WO2021258840A1 - 冷冻消融温度控制方法、系统及计算机可读存储介质 - Google Patents

冷冻消融温度控制方法、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021258840A1
WO2021258840A1 PCT/CN2021/089198 CN2021089198W WO2021258840A1 WO 2021258840 A1 WO2021258840 A1 WO 2021258840A1 CN 2021089198 W CN2021089198 W CN 2021089198W WO 2021258840 A1 WO2021258840 A1 WO 2021258840A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
balloon
value
temperature
target
Prior art date
Application number
PCT/CN2021/089198
Other languages
English (en)
French (fr)
Inventor
庞德贵
沈刘娉
刘金锋
成晨
赵闯
许元兴
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Priority to US17/611,840 priority Critical patent/US20220304737A1/en
Priority to EP21800976.9A priority patent/EP3998031A4/en
Publication of WO2021258840A1 publication Critical patent/WO2021258840A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00863Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • This application belongs to the technical field of medical devices, and specifically relates to a cryoablation temperature control method, system, and computer-readable storage medium.
  • cryoablation As a new surgical method for the treatment of atrial fibrillation, cryoablation has received widespread attention in recent years. Its working principle is to take away the heat of the tissue through the heat absorption and evaporation of the liquid refrigerant, reduce the temperature of the target ablation site, "freeze" the cell tissue, and destroy the area of abnormal electrophysiological activity, so as to achieve the purpose of treating arrhythmia.
  • a large amount of clinical data shows that compared with other ablation methods, cryoablation is easier for doctors to learn and operate, shorten the operation time, have high treatment effectiveness, reduce thrombosis and other serious complications, and reduce the pain of patients.
  • the traditional cryoablation system uses a fixed flow control during the ablation stabilization process.
  • the longer the ablation time the lower the temperature and cannot be maintained at a lower temperature.
  • the only way to stop the ablation is to wait for the temperature to recover.
  • Performing the next ablation process cycle operation not only increases the difficulty of the operation, prolongs the operation time, but also increases the risk during the operation, resulting in poor isolation of the pulmonary veins and large side effects of the operation on the tissue.
  • cryosurgical low temperature control It is urgently needed that the balloon temperature during cryoablation can maintain a certain temperature and volume for ablation, so that the isolation effect of pulmonary veins is better, and balloons are avoided. Deformation causes damage to the tissue.
  • the first aspect of the present application provides a cryoablation temperature control method for controlling the temperature in a cryoablation balloon, the method comprising: obtaining a real-time temperature value and a preset target temperature value in the balloon, according to Generating a first temperature control signal by the real-time temperature value and the target temperature value;
  • a first target liquid inlet pressure control signal is generated, and the temperature control and flow control are coordinated to control the liquid supply path of the balloon The liquid supply flow of the high-pressure proportional valve;
  • a first target exhaust pressure control signal is generated to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon, and cooperate with the first target air pressure.
  • the hydraulic pressure control signal controls the liquid supply flow of the high-pressure proportional valve so that the pressure value in the balloon is within a preset safety threshold range and the temperature in the balloon reaches and/or maintains the target temperature value .
  • the first temperature control signal is generated according to the real-time temperature value and the target temperature value; and acquiring Generating a first gas flow control signal according to the real-time gas flow value and the target gas flow value in the gas recovery channel in the exhaust passage of the balloon;
  • the first temperature control signal and/or the first gas flow control signal generate the first target inlet pressure control signal, which realizes the function of seamless switching between the flow control mode and the temperature control mode, through the cooperation of temperature control and flow control Cooperate to control the liquid supply flow of the high-pressure proportional valve in the liquid supply path of the balloon, and dynamically and coordinately control the balloon according to the acquired real-time air pressure value of the exhaust side of the balloon and the preset target air pressure value
  • the exhaust flow rate of the low-pressure proportional valve in the exhaust passage enables the temperature in the balloon to reach the preset target temperature value, and can control the temperature in the balloon to maintain the prese
  • the exhaust flow of the low-pressure proportional valve can be dynamically controlled to make the air pressure on the exhaust side of the balloon reach and maintain the preset target air pressure, the pressure in the balloon is maintained above the current atmospheric pressure, and the pressure of the balloon is relieved. If the value is lower than the value, it can avoid the risk of tearing the tissues that the pressure in the balloon is too low, and avoid the risk of balloon rupture caused by too high pressure in the balloon.
  • the application can adopt the cooperation of temperature control and flow control (that is, flow control mode, temperature control mode, and combined control of temperature and flow) according to the user's choice.
  • the seamless switching control of temperature and flow can be realized, which is convenient for users to choose the control method according to the specific needs of actual surgical scenes, and improves the practicability and convenience of use of the product.
  • This application can adopt the dynamic coordination of flow control and temperature control, which not only reduces the operation time and the complexity of the operation, but also makes the pressure value in the balloon within the preset safety threshold range and makes the temperature in the balloon reach And/or maintain the target temperature value, which improves the speed, accuracy and range of temperature control, while maintaining pressure on the balloon to avoid the risk of tearing the tissue against which the pressure in the balloon is too low, and also The risk of balloon rupture caused by excessive pressure in the balloon is avoided, the stability of the balloon work is effectively improved, the isolation effect of the pulmonary vein is improved, and the risk and side effects of cryoablation surgery are reduced.
  • the cryoablation temperature control method further includes:
  • the first temperature control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • a first gas flow control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • the first target liquid inlet pressure control signal is generated according to the first temperature control signal and/or the first gas flow control signal to control the liquid supply flow of the high-pressure proportional valve.
  • controlling the liquid supply flow rate of the high-pressure proportional valve includes:
  • a second target liquid inlet pressure control signal is generated to control the liquid supply flow rate of the high-pressure proportional valve.
  • the real-time fluid pressure value on the liquid outlet side of the high-pressure proportional valve on the liquid supply side of the balloon is obtained based on the control signal of the first target liquid inlet pressure.
  • the target demand is controlled, and a second target liquid inlet pressure control signal is generated to dynamically control the liquid supply flow rate of the high-pressure proportional valve, so that the temperature in the balloon reaches and/or maintains the target temperature value.
  • the second target liquid inlet pressure control signal is generated by the real-time fluid pressure value of the liquid outlet side of the high-pressure proportional valve and the first target liquid inlet pressure control signal to dynamically control the liquid supply flow of the high-pressure proportional valve to achieve flow
  • doctors are still accustomed to using the flow control mode, but the flow control mode will cause the temperature to continue to decrease.
  • the cooperation of the temperature control and the flow control of this embodiment can realize the function of seamless switching between the flow control and the temperature control, which greatly reduces the operation time.
  • controlling the liquid supply flow rate of the high-pressure proportional valve includes:
  • the second target liquid inlet pressure control signal is generated using an incremental proportional differential or incremental proportional integral differential control algorithm to control the supply of the high-pressure proportional valve Liquid flow.
  • the target fluid pressure value on the liquid outlet side of the high-pressure proportional valve is calculated according to the first target liquid inlet pressure control signal, and an incremental PD control algorithm or The incremental PID control algorithm generates the second target liquid inlet pressure control signal, so as to realize the function of seamless switching between flow control and temperature control, and dynamically control the supply of the high-pressure proportional valve in coordination with the temperature control demand and the flow control demand.
  • the liquid flow rate enables the temperature in the balloon to reach and/or maintain the target temperature value.
  • the coordination of multi-parameter control is improved, the operation difficulty is reduced, and the operation time is reduced.
  • the first target exhaust pressure control signal is generated according to the real-time air pressure value and the target air pressure value to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon include:
  • the first target exhaust pressure control signal is generated using an incremental proportional derivative or an incremental proportional integral derivative control algorithm.
  • the exhaust flow of the low-pressure proportional valve is dynamically controlled by using the incremental PD control algorithm or the incremental PID control algorithm, so that the pressure value in the balloon is at a preset value.
  • the safety threshold range such as keeping the pressure in the balloon above the current atmospheric pressure and below the pressure relief value of the balloon, to prevent the risk of tearing the tissue against which the pressure in the balloon is too low, and also to prevent the balloon When the internal pressure is too high, there is a risk of balloon rupture.
  • the cryoablation temperature control method further includes: predicting the slope of the change curve of the real-time gas flow value to control the target gas flow value, and according to the real-time temperature Value divides the temperature control process into at least two phases, the at least two phases including a rapid temperature drop phase and a slow temperature drop phase. In the slow temperature drop phase, the real-time gas flow value reaches a preset flow stabilization threshold Scope.
  • controlling the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon includes:
  • the high-pressure proportional valve is controlled to increase the opening so that the pressure value in the balloon is within the preset safety threshold range.
  • the balloon when the real-time gas flow value is lower than the preset flow threshold range, the balloon is pressure-maintained to prevent the balloon from contracting, and avoid the balloon in the freezing process.
  • the contraction will cause the tissue to be torn apart, so as to ensure that the pressure in the balloon remains within a safe threshold range while satisfying the stability of the supply and discharge flow of the balloon.
  • the cryoablation temperature control method further includes:
  • the high-pressure proportional valve is controlled to reduce the opening degree, and/or the low-pressure proportional valve is controlled to adjust the opening degree, so that the balloon The real-time temperature value reaches the preset target temperature value.
  • the high-pressure proportional valve and/or the low-pressure proportional valve are controlled to enter the rewarming Protection mode to avoid unnecessary tissue damage caused by low temperature.
  • the second aspect of the present application provides a cryoablation temperature control method for controlling the pressure in the cryoablation balloon, the method comprising:
  • the solenoid valve in the exhaust passage of the balloon is controlled to open, so that at least a part of the exhaust gas of the balloon flows through the solenoid valve and flows into the gas recovery channel , So that the pressure value in the balloon is within the preset safety threshold range.
  • the temperature in the balloon in the process of performing flow control on the balloon, the temperature in the balloon may be controlled to drop rapidly, when the real-time gas flow value is lower than the preset flow threshold range
  • the high-pressure proportional valve is controlled to increase its opening to increase the liquid supply flow, so that the pressure value in the balloon is within the preset safety threshold range, and the temperature in the balloon is controlled to drop rapidly.
  • real-time gas is detected When the flow value reaches the preset flow stabilization threshold range, it enters the stage of slow temperature drop. In this stage, the real-time gas flow value can be controlled to stabilize within the flow stabilization threshold range, and the low-pressure proportional valve can be controlled to increase the opening linearly and incrementally.
  • the solenoid valve in the exhaust passage of the balloon is controlled to open to switch to controlling the solenoid valve to control the temperature in the balloon to slowly drop to a preset target temperature value
  • the bladder maintains the pressure, which makes the flow adjustment more stable and avoids the problem of large flow fluctuations.
  • the solenoid valve in the exhaust passage of the balloon is controlled to open while the low-pressure proportional valve is closed, so that all the exhaust from the balloon flows through
  • the solenoid valve flows into the gas recovery channel so that the pressure value in the balloon is within a preset safety threshold range, avoiding the problem of large flow fluctuations.
  • the third aspect of the present application provides a cryoablation temperature control system for controlling the temperature in the cryoablation balloon, the system comprising:
  • a high-pressure proportional valve located in the fluid supply path of the balloon
  • the first pressure sensor is located in the exhaust passage of the balloon and is used to collect the real-time air pressure value on the exhaust side of the balloon;
  • a low-pressure proportional valve located in the exhaust passage of the balloon, used to adjust the air pressure value in the balloon;
  • a flow sensor located in the exhaust passage of the balloon, and used to collect the real-time gas flow value in the gas recovery passage in the exhaust passage of the balloon;
  • a controller respectively connected to the temperature sensor, the high-pressure proportional valve, the first pressure sensor, the low-pressure proportional valve, and the flow sensor;
  • controller is configured to:
  • a first temperature control signal is generated according to the real-time temperature value and the target temperature value; acquire the gas recovery in the exhaust passage of the balloon According to the real-time gas flow value and the target gas flow value in the channel, a first gas flow control signal is generated according to the real-time gas flow value and the target gas flow value; according to the first temperature control signal and/or the first The gas flow control signal generates a first target liquid inlet pressure control signal, which controls the liquid supply flow of the high-pressure proportional valve in the liquid supply passage of the balloon through the cooperation of temperature control and flow control; and
  • the controller can be set to obtain the real-time temperature value and the target temperature value in the cryo-balloon according to the acquired real-time temperature value and the target temperature value in the cryo-balloon, and to acquire the value of the gas recovery channel in the exhaust passage of the balloon.
  • Real-time gas flow value and target gas flow value dynamically and cooperatively control the liquid supply flow of the high-pressure proportional valve in the liquid supply path of the balloon, and according to the acquired real-time pressure value of the exhaust side of the balloon and preset
  • the target air pressure value dynamically and cooperatively controls the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon, so that the temperature in the balloon can reach the preset target temperature value, and the balloon can be controlled.
  • the temperature is maintained at the preset target temperature value, which improves the isolation effect of the pulmonary vein, reduces the complexity of the operation and the operation time, and reduces the risk of the operation.
  • the exhaust flow of the low-pressure proportional valve can be dynamically controlled to make the air pressure on the exhaust side of the balloon reach and maintain the preset target air pressure, the pressure in the balloon is maintained above the current atmospheric pressure, and the pressure of the balloon is relieved. If the value is lower than the value, it can avoid the risk of tearing the tissues that the pressure in the balloon is too low, and avoid the risk of balloon rupture caused by too high pressure in the balloon.
  • the controller is further configured to:
  • the first temperature control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • a first gas flow control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • the first target exhaust pressure control signal is used to control the exhaust flow of the low pressure proportional valve.
  • the controller is configured to use incremental PD or incremental PID control algorithm to dynamically control the temperature value in the balloon to a preset temperature value, which can make the temperature drop quickly , And during the process of increasing the fluid supply flow rate of the balloon, the rising trend is predicted by the differential to prevent the overshoot phenomenon of the fluid supply flow rate.
  • the controller By configuring the controller to use incremental PD or incremental PID control algorithm to dynamically control the gas flow on the exhaust side of the balloon, the gas flow can be subdivided into each segment, and the gas flow rate in each segment The slope is pre-judged, and the flow rate is gradually increased according to the results of the pre-judgement, so that the accuracy of the gas flow control is higher, and it is also convenient to improve the stability of controlling the exhaust side of the balloon to maintain the preset flow value.
  • the exhaust flow of the low-pressure proportional valve can be dynamically controlled by the incremental proportional-differential or incremental proportional-integral-derivative control algorithm so that the air pressure value on the exhaust side of the balloon reaches and maintains the preset target air pressure value, the balloon
  • the internal pressure is kept above the current atmospheric pressure and the pressure relief value of the balloon is below the pressure relief value of the balloon, which can avoid the risk of tearing the tissues against the tissue due to the low pressure in the balloon, and also avoid the excessive pressure in the balloon causing the balloon to rupture risks of.
  • the cryoablation temperature control system further includes:
  • a second pressure sensor located in the fluid inlet passage of the balloon, connected to the controller, and used to collect the real-time fluid pressure value on the fluid outlet side of the high-pressure proportional valve;
  • controller is also configured to:
  • the real-time fluid pressure value is acquired, and a second target liquid-inlet pressure control signal is generated according to the first target liquid-inlet pressure control signal and the real-time fluid pressure value to control the liquid supply flow rate of the high-pressure proportional valve.
  • the controller acquires the real-time fluid pressure value on the liquid outlet side of the high pressure proportional valve on the liquid supply side of the balloon and the first target liquid inlet pressure control signal According to the control target demand of, the liquid supply flow rate of the high-pressure proportional valve is dynamically controlled, so that the temperature in the balloon reaches and/or maintains the target temperature value.
  • the controller includes a parameter acquisition module, a liquid supply flow control module, and an exhaust pressure control module; wherein the parameter acquisition module is used to acquire the real-time temperature value in the balloon and preset The target temperature value of, the real-time gas flow value and the target gas flow value in the gas recovery channel in the exhaust passage of the balloon, the real-time air pressure value on the exhaust side of the balloon, and the preset target air pressure value;
  • the liquid supply flow control module is configured to generate a first temperature control signal according to the real-time temperature value and the target temperature value, and generate a first gas flow control signal according to the real-time gas flow value and the target gas flow value, According to the first temperature control signal and/or the first gas flow control signal, a first target liquid inlet pressure control signal is generated, and the temperature control and flow control are coordinated to control the liquid supply path of the balloon
  • the exhaust pressure control module is used to generate a first target exhaust pressure control signal according to the real-time air pressure value and the target
  • the parameter acquisition module is also used to acquire the real-time fluid pressure value of the liquid outlet side of the high-pressure proportional valve
  • the liquid supply flow control module includes:
  • the temperature PD/PID control module is used to generate a first temperature control signal by using an incremental proportional derivative or incremental proportional integral derivative control algorithm according to the real-time temperature value and the target temperature value;
  • the gas flow PD/PID control module is used to generate a first gas flow control signal by using an incremental proportional-differential or incremental proportional-integral-derivative control algorithm according to the real-time gas flow value and the target gas flow value;
  • the high-pressure proportional valve PD/PID control module is used to generate the first target liquid inlet pressure control signal according to the first temperature control signal and/or the first gas flow control signal, and to generate the first target liquid inlet pressure control signal according to the first target
  • the hydraulic pressure control signal calculates the target fluid pressure value on the liquid outlet side of the high-pressure proportional valve, and uses an incremental proportional differential or incremental proportional integral differential control algorithm based on the real-time fluid pressure value and the target fluid pressure value Generating the second target liquid inlet pressure control signal to control the liquid supply flow of the high-pressure proportional valve;
  • the exhaust pressure control module includes:
  • the low-pressure proportional valve PD/PID control module is used to generate the first target exhaust pressure control signal according to the real-time air pressure value and the target air pressure value using an incremental proportional derivative or incremental proportional integral derivative control algorithm, To control the exhaust flow of the low-pressure proportional valve;
  • the temperature PD/PID control module, the gas flow PD/PID control module, the high-pressure proportional valve PD/PID control module, and the low-pressure proportional valve PD/PID control module are coordinated to control, so that the balloon The pressure value inside is within a preset safety threshold range, and makes the temperature inside the balloon reach and/or maintain the target temperature value.
  • thermoelectric control module In the cryoablation temperature control system in the above embodiment, four control modules are used: temperature PD/PID control module, gas flow PD/PID control module, high pressure proportional valve PD/PID control module, and low pressure proportional valve PD/PID control module Cooperative control can realize the seamless switching function between flow control and temperature control, which greatly reduces the operation time.
  • the controller is further configured to:
  • the high-pressure proportional valve is controlled to decrease the opening degree, and/or
  • the low-pressure proportional valve is controlled to adjust the opening degree, so that the real-time temperature value in the balloon reaches a preset target temperature value.
  • the controller is configured to control the high-pressure proportional valve and/or the high-pressure proportional valve and/or the The low-pressure proportional valve enters the re-temperature protection mode to avoid unnecessary tissue damage caused by low temperature.
  • a fourth aspect of the present application provides a cryoablation temperature control system for controlling the pressure in the cryoablation balloon, the system comprising:
  • a low-pressure proportional valve located in the exhaust passage of the balloon, used to adjust the air pressure value in the balloon;
  • a solenoid valve located in the exhaust passage of the balloon, in parallel with the low-pressure proportional valve;
  • a flow sensor located in the exhaust passage of the balloon, and used to collect the real-time gas flow value in the gas recovery passage in the exhaust passage of the balloon;
  • a controller connected to the low pressure proportional valve, the solenoid valve and the flow sensor;
  • the controller is configured to:
  • the low-pressure proportional valve is controlled to increase the opening linearly and incrementally, and when the low-pressure proportional valve is fully opened, the air discharge path of the balloon is controlled
  • the solenoid valve is opened, so that at least a part of the exhaust gas from the balloon flows through the solenoid valve and flows into the gas recovery channel.
  • the controller is further configured to:
  • the solenoid valve in the exhaust passage of the balloon is controlled to open and the low-pressure proportional valve is closed at the same time, so that all the exhaust from the balloon flows through the solenoid valve and flows into all the valves.
  • the gas recovery channel enables the pressure value in the balloon to be within a preset safety threshold range.
  • the configuration controller controls the low-pressure proportional valve to increase the opening linearly and incrementally.
  • the solenoid valve in the exhaust passage of the balloon is controlled to open, so that at least a part of the exhaust gas of the balloon flows through the solenoid valve and flows into the gas recovery channel, or when the When the low-pressure proportional valve is fully opened, the solenoid valve in the exhaust passage of the balloon is controlled to open and close the low-pressure proportional valve, so that the controller can control the low-pressure proportional valve to increase linearly according to the slope of the flow increase Increase the proportional coefficient of the opening degree to avoid the flow rate of the low pressure proportional valve from increasing too fast to cause the flow overshoot, and also to avoid the flow rate of the low pressure proportional valve from increasing too slowly, which will cause the flow rate to rise to the target value for too long, while being able to
  • the cryoablation temperature control system further includes a high-pressure proportional valve located in the fluid supply path of the balloon and connected to the controller; wherein, the controller is further configured to: When the real-time gas flow value is lower than the preset flow threshold range, the high-pressure proportional valve is controlled to increase the opening to increase the liquid supply flow, so that the pressure value in the balloon is within the preset safety threshold range.
  • the fifth aspect of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program implements the steps of any method described in the embodiments of the present application when the computer program is executed by a processor.
  • FIG. 1 is a schematic flowchart of a cryoablation temperature control method provided in the first embodiment of this application.
  • FIG. 2 is a schematic flowchart of a cryoablation temperature control method provided in the second embodiment of the application.
  • FIG. 3 is a schematic flowchart of a cryoablation temperature control method provided in the third embodiment of this application.
  • FIG. 4 is a schematic flowchart of a cryoablation temperature control method provided in the fourth embodiment of this application.
  • FIG. 5 is a schematic flowchart of a cryoablation temperature control method provided in the fifth embodiment of this application.
  • FIG. 6 is a schematic flowchart of a cryoablation temperature control method provided in the sixth embodiment of this application.
  • FIG. 7 is a schematic flowchart of a cryoablation temperature control method provided in a seventh embodiment of the application.
  • FIG. 8 is a schematic flowchart of a cryoablation temperature control method provided in the eighth embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a cryoablation temperature control system provided in the ninth embodiment of this application.
  • FIG. 10 is a schematic diagram of the control system architecture of a cryoablation temperature control system provided in the tenth embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a cryoablation temperature control system provided in an eleventh embodiment of this application.
  • FIG. 12 is a schematic diagram of the control system architecture of a cryoablation temperature control system provided in the twelfth embodiment of this application.
  • FIG. 13 is a schematic diagram of a module structure of a controller of a cryoablation temperature control system provided in a thirteenth embodiment of this application.
  • FIG. 14 is a schematic diagram of a module structure of a controller of a cryoablation temperature control system provided in the fourteenth embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a cryoablation temperature control system provided in a fifteenth embodiment of this application.
  • FIG. 16 is a schematic diagram of the control system architecture of a cryoablation temperature control system provided in the sixteenth embodiment of this application.
  • FIG. 17 is a schematic diagram of the control system architecture of a cryoablation temperature control system provided in the seventeenth embodiment of this application.
  • FIG. 18 is a schematic diagram of the principle of PID control provided in an embodiment of the application.
  • FIG. 19 is a schematic diagram of a three-stage curve of temperature changes in a cryoablation temperature control process provided by this application.
  • FIG. 20 is a schematic diagram of a temperature change curve during a cryoablation temperature control process provided by this application.
  • a cryoablation temperature control method for controlling the temperature in the cryoablation balloon.
  • the method includes the following steps:
  • Step 22 Obtain a real-time temperature value and a preset target temperature value in the balloon, and generate a first temperature control signal according to the real-time temperature value and the target temperature value.
  • a temperature sensor can be used to collect the real-time temperature value in the balloon, and a preset target temperature value can be set according to the needs of cryoablation surgery, so as to obtain the real-time temperature value in the balloon and the preset
  • the target temperature value generates a first temperature control signal to dynamically adjust controllable parameters, such as a real-time flow value or a real-time pressure value, so that the temperature in the balloon reaches and can be maintained at a preset target temperature value.
  • Step 24 Obtain the real-time gas flow value and the target gas flow value in the gas recovery channel in the exhaust passage of the balloon, and generate a first gas flow control signal according to the real-time gas flow value and the target gas flow value .
  • a flow sensor may be used to obtain the real-time gas flow value in the gas recovery channel in the exhaust passage of the balloon, and then an input device such as a touch screen or a key may be used to obtain the target gas flow value, according to the real-time gas flow value and The target gas flow value generates a first gas flow control signal to achieve target control of the exhaust flow in the gas recovery passage in the exhaust passage of the balloon.
  • Step 26 Generate a first target liquid inlet pressure control signal according to the first temperature control signal and/or the first gas flow control signal, and control the supply of the balloon through the cooperation of temperature control and flow control.
  • the liquid supply flow rate of the high-pressure proportional valve in the liquid passage is not limited.
  • a PID control algorithm may be used to generate the first temperature control signal based on the target temperature value and the real-time temperature value, and the first gas flow control signal is generated based on the real-time gas flow value and the target gas flow value.
  • a first target liquid inlet pressure control signal is generated according to the first temperature control signal, and the liquid supply flow rate of the high-pressure proportional valve in the liquid supply path of the balloon is dynamically adjusted;
  • the first target liquid inlet pressure control signal is generated to dynamically adjust the liquid supply flow of the high-pressure proportional valve in the liquid supply passage of the balloon; if temperature control is used and In combination with flow control, a first target liquid inlet pressure control signal is generated according to the first temperature control signal and the first gas flow control signal, and the temperature control and flow control are coordinated to control the supply of the balloon.
  • the liquid supply flow rate of the high-pressure proportional valve in the liquid passage It is also possible to dynamically and coordinately adjust the liquid supply flow of the high-pressure proportional valve in the liquid supply path of the balloon by adopting a control method of seamless switching between flow control and temperature control according to actual work requirements of specific application scenarios.
  • Step 28 Obtain the real-time air pressure value and the preset target air pressure value on the exhaust side of the balloon.
  • the first pressure sensor may be used to collect the real-time air pressure value on the exhaust side of the balloon, and then an input device such as a touch screen or keys may be used to obtain a preset target air pressure value.
  • Step 210 Generate a first target exhaust pressure control signal according to the real-time air pressure value and the target air pressure value to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon, and cooperate with the first A target liquid inlet pressure control signal controls the liquid supply flow of the high-pressure proportional valve so that the pressure value in the balloon is within a preset safety threshold range and the temperature in the balloon reaches and/or maintains the The target temperature value.
  • the PID control algorithm can be used to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon, so that the pressure in the balloon is maintained within a safe pressure threshold range, and the high-pressure proportional valve can be dynamically coordinated and controlled
  • the liquid supply flow rate is such that the temperature in the balloon reaches and/or maintains the target temperature value.
  • the real-time temperature value and the target temperature value in the cryo-balloon are acquired, and the real-time gas flow value in the gas recovery channel in the exhaust passage of the balloon is acquired.
  • the target gas flow value can be controlled by separate temperature control, separate flow control or a combination of temperature control and flow control, which realizes the seamless switching control of temperature control and flow control, and dynamically and cooperatively controls the fluid supply path of the balloon.
  • the liquid supply flow rate of the high-pressure proportional valve in the balloon is dynamically coordinated to control the low-pressure proportional valve in the exhaust passage of the balloon according to the acquired real-time air pressure value on the exhaust side of the balloon and the preset target air pressure value
  • the exhaust flow rate enables the temperature in the balloon to reach the preset target temperature value, and can control the temperature in the balloon to maintain the preset target temperature value, which improves the isolation effect of the pulmonary veins; temperature control
  • the coordination with flow control reduces the complexity and operation time of the operation, and reduces the risk of the operation.
  • the exhaust flow of the low-pressure proportional valve can be dynamically controlled to make the air pressure on the exhaust side of the balloon reach and maintain the preset target air pressure, the pressure in the balloon is maintained above the current atmospheric pressure, and the pressure of the balloon is relieved. If the value is lower than the value, it can avoid the risk of tearing the tissues that the pressure in the balloon is too low, and avoid the risk of balloon rupture caused by too high pressure in the balloon.
  • the flow control mode, temperature control mode, and combined control of temperature and flow can be adopted in this application according to the user's choice, realizing seamless switching of temperature and flow Control, it is convenient for users to choose the control method according to the specific needs of the actual surgical scene, which improves the practicability and convenience of the product.
  • This application can adopt the dynamic coordination of flow control and temperature control, which not only reduces the operation time and the complexity of the operation, but also makes the pressure value in the balloon within the preset safety threshold range and makes the temperature in the balloon reach And/or maintain the target temperature value, which improves the speed, accuracy and range of temperature control, while maintaining pressure on the balloon to avoid the risk of tearing the tissue against which the pressure in the balloon is too low, and also The risk of balloon rupture caused by excessive pressure in the balloon is avoided, the stability of the balloon work is effectively improved, the isolation effect of the pulmonary vein is improved, and the risk and side effects of cryoablation surgery are reduced.
  • the real-time temperature value, the target temperature value, the real-time gas flow value, and the The target gas flow value generating a first target liquid inlet pressure control signal to control the liquid supply flow of the high-pressure proportional valve in the liquid supply passage of the balloon includes:
  • Step 262 according to the real-time temperature value and the target temperature value, generate a first temperature control signal by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm;
  • Step 264 according to the real-time gas flow value and the target gas flow value, generate a first gas flow control signal using an incremental proportional derivative or incremental proportional integral derivative control algorithm;
  • Step 266 Generate the first target liquid inlet pressure control signal according to the first temperature control signal and/or the first gas flow control signal to control the liquid supply flow of the high-pressure proportional valve.
  • the step of controlling the liquid supply flow rate of the high-pressure proportional valve further includes:
  • Step 2662 Obtain a real-time fluid pressure value on the liquid outlet side of the high-pressure proportional valve
  • Step 2664 Generate a second target liquid inlet pressure control signal according to the first target liquid inlet pressure control signal and the real-time fluid pressure value to control the liquid supply flow of the high-pressure proportional valve.
  • the real-time fluid pressure value on the liquid outlet side of the high-pressure proportional valve on the liquid supply side of the balloon is acquired, and the first target liquid inlet pressure
  • the control target demand of the control signal generates a second target liquid inlet pressure control signal to dynamically control the liquid supply flow rate of the high-pressure proportional valve, so that the temperature in the balloon reaches and/or maintains the target temperature value.
  • the second target liquid inlet pressure control signal is generated by the real-time fluid pressure value of the liquid outlet side of the high-pressure proportional valve and the first target liquid inlet pressure control signal to dynamically control the liquid supply flow of the high-pressure proportional valve to achieve flow
  • doctors are still accustomed to using the flow control mode, but the flow control mode will cause the temperature to continue to decrease.
  • the step of controlling the liquid supply flow rate of the high-pressure proportional valve further includes:
  • Step 26642 Calculate the target fluid pressure value on the fluid outlet side of the high-pressure proportional valve according to the first target fluid inlet pressure control signal;
  • Step 26644 Generate the second target liquid inlet pressure control signal according to the real-time fluid pressure value and the target fluid pressure value using an incremental proportional differential or incremental proportional integral differential control algorithm to control the high pressure proportional The supply flow of the valve.
  • the target fluid pressure value on the liquid outlet side of the high-pressure proportional valve is calculated according to the first target liquid inlet pressure control signal, and an incremental PD is adopted.
  • the control algorithm or incremental PID control algorithm generates the second target liquid inlet pressure control signal, so as to realize the function of seamless switching between flow control and temperature control to dynamically control the high pressure ratio in coordination with temperature control requirements and flow control requirements.
  • the liquid supply flow rate of the valve enables the temperature in the balloon to reach and/or maintain the target temperature value.
  • the coordination of multi-parameter control is improved, the operation difficulty is reduced, and the operation time is reduced.
  • the first target exhaust pressure control is generated according to the real-time air pressure value and the target air pressure value.
  • Signal to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon includes:
  • the first target exhaust pressure control signal is generated using an incremental proportional derivative or incremental proportional integral derivative control algorithm according to the real-time air pressure value and the target air pressure value.
  • the exhaust flow rate of the low-pressure proportional valve is dynamically controlled by using an incremental PD or an incremental PID control algorithm, so that the pressure value in the balloon is positioned at the preset value.
  • the safety threshold range is set, such as keeping the pressure in the balloon above the current atmospheric pressure and below the pressure relief value of the balloon, so as to prevent the risk of tearing the tissue against which the pressure in the balloon is too low, and also prevent the balloon When the pressure in the balloon is too high, there is a risk of balloon rupture.
  • the method further includes the following steps:
  • the target gas flow value is controlled by predicting the slope of the change curve of the real-time gas flow value, and the temperature control process is divided into at least two stages according to the real-time temperature value.
  • the phases include a rapid temperature drop phase and a temperature slowly drop phase. In the slow temperature drop phase, the real-time gas flow value reaches a preset flow stabilization threshold range.
  • the first target exhaust pressure control is generated according to the real-time air pressure value and the target air pressure value Signal to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon so that the temperature in the balloon reaches and/or maintains the target temperature value further includes:
  • Step 2013 when the real-time gas flow value reaches a preset flow stabilization threshold range, control the low-pressure proportional valve to increase the opening linearly and incrementally, and when the low-pressure proportional valve is fully opened, control the discharge of the balloon
  • the solenoid valve in the air passage is opened, so that at least a part of the exhaust gas from the balloon flows through the solenoid valve and then flows into the gas recovery channel.
  • the temperature in the balloon in the process of controlling the temperature and/or flow rate of the balloon, the temperature in the balloon may be controlled to drop rapidly, and when it is detected that the real-time gas flow value reaches When the preset flow stabilization threshold range, it enters the temperature slow control stage.
  • the real-time gas flow value can be controlled to stabilize within the flow stabilization threshold range, and the low-pressure proportional valve can be controlled to increase the opening linearly and incrementally.
  • the solenoid valve in the exhaust passage of the balloon is controlled to open, so as to switch to controlling the solenoid valve to control the temperature in the balloon to slowly drop to a preset target temperature value, so that the flow rate can be adjusted more. Stable to avoid the problem of large flow fluctuations.
  • a cryoablation temperature control method provided in an embodiment of the present application, when the low-pressure proportional valve is fully opened, the solenoid valve in the exhaust passage of the balloon is controlled to open and close the The low-pressure proportional valve makes all the exhaust gas from the balloon flow through the solenoid valve and into the gas recovery channel, so that the pressure value in the balloon is within the preset safety threshold range and makes the inside of the balloon The temperature reaches and/or maintains the target temperature value.
  • this kind of control method can make the temperature change more stable while avoiding flow fluctuations during the slow temperature control stage.
  • the first target exhaust pressure control is generated according to the real-time air pressure value and the target air pressure value.
  • the signal to control the exhaust flow of the low-pressure proportional valve in the exhaust passage of the balloon further includes:
  • Step 2014 When the real-time gas flow value is lower than a preset flow threshold range, control the high-pressure proportional valve to increase the opening so that the pressure value in the balloon is within a preset safety threshold range.
  • the balloon when the real-time gas flow value is lower than the preset flow threshold range, the balloon is pressure-maintained to prevent the balloon from contracting and avoid the occurrence of balloon in The contraction during the freezing process will cause the tissue to be torn apart, so as to meet the stability of the supply and discharge flow of the balloon while ensuring that the pressure in the balloon remains within a safe threshold range.
  • cryoablation temperature control method further includes:
  • step 2016, when the real-time temperature value in the balloon is less than or equal to a preset temperature threshold, control the high-pressure proportional valve to reduce the opening, and/or control the low-pressure proportional valve to adjust the opening so that the The real-time temperature value in the balloon reaches the preset target temperature value.
  • the high-pressure proportional valve and/or the low-pressure proportional valve are controlled to enter the rewarming Protection mode to avoid unnecessary tissue damage caused by low temperature.
  • a cryoablation temperature control system for controlling the temperature in the cryoablation balloon 200, as shown in FIGS. 9-10, the system includes a temperature sensor 113, a high pressure The proportional valve 14, the first pressure sensor 17, the low pressure proportional valve 18, the flow sensor 112 and the controller 114, the temperature sensor 113 is used to collect the real-time temperature value in the balloon 200; the high pressure proportional valve 14 is located in the fluid supply path of the balloon 200 The first pressure sensor 17 is located in the exhaust passage of the balloon 200 and is used to collect the real-time air pressure value on the exhaust side of the balloon 200; the low-pressure proportional valve 18 is located in the exhaust passage of the balloon 200 and is used to adjust the The air pressure value in the balloon; the flow sensor 112 is located in the exhaust passage of the balloon 200, and is used to collect the real-time gas flow value in the gas recovery channel in the exhaust passage of the balloon 200; the controller 114 and the temperature sensor are respectively 113.
  • controller 114 may be configured to:
  • the cryoablation temperature control system further includes a first check valve 11, a pressure reducing valve 12, a pressure gauge 13, a compressor 16 arranged in the liquid supply passage, and a compressor 16 arranged in the exhaust passage.
  • the refrigerant in the refrigerant storage tank 100 sequentially flows through the first one-way valve 11, the pressure reducing valve 12, the pressure gauge 13, the high-pressure proportional valve 14, and the compressor After 16, the refrigerant flows into the balloon 200.
  • the refrigerant After the refrigerant vaporizes in the balloon 200 and removes heat, it flows through the first pressure sensor 17, the low pressure proportional valve 18, the second one-way valve 110, the vacuum pump 111, and the flow sensor 112 in sequence. Flow into the return gas storage device 300.
  • the controller 114 obtains the real-time temperature value and the target temperature value in the cryo-balloon 200, and obtains the gas recovery in the exhaust passage of the balloon.
  • the real-time gas flow value and target gas flow value in the channel can be controlled by a separate temperature control mode, a separate flow control mode or a combination of temperature control and flow control, which realizes the seamless switching control of temperature control and flow control, dynamic
  • the liquid supply flow rate of the high-pressure proportional valve 14 in the liquid supply passage of the balloon 200 is cooperatively controlled, and the balloon 200 is dynamically and cooperatively controlled according to the acquired real-time pressure value of the exhaust side of the balloon 200 and the preset target pressure value.
  • the exhaust flow rate of the low-pressure proportional valve 18 in the exhaust passage enables the temperature in the balloon 200 to reach the preset target temperature value, and can control the temperature in the balloon 200 to maintain the preset target temperature value to increase
  • the isolation effect of the pulmonary vein is reduced, the complexity of the operation and the operation time are reduced, and the risk of the operation is reduced.
  • the exhaust flow rate of the low-pressure proportional valve 18 can be dynamically controlled so that the air pressure value on the exhaust side of the balloon reaches and maintains the preset target air pressure value, the pressure in the balloon 200 can be maintained above the current atmospheric pressure. To avoid the risk of tearing the tissue against which the pressure in the balloon is too low, it can also avoid the risk of balloon rupture caused by too high pressure in the balloon.
  • the controller 114 is configured to:
  • the first temperature control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • a first gas flow control signal is generated by using an incremental proportional derivative or an incremental proportional integral derivative control algorithm
  • the first target exhaust pressure control signal is used to control the exhaust flow of the low pressure proportional valve.
  • a cryoablation temperature control system provided in an embodiment of the present application, as shown in FIGS. 11-12, it further includes a second pressure sensor 15 located at the inlet of the balloon 200 In the passage, it is connected to the controller 114 and is used to collect the real-time fluid pressure value on the liquid outlet side of the high-pressure proportional valve 14; wherein, the controller 114 is configured as:
  • the real-time fluid pressure value is acquired, and a second target liquid-inlet pressure control signal is generated according to the first target liquid-inlet pressure control signal and the real-time fluid pressure value to control the liquid supply flow rate of the high-pressure proportional valve.
  • the controller 114 acquires the real-time fluid pressure value on the liquid outlet side of the high pressure proportional valve 14 on the liquid supply side of the balloon 200, and the first target inlet
  • the control target demand of the hydraulic pressure control signal dynamically controls the liquid supply flow rate of the high-pressure proportional valve 14 so that the temperature in the balloon 200 reaches and/or maintains the target temperature value.
  • a cryoablation temperature control system for controlling the temperature in the cryoablation balloon.
  • the system includes a parameter acquisition module 2.
  • the real-time gas flow value and the target gas flow value in the, the real-time air pressure value on the exhaust side of the balloon, and the preset target air pressure value Generate a first temperature control signal based on the temperature value, generate a first gas flow control signal based on the real-time gas flow value and the target gas flow value; and control based on the first temperature control signal and/or the first gas flow rate
  • the signal generates a first target liquid inlet pressure control signal, and the temperature control and flow control are coordinated to control the liquid supply flow of the high-pressure proportional valve in the liquid supply passage of the balloon; the exhaust pressure control module 6 is used for The real
  • a cryoablation temperature control system is provided.
  • the parameter acquisition module 2 is also used to acquire the real-time fluid on the liquid outlet side of the high-pressure proportional valve. Pressure value;
  • the liquid supply flow control module includes a temperature PD/PID control module 43, a gas flow PD/PID control module 42 and a high-pressure proportional valve PD/PID control module 41;
  • the temperature PD/PID control module 43 is used according to The real-time temperature value and the target temperature value are used to generate a first temperature control signal using an incremental proportional-differential or incremental proportional-integral-derivative control algorithm;
  • the gas flow PD/PID control module 42 is used to generate a first temperature control signal according to the real-time
  • the gas flow value and the target gas flow value are used to generate a first gas flow control signal using an incremental proportional-differential or incremental proportional-integral-derivative control algorithm;
  • the high-pressure proportional valve PD/PID control module 41 is used
  • the controller 114 performs coordinated control on the first temperature control signal, the first gas flow control signal, the second target liquid inlet pressure control signal, and/or the first target exhaust pressure control signal, so that the pressure in the balloon is The value lies within a preset safety threshold range, and enables the temperature in the balloon to reach and/or maintain the target temperature value.
  • the temperature PD/PID control module, the gas flow PD/PID control module, the high-pressure proportional valve PD/PID control module, and the low-pressure proportional valve PD/PID control module may be composed of different PID controller implementation.
  • the PD/PID control module adopts incremental PD or incremental PID control algorithm to dynamically control the temperature value in the balloon to reach the preset temperature value, which can make the temperature drop quickly, and in the balloon
  • the process of increasing the liquid supply flow rate predicts the upward trend through differentiation to prevent overshoot of the liquid supply flow rate.
  • the gas flow PD/PID control module By setting the gas flow PD/PID control module to use incremental PD or incremental PID control algorithm to dynamically control the gas flow on the exhaust side of the balloon, the gas flow can be subdivided into each segment, in each segment separately Prejudge the slope of the gas flow rate, and control the flow rate to gradually increase according to the result of the prejudgement, so that the accuracy of the gas flow control is higher, and it is also convenient to improve the stability of controlling the exhaust side of the balloon to maintain the preset flow value.
  • the air pressure value on the exhaust side of the balloon reaches and maintains the preset target air pressure value, so that the ball Keep the pressure in the balloon above the current atmospheric pressure and below the pressure relief value of the balloon, which can avoid the risk of tearing the adjacent tissues due to the low pressure in the balloon, and avoid the excessive pressure in the balloon leading to the balloon. Risk of rupture.
  • temperature PD/PID control module In the cryoablation temperature control system in the above embodiment, four control modules are used: temperature PD/PID control module, gas flow PD/PID control module, high pressure proportional valve PD/PID control module, and low pressure proportional valve PD/PID control module Coordinated control allows users to adopt a separate temperature control mode, a separate flow control mode or a combination of temperature control and flow control according to actual work needs to achieve seamless switching control between temperature control and flow control. It facilitates the actual operation, improves the speed, accuracy and scope of temperature control, while maintaining the pressure of the balloon to avoid the risk of tearing the tissue against the tissue due to the low pressure in the balloon, and also avoid the generation of the balloon. Excessive internal pressure leads to the risk of balloon rupture, which effectively improves the stability of the balloon work, improves the isolation effect of the pulmonary vein, and reduces the risk and side effects of cryoablation surgery.
  • cryoablation temperature control system For the specific limitation of the cryoablation temperature control system, please refer to the above description of the cryoablation temperature control method, which will not be repeated here.
  • the cryoablation temperature control system further includes a solenoid valve 19, which is located in the balloon 200 In the exhaust passage of, it is connected in parallel with the low-pressure proportional valve, so that the exhaust gas of the balloon 200 flows through the solenoid valve 19 and then flows into the gas recovery passage.
  • the controller 114 controls the low-pressure proportional valve 18 to increase the opening linearly and incrementally.
  • the controller 114 controls the solenoid valve 19 in the exhaust passage of the balloon 200 to open and close the low-pressure proportional valve 18.
  • the solenoid valve is used in this embodiment.
  • the synergistic control effect between 19 and the low-pressure proportional valve 18 can make the pressure value in the balloon be in the preset safety threshold range, achieve a good temperature control effect, and can prevent flow oscillation or overshoot, making the control
  • the temperature accuracy is greatly improved, and the temperature control accuracy reaches ⁇ 1 degree.
  • the controller 114 controls the high-pressure proportional valve 14 to increase the opening so that the pressure value in the balloon is within the preset safety threshold range.
  • the controller 114 may also control the solenoid valve 19 in the exhaust passage of the balloon 200 to open, but does not close the low-pressure proportional valve 18, so that the solenoid valve 19 and the low-pressure proportional valve 18 work at the same time, so that the ball At least a part of the exhaust gas from the bladder flows through the solenoid valve 19, which is not limited in the present invention.
  • the controller is further configured to:
  • the high-pressure proportional valve is controlled to reduce the opening, and/or the low-pressure proportional valve is controlled to adjust the opening to form a re-temperature protection mode, In order to make the real-time temperature value in the balloon reach the preset target temperature value, avoid the situation that the temperature is too low and cause unnecessary tissue damage.
  • the cryoablation temperature control system further includes an interactive device 115, which is connected to the controller 114, It is used to input the target temperature value or the target gas flow value through the interactive device 115.
  • cryoablation temperature control system in the foregoing embodiment, by setting the interactive device 115 connected to the controller 114, it is convenient for the user to input the target temperature value or the target gas flow value through the interactive device 115 to control the temperature and the flow rate.
  • the control cooperates to control the temperature in the balloon to reach and/or maintain the target temperature value.
  • the function of seamless switching between flow control and temperature control is realized, which is convenient for doctors to operate, greatly reduces the operation time, reduces the complexity of the operation, and improves the isolation effect of the pulmonary veins.
  • the interaction device 115 may include at least one of a keyboard, a touch screen, a touch screen, a key or a voice input device, and the like.
  • a temperature sensor, a first pressure sensor, a second pressure sensor, and a flow sensor may be set to communicate with the corresponding analog-to-digital conversion circuit.
  • the controller is connected, and the controller acquires the real-time temperature value in the balloon collected by the temperature sensor, the real-time gas flow value in the gas recovery channel collected by the first pressure sensor, and the preset target temperature value acquired through the interactive device And the target gas flow value to generate a first target liquid inlet pressure control signal.
  • the first target liquid inlet pressure control signal is transmitted to the drive circuit of the high pressure proportional valve via the first digital-to-analog conversion circuit and the first amplifying circuit in sequence to The liquid supply flow rate of the high-pressure proportional valve is controlled; at the same time, the controller generates a first target exhaust pressure control signal according to the real-time air pressure value and the target air pressure value, and the first target exhaust pressure control signal sequentially passes through the second
  • the analog-to-digital conversion current and the second amplifying circuit are transmitted to the driving circuit of the low-pressure proportional valve to control the exhaust flow of the low-pressure proportional valve.
  • the controller can display the real-time temperature value collected by the temperature sensor, the real-time gas flow value collected by the first pressure sensor on the liquid side of the balloon, and the real-time pressure value collected by the second pressure sensor on the liquid side of the high-pressure proportional valve in real time through the interactive device. And the real-time gas flow value in the gas recovery channel collected by the flow sensor.
  • the user can set the preset target temperature value and/or target flow value through an interactive device such as a touch screen, the controller performs PID calculation according to the acquired data, and the digital value of the calculated result
  • the analog quantity is converted into an analog quantity through the corresponding digital-to-analog conversion circuit, and then the analog quantity is amplified by the corresponding amplifier, and the amplified signal is transmitted to the corresponding drive circuit to dynamically control the opening size of the high-pressure proportional valve and the low-pressure proportional valve.
  • r(t) is the set target value
  • y(t) is the actual output value of the system
  • the set target value and the actual output value constitute the control deviation e(t)
  • E(t) r(t)-y(t)
  • e(t) is used as the input of the PID controller
  • u(t) is used as the output of the PID controller and the input of the controlled quantity.
  • Proportional (P) control can quickly respond to errors and play a greater role when the error is large.
  • proportional control cannot eliminate steady-state errors.
  • the increase of the proportional coefficient will cause the instability of the system.
  • the function of integral (I) control is: as long as the system has errors, the integral will continue to accumulate, and the control quantity will be output to eliminate the error. As long as there is enough time, the integral control will be able to completely eliminate the error and make the system error close to zero, thereby eliminating the steady-state error.
  • the integral action is too large, the overshoot of the system will increase, and even the system will oscillate.
  • Differential (D) control can reduce the overshoot, overcome the oscillation, improve the stability of the system, speed up the dynamic response speed of the system, reduce the adjustment time, and improve the dynamic performance of the system.
  • D Differential
  • it can be divided into different control models such as P, PI, PD, PID, and temperature control commonly used Proportion Differentiation (PD) and Proportion Integration Differentiation (PID) Two ways of PID.
  • u(t) is the output signal of PID control
  • e(t) is the deviation between the set target value and the actual output value
  • K p is the proportional coefficient
  • T l is the integral time
  • T D is the derivative time
  • t is the time constant.
  • T is the sampling period
  • j and k are the sampling sequence numbers
  • N is the total number of samples
  • t is the time constant, corresponding to kT
  • e t and e t-1 represent the deviation value of two consecutive times.
  • Discrete expression (1-5) can be obtained from formula (1-2), formula (1-3) and formula (1-4):
  • ⁇ u k is the increment of the control quantity
  • K p is the proportional coefficient
  • T i is the integral parameter
  • T d is the derivative parameter
  • e k , e k-1 and e k-2 are the three consecutive sampling values respectively Deviation
  • T represents the sampling period.
  • sampling is the input and control is the output.
  • sampling period is the control period.
  • the control cycle of temperature, flow, and proportional valve should be determined according to their actual response.
  • the control cycle range of proportional valve can be 50ms-200ms; the sampling cycle of flow can be 1s-3s. Because the response of flow is relatively lagging, the control is too fast Will cause the steady-state error to increase; the temperature control cycle range is 500ms-2s.
  • the opening degree of the proportional valve needs to be controlled.
  • the opening degree of the valve is adjusted incrementally by formula (1-6), that is, continue to increase or decrease the original opening degree.
  • the adjusted voltage signal is accurate to the millivolt level, the higher the accuracy, the more precise the opening degree of the control, and the more stable the controlled flow. Finally, the temperature of the balloon reaches the set target temperature.
  • the cryoablation control process in the embodiment of the present application is divided into three stages of control.
  • Each stage can correspond to a different control strategy.
  • the first stage is temperature rapid In the descending stage, the flow rate rises rapidly and the balloon pressure is maintained at this stage until the flow reaches a certain value and ends when it stabilizes;
  • the second stage is the temperature slowly falling stage, and the flow rate remains stable at this stage;
  • the third stage is the ball
  • the temperature in the bladder reaches the preset target temperature stage.
  • temperature control and/or fixed flow control can be selected during the ablation process. These two control modes can be switched to each other. When the temperature control mode is selected, the target temperature must be selected to be controlled. The following describes the three-stage control process separately in conjunction with Figure 19.
  • the rapid temperature drop stage In this stage, the flow rate is increased and the pressure in the balloon remains stable.
  • the control method is mainly proportional derivative (PD) control.
  • the control volume in this stage is adjusted according to the selected method, that is, temperature control mode or fixed flow control mode. For example, in the temperature control mode, select the target temperature. The lower the target temperature, the greater the opening of the high-pressure proportional valve 14 needs to be adjusted, and the pressure adjustment range is 0psi-600psi.
  • the controller uses the PD control algorithm to control the temperature as soon as possible while increasing the flow rate as soon as possible. At the same time, it can also adjust the control proportional value according to different target temperatures to prevent temperature overshoot during the control process.
  • the temperature drops slowly.
  • two control methods can be selected through the low-pressure proportional valve 18.
  • the first is to continuously control the low-pressure proportional valve 18 to maintain the balloon pressure at the current atmospheric pressure to the inside of the balloon.
  • the upper limit pressure value is within the range and remains stable.
  • the first method is to set the target pressure of the low-pressure proportional valve 18, input the collected value of the first pressure sensor 17 and the target pressure into the controller, and calculate the output control increment by formula (1-6), so that the first The pressure of the pressure sensor 17 approaches the target pressure.
  • the second way is to adjust the opening of the low-pressure proportional valve 18 in a linear increment.
  • the opening of the low-pressure proportional valve 18 can reach the maximum and switch to the solenoid valve 19.
  • the controller continues to control the liquid supply flow of the high-pressure proportional valve 14 to avoid the problem of large flow fluctuations.
  • the frequency range controlled by the controller is 2HZ-20HZ.
  • the controller can control the high-pressure proportional valve to increase the opening to maintain the pressure of the balloon and prevent the balloon from contracting. If the balloon shrinks during the freezing process, the tissue it is against will be torn. Therefore, it is necessary to ensure that the pressure of the balloon is maintained within the safe pressure threshold while satisfying the stability of the fluid supply flow.
  • the balloon temperature reaches the set target temperature stage. This process continues until the ablation ends, and the controller uses multi-level PID control to gradually make the inside of the balloon reach a preset target temperature, or gradually reach a preset target flow rate.
  • cryoablation temperature control you can choose to switch between temperature control and flow control, so that the controller dynamically and cooperatively controls the actions of the high-pressure proportional valve 14, low-pressure proportional valve 18, and solenoid valve 19 to reduce the temperature in the balloon to And to maintain the preset target temperature, while controlling the pressure in the balloon to maintain a safe pressure threshold range.
  • the seamless switch between temperature control and flow control can be realized through an interactive device such as a touch screen interface.
  • the current operation can only be ended, and the flow control is performed cyclically to avoid unnecessary tissue damage caused by low temperature. Only increasing the number of ablations and the time the balloon is in the body also increases the risk and complexity of the operation. If it is not well controlled, it will increase the negative effects of the operation.
  • the flow control and temperature control can be switched during the operation, and the temperature in the balloon can be dynamically controlled to maintain the preset target temperature, which effectively reduces the number of ablations and the time the balloon is in the body, and is convenient for operation
  • the method not only shortens the operation time but also improves the effect of vein isolation.
  • the temperature control accuracy of only using the low-pressure proportional valve 18 is doubled, so that the temperature control error is about ⁇ 1 degree.
  • the control error of the increase rate of the liquid supply flow rate is about ⁇ 0.1l/min, which effectively avoids flow fluctuations.
  • the target temperature of the balloon is set to -40°C, -45°C, -50°C, -55°C, -60°C, and the temperature control is obtained
  • the effect diagram is shown in Figure 20.
  • the temperature control range can be -60°C to -35°C. It is clear that the controllable temperature range of the freeze-thaw temperature control method or system provided by this application is not limited to this Range, for different refrigerants, this application has different temperature control ranges. However, the given temperature range has fully met the temperature control requirements of cryoablation surgery.
  • the control process of the balloon center temperature is roughly divided into three stages to complete.
  • the controller uses a multi-stage PID control algorithm to dynamically and coordinately control the high-pressure proportional valve 14 and the low-pressure proportional valve.
  • 18 and solenoid valve 19 act to reduce and maintain the temperature in the balloon to the preset target temperature, and at the same time control the pressure in the balloon to maintain a safe pressure threshold range, and finally maintain the temperature in the balloon to a certain value
  • the preset temperature improves the isolation effect of the pulmonary veins, reduces the complexity of the operation and the operation time, and reduces the risk of the operation.
  • a computer-readable storage medium on which a computer program is stored, and the computer program implements the steps of any method described in the embodiment of the present application when the computer program is executed by a processor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Control Of Fluid Pressure (AREA)
  • Flow Control (AREA)
  • Control Of Temperature (AREA)

Abstract

本申请涉及一种冷冻消融温度控制方法、系统及计算机可读存储介质,所述方法用于控制冷冻消融球囊内的温度,包括:根据获取的所述球囊内的实时温度值和预设的目标温度值,和/或球囊的排气通路中的气体回收通道中的实时气体流量值和目标气体流量值生成第一目标进液压力控制信号,以控制所述球囊的供液通路中的高压比例阀的供液流量;根据获取的所述球囊的排气侧的实时气压值及预设的目标气压值,生成第一目标排气压力控制信号以控制所述球囊的排气通路中的低压比例阀的排气流量,协同第一目标进液压力控制信号控制,使得球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。本申请温度控制范围广、精度高且手术时间短。

Description

冷冻消融温度控制方法、系统及计算机可读存储介质
本申请要求于2020年6月23日提交中国专利局,申请号为2020105769843,申请名称为“冷冻消融温度控制方法、系统及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于医疗器械技术领域,具体涉及一种冷冻消融温度控制方法、系统及计算机可读存储介质。
背景技术
冷冻消融术作为治疗房颤的新术式,近年来受到广泛地关注。其工作原理是通过液态制冷剂的吸热蒸发,带走组织热量,使目标消融部位温度降低,“冻死”细胞组织,从而破坏电生理活动异常的区域,以达到治疗心律失常的目的。大量临床数据显示,与其他消融方式相比,冷冻消融更易于医生学习和操作,缩短了手术时间,治疗有效性高,并减少血栓等严重并发症,降低患者疼痛度。
然而,传统的冷冻消融系统在消融稳定过程中以固定的流量控制,消融时间越长温度越低,且不能保持在一个较低的温度,为了防止风险,只能通过停止消融,待温度恢复后再进行下一次消融的过程循环操作,不仅增加了操作的难度,延长了手术的时间,还增加了手术过程中的风险,导致肺静脉的隔离效果较差,手术对组织造成的副作用大。随着大量冷冻消融手术的增长,对冷冻手术低温控制有着更多的需求,急需冷冻消融过程中的球囊温度能维持某一温度及体积消融,使得肺静脉的隔离效果更好,并避免球囊变形给组织带来损伤。
发明内容
基于此,有必要针对上述背景技术中的问题,提供一种能够控制球囊内的温度达到并维持预设的温度值、手术时间短、操作容易、提高肺静脉的隔离效果且避免球囊变形给组织带来损伤的冷冻消融温度控制方法、系统及计算机可读存储介质。
本申请的第一方面提供一种冷冻消融温度控制方法,用于控制冷冻消融球囊内的温度,所述方法包括:获取所述球囊内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;
获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;以及
根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;
获取所述球囊的排气侧的实时气压值及预设的目标气压值;以及
根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量,并协同所述第一目标进液压力控制信号控制所述高压比例阀的供液流量,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
于上述实施例中的冷冻消融温度控制方法中,根据获取的冷冻球囊内的实时温度值、目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;及获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,实现了流量控制模式、温度控制模式相互无缝切换的功能,通过温度控制与流量控制的协同配合来控制球囊的供液通路中的高压比例阀的供液流量,并根据获取的所述球囊的排气侧的实时气压值及预设的目标气压值动态协同地控制所述球囊的排气通路中的低压比例阀的排气流量,使得所述球囊内的温度能够达到预设的目标温度值,并能够控制所述球囊内的温度维持在预设的目标温度值,提高了肺静脉的隔离效果;温度控制与流量控制的协同配合,降低了手术操作的复杂度及手术时间,降低了手术的风险。由于可以通过动态地控制低压比例阀的排气流量使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。相对于传统的采用单一温度控制的冷冻消融温度控制系统或装置,本申请中可以根据用户的选择采用温度控制与流量控制的协同配合(即流量控制模式、温度控制模式以及温度与流量的结合控制)可以实现温度与流量的无缝切换控制,便于用户根据实际手术场景的具体需要选择控制的方式,提高了产品的实用性与使用便利性。本申请可以采用流量控制与温度控制的动态协同配合,不仅降低了手术的时间及操作的复杂度,使得球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值,提高了温度控制的速度、精度与范围的同时,对球囊进行保压,避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险,有效地提高了球囊工作的稳定性,提高了肺静脉的隔离效果的同时,降低了冷冻消融手术的风险及副作用。
在其中一个实施例中,所述冷冻消融温度控制方法还包括:
根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量。
在其中一个实施例中,所述控制所述高压比例阀的供液流量包括:
获取所述高压比例阀的出液侧的实时流体压力值;以及
根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
于上述实施例中的冷冻消融温度控制方法中,通过根据获取的所述球囊供液侧的高压比例阀的出液侧的实时流体压力值,及所述第一目标进液压力控制信号的控制目标需求,生成第二目标进液压力控制信号以动态控制所述高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。其中,通过高压比例阀的出液侧的实时流体压力值及所述第一目标进液压力控制信号生成第二目标进液压力控制信号以动态控制所述高压比例阀的供液流量,实现流量控制冷冻消融温度的模式、温度控制冷冻消融温度的模式以及流量控制与温度控制相结合的控制;从而实现流量控制和温度控制相互无缝切换功能。目前实际应用中,医生还是习惯使用流量控制模式,但是流量控制模式会导致温度持续的降低,如果不能切换至温度控制模式并保持某一温度,则只有结束当前手术,这样会增加消融的次数和球囊在体内的时间,本实施例温度控制与流量控制的协同配合,可以实现流量控制和温度控制相互无缝切换的功能,大大缩减了手术时间。
在其中一个实施例中,所述控制所述高压比例阀的供液流量包括:
获取所述高压比例阀的出液侧的实时流体压力值;以及
根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值;
根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成所述第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
于上述实施例中的冷冻消融温度控制方法中,通过根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值,并采用增量式PD控制算法或增量式PID控制算法生成所述第二目标进液压力控制信号,从而实现流量控制和温度控制相互无缝切换的功能,以协同温度控制需求及流量控制需求动态控制所述高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。提高了多参数控制的协同性,降低了操作难度的同时,缩减了手术的时间。
在其中一个实施例中,所述根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量包括:
根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号。
于上述实施例中的冷冻消融温度控制方法中,通过利用增量式PD控制算法或增量式PID控制算法动态控制低压比例阀的排气流量,使得所述球囊内的压力值位于预设的安全阈值范围,例如使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,以防止球囊内的压力过低时对所贴靠的组织产生撕扯风险,也防止球囊内的压力过高时产生球囊破裂的风险。
在其中一个实施例中,所述冷冻消融温度控制方法还包括:通过对所述实时气体流量值的变化曲线的斜率进行预判以对所述目标气体流量值进行控制,并且根据所述实时温度值将温度控制过程划分为至少二个阶段,所述至少二个阶段包括温度快速下降阶段和温度缓慢下降阶段,在所述温度缓慢下降阶段,所述实时气体流量值达到预设的流量稳定阈值范围。
在其中一个实施例中,所述控制所述球囊的排气通路中的低压比例阀的排气流量包括:
当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度,使得所述球囊内的压力值位于预设的安全阈值范围。
于上述实施例中的冷冻消融温度控制方法中,当所述实时气体流量值低于预设的流量阈值范围时,对球囊进行保压,防止球囊收缩,避免产生球囊在冷冻过程中出现收缩会导致所贴靠的组织被撕裂,以在满足球囊的供给与排除的流量稳定的同时确保球囊内的压力保持在安全阈值范围。
在其中一个实施例中,所述冷冻消融温度控制方法还包括:
当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或控制所述低压比例阀调节开度,以使得所述球囊内的实时温度值达到预设的目标温度值。
于上述实施例中的冷冻消融温度控制方法中,当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀和/或所述低压比例阀进入复温保护模式,避免温度过低造成不必要的组织损伤的情况发生。
本申请的第二方面提供一种冷冻消融温度控制方法,用于控制冷冻消融球囊内的压力,所述方法包括:
获取所述球囊的排气通路中的气体回收通道中的实时气体流量值;
当所述实时气体流量值达到预设的流量稳定阈值范围时,控制所述球囊的排气通路中的低压比例阀线性递增地增加开度;
当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀之后,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围。
于上述实施例中的冷冻消融温度控制方法中,在对球囊进行流量控制的过程中,可以首先控制球囊内的温度快速下降,当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度,以增加供液流量,使得所述球囊内的压力值位于预设的安全阈值范围,并控制球囊内的温度快速下降,当检测到实时气体流量值达到预设的流量稳定阈值范围时,进入温度缓慢下降阶段,此阶段可以控制实时气体流量值稳定在所述流量稳定阈值范围,并控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,以切换到通过控制电磁阀来控制球囊内的温度缓慢下降至预设的目标温度值并对球囊进行保压,使得流量调节地更稳定,避免产生流量波动大的问题。
在其中一个实施例中,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述球囊的排气全部流经所述电磁阀,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围,避免产生流量波动大的问题。
本申请的第三方面提供一种冷冻消融温度控制系统,用于控制冷冻消融球囊内的温度,所述系统包括:
温度传感器,用于采集所述球囊内的实时温度值;
高压比例阀,位于所述球囊的供液通路中;
第一压力传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气侧的实时气压值;
低压比例阀,位于所述球囊的排气通路中,用于调节所述球囊内的气压值;
流量传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气通路中的气体回收通道中的实时气体流量值;
控制器,分别与所述温度传感器、所述高压比例阀、所述第一压力传感器、所述低压比例阀及所述流量传感器连接;
其中,所述控制器被配置为:
获取所述球囊内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;以及
获取所述球囊的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述低压比例阀的排气流量,并协同所述第一目标进液压力控制信号控制所述高压比例阀的供液流量,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
于上述实施例中的冷冻消融温度控制系统中,可以设置控制器根据获取的冷冻球囊内的实时温度值、目标温度值,及获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,动态协同地控制球囊的供液通路中的高压比例阀的供液流量,并根据获取的所述球囊的排气侧的实时气压值及预设的目标气压值动态协同地控制所述球囊的排气通路中的低压比例阀的排气流量,使得所述球囊内的温度能够达到预设的目标温度值,并能够控制所述球囊内的温度维持在预设的目标温度值,提高了肺静脉的隔离效果,降低了手术操作的复杂度及手术时间,降低了手术的风险。由于可以通过动态地控制低压比例阀的排气流量使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。
在其中一个实施例中,所述控制器还被配置为:
根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量;以及
获取所述球囊的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流量。
于上述实施例中的冷冻消融温度控制系统中,通过配置控制器采用增量式PD或增量式PID控制算法动态控制球囊内的温度值达到预设的温度值,能使温度快速的下降,并在球囊的供液流量上升的过程通过微分预判上升的趋势,防止产生供液流量过冲现象。通过配置控制器采用增量式PD或增量式PID控制算法动态控制球囊排气侧的气体流量,可以将该气体流量细分成每个片段,在每个片段中分别对该气体流量的斜率进行预判,根据预判的结果控制流量逐渐上升,使得对该气体流量控制的精度更高,也便于提高控制球囊排气侧维持预设流量值的稳定性。由于可以通过增量式比例微分或增量式比例积 分微分控制算法动态地控制低压比例阀的排气流量使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。
在其中一个实施例中,所述冷冻消融温度控制系统还包括:
第二压力传感器,位于所述球囊的进液通路中,与所述控制器连接,用于采集所述高压比例阀的出液侧的实时流体压力值;
其中,所述控制器还被配置为:
获取所述实时流体压力值,并根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
于上述实施例中的冷冻消融温度控制系统中,控制器根据获取的所述球囊供液侧的高压比例阀的出液侧的实时流体压力值,及所述第一目标进液压力控制信号的控制目标需求,动态控制所述高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。
在其中一个实施例中,所述控制器包含参数获取模块、供液流量控制模块和排气压力控制模块;其中,所述参数获取模块用于获取所述球囊内的实时温度值、预设的目标温度值、所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值、所述球囊的排气侧的实时气压值及预设的目标气压值;所述供液流量控制模块用于根据所述实时温度值及所述目标温度值生成第一温度控制信号,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号,根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;所述排气压力控制模块用于根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量;所述供液流量控制模块与所述排气压力控制模块协同控制,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
在其中一个实施例中,所述参数获取模块还用于获取所述高压比例阀的出液侧的实时流体压力值;
所述供液流量控制模块包括:
温度PD/PID控制模块,用于根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
气体流量PD/PID控制模块,用于根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
高压比例阀PD/PID控制模块,用于根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,并根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值,以及根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成所述第二目标进液压力控制信号,以控制所述高压比例阀的供液流量;
所述排气压力控制模块包括:
低压比例阀PD/PID控制模块,用于根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流量;
其中,所述温度PD/PID控制模块、所述气体流量PD/PID控制模块、所述高压比例阀PD/PID控制模块及所述低压比例阀PD/PID控制模块协同控制,使得所述球囊内的压力值位于预设的安全阈值范围,并使得所述球囊内的温度达到和/或维持所述目标温度值。
于上述实施例中的冷冻消融温度控制系统中,通过温度PD/PID控制模块、气体流量PD/PID控制模块、高压比例阀PD/PID控制模块及低压比例阀PD/PID控制模块四个控制模块协同控制,可以实现流量控制和温度控制相互无缝切换的功能,大大缩减了手术时间。
在其中一个实施例中,所述控制器还被配置为:
当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或
控制所述低压比例阀调节开度,以使得所述球囊内的实时温度值达到预设的目标温度值。
于上述实施例中的冷冻消融温度控制系统中,通过配置控制器在检测到所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀和/或所述低压比例阀进入复温保护模式,避免温度过低造成不必要的组织损伤的情况发生。
本申请的第四方面提供一种冷冻消融温度控制系统,用于控制冷冻消融球囊内的压力,所述系统包括:
低压比例阀,位于所述球囊的排气通路中,用于调节所述球囊内的气压值;
电磁阀,位于所述球囊的排气通路中,与所述低压比例阀并联;
流量传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气通路中的气体回收通道中的实时气体流量值;
控制器,与所述低压比例阀、所述电磁阀及所述流量传感器均连接;
所述控制器被配置为:
获取所述球囊的排气通路中的气体回收通道中的实时气体流量值;
当所述实时气体流量值达到预设的流量稳定阈值范围时,控制所述低压比例阀线性递增地增加开 度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀,流入所述气体回收通道。
在其中一个实施例中,所述控制器还被配置为:
当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述球囊的排气全部流经所述电磁阀,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围。
于上述实施例中的冷冻消融温度控制系统中,当所述实时气体流量值达到预设的流量稳定阈值范围时,通过配置控制器控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀,流入所述气体回收通道,或者当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述控制器可以根据流量增加的斜率大小控制所述低压比例阀线性递增地增加开度的比例系数,避免低压比例阀的流量增加的过快导致流量过冲,也避免低压比例阀的流量增加的过慢会导致流量上升到目标值花费时间过长,同时能够控制低压比例阀的流量增加的更稳定,很好地解决了流量波动大的技术问题。
在其中一个实施例中,所述的冷冻消融温度控制系统还包括高压比例阀,位于所述球囊的供液通路中,与所述控制器连接;其中,所述控制器还被配置为:当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度以增加供液流量,使得所述球囊内的压力值位于预设的安全阈值范围。
本申请的第五方面提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现任一本申请实施例中所述的方法的步骤。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请第一实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图2为本申请第二实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图3为本申请第三实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图4为本申请第四实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图5为本申请第五实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图6为本申请第六实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图7为本申请第七实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图8为本申请第八实施例中提供的一种冷冻消融温度控制方法的流程示意图。
图9为本申请第九实施例中提供的一种冷冻消融温度控制系统的架构示意图。
图10为本申请第十实施例中提供的一种冷冻消融温度控制系统的控制系统架构示意图。
图11为本申请第十一实施例中提供的一种冷冻消融温度控制系统的架构示意图。
图12为本申请第十二实施例中提供的一种冷冻消融温度控制系统的控制系统架构示意图。
图13为本申请第十三实施例中提供的一种冷冻消融温度控制系统的控制器的模块结构示意图。
图14为本申请第十四实施例中提供的一种冷冻消融温度控制系统的控制器的模块结构示意图。
图15为本申请第十五实施例中提供的一种冷冻消融温度控制系统的架构示意图。
图16为本申请第十六实施例中提供的一种冷冻消融温度控制系统的控制系统架构示意图。
图17为本申请第十七实施例中提供的一种冷冻消融温度控制系统的控制系统架构示意图。
图18为本申请实施例中提供的一种PID控制的原理示意图。
图19为本申请提供的一种冷冻消融温度控制过程中的温度变化的三阶段曲线示意图。
图20为本申请提供的一种冷冻消融温度控制过程中的温度变化曲线示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
如图1所示,在本申请的一个实施例中,提供一种冷冻消融温度控制方法,用于控制冷冻消融球囊内的温度,所述方法包括以下步骤:
步骤22,获取所述球囊内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温 度值生成第一温度控制信号。
作为示例,可以利用温度传感器采集所述球囊内的实时温度值,并根据冷冻消融手术的需要设置预设的目标温度值,以根据获取的所述球囊内的实时温度值及预设的目标温度值生成第一温度控制信号来动态调整可控制的参数,例如是实时流量值或实时压力值等,使得球囊内的温度达到并能够维持在预设的目标温度值。
步骤24,获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号。
作为示例,可以利用流量传感器获取所述球囊的排气通路中的气体回收通道中的实时气体流量值,再利用触摸屏或按键等输入设备获取目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号,以实现对球囊的排气通路中的气体回收通道中的排气流量的目标控制。
步骤26,根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量。
作为示例,可以分别采用PID控制算法基于目标温度值及实时温度值生成第一温度控制信号,基于实时气体流量值及所述目标气体流量值生成第一气体流量控制信号。若采用单独的温度控制,则根据所述第一温度控制信号生成第一目标进液压力控制信号,动态地调整所述球囊的供液通路中的高压比例阀的供液流量;若采用单独的流量控制,则根据所述第一气体流量控制信号生成第一目标进液压力控制信号,动态地调整所述球囊的供液通路中的高压比例阀的供液流量;若采用温度控制与流量结合控制,则根据所述第一温度控制信号及所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量。也可以根据具体应用场景的实际工作需求,采用流量控制与温度控制无缝切换的控制方式,动态协同地调整所述球囊的供液通路中的高压比例阀的供液流量。
步骤28,获取所述球囊的排气侧的实时气压值及预设的目标气压值。
作为示例,可以采用第一压力传感器采集所述球囊的排气侧的实时气压值,再利用触摸屏或按键等输入设备获取预设的目标气压值。
步骤210,根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量,并协同所述第一目标进液压力控制信号控制所述高压比例阀的供液流量,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
作为示例,可以利用PID控制算法控制所述球囊的排气通路中的低压比例阀的排气流量,使得所述球囊内的压力维持在安全的压力阈值范围,并动态协同控制高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。
于上述实施例中的冷冻消融温度控制方法中,根据获取的冷冻球囊内的实时温度值、目标温度值,及获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,可以采用单独的温度控制、单独的流量控制或温度控制与流量控制的结合控制,实现了温度控制与流量控制的无缝切换控制,动态协同地控制球囊的供液通路中的高压比例阀的供液流量,并根据获取的所述球囊的排气侧的实时气压值及预设的目标气压值动态协同地控制所述球囊的排气通路中的低压比例阀的排气流量,使得所述球囊内的温度能够达到预设的目标温度值,并能够控制所述球囊内的温度维持在预设的目标温度值,提高了肺静脉的隔离效果;温度控制与流量控制的协同配合,降低了手术操作的复杂度及手术时间,降低了手术的风险。由于可以通过动态地控制低压比例阀的排气流量使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。相对于传统的采用单一温度控制的冷冻消融温度控制系统或装置,本申请中可以根据用户的选择采用流量控制模式、温度控制模式以及温度与流量的结合控制,实现了温度与流量的无缝切换控制,便于用户根据实际手术场景的具体需要选择控制的方式,提高了产品的实用性与使用便利性。本申请可以采用流量控制与温度控制的动态协同配合,不仅降低了手术的时间及操作的复杂度,使得球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值,提高了温度控制的速度、精度与范围的同时,对球囊进行保压,避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险,有效地提高了球囊工作的稳定性,提高了肺静脉的隔离效果的同时,降低了冷冻消融手术的风险及副作用。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图2所示,所述根据所述实时温度值、所述目标温度值、所述实时气体流量值及所述目标气体流量值生成第一目标进液压力控制信号,以控制所述球囊的供液通路中的高压比例阀的供液流量包括:
步骤262,根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
步骤264,根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
步骤266,根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图3所示,所述控 制所述高压比例阀的供液流量的步骤还包括:
步骤2662,获取所述高压比例阀的出液侧的实时流体压力值;
步骤2664,根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
具体地,于上述实施例中的冷冻消融温度控制方法中,通过根据获取的所述球囊供液侧的高压比例阀的出液侧的实时流体压力值,及所述第一目标进液压力控制信号的控制目标需求,生成第二目标进液压力控制信号以动态控制所述高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。其中,通过高压比例阀的出液侧的实时流体压力值及所述第一目标进液压力控制信号生成第二目标进液压力控制信号以动态控制所述高压比例阀的供液流量,实现流量控制冷冻消融温度的模式、温度控制冷冻消融温度的模式以及流量控制与温度控制相结合的控制;从而实现流量控制和温度控制相互无缝切换的功能。目前实际应用中,医生还是习惯使用流量控制模式,但是流量控制模式会导致温度持续的降低,如果不能切换至温度控制模式并保持某一温度,则只有结束当前手术,这样会增加消融的次数和球囊在体内的时间,本实施例通过温度控制与流量控制的协同配合,可以实现流量控制和温度控制相互无缝切换的功能,大大缩减了手术时间。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图4所示,所述控制所述高压比例阀的供液流量的步骤还包括:
步骤26642,根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值;
步骤26644,根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成所述第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
具体地,于上述实施例中的冷冻消融温度控制方法中,通过根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值,并采用增量式PD控制算法或增量式PID控制算法生成所述第二目标进液压力控制信号,从而实现流量控制和温度控制相互无缝切换的功能,以协同温度控制需求及流量控制需求动态控制所述高压比例阀的供液流量,使得所述球囊内的温度达到和/或维持所述目标温度值。提高了多参数控制的协同性,降低了操作难度的同时,缩减了手术的时间。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图5所示,所述根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量的步骤包括:
步骤2012,根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号。
具体地,于上述实施例中的冷冻消融温度控制方法中,通过利用增量式PD或增量式PID控制算法动态控制低压比例阀的排气流量,使得所述球囊内的压力值位于预设的安全阈值范围,例如使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,以防止球囊内的压力过低时对所贴靠的组织产生撕扯风险,也防止球囊内的压力过高时产生球囊破裂的风险。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,还包括如下步骤:
通过对所述实时气体流量值的变化曲线的斜率进行预判以对所述目标气体流量值进行控制,并且根据所述实时温度值将温度控制过程划分为至少二个阶段,所述至少二个阶段包括温度快速下降阶段和温度缓慢下降阶段,在所述温度缓慢下降阶段,所述实时气体流量值达到预设的流量稳定阈值范围。
通过将球囊温度控制的过程至少划分为温度快速下降阶段和温度缓慢下降阶段,以在不同的阶段采取对应的控制方法实现对温度更加精准地控制,避免产生流量波动的同时提高了温度控制的效率。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图6所示,所述根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量,使得所述球囊内的温度达到和/或维持所述目标温度值的步骤还包括:
步骤2013,当所述实时气体流量值达到预设的流量稳定阈值范围时,控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀之后,流入所述气体回收通道。
具体地,于上述实施例中的冷冻消融温度控制方法中,在对球囊进行温度和/或流量控制的过程中,可以首先控制球囊内的温度快速下降,当检测到实时气体流量值达到预设的流量稳定阈值范围时,进入温度缓慢控制阶段,此阶段可以控制实时气体流量值稳定在所述流量稳定阈值范围,并控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,以切换到通过控制电磁阀来控制球囊内的温度缓慢下降至预设的目标温度值,使得流量调节地更稳定,避免产生流量波动大的问题。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述球囊的排气全部流经所述电磁阀,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。实验表明,通过此种控制方式可以使得在温度缓慢控制阶段,避免流量波动的同时,使得温度变化的更稳定。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图7所示,所述根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中 的低压比例阀的排气流量还包括:
步骤2014,当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度,使得所述球囊内的压力值位于预设的安全阈值范围。
具体地,于上述实施例中的冷冻消融温度控制方法中,当所述实时气体流量值低于预设的流量阈值范围时,对球囊进行保压,防止球囊收缩,避免产生球囊在冷冻过程中出现收缩会导致所贴靠的组织被撕裂,以在满足球囊的供给与排除的流量稳定的同时确保球囊内的压力保持在安全阈值范围。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制方法中,如图8所示,所述冷冻消融温度控制方法还包括:
步骤2016,当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或控制所述低压比例阀调节开度,以使得所述球囊内的实时温度值达到预设的目标温度值。
于上述实施例中的冷冻消融温度控制方法中,当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀和/或所述低压比例阀进入复温保护模式,避免温度过低造成不必要的组织损伤的情况发生。
应该理解的是,虽然图1-8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
进一步地,在本申请的一个实施例中,提供一种冷冻消融温度控制系统,用于控制冷冻消融球囊200内的温度,如图9-10所示,所述系统包括温度传感器113、高压比例阀14、第一压力传感器17、低压比例阀18、流量传感器112和控制器114,温度传感器113用于采集球囊200内的实时温度值;高压比例阀14位于球囊200的供液通路中;第一压力传感器17位于球囊200的排气通路中,用于采集球囊200的排气侧的实时气压值;低压比例阀18位于球囊200的排气通路中,用于调节所述球囊内的气压值;流量传感器112位于球囊200的排气通路中,用于采集球囊200的排气通路中的气体回收通道中的实时气体流量值;控制器114分别与温度传感器113、高压比例阀14、第一压力传感器17、低压比例阀18及流量传感器112连接。
具体地,可以将控制器114被配置为:
获取球囊200内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;以及根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制球囊200的供液通路中的高压比例阀14的供液流量;及
获取球囊200的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制低压比例阀18的排气流量,并协同所述第一目标进液压力控制信号控制高压比例阀14的供液流量,使得球囊200内的压力值位于预设的安全阈值范围并使得球囊200内的温度达到和/或维持所述目标温度值。
示例地,如图9所示,冷冻消融温度控制系统还包括设置在供液通路的第一单向阀11、减压阀12、压力表13、压缩机16,以及设置在排气通路中的低压比例阀18、第二单向阀110和真空泵111,冷冻液储蓄罐100中的冷冻液依次流经第一单向阀11、减压阀12、压力表13、高压比例阀14、压缩机16后流入球囊200内,冷冻液在球囊200内汽化后带走热量后,依次流经第一压力传感器17、低压比例阀18、第二单向阀110、真空泵111、流量传感器112后流入回气储备装置300。
具体地,于上述实施例中的冷冻消融温度控制系统中,控制器114根据获取的冷冻球囊200内的实时温度值、目标温度值,及获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,可以采用单独的温度控制模式、单独的流量控制模式或温度控制与流量控制的结合控制,实现了温度控制与流量控制的无缝切换控制,动态协同地控制球囊200的供液通路中的高压比例阀14的供液流量,并根据获取的球囊200的排气侧的实时气压值及预设的目标气压值动态协同地控制球囊200的排气通路中的低压比例阀18的排气流量,使得球囊200内的温度能够达到预设的目标温度值,并能够控制球囊200内的温度维持在预设的目标温度值,提高了肺静脉的隔离效果,降低了手术操作的复杂度及手术时间,降低了手术的风险。由于可以通过动态地控制低压比例阀18的排气流量使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊200内的压力保持在当前大气压以上,球囊200的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,如图10所示,控制器114被配置为:
根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量;及
获取所述球囊的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流量。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,如图11-12所示,还包括第二压力传感器15,第二压力传感器15位于球囊200的进液通路中,与控制器114连接,用于采集高压比例阀14的出液侧的实时流体压力值;其中,控制器114被配置为:
获取所述实时流体压力值,并根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
具体地,于上述实施例中的冷冻消融温度控制系统中,控制器114根据获取的球囊200供液侧的高压比例阀14的出液侧的实时流体压力值,及所述第一目标进液压力控制信号的控制目标需求,动态控制高压比例阀14的供液流量,使得球囊200内的温度达到和/或维持所述目标温度值。
进一步地,在本申请的一个实施例中,提供一种冷冻消融温度控制系统,用于控制冷冻消融球囊内的温度,如图13所示,所述系统包括参数获取模块2、供液流量控制模块4及排气压力控制模块6,其中,参数获取模块2用于获取所述球囊内的实时温度值、预设的目标温度值、所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值、所述球囊的排气侧的实时气压值及预设的目标气压值;供液流量控制模块4用于根据所述实时温度值及所述目标温度值生成第一温度控制信号,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;以及根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;排气压力控制模块6用于根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量;供液流量控制模块4与排气压力控制模块6协同控制,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。在一实施例中,参数获取模块可以由数模转换器实现,供液流量控制模块和排气压力控制模块可以由不同的PID控制器实现。
进一步地,在本申请的一个实施例中,提供一种冷冻消融温度控制系统中,如图14所示,所述参数获取模块2还用于获取所述高压比例阀的出液侧的实时流体压力值;所述供液流量控制模块包括温度PD/PID控制模块43、气体流量PD/PID控制模块42和高压比例阀PD/PID控制模块41;所述温度PD/PID控制模块43用于根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;所述气体流量PD/PID控制模块42用于根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;所述高压比例阀PD/PID控制模块41用于根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,并根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值,以及根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成所述第二目标进液压力控制信号,以控制所述高压比例阀的供液流量;所述排气压力控制模块包括低压比例阀PD/PID控制模块61,低压比例阀PD/PID控制模块61用于根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流量,其中,所述温度PD/PID控制模块、所述气体流量PD/PID控制模块、所述高压比例阀PD/PID控制模块及所述低压比例阀PD/PID控制模块协同控制,使得所述球囊内的压力值位于预设的安全阈值范围,并使得所述球囊内的温度达到和/或维持所述目标温度值。也就是说,控制器114对第一温度控制信号、第一气体流量控制信号、第二目标进液压力控制信号和/或第一目标排气压力控制信号进行协同控制,使得球囊内的压力值位于预设的安全阈值范围,并使得所述球囊内的温度达到和/或维持所述目标温度值。在一实施例中,所述温度PD/PID控制模块、所述气体流量PD/PID控制模块、所述高压比例阀PD/PID控制模块及所述低压比例阀PD/PID控制模块可以由不同的PID控制器实现。
作为示例,通过设置温度PD/PID控制模块采用增量式PD或增量式PID控制算法动态控制球囊内的温度值达到预设的温度值,能使温度快速的下降,并在球囊的供液流量上升的过程通过微分预判上升的趋势,防止产生供液流量过冲现象。通过设置气体流量PD/PID控制模块采用增量式PD或增量式PID控制算法动态控制球囊排气侧的气体流量,可以将该气体流量细分成每个片段,在每个片段中分别对该气体流量的斜率进行预判,根据预判的结果控制流量逐渐上升,使得对该气体流量控制的精度更高,也便于提高控制球囊排气侧维持预设流量值的稳定性。由于可以通过增量式比例微分或增量式比例积分微分控制算法动态地控制低压比例阀的排气流量,使得球囊的排气侧的气压值达到并维持预设的目标气压值,使得球囊内的压力保持在当前大气压以上,球囊的泄压值以下,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。
于上述实施例中的冷冻消融温度控制系统中,通过温度PD/PID控制模块、气体流量PD/PID控制模块、高压比例阀PD/PID控制模块及低压比例阀PD/PID控制模块四个控制模块协同控制,使得用户可以根据实际工作需要采用单独的温度控制模式、单独的流量控制模式或温度控制与流量控制的结合控制,实现温度控制与流量控制的无缝切换控制。方便了实际手术操作,提高了温度控制的速度、精 度与范围的同时,对球囊进行保压,避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险,有效地提高了球囊工作的稳定性,提高了肺静脉的隔离效果的同时,降低了冷冻消融手术的风险及副作用。
关于冷冻消融温度控制系统的具体限定可以参见上文中对冷冻消融温度控制方法的描述,这里不再赘述。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,如图15-16所示,所述冷冻消融温度控制系统还包括电磁阀19,电磁阀19位于球囊200的排气通路中,与低压比例阀并联,用于使得球囊200的排气流经电磁阀19之后,流入所述气体回收通道。
具体地,在温度缓慢下降阶段,当所述实时气体流量值达到预设的流量稳定阈值范围时,控制器114控制低压比例阀18线性递增地增加开度,当低压比例阀18完全打开时,控制器114控制球囊200的排气通路中的电磁阀19打开同时关闭低压比例阀18,相比于现有技术中仅采用持续控制低压比例阀并保持稳定的方式,本实施例通过电磁阀19和低压比例阀18之间的协同控制作用,可以使得球囊内的压力值位于预设的安全阈值范围,达到很好的控温效果,并且能够防止流量震荡或者过冲的现象,使得控温的精度大大提升,控温精度达到±1度。当所述实时气体流量值低于预设的流量阈值范围时,控制器114控制高压比例阀14增加开度,使得所述球囊内的压力值位于预设的安全阈值范围。
在其他实施例中,控制器114也可以控制球囊200的排气通路中的电磁阀19打开,但不关闭低压比例阀18,使得电磁阀19和低压比例阀18处于同时工作状态,使得球囊的排气的至少一部分流经电磁阀19,本发明对此不做限制。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,所述控制器还被配置为:
当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或控制所述低压比例阀调节开度,形成一个复温保护模式,以使得所述球囊内的实时温度值达到预设的目标温度值,避免温度过低造成不必要的组织损伤的情况发生。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,如图17所示,所述冷冻消融温度控制系统还包括交互装置115,交互装置115与控制器114连接,用于通过交互装置115输入所述目标温度值或所述目标气体流量值。
具体地,于上述实施例中的冷冻消融温度控制系统中,通过设置与控制器114连接的交互装置115,便于用户通过交互装置115输入目标温度值或目标气体流量值,来通过温度控制与流量控制协同控制所述球囊内的温度达到和/或维持所述目标温度值。实现了流量控制和温度控制相互无缝切换的功能,方便医生操作,大大缩减了手术时间,降低了手术操作的复杂度,提高了肺静脉的隔离效果。
作为示例,交互装置115可以包括键盘、触摸屏、触摸显示屏、按键或语音输入设备等中的至少一种。
进一步地,在本申请的一个实施例中提供的一种冷冻消融温度控制系统中,可以设置温度传感器、第一压力传感器、第二压力传感器、流量传感器分别经过相应的模数转换电路与所述控制器连接,控制器根据获取的所述温度传感器采集的球囊内的实时温度值、第一压力传感器采集的气体回收通道中的实时气体流量值及通过交互装置获取的预设的目标温度值及目标气体流量值,生成第一目标进液压力控制信号,所述第一目标进液压力控制信号依次经由第一数模转换电路、第一放大电路后传输给高压比例阀的驱动电路,以控制所述高压比例阀供液流量;同时,控制器根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,所述第一目标排气压力控制信号依次经过第二模数转换电流、第二放大电路后传输至所述低压比例阀的驱动电路,以控制所述低压比例阀的排气流量。控制器可以通过交互装置实时显示温度传感器采集的实时温度值、第一压力传感器采集的球囊出液侧的实时气体流量值、第二压力传感器采集的高压比例阀的出液侧的实时压力值及流量传感器采集的气体回收通道中的实时气体流量值。在冷冻消融的过程中,用户可以通过交互装置例如是触摸显示屏,设置预设的目标温度值和/或目标流量值,控制器根据获取的数据进行PID计算,并将计算的结果的数字量通过相应的数模转换电路转换成模拟量,再将模拟量通过相应的放大器放大,放大后的信号传输给相应的驱动电路,以动态协同地控制高压比例阀与低压比例阀的开度大小,并控制电磁阀的动作,使得所述球囊内的温度达到所述目标温度值,并使得球囊内的压力保持在预设的安全压力阈值范围内,可以避免产生球囊内的压力过低对所贴靠的组织造成撕扯风险,也避免产生球囊内压力过高导致球囊破裂的风险。
具体地,如图18所示,在PID控制原理图中,r(t)是设置目标值,y(t)是系统的实际输出值,设置目标值与实际输出值构成控制偏差e(t),e(t)=r(t)-y(t),则e(t)作为PID控制器的输入,u(t)作为PID控制器的输出和被控制量的输入。
比例(P)控制能快速反应误差,在误差较大时发挥较大作用。但是,比例控制不能消除稳态误差。比例系数的加大,会引起系统的不稳定。积分(I)控制的作用是:只要系统有误差,积分就不断地积累,输出控制量以消除误差。只要有足够的时间,积分控制将能完全消除误差,使系统误差接近零,从而消除稳态误差。但是积分作用过大会使系统超调加大,甚至使系统出现振荡。微分(D)控制可以减小超调量,克服振荡,使系统的稳定性提高,同时加快系统的动态响应速度,减小调整时间,从而 改善系统的动态性能。根据不同的被控对象的控制特性,又可以分为P、PI、PD、PID等不同的控制模型,而温度控制常用比例微分(Proportion Differentiation,PD)和比例积分微分(Proportion Integration Differentiation,PID)PID两种方式。
由PID控制原理图,模拟PID公式:
Figure PCTCN2021089198-appb-000001
上式中,u(t)是PID控制的输出信号,e(t)是设置目标值与实际输出值的偏差,K p表示比例系数,T l表示积分时间,T D表示微分时间,u 0是控制常量,t是时间常数。将上述PID公式离散化:用求和的方式代替积分,用增量的方式代替微分,将(1-1)式中作以下变换:
t≈kT k∈[1,N]      (1-2)
Figure PCTCN2021089198-appb-000002
Figure PCTCN2021089198-appb-000003
上式中,T是采样周期,j和k是采样序号,N为采样的总数,t是时间常数,对应kT,e t与e t-1表示连续两次的偏差值。
由式(1-2)、式(1-3)与式(1-4)可得到离散的表达式(1-5):
Figure PCTCN2021089198-appb-000004
由上式(1-5)推导出增量式PID公式:
Δu k=u k-u k-1
Figure PCTCN2021089198-appb-000005
e t=r(t)-y(t)       (1-7)
上式中,Δu k是控制量的增量,K p是比例系数,T i是积分参数,T d是微分参数,e k、e k-1与e k-2分 别是连续三次采样值的偏差,T表示采样周期,对于PID控制器,采样是输入,控制是输出,通常采样周期作为控制周期。对于温度、流量、比例阀的控制周期需根据各自实际响应而定,比例阀控制周期范围可以是50ms-200ms;流量的采样周期可以是1s-3s,由于流量的响应比较滞后,控制的过快会导致稳态误差增大;温度的控制周期范围在500ms-2s。
若控制球囊温度达到设定的目标温度,需要控制比例阀的开度,阀的开度是通过公式(1-6)增量调节,即在原来的开度上继续调大或调小,将调节的电压信号精确到毫伏级别,精确度越高控制的开度越精确,从而控制的流量越稳定。最终使得球囊的温度达到设定的目标温度。
结合上述PID控制原理的描述,如图19所示,将本申请实施例中的冷冻消融控制过程划分为三个阶段控制,每个阶段可对应不同的控制策略,第(1)阶段是温度快速下降阶段,此阶段流量快速上升且球囊压力保压阶段,直到流量达到一定值并稳定后结束;第(2)阶段是温度缓慢下降阶段,此阶段流量保持稳定;第(3)阶段是球囊内的温度达到预设的目标温度阶段。此消融过程根据临床实际需求,消融过程中可以选择温度控制和/或固定流量控制,这两种控制方式可以相互切换,选择温度控制方式,需选择控制目标温度。下面结合图19分别介绍此三阶段的控制过程。
(1)温度快速下降阶段。此阶段使流量上升,球囊内的压力保持稳定,控制方式主要以比例微分(PD)控制为主,此阶段的控制量根据选择的方式来调节,即温度控制方式或者固定流量控制方式。如温度控制方式,选择目标温度,目标温度越低,高压比例阀14的开度需调节越大,其压力调节范围为0psi-600psi。控制器通过PD控制算法控制温度的方式能尽快让流量上升的同时,也能根据不同的目标温度调整控制比例值,防止在控制过程中温度过冲。当选择流量控制时,流量PD控制模块可以将流量细分成每个片段,每个片段中分别对流量的斜率进行预判,高压比例阀PD控制模块根据预判的结果控制高压比例阀14的供液流量使得流量逐渐上升,高压比例阀的供液增速的范围0l/min-7.5l/min,此阶段供液流量不超过流量上限值范围,流量上限值范围可以为0.5l/min-2l/min,防止流量控制的过程中出现流量震荡或者过冲。与此同时,此阶段控制器控制低压比例阀18的排液流量使得球囊压力保持稳定。通过上述的控制使流量控制的精度更高,并为下一阶段提供更稳定的供液流量。
(2)温度缓慢下降阶段。在高压比例阀14的供液流量保持稳定的过程中,通过低压比例阀18可选择两种方式控制,第一种是持续控制低压比例阀18将球囊压力维持在当前大气压值至球囊内的上限压力值之间的范围内,并保持稳定。第一种方式是设置低压比例阀18的目标压力,将采集到的第一压力传感器17的值和目标压力输入控制器,通过公式(1-6)计算出输出的控制增量,使得第一压力传感器17的压力趋近于目标压力。第二种方式是通过线性递增的方式调节低压比例阀18的开度,当球囊内的压力保持在大气压以上时,低压比例阀18开度可以达到最大,并切换到电磁阀19,此时控制器继续控制高压比例阀14的供液流量,很好地避免了产生流量波动大的问题。在控制低压比例阀18调节开度过程中,如果低压比例阀18增加的过快会导致流量过冲,增加的过慢会导致流量上升到目标值经历的时间过长,所以根据流量斜率大小给定增加的幅度,可以在避免产生流量波动的同时减少手术的时间。通过上述两种方式控制,控制器控制的频率范围为2HZ-20HZ。此阶段如果流量过小时,则控制器可以控制高压比例阀增加开度,以对球囊进行保压,防止球囊收缩。如果球囊在冷冻过程中出现收缩会导致所贴靠的组织被撕裂,所以在满足供液流量稳定的同时确保球囊压力维持在安全压力阈值范围内。
(3)球囊温度达到设定目标温度阶段。该过程一直持续到消融结束,控制器通过多级PID控制,逐渐使得球囊内部达到预设的目标温度,或者逐渐达到预设的目标流量。冷冻消融温度控制的过程中,可以选择温度控制和流量控制相互切换的方式,使得控制器动态协同地控制高压比例阀14、低压比例阀18及电磁阀19动作,将球囊内的温度降到并维持在预设的目标温度,同时控制球囊内的压力维持在安全压力阈值范围内。在实际使用中,可以通过交互装置例如是触摸显示屏的界面实现温度控制和流量控制的无缝切换。相对于传统的冷冻消融控制仅仅采用流量控制方式,当球囊内的温度持续降低到安全温度阈值时,只能结束当前手术,循环进行流量控制来避免温度过低造成不必要的组织损伤。仅增加消融的次数和球囊在体内的时间,还增加了手术的风险和复杂难度,如果控制不好,则会增加手术的负面效果。而本申请中可以在手术过程中切换流量控制与温度控制,动态地控制球囊内的温度保持在预设的目标温度,有效地减少了消融次数和球囊在体内的时间,便捷式的操作方式不仅缩短了手术的时间还提高了静脉隔离的效果。实验表明,通过增加电磁阀19和低压比例阀18之间的动态协同控制,比仅仅使用低压比例阀18的控温精度提高一倍,使得温度控制的误差为±1度左右,并且本申请中的供液流量增速的控制误差为±0.1l/min左右,有效地避免了产生流量波动的情况。当球囊内的温度达到预设的温度阈值范围时,可以立即进行复温保护,例如当球囊内的温度低于-60度时,可以立即降低高压比例阀14的开度,同时调节低压比例阀18的开度,使手术进入复温阶段。
利用本申请实施例中提供的冻消融温度控制方法或系统,分别将球囊的目标温度设定为-40℃、-45℃、-50℃、-55℃、-60℃,获得的温度控制效果图如图20所示,实验表明,温度的控制范围可以为-60℃至-35℃,可以明确的是,本申请提供的冻消融温度控制方法或系统的可控温度范围不仅局限于此范围,针对不同的冷冻剂,本申请具有不同的温度控制范围。然而,给出的温度范围已完全满足冷冻消融手术的温度控制需求。
于上述实施例中的冻消融温度控制过程中,将球囊中心温度的控制过程大致划分为3个阶段完成,控制器利用多级PID控制算法,动态协同地控制高压比例阀14、低压比例阀18及电磁阀19动作,将 球囊内的温度降到并维持在预设的目标温度,同时控制球囊内的压力维持在安全压力阈值范围内,最终将球囊内的温度维持到某一预设的温度,提高了肺静脉的隔离效果,降低了手术操作的复杂度及手术时间,降低了手术的风险。
在本申请的一个实施例中,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现任一本申请实施例中所述的方法的步骤。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种冷冻消融温度控制方法,用于控制冷冻消融球囊内的温度,所述方法包括:
    获取所述球囊内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;
    获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;
    根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;
    获取所述球囊的排气侧的实时气压值及预设的目标气压值;以及
    根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量,并协同所述第一目标进液压力控制信号控制所述高压比例阀的供液流量,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
  2. 根据权利要求1所述的方法,还包括:
    根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
    根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;以及
    根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量。
  3. 根据权利要求2所述的方法,其中,所述控制所述高压比例阀的供液流量包括:
    获取所述高压比例阀的出液侧的实时流体压力值;以及
    根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
  4. 根据权利要求2所述的方法,其中,所述控制所述高压比例阀的供液流量包括:
    获取所述高压比例阀的出液侧的实时流体压力值;以及
    根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值;
    根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成所述第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量包括:
    根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号;或
    控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀之后,流入所述气体回收通道。
  6. 根据权利要求5所述的方法,还包括:
    通过对所述实时气体流量值的变化曲线的斜率进行预判以对所述目标气体流量值进行控制,并且根据所述实时温度值将温度控制过程划分为至少二个阶段,所述至少二个阶段包括温度快速下降阶段和温度缓慢下降阶段,在所述温度缓慢下降阶段,所述实时气体流量值达到预设的流量稳定阈值范围。
  7. 根据权利要求1-4中任一项所述的方法,其中,所述控制所述球囊的排气通路中的低压比例阀的排气流量包括:
    当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度,使得所述球囊内的压力值位于预设的安全阈值范围。
  8. 根据权利要求1-4中任一项所述的方法,还包括:
    当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或控制所述低压比例阀调节开度,以使得所述球囊内的实时温度值达到预设的目标温度值。
  9. 一种冷冻消融温度控制方法,用于控制冷冻消融球囊内的压力,所述方法包括:
    获取所述球囊的排气通路中的气体回收通道中的实时气体流量值;
    当所述实时气体流量值达到预设的流量稳定阈值范围时,控制所述球囊的排气通路中的低压比例阀线性递增地增加开度;
    当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀之后,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围。
  10. 根据权利要求9所述的方法,其中,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述球囊的排气全部流经所述电磁阀,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围。
  11. 一种冷冻消融温度控制系统,用于控制冷冻消融球囊内的温度,所述系统包括:
    温度传感器,用于采集所述球囊内的实时温度值;
    高压比例阀,位于所述球囊的供液通路中;
    第一压力传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气侧的实时气压值;
    低压比例阀,位于所述球囊的排气通路中,用于调节所述球囊内的气压值;
    流量传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气通路中的气体回收通道中的实时气体流量值;
    控制器,分别与所述温度传感器、所述高压比例阀、所述第一压力传感器、所述低压比例阀及所述流量传感器连接;
    其中,所述控制器被配置为:
    获取所述球囊内的实时温度值及预设的目标温度值,根据所述实时温度值及所述目标温度值生成第一温度控制信号;获取所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;以及根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;以及
    获取所述球囊的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述低压比例阀的排气流量,并协同所述第一目标进液压力控制信号控制所述高压比例阀的供液流量,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
  12. 根据权利要求11所述的系统,其中,所述控制器还被配置为:
    根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
    根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
    根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,以控制所述高压比例阀的供液流量;以及
    获取所述球囊的排气侧的实时气压值及预设的目标气压值,根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流量。
  13. 根据权利要求11所述的系统,还包括:
    第二压力传感器,位于所述球囊的进液通路中,与所述控制器连接,用于采集所述高压比例阀的出液侧的实时流体压力值;
    其中,所述控制器还被配置为:
    获取所述实时流体压力值,并根据所述第一目标进液压力控制信号及所述实时流体压力值生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量。
  14. 根据权利要求11所述的系统,其中,所述控制器包括:
    参数获取模块,用于获取所述球囊内的实时温度值、预设的目标温度值、所述球囊的排气通路中的气体回收通道中的实时气体流量值及目标气体流量值、所述球囊的排气侧的实时气压值及预设的目标气压值;
    供液流量控制模块,用于根据所述实时温度值及所述目标温度值生成第一温度控制信号,根据所述实时气体流量值及所述目标气体流量值生成第一气体流量控制信号;以及根据所述第一温度控制信号和/或所述第一气体流量控制信号生成第一目标进液压力控制信号,通过温度控制与流量控制的协同配合,以控制所述球囊的供液通路中的高压比例阀的供液流量;
    排气压力控制模块,用于根据所述实时气压值及所述目标气压值生成第一目标排气压力控制信号,以控制所述球囊的排气通路中的低压比例阀的排气流量;
    其中,所述供液流量控制模块与所述排气压力控制模块协同控制,使得所述球囊内的压力值位于预设的安全阈值范围并使得所述球囊内的温度达到和/或维持所述目标温度值。
  15. 根据权利要求14所述的系统,其中,
    所述参数获取模块还用于获取所述高压比例阀的出液侧的实时流体压力值;
    所述供液流量控制模块包括:
    温度PD/PID控制模块,用于根据所述实时温度值及所述目标温度值,利用增量式比例微分或增量式比例积分微分控制算法生成第一温度控制信号;
    气体流量PD/PID控制模块,用于根据所述实时气体流量值及所述目标气体流量值,利用增量式比例微分或增量式比例积分微分控制算法生成第一气体流量控制信号;
    高压比例阀PD/PID控制模块,用于根据所述第一温度控制信号和/或所述第一气体流量控制信号生成所述第一目标进液压力控制信号,并根据所述第一目标进液压力控制信号计算所述高压比例阀的出液侧的目标流体压力值,以及根据所述实时流体压力值、所述目标流体压力值利用增量式比例微分或增量式比例积分微分控制算法生成第二目标进液压力控制信号,以控制所述高压比例阀的供液流量;
    所述排气压力控制模块包括:
    低压比例阀PD/PID控制模块,用于根据所述实时气压值及所述目标气压值利用增量式比例微分或增量式比例积分微分控制算法生成所述第一目标排气压力控制信号,以控制所述低压比例阀的排气流 量;
    其中,所述温度PD/PID控制模块、所述气体流量PD/PID控制模块、所述高压比例阀PD/PID控制模块及所述低压比例阀PD/PID控制模块协同控制,使得所述球囊内的压力值位于预设的安全阈值范围,并使得所述球囊内的温度达到和/或维持所述目标温度值。
  16. 根据权利要求11-15中任一项所述的系统,其中,所述控制器还被配置为:
    当所述球囊内的实时温度值小于或等于预设的温度阈值时,控制所述高压比例阀降低开度,和/或
    控制所述低压比例阀调节开度,以使得所述球囊内的实时温度值达到预设的目标温度值。
  17. 一种冷冻消融温度控制系统,用于控制冷冻消融球囊内的压力,所述系统包括:
    低压比例阀,位于所述球囊的排气通路中,用于调节所述球囊内的气压值;
    电磁阀,位于所述球囊的排气通路中,与所述低压比例阀并联;
    流量传感器,位于所述球囊的排气通路中,用于采集所述球囊的排气通路中的气体回收通道中的实时气体流量值;
    控制器,与所述低压比例阀、所述电磁阀及所述流量传感器均连接;
    所述控制器被配置为:
    获取所述球囊的排气通路中的气体回收通道中的实时气体流量值;
    当所述实时气体流量值达到预设的流量稳定阈值范围时,控制所述低压比例阀线性递增地增加开度,当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开,使得所述球囊的排气的至少一部分流经所述电磁阀,流入所述气体回收通道。
  18. 根据权利要求17所述的系统,其中,所述控制器还被配置为:
    当所述低压比例阀完全打开时,控制所述球囊的排气通路中的电磁阀打开同时关闭所述低压比例阀,使得所述球囊的排气全部流经所述电磁阀,流入所述气体回收通道,使得所述球囊内的压力值位于预设的安全阈值范围。
  19. 根据权利要求17或18所述的系统,还包括:
    高压比例阀,位于所述球囊的供液通路中,与所述控制器连接;
    其中,所述控制器还被配置为:
    当所述实时气体流量值低于预设的流量阈值范围时,控制所述高压比例阀增加开度,使得所述球囊内的压力值位于预设的安全阈值范围。
  20. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至10中任一项所述的方法的步骤。
PCT/CN2021/089198 2020-06-23 2021-04-23 冷冻消融温度控制方法、系统及计算机可读存储介质 WO2021258840A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/611,840 US20220304737A1 (en) 2020-06-23 2021-04-23 Cryoablation temperature control method, system and computer-readable storage medium
EP21800976.9A EP3998031A4 (en) 2020-06-23 2021-04-23 CRYOABLATION TEMPERATURE CONTROL METHOD AND SYSTEM, AND COMPUTER READABLE STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010576984.3A CN111529047B (zh) 2020-06-23 2020-06-23 冷冻消融温度控制方法、系统及介质
CN202010576984.3 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258840A1 true WO2021258840A1 (zh) 2021-12-30

Family

ID=71970015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089198 WO2021258840A1 (zh) 2020-06-23 2021-04-23 冷冻消融温度控制方法、系统及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220304737A1 (zh)
EP (1) EP3998031A4 (zh)
CN (2) CN111529047B (zh)
WO (1) WO2021258840A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump
EP4233753A1 (en) * 2022-02-28 2023-08-30 IceCure Medical Ltd. Apparatus and method for cryogen flow control

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111529047B (zh) * 2020-06-23 2020-11-17 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
CN113100911A (zh) * 2021-05-13 2021-07-13 上海玮启医疗器械有限公司 一种冷冻消融系统及气源更换方法
CN113476134B (zh) * 2021-06-30 2022-06-24 海杰亚(北京)医疗器械有限公司 工质储存罐的罐内压力调整方法及装置
CN114636102B (zh) * 2021-06-30 2024-01-09 杭州堃博生物科技有限公司 用于冷冻消融的工质压力控制方法
CN113425402B (zh) * 2021-08-27 2021-12-17 上海安钛克医疗科技有限公司 可判断球囊贴靠的导管及消融系统
CN113760003B (zh) * 2021-09-07 2022-03-29 苏州海宇新辰医疗科技有限公司 一种温度控制方法、装置及存储介质
CN113616314B (zh) * 2021-10-13 2022-02-11 海杰亚(北京)医疗器械有限公司 高低温复合式治疗系统及其压力控制方法
US20230165619A1 (en) * 2021-12-01 2023-06-01 Medtronic Cryocath Lp Method to mitigate balloon breach during cryoballoon therapy
CN114469311B (zh) * 2021-12-30 2022-10-28 心诺普医疗技术(北京)有限公司 具有温度限制功能的冷冻消融系统
US20230389976A1 (en) * 2022-06-06 2023-12-07 Medtronic Cryocath Lp Delivering refrigerant to catheters for cryotherapy
CN117426854A (zh) * 2022-07-14 2024-01-23 上海微创电生理医疗科技股份有限公司 制冷装置、冷冻消融系统及方法
CN115530962A (zh) * 2022-10-09 2022-12-30 上海美杰医疗科技有限公司 热消融系统及热消融系统中流动介质的控制方法
CN116172687B (zh) * 2023-01-04 2024-04-23 上海交通大学 一种负压调控式冷冻治疗系统以及控制方法
CN116458983B (zh) * 2023-04-07 2024-02-13 心诺普医疗技术(北京)有限公司 降温速率可控的冷冻消融系统及方法
CN116831716A (zh) * 2023-06-19 2023-10-03 上海玮启医疗器械有限公司 一种冷冻消融温度控制方法
CN116898568B (zh) * 2023-08-08 2024-03-08 南京康友医疗科技有限公司 一种防止组织炸裂的微波消融系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547229A (zh) * 2010-08-05 2014-01-29 美敦力阿迪安卢森堡有限责任公司 用于肾神经调制的低温消融装置、系统及方法
CN107307901A (zh) * 2017-06-22 2017-11-03 心诺普医疗技术(北京)有限公司 一种冷冻消融系统
CN107951559A (zh) * 2018-01-05 2018-04-24 北京阳光易帮医疗科技有限公司 一种低温手术系统
CN109674525A (zh) * 2018-12-21 2019-04-26 海杰亚(北京)医疗器械有限公司 一种用于医用冷冻球囊的治疗设备
CN110464444A (zh) * 2019-08-14 2019-11-19 心诺普医疗技术(北京)有限公司 一种温度可控的冷冻消融系统
CN111529047A (zh) * 2020-06-23 2020-08-14 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9555223B2 (en) * 2004-03-23 2017-01-31 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US7604631B2 (en) * 2004-12-15 2009-10-20 Boston Scientific Scimed, Inc. Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US8187261B2 (en) * 2008-05-29 2012-05-29 Boston Scientific Scimed, Inc. Regulating internal pressure of a cryotherapy balloon catheter
US8672930B2 (en) * 2010-07-28 2014-03-18 Medtronic Cryocath Lp Endoluminal ablation cryoballoon and method
AU2017267476B2 (en) * 2016-05-20 2021-10-14 Pentax Of America, Inc. Cryogenic ablation system with rotatable and translatable catheter
WO2018191013A1 (en) * 2017-04-11 2018-10-18 Cryterion Medical, Inc. Pressure control assembly for cryogenic balloon catheter system
CN208447764U (zh) * 2017-09-21 2019-02-01 北京阳光易帮医疗科技有限公司 一种冷冻微波复合消融系统
WO2019083764A1 (en) * 2017-10-27 2019-05-02 St. Jude Medical, Cardiology Division, Inc. CRYOGENIC ABLATION SYSTEM
CN109009406B (zh) * 2018-07-23 2020-02-21 山前(珠海)医疗科技有限公司 一种冷冻消融装置及冷冻消融方法
CN209332253U (zh) * 2018-08-24 2019-09-03 康沣生物科技(上海)有限公司 一种利用流量控制冷冻温度的冷冻消融系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103547229A (zh) * 2010-08-05 2014-01-29 美敦力阿迪安卢森堡有限责任公司 用于肾神经调制的低温消融装置、系统及方法
CN107307901A (zh) * 2017-06-22 2017-11-03 心诺普医疗技术(北京)有限公司 一种冷冻消融系统
CN107951559A (zh) * 2018-01-05 2018-04-24 北京阳光易帮医疗科技有限公司 一种低温手术系统
CN109674525A (zh) * 2018-12-21 2019-04-26 海杰亚(北京)医疗器械有限公司 一种用于医用冷冻球囊的治疗设备
CN110464444A (zh) * 2019-08-14 2019-11-19 心诺普医疗技术(北京)有限公司 一种温度可控的冷冻消融系统
CN111529047A (zh) * 2020-06-23 2020-08-14 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
CN112263321A (zh) * 2020-06-23 2021-01-26 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3998031A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11633224B2 (en) 2020-02-10 2023-04-25 Icecure Medical Ltd. Cryogen pump
EP4233753A1 (en) * 2022-02-28 2023-08-30 IceCure Medical Ltd. Apparatus and method for cryogen flow control

Also Published As

Publication number Publication date
CN111529047A (zh) 2020-08-14
EP3998031A1 (en) 2022-05-18
US20220304737A1 (en) 2022-09-29
CN111529047B (zh) 2020-11-17
CN112263321B (zh) 2022-04-01
CN112263321A (zh) 2021-01-26
EP3998031A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021258840A1 (zh) 冷冻消融温度控制方法、系统及计算机可读存储介质
JP7331145B2 (ja) 温度制御可能な冷凍アブレーションシステム
US9750555B2 (en) Method and apparatus for cryoadhesion
US20210085381A1 (en) Cryoablation method and system
CN107205766B (zh) 压力调控的冷冻消融系统及相关方法
US8777936B2 (en) Cooling system for a catheter
EP3872417B1 (en) Precooling device for cryotherapy and cryotherapy system
WO2023124426A1 (zh) 具有温度限制功能的冷冻消融系统及方法
CN116831716A (zh) 一种冷冻消融温度控制方法
CN109270843B (zh) 一种跨临界二氧化碳系统的水路模糊pid控制方法
CN114288006A (zh) 一种冷冻消融回温系统及方法
CN110897682B (zh) 一种基于adrc频率控制的多输出微创手术系统
WO2024077704A1 (zh) 热消融系统及热消融系统中流动介质的控制方法
WO2023102644A1 (en) Method for optimization of cooling power for cryoablation
US20230329778A1 (en) Electrosurgical smoke evacuation for surgical procedures
CN112220552B (zh) 冷冻消融导管及冷冻消融系统
Timmons Cardiovascular models and control
US20230389976A1 (en) Delivering refrigerant to catheters for cryotherapy
Sandu et al. Post cardiac surgery recovery process with reinforcement learning
Sabera et al. Comparative Analysis of Integer and Fractional PID for Power Regulation Integrated in an Electrosurgical Generator
Lin et al. An adaptive frequency–Voltage control model for extracorporeal supporting flow regulation in an extracorporeal membrane oxygenation system
SU1102096A1 (ru) Криохирургический аппарат
Yazdi et al. Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization
CN116382375A (zh) 加热控制方法、装置、系统、存储介质及亚低温治疗仪
Bronzino et al. Cardiovascular Models and Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021800976

Country of ref document: EP

Effective date: 20220211

NENP Non-entry into the national phase

Ref country code: DE