WO2022078205A1 - 功率控制方法、网络设备、终端、装置及存储介质 - Google Patents

功率控制方法、网络设备、终端、装置及存储介质 Download PDF

Info

Publication number
WO2022078205A1
WO2022078205A1 PCT/CN2021/121183 CN2021121183W WO2022078205A1 WO 2022078205 A1 WO2022078205 A1 WO 2022078205A1 CN 2021121183 W CN2021121183 W CN 2021121183W WO 2022078205 A1 WO2022078205 A1 WO 2022078205A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
value
control mode
amc parameter
closed
Prior art date
Application number
PCT/CN2021/121183
Other languages
English (en)
French (fr)
Inventor
徐明宇
宋溪
刘蓉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022078205A1 publication Critical patent/WO2022078205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a power control method, a network device, a terminal, an apparatus, and a storage medium.
  • the power control process of the Physical Uplink Shared Channel is to adjust the transmit power of the PUSCH to compensate for the effects of path loss, shadow fading and fast fading; at the same time, the power control of the PUSCH is also used to control Inter-cell interference level.
  • PUSCH power control is mainly composed of two parts: open loop and closed loop.
  • An indispensable and important part in the closed-loop power control process is the transmission power control (Transmission Power Control, TPC) command update.
  • TPC Transmission Power Control
  • MCS Modulation and Coding Scheme
  • AMC Adaptive Modulation and Coding Scheme
  • the upper limit of the MCS level does not necessarily lead to performance improvement as the power increases, but instead brings about the problem of increased interference; the lower limit of the MCS level results in that the power is too low and there is no suitable MCS to match it, resulting in a block error rate ( Block Error Rate, BLER) increase problem.
  • Block Error Rate, BLER Block Error Rate
  • Embodiments of the present disclosure provide a power control method, a network device, a terminal, an apparatus, and a storage medium, so as to solve the technical problem in the prior art that interference and block error rate cannot be taken into account.
  • an embodiment of the present disclosure provides a power control method, including:
  • the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control period;
  • a power adjustment value for the next closed-loop power control period is determined based on the AMC parameter value and the power control mode of the current closed-loop power control period.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is less than the lower limit of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero; the power of the current closed-loop power control cycle
  • the control mode is the remote power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the upper limit of the minimum target AMC parameter, determine that the power adjustment value is equal to zero, and exit the remote power control mode .
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically further includes:
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the upper limit of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero; the power of the current closed-loop power control cycle
  • the control mode is the near-end power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the lower limit of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit of the maximum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is less than or equal to the lower limit of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero, and the near-end power control mode is exited .
  • the AMC parameter value is an MCS level value.
  • the AMC parameter value is a signal-to-interference-and-noise ratio SINR value corresponding to the MCS level.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • an embodiment of the present disclosure further provides a power control method, including:
  • the power adjustment value indicated by the network device is determined by the network device according to the adaptive modulation and coding AMC parameter value of the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle;
  • Power control is performed according to the power adjustment value.
  • an embodiment of the present disclosure further provides a base station, including a memory, a transceiver, and a processor;
  • a memory for storing a computer program; a transceiver for sending and receiving data under the control of the processor; a processor for reading the computer program in the memory and performing the following operations:
  • the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control period;
  • a power adjustment value for the next closed-loop power control period is determined based on the AMC parameter value and the power control mode of the current closed-loop power control period.
  • the determining the power adjustment value of the next closed-loop power control period based on the AMC parameter value and the power control mode of the current closed-loop power control period specifically includes:
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is less than the lower limit of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero; the power of the current closed-loop power control cycle
  • the control mode is the remote power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the upper limit of the minimum target AMC parameter, determine that the power adjustment value is equal to zero, and exit the remote power control mode .
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically further includes:
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the upper limit of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero; the power of the current closed-loop power control cycle
  • the control mode is the near-end power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the lower limit of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit of the maximum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is less than or equal to the lower limit of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero, and the near-end power control mode is exited .
  • the AMC parameter value is an MCS level value.
  • the AMC parameter value is a signal-to-interference and noise ratio SINR value corresponding to the MCS level.
  • the determining the power adjustment value of the next closed-loop power control period based on the AMC parameter value and the power control mode of the current closed-loop power control period specifically includes:
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the determining the power adjustment value of the next closed-loop power control period based on the AMC parameter value and the power control mode of the current closed-loop power control period specifically includes:
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • an embodiment of the present disclosure further provides a terminal, including a memory, a transceiver, and a processor;
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the power adjustment value indicated by the network device is determined by the network device according to the adaptive modulation and coding AMC parameter value of the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle;
  • Power control is performed according to the power adjustment value.
  • an embodiment of the present disclosure further provides a power control device, including:
  • the first obtaining module is used to obtain the adaptive modulation and coding AMC parameter value of the current closed-loop power control period; the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control period;
  • a determination module configured to determine the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle.
  • an embodiment of the present disclosure further provides a power control device, including:
  • the second obtaining module is used to obtain the power adjustment value indicated by the network device;
  • the power adjustment value is the adaptive modulation and coding AMC parameter value of the network device according to the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle definite;
  • a control module configured to perform power control according to the power adjustment value.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the first aspect as described above or the steps of the power control method described in the second aspect.
  • the power control method, network device, terminal, device, and storage medium provided by the embodiments of the present disclosure, based on the MCS level range in the AMC, reduce power consumption and interference by controlling excessively high power transmission, and improve excessively low power transmission, Improved performance and reduced BLER.
  • FIG. 1 is one of schematic diagrams of a power control method provided by an embodiment of the present disclosure
  • FIG. 2 is a second schematic diagram of a power control method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 5 is one of the schematic diagrams of a power control apparatus provided by an embodiment of the present disclosure.
  • FIG. 6 is a second schematic diagram of a power control apparatus provided by an embodiment of the present disclosure.
  • the power control process of PUSCH is to adjust the transmit power of PUSCH to compensate for the effects of path loss, shadow fading, and fast fading. At the same time, the power control of PUSCH is also used to control the interference level between cells.
  • PUSCH power control mainly consists of two parts: open loop and closed loop. An integral part of the closed loop power control process is the TPC command update.
  • the existing standard specifies that the TPC command needs to be included in the Physical Downlink Control Channel (PDCCH) with the Downlink Control Information (Downlink Control Information, DCI) format (Format) 0, or included in the DCI format 3/3A
  • DCI Downlink Control Information
  • the cyclic redundancy check (Cyclic Redundancy Check, CRC) check bits of the PDCCH are scrambled by the TPC-PUSCH-RNTI).
  • the current PUSCH power control adjustment state is denoted by f(i).
  • f(i) the accumulated value mode power control is enabled through the UE-specific parameter (accumulation-enabled) notified by the Radio Resource Control (RRC) layer, or the TPC command word ⁇ PUSCH is included in DCI Format0 and the CRC is checked In the PDCCH whose bits are scrambled by Temporary C-RNTI, the calculation formula of f(i) is as follows:
  • f(i) is the current PUSCH power control adjustment state
  • ⁇ PUSCH (iK PUSCH ) refers to the TPC command sent by the DCI format 0 or 3/3A on the iK PUSCH subframe
  • f(0) is the resetting of f(i) initial value after setting.
  • the method for determining the value of K PUSCH is as follows:
  • TDD Time Division Duplex
  • UL/DL uplink/downlink
  • K PUSCH K PUSCH for different TDD UL/DL configurations
  • K PUSCH is determined according to Table 1.
  • the UE attempts to decode a PDCCH of DCI Format 0 with the UE's C-RNTI or SPS-RNTI (semi-persistent scheduling RNTI) in each Discontinuous Reception (DRX) subframe, and also uses the UE's TPC-PUSCH - RNTI attempts to decode a PDCCH of DCI Format 3/3A.
  • C-RNTI or SPS-RNTI semi-persistent scheduling RNTI
  • the UE If the UE detects the PDCCH of DCI Format0 and DCI Format3/3A simultaneously in the same subframe, the UE only uses the TPC command ⁇ PUSCH given by DCI Format0.
  • ⁇ PUSCH 0dB.
  • the cumulative correction value ⁇ PUSCH dB When the cumulative correction value ⁇ PUSCH dB is included in the PDCCH with DCI format 3/3A, its adjustment value sets include two types: set 1 is given by Table 2, set 2 is given by Table 3, and which set is selected is determined by the RRC layer. The number of bits of the parameter TPC-Index is determined.
  • K PUSCH The value of K PUSCH is determined as follows:
  • K PUSCH 4;
  • K PUSCH is given by Table 1.
  • ⁇ msg2 is the TPC command word indicated in the random access response message
  • the value of the TPC command word ⁇ msg2 for the scheduled PUSCH is shown in Table 4.
  • the ⁇ P rampup is configured by the RRC layer and corresponds to the total amount of power ramp from the first to the last preamble transmission.
  • the 5G UE performs PUSCH transmission, and the transmit power is calculated according to the following formula:
  • the UE combines the maximum transmit power configured by high-level parameters, the output power determined by the application scenario and its own radio frequency requirements.
  • P O_PUSCHb,,f,c (j) UE reference transmit power, the cell-level nominal power parameter P O_NOMINALP_USCH,f,c (j) configured by the upper layer and the UE-level nominal power parameter P O_UE_PUSCH,b, f,c (j) composition.
  • J is the index related to the business, and the values are as follows:
  • NominalWithoutGrant is the Po-nominal without authorization
  • AlphaSetId is the alpha parameter set ID.
  • each set is associated with a p0-PUSCH-AlphaSetId, and if DCI format 0_1 contains an SRI field, the UE selects a set of SRI- PUSCH-PowerControl configuration, then obtain p0-PUSCH-AlphaSetId from the SRI-PUSCH-PowerControl configuration, and then determine PO_UE_PUSC, Hb, f, c (j) according to the P0-PUSCH-AlphaSet corresponding to the ID.
  • PowerControl is power control.
  • ⁇ b, f, c (1) is the alpha value in the P0-PUSCH-AlphaSet corresponding to the ID of the p0-PUSCH-Alpha configuration in the high-level parameter ConfiguredGrantConfig;
  • each set is associated with a p0-PUSCH-AlphaSetId, and if DCI format 0_1 contains an SRI field, the UE selects a set of SRI- PUSCH-PowerControl configuration, then obtain p0-PUSCH-AlphaSetId from the SRI-PUSCH-PowerControl configuration, and then determine ⁇ b, f, c (j) according to the P0-PUSCH-AlphaSet corresponding to the ID;
  • PL b,f,c (q d ) the path loss of the downlink activated BWP measured by the UE using the reference signal with index q d , in dB.
  • BWP is the bandwidth part.
  • the reference signal selection process is as follows:
  • the UE uses the SS/PBCH reference signal used to obtain MIB; PathlossReference is the path loss reference.
  • each set of parameter signal sets is associated with SSB by ssb-Index or CSI-RS by csi-RS-Index (or at the same time)
  • ssb-Index or CSI-RS by csi-RS-Index
  • the UE uses the same reference signal resource index q d corresponding to the PRACH transmission;
  • each group is associated with a PUSCH-PathlossReferenceRS-Id, and if DCI format 0_1 contains an SRI field, the UE finds the associated q d according to SRI-PUSCH-PowerControlId , and then determine the associated SSB or CSI-RS reference signal index ssb-Index or csi-RS-Index according to q d , and further determine the cell reference signal resource configuration according to ssb-Index or csi-RS-Index, and determine the reference symbol resource. the reference symbol set for serving cell c or the cell specified by pathlossReferenceLinking;
  • the UE PUSCH uses the RS resource q d in the first PUCCH resource; spatial relation info for the spatial relationship information.
  • the PUSCH transmission is scheduled by DCI format 0_0, and the PUCCH-SpatialRelationInfo parameter is not configured for UE PUCCH transmission, or is scheduled by DCI format 0_1 that does not contain the SRI field, or the SRI-PUSCH-PowerControl IE is not configured for the UE, then
  • the reference signal resource index q d finally determined by the UE is equal to 0, which corresponds to the reference signal resource on the current serving cell or the serving cell indicated by pathlossReferenceLinking;
  • q d is equal to the reference signal resource of the current serving cell corresponding to pathlossReferenceIndex in rrc-ConfiguredUplinkGrant or the reference signal resource of the serving cell indicated by pathlossReferenceLinking;
  • the UE finds the PathlossReferenceRS-Id configuration according to the resource mapped by the SRI domain index value of the DCI format 0_1 at the time of activation. If the SRI domain is not included in the DCI, Then the reference signal resource index q d finally determined by the UE is equal to 0, which corresponds to the reference signal resource on the current serving cell or the serving cell indicated by pathlossReferenceLinking.
  • PL b,f,c (q d ) referenceSignalPower-higher layer filtered RSRP, referenceSignalPower is configured by high layer parameters, RSRP is measured by the reference serving cell corresponding to q d , and high layer filtering configuration is configured by the QuantityConfig of the reference serving cell.
  • the referenceSignalPower is provided by ss-PBCH-BlockPower. If periodic CSI-RS reception is configured, the referenceSignalPower is provided by ss-PBCH-BlockPower or powerControlOffsetSS. The SSB corresponding to the CSI-RS transmission power offset Transmission power; if powerControlOffsetSS is not configured, the UE assumes that the offset is 0dB.
  • K S 1.25
  • ⁇ TF , b, f, c (i) 0
  • Ks 0;
  • no UL-SCH data is where: C is the transmission code block, K r is the size of the code block r, and N RE is the The number of REs calculated by the formula, is the number of symbols of PUSCH on transmission opportunity i, is the number of sub-carriers except DM-RS sub-carriers and time-frequency domain tracking reference signal points.
  • Q m is the modulation order
  • R is the target code rate, which is provided by the PUSCH transmission scheduling DCI that includes CSI but does not include UL-SCH.
  • f b, f, c (i, l) are closed-loop parameters, and are the power adjustment amount issued by the base station to the UE through the TPC command word. details as follows:
  • ⁇ PUSCHb,,f,c (i,l): is the TPC command word value contained in DCI format 0_0 or DCI format 0_1, or contained in the DCI format 2_2 TPC command word scrambled with TPC-PUSCH-RNTI.
  • the UE finds the associated sri-PUSCH-ClosedLoopIndex through the SRI of DCI format 0_1;
  • the UE obtains a TPC command word from the DCI format 2_2 scrambled by TPC-PUSCH-RNTI, then the l value is provided by the DCI format 2_2 closed-loop process indication field.
  • D i is the TPC command word received during the period from K PUSCH (ii 0 )-1 symbols before transmission opportunity ii 0 to K PUSCH (i) symbols before transmission opportunity i Sum;
  • K PUSCH (i) is the number of symbols between the last symbol received from the corresponding PDCCH and the first symbol transmitted by the PUSCH;
  • K PUSCH (i) is min ⁇ K PUSCH,min , k2 ⁇ , where k2 is specified in PUSCH-ConfigCommon IE;
  • ⁇ P rampupreqeusted,b,f,c is provided by the upper layer and represents the maximum ramping power from the first to the last random access, is the number of resource blocks corresponding to the first PUSCH transmission.
  • ⁇ TF ,b,f,c (0) is the power adjustment value for the first PUSCH transmission.
  • the power control algorithm of PUSCH is divided into two parts: the setting of the open-loop operating point and the closed-loop power control algorithm.
  • the closed-loop power control is reflected in the parameter f(i), and the closed-loop power control power adjustment is determined by the difference between the measured value and the target value, and the target value is different for different users.
  • the influence factors of AMC are not considered in the closed-loop target value of the existing power control algorithm. Because of too high transmit power or too low transmit power, there is no suitable MCS to match its performance, because there are upper and lower limits of MCS level in AMC.
  • the upper limit of the MCS level does not necessarily lead to performance improvement with the increase of power, but brings about the problem of increased interference; the lower limit of the MCS level results in that the power is too low and there is no suitable MCS to match it, resulting in an increase in BLER. question.
  • the embodiments of the present disclosure propose a power control strategy combined with AMC.
  • the MCS level is low, and the transmit power of the UE is no longer reduced, so as to avoid further performance degradation.
  • the transmit power of the UE can be reduced to reduce the impact on the performance of other users and reduce the interference in the local area or adjacent areas.
  • the event or cycle performs power protection determination and specific power adjustment operations, and the power adjustment is generated before sending the TPC command.
  • FIG. 1 is one of schematic diagrams of a power control method provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a power control method, the execution subject of which may be a network device, such as a base station.
  • the method includes:
  • Step 101 Obtain the adaptive modulation and coding AMC parameter value of the current closed-loop power control period; the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control period.
  • the network device obtains the AMC parameter value of the current closed-loop power control period.
  • the AMC parameter value is used to characterize the MCS of the current closed-loop power control cycle.
  • the MCS level value may be used as the AMC parameter value, or the signal to interference plus noise ratio (Signal to Interference plus Noise Ratio, SINR) value corresponding to the MCS level may be used.
  • SINR Signal to Interference plus Noise Ratio
  • Step 102 Determine the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle.
  • the base station may determine the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle.
  • the power control mode includes a far-end power control mode and a near-end power control mode.
  • the power adjustment value may be a fixed value, or may be a value determined according to the AMC parameter value.
  • the power control method provided by the embodiments of the present disclosure based on the MCS level range in the AMC, reduces power consumption and interference by controlling too high power transmission, improves performance and reduces BLER by improving too low power transmission.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is less than the lower limit of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero; the power of the current closed-loop power control cycle
  • the control mode is the remote power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the upper limit of the minimum target AMC parameter, determine that the power adjustment value is equal to zero, and exit the remote power control mode .
  • the specific steps for determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle are as follows:
  • flag_min_pc_protect true, and the AMC parameter value is less than the lower limit value of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero.
  • flag_min_pc_protect true, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, the power adjustment value is determined to be equal to zero.
  • flag_min_pc_protect true
  • the AMC parameter value is greater than or equal to the upper limit value of the minimum target AMC parameter
  • the size of the lower limit value of the minimum target AMC parameter and the upper limit value of the minimum target AMC parameter can be configured according to the actual situation, which is not limited here.
  • the power control method provided by the embodiment of the present disclosure determines the power adjustment value according to the relationship between the AMC parameter value and the preset threshold, further reduces power consumption and interference, improves performance, and reduces BLER.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically further includes:
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the upper limit of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero; the power of the current closed-loop power control cycle
  • the control mode is the near-end power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the lower limit of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit of the maximum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is less than or equal to the lower limit of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero, and the near-end power control mode is exited .
  • the specific step of determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle further includes:
  • flag_max_pc_protect true, and the AMC parameter value is greater than the upper limit value of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero.
  • flag_max_pc_protect true, and the AMC parameter value is greater than the lower limit value of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit value of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero.
  • flag_max_pc_protect true
  • the AMC parameter value is less than or equal to the lower limit value of the maximum target AMC parameter
  • the size of the lower limit value of the maximum target AMC parameter and the upper limit value of the maximum target AMC parameter can be configured according to actual conditions, which are not limited here.
  • the power control method provided by the embodiment of the present disclosure determines the power adjustment value according to the relationship between the AMC parameter value and the preset threshold, further reduces power consumption and interference, improves performance, and reduces BLER.
  • the AMC parameter value is an MCS level value.
  • the AMC parameter value is the MCS level value.
  • flag_min_pc_protect true, and the MCS level value is less than the lower limit value of the minimum target MCS level, it is determined that the power adjustment value is greater than zero.
  • flag_min_pc_protect true, and the MCS level value is greater than or equal to the lower limit value of the minimum target MCS level, and the MCS level value is less than the upper limit value of the minimum target MCS level, the power adjustment value is determined to be equal to zero.
  • flag_min_pc_protect true
  • the MCS level value is greater than or equal to the upper limit of the minimum target MCS level
  • the sizes of the lower limit value of the minimum target MCS level and the upper limit value of the minimum target MCS level can be configured according to actual conditions, which are not limited here.
  • flag_max_pc_protect true, and the MCS level value is greater than the upper limit value of the maximum target MCS level, it is determined that the power adjustment value is less than zero.
  • flag_max_pc_protect true, and the MCS level value is greater than the lower limit value of the maximum target MCS level, and the MCS level value is less than or equal to the upper limit value of the maximum target MCS level, the power adjustment value is determined to be equal to zero.
  • the size of the lower limit value of the maximum target MCS level and the upper limit value of the maximum target MCS level can be configured according to actual conditions, which are not limited here.
  • the power control method provided by the embodiments of the present disclosure determines the power adjustment value according to the relationship between the MCS level value and the preset threshold value, further reduces power consumption and interference, improves performance, and reduces BLER.
  • the AMC parameter value is a signal-to-interference and noise ratio SINR value corresponding to the MCS level.
  • the AMC parameter value is the SINR value corresponding to the MCS level.
  • flag_min_pc_protect true, and the SINR value is less than the lower limit value of the minimum target SINR, it is determined that the power adjustment value is greater than zero.
  • flag_min_pc_protect true, and the SINR value is greater than or equal to the lower limit value of the minimum target SINR, and the SINR value is smaller than the upper limit value of the minimum target SINR, the power adjustment value is determined to be equal to zero.
  • the size of the lower limit value of the minimum target SINR and the upper limit value of the minimum target SINR can be configured according to the actual situation, which is not limited here.
  • flag_max_pc_protect true, and the SINR value is greater than the upper limit value of the maximum target SINR, it is determined that the power adjustment value is less than zero.
  • flag_max_pc_protect true, and the SINR value is greater than the lower limit of the maximum target SINR, and the SINR value is less than or equal to the upper limit of the maximum target SINR, the power adjustment value is determined to be equal to zero.
  • the size of the lower limit value of the maximum target SINR and the upper limit value of the maximum target SINR can be configured according to the actual situation, which is not limited here.
  • the power control method provided by the embodiment of the present disclosure determines the power adjustment value according to the relationship between the SINR value and the preset threshold, further reduces power consumption and interference, improves performance, and reduces BLER.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value and the power control mode of the current closed-loop power control cycle, which specifically includes:
  • EMCS PRB_K ⁇ EMCS PRB_K-1 +(1- ⁇ )MCS PRB_k
  • EMCS PRB_K is the value after smoothing the Kth MCS level value
  • EMCS PRB_K-1 is the value after smoothing the K-1th MCS level value
  • MCS PRB_K is the value determined by scheduling in the uplink scheduling module
  • the value of the Kth MCS level, ⁇ is the smoothing factor.
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the power control method provided by the embodiments of the present disclosure further reduces power consumption and interference, improves performance, and reduces BLER by smoothing the AMC parameter value.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value and the power control mode of the current closed-loop power control cycle, which specifically includes:
  • linear average processing is performed on multiple AMC parameter values in the current closed-loop power control cycle.
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • the power control method provided by the embodiments of the present disclosure further reduces power consumption and interference, improves performance, and reduces BLER by smoothing the AMC parameter value.
  • ⁇ power is a positive value, the power ⁇ power needs to be increased, and the TPC command word ⁇ PUSCH is sent.
  • FIG. 2 is a second schematic diagram of a power control method provided by an embodiment of the present disclosure. As shown in FIG. 2 , an embodiment of the present disclosure provides a power control method, and the execution body of the method may be terminal. The method includes:
  • Step 201 Obtain the power adjustment value indicated by the network device; the power adjustment value is determined by the network device according to the adaptive modulation and coding AMC parameter value of the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle.
  • Step 202 Perform power control according to the power adjustment value.
  • a power control method provided by an embodiment of the present disclosure is the same as the method described in the above-mentioned corresponding embodiments, and can achieve the same technical effect, the difference is only in that the execution body is different, and this embodiment will not be described here.
  • the same parts and beneficial effects as those in the above-mentioned corresponding method embodiments will be described in detail.
  • FIG. 3 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device includes a memory 320, a transceiver 300, and a processor 310:
  • the memory 320 is used to store computer programs; the transceiver 300 is used to send and receive data under the control of the processor 310; the processor 310 is used to read the computer program in the memory 320 and perform the following operations:
  • the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control period;
  • a power adjustment value for the next closed-loop power control period is determined based on the AMC parameter value and the power control mode of the current closed-loop power control period.
  • the transceiver 300 is used to receive and transmit data under the control of the processor 310 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 310 and various circuits of memory represented by memory 320 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 300 may be multiple elements, ie, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 may store data used by the processor 310 in performing operations.
  • the processor 310 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is less than the lower limit of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero; the power of the current closed-loop power control cycle
  • the control mode is the remote power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the upper limit of the minimum target AMC parameter, determine that the power adjustment value is equal to zero, and exit the remote power control mode .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically further includes:
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the upper limit of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero; the power of the current closed-loop power control cycle
  • the control mode is the near-end power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the lower limit of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit of the maximum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is less than or equal to the lower limit of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero, and the near-end power control mode is exited .
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the AMC parameter value is an MCS level value.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the AMC parameter value is a signal-to-interference and noise ratio SINR value corresponding to the MCS level.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • the above-mentioned network device provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect. And the beneficial effects will be described in detail.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device includes a memory 420, a transceiver 400, and a processor 410:
  • the memory 420 is used to store computer programs; the transceiver 400 is used to send and receive data under the control of the processor 410; the processor 410 is used to read the computer program in the memory 420 and perform the following operations:
  • the power adjustment value indicated by the network device is determined by the network device according to the adaptive modulation and coding AMC parameter value of the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle;
  • Power control is performed according to the power adjustment value.
  • the transceiver 400 is used to receive and transmit data under the control of the processor 410 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 410 and various circuits of memory represented by memory 420 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 400 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 430 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 410 is responsible for managing the bus architecture and general processing, and the memory 420 may store data used by the processor 410 in performing operations.
  • the processor 410 may be a CPU (central processing unit), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device, Complex Programmable Logic Device), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device, Complex Programmable Logic Device
  • the processor can also use a multi-core architecture.
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • FIG. 5 is one of the schematic diagrams of a power control apparatus provided by an embodiment of the present disclosure.
  • the power control apparatus includes a first acquisition module 501 and a determination module 502, wherein:
  • the first obtaining module 501 is used to obtain the adaptive modulation and coding AMC parameter value of the current closed-loop power control cycle; the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control cycle; The AMC parameter value and the power control mode of the current closed loop power control cycle determine the power adjustment value for the next closed loop power control cycle.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is less than the lower limit of the minimum target AMC parameter, it is determined that the power adjustment value is greater than zero; the power of the current closed-loop power control cycle
  • the control mode is the remote power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the lower limit value of the minimum target AMC parameter, and the AMC parameter value is smaller than the upper limit value of the minimum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the remote power control mode, and the AMC parameter value is greater than or equal to the upper limit of the minimum target AMC parameter, determine that the power adjustment value is equal to zero, and exit the remote power control mode .
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the determining the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically further includes:
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the upper limit of the maximum target AMC parameter, it is determined that the power adjustment value is less than zero; the power of the current closed-loop power control cycle
  • the control mode is the near-end power control mode, which is determined in the last closed-loop power control cycle;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is greater than the lower limit of the maximum target AMC parameter, and the AMC parameter value is less than or equal to the upper limit of the maximum target AMC parameter, then it is determined that the power adjustment value is equal to zero;
  • the power control mode of the current closed-loop power control cycle is the near-end power control mode, and the AMC parameter value is less than or equal to the lower limit of the maximum target AMC parameter, it is determined that the power adjustment value is equal to zero, and the near-end power control mode is exited .
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the AMC parameter value is an MCS level value.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the AMC parameter value is a signal-to-interference-and-noise ratio SINR value corresponding to the MCS level.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control period is determined based on the smoothed AMC parameter value and the power control mode of the current closed-loop power control period.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • the determining of the power adjustment value of the next closed-loop power control cycle based on the AMC parameter value and the power control mode of the current closed-loop power control cycle specifically includes:
  • the power adjustment value of the next closed-loop power control cycle is determined based on the AMC parameter value processed by the linear average and the power control mode of the current closed-loop power control cycle.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • FIG. 6 is the second schematic diagram of a power control apparatus provided by an embodiment of the present disclosure.
  • the power control apparatus includes a second acquisition module 601 and a control module 602, wherein:
  • the second obtaining module 601 is configured to obtain the power adjustment value indicated by the network device; the power adjustment value is the adaptive modulation and coding AMC parameter value of the network device according to the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle Determined; the control module 602 is configured to perform power control according to the power adjustment value.
  • the above-mentioned power control apparatus provided by the embodiment of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment, and can achieve the same technical effect, and the same technical effect as the method embodiment in this embodiment will not be discussed here. Parts and beneficial effects are described in detail.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the part that contributes to the prior art, or all or part of the technical solutions, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the foregoing implementations
  • Examples of methods provided include:
  • the AMC parameter value is used to represent the modulation and coding strategy MCS of the current closed-loop power control cycle; the power control based on the AMC parameter value and the current closed-loop power control cycle The mode determines the power adjustment value for the next closed loop power control cycle.
  • the power adjustment value is determined by the network device according to the adaptive modulation and coding AMC parameter value of the last closed-loop power control cycle and the power control mode of the last closed-loop power control cycle; according to the power Adjust the value for power control.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.) , optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)) and the like.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the term “and/or” in the embodiments of the present disclosure describes the association relationship of associated objects, and indicates that three relationships may exist.
  • a and/or B may indicate: A exists alone, and A exists at the same time and B, there are three cases of B alone.
  • the character "/" generally indicates that the associated objects are an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • General packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • network devices may include centralized unit (CU) nodes and distributed unit (DU) nodes, which may also be geographically separated.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种功率控制方法、网络设备、终端、装置及存储介质,所述方法包括:获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。本公开实施例提供的功率控制方法、网络设备、终端、装置及存储介质,基于AMC中MCS等级范围,通过控制过高的功率发送,降低了功耗和干扰,通过提升过低的功率发送,提升了性能,降低BLER。

Description

功率控制方法、网络设备、终端、装置及存储介质
相关申请的交叉引用
本申请要求于2020年10月16日提交的申请号为202011112047.9,发明名称为“功率控制方法、网络设备、终端、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种功率控制方法、网络设备、终端、装置及存储介质。
背景技术
物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的功率控制过程是对PUSCH的发射功率进行调整,目的是补偿路径损耗、阴影衰落以及快衰落等的影响;同时,PUSCH的功率控制也用于控制小区间的干扰水平。
现有技术中,PUSCH功率控制主要由开环和闭环两个部分组成。在闭环功率控制过程中不可缺少的一个重要部分就是传输功率控制(Transmission Power Control,TPC)命令更新。通过更新TPC命令进行PUSCH功率控制。
但是,现有技术中的方案会导致因为过高的发送功率或者过低的发送功率并没有合适的调制与编码策略(Modulation and Coding Scheme,MCS)匹配其性能,因为自适应调制编码(Adaptive Modulation and Coding,AMC)中MCS等级存在上限和下限。MCS等级的上限,导致并不是随着功率提升一定会带来性能提升,反而带来干扰增加的问题;MCS等级的下限,导致过低的功率并没有合适的MCS与其匹配,造成误块率(Block Error Rate,BLER)增大的问题。
发明内容
本公开实施例提供一种功率控制方法、网络设备、终端、装置及 存储介质,用以解决现有技术中干扰和误块率无法兼顾的技术问题。
第一方面,本公开实施例提供一种功率控制方法,包括:
获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
可选地,根据本公开一个实施例的功率控制方法,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
可选地,根据本公开一个实施例的功率控制方法,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC 参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
可选地,根据本公开一个实施例的功率控制方法,所述AMC参数值为MCS等级值。
可选地,根据本公开一个实施例的功率控制方法,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
可选地,根据本公开一个实施例的功率控制方法,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
可选地,根据本公开一个实施例的功率控制方法,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
第二方面,本公开实施例还提供一种功率控制方法,包括:
获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
根据所述功率调整值进行功率控制。
第三方面,本公开实施例还提供一种基站,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控 制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
可选地,根据本公开一个实施例的网络设备,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
可选地,根据本公开一个实施例的网络设备,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC 参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
可选地,根据本公开一个实施例的网络设备,所述AMC参数值为MCS等级值。
可选地,根据本公开一个实施例的网络设备,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
可选地,根据本公开一个实施例的网络设备,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
可选地,根据本公开一个实施例的网络设备,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
第四方面,本公开实施例还提供一种终端,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
根据所述功率调整值进行功率控制。
第五方面,本公开实施例还提供一种功率控制装置,包括:
第一获取模块,用于获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
确定模块,用于基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
第六方面,本公开实施例还提供一种功率控制装置,包括:
第二获取模块,用于获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
控制模块,用于根据所述功率调整值进行功率控制。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面或第二方面所述的功率控制方法的步骤。
本公开实施例提供的功率控制方法、网络设备、终端、装置及存储介质,基于AMC中MCS等级范围,通过控制过高的功率发送,降低了功耗和干扰,通过提升过低的功率发送,提升了性能,降低BLER。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种功率控制方法的示意图之一;
图2是本公开实施例提供的一种功率控制方法的示意图之二;
图3是本公开实施例提供的一种网络设备的结构示意图;
图4是本公开实施例提供的一种终端的结构示意图;
图5是本公开实施例提供的一种功率控制装置的示意图之一;
图6是本公开实施例提供的一种功率控制装置的示意图之二。
具体实施方式
PUSCH的功率控制过程是对PUSCH的发射功率进行调整,目的是补偿路径损耗、阴影衰落以及快衰落等的影响;同时,PUSCH的功率控制也用于控制小区间的干扰水平。PUSCH功率控制主要由开环和闭环两个部分组成。在闭环功率控制过程中不可缺少的一个重要部分就是TPC命令更新。
现有标准中规定了TPC命令需要包含于具有下行控制信息(Downlink Control Information,DCI)格式(Format)0的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中,或包含于DCI格式3/3A的PDCCH中并与其他TPC命令联合编码(此时PDCCH的循环冗余校验(Cyclic Redundancy Check,CRC)校验比特由TPC-PUSCH-RNTI进行加扰)。当前的PUSCH功率控制调整状态用f(i)表示。
若通过无线资源控制(Radio Resource Control,RRC)层通知的UE专属参数(积使能参数Accumulation-enabled)开启了累积值方式的功率控制,或者TPC命令字δ PUSCH包含在DCI Format0并且CRC校验比特采用临时(Temporary)C-RNTI加扰的PDCCH中,则f(i)的计算公式如下:
f(i)=f(i-1)+δ PUSCH(i-K PUSCH)
其中,f(i)为当前的PUSCH功率控制调整状态,δ PUSCH(i-K PUSCH)指i-K PUSCH子帧上的DCI格式0或3/3A发送的TPC命令,f(0)是f(i)重置之后的初始值。
K PUSCH的值的确定方法如下:
对于频分双工(Frequency Division Duplex,FDD),K PUSCH=4;
对于时分双工(Time Division Duplex,TDD)上行/下行(UL/DL)配置(Configuration)1-6时,不同TDD UL/DL配置的K PUSCH取值如 表1所示。
对于TDD UL/DL配置0:
当由PDCCH DCI格式0调度的PUSCH传输位于子帧2或7且DCI中的UL index信息域的低比特位为1时,K PUSCH=7;
对于其它情况的PUSCH传输,K PUSCH的值根据表1确定。
表1不同TDD UL/DL配置的K PUSCH取值
Figure PCTCN2021121183-appb-000001
UE在每个非非连续接收(Discontinuous Reception,DRX)子帧用该UE的C-RNTI或SPS-RNTI(半持久调度RNTI)尝试解码一个DCI Format0的PDCCH,同时也用该UE的TPC-PUSCH-RNTI尝试解码一个DCI Format3/3A的PDCCH。
如果UE在同一子帧内同时检测到DCI Format0和DCI Format3/3A的PDCCH,则UE只使用由DCI Format0给出的TPC命令δ PUSCH
当在某一子帧中没有解码出TPC命令、或UE处于DRX状态、或在TDD模式下第i个子帧不是上行子帧时,δ PUSCH=0dB。
当累积修正值δ PUSCHdB包含在具有DCI格式0的PDCCH时,其调整值见表2;但是,如果DCI Format0的功能是SPS激活或SPS释放,则δ PUSCH=0dB。
表2 DCI format 0/3 TPC命令字含义
Figure PCTCN2021121183-appb-000002
当累积修正值δ PUSCHdB包含在具有DCI格式3/3A的PDCCH时,其调整值集合包括两种:集合1由表2给出、集合2由表3给出,具体选择哪个集合由RRC层参数TPC-Index的比特数决定。
表3 DCI format 3A TPC命令字含义
Figure PCTCN2021121183-appb-000003
若UE达到最大发射功率,则“正”的TPC命令不进行累积;
若UE达到最小发射功率,则“负”的TPC命令不进行累积;
处于如下状态的UE需要重新设置TPC命令的累积:
当P O_UE_PUSCH改变时;
当收到随机接入响应消息时(处于同步/重同步状态)。
若通过RRC层配置的UE专属参数Accumulation-enabled未开启累积值方式时,UE处于绝对值闭环方式,f(i)=δ PUSCH(i-K PUSCH),其中,δ PUSCH(i-K PUSCH)由子帧i-K PUSCH中的具有DCI格式0的PDCCH指示。
K PUSCH的值按如下方式确定:
对于FDD,K PUSCH=4;
对于TDD UL/DL配置1-6,K PUSCH值如表1所示;
对于TDD UL/DL配置0:
当由PDCCH DCI格式0调度的PUSCH传输位于子帧2或7且DCI中的UL index信息域的低比特位为1时,那么K PUSCH=7;
对于其它情况的PUSCH传输,K PUSCH由表1给出。
绝对值方式下的δ PUSCH由具有DCI格式0的PDCCH指示,δ PUSCH取值如表2所示;如果DCI Format0的功能是SPS激活或SPS释放则δ PUSCH=0dB。
如果某个子帧中没有解码出具有DCI format0的PDCCH、或UE处于DRX状态、或在TDD模式下第i个子帧不是上行子帧时,f(i)=f(i-1)。
对于两种TPC调整值f(*)计算方法(累积值方式或绝对值方式),其初始值设置为:
P O_UE_PUSCH配置发生改变时,f(i)=0。
否则,通过如下公式进行计算:
f(0)=ΔP rampupmsg2
其中,δ msg2是随机接入响应消息中指示的TPC命令字,用于调度的PUSCH的TPC命令字δ msg2的取值如表4所示。ΔP rampup由RRC层配置,对应于从首次至最后一次preamble传输之间总的功率爬升量。
表4用于调度的PUSCH的TPC命令字δ msg2
TPC Command Value(in dB)
0 -6
1 -4
2 -2
3 0
4 2
5 4
6 6
7 8
5G UE进行PUSCH传输,按照以下公式进行发射功率计算:
Figure PCTCN2021121183-appb-000004
(1)P CMAX,f,c(i):UE计算的最大发射功率。UE结合高层参数配置的最大发射功率及应用场景和自身射频要求确定的输出功率。
(2)P O_PUSCHb,,f,c(j):UE基准发射功率,由高层配置的小区级标称功率参数P O_NOMINALP_USCH,f,c(j)和UE级标称功率参数P O_UE_PUSCH,b,f,c(j)组成。J是与业务相关的索引,取值如下:
1.如果没有给UE配置P0-PUSCH-AlphaSet或是通过RAR UL许可调度的PUSCH传输,j=0,P O_UE_PUSCH,b,f,c(0)=0并且P O_NOMINALP_USCH,f,c(0)=P O_PREPREAMBLE_Msg3,其中前导目标接收功率P O_PRE和msg3前导偏移Δ PREAMBLE_Msg3由高层参数preambleReceivedTargetPower、msg3-DeltaPreamble指定,如果没有给出msg3-DeltaPreamble配置,Δ PREAMBLE_Msg3=0dB。
2.如果是通过配置的授权配置参数ConfiguredGrantConfig配置的PUSCH传输,j=1,P O_NOMINALP_USCH,f,c(1)P O_NOMINALP_USCH,f,c(1)由 p0-NominalWithoutGrant提供,或如果p0-NominalWithoutGrant没有提供配置,P O_NOMINALP_USCH,f,c(1)=P O_NOMINALP_USCH,f,c(0)并且P O_UE_PUSC,Hb,f,c(1)从免调度配置IE ConfiguredGrantConfig的P0-PUSCH-AlphaSetId p0值配置索引获取p0-PUSCH-Alpha配置。其中,NominalWithoutGrant为没有授权的Po-nominal,AlphaSetId为alpha参数集合ID。
3.当j∈{2,...,J-1}=S J,P O_NOMINALP_USCH,f,c(j)由高层参数p0-NominalWithGrant指定,或没有配置p0-NominalWithGrant时,P O_NOMINALP_USCH,f,c(j)=P O_NOMINALP_USCH,f,c(0),P O_UE_PUSC,Hb,f,c(j)由p0-PUSCH-AlphaSetId指定p0值配置索引获取p0-PUSCH-Alpha配置。
1)如果配置了多组高层参数SRI-PUSCH-PowerControl,每组中都关联了一个p0-PUSCH-AlphaSetId,并且如果DCI format 0_1包含一个SRI域,UE根据SRI-PUSCH-PowerControlId选择一组SRI-PUSCH-PowerControl配置,再从SRI-PUSCH-PowerControl配置中获取p0-PUSCH-AlphaSetId,再根据ID对应的P0-PUSCH-AlphaSet确定P O_UE_PUSC,Hb,f,c(j)。其中,PowerControl为功率控制。
2)如果是通过DCI format 0_0或没有SRI域的DCI format 0_1调度PUSCH传输,或者没有为UE提供SRI-PUSCHPowerControl,那么j=2,并且从p0-AlphaSets列表的第一个P0-PUSCH-AlphaSet获取P O_UE_PUSC,Hb,f,c(j)。
(3)α b,f,c(j):
1.j=0时,α b,f,c(0)取值为高层参数msg3-Alpha,如果没有配置该高层参数,α b,f,c(0)=1。
2.j=1时,α b,f,c(1)取值为高层参数ConfiguredGrantConfig中p0-PUSCH-Alpha配置的ID对应的P0-PUSCH-AlphaSet中alpha值;
3.j∈S J时,α b,f,c(j)取值为p0-PUSCH-AlphaSetId对应的P0-PUSCH-AlphaSet中alpha值,p0-PUSCH-AlphaSetId确定方法如下:
1)如果配置了多组高层参数SRI-PUSCH-PowerControl,每组中 都关联了一个p0-PUSCH-AlphaSetId,并且如果DCI format 0_1包含一个SRI域,UE根据SRI-PUSCH-PowerControlId选择一组SRI-PUSCH-PowerControl配置,再从SRI-PUSCH-PowerControl配置中获取p0-PUSCH-AlphaSetId,再根据ID对应的P0-PUSCH-AlphaSet确定α b,f,c(j);
2)如果是通过DCI format 0_0或没有SRI域的DCI format 0_1调度PUSCH传输,或者没有为UE提供SRI-PUSCHPowerControl,那么j=2,并且从p0-AlphaSets列表的第一个P0-PUSCH-AlphaSet获取α b,f,c(j)。
(4)
Figure PCTCN2021121183-appb-000005
在第i个PUSCH传输机会上的资源块数量;
(5)PL b,f,c(q d):UE使用索引为q d参考信号测量的下行激活BWP的路损,单位dB。其中,BWP为带宽部分。UE根据参考信号q d测量的下行激活BWP的路损,单位dB。参考信号选择流程如下:
1.如果没有为UE提供PUSCH-PathlossReferenceRS高层配置参数或在UE被提供专用高层配置参数之前,UE使用获取MIB时用的SS/PBCH的参考信号;PathlossReference为路径损耗参考。
2.如果为UE配置了多组参考信号集,且每组参数信号集中通过ssb-Index关联SSB或csi-RS-Index关联CSI-RS(或同时),具体使用哪组参考信号集需要根据PUSCH-PathlossReferenceRS-Id来确定,PUSCH-PathlossReferenceRS-Id确定的方法如下:
1)如果是通过RAR UL许可调度的PUSCH传输,UE使用与之对应的PRACH传输相同的参考信号资源索引q d
2)如果配置了多组高层参数SRI-PUSCH-PowerControl,每组中都关联了一个PUSCH-PathlossReferenceRS-Id,并且如果DCI format 0_1包含一个SRI域,UE根据SRI-PUSCH-PowerControlId找到关联的q d,再根据q d从确定关联的SSB或CSI-RS参考信号索引ssb-Index或csi-RS-Index,进一步根据ssb-Index或csi-RS-Index确定小区参考 信号资源配置,确定的参考符号资源为服务小区c或由pathlossReferenceLinking指定小区的参考符号集;
3)如果是由DCI format 0_0调度的PUSCH传输,并且高层给UE激活BWP的第一个PUCCH资源配置了PUCCH-SpatialRelationInfo,则UE PUSCH使用第一个PUCCH资源中的RS资源q d;spatial relation info为空间关系信息。
4)如果是由DCI format 0_0调度的PUSCH传输,并且没有为UE PUCCH传输配置PUCCH-SpatialRelationInfo参数,或者通过不包含SRI域的DCI format 0_1调度,或没有给UE配置SRI-PUSCH-PowerControl IE,那么UE最终确定的参考信号资源索引q d等于0,对应当前服务小区或由pathlossReferenceLinking指示的服务小区上的参考信号资源;
5)对于免调度PUSCH传输,如果ConfiguredGrantConfig IE中包含有rrc-ConfiguredUplinkGrant,那么q d等于rrc-ConfiguredUplinkGrant中pathlossReferenceIndex对应的当前服务小区的参考信号资源或pathlossReferenceLinking指示的服务小区参考信号资源;
6)对于免调度PUSCH传输,如果ConfiguredGrantConfig IE中没包含rrc-ConfiguredUplinkGrant,那么UE根据激活时的DCI format 0_1的SRI域索引值映射的资源找出PathlossReferenceRS-Id配置,如果DCI中没有包含SRI域,那么UE最终确定的参考信号资源索引q d等于0,对应当前服务小区或由pathlossReferenceLinking指示的服务小区上的参考信号资源。
PL b,f,c(q d)=referenceSignalPower–higher layer filtered RSRP,referenceSignalPower由高层参数配置,RSRP由q d对应的参考服务小区测量得到,高层滤波配置由参考服务小区的QuantityConfig配置。
如果UE没有配置周期CSI-RS接收,referenceSignalPower由 ss-PBCH-BlockPower提供,如果配置了周期CSI-RS接收,referenceSignalPower由ss-PBCH-BlockPower或powerControlOffsetSS提供的CSI-RS传输功率偏移量对应的SSB传输功率;如果没有配置powerControlOffsetSS,UE假设偏移量为0dB。
(6)Δ TF,b,f,c(i):属于闭环参数,表示对不同的调制编码方案造成的接收功率变化进行补偿,通过高层参数deltaMCS控制是否使用该闭环参数。
当K S=1.25时,
Figure PCTCN2021121183-appb-000006
当K S=0,Δ TF,b,f,c(i)=0,Ks取值可以由deltaMCS控制,缺省时,Ks=0;
当K S=1.25时,需要进一步确定BPRE和
Figure PCTCN2021121183-appb-000007
取值,BPRE为每个RE容纳的比特数,
Figure PCTCN2021121183-appb-000008
反应PUSCH携带UCI的情况,具体确定方法如下:
1.当PUSCH上有UL-SCH数据传输时
Figure PCTCN2021121183-appb-000009
当没有只传输CSI,没有UL-SCH数据是
Figure PCTCN2021121183-appb-000010
其中:C是传输码块,K r是码块r的大小,N RE是由
Figure PCTCN2021121183-appb-000011
公式计算的RE数量大小,
Figure PCTCN2021121183-appb-000012
是PUSCH在传输机会i上的符号数,
Figure PCTCN2021121183-appb-000013
是去除DM-RS子载波和时频域跟踪参考信号点外的子载波数量。
2.当PUSCH包含UL-SCH数据时
Figure PCTCN2021121183-appb-000014
当只传输CSI-RS不传UL-SCH数据时
Figure PCTCN2021121183-appb-000015
3.Q m是调制阶数,R是目标码率,由包含CSI但不包含UL-SCH的PUSCH传输调度DCI提供。
仅用于单层传输,如果PUSCH多流传输,Δ TF,b,f,c(i)=0。
(7)f b,f,c(i,l)属于闭环参数,是由基站通过TPC命令字下发给UE的功率调整量。具体如下:
1.δ PUSCHb,,f,c(i,l):是包含在DCI format 0_0或DCI format 0_1的TPC命令字值,或包含在使用TPC-PUSCH-RNTI加扰的DCI format 2_2TPC命令字中。
1)如果UE有两个闭环进程,需要配置twoPUSCH-PC-AdjustmentStates,l∈{0,1},如果UE不配置twoPUSCH-PC-AdjustmentStates,l=0:
1>如果是由ConfiguredGrantConfig调度的PUSCH传输或重传,那么闭环进程号由powerControlLoopToUse指定;
2>如果为UE提供了SRI-PUSCH-PowerControl配置,那么UE通过DCI format 0_1的SRI找到关联的sri-PUSCH-ClosedLoopIndex;
3>如果是使用DCI format 0_0或者没有SRI域的DCI format 0_1调度的PUSCH传输,或者没有配置SRI-PUSCH-PowerControl,则,l=0;
4>如果UE从TPC-PUSCH-RNTI加扰的DCI format 2_2获取了一个TPC命令字,那么l值由DCI format 2_2闭环进程指示域提供。
2.闭环进程l的绝对式PUSCH功控调整值为
Figure PCTCN2021121183-appb-000016
1)δ PUSCH,b,f,c取值如表5所示:
表5 δ PUSCHb,f,c的取值
Figure PCTCN2021121183-appb-000017
2)
Figure PCTCN2021121183-appb-000018
是D i集合中所有TPC命令字值之和,D i是从传输机会i-i 0前的K PUSCH(i-i 0)-1符号至传输机会i前的K PUSCH(i)符号期间接收的TPC命令字之和;
3)如果是由DCI format 0_0或DCI format 0_1调度的PUSCH,K PUSCH(i)是从对应的PDCCH接收的最后一个符号至PUSCH传输的第一个符号之间的符号数;
4)如果是由ConfiguredGrantConfig调度的PUSCH传输,K PUSCH(i)为min{K PUSCH,min,k2},其中
Figure PCTCN2021121183-appb-000019
k2在PUSCH-ConfigCommon IE中指定;
5)如果UE在PUSCH传输机会i-i 0时已经达到了最大功率并且
Figure PCTCN2021121183-appb-000020
那么f b,f,c(i,l)=f b,f,c(i-i 0,l);
6)如果UE在PUSCH传输机会i-i 0时已经达到了最小功率并且
Figure PCTCN2021121183-appb-000021
那么f b,f,c(i,l)=f b,f,c(i-i 0,l);
7)UE重置PUSCH闭环功控调整的累加值时,f b,f,c(k,l)=0,k=0,1,...,i。
3.闭环进程l如果采用累加式的功率控制调整,即配置了tpc-Accumulation,那么f b,f,c(i,l)=δ PUSCHb,,f,c(i,l):δ PUSCH,b,f,c取值同绝对值式。
4.如果UE接收到一个PRACH的随机接入响应消息,那么f b,f,c(0,l)=ΔP rampup,b,f,cmsg2,b,f,c,其中 l=0并且δ msg2,b,f,c是随机接入响应许可中的TPC命令字值(应该是DCI Format0_0中的TPC命令字);功率爬升值为:
Figure PCTCN2021121183-appb-000022
其中,ΔP rampupreqeusted,b,f,c由高层提供表示从第一次到最后一次随机接入最大爬升功率,
Figure PCTCN2021121183-appb-000023
是第一次PUSCH传输对应的资源块数量。Δ TF,b,f,c(0)是第一次PUSCH传输的功率调整值。
PUSCH的功率控制算法是开环工作点的设置和闭环功率控制算法两个部分。其中闭环功控反映在参数f(i)中,闭环功控功率调整量是测量值与目标值的差异确定的,目标值是针对不同用户不同的。
现有功控算法闭环目标值中没有考虑AMC的影响因素。因为过高的发送功率或者过低的发送功率并没有合适的MCS匹配其性能,因为AMC中MCS等级存在上限和下限。MCS等级的上限,导致并不是随着功率提升一定会带来性能提升,反而带来干扰增加的问题;MCS等级的下限,导致过低的功率并没有合适的MCS与其匹配,造成BLER增大的问题。
为了解决现有方案的不足,本公开实施例提出结合AMC的功率控制策略。当信道条件很差MCS等级较低,不再降低UE发射功率,以免性能继续下降。同理,当信道条件很好,UE不需要很大的发射功率时,可以降低UE发射功率,减少对其它用户性能的影响以及降低本区或邻区干扰。
事件或周期进行功率保护判定和具体功率调整操作,功率调整在发送TPC命令前产生。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的一种功率控制方法的示意图之一,如图1所示,本公开实施例提供一种功率控制方法,其执行主体可为网络设备,例如,基站等。该方法包括:
步骤101、获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS。
具体来说,在系统初始化时,令远端功率控制模式标志flag_min_pc_protect=false,即没有进入远端功率控制模式,令近端功 率控制模式标志flag_max_pc_protect=false,即没有进入近端功率控制模式。
在当前闭环功率控制周期内,首先,网络设备获取当前闭环功率控制周期的AMC参数值。该AMC参数值用于表征当前闭环功率控制周期的MCS。例如,可以使用MCS等级值作为AMC参数值,也可以使用MCS等级对应的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)值。
步骤102、基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,在确定当前闭环功率控制周期的AMC参数值之后,基站可以基于AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
其中,功率控制模式包括远端功率控制模式和近端功率控制模式。flag_min_pc_protect=false时,表示没有进入远端功率控制模式,flag_min_pc_protect=true时,表示当前已进入远端功率控制模式。flag_max_pc_protect=false时,表示没有进入近端功率控制模式,flag_max_pc_protect=true时,表示当前已进入近端功率控制模式。
该功率调整值可以是一个固定的值,也可以是根据AMC参数值确定的值。
本公开实施例提供的功率控制方法,基于AMC中MCS等级范围,通过控制过高的功率发送,降低了功耗和干扰,通过提升过低的功率发送,提升了性能,降低BLER。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述 功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
具体来说,在本公开实施例中,基于AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值的具体步骤如下:
如果flag_min_pc_protect=false且flag_max_pc_protect=false,未进入任何功率控制模式,则进行如下判断:
如果AMC参数值小于最小目标AMC参数的下限值,则确定功率调整值大于零,且进入远端功率控制模式,即设置flag_min_pc_protect=true。
如果AMC参数值大于最大目标AMC参数的上限值,则确定功率调整值小于零,且进入近端功率控制模式,即设置flag_max_pc_protect=true。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且AMC参数值小于最小目标AMC参数的下限值,则确定功率调整值大于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且AMC参数值大于等于最小目标AMC参数的下限值,且AMC参数值小于最小目标AMC参数的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且 AMC参数值大于等于最小目标AMC参数的上限值,则确定功率调整值等于零,且退出远端功率控制模式,即重置flag_min_pc_protect=false。
其中,最小目标AMC参数的下限值和最小目标AMC参数的上限值的大小均可以根据实际情况进行配置,此处不做限定。
本公开实施例提供的功率控制方法,根据AMC参数值与预设阈值之间的关系,确定功率调整值,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
具体来说,在本公开实施例中,基于AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值的具体步骤还包括:
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且AMC参数值大于最大目标AMC参数的上限值,则确定功率调整值 小于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且AMC参数值大于最大目标AMC参数的下限值,且AMC参数值小于等于最大目标AMC参数的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且AMC参数值小于等于最大目标AMC参数的下限值,则确定功率调整值等于零,且退出近端功率控制模式,即重置flag_max_pc_protect=false。
其中,最大目标AMC参数的下限值和最大目标AMC参数的上限值的大小均可以根据实际情况进行配置,此处不做限定。
本公开实施例提供的功率控制方法,根据AMC参数值与预设阈值之间的关系,确定功率调整值,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,所述AMC参数值为MCS等级值。
具体来说,在本公开实施例中,AMC参数值为MCS等级值。
基于MCS等级值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值的具体步骤如下:
如果flag_min_pc_protect=false且flag_max_pc_protect=false,未进入任何功率控制模式,则进行如下判断:
如果MCS等级值小于最小目标MCS等级的下限值,则确定功率调整值大于零,且进入远端功率控制模式,即设置flag_min_pc_protect=true。
如果MCS等级值大于最大目标MCS等级的上限值,则确定功率调整值小于零,且进入近端功率控制模式,即设置flag_max_pc_protect=true。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且MCS等级值小于最小目标MCS等级的下限值,则确定功率调整值大 于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且MCS等级值大于等于最小目标MCS等级的下限值,且MCS等级值小于最小目标MCS等级的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且MCS等级值大于等于最小目标MCS等级的上限值,则确定功率调整值等于零,且退出远端功率控制模式,即重置flag_min_pc_protect=false。
其中,最小目标MCS等级的下限值和最小目标MCS等级的上限值的大小均可以根据实际情况进行配置,此处不做限定。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且MCS等级值大于最大目标MCS等级的上限值,则确定功率调整值小于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且MCS等级值大于最大目标MCS等级的下限值,且MCS等级值小于等于最大目标MCS等级的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且MCS等级值小于等于最大目标MCS等级的下限值,则确定功率调整值等于零,且退出近端功率控制模式,即重置flag_max_pc_protect=false。
其中,最大目标MCS等级的下限值和最大目标MCS等级的上限值的大小均可以根据实际情况进行配置,此处不做限定。
本公开实施例提供的功率控制方法,根据MCS等级值与预设阈值之间的关系,确定功率调整值,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
具体来说,在本公开实施例中,AMC参数值为MCS等级对应的SINR值。
基于SINR值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值的具体步骤如下:
如果flag_min_pc_protect=false且flag_max_pc_protect=false,未进入任何功率控制模式,则进行如下判断:
如果SINR值小于最小目标SINR的下限值,则确定功率调整值大于零,且进入远端功率控制模式,即设置flag_min_pc_protect=true。
如果SINR值大于最大目标SINR的上限值,则确定功率调整值小于零,且进入近端功率控制模式,即设置flag_max_pc_protect=true。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且SINR值小于最小目标SINR的下限值,则确定功率调整值大于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且SINR值大于等于最小目标SINR的下限值,且SINR值小于最小目标SINR的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_min_pc_protect=true,且SINR值大于等于最小目标SINR的上限值,则确定功率调整值等于零,且退出远端功率控制模式,即重置flag_min_pc_protect=false。
其中,最小目标SINR的下限值和最小目标SINR的上限值的大小均可以根据实际情况进行配置,此处不做限定。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且SINR值大于最大目标SINR的上限值,则确定功率调整值小于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且SINR值大于最大目标SINR的下限值,且SINR值小于等于最大目标SINR的上限值,则确定功率调整值等于零。
如果在当前闭环功率控制周期内,flag_max_pc_protect=true,且SINR值小于等于最大目标SINR的下限值,则确定功率调整值等于 零,且退出近端功率控制模式,即重置flag_max_pc_protect=false。
其中,最大目标SINR的下限值和最大目标SINR的上限值的大小均可以根据实际情况进行配置,此处不做限定。
本公开实施例提供的功率控制方法,根据SINR值与预设阈值之间的关系,确定功率调整值,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,在本公开实施例中,基于AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
首先,对当前闭环功率控制周期中的多个AMC参数值进行平滑处理。
以AMC参数值为MCS等级值为例,平滑处理的计算公式如下:
EMCS PRB_K=βEMCS PRB_K-1+(1-β)MCS PRB_k
其中,EMCS PRB_K为对第K个MCS等级值进行平滑处理后的值,EMCS PRB_K-1为对第K-1个MCS等级值进行平滑处理后的值,MCS PRB_K为上行调度模块中调度确定的第K个MCS等级的取值,β为平滑因子。
然后,基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
本公开实施例提供的功率控制方法,通过对AMC参数值进行平滑处理,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,在本公开实施例中,基于AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
首先,对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理。
然后,基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
本公开实施例提供的功率控制方法,通过对AMC参数值进行平滑处理,进一步降低了功耗和干扰,提升了性能,降低BLER。
基于上述任一实施例,在当前闭环功率控制周期内,如果flag_min_pc_protect=true,进入远端功控模式:
如果Δpower为正值,需提升功率Δpower,发送TPC命令字δ PUSCH
否则,即Δpower为0,绝对值方式闭环功控,保持上次TPC命令不变;累积方式闭环功控,TPC命令为0。
如果flag_max_pc_protect=true,进入近端功控模式:
如果Δpower为负值,需降低功率Δpower,发送TPC命令字δ PUSCH
否则,即Δpower为0,绝对值方式闭环功控,保持上次TPC命令不变;累积方式闭环功控,TPC命令为0。
否则,执行正常闭环功控流程。
基于上述任一实施例,图2是本公开实施例提供的一种功率控制 方法的示意图之二,如图2所示,本公开实施例提供一种功率控制方法,该方法的执行主体可以为终端。该方法包括:
步骤201、获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的。
步骤202、根据所述功率调整值进行功率控制。
具体来说,本公开实施例提供的一种功率控制方法,与上述相应实施例中所述的方法相同,且能够达到相同的技术效果,区别仅在于执行主体不同,在此不再对本实施例中与上述相应方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,图3是本公开实施例提供的一种网络设备的结构示意图,如图3所示,所述网络设备包括存储器320,收发机300,处理器310:
存储器320,用于存储计算机程序;收发机300,用于在所述处理器310的控制下收发数据;处理器310,用于读取所述存储器320中的计算机程序并执行以下操作:
获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,收发机300,用于在处理器310的控制下接收和发送数据。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域 所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
处理器310可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述AMC参数值为MCS等级值。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,图4是本公开实施例提供的一种网络设备的结构示意图,如图4所示,所述网络设备包括存储器420,收发机400,处理器410:
存储器420,用于存储计算机程序;收发机400,用于在所述处理器410的控制下收发数据;处理器410,用于读取所述存储器420中的计算机程序并执行以下操作:
获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
根据所述功率调整值进行功率控制。
具体来说,收发机400,用于在处理器410的控制下接收和发送数据。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器410代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器410负责管理总线架构和通常的处理,存储器420可以存储处理器410在执行操作时所使用的数据。
可选的,处理器410可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex  Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,图5是本公开实施例提供的一种功率控制装置的示意图之一,如图5所示,该功率控制装置包括第一获取模块501和确定模块502,其中:
第一获取模块501用于获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;确定模块502用于基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功 率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上 述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述AMC参数值为MCS等级值。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于上述任一实施例,图6是本公开实施例提供的一种功率控制装置的示意图之二,如图6所示,该功率控制装置包括第二获取模块601和控制模块602,其中:
第二获取模块601用于获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;控制模块602用于根据所述功率调整值进行功率控制。
具体来说,本公开实施例提供的上述功率控制装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开上述各实施例中对单元/模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于 这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于上述任一实施例,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,包括:
获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
或者包括:
获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;根据所述功率调整值进行功率控制。
需要说明的是:所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另外需要说明的是:本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言 和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元 (distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (25)

  1. 一种功率控制方法,其特征在于,包括:
    获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
    基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  2. 根据权利要求1所述的功率控制方法,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
  3. 根据权利要求2所述的功率控制方法,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式, 且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
  4. 根据权利要求1-3任一项所述的功率控制方法,其特征在于,所述AMC参数值为MCS等级值。
  5. 根据权利要求1-3任一项所述的功率控制方法,其特征在于,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
  6. 根据权利要求1-3任一项所述的功率控制方法,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
    基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  7. 根据权利要求1-3任一项所述的功率控制方法,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
    基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  8. 一种功率控制方法,其特征在于,包括:
    获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
    根据所述功率调整值进行功率控制。
  9. 一种网络设备,其特征在于,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控 制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
    基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  10. 根据权利要求9所述的网络设备,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则确定所述功率调整值等于零,且退出远端功率控制模式。
  11. 根据权利要求10所述的网络设备,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体还包括:
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC 参数值小于等于最大目标AMC参数的上限值,则确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则确定所述功率调整值等于零,且退出近端功率控制模式。
  12. 根据权利要求9-11任一项所述的网络设备,其特征在于,所述AMC参数值为MCS等级值。
  13. 根据权利要求9-11任一项所述的网络设备,其特征在于,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
  14. 根据权利要求9-11任一项所述的网络设备,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
    基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  15. 根据权利要求9-11任一项所述的网络设备,其特征在于,所述基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值,具体包括:
    对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
    基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  16. 一种终端,其特征在于,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
    根据所述功率调整值进行功率控制。
  17. 一种功率控制装置,其特征在于,包括:
    第一获取模块,用于获取当前闭环功率控制周期的自适应调制编码AMC参数值;所述AMC参数值用于表征当前闭环功率控制周期的调制与编码策略MCS;
    确定模块,用于基于所述AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  18. 根据权利要求17所述的功率控制装置,其特征在于,
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值小于最小目标AMC参数的下限值,则所述确定模块用于确定所述功率调整值大于零;当前闭环功率控制周期的功率控制模式为远端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的下限值,且所述AMC参数值小于最小目标AMC参数的上限值,则所述确定模块用于确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为远端功率控制模式,且所述AMC参数值大于等于最小目标AMC参数的上限值,则所述确定模块用于确定所述功率调整值等于零,且退出远端功率控制模式。
  19. 根据权利要求18所述的功率控制装置,其特征在于,
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的上限值,则所述确定模块还用于确定所述功率调整值小于零;当前闭环功率控制周期的功率控制模式为近端功率控制模式是在上一闭环功率控制周期确定的;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值大于最大目标AMC参数的下限值,且所述AMC参数值小于等于最大目标AMC参数的上限值,则所述确定模块还用于确定所述功率调整值等于零;
    若当前闭环功率控制周期的功率控制模式为近端功率控制模式,且所述AMC参数值小于等于最大目标AMC参数的下限值,则所述确定模块还用于确定所述功率调整值等于零,且退出近端功率控制模 式。
  20. 根据权利要求17-19任一项所述的功率控制装置,其特征在于,所述AMC参数值为MCS等级值。
  21. 根据权利要求17-19任一项所述的功率控制装置,其特征在于,所述AMC参数值为MCS等级对应的信号与干扰和噪声比SINR值。
  22. 根据权利要求17-19任一项所述的功率控制装置,其特征在于,所述确定模块包括第一处理子模块和第一确定子模块;
    所述第一处理子模块用于对当前闭环功率控制周期中的多个AMC参数值进行平滑处理;
    所述第一确定子模块用于基于平滑处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  23. 根据权利要求17-19任一项所述的功率控制装置,其特征在于,所述确定模块包括第二处理子模块和第二确定子模块;
    所述第二处理子模块用于对当前闭环功率控制周期中的多个AMC参数值进行线性平均处理;
    所述第二确定子模块用于基于线性平均处理后的AMC参数值和当前闭环功率控制周期的功率控制模式确定下一闭环功率控制周期的功率调整值。
  24. 一种功率控制装置,其特征在于,包括:
    第二获取模块,用于获取网络设备指示的功率调整值;所述功率调整值是网络设备根据上一闭环功率控制周期的自适应调制编码AMC参数值和上一闭环功率控制周期的功率控制模式确定的;
    控制模块,用于根据所述功率调整值进行功率控制。
  25. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至9任一项所述的方法。
PCT/CN2021/121183 2020-10-16 2021-09-28 功率控制方法、网络设备、终端、装置及存储介质 WO2022078205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112047.9 2020-10-16
CN202011112047.9A CN114389743B (zh) 2020-10-16 2020-10-16 功率控制方法、网络设备、终端、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022078205A1 true WO2022078205A1 (zh) 2022-04-21

Family

ID=81192947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121183 WO2022078205A1 (zh) 2020-10-16 2021-09-28 功率控制方法、网络设备、终端、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114389743B (zh)
WO (1) WO2022078205A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106398A (zh) * 2006-07-14 2008-01-16 华为技术有限公司 自适应通信控制方法及系统
US20150249960A1 (en) * 2012-02-28 2015-09-03 St-Ericsson Sa Method for Power Control, User Equipment, Computer Program and Storage Medium
CN108377461A (zh) * 2016-11-07 2018-08-07 中国移动通信有限公司研究院 一种功率控制方法及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106398A (zh) * 2006-07-14 2008-01-16 华为技术有限公司 自适应通信控制方法及系统
US20150249960A1 (en) * 2012-02-28 2015-09-03 St-Ericsson Sa Method for Power Control, User Equipment, Computer Program and Storage Medium
CN108377461A (zh) * 2016-11-07 2018-08-07 中国移动通信有限公司研究院 一种功率控制方法及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink CSI", 3GPP DRAFT; R1-1813553, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051555608 *

Also Published As

Publication number Publication date
CN114389743A (zh) 2022-04-22
CN114389743B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US10681646B2 (en) Uplink power control method and apparatus
CN108135028B (zh) 一种功率控制方法、装置及通信节点
CN107580797B (zh) 无线通信系统中适配用于上行链路传输的重复等级的方法和装置
CN113055992B (zh) 用于功率控制处理的方法和装置
RU2565030C2 (ru) Устройство и способ управления мощностью восходящей линии связи для беспроводного приемопередатчика, использующего множество несущих
US8422446B2 (en) Controlling power for contention based uplink transmissions
EP2501186B1 (en) Power control method and base station
CN106851809B (zh) 确定功率的方法及用户设备
US20140133448A1 (en) Method and apparatus for uplink power control
CN104254121B (zh) 一种pusch功率控制方法及装置
KR20150027176A (ko) 디바이스간(d2d) 크로스링크 전력 제어
JP2010520711A (ja) 移動局のアップリンク電力を制御するためのオープンループ/クローズドループを組み合わせた方法
WO2015018033A1 (en) Uplink power control in adaptive tdd systems
CN108632970B (zh) 功率控制方法、终端和网络设备
EP2220779A1 (en) Method and arrangement for separate channel power control
WO2012041094A1 (zh) 一种物理上行控制信道的功率设置方法及用户设备
WO2015032023A1 (en) Power headroom report
US9961644B2 (en) Fast fading power restriction
JP5089754B2 (ja) 移動通信システム、基地局及び送信電力制御方法
US20230180147A1 (en) Power reporting for integrated access and backhaul networks
US9185661B2 (en) Performing power control based on nominal packet size
WO2023050916A1 (zh) Pucch功率控制方法、终端、装置及存储介质
WO2022078205A1 (zh) 功率控制方法、网络设备、终端、装置及存储介质
CN109788537B (zh) 一种上行功率控制的方法、基站及终端
WO2014205747A1 (zh) 一种功率控制方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879251

Country of ref document: EP

Kind code of ref document: A1