用于发送所述上行信息的资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系;
    所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
    从多个SR传输配置集中确定目标SR传输配置集;
    根据至少一个物理信道资源与所述多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源;
    根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值。
  6. 根据权利要求5所述的方法,其特征在于,所述根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
    根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标物理信道资源对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
    根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标 值。
  7. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备发送的第三指示信息,所述第三指示信息用于指示发送上行信息的目标波束,所述目标波束为所述至少一个波束中的波束;
    所述根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值,包括:
    从多个SR传输配置集中确定目标SR传输配置集;
    根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
  9. 根据权利要求8所述的方法,其特征在于,所述根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
    根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
    根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
  10. 根据权利要求2所述的方法,其特征在于,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
    所述方法还包括:
    接收来自网络设备的第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值;
    根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值,包括:
    根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值,包括:
    根据所述对应关系,确定所述功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
    根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
    根据所述功率控制参数的目标偏移值和所述功率控制参数的基准值,得到所述功率控制参数的目标值。
  12. 根据权利要求8所述的方法,其特征在于,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
    所述方法还包括:
    接收来自网络设备的第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
    所述根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值,包括:
    根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值。
  13. 根据权利要求12所述的方法,其特征在于,所述根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值,包括:
    根据所述目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
    根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
    根据所述功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到所述功率控制参数的目标值。
  14. 根据权利要求1~13任一所述的方法,其特征在于,所述SR传输配置集为如下中的任一或组合:
    SR配置参数集、SR资源参数集;
    所述上行信息包括如下中的任一:
    SR信息、SR信息和确认ACK信息、SR信息和信道状态信息CSI、SR信息和ACK信息和CSI。
  15. 根据权利要求1~13任一所述的方法,其特征在于,若发送所述上行信息的物理信道为物理上行控制信道PUCCH,则所述功率控制参数为如下中的任一或组合:小区级目标功率、用户设备UE级目标功率、绝对功率修正值或累计功率修正值、与PUCCH格式相关的参数,功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率;
    若发送所述上行信息的物理信道为物理上行共享信道PUSCH,所述功率控制参数为如下中的任一或组合:小区级目标功率、UE级目标功率、绝对功率修正值或累计功率修正值、路损补偿因子、功率控制偏移量、终端设备允许在载波和服务小区上发射的最大功率。
  16. 一种上行功率控制的装置,其特征在于,包括:
    接收模块,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示功率控制参数的多个值与多个调度请求SR传输配置集的对应关系;
    确定模块,用于根据所述对应关系和所述功率控制参数的多个值,确定功率控制参数的目标值;
    所述确定模块,还用于根据所述功率控制参数的目标值,确定发送上行信息的功率。
  17. 根据权利要求16所述的装置,其特征在于,所述确定模块,具体用于:
    从多个SR传输配置集中确定目标SR传输配置集;
    根据所述对应关系、所述功率控制参数的多个值和目标SR传输配置集,确定功率控制参数的目标值。
  18. 根据权利要求17所述的装置,其特征在于,所述确定模块,具体用于:
    根据所述对应关系,确定所述功率控制参数的多个值中与所述目标SR传输配置集对应的功率控制参数的值;
    根据与所述目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
  19. 根据权利要求16所述的装置,其特征在于,所述第一指示信息用于指示至少一个物理信道资源各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系;
    所述物理信道资源为网络设备指示的能够用于发送所述上行信息的资源。
  20. 根据权利要求19所述的装置,其特征在于,所述接收模块,还用于:
    接收来自网络设备的第二指示信息,所述第二指示信息用于指示至少一个物理信道资源与所述多个SR传输配置集的对应关系;
    所述确定模块,具体用于:
    从多个SR传输配置集中确定目标SR传输配置集;
    根据至少一个物理信道资源与所述多个SR传输配置集的对应关系,从至少一个物理信道资源中确定与目标SR传输配置集对应的目标物理信道资源;
    根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标物理信道资源对应的功率控制参数的多个值,确定功率控制参数的目标值。
  21. 根据权利要求20所述的装置,其特征在于,所述确定模块,具体用于,
    根据目标物理信道资源对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定所述功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
    根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
  22. 根据权利要求16所述的装置,其特征在于,所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个值与多个SR传输配置集的对应关系。
  23. 根据权利要求22所述的装置,其特征在于,所述接收模块还用于:
    接收来自网络设备发送的第三指示信息,所述第三指示信息用于指示用于发送上 行信息的目标波束,所述目标波束为所述至少一个波束中的波束;
    所述确定模块,具体用于,
    从多个SR传输配置集中确定目标SR传输配置集;
    根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系、目标SR传输配置集以及目标波束对应的功率控制参数的多个值,确定功率控制参数的目标值。
  24. 根据权利要求23所述的装置,其特征在于,所述确定模块,具体用于,
    根据目标波束对应的功率控制参数的多个值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个值中与目标SR传输配置集对应的功率控制参数的值;
    根据与目标SR传输配置集对应的功率控制参数的值,得到功率控制参数的目标值。
  25. 根据权利要求17所述的装置,其特征在于,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
    所述方接收模块还用于:
    接收来自网络设备的第四指示信息,所述第四指示信息用于指示所述功率控制参数的基准值;
    所述确定模块,具体用于,
    根据所述对应关系、所述功率控制参数的多个偏移值、目标SR传输配置集和所述功率控制参数的基准值,确定功率控制参数的目标值。
  26. 根据权利要求25所述的装置,其特征在于,所述确定模块,具体用于,
    根据所述对应关系,确定所述功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
    根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
    根据所述功率控制参数的目标偏移值和所述功率控制参数的基准值,得到所述功率控制参数的目标值。
  27. 根据权利要求23所述的装置,其特征在于,功率控制参数的多个值包括:功率控制参数的基准值对应的多个偏移值;所述第一指示信息用于指示至少一个波束各自对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系;
    所述接收模块还用于,
    接收来自网络设备的第五指示信息,所述第五指示信息用于指示至少一个波束与功率控制参数的基准值的对应关系;
    所述确定模块,具体用于:
    根据目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系、目标SR传输配置集、目标波速对应的功率控制参数的多个偏移值以及目标波束对应的功率控制参数的基准值,确定功率控制参数的目标值。
  28. 根据权利要求27所述的装置,其特征在于,所述确定模块,具体用于:
    根据所述目标波束对应的功率控制参数的多个偏移值与多个SR传输配置集的对应关系,确定目标波束对应的功率控制参数的多个偏移值中与所述目标SR传输配置集对应的功率控制参数的偏移值;
    根据与所述目标SR传输配置集对应的功率控制参数的偏移值,得到功率控制参数的目标偏移值;
    根据所述功率控制参数的目标偏移值和目标波束对应的功率控制参数的基准值,得到所述功率控制参数的目标值。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得处理器执行权利要求1-15任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器中存储的所述程序指令以实现如权利要求1-15任一项所述的方法。
PCT/CN2019/074186 2018-02-13 2019-01-31 上行功率控制的方法和装置 WO2019157975A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810151025.XA CN110149686A (zh) 2018-02-13 2018-02-13 上行功率控制的方法和装置
CN201810151025.X 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157975A1 true WO2019157975A1 (zh) 2019-08-22

Family

ID=67588709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074186 WO2019157975A1 (zh) 2018-02-13 2019-01-31 上行功率控制的方法和装置

Country Status (2)

Country Link
CN (1) CN110149686A (zh)
WO (1) WO2019157975A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451021A (zh) * 2019-09-29 2022-05-06 苹果公司 上行链路空间关系指示和功率控制

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120035A1 (zh) * 2019-12-18 2021-06-24 华为技术有限公司 上行功率控制的方法和装置
CN113207165B (zh) * 2021-04-20 2023-10-13 Oppo广东移动通信有限公司 一种功率控制方法、终端设备、网络设备及存储介质
EP4358445A1 (en) * 2021-07-08 2024-04-24 Huawei Technologies Co., Ltd. Communication method and related device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002281A1 (en) * 2008-12-30 2011-01-06 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
CN104509180A (zh) * 2014-05-05 2015-04-08 华为终端有限公司 功率控制方法、用户设备和基站
US20150282092A1 (en) * 2012-11-05 2015-10-01 Sharp Kabushiki Kaisha Terminal device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022396A1 (en) * 2011-08-09 2013-02-14 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for uplink power control
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
US10779314B2 (en) * 2016-06-02 2020-09-15 Lg Electronics Inc. Method and apparatus for transmitting scheduling request in wireless communication system
CN107613557B (zh) * 2016-07-11 2020-03-24 电信科学技术研究院 一种发射功率确定方法、终端、网络设备和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002281A1 (en) * 2008-12-30 2011-01-06 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统
US20150282092A1 (en) * 2012-11-05 2015-10-01 Sharp Kabushiki Kaisha Terminal device
CN104509180A (zh) * 2014-05-05 2015-04-08 华为终端有限公司 功率控制方法、用户设备和基站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451021A (zh) * 2019-09-29 2022-05-06 苹果公司 上行链路空间关系指示和功率控制
US11864120B2 (en) 2019-09-29 2024-01-02 Apple Inc. Uplink spatial relation indication and power control
CN114451021B (zh) * 2019-09-29 2024-03-08 苹果公司 上行链路空间关系指示和功率控制

Also Published As

Publication number Publication date
CN110149686A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
US11553435B2 (en) Uplink information transmission method and apparatus
WO2018196550A1 (zh) 传输反馈信息的方法和装置
JP2022517004A (ja) マルチソース送信のための周波数領域リソース割り当て
WO2019157975A1 (zh) 上行功率控制的方法和装置
EP3160197B1 (en) Terminal device, base-station device, and communication method
AU2018361151A1 (en) System and method for indicating wireless channel status
CN111435845B (zh) 通信方法和通信装置
US9894558B2 (en) Lower and upper bounds for flow-control data requests between network nodes
JP2023099111A (ja) 端末デバイスで実施される方法、及びネットワークデバイスで実施される方法
CN110267339B (zh) 一种功率配置方法、用户设备及基站
CN107005945B (zh) 上行链路发送功率控制方法和设备
JP2017510147A (ja) フレキシブルサブフレーム動作の期間中のシステム情報の取得に関する方法及びノード
WO2019157895A1 (zh) 一种多波束传输时pucch功率的控制方法及装置
EP3160195B1 (en) Terminal device, base-station device, and communication method
US9425931B2 (en) PUCCH resource management mechanism for coordinated multi-point operation
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019029348A1 (zh) 数据传输方法、终端和基站
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2018171761A1 (zh) 一种上行发射功率控制的方法和设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2020207333A1 (zh) 链路失败恢复的方法和装置
CN108633042A (zh) 一种通信方法、终端及网络设备
US11171751B2 (en) Indicating contiguous resource allocation
US20240056247A1 (en) Enhancements for Beam Group Reporting in Multi-TRP Scenarios
US20230199793A1 (en) Systems and methods for updating active tci state for multi-pdcch based multi-trp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754703

Country of ref document: EP

Kind code of ref document: A1