WO2021258489A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021258489A1
WO2021258489A1 PCT/CN2020/104795 CN2020104795W WO2021258489A1 WO 2021258489 A1 WO2021258489 A1 WO 2021258489A1 CN 2020104795 W CN2020104795 W CN 2020104795W WO 2021258489 A1 WO2021258489 A1 WO 2021258489A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
led light
emitting unit
micro led
Prior art date
Application number
PCT/CN2020/104795
Other languages
English (en)
French (fr)
Inventor
钟莉
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to EP20870442.9A priority Critical patent/EP4170416A1/en
Priority to US16/981,761 priority patent/US11536995B2/en
Publication of WO2021258489A1 publication Critical patent/WO2021258489A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • This application relates to the field of display technology, and in particular to a display panel and a display device.
  • the OLED screen uses OLED pixels to actively emit light. Compared with LCD screens, on the one hand, it has the advantages of high contrast, lightness, thinness, flexibility, and foldability. On the other hand, based on the characteristics of OLED screens that do not require backlight Good compatibility with the current optical sensor, so the in-plane optical sensing technology has become the "unique advantage" of the current OLED screen, so that the OLED screen can be switched between the display mode and the imaging mode, and the current LCD screen digging solution is not required The resulting digging area cannot be displayed.
  • the present application provides a display panel and a display device, which can solve the problem that the optical sensor and the optical display in the traditional LCD screen cannot be overlapped spatially, which causes the LCD screen to fail to meet people's extreme demand for a full screen.
  • the present application provides a display panel, including a first pixel area and a second pixel area adjacent to the first pixel area.
  • the display panel includes an array substrate and a color filter substrate disposed opposite to each other.
  • the liquid crystal layer between the color filter substrates and the backlight module are located on the side of the color filter substrate facing away from the array substrate;
  • the display panel includes a plurality of Micro LED light-emitting units arranged in the first pixel area, and a plurality of the Micro LED light-emitting units There is a light-transmitting area between the LED light-emitting units; the color film substrate includes a color color resist arranged in the second pixel area.
  • the Micro LED light-emitting unit includes an electrode surface and a substrate surface opposite to the electrode surface, the electrode surface is provided with a first electrode, and the Micro LED The LED light-emitting unit is arranged in such a manner that the electrode surface faces one side of the backlight module, and the light-emitting direction of the Micro LED light-emitting unit is from the electrode surface to the base surface.
  • the color filter substrate includes:
  • the Micro LED light-emitting unit is disposed on the first substrate corresponding to the first pixel area;
  • the color resist is provided on the first substrate corresponding to the second pixel area;
  • the first substrate is provided with a second electrode corresponding to the first electrode corresponding to the first pixel area.
  • the Micro LED light emitting unit and the color color resist are located on the side of the first substrate facing away from the backlight module, and the Micro LED The first electrode of the LED light-emitting unit is electrically connected to the corresponding second electrode.
  • the Micro LED light-emitting unit is located on a side of the first substrate close to the backlight module, and the color resist is located on a side of the first substrate facing away from the backlight module. Side, the Micro The LED light-emitting unit is electrically connected to the corresponding second electrode through the first electrode.
  • the first electrode extends from the electrode surface of the Micro LED light-emitting unit along the Micro LED.
  • the side surface of the LED light-emitting unit extends to a position corresponding to the second electrode on the first substrate.
  • the color filter substrate further includes a first driving circuit, the first driving circuit corresponding to the first pixel area is provided on the first substrate facing the Micro On one side surface of the LED light-emitting unit, the Micro LED light-emitting unit is electrically connected to the first driving circuit.
  • the first driving circuit includes a scan line extending in a lateral direction and a data line extending in a longitudinal direction. Two adjacent scan lines and two adjacent data lines define sub-pixel regions, The Micro The orthographic projection area of the LED light-emitting unit on the first substrate is smaller than the area of the sub-pixel area.
  • the orthographic projection area of the Micro LED light-emitting unit on the first substrate accounts for 10%-50% of the area of the sub-pixel area
  • the Micro LED light-emitting unit includes a red light-emitting unit, Green light-emitting unit and blue light-emitting unit.
  • the array substrate includes:
  • the Micro LED light-emitting unit is disposed on a side of the second base close to the color filter substrate corresponding to the first pixel area;
  • the second substrate is provided with a second electrode corresponding to the first electrode corresponding to the first pixel area, and the first electrode is electrically connected to the corresponding second electrode.
  • the first electrode extends from the electrode surface of the Micro LED light-emitting unit along the Micro LED.
  • the side surface of the LED light-emitting unit extends to a position corresponding to the second electrode on the second substrate.
  • the array substrate further includes a second driving circuit, and the second driving circuit is disposed on the second substrate corresponding to the second pixel area.
  • the present application also provides a display device, including a display panel, the display panel including a first pixel area and a second pixel area adjacent to the first pixel area, wherein the display panel includes an array substrate and a color A film substrate, a liquid crystal layer located between the array substrate and the color filter substrate, and a backlight module, located on the side of the color filter substrate facing away from the array substrate;
  • the display panel includes a plurality of Micro LED light-emitting units arranged in the first pixel area, and a plurality of the Micro LED light-emitting units There is a light-transmitting area between the LED light-emitting units; the color film substrate includes a color color resist arranged in the second pixel area.
  • the Micro LED light-emitting unit includes an electrode surface and a substrate surface opposite to the electrode surface, the electrode surface is provided with a first electrode, and the Micro LED The LED light-emitting unit is arranged in such a manner that the electrode surface faces one side of the backlight module, and the light-emitting direction of the Micro LED light-emitting unit is from the electrode surface to the base surface.
  • the color filter substrate includes:
  • the Micro LED light-emitting unit is disposed on the first substrate corresponding to the first pixel area;
  • the color resist is provided on the first substrate corresponding to the second pixel area;
  • the first substrate is provided with a second electrode corresponding to the first electrode corresponding to the first pixel area.
  • the Micro LED light-emitting unit and the color resist are located on the side of the first substrate facing away from the backlight module, and the Micro LED The first electrode of the LED light-emitting unit is electrically connected to the corresponding second electrode.
  • the Micro LED light-emitting unit is located on a side of the first substrate close to the backlight module, and the color resist is located on a side of the first substrate facing away from the backlight module. Side, the Micro The LED light-emitting unit is electrically connected to the corresponding second electrode through the first electrode.
  • the first electrode extends from the electrode surface of the Micro LED light-emitting unit along the Micro LED.
  • the side surface of the LED light-emitting unit extends to a position corresponding to the second electrode on the first substrate.
  • the array substrate includes:
  • the Micro LED light-emitting unit is disposed on a side of the second base close to the color filter substrate corresponding to the first pixel area;
  • the second substrate is provided with a second electrode corresponding to the first electrode corresponding to the first pixel area, and the first electrode is electrically connected to the corresponding second electrode.
  • the first electrode extends from the electrode surface of the Micro LED light-emitting unit along the Micro LED.
  • the side surface of the LED light-emitting unit extends to a position corresponding to the second electrode on the second substrate.
  • the display panel and display device provided by this application combine the Micro LED (Micro Light Emitting Diode) display technology with the LCD (Liquid Crystal Display) display technology to achieve the ultimate full-screen LCD display; and make full use of Micro LED light-emitting unit is small in size and can improve the transparency of the panel to realize the integrated sensor function in the screen.
  • This application realizes Micro
  • the seamless connection between LED display technology and LCD display technology in the horizontal and vertical spaces solves the problem that the optical sensor and optical display in traditional LCD screens cannot overlap spatially, which leads to the problem that LCD screens cannot meet people's extreme needs for full screens.
  • FIG. 1 is a top view of different types of display panels provided by an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional view of a display panel provided by Embodiment 1 of the application;
  • Fig. 3 is a display panel provided with a Micro Schematic diagram of the LED lighting unit
  • Fig. 4 is a partial schematic diagram of area A in Fig. 2;
  • FIG. 5 is a schematic diagram of the structure of a display panel provided in the second embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a display panel provided in Embodiment 3 of the application.
  • FIG. 7 is a schematic diagram of the structure of the display device provided by this application.
  • LCD liquid crystal displays
  • OLED Organic Light-Emitting Diode
  • the primary purpose of this application is to provide a display panel and a display device to solve the problem that the optical sensor and the optical display in traditional LCD screens cannot overlap spatially, which results in that LCD screens cannot meet people's extreme demands for full screens. problem.
  • Micro LED micro light-emitting diode
  • OLED organic light-emitting diode
  • control chip chip
  • Micro LED mainly relies on the "additive manufacturing” method of mass-transfer, which has a low technological maturity, especially when facing the problem of innate process yield and cost challenges when mass display pixels are transferred.
  • Another objective of the present application is to provide a display panel and display device to solve the problem of low process yield and high cost due to the massive transfer of Micro LEDs when applied to display technology, which limits the use of Micro LEDs in display technology. Application problem.
  • the Micro LED since the Micro LED includes an electrode surface and a base surface, the light-emitting surface of the Micro LED may be an electrode surface or a base surface.
  • the electrode surface is usually provided with electrodes for transfer and binding, but when the electrode surface is used as the exit surface, the electrode will block a part of the light and affect the light effect, resulting in Micro
  • the LED has the problem that the luminous efficiency of the electrode surface is lower than that of the substrate surface.
  • Another object of the present application is to provide a display panel and a display device to solve the problem that the micro LED electrode surface luminous efficiency is lower than the substrate surface luminous efficiency.
  • FIG. 1 are top views of different types of display panels provided by embodiments of the present application.
  • the display panel of the present application includes a first pixel area 100 and a second pixel area 200 adjacent to the first pixel area 100, wherein the first pixel area 100 is a Micro LED display area, and the second pixel area 200 is LCD display area.
  • the first pixel area 100 and the second pixel area 200 are seamlessly connected, so there is no display interruption or discontinuous border visually, and therefore, a complete full-screen design can be realized. Thanks to Micro
  • the LED has the characteristics of high brightness and long life. Therefore, some of the Micro LED light-emitting units in the first pixel area 100 can be used as supplementary lights, indicator lights and other functions.
  • the display panel of the present application includes: a color filter substrate 3 and an array substrate 5 arranged oppositely, a liquid crystal layer 4 located between the array substrate 5 and the color filter substrate 3, and
  • the backlight module 1 is located on the side of the color filter substrate 3 facing away from the array substrate 5.
  • the display panel includes a plurality of Micro LED light-emitting units 303 arranged in the first pixel area 100, and a light-transmitting area is provided between the plurality of Micro LED light-emitting units 303; the color film substrate 1 It includes a color resist 305 arranged in the second pixel area 200.
  • the color film substrate of the present application adopts the form of combining the micro-light-emitting diode display technology and the liquid crystal display technology, an extremely full-screen LCD display can be realized.
  • the color film substrate is provided with a light-transmitting area between two adjacent Micro LED light-emitting units, the light-transmitting area can allow light to pass through, so in-screen sensing can be realized in the first pixel area 100 Integrated solution.
  • the color film substrate and the array substrate are arranged upside down during the cell forming process of the liquid crystal cell, so that the original Micro LED light-emitting unit that emits light/emission on the electrode surface is transformed into light-emitting/luminescence on the base surface, thereby solving the problem of Micro The problem that the luminous efficiency of the LED electrode surface is lower than that of the substrate surface, which affects the display effect of the panel.
  • the display panel includes a stacked backlight module 1, a lower polarizer 2, a color filter substrate 3, a liquid crystal layer 4, an array substrate 5 and an upper polarizer 6 from bottom to top.
  • the color filter substrate 3 includes: a first substrate 301, the first substrate 301 may be a glass substrate with higher light transmittance, or a flexible substrate; a first driving circuit 302, the first driving circuit 302 Corresponding to the first pixel area 100 being provided on the surface of the first substrate 301 close to the liquid crystal layer 4, the first driving circuit 302 is used to provide driving signals for the Micro LED light-emitting unit 303, so that the Micro LED light-emitting unit 303 Able to emit light; a plurality of Micro LED light-emitting units 303 corresponding to the first pixel area 100 is provided on the side of the first substrate 301 close to the liquid crystal layer 4, and the Micro LED light-emitting units 303 and the first drive circuit 302 Electrical connection; a flat layer 304 is provided on the Micro LED light-emitting unit 303 and the first substrate 301, the flat layer 304 is used to flatten the surface of the substrate on which the Micro LED light-emitting unit 303 is formed
  • the color resister 305 corresponds
  • the first driving circuit 302 includes scan lines (not shown) extending in the lateral direction and data lines (not shown) extending in the longitudinal direction. Two adjacent scan lines and two adjacent data lines define Out of the sub-pixel area.
  • the scan line and the data line may also extend into the second pixel area 200. It can be understood that, in order not to affect the display of pixels in the second pixel area 200, they extend to the second pixel area.
  • the scan line and the data line in 200 are arranged to avoid the color resist 305, that is, they can be located at the position of the black matrix 306 correspondingly.
  • the first driving circuit 302 may adopt active array (AM) driving technology, that is, the first driving circuit 302 further includes a thin film transistor (not shown), and each of the Micro The LED light emitting unit 303 is electrically connected to the corresponding scan line and the corresponding data line through the corresponding thin film transistor.
  • AM active array
  • the first driving circuit 302 adopts a passive array (PM) driving technology, that is, the first driving circuit 302 is not provided with thin film transistors.
  • PM passive array
  • the Micro LED light-emitting unit 303 is a three-color display, that is, the Micro LED light-emitting unit 303 includes a red light-emitting unit, a green light-emitting unit, and a blue light-emitting unit.
  • the size of the Micro LED light emitting unit 303 is 1 ⁇ m-100 ⁇ m, and the height of the Micro LED light emitting unit 303 is 1 ⁇ m-20 ⁇ m.
  • the Micro LED light emitting unit 303 may be a substrate surface emitting structure or an electrode surface emitting structure, which is not limited here.
  • the Micro LED light-emitting unit 303 adopts a blue display combined with color conversion technical solution, that is, the red light-emitting unit includes a blue light-emitting unit and a blue light-emitting unit provided on the blue light-emitting unit.
  • the color conversion layer can convert the blue light emitted by the blue light-emitting unit into red light;
  • the green light-emitting unit includes a blue light-emitting unit and a color conversion layer provided on the blue light-emitting unit, and
  • the color conversion layer can convert the blue light emitted by the blue light-emitting unit into green light.
  • the color conversion layer is a quantum dot film or phosphor powder, etc., which is not specifically limited here.
  • the display panel provided by the embodiment of this application has a Micro Schematic diagram of the LED lighting unit. Since the Micro LED light-emitting unit 303 has the advantage of being small in size, the orthographic projection area of the Micro LED light-emitting unit 303 on the substrate is smaller than the area of the sub-pixel area P, so that a plurality of the Micro LED light-emitting units There is a light-transmitting area 300 between 303.
  • the orthographic projection area of the Micro LED light-emitting unit 303 on the substrate occupies 10%-50% of the area of the sub-pixel area P to ensure that the light-transmitting area 300 has a good light-transmitting effect.
  • the first pixel area 100 can achieve normal display, and because each of the Micro The coverage area of the LED light-emitting unit 303 is smaller than the area of each sub-pixel area P. Therefore, in the sub-pixel area P that is not covered by the Micro LED light-emitting unit 303, light can normally pass through. You can pass the Micro The LED light-emitting unit 303 is turned off, so that the first pixel area 100 collects external images and enters the under-screen sensor. In this way, various under-screen sensing solutions such as under-screen fingerprint recognition, under-screen camera, under-screen recognition, and under-screen distance perception can be realized.
  • the Micro LED light-emitting unit 303 includes an electrode surface 303a and a base surface 303b opposite to the electrode surface 303a, and a first electrode 3031 is provided on the electrode surface 303a.
  • the Micro LED light-emitting unit 303 is arranged in such a manner that the electrode surface 303a faces the backlight module 1, and the light-emitting direction of the Micro LED light-emitting unit 303 is directed from the electrode surface 303a to the substrate ⁇ 303b.
  • the first substrate 301 is provided with a second electrode 3032 corresponding to the first electrode 3031 corresponding to the first pixel area 100, and the second electrode 3032 is correspondingly located in the sub-pixel area.
  • the Micro LED light-emitting unit 303 and the color resist 305 are located on the side of the first substrate 301 facing away from the backlight module 1, and the first electrode 3031 of the Micro LED light-emitting unit 303 corresponds to the The second electrode 3032 is electrically connected, so as to realize the electrical connection between the Micro LED light-emitting unit 303 and the first driving circuit 302.
  • the first electrode 3031 includes an N electrode and a P electrode disposed opposite to the N electrode.
  • the second electrode 3032 includes an N electrode and a P electrode disposed opposite to the N electrode.
  • the Micro The LED light-emitting unit 303 is transformed into the base surface to emit light, thus effectively avoiding that the electrode will block a part of the light and affect the light efficiency, thereby solving the problem of Micro Compared with the base surface, the luminous efficiency of the electrode surface of the LED is lower than that of the substrate surface, which affects the display effect.
  • the entire surface of the flat layer 304 is disposed in the first pixel area 100 and the second pixel area 200.
  • the material of the flat layer 304 includes, but is not limited to, organic resin and OC glue. , Silica gel, etc., the material of the flat layer 304 has good high temperature resistance, good adhesion and light transmittance.
  • the thickness of the flat layer 304 is 3 ⁇ m-200 ⁇ m, which can fill in the level difference formed on the substrate due to the binding of the Micro LED light-emitting unit 303.
  • the thickness of the flat layer 304 may be 3 ⁇ m-100 ⁇ m. In order not to affect the light transmittance of the first pixel region 100, the light transmittance of the flat layer 304 is greater than or equal to 70%.
  • the array substrate 5 includes, but is not limited to, a second substrate 501 and a second driving circuit 502 disposed on the side of the second substrate 501 facing the liquid crystal layer 4, and the second driving circuit 502 is disposed in a second display area Within 200. Since the second driving circuit 502 is not provided in the first pixel region 100 of the corresponding display panel, the light transmittance of the first pixel region 100 will not be affected.
  • the backlight module 1 and the lower polarizer 2 are provided with openings at positions corresponding to the first pixel area 100, that is, the backlight module 1 and the lower polarizer 2 avoid the first pixels
  • the location of area 100 is set.
  • the backlight module 1 is an edge-type backlight or a direct-type backlight, which is not specifically limited here.
  • the color filter substrate of the present application is only provided with the Micro The LED light-emitting unit 303, and the area of the first pixel area 100 is relatively small, so compared to the large-area mass transfer, the cost of mass transfer and repair of the small-area Micro LED light-emitting unit of the present application will be much lower . In this way, the application of the Micro LED display technology to the display panel/display device can be realized, and the problem of low process yield and high cost when a large number of display pixels are transferred can be solved.
  • FIG. 5 it is a schematic diagram of the structure of the display panel provided in the second embodiment of this application.
  • the structure of the display panel of this embodiment is the same as/similar to the display panel of the first embodiment.
  • the difference between this embodiment and the first embodiment is only:
  • the Micro LED light-emitting unit 303 in the first pixel area 100 is located on the side of the first substrate 301 close to the backlight module 1, and the color resist 305 in the second pixel area 200 is located The side of the first substrate 301 facing away from the backlight module 1.
  • the first driving circuit 302 and the second electrode 3032 are disposed on the side of the first substrate 301 close to the backlight module 1 corresponding to the first pixel area 100.
  • the Micro LED light-emitting unit 303 is electrically connected to the corresponding second electrode 3032 through the first electrode 3031'.
  • the first electrode 3031' extends from the electrode surface 303a of the Micro LED light-emitting unit 303 along the side surface of the Micro LED light-emitting unit 303 to a position on the first substrate 301 corresponding to the second electrode 3032.
  • the surface of the Micro LED light-emitting unit 303 is also covered with an encapsulation layer 308, which is used for flattening and protecting the Micro LED light-emitting unit 303 from damage.
  • the Micro The LED light-emitting unit 303 is transformed into the base surface to emit light, thus effectively avoiding that the electrode will block a part of the light and affect the light efficiency, thereby solving the problem of Micro Compared with the base surface, the luminous efficiency of the electrode surface of the LED is lower than that of the substrate surface, which affects the display effect.
  • FIG. 6 it is a schematic diagram of the structure of the display panel provided in the third embodiment of this application.
  • the difference between the structure of the display panel of this embodiment and the display panel of the first embodiment is that: this embodiment uses Micro
  • the LED light-emitting unit 303 is arranged at the position of the array substrate 5 corresponding to the first pixel area 100, the color filter substrate 3 is not provided with the Micro LED light-emitting unit 303 at the position corresponding to the first pixel area 100, and the Micro LED light-emitting unit 303 on the array substrate 5
  • the electrode surface 303a of the LED light-emitting unit 303 faces the color filter substrate 3, so that the Micro LED light-emitting unit 303 emits light on the base surface 303b.
  • the array substrate 5 includes: a second substrate 501; the Micro LED light-emitting unit 303 is disposed on a side of the second substrate 501 close to the color filter substrate 3 corresponding to the first pixel area 100;
  • the second driving circuit 502 corresponding to the second pixel area 200 is provided on the side of the second substrate 501 close to the color filter substrate 3; wherein, the second substrate 501 is further provided corresponding to the first pixel area 100
  • the second electrode 3032 and the second electrode 3032 are correspondingly located in the sub-pixel area of the first pixel area 100, and the electrode surface 303a of the Micro LED light-emitting unit 303 is electrically connected to the corresponding second electrode 3032 through the first electrode 3031'.
  • the first electrode 3031' extends from the electrode surface 303a of the Micro LED light-emitting unit 303 along the side surface of the Micro LED light-emitting unit 303 to a position on the second substrate 501 corresponding to the second electrode 3032.
  • the color filter substrate 3 and the array substrate 5 are arranged upside down, so that the original electrode surface on the array substrate 5 emits light on the Micro
  • the LED light-emitting unit 303 is transformed into the base surface to emit light, thus effectively avoiding that the electrode will block a part of the light and affect the light efficiency, thereby solving the problem of Micro
  • the luminous efficiency of the electrode surface of the LED is lower than that of the substrate surface, which affects the display effect.
  • the present application also provides a display device.
  • the display device includes the above-mentioned display panel and the sensor assembly 7.
  • the backlight module 1 of the display panel is provided with a through hole corresponding to the first pixel area 100, and the sensor assembly 7 is arranged directly opposite to the through hole.
  • the sensor assembly 7 is an optical sensor, which can realize facial recognition, distance sensing, fingerprint recognition, etc., which is not limited here.
  • the display panel and display device provided by this application combine the Micro LED (Micro Light Emitting Diode) display technology with the LCD (Liquid Crystal Display) display technology to achieve the ultimate full-screen display of LCD; and make full use of Micro
  • the advantages of the small size of the LED light-emitting unit and the enhancement of the transparency of the panel realize the integrated function of the sensor in the screen.
  • This application realizes Micro
  • the seamless connection between LED display technology and LCD display technology in the horizontal and vertical spaces solves the problem that the optical sensor and optical display in traditional LCD screens cannot overlap spatially, which leads to the problem that LCD screens cannot meet people's extreme needs for full screens.
  • this application uses the color film substrate and the array substrate to be placed upside down during the cell forming process of the liquid crystal cell, so that the original Micro LED light-emitting unit that emits light/emitting light on the electrode surface It is converted into light emission/emission from the substrate surface, so as to solve the problem that the luminous efficiency of the Micro LED electrode surface is lower than that of the substrate surface, which affects the display effect of the panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板、显示装置,包括第一像素区域和邻近第一像素区域的第二像素区域,该显示面板包括阵列基板和彩膜基板、位于阵列基板与彩膜基板之间的液晶层,以及背光模组,位于彩膜基板背向阵列基板的一侧;其中,显示面板包括设置在第一像素区域内的多个Micro LED发光单元,且多个Micro LED发光单元之间设有透光区;彩膜基板包括设置在第二像素区域的彩色色阻。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示装置。
背景技术
随着全面屏的普及和消费者对机身一体化的追求,屏下传感技术成为中小尺寸显示领域开发重点。由于LCD屏属于整面背光的被动发光,光学式传感器与光学显示无法在空间上重合,因此限制了LCD屏向全面屏的方向发展。
而OLED屏则是采用逐颗的OLED像素主动发光,相较LCD屏而言一方面具有高对比、轻薄、可弯曲、可折叠等优势,另一方面,基于OLED屏无需背光的特性,可以很好的与现行的光学传感器兼容,因而面内光学传感技术已成为目前OLED屏的“独有优势”,从而可以使OLED屏在显示模式和成像模式间切换,并且无需现行LCD屏挖孔方案所造成的挖孔区无法显示。
因此,在日益追求极致全面屏的当下,LCD屏的低成本优势显得岌岌可危,如何使LCD屏能够满足当下对全面屏的极致需求已成为目前亟待解决的问题。
技术问题
本申请提供一种显示面板、显示装置,能够解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示面板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,所述显示面板包括相对设置的阵列基板和彩膜基板、位于所述阵列基板与所述彩膜基板之间的液晶层,以及背光模组,位于所述彩膜基板背向所述阵列基板的一侧;
其中,所述显示面板包括设置在所述第一像素区域内的多个Micro LED发光单元,且多个所述Micro LED发光单元之间设有透光区;所述彩膜基板包括设置在所述第二像素区域的彩色色阻。
在本申请的显示面板中,所述Micro LED发光单元包括电极面以及与电极面相对的基底面,所述电极面上设置有第一电极,所述Micro LED发光单元以电极面朝向所述背光模组一侧的方式设置,所述Micro LED发光单元的发光方向为由所述电极面指向所述基底面。
在本申请的显示面板中,所述彩膜基板包括:
第一基底;
所述Micro LED发光单元,对应所述第一像素区域设置于所述第一基底上;
所述彩色色阻,对应所述第二像素区域设于所述第一基底上;
其中,所述第一基底对应所述第一像素区域设有与所述第一电极对应的第二电极。
在本申请的显示面板中,所述Micro LED发光单元与所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元的所述第一电极与对应的所述第二电极电连接。
在本申请的显示面板中,所述Micro LED发光单元位于所述第一基底靠近所述背光模组的一侧,所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元通过所述第一电极与对应的所述第二电极电连接。
在本申请的显示面板中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第一基底上对应所述第二电极的位置。
在本申请的显示面板中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述第一基底面向所述Micro LED发光单元的一侧表面,所述Micro LED发光单元与所述第一驱动电路电连接。
在本申请的显示面板中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述第一基底上的正投影面积小于所述子像素区域的面积。
在本申请的显示面板中,所述Micro LED发光单元在所述第一基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
在本申请的显示面板中,所述阵列基板包括:
第二基底;
所述Micro LED发光单元,对应所述第一像素区域设置于所述第二基底靠近所述彩膜基板的一侧;
其中,所述第二基底对应所述第一像素区域设有与所述第一电极对应的第二电极,且所述第一电极与对应的所述第二电极电连接。
在本申请的显示面板中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第二基底上对应所述第二电极的位置。
在本申请的显示面板中,所述阵列基板还包括第二驱动电路,所述第二驱动电路对应所述第二像素区域设置于所述第二基底上。
本申请还提供一种显示装置,包括显示面板,所述显示面板包括第一像素区域和邻近所述第一像素区域的第二像素区域,其中,所述显示面板包括相对设置的阵列基板和彩膜基板、位于所述阵列基板与所述彩膜基板之间的液晶层,以及背光模组,位于所述彩膜基板背向所述阵列基板的一侧;
其中,所述显示面板包括设置在所述第一像素区域内的多个Micro LED发光单元,且多个所述Micro LED发光单元之间设有透光区;所述彩膜基板包括设置在所述第二像素区域的彩色色阻。
在本申请的显示装置中,所述Micro LED发光单元包括电极面以及与电极面相对的基底面,所述电极面上设置有第一电极,所述Micro LED发光单元以电极面朝向所述背光模组一侧的方式设置,所述Micro LED发光单元的发光方向为由所述电极面指向所述基底面。
在本申请的显示装置中,所述彩膜基板包括:
第一基底;
所述Micro LED发光单元,对应所述第一像素区域设置于所述第一基底上;
所述彩色色阻,对应所述第二像素区域设于所述第一基底上;
其中,所述第一基底对应所述第一像素区域设有与所述第一电极对应的第二电极。
在本申请的显示装置中,所述Micro LED发光单元与所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元的所述第一电极与对应的所述第二电极电连接。
在本申请的显示装置中,所述Micro LED发光单元位于所述第一基底靠近所述背光模组的一侧,所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元通过所述第一电极与对应的所述第二电极电连接。
在本申请的显示装置中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第一基底上对应所述第二电极的位置。
在本申请的显示装置中,所述阵列基板包括:
第二基底;
所述Micro LED发光单元,对应所述第一像素区域设置于所述第二基底靠近所述彩膜基板的一侧;
其中,所述第二基底对应所述第一像素区域设有与所述第一电极对应的第二电极,且所述第一电极与对应的所述第二电极电连接。
在本申请的显示装置中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第二基底上对应所述第二电极的位置。
有益效果
本申请的有益效果为:本申请提供的显示面板、显示装置,通过将Micro LED(微发光二极管)显示技术与LCD(液晶显示器)显示技术相结合,从而实现LCD极致全面屏显示;并充分利用Micro LED发光单元体积小、可提升面板透过性的优势实现屏内传感集成功能。本申请在显示上实现了Micro LED显示技术与LCD显示技术在横向与纵向空间的无缝衔接,从而解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的不同类型的显示面板的俯视图;
图2为本申请实施例一提供的显示面板的截面示意图;
图3为本申请实施例提供的显示面板具有Micro LED发光单元的示意图;
图4为图2中A区域的局部示意图;
图5为本申请实施例二提供的显示面板的结构示意图;
图6为本申请实施例三提供的显示面板的结构示意图;
图7为本申请提供的显示装置的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。在本申请中,“/”表示“或者”的意思。
本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
在中小尺寸显示领域,全面屏技术成为当前的重点研发方向目前主流的显示技术包括液晶显示器( Liquid Crystal Display, LCD)和有机发光二极管(Organic Light-Emitting Diode, OLED),其中LCD为被动发光技术,通过整面背光结构照射液晶盒实现光纤的亮暗控制,而OLED技术则是采用逐颗的OLED像素主动发光。因为相较而言具有高对比、轻薄、可弯曲、可折叠等优势,以及可以很好的与现行的光学指纹识别模组等兼容,因而面内光学传感技术已成为目前OLED屏的“独有优势”。而LCD屏的低成本优势显得岌岌可危。
基于此,本申请的首要目的在于提供一种显示面板及显示装置,用以解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
另外,Micro LED(微发光二极管)相较于OLED技术具有相似的主动发光特性,同时由于无机LED本身的稳定性与高效率等特点,在技术上较OLED具有寿命长、亮度高、控制芯片(chip)尺寸小、响应时间长等优势。但是相较于传统面板技术通过刻蚀等“减法制造”方式,Micro LED主要依赖于巨量转移(mass-transfer)的“加法制造”方式,在技术成熟度上较低,特别是面临巨量显示画素转移时具有先天的制程良率与成本挑战的问题。
基于此,本申请的另一目的在于提供一种显示面板及显示装置,以解决Micro LED应用于显示技术时由于巨量转移而导致制程良率低及成本高从而限制了Micro LED在显示技术上应用的问题。
此外,由于Micro LED包括电极面和基底面,Micro LED的出光面可以为电极面,也可以为基底面。电极面通常设置有用于转印绑定的电极,但是当电极面作为出面面时,电极会遮挡一部分的光从而影响光效,从而导致Micro LED存在电极面发光光效相较于基底面发光光效低的问题。
基于此,本申请的又一目的在于提供一种显示面板及显示装置,以解决Micro LED电极面发光光效较基底面发光光效低的问题。
以下请结合具体实施例对本申请的显示面板及显示装置进行详细描述。
请参照图1所示,图1中的(a)-(e)为本申请实施例提供的不同类型的显示面板的俯视图。本申请的显示面板包括第一像素区域100和邻近所述第一像素区域100的第二像素区域200,其中,所述第一像素区域100为Micro LED显示区域,所述第二像素区域200为液晶显示区域。所述第一像素区域100与所述第二像素区域200无缝衔接,因而在视觉上没有任何显示中断及不连续边界,因此,可以实现完全的全面屏设计。又由于Micro LED具有高亮、长寿命特征,故可以采用所述第一像素区域100内的部分Micro LED发光单元兼做补光灯、指示灯等功能。
请结合图1以及图2所示,本申请的显示面板包括:相对设置的彩膜基板3和阵列基板5、位于所述阵列基板5与所述彩膜基板3之间的液晶层4,以及背光模组1,所述背光模组1位于所述彩膜基板3背向所述阵列基板5的一侧。其中,所述显示面板包括设置在所述第一像素区域100内的多个Micro LED发光单元303,且多个所述Micro LED发光单元303之间设有透光区;所述彩膜基板1包括设置在所述第二像素区域200的彩色色阻305。
由于本申请的彩膜基板采用微发光二极管显示技术与液晶显示技术相结合的形式,从而可以实现LCD极致全面屏显示。又由于彩膜基板在相邻两所述Micro LED发光单元之间设有透光区,所述透光区可以允许光线穿过,因此可以在所述第一像素区域100内实现屏内传感集成方案。另外,针对原本以电极面出光/发光的Micro LED发光单元,本申请通过在液晶盒的成盒制程中将彩膜基板与阵列基板倒置设置,使得原本以电极面出光/发光的Micro LED发光单元转变为基底面出光/发光,从而解决由于Micro LED电极面发光光效较基底面发光光效低而影响面板显示效果的问题。
实施例一
请参照图2所示,以下对本申请实施例一提供的显示面板进行详细说明。所述显示面板由下至上包括层叠的背光模组1、下偏光片2、彩膜基板3、液晶层4以及阵列基板5和上偏光片6。
其中,所述彩膜基板3包括:第一基底301,所述第一基底301可以为透光率较高的玻璃基板,或是柔性基板;第一驱动电路302,所述第一驱动电路302对应所述第一像素区域100设于所述第一基底301靠近液晶层4的表面上,第一驱动电路302用于为Micro LED发光单元303提供驱动信号,以使所述Micro LED发光单元303能够发光;多个Micro LED发光单元303对应所述第一像素区域100设置于所述第一基底301靠近液晶层4的一侧,且所述Micro LED发光单元303与所述第一驱动电路302电连接;平坦层304设置于所述Micro LED发光单元303以及所述第一基底301上,所述平坦层304用于对形成有所述Micro LED发光单元303的所述基底表面进行平整化处理;彩色色阻305对应所述第二像素区域200设于所述平坦层304上,且相邻两所述彩色色阻305之间设置有黑色矩阵306;其中,所述彩色色阻305以及所述黑色矩阵306避开所述第一像素区域100设置;所述彩色色阻305与所述黑色矩阵306上还设置OC胶层307,所述OC胶层307可以平坦彩膜基板的表面。
其中,所述第一驱动电路302包括沿横向延伸的扫描线(未图示)和沿纵向延伸的数据线(未图示),相邻两所述扫描线与相邻两所述数据线界定出子像素区域。所述扫描线与所述数据线也可以延伸至所述第二像素区域200内,可以理解的是,为了不影响所述第二像素区域200内的像素显示,延伸至所述第二像素区域200内的所述扫描线以及所述数据线的部分避开所述彩色色阻305设置,即可以对应位于所述黑色矩阵306的位置。
在一种实施例中,所述第一驱动电路302可以采用主动阵列(AM)驱动技术,即所述第一驱动电路302还包括薄膜晶体管(未图示),每一所述Micro LED发光单元303通过对应的所述薄膜晶体管分别与对应的所述扫描线和对应的所述数据线电连接。
在本实施例中,为优先保证所述第一像素区域100的穿透率,所述第一驱动电路302采用被动阵列(PM)驱动技术,即所述第一驱动电路302不设置薄膜晶体管。
在本实施例中,所述Micro LED发光单元303为三色显示,即所述Micro LED发光单元303包括红色发光单元、绿色发光单元以及蓝色发光单元。所述Micro LED发光单元303的尺寸为1μm-100μm,所述Micro LED发光单元303的高度为1μm-20μm。其中,所述Micro LED发光单元303可以为基底面出射结构或者电极面出射结构,此处不做限制。
在另一种实施例中,所述Micro LED发光单元303采用蓝色显示结合色转换技术方案,也就是说,所述红色发光单元包括蓝色发光单元以及设于所述蓝色发光单元上的色转换层,该色转换层可将所述蓝色发光单元发出的蓝光转换为红光;所述绿色发光单元包括蓝色发光单元以及设于所述蓝色发光单元上的色转换层,该色转换层可将所述蓝色发光单元发出的蓝光转换为绿光。其中,所述色转换层为量子点膜或荧光粉等,此处不做特殊限定。
结合图3所示,为本申请实施例提供的显示面板具有Micro LED发光单元的示意图。由于所述Micro LED发光单元303具有尺寸小的优势,因此所述Micro LED发光单元303在所述基底上的正投影面积小于所述子像素区域P的面积,使得多个所述Micro LED发光单元303之间具有透光区300。
进一步的,所述Micro LED发光单元303在所述基底上的正投影面积占所述子像素区域P面积的10%-50%,以保证所述透光区300具有良好透光效果。
在所述第一像素区域100可以实现正常显示的情况下,又由于各所述Micro LED发光单元303的覆盖面积皆小于各子像素区域P的面积,因此,在所述子像素区域P内无所述Micro LED发光单元303覆盖的区域光线可以正常透过。可以通过对所述Micro LED发光单元303关闭,使所述第一像素区域100采集外界图像进入屏下传感器。如此一来,便可实现屏下指纹识别、屏下摄像头、屏下面部识别、屏下距离感知等各种屏下传感方案。
请结合图4所示,为图2中A区域的局部示意图。所述Micro LED发光单元303包括电极面303a以及与电极面303a相对的基底面303b,所述电极面303a上设置有第一电极3031。在本申请中,所述Micro LED发光单元303以电极面303a朝向所述背光模组1一侧的方式设置,所述Micro LED发光单元303的发光方向为由所述电极面303a指向所述基底面303b。
其中,所述第一基底301对应所述第一像素区域100设有与所述第一电极3031对应的第二电极3032,所述第二电极3032对应位于所述子像素区域内。
所述Micro LED发光单元303与所述彩色色阻305位于所述第一基底301背向所述背光模组1的一侧,所述Micro LED发光单元303的所述第一电极3031与对应的所述第二电极3032电连接,以此实现所述Micro LED发光单元303与所述第一驱动电路302的电连接。
其中,所述第一电极3031包括一个N电极以及一个与N电极相对设置的P电极。所述第二电极3032包括一个N电极以及一个与N电极相对设置的P电极,在所述Micro LED发光单元303的转印工艺中,所述Micro LED发光单元303的N电极与所述第一基底301上的N电极电连接,所述Micro LED发光单元303的P电极与所述第一基底301上的P电极电连接。
结合图4和图2所示,由于本实施例将彩膜基板3与阵列基板5倒置设置,因此,使得所述彩膜基板3上原本电极面发光的所述Micro LED发光单元303变换为基底面发光,因此有效避免了电极会遮挡一部分的光从而影响光效,进而解决了Micro LED的电极面发光光效相较于基底面发光光效低影响显示效果的问题。
请参照图2所示,所述平坦层304整面的设置于所述第一像素区域100和所述第二像素区域200内,所述平坦层304的材料包括但不限于有机树脂、OC胶、硅胶等,所述平坦层304的材料具有良好的耐高温性能以及良好的粘着性和透光性。所述平坦层304的厚度为3μm-200μm,能够填平由于绑定所述Micro LED发光单元303而在基底上形成的段差。
进一步的,由于所述Micro LED发光单元303的高度通常为1μm-20μm,为保证彩膜基板的轻薄化,同时兼顾平坦作用,所述平坦层304的厚度可以为3μm-100μm。为了不影响所述第一像素区域100的透光性能,所述平坦层304的透光率大于或等于70%。
所述阵列基板5包括但不限于第二基底501以及设置于所述第二基底501面向所述液晶层4一侧的第二驱动电路502,所述第二驱动电路502设置于第二显示区域200内。由于对应显示面板的第一像素区域100内不设置所述第二驱动电路502,因此不会影响所述第一像素区域100的透光性。
所述背光模组1以及所述下偏光片2在对应所述第一像素区域100的位置设置有开孔,即所述背光模组1以及所述下偏光片2避开所述第一像素区域100的位置设置。所述背光模组1为侧入式背光或者直下式背光,此处不做特殊限定。
另外,由于本申请的彩膜基板只在所述第一像素区域100内设置所述Micro LED发光单元303,而所述第一像素区域100的面积占比较小,因此相较于大面积的巨量转移,本申请小面积的Micro LED发光单元巨量转移的成本以及修复成本会低很多。如此一来,即可以实现Micro LED显示技术在显示面板/显示装置上的应用,又可以解决巨量显示画素转移时制程良率较低以及成本较高的问题。
实施例二
如图5所示,为本申请实施例二提供的显示面板的结构示意图。本实施例的显示面板与上述实施例一的显示面板的结构相同/相似,本实施例与上述实施例一的区别仅在于:
所述第一像素区域100内的所述Micro LED发光单元303位于所述第一基底301靠近所述背光模组1的一侧,所述第二像素区域200内的所述彩色色阻305位于所述第一基底301背向所述背光模组1的一侧。所述第一驱动电路302以及所述第二电极3032对应所述第一像素区域100设置于所述第一基底301靠近所述背光模组1的一侧。所述Micro LED发光单元303通过第一电极3031’与对应的所述第二电极3032电连接。其中,所述第一电极3031’由所述Micro LED发光单元303的电极面303a沿所述Micro LED发光单元303的侧面延伸至所述第一基底301上对应所述第二电极3032的位置。
另外,所述Micro LED发光单元303的表面还覆盖有封装层308,所述封装层308用于起平坦作用和保护所述Micro LED发光单元303不受损伤的作用。
由于本实施例将彩膜基板3与阵列基板5倒置设置,因此,使得所述彩膜基板3上原本电极面发光的所述Micro LED发光单元303变换为基底面发光,因此有效避免了电极会遮挡一部分的光从而影响光效,进而解决了Micro LED的电极面发光光效相较于基底面发光光效低影响显示效果的问题。
实施例三
如图6所示,为本申请实施例三提供的显示面板的结构示意图。本实施例的显示面板与上述实施例一的显示面板的结构的区别在于:本实施例将Micro LED发光单元303设置于阵列基板5对应第一像素区域100的位置上,所述彩膜基板3对应第一像素区域100的位置不设置Micro LED发光单元303,且所述阵列基板5上的Micro LED发光单元303的电极面303a面向所述彩膜基板3,使得Micro LED发光单元303以基底面303b发光。
具体地,所述阵列基板5包括:第二基底501;所述Micro LED发光单元303对应所述第一像素区域100设置于所述第二基底501靠近所述彩膜基板3的一侧;第二驱动电路502对应所述第二像素区域200设置于所述第二基底501靠近所述彩膜基板3的一侧;其中,所述第二基底501对应所述第一像素区域100还设置有第二电极3032,第二电极3032对应位于第一像素区域100的子像素区内,所述Micro LED发光单元303的电极面303a通过第一电极3031’与对应的第二电极3032电连接。
其中,所述第一电极3031’由所述Micro LED发光单元303的电极面303a沿所述Micro LED发光单元303的侧面延伸至所述第二基底501上对应所述第二电极3032的位置。
本实施例的显示面板的其他结构与上述实施例一中显示面板的结构相同/相似,具体请参照上述实施例一中的描述,此处不再赘述。
由于本实施例将彩膜基板3与阵列基板5倒置设置,因此,使得所述阵列基板5上原本电极面发光的所述Micro LED发光单元303变换为基底面发光,因此有效避免了电极会遮挡一部分的光从而影响光效,进而解决了Micro LED的电极面发光光效相较于基底面发光光效低影响显示效果的问题。
本申请还提供一种显示装置,如图7所示,所述显示装置包括如上所述的显示面板,以及传感器组件7。所述显示面板的背光模组1对应第一像素区域100设有通孔,所述传感器组件7正对所述通孔设置。
其中,所述传感器组件7为光学式传感器,可以实现面部识别、距离感应、指纹识别等,此处不做限制。
综上,本申请提供的显示面板、显示装置,通过将Micro LED(微发光二极管)显示技术与LCD(液晶显示器)显示技术相结合,从而实现LCD极致全面屏显示;并充分利用Micro LED发光单元体积小、可提升面板透过性的优势实现屏内传感集成功能。本申请在显示上实现了Micro LED显示技术与LCD显示技术在横向与纵向空间的无缝衔接,从而解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。另外,针对原本以电极面出光/发光的Micro LED发光单元,本申请通过在液晶盒的成盒制程中将彩膜基板与阵列基板倒置设置,使得原本以电极面出光/发光的Micro LED发光单元转变为基底面出光/发光,从而解决由于Micro LED电极面发光光效较基底面发光光效低而影响面板显示效果的问题。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,其中,所述显示面板包括相对设置的阵列基板和彩膜基板、位于所述阵列基板与所述彩膜基板之间的液晶层,以及背光模组,位于所述彩膜基板背向所述阵列基板的一侧;
    其中,所述显示面板包括设置在所述第一像素区域内的多个Micro LED发光单元,且多个所述Micro LED发光单元之间设有透光区;所述彩膜基板包括设置在所述第二像素区域的彩色色阻。
  2. 根据权利要求1所述的显示面板,其中,所述Micro LED发光单元包括电极面以及与电极面相对的基底面,所述电极面上设置有第一电极,所述Micro LED发光单元以电极面朝向所述背光模组一侧的方式设置,所述Micro LED发光单元的发光方向为由所述电极面指向所述基底面。
  3. 根据权利要求2所述的显示面板,其中,所述彩膜基板包括:
    第一基底;
    所述Micro LED发光单元,对应所述第一像素区域设置于所述第一基底上;
    所述彩色色阻,对应所述第二像素区域设于所述第一基底上;
    其中,所述第一基底对应所述第一像素区域设有与所述第一电极对应的第二电极。
  4. 根据权利要求3所述的显示面板,其中,所述Micro LED发光单元与所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元的所述第一电极与对应的所述第二电极电连接。
  5. 根据权利要求3所述的显示面板,其中,所述Micro LED发光单元位于所述第一基底靠近所述背光模组的一侧,所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元通过所述第一电极与对应的所述第二电极电连接。
  6. 根据权利要求5所述的显示面板,其中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第一基底上对应所述第二电极的位置。
  7. 根据权利要求3所述的显示面板,其中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述第一基底面向所述Micro LED发光单元的一侧表面,所述Micro LED发光单元与所述第一驱动电路电连接。
  8. 根据权利要求7所述的显示面板,其中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述第一基底上的正投影面积小于所述子像素区域的面积。
  9. 根据权利要求8所述的显示面板,其中,所述Micro LED发光单元在所述第一基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
  10. 根据权利要求2所述的显示面板,其中,所述阵列基板包括:
    第二基底;
    所述Micro LED发光单元,对应所述第一像素区域设置于所述第二基底靠近所述彩膜基板的一侧;
    其中,所述第二基底对应所述第一像素区域设有与所述第一电极对应的第二电极,且所述第一电极与对应的所述第二电极电连接。
  11. 根据权利要求10所述的显示面板,其中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第二基底上对应所述第二电极的位置。
  12. 根据权利要求10所述的显示面板,其中,所述阵列基板还包括第二驱动电路,所述第二驱动电路对应所述第二像素区域设置于所述第二基底上。
  13. 一种显示装置,包括显示面板,所述显示面板包括第一像素区域和邻近所述第一像素区域的第二像素区域,其中,所述显示面板包括相对设置的阵列基板和彩膜基板、位于所述阵列基板与所述彩膜基板之间的液晶层,以及背光模组,位于所述彩膜基板背向所述阵列基板的一侧;
    其中,所述显示面板包括设置在所述第一像素区域内的多个Micro LED发光单元,且多个所述Micro LED发光单元之间设有透光区;所述彩膜基板包括设置在所述第二像素区域的彩色色阻。
  14. 根据权利要求13所述的显示装置,其中,所述Micro LED发光单元包括电极面以及与电极面相对的基底面,所述电极面上设置有第一电极,所述Micro LED发光单元以电极面朝向所述背光模组一侧的方式设置,所述Micro LED发光单元的发光方向为由所述电极面指向所述基底面。
  15. 根据权利要求14所述的显示装置,其中,所述彩膜基板包括:
    第一基底;
    所述Micro LED发光单元,对应所述第一像素区域设置于所述第一基底上;
    所述彩色色阻,对应所述第二像素区域设于所述第一基底上;
    其中,所述第一基底对应所述第一像素区域设有与所述第一电极对应的第二电极。
  16. 根据权利要求15所述的显示装置,其中,所述Micro LED发光单元与所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元的所述第一电极与对应的所述第二电极电连接。
  17. 根据权利要求15所述的显示装置,其中,所述Micro LED发光单元位于所述第一基底靠近所述背光模组的一侧,所述彩色色阻位于所述第一基底背向所述背光模组的一侧,所述Micro LED发光单元通过所述第一电极与对应的所述第二电极电连接。
  18. 根据权利要求17所述的显示装置,其中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第一基底上对应所述第二电极的位置。
  19. 根据权利要求14所述的显示装置,其中,所述阵列基板包括:
    第二基底;
    所述Micro LED发光单元,对应所述第一像素区域设置于所述第二基底靠近所述彩膜基板的一侧;
    其中,所述第二基底对应所述第一像素区域设有与所述第一电极对应的第二电极,且所述第一电极与对应的所述第二电极电连接。
  20. 根据权利要求19所述的显示装置,其中,所述第一电极由所述Micro LED发光单元的电极面沿所述Micro LED发光单元的侧面延伸至所述第二基底上对应所述第二电极的位置。
PCT/CN2020/104795 2020-06-23 2020-07-27 显示面板及显示装置 WO2021258489A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20870442.9A EP4170416A1 (en) 2020-06-23 2020-07-27 Display panel and display device
US16/981,761 US11536995B2 (en) 2020-06-23 2020-07-27 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010578189.8A CN111708196A (zh) 2020-06-23 2020-06-23 显示面板及显示装置
CN202010578189.8 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258489A1 true WO2021258489A1 (zh) 2021-12-30

Family

ID=72541865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104795 WO2021258489A1 (zh) 2020-06-23 2020-07-27 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN111708196A (zh)
WO (1) WO2021258489A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230099140A1 (en) * 2020-06-01 2023-03-30 Wuhan China Star Optoelectronics Technology Co., Ltd Color filter substrate and display panel
CN115938320A (zh) * 2023-01-29 2023-04-07 厦门天马微电子有限公司 一种背光模组及显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596485A (zh) 2020-06-08 2020-08-28 武汉华星光电技术有限公司 一种彩膜基板、显示面板、显示装置
CN112180633A (zh) * 2020-10-22 2021-01-05 武汉华星光电技术有限公司 显示模组及显示装置
CN113053254A (zh) * 2021-03-05 2021-06-29 武汉华星光电技术有限公司 显示面板及其制作方法、显示装置
CN113345927B (zh) * 2021-05-31 2023-06-02 武汉华星光电技术有限公司 屏下摄像头显示面板及透明显示区域的制备方法
CN113777832B (zh) * 2021-09-17 2022-07-12 武汉华星光电技术有限公司 显示面板和电子设备
CN115857228B (zh) * 2023-02-27 2023-05-09 合肥泰沃达智能装备有限公司 一种侧入式的miniLED分区控制的背光模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859507A (zh) * 2009-04-01 2010-10-13 统宝光电股份有限公司 显示装置
CN109449259A (zh) * 2018-10-31 2019-03-08 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN109888085A (zh) * 2019-03-11 2019-06-14 京东方科技集团股份有限公司 显示面板及其制备方法
CN110571224A (zh) * 2019-08-05 2019-12-13 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN110794604A (zh) * 2019-11-29 2020-02-14 武汉华星光电技术有限公司 显示装置及显示装置的制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810201B (zh) * 2018-06-04 2020-07-17 Oppo广东移动通信有限公司 电子装置及利用电子装置拍摄照片的方法
CN110275340A (zh) * 2019-06-10 2019-09-24 武汉华星光电技术有限公司 用于屏下辨识方案的液晶显示设备
CN110632789A (zh) * 2019-08-22 2019-12-31 武汉华星光电技术有限公司 显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859507A (zh) * 2009-04-01 2010-10-13 统宝光电股份有限公司 显示装置
CN109449259A (zh) * 2018-10-31 2019-03-08 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN109888085A (zh) * 2019-03-11 2019-06-14 京东方科技集团股份有限公司 显示面板及其制备方法
CN110571224A (zh) * 2019-08-05 2019-12-13 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN110794604A (zh) * 2019-11-29 2020-02-14 武汉华星光电技术有限公司 显示装置及显示装置的制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230099140A1 (en) * 2020-06-01 2023-03-30 Wuhan China Star Optoelectronics Technology Co., Ltd Color filter substrate and display panel
US11994778B2 (en) * 2020-06-01 2024-05-28 Wuhan China Star Optoelectronics Technology Co., Ltd Color filter substrate and display panel
CN115938320A (zh) * 2023-01-29 2023-04-07 厦门天马微电子有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
CN111708196A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021258489A1 (zh) 显示面板及显示装置
US11256121B2 (en) Liquid crystal display device for under-screen identification scheme
US20220013597A1 (en) Display panel
WO2021103390A1 (zh) 显示装置及显示装置的制作方法
WO2021243766A1 (zh) 一种彩膜基板和显示面板
WO2021012458A1 (zh) 无缝拼接屏
US11977292B2 (en) Color filter substrate, display panel, and display device
US10396062B2 (en) Micro light emitting diode display panel
WO2020019421A1 (zh) Led背光装置及led显示装置
CN109037270B (zh) 一种显示面板及显示装置
TW201409679A (zh) 有機發光顯示器及其製造方法
WO2018223805A1 (zh) 显示面板、显示装置及其驱动方法
CN212276177U (zh) 一种彩膜基板和显示面板
US11075329B2 (en) Display panel with light emitting diode (LED) power transfer structure and display apparatus including the same
CN113345927B (zh) 屏下摄像头显示面板及透明显示区域的制备方法
WO2019041990A1 (zh) 有机电致发光显示面板及其制备方法
US11536995B2 (en) Display panel and display device
TWM616056U (zh) 複合顯示裝置
TW202010120A (zh) 微型發光二極體顯示裝置
US20240168328A1 (en) Hybrid display device and spliced display device
CN212276178U (zh) 一种彩膜基板、显示面板、显示装置
US11705076B2 (en) Cholesteric liquid crystal composite display device
US20240160058A1 (en) Splicing display panel and splicing display device
WO2023173521A1 (zh) 拼接显示面板及拼接显示装置
WO2021030971A1 (zh) 显示装置及制备方法、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870442

Country of ref document: EP

Effective date: 20230123