WO2021258684A1 - 一种失活活性炭低温等离子再生系统及方法 - Google Patents

一种失活活性炭低温等离子再生系统及方法 Download PDF

Info

Publication number
WO2021258684A1
WO2021258684A1 PCT/CN2020/138202 CN2020138202W WO2021258684A1 WO 2021258684 A1 WO2021258684 A1 WO 2021258684A1 CN 2020138202 W CN2020138202 W CN 2020138202W WO 2021258684 A1 WO2021258684 A1 WO 2021258684A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
regeneration
gas
reactor
low
Prior art date
Application number
PCT/CN2020/138202
Other languages
English (en)
French (fr)
Inventor
张会岩
王家伟
肖睿
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/642,670 priority Critical patent/US20230105763A1/en
Publication of WO2021258684A1 publication Critical patent/WO2021258684A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • B01J20/3466Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase with steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a regeneration system and method, in particular to a low-temperature plasma regeneration system and method of deactivated activated carbon.
  • Activated carbon has a huge specific surface and rich pore structure. It is an excellent adsorbent. It is generally prepared by physical or chemical activation. The process is complicated and expensive. The price of activated carbon with 1000 iodine value is as high as 12,000 yuan/ton. Therefore, it has high economic value for repeated regeneration of deactivated activated carbon.
  • activated carbon regeneration methods include thermal regeneration, ultrasonic regeneration, electrochemical regeneration, biological regeneration, wet oxidation regeneration, and low-temperature plasma regeneration.
  • the thermal regeneration method is currently the most widely used and most mature method. Thermal regeneration increases the temperature to desorb the adsorbate from the adsorbent. This process often requires a large amount of energy, and the desorbed adsorbate will also cause Secondary pollution.
  • the low-temperature plasma generated by the oxygen discharge contains a large amount of oxygen active substances, free radicals and ozone. These strong oxidizing substances can decompose the organic adsorbents adsorbed on the surface of the activated carbon, thereby achieving the purpose of regeneration.
  • low-temperature plasma regeneration technology has developed to a certain extent, but there are still many problems in equipment and process methods, such as low plasma regeneration efficiency and contamination of chemical reagents.
  • the present invention aims to provide an efficient and environmentally friendly deactivated activated carbon low-temperature plasma regeneration system and method to solve the above-mentioned problems.
  • the deactivated activated carbon low-temperature plasma regeneration system of the present invention includes a gas supply system for providing gas and water vapor, a plasma reaction device, and an exhaust gas treatment device;
  • the plasma reaction device includes an upper electrode, a grounded lower electrode, and a device A regenerative reactor between the electrodes and a high-voltage AC power supply connected to the upper electrode;
  • a feeder is arranged in the regenerative reactor, an air inlet is arranged at the center of the top of the reactor, and an air outlet is arranged around the reactor.
  • the low-temperature plasma regeneration method of deactivated activated carbon of the present invention is characterized in that it includes the following steps:
  • the device of the invention has simple and compact structure, convenient operation, integrated reaction and premixing, and saves a lot of labor costs.
  • the invention adopts dry physical method to regenerate activated carbon, the energy consumption required for regeneration is low, no pollutants are generated, and it is more energy-saving and environmentally friendly.
  • the invention adopts the water vapor-oxygen-helium mixed plasma regeneration, the oxidation effect is stronger, the regeneration efficiency is higher, and the effect is better.
  • the invention adopts multiple pre-mixing regenerations, makes the total area directly irradiated by the plasma larger in a limited space, improves the energy utilization rate, and fully regenerates the activated carbon.
  • the activated carbon regenerated by the present invention has a regeneration rate of up to 95.1%, a carbon loss rate of only 1.1%, and repeated regeneration for 10 times, and the regeneration rate is still as high as 92.01%.
  • Figure 1 is a schematic diagram of the system of the present invention
  • Figure 2 is a top view of the upper cover of the disc reactor
  • Figure 3 is a histogram of repeated activated carbon regeneration in Example 3 of the present invention.
  • FIG. 1 it includes a gas supply system for supplying gas and water vapor, a plasma reaction device 1 and an exhaust gas processing device 13.
  • the gas supply system includes: a water vapor generator 9, a gas source 11, a gas flow meter 12, and a gas mixer 10.
  • the gas source 11 and the steam generator 9 are connected to the gas mixer 10 through a pipeline, and a gas flow meter 12 is also provided on the gas outlet pipeline of the gas source 11.
  • the gas mixer 10 is evenly arranged with gas inlets.
  • the steam temperature at the outlet of the steam generator 9 is 100-170°C
  • the gas mixer 10 is made of stainless steel, and the size should ensure that the gas is fully mixed.
  • the steam generator 9 to the gas mixer 10 and the gas mixer 10 to the regeneration reactor 1 are all steam pipes.
  • the steam pipes should not be too long.
  • the outside of the gas mixer 10 and the steam pipes are covered with thermal insulation materials, made of asbestos, For materials such as rock wool and glass wool, the thickness must ensure that water vapor does not condense in the pipes and devices.
  • the plasma reaction device 1 includes: a regeneration reactor 3, an upper electrode 2, a grounded lower electrode 4, a high-voltage AC power supply 5, and a digital storage oscilloscope 6.
  • the regeneration reactor 3 has a bottomed and covered structure.
  • An air inlet 15 is arranged in the center of the upper cover plate 14.
  • the air inlet is connected to the outlet of the gas mixer 10 through a pipeline.
  • a plurality of air outlets 16 are evenly arranged radially around the regeneration reactor.
  • the reaction gas passes through the center of the electrode and vertically enters from the air inlet 15 and spreads evenly around the entire reaction chamber. Exhaust gas is discharged from the air outlet 16 around and is absorbed in the exhaust gas treatment device 13.
  • the upper electrode 2 and the lower electrode 4 are metal electrodes embedded in the regeneration reactor 1, the upper electrode 2 has an escape hole at the air inlet, and the lower electrode 4 has an escape hole at the drive shaft 18. Both the upper and lower electrodes are equipped with a height adjustment device, through which the position can be adjusted up and down to block the regeneration reactor 3.
  • the regeneration reactor 3 has a bottom and cover structure, and is made of high-purity quartz or corundum. The thickness of the upper and lower bottom plates should not be too thick, and the air gap should not be too large to ensure that the gas can normally break down to generate plasma.
  • the regenerative reactor 3 is provided with a shifter 17, the shifter 17 is connected to a power motor 7 arranged below the plasma reaction device 1, and the glassware is connected to the motor 7 through a drive shaft 18, and is driven by the motor 7 to rotate.
  • the shifter 17 is in the shape of a single row of rake with evenly distributed rake teeth.
  • a support tray 8 is provided under the shell of the plasma reaction device 1, and the tray supports the plasma reaction device 1.
  • the upper electrode 2 is connected to a high-voltage AC power supply 5, and the high-voltage AC power supply 5 is connected to a digital storage oscilloscope 6.
  • the adjustable range of peak voltage of high voltage AC power supply is 0-100kv, and the adjustable range of frequency is 0-100kHz.
  • the digital storage oscilloscope 6 probes are respectively connected to the power supply high-voltage output voltage and power supply high-voltage output current interfaces to measure the current and voltage values on the regeneration reactor 3, and use the Lissajous figure to calculate the discharge power.
  • the absorption liquid in the tail gas treatment device 13 is a 5-10% potassium iodide solution, which mainly absorbs excess ozone.
  • the working process of the present invention specifically includes:
  • the adsorbent on the surface of the deactivated activated carbon is organic pollutants, and the thickness of the activated carbon material layer is 1-10mm.
  • the activation gas is an inert gas such as helium or argon, and the mixed gas is selected from oxygen and helium or oxygen and argon, preferably oxygen and helium.
  • the gas residence time in the reactor is 5-7s, the activation time is 1-2min, the peak voltage range is 30kv-100kv, the frequency is 5-40kHz, preferably the activation time is 1min, the peak voltage is 30kv, and the frequency is 10kHz.
  • the mixing time of the feeder is 30-60s, which matches the thickness of the material layer, preferably the mixing time is 30s, and the thickness of the material layer is 3mm.
  • the regeneration time is 30-90min, and the mixing times are 2-4 times.
  • the regenerated activated carbon is taken out and dried, and dried at 100-105°C for 8-10 hours to obtain the regenerated activated carbon.
  • the following implementations were all carried out in a quartz reactor with a diameter of 90 mm.
  • the adsorbate selected is aniline, with an initial concentration of 300mg/l.
  • Regeneration rate calculation By controlling the same adsorption conditions as the preparation of deactivated activated carbon, including the initial adsorption concentration, activated carbon dosage, mixed liquid volume, temperature, pH, adsorption time, etc., the obtained regeneration saturated adsorption capacity and the original saturated adsorption capacity The ratio is calculated as follows:
  • RE is the regeneration efficiency %
  • q i is the regeneration saturated adsorption capacity (mg/g)
  • q 0 is the initial saturated adsorption capacity (mg/g).
  • the difference between this embodiment and embodiment 1 is that the mixed gas flow rate in step (3) is 50ml/min, the discharge voltage is 50kv, the treatment time is 20min, the input power is 98W, and the calculated regeneration rate is 88.2%.
  • step (3) the discharge voltage is 50kv, the input power is 98W, and the treatment time is 20 minutes, and the regeneration rate is calculated to be 95.11%.
  • step (3) oxygen and helium are fed in according to 2:8, the discharge voltage is 50kv, the input power is 98W, and the treatment time is 20min, and the regeneration rate is calculated to be 88.1%.
  • step (3) oxygen and helium are fed in according to 2:8, the discharge voltage is 60kv, the input power is 112W, and the treatment time is 20min, and the regeneration rate is calculated to be 91.83%.
  • step (3) oxygen and helium are fed in at 2:8, the discharge voltage is 70kv, the input power is 126W, and the treatment time is 20min.
  • the regeneration rate is calculated to be 94.89%.
  • step (3) oxygen and helium are fed in according to 2:8, the discharge voltage is 70kv, the input power is 98W, and the treatment time is 10min.
  • the regeneration rate is calculated to be 92.48%.
  • Example 3 Repeat Example 3, and the results of ten repeated regenerations are shown in Figure 3.
  • the first regeneration rate is as high as 95.1%, and the regeneration rate is still above 90% after ten repetitions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种失活活性炭低温等离子再生系统及方法,包括用于提供气体和水蒸气的供气系统、等离子反应装置(1)以及尾气处理装置(13);所述等离子反应装置(1)包括上电极(2)、接地的下电极(4)、设于电极间的再生反应器(3)以及连接上电极(2)的高压交流电源(5);所述再生反应器(3)内设有拨料器(17),再生反应器(3)顶部的中心位置设有进气口(15),四周设有出气口(16)。再生系统结构简单紧凑,操作方便,反应预混一体化,节约了大量人工成本;再生所需的能耗低,且不产生污染物质,更加节能环保;氧化效果更强,再生效率更高,效果更好;在有限空间中让等离子体直接辐照的总面积更大,提高了能源利用率,充分再生活性炭。

Description

一种失活活性炭低温等离子再生系统及方法 技术领域
本发明涉及一种再生系统及方法,特别是涉及一种失活活性炭低温等离子再生系统及方法。
背景技术
活性炭具有巨大的比表面和丰富的孔道结构,是一种优良的吸附剂,一般通过物理或者化学活化的方法制备,工艺复杂,价格昂贵,1000碘值的活性炭价格高达1-1.2万元/吨,因此对失活活性炭重复再生具有很高的经济价值。
常用的活性炭再生方法包括热再生法、超声再生法、电化学再生法、生物再生法、湿式氧化再生法、低温等离子体再生法。热再生法使目前使用最广泛、技术最成熟的方法,热再生通过提高温度使吸附质从吸附剂中脱附,这一过程往往需要消耗大量的能量,而且脱附后的吸附质还会造成二次污染。氧气放电产生的低温等离子体中具有大量的氧活性物质、自由基和臭氧,这些强氧化性物质能分解活性炭表面吸附的有机吸附质,从而达到再生的目的。目前低温等离子体再生技术有一定的发展,但在设备和工艺方法方面仍然存在很多问题,如等离子体再生效率低、化学试剂的污染等。
发明内容
发明目的:本发明旨在提供一种高效、环保的失活活性炭低温等离子再生系统及方法,以解决上述问题。
技术方案:本发明的失活活性炭低温等离子再生系统,包括用于提供气体和水蒸气的供气系统、等离子反应装置以及尾气处理装置;所述等离子反应装置包括上电极、接地的下电极、设于电极间的再生反应器以及连接上电极的高压交流电源;所述再生反应器内设有拨料器,该反应器顶部的中心位置设有进气口,反应器四周设有出气口。
本发明所述的失活活性炭低温等离子再生方法,基于所述的再生装置,其特征在于,包括以下步骤:
(1)将失活活性炭放入再生反应器中,将反应器放入等离子体反应装置的上、下电极之间,调节上下电极并密封反应箱;
(2)打开供气系统通入惰性气体,打开高压交流电源调节峰值电压和频率,观测到数字存储示波器显示屏出现稳定且持续的李萨如图形,维持反应进行一定时间;
(3)开启水蒸气发生器和供气系统通入水蒸气、氧气和惰性气体,气体在气体混合器中充分混合后进入再生反应器参与氧化反应,调节电源的峰值电压和频率,维持反应状态不变;
(4)关闭高压交流电源暂停反应,开启电机,驱动拨料器旋转混合物料,底层活性炭 暴露在表面后重新激发等离子体,进行氧化反应;
(5)反应器冷却至室温后,取出再生的活性炭并进行烘干,即得到再生后的活性炭。
有益效果:与现有技术相比,本发明具有如下显著优点:
本发明装置结构简单紧凑,操作方便,反应预混一体化,节约了大量人工成本。本发明采用干式物理法再生活性炭,再生所需的能耗低,且不产生污染物质,更加节能环保。本发明采用水蒸气-氧气-氦气混合等离子体再生,氧化效果更强,再生效率更高,效果更好。本发明采用多次预混再生,在有限空间中让等离子体直接辐照的总面积更大,提高了能源利用率,充分再生活性炭。本发明所再生的活性炭,再生率高达95.1%,炭损率仅为1.1%,重复再生10次,再生率仍高达92.01%。
附图说明
图1为本发明的系统示意图;
图2为圆盘反应器上盖俯视图;
图3为本发明实施例3的活性炭重复再生柱状图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
如图1所示,包括用于提供气体和水蒸气的供气系统、等离子反应装置1以及尾气处理装置13。
供气系统包括:水蒸气发生器9、气源11、气体流量计12、气体混合器10。气源11和水蒸气发生器9通过管路与气体混合器10相连,气源11出气管路上还设有气体流量计12。气体混合器10上均匀布置接气口。水蒸气发生器9出口蒸汽温度为100-170℃,气体混合器10材料为不锈钢,尺寸大小应能保证气体充分混合,装置上后方均匀布置3-5个接气口,气管材料为不锈钢。水蒸气发生器9到气体混合器10和气体混合器10到再生反应器1均为蒸汽管道,蒸汽管道设置不宜过长,气体混合器10外部和蒸汽管道外均敷设保温材料,材质为石棉、岩棉、玻璃棉等材料,厚度需保证水蒸气在管道和装置中不冷凝。
等离子反应装置1包括:再生反应器3、上电极2、接地的下电极4、高压交流电源5、数字存储示波器6。再生反应器3为有底有盖结构,上盖板14中央布置进气口15,进气口通过管路连接气体混合器10的出口,再生反应器四周呈放射状均匀布置多个出气口16,反应气穿过电极中央从进气口15垂直通入,向四周均匀散开布满整个反应腔,废气从四周出气口16排出,尾气处理装置13中被吸收。上电极2和下电极4为嵌入到再生反应器1的金属电极,上电极2在进气口出留有避让孔,下电极4在传动轴18处留有避让孔。上、下电极均设有高度调节装置,通过该装置可上下调节位置,以卡住再生反应器3。再生反应器3为有底有盖结构,材质为高纯度石英或者刚玉,上下底板厚度不宜过厚,气隙不宜过大,保证气体能够正常击穿生成等离子体。
再生反应器3内设有拨料器17,拨料器17连接设于等离子反应装置1的下方的动力电机7,玻璃器通过传动轴18连接电机7,并在电机7的驱动下旋转。拨料器17呈单排的耙形,耙齿均匀分布,拨料器17至少设有两个,材质为四氟乙烯,当拨料器设有两个时,两个拨料器设于再生反应器3的中轴线处,旋转方向相反,实现整个反应器平面的物料混合。等离子反应装置1外壳下方设有支撑托盘8,托盘承托住等离子反应装置1。
上电极2连接高压交流电源5,高压交流电源5连接数字存储示波器6。高压交流电源5峰值电压可调节范围0-100kv,频率可调节范围0-100kHz。数字存储示波器6探头分别与电源高压输出电压和电源高压输出电流接口相连,测量再生反应器3上的电流电压值,利用李萨如图形计算出放电功率。
尾气处理装置13中吸收液为5-10%碘化钾溶液,主要吸收多余的臭氧。
本发明的工作过程具体包括:
(1)将失活活性炭放入再生反应器中,将反应器放入等离子体反应装置的上、下电极之间,调节上下电极并密封反应箱。失活活性炭表面吸附质为有机污染物,活性炭料层厚度1-10mm。
(2)打开供气系统通入惰性气体,打开高压交流电源调节峰值电压和频率,观测到数字存储示波器显示屏出现稳定且持续的李萨如图形,维持反应进行一定时间。活化气为氦气或者氩气等惰性气体,混合气体选择氧气和氦气或氧气和氩气,优选氧气和氦气。气体在反应器停留时间5-7s,活化时间1-2min,峰值电压范围30kv-100kv,频率5-40kHz,优选活化时间1min、峰值电压30kv、频率10kHz。
(3)开启水蒸气发生器和供气系统通入水蒸气、氧气和惰性气体,气体在气体混合器中充分混合后进入再生反应器参与氧化反应,调节峰值电压和频率,维持反应状态不变。水蒸气用量占活性炭质量的1%-10%,优选1%。混合气体在反应器停留时间1-12s,混合气体中氧含量5-50%,峰值电压范围30kv-100kv,频率5-40kHz。
(4)关闭高压交流电源暂停反应,开启电机,驱动拨料器旋转混合物料,底层活性炭暴露在表面后重新激发等离子体,进行氧化反应。拨料器旋转混合时间30-60s,与料层厚度匹配,优选混合时间30s,料层厚度3mm。再生时间30-90min,混合次数2-4次。
(5)反应器冷却至室温后,取出再生的活性炭并进行烘干,100-105℃下烘干8-10h即得到再生后的活性炭。
以下实施均在直径90mm的石英反应器中进行。所选吸附质为苯胺,初始浓度300mg/l。再生率计算:通过控制与制备失活活性炭完全相同的吸附条件,包括吸附初始浓度、活性炭投放量、混合液体积、温度、PH、吸附时间等,得到的再生饱和吸附量与原始饱和吸附量的比值,计算公式如下:
RE=q i/q 0×100%
RE为再生效率%,q i为再生饱和吸附量(mg/g),q 0为初始饱和吸附量(mg/g)。
实施例1
(1)取1g失活活性炭均匀平铺在石英反应器底板上,物料厚度约3mm。
(2)通入氦气,流量为50ml/min,打开高压交流电源控制放电电压30kv,放电频率10kHz,反应持续1min,完成活性炭表面活化。
(3)开启水蒸气发生器产生蒸汽,水用量/活性炭=0.1,氧气和氦气按照3:7通入,混合气体流量100ml/min,高压交流电源控制放电电压40kv,放电频率10kHz,存储数据,利用李萨如图形计算出功率为70W。
(4)反应30min后关闭电源暂停反应,开启动力电机驱动耙式拨料器旋转,物料混合30s,底层活性炭暴露在表面后重新激发等离子体,参数不变,30min后,重复上一次操作。
(5)反应结束后,取出再生的活性炭,105℃烘干24h。
(6)再生吸附试验,计算得到再生率为81.3%。
实施例2
本实施例与实施例1的区别是,步骤(3)中的混合气体流量50ml/min,放电电压50kv,处理一次时间20min,输入功率98W,计算得到再生率为88.2%。
实施例3
本实施例与实施例1的区别是,步骤(3)放电电压50kv,输入功率98W,处理一次时间20min,计算得到再生率95.11%。
实施例4
本实施例与例一的区别是,步骤(3)氧气和氦气按照2:8通入,放电电压50kv,输入功率98W,处理一次时间20min,计算得到再生率88.1%。
实施例5
本实施例与例一的区别是,步骤(3)氧气和氦气按照2:8通入,放电电压60kv,输入功率112W,处理一次时间20min,计算得到再生率91.83%。
实施例6
本实施例与例一的区别是,步骤(3)氧气和氦气按照2:8通入,放电电压70kv,输入功率126W,处理一次时间20min,计算得到再生率94.89%。
实施例7
本实施例与例一的区别是,步骤(3)氧气和氦气按照2:8通入,放电电压70kv,输入功率98W,处理一次时间10min,计算得到再生率92.48%。
实施例8
重复实施例3,十次重复再生的结果如图3。首次再生率高达95.1%,重复十次后再生率仍在90%以上。

Claims (10)

  1. 一种失活活性炭低温等离子再生系统,其特征在于,包括用于提供气体和水蒸气的供气系统、等离子反应装置(1)以及尾气处理装置(13);所述等离子反应装置包括上电极(2)、接地的下电极(3)、设于电极间的再生反应器(5)以及连接上电极的高压交流电源(5);所述再生反应器内设有拨料器(17),该反应器顶部的中心位置设有进气口(15),反应器四周设有出气口(16)。
  2. 根据权利要求1所述的失活活性炭低温等离子再生系统,其特征在于,所述供气系统包括水蒸气发生器(9)和气源(11),二者通过管路连接至气体混合器(10),气体混合器出口连接再生反应器入口。
  3. 根据权利要求2所述的失活活性炭低温等离子再生系统,其特征在于,所述气源(11)提供氧气与惰性气体。
  4. 根据权利要求2所述的失活活性炭低温等离子再生系统,其特征在于,气体混合器(10)与水蒸汽途径管道的外部敷设保温材料。
  5. 根据权利要求1所述的失活活性炭低温等离子再生系统,其特征在于,所述高压交流电源连接数字存储示波器(6),示波器探头分别与电源高压输出电压和电源高压输出电流接口相连,测量其电流值和电压值,利用李萨如图形计算出放电功率。
  6. 根据权利要求1所述的失活活性炭低温等离子再生系统,其特征在于,所述上电极(2)和下电极(4)设有高度调节机构,通过调整高度锁紧再生反应器(3)。
  7. 根据权利要求1所述的失活活性炭低温等离子再生系统,其特征在于,所述拨料器(17)至少设有两个,在电机的驱动下旋转。
  8. 根据权利要求1所述的失活活性炭低温等离子再生系统,其特征在于,所述尾气处理装置(13)中设有5-10%碘化钾溶液作为吸收液。
  9. 一种失活活性炭低温等离子再生方法,基于权利要求1~8任一项所述的再生装置,其特征在于,包括以下步骤:
    (1)将失活活性炭放入再生反应器中,将反应器放入等离子体反应装置的上、下电极之间,调节上下电极锁紧反应器;
    (2)打开供气系统通入惰性气体,打开高压交流电源调节峰值电压和频率,观测到数字存储示波器显示屏出现稳定且持续的李萨如图形,维持反应进行一定时间;
    (3)开启水蒸气发生器和供气系统通入水蒸气、氧气和惰性气体,气体在气体混合器中充分混合后进入再生反应器参与氧化反应,调节电源的峰值电压和频率,得到稳定的放电状态,并维持反应参数不变;
    (4)关闭高压交流电源暂停反应,开启电机,驱动拨料器旋转混合物料,底层活性炭暴露在表面后重新激发等离子体,进行氧化反应;
    (5)反应器冷却至室温后,取出再生的活性炭并进行烘干,即得到再生后的活性炭。
  10. 根据权利要求9所述的失活活性炭低温等离子再生方法,其特征在于,所述步骤(3)中水蒸气用量占活性炭质量的1%-10%,混合后的气体中氧气含量为5-50%。
PCT/CN2020/138202 2020-06-24 2020-12-22 一种失活活性炭低温等离子再生系统及方法 WO2021258684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/642,670 US20230105763A1 (en) 2020-06-24 2020-12-22 Low-temperature plasma regeneration system and method for inactivated activated carbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010583594.9 2020-06-24
CN202010583594.9A CN111790361B (zh) 2020-06-24 2020-06-24 一种失活活性炭低温等离子再生系统及方法

Publications (1)

Publication Number Publication Date
WO2021258684A1 true WO2021258684A1 (zh) 2021-12-30

Family

ID=72803777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138202 WO2021258684A1 (zh) 2020-06-24 2020-12-22 一种失活活性炭低温等离子再生系统及方法

Country Status (3)

Country Link
US (1) US20230105763A1 (zh)
CN (1) CN111790361B (zh)
WO (1) WO2021258684A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790361B (zh) * 2020-06-24 2023-07-21 东南大学 一种失活活性炭低温等离子再生系统及方法
CN112958057B (zh) * 2021-01-20 2022-05-17 江苏科威环保技术有限公司 增强活性炭解吸能力的解吸装置
CN115957826B (zh) * 2023-01-18 2023-08-04 常熟理工学院 废脱硝催化剂的低温等离子体照射再生方法与再生脱硝催化剂
CN116947102B (zh) * 2023-06-01 2024-04-23 湖北工业大学 一种基于等离子体活化SF6制备MoF6的方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149754A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd 揮発性有機物質を含む排ガスの処理方法および処理装置
CN1899685A (zh) * 2006-06-30 2007-01-24 大连理工大学 介质阻挡放电等离子体活性炭原位再生方法及装置
CN101530784A (zh) * 2009-04-09 2009-09-16 大连理工大学 介质阻挡放电等离子体辐照活性炭再生方法及装置
CN104772005A (zh) * 2015-04-10 2015-07-15 浙江大学 导电炭结合等离子体放电浓缩降解有机污染物装置及方法
CN204582890U (zh) * 2015-04-10 2015-08-26 浙江大学 一种导电炭结合等离子体放电浓缩降解有机污染物装置
CN106824146A (zh) * 2017-01-06 2017-06-13 燕山大学 介质阻挡放电活化过硫酸盐协同再生活性炭的方法
CN109158082A (zh) * 2018-09-25 2019-01-08 华中科技大学 一种基于多孔炭在线活化的脱汞方法
CN109589955A (zh) * 2018-12-21 2019-04-09 兰州何捷环保科技有限公司 一种有机饱和活性炭活化再生工艺
CN111790361A (zh) * 2020-06-24 2020-10-20 东南大学 一种失活活性炭低温等离子再生系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1028219C (zh) * 1990-08-10 1995-04-19 项缙农 活性炭的活化方法和设备
CN102188960B (zh) * 2011-03-28 2012-08-01 大连理工大学 介质阻挡放电活性炭再生反应器的导入式布气方法
CN103721691B (zh) * 2014-01-22 2015-09-30 湖北君集水处理有限公司 一种用于粉末活性炭再生的移动耙齿式微波炉
CN106861664A (zh) * 2017-04-11 2017-06-20 东南大学 一种可再生脱汞吸附剂的再生方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149754A (ja) * 1999-11-30 2001-06-05 Japan Organo Co Ltd 揮発性有機物質を含む排ガスの処理方法および処理装置
CN1899685A (zh) * 2006-06-30 2007-01-24 大连理工大学 介质阻挡放电等离子体活性炭原位再生方法及装置
CN101530784A (zh) * 2009-04-09 2009-09-16 大连理工大学 介质阻挡放电等离子体辐照活性炭再生方法及装置
CN104772005A (zh) * 2015-04-10 2015-07-15 浙江大学 导电炭结合等离子体放电浓缩降解有机污染物装置及方法
CN204582890U (zh) * 2015-04-10 2015-08-26 浙江大学 一种导电炭结合等离子体放电浓缩降解有机污染物装置
CN106824146A (zh) * 2017-01-06 2017-06-13 燕山大学 介质阻挡放电活化过硫酸盐协同再生活性炭的方法
CN109158082A (zh) * 2018-09-25 2019-01-08 华中科技大学 一种基于多孔炭在线活化的脱汞方法
CN109589955A (zh) * 2018-12-21 2019-04-09 兰州何捷环保科技有限公司 一种有机饱和活性炭活化再生工艺
CN111790361A (zh) * 2020-06-24 2020-10-20 东南大学 一种失活活性炭低温等离子再生系统及方法

Also Published As

Publication number Publication date
CN111790361A (zh) 2020-10-20
US20230105763A1 (en) 2023-04-06
CN111790361B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2021258684A1 (zh) 一种失活活性炭低温等离子再生系统及方法
CN201361513Y (zh) 转轮式有机废气吸附及脱附装置
CN115362129A (zh) 用于从吸附材料微波除去nh3的系统和方法
WO2021164073A1 (zh) 电化学法降解气态污染物的装置及其方法
JPH11137944A (ja) ガス処理装置
KR20160136988A (ko) 마이크로웨이브를 이용한 VOCs 제거 시스템
KR20020032743A (ko) 간접가열식 폐활성탄 열재생방법과 장치
CN209872484U (zh) 一种高效臭氧水处理系统
CN209378713U (zh) 一种避免催化燃烧反应器过热的挥发性有机废气处理系统
JP2013163156A (ja) 揮発性有機化合物を含有する排ガスの処理装置および処理方法
CN110482642A (zh) 一种泡沫类介质阻挡放电等离子体的污染物处理装置
CN102049190A (zh) 一种氯代烃尾气收集处理器
CN113163566A (zh) 一种等离子体改性碳材料的装置及方法
TW201600163A (zh) 揮發性有機化合物處理裝置
CN210874697U (zh) 一种VOCs废气净化装置和净化系统
CN211302563U (zh) 一种油气处理系统
CN208553754U (zh) 一种用于等离子体协同吸附催化治理有机废气的装置
CN208786163U (zh) 一种光氧催化净化器
CN110624360A (zh) 一种VOCs废气净化装置、净化方法及净化系统
CN206372678U (zh) 一种空气污染处理装置
KR20020059874A (ko) 마이크로파를 이용한 에탄올 흡착건조장치 및 운전방법
TW200924839A (en) Organic vapor absorption and desorption apparatus by using low-temperature plasma regeneration
CN214764349U (zh) 一种废气处理系统
CN219596268U (zh) 一种实验室废气净化系统
CN217248977U (zh) 一种吸附剂脱附再生系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942354

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20942354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942354

Country of ref document: EP

Kind code of ref document: A1