WO2021243766A1 - 一种彩膜基板和显示面板 - Google Patents

一种彩膜基板和显示面板 Download PDF

Info

Publication number
WO2021243766A1
WO2021243766A1 PCT/CN2020/097618 CN2020097618W WO2021243766A1 WO 2021243766 A1 WO2021243766 A1 WO 2021243766A1 CN 2020097618 W CN2020097618 W CN 2020097618W WO 2021243766 A1 WO2021243766 A1 WO 2021243766A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pixel area
emitting unit
led light
color filter
Prior art date
Application number
PCT/CN2020/097618
Other languages
English (en)
French (fr)
Inventor
钟莉
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/969,562 priority Critical patent/US20230099140A1/en
Publication of WO2021243766A1 publication Critical patent/WO2021243766A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • This application relates to the field of display technology, and in particular to a color filter substrate and a display panel.
  • the OLED screen uses OLED pixels to actively emit light. Compared with LCD screens, on the one hand, it has the advantages of high contrast, lightness, thinness, flexibility, and foldability. On the other hand, based on the characteristics of OLED screens that do not require backlight Good compatibility with the current optical sensor, so the in-plane optical sensing technology has become the "unique advantage" of the current OLED screen, so that the OLED screen can be switched between the display mode and the imaging mode, and the current LCD screen digging solution is not required The resulting digging area cannot be displayed.
  • the present application provides a color film substrate and a display panel, which can solve the problem that the optical sensor and the optical display in the traditional LCD screen cannot be overlapped spatially, which causes the LCD screen to fail to meet people's extreme demand for a full screen.
  • the present application provides a color filter substrate, including a first pixel area and a second pixel area adjacent to the first pixel area, the color filter substrate including:
  • a plurality of Micro LED light-emitting units are arranged on one side of the substrate corresponding to the first pixel area, wherein a plurality of the Micro LED There is a light-transmitting area between the LED light-emitting units;
  • the color resist is provided on the opposite side of the substrate corresponding to the second pixel area.
  • the side of the substrate facing the Micro LED light-emitting unit is provided with an encapsulation layer, and the encapsulation layer is located in the first pixel area and the second pixel area.
  • the distance between the surface of the encapsulation layer facing away from the substrate and the substrate is greater than the distance between the surface of the Micro LED light-emitting unit facing away from the substrate and the substrate distance.
  • the thickness of the packaging layer is 3 ⁇ m-100 ⁇ m; the thickness of the part of the packaging layer corresponding to the Micro LED light-emitting unit is 2 ⁇ m-80 ⁇ m.
  • the light transmittance of the encapsulation layer is greater than or equal to 70%.
  • the color filter substrate further includes a first driving circuit, the first driving circuit corresponding to the first pixel area is provided on the substrate facing the Micro On one side of the LED light-emitting unit, the Micro LED light-emitting unit is electrically connected to the first driving circuit.
  • the first driving circuit includes a scan line extending in a lateral direction and a data line extending in a longitudinal direction, and two adjacent scan lines and two adjacent data lines define a sub-pixel area ,
  • the Micro The orthographic projection area of the LED light-emitting unit on the substrate is smaller than the area of the sub-pixel area.
  • the orthographic projection area of the Micro LED light-emitting unit on the substrate accounts for 10%-50% of the area of the sub-pixel area
  • the Micro LED light-emitting unit includes a red light-emitting unit and a green light-emitting unit.
  • Light-emitting unit and blue light-emitting unit are examples of the Micro LED light-emitting unit.
  • a flat layer is provided on the side of the color resister away from the substrate, the flat layer is located in the first pixel area and the second pixel area, and the flat layer
  • the surface on the side facing away from the substrate is a flat surface.
  • the present application also provides a display panel, including the color filter substrate as described above.
  • the present application also provides a color filter substrate, including a first pixel area and a second pixel area adjacent to the first pixel area, the first pixel area being Micro LED display area, the second pixel area is a liquid crystal display area, and the color filter substrate includes:
  • a plurality of Micro LED light-emitting units are arranged on one side of the substrate corresponding to the first pixel area, wherein a plurality of the Micro LED There is a light-transmitting area between the LED light-emitting units;
  • the color resist is provided on the opposite side of the substrate corresponding to the second pixel area.
  • the side of the substrate facing the Micro LED light-emitting unit is provided with an encapsulation layer, and the encapsulation layer is located in the first pixel area and the second pixel area.
  • the distance between the surface of the encapsulation layer facing away from the substrate and the substrate is greater than the distance between the surface of the Micro LED light-emitting unit facing away from the substrate and the substrate distance.
  • the thickness of the packaging layer is 3 ⁇ m-100 ⁇ m; the thickness of the part of the packaging layer corresponding to the Micro LED light-emitting unit is 2 ⁇ m-80 ⁇ m.
  • the light transmittance of the encapsulation layer is greater than or equal to 70%.
  • the color filter substrate further includes a first driving circuit, the first driving circuit corresponding to the first pixel area is provided on the substrate facing the Micro On one side of the LED light-emitting unit, the Micro LED light-emitting unit is electrically connected to the first driving circuit.
  • the first driving circuit includes a scan line extending in a lateral direction and a data line extending in a longitudinal direction, and two adjacent scan lines and two adjacent data lines define a sub-pixel area ,
  • the Micro The orthographic projection area of the LED light-emitting unit on the substrate is smaller than the area of the sub-pixel area.
  • the orthographic projection area of the Micro LED light-emitting unit on the substrate accounts for 10%-50% of the area of the sub-pixel area
  • the Micro LED light-emitting unit includes a red light-emitting unit and a green light-emitting unit.
  • Light-emitting unit and blue light-emitting unit are examples of the Micro LED light-emitting unit.
  • a flat layer is provided on the side of the color resister away from the substrate, the flat layer is located in the first pixel area and the second pixel area, and the flat layer
  • the surface on the side facing away from the substrate is a flat surface.
  • the color film substrate and display panel provided by this application combine the Micro LED (micro light emitting diode) display technology with the LCD (liquid crystal display) display technology to achieve the ultimate full-screen LCD display; and Take advantage of the small size of the Micro LED light-emitting unit and increase the transparency of the panel to realize the integrated sensor function in the screen.
  • This application realizes Micro The seamless connection between LED display technology and LCD display technology in the horizontal and vertical spaces solves the problem that the optical sensor and optical display in traditional LCD screens cannot overlap spatially, which leads to the problem that LCD screens cannot meet people's extreme needs for full screens.
  • Figures 1(a)-1(e) are top views of different types of color filter substrates provided by embodiments of the application;
  • FIG. 2 is a schematic cross-sectional view of a color filter substrate provided by an embodiment of the application.
  • Figure 3 is a color filter substrate provided by an embodiment of the application with Micro Schematic diagram of the LED lighting unit
  • FIG. 4 is a flowchart of a first method for preparing a color filter substrate provided by an embodiment of the application
  • Figures 5(a)-5(d) are schematic flow diagrams of the first preparation method of the color filter substrate of this application.
  • FIG. 6 is a flowchart of a second method for preparing a color filter substrate provided by an embodiment of the application.
  • Figures 7(a)-7(b) are schematic flow diagrams of the second preparation method of the color filter substrate of this application.
  • FIG. 8 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the primary purpose of this application is to provide a color filter substrate and a preparation method thereof, a display panel and a display device to solve the problem that the optical sensor and the optical display cannot be spatially overlapped in the traditional LCD screen, which leads to the failure of the LCD screen. To meet people's extreme demand for full screen.
  • Micro LED micro light-emitting diode
  • OLED organic light-emitting diode
  • control chip chip
  • Micro LED mainly relies on the "additive manufacturing” method of mass-transfer, which has a low technological maturity, especially when facing the problem of innate process yield and cost challenges when mass display pixels are transferred.
  • Another objective of the present application is to provide a color filter substrate and a preparation method thereof, a display panel and a display device, so as to solve the problem of low process yield and high cost due to the huge transfer when Micro LED is applied to display technology. Limit the application of Micro LED in display technology.
  • FIGS. 1(a)-1(e) are top views of different types of color filter substrates provided in the embodiments of this application.
  • the color filter substrate of the present application includes a first pixel area 100 and a second pixel area 200 adjacent to the first pixel area 100, wherein the first pixel area 100 is a Micro LED display area, and the second pixel area 200 It is the liquid crystal display area.
  • the first pixel area 100 and the second pixel area 200 are seamlessly connected, so there is no display interruption or discontinuous border visually, and therefore, a complete full-screen design can be realized. Thanks to Micro The LED has the characteristics of high brightness and long life. Therefore, some of the Micro LED light-emitting units in the first pixel area 100 can be used as supplementary lights, indicator lights and other functions.
  • the color filter substrate of the present application includes: a base 10, the base 10 is located in the first pixel area 100 and the second pixel area 200 A plurality of Micro LED light-emitting units 30, corresponding to the first pixel area 100 is provided on one side of the substrate 10, wherein a light-transmitting area is provided between the plurality of Micro LED light-emitting units 30; color resist 50 , Corresponding to the second pixel area 200 is provided on the opposite side of the substrate 10.
  • the color film substrate of the present application adopts the form of combining the micro-light-emitting diode display technology and the liquid crystal display technology, an extremely full-screen LCD display can be realized.
  • the color film substrate is provided with a light-transmitting area between the two adjacent Micro LED light-emitting units 30, the light-transmitting area can allow light to pass through, and therefore can achieve intra-screen transmission in the first pixel area 100 Sense integration program.
  • the present application integrates the Micro LED light-emitting unit 30 on the surface of the color film substrate (on cell), so the external hanging type Micro LED can be avoided.
  • the LCD panel and Micro LED display glass caused by the LED display glass have an additional pairing process, and can also alleviate the picture suspension problem caused by the use of external Micro LED display glass. This application can realize the micro The LED display scheme is integrated on the panel.
  • the color filter substrate includes: a substrate 10, the substrate 10 may be a glass substrate with higher light transmittance, or a flexible substrate; a first driving circuit 20, the first driving circuit 20 corresponds to the first pixel area 100 is provided on the first surface 10a of the substrate 10, and the first driving circuit 20 is used to provide a driving signal for the Micro LED light-emitting unit 30 so that the Micro LED light-emitting unit 30 can emit light; a plurality of Micro LED light-emitting units 30 Correspondingly, the first pixel area 100 is disposed on the side of the first surface 10a of the substrate 10, and the Micro LED light-emitting unit 30 is electrically connected to the first driving circuit 20; the encapsulation layer 40 is disposed on the Micro LED The light-emitting unit 30 and the substrate 10 are used to package the Micro LED light-emitting unit 30; the color resist 50 is provided on the second surface 10b of the substrate 10 corresponding to the second
  • the first driving circuit 20 includes scan lines (not shown) extending in the lateral direction and data lines (not shown) extending in the longitudinal direction. Two adjacent scan lines and two adjacent data lines define Out of the sub-pixel area.
  • the scan line and the data line may also extend into the second pixel area 200. It can be understood that, in order not to affect the display of pixels in the second pixel area 200, they extend to the second pixel area.
  • the scan line and the data line in 200 are arranged to avoid the color resist 50, that is, they can be located at the position of the black matrix 60 correspondingly.
  • the first driving circuit 20 may adopt active array (AM) driving technology, that is, the first driving circuit 20 further includes a thin film transistor (not shown), and each of the Micro The LED light emitting unit 30 is electrically connected to the corresponding scan line and the corresponding data line through the corresponding thin film transistor.
  • AM active array
  • the first driving circuit 20 adopts a passive array (PM) driving technology, that is, the first driving circuit 20 is not provided with thin film transistors.
  • PM passive array
  • the Micro LED light-emitting unit 30 is a three-color display, that is, the Micro LED light-emitting unit 30 includes a red light-emitting unit, a green light-emitting unit, and a blue light-emitting unit.
  • the size of the Micro LED light emitting unit 30 is 1 ⁇ m-100 ⁇ m, and the height of the Micro LED light emitting unit 30 is 1 ⁇ m-20 ⁇ m.
  • the Micro LED light-emitting unit 30 may be a substrate surface emitting structure or an electrode surface emitting structure, which is not limited here.
  • the Micro LED light-emitting unit 30 adopts a blue display combined with color conversion technical solution, that is, the red light-emitting unit includes a blue light-emitting unit and a blue light-emitting unit provided on the blue light-emitting unit.
  • the color conversion layer can convert the blue light emitted by the blue light-emitting unit into red light;
  • the green light-emitting unit includes a blue light-emitting unit and a color conversion layer provided on the blue light-emitting unit, and
  • the color conversion layer can convert the blue light emitted by the blue light-emitting unit into green light.
  • the color conversion layer is a quantum dot film or phosphor powder, etc., which is not specifically limited here.
  • the color filter substrate provided by the embodiment of this application has Micro Schematic diagram of the LED lighting unit. Since the Micro LED light-emitting unit 30 has the advantage of being small in size, the orthographic projection area of the Micro LED light-emitting unit 30 on the substrate is smaller than the area of the sub-pixel region P, so that a plurality of the Micro LED light-emitting units There is a light-transmitting area 300 between 30.
  • the orthographic projection area of the Micro LED light-emitting unit 30 on the substrate occupies 10%-50% of the area of the sub-pixel region P.
  • the first pixel area 100 can achieve normal display, and because each of the Micro The coverage area of the LED light-emitting unit 30 is smaller than the area of each sub-pixel area P. Therefore, in the sub-pixel area P that is not covered by the Micro LED light-emitting unit 30, light can normally pass through. You can pass the Micro The LED light-emitting unit 30 is turned off, so that the first pixel area 100 collects external images and enters the under-screen sensor. In this way, various under-screen sensing solutions such as under-screen fingerprint recognition, under-screen camera, under-screen recognition, and under-screen distance perception can be realized.
  • the entire surface of the encapsulation layer 40 is disposed in the first pixel area 100 and the second pixel area 200.
  • the encapsulation layer 40 may be a laminated inorganic layer and an organic layer. There are no restrictions.
  • the material of the encapsulation layer 40 has good high temperature resistance and good light transmittance.
  • the encapsulation layer 40 is used to protect the Micro
  • the LED light-emitting unit 30 and the first drive circuit 20 are protected and packaged to prevent external water vapor from entering the color film substrate and causing damage to the device; on the other hand, it is used to protect the substrate on which the Micro LED light-emitting unit 30 is formed.
  • the surface is smoothed.
  • the thickness of the encapsulation layer 40 is 3 ⁇ m-200 ⁇ m, which can fill in the level difference formed on the substrate due to the binding of the Micro LED light-emitting unit 30. That is, the distance between the surface of the encapsulation layer 40 on the side facing away from the substrate 10 and the substrate 10 is greater than the distance between the surface of the Micro LED light-emitting unit 30 on the side facing away from the substrate 10 and the substrate 10 .
  • the thickness of the packaging layer 40 may be 3 ⁇ m-100 ⁇ m.
  • the thickness of the part of the packaging layer 40 corresponding to the Micro LED light-emitting unit 30 is smaller than the thickness of the part of the packaging layer 40 corresponding to the Micro LED light-emitting unit 30.
  • the thickness of the portion of the encapsulation layer 40 corresponding to the Micro LED light-emitting unit 30 is 2 ⁇ m-80 ⁇ m. Therefore, it can be ensured that the packaging layer 40 completely covers the Micro LED light-emitting unit 30 to ensure its good packaging performance.
  • the surface of the encapsulation layer 40 on the side facing away from the substrate 10 is a flat surface, so the arrangement of the encapsulation layer 40 also effectively solves the problem of the Micro Large step difference caused by the bonding process of the LED light-emitting unit 30.
  • the light transmittance of the encapsulation layer 40 is greater than or equal to 70%.
  • the light transmittance of the encapsulation layer 40 is greater than or equal to 85%.
  • a flat layer (not shown) is provided on the side of the color resist 50 away from the substrate 10, and the flat layer is located in the first pixel area 100 and the second pixel area.
  • the surface of the flat layer facing away from the substrate 10 is a flat surface. In this way, the flat layer can flatten the surface of the substrate on the side where the color resist 50 is provided.
  • the packaging layer 40 is further provided with a protective layer on the side facing away from the substrate 10, and the protective layer is used to protect the packaging layer 40 from damage.
  • the color filter substrate of the present application is only provided with the Micro The LED light-emitting unit 30, and the area of the first pixel region 100 occupies a relatively small area, so there is no need to rely on a massive transfer method. In this way, the application of the Micro LED display technology to the display panel/display device can be realized, and the problem of low process yield and high cost when a large number of display pixels are transferred can be solved.
  • another object of the present application is to provide a method for preparing a color filter substrate to solve the problem that when the Micro LED light-emitting unit and its driving circuit are fabricated on the color filter substrate, the high temperature process affects the characteristics of the color resist material.
  • FIG. 4 is a flowchart of a method for preparing a color filter substrate according to an embodiment of this application. The method includes the following steps:
  • Step S1 referring to FIG. 5(a), a first driving circuit 20 and a first driving circuit 20 electrically connected to the first driving circuit 20 are prepared on the first surface 10a of the substrate 10 at a position corresponding to the first pixel region 100.
  • Welding electrode 20a The first driving circuit 20 includes a scan line extending in a horizontal direction and a data line extending in a longitudinal direction.
  • the first welding electrode 20a is located between two adjacent scan lines and two adjacent data lines. Out of the sub-pixel area.
  • the first welding electrode 20a includes an N electrode and a P electrode disposed opposite to the N electrode.
  • Step S2 referring to FIG. 5(b), the Micro LED light-emitting unit 30 is transferred to the first pixel area 100 of the substrate 10, and the second welding electrode 30a on the Micro LED light-emitting unit 30 is transferred. It is electrically bound to the first welding electrode 20a.
  • the second welding electrode 30a includes an N electrode and a P electrode disposed opposite to the N electrode.
  • the N electrode of the Micro LED light-emitting unit 30 is electrically connected to the N electrode on the substrate 10.
  • the P electrode of the Micro LED light-emitting unit 30 is electrically connected to the P electrode on the substrate 10.
  • Step S3 referring to FIG. 5(c), an encapsulation layer 40 is prepared on the Micro LED light-emitting unit 30 and the substrate 10.
  • the encapsulation layer 40 can fill the gap formed by the Micro LED light-emitting unit 30 and the substrate 10, and the surface of the encapsulation layer 40 away from the substrate 10 forms a flat surface.
  • Step S4 referring to FIG. 5(d), a color resist 50 is prepared on the second surface 10b of the substrate 10, and the color resist 50 is formed on the second pixel adjacent to the first pixel region 100 Within the area 200.
  • the preparation method further includes preparing a black matrix 60 in the second pixel region 200, and the black matrix 60 is located between two adjacent color resists 50.
  • the order of preparing the color resist 50 and the black matrix 60 is not limited here.
  • the preparation method further includes the following steps:
  • the color film substrate of the present application first prepares the first driving circuit and binds the Micro LED light-emitting unit on the substrate, and then produces the color resist and black matrix, it can ensure the production process of the first driving circuit and the Micro LED.
  • the high-temperature process in the bonding process of the LED light-emitting unit does not affect the characteristics of the color color resist material.
  • a method for preparing a color filter substrate is also provided. As shown in FIG. 6, the difference from the above method for preparing a color filter substrate is only in step S2, which is step S2 in this embodiment. It also includes two steps, as follows:
  • Step S21 referring to FIG. 7(a), transfer the Micro LED light-emitting unit 30 to the substrate 10 in such a manner that the surface 30b of the Micro LED light-emitting unit 30 having the electrical contact area faces away from the substrate 10 Within the first pixel area 100.
  • Step S22 referring to FIG. 7(b), a conductive film is prepared on the Micro LED light-emitting unit 30, and the conductive film is patterned to form an electrical connection to the Micro LED light-emitting unit 30.
  • the sexual contact area is the conductive electrode 400 of the first welding electrode 20a.
  • the electrical contact area includes an N contact area and a P contact area which are arranged oppositely.
  • One conductive electrode 400 electrically connects the N contact area with the N electrode on the substrate 10, and one conductive electrode 400 electrically connects the P contact area. It is electrically connected to the P electrode on the substrate 10.
  • the color film substrate of this embodiment first prepares the first driving circuit and binds the Micro LED light-emitting unit on the substrate, and then produces the color color resistance and the black matrix, it can ensure the first driving circuit manufacturing process and the Micro LED light-emitting
  • the high temperature process in the cell bonding process does not affect the characteristics of the color resist material.
  • the Micro LED light-emitting unit does not need to be provided with traditional welding electrodes during the bonding process of the Micro LED light-emitting unit in this embodiment, the Micro LED light-emitting unit can be reduced. The height of the LED light-emitting unit after binding.
  • the present application also provides a display panel.
  • the display panel includes a color filter substrate 1 and an array substrate 2 as described above, and is located between the color filter substrate 1 and the array substrate 2.
  • a second driving circuit 21 is provided on the array substrate 2, and the second driving circuit 21 is provided in the second display area 200. Since the second driving circuit 21 is not provided in the first pixel region 100 of the corresponding display panel, the light transmittance of the first pixel region 100 will not be affected.
  • the present application also provides a display device.
  • the display device includes the above-mentioned display panel, a backlight module 4 and a sensor assembly 5.
  • the backlight module 4 is provided with a through hole 41 corresponding to the first pixel area 100, and the sensor assembly 5 is disposed directly opposite to the through hole 41.
  • the sensor assembly 5 is an optical sensor, which can realize facial recognition, distance sensing, fingerprint recognition, etc., which is not limited here.
  • the color filter substrate and the preparation method thereof, the display panel, and the display device provided by the present application can realize the ultimate full-screen display of LCD by adopting the form of combining micro-light-emitting diode display technology and liquid crystal display technology.
  • the color film substrate is provided with a light-transmitting area between the two adjacent Micro LED light-emitting units, the light-transmitting area can allow light to pass through, so an in-screen sensor integration solution can be realized.
  • the color filter substrate of the present application first prepares the first driving circuit on the substrate and binds the Micro The LED light-emitting unit is then fabricated with color resistance and black matrix. Therefore, the manufacturing process of the first driving circuit and the Micro The high-temperature process in the bonding process of the LED light-emitting unit does not affect the characteristics of the color color resist material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种彩膜基板和显示面板,该彩膜基板包括第一像素区域和邻近第一像素区域的第二像素区域,还包括:多个Micro LED发光单元,对应第一像素区域设于基底的一侧,其中,多个Micro LED发光单元之间设有透光区;彩色色阻,对应第二像素区域设于基底的相对另一侧。本申请通过设置Micro LED发光单元,从而使LCD屏能够满足人们对全面屏的极致需求。

Description

一种彩膜基板和显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种彩膜基板和显示面板。
背景技术
随着全面屏的普及和消费者对机身一体化的追求,屏下传感技术成为中小尺寸显示领域开发重点。由于LCD屏属于整面背光的被动发光,光学式传感器与光学显示无法在空间上重合,因此限制了LCD屏向全面屏的方向发展。
而OLED屏则是采用逐颗的OLED像素主动发光,相较LCD屏而言一方面具有高对比、轻薄、可弯曲、可折叠等优势,另一方面,基于OLED屏无需背光的特性,可以很好的与现行的光学传感器兼容,因而面内光学传感技术已成为目前OLED屏的“独有优势”,从而可以使OLED屏在显示模式和成像模式间切换,并且无需现行LCD屏挖孔方案所造成的挖孔区无法显示。
因此,在日益追求极致全面屏的当下,LCD屏的低成本优势显得岌岌可危,如何使LCD屏能够满足当下对全面屏的极致需求已成为目前亟待解决的问题。
技术问题
本申请提供一种彩膜基板和显示面板,能够解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种彩膜基板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,所述彩膜基板包括:
基底;
多个Micro LED发光单元,对应所述第一像素区域设置于所述基底的一侧,其中,多个所述Micro LED发光单元之间设有透光区;
彩色色阻,对应所述第二像素区域设于所述基底的相对另一侧。
在本申请的彩膜基板中,所述基底面向所述Micro LED发光单元的一侧设有封装层,所述封装层位于所述第一像素区域和所述第二像素区域内。
在本申请的彩膜基板中,所述封装层背离所述基底一侧的表面与所述基底之间的距离大于所述Micro LED发光单元背离所述基底一侧的表面与所述基底之间的距离。
在本申请的彩膜基板中,所述封装层的厚度为3μm-100μm;所述封装层对应所述Micro LED发光单元的部分的厚度为2μm-80μm。
在本申请的彩膜基板中,所述封装层的透光率大于或等于70%。
在本申请的彩膜基板中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述基底面向所述Micro LED发光单元的一侧,所述Micro LED发光单元与所述第一驱动电路电连接。
在本申请的彩膜基板中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述基底上的正投影面积小于所述子像素区域的面积。
在本申请的彩膜基板中,所述Micro LED发光单元在所述基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
在本申请的彩膜基板中,所述彩色色阻背离所述基底的一侧设有平坦层,所述平坦层位于所述第一像素区域和所述第二像素区域内,所述平坦层背离所述基底一侧的表面为平整面。
本申请还提供一种显示面板,包括如上所述的彩膜基板。
为解决上述问题,本申请还提供一种彩膜基板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,所述第一像素区域为Micro LED显示区域,所述第二像素区域为液晶显示区域,所述彩膜基板包括:
基底;
多个Micro LED发光单元,对应所述第一像素区域设置于所述基底的一侧,其中,多个所述Micro LED发光单元之间设有透光区;
彩色色阻,对应所述第二像素区域设于所述基底的相对另一侧。
在本申请的彩膜基板中,所述基底面向所述Micro LED发光单元的一侧设有封装层,所述封装层位于所述第一像素区域和所述第二像素区域内。
在本申请的彩膜基板中,所述封装层背离所述基底一侧的表面与所述基底之间的距离大于所述Micro LED发光单元背离所述基底一侧的表面与所述基底之间的距离。
在本申请的彩膜基板中,所述封装层的厚度为3μm-100μm;所述封装层对应所述Micro LED发光单元的部分的厚度为2μm-80μm。
在本申请的彩膜基板中,所述封装层的透光率大于或等于70%。
在本申请的彩膜基板中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述基底面向所述Micro LED发光单元的一侧,所述Micro LED发光单元与所述第一驱动电路电连接。
在本申请的彩膜基板中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述基底上的正投影面积小于所述子像素区域的面积。
在本申请的彩膜基板中,所述Micro LED发光单元在所述基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
在本申请的彩膜基板中,所述彩色色阻背离所述基底的一侧设有平坦层,所述平坦层位于所述第一像素区域和所述第二像素区域内,所述平坦层背离所述基底一侧的表面为平整面。
有益效果
本申请的有益效果为:本申请提供的彩膜基板和显示面板,通过将Micro LED(微发光二极管)显示技术与LCD(液晶显示器)显示技术相结合,从而实现LCD极致全面屏显示;并充分利用Micro LED发光单元体积小、可提升面板透过性的优势实现屏内传感集成功能。本申请在显示上实现了Micro LED显示技术与LCD显示技术在横向与纵向空间的无缝衔接,从而解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1(a)-1(e)为本申请实施例提供的不同类型的彩膜基板的俯视图;
图2为本申请一种实施例提供的彩膜基板的截面示意图;
图3为本申请实施例提供的彩膜基板具有Micro LED发光单元的示意图;
图4为本申请实施例提供的彩膜基板的第一种制备方法流程图;
图5(a)-5(d)为本申请彩膜基板的第一种制备方法流程示意图;
图6为本申请实施例提供的彩膜基板的第二种制备方法流程图;
图7(a)-7(b)为本申请彩膜基板的第二种制备方法流程示意图;
图8为本申请实施例提供的显示面板的结构示意图;
图9为本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。在本申请中,“/”表示“或者”的意思。
本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
在中小尺寸显示领域,全面屏技术成为当前的重点研发方向目前主流的显示技术包括液晶显示器(Liquid Crystal Display,LCD)和有机发光二极管(Organic Light-Emitting Diode, OLED),其中LCD为被动发光技术,通过整面背光结构照射液晶盒实现光纤的亮暗控制,而OLED技术则是采用逐颗的OLED像素主动发光。因为相较而言具有高对比、轻薄、可弯曲、可折叠等优势,以及可以很好的与现行的光学指纹识别模组等兼容,因而面内光学传感技术已成为目前OLED屏的“独有优势”。而LCD屏的低成本优势显得岌岌可危。
基于此,本申请的首要目的在于提供一种彩膜基板及其制备方法、显示面板及显示装置,用以解决传统LCD屏中光学式传感器与光学显示无法在空间上重合,进而导致LCD屏不能满足人们对全面屏极致需求的问题。
另外,Micro LED(微发光二极管)相较于OLED技术具有相似的主动发光特性,同时由于无机LED本身的稳定性与高效率等特点,在技术上较OLED具有寿命长、亮度高、控制芯片(chip)尺寸小、响应时间长等优势。但是相较于传统面板技术通过刻蚀等“减法制造”方式,Micro LED主要依赖于巨量转移(mass-transfer)的“加法制造”方式,在技术成熟度上较低,特别是面临巨量显示画素转移时具有先天的制程良率与成本挑战的问题。
基于此,本申请的另一目的在于提供一种彩膜基板及其制备方法、显示面板及显示装置,以解决Micro LED应用于显示技术时由于巨量转移而导致制程良率低及成本高从而限制了Micro LED在显示技术上应用的问题。
以下请结合具体实施例对本申请的彩膜基板及其制备方法、显示面板及显示装置进行详细描述。
请参照图1(a)-1(e)所示,为本申请实施例提供的不同类型的彩膜基板的俯视图。本申请的彩膜基板包括第一像素区域100和邻近所述第一像素区域100的第二像素区域200,其中,所述第一像素区域100为Micro LED显示区域,所述第二像素区域200为液晶显示区域。所述第一像素区域100与所述第二像素区域200无缝衔接,因而在视觉上没有任何显示中断及不连续边界,因此,可以实现完全的全面屏设计。又由于Micro LED具有高亮、长寿命特征,故可以采用所述第一像素区域100内的部分Micro LED发光单元兼做补光灯、指示灯等功能。
请结合图1(a)-1(e)以及图2所示,本申请的彩膜基板包括:基底10,所述基底10位于所述第一像素区域100和所述第二像素区域200内;多个Micro LED发光单元30,对应所述第一像素区域100设置于所述基底10的一侧,其中,多个所述Micro LED发光单元30之间设有透光区;彩色色阻50,对应所述第二像素区域200设于所述基底10的相对另一侧。
由于本申请的彩膜基板采用微发光二极管显示技术与液晶显示技术相结合的形式,从而可以实现LCD极致全面屏显示。又由于彩膜基板在相邻两所述Micro LED发光单元30之间设有透光区,所述透光区可以允许光线穿过,因此可以在所述第一像素区域100内实现屏内传感集成方案。另外,本申请通过将所述Micro LED发光单元30集成于彩膜基板的表面(on cell),因此可免除外挂式Micro LED显示玻璃导致的液晶面板和Micro LED显示玻璃额外对组制程,并且还可以缓解采用外挂式Micro LED显示玻璃导致的画面悬浮问题,本申请可实现将Micro LED显示方案集成于面板上。
请参照图2所示,以下对本申请一种实施例提供的彩膜基板进行详细说明。所述彩膜基板包括:基底10,所述基底10可以为透光率较高的玻璃基板,或是柔性基板;第一驱动电路20,所述第一驱动电路20对应所述第一像素区域100设于所述基底10的第一表面10a上,第一驱动电路20用于为Micro LED发光单元30提供驱动信号,以使所述Micro LED发光单元30能够发光;多个Micro LED发光单元30对应所述第一像素区域100设置于所述基底10的第一表面10a一侧,且所述Micro LED发光单元30与所述第一驱动电路20电连接;封装层40设置于所述Micro LED发光单元30以及所述基底10上,用于封装所述Micro LED发光单元30;彩色色阻50对应所述第二像素区域200设于所述基底10的第二表面10b上,且相邻两所述彩色色阻50之间设置有黑色矩阵60;其中,所述彩色色阻50以及所述黑色矩阵60避开所述第一像素区域100设置。
其中,所述第一驱动电路20包括沿横向延伸的扫描线(未图示)和沿纵向延伸的数据线(未图示),相邻两所述扫描线与相邻两所述数据线界定出子像素区域。所述扫描线与所述数据线也可以延伸至所述第二像素区域200内,可以理解的是,为了不影响所述第二像素区域200内的像素显示,延伸至所述第二像素区域200内的所述扫描线以及所述数据线的部分避开所述彩色色阻50设置,即可以对应位于所述黑色矩阵60的位置。
在一种实施例中,所述第一驱动电路20可以采用主动阵列(AM)驱动技术,即所述第一驱动电路20还包括薄膜晶体管(未图示),每一所述Micro LED发光单元30通过对应的所述薄膜晶体管分别与对应的所述扫描线和对应的所述数据线电连接。
在本实施例中,为优先保证所述第一像素区域100的穿透率,所述第一驱动电路20采用被动阵列(PM)驱动技术,即所述第一驱动电路20不设置薄膜晶体管。
在本实施例中,所述Micro LED发光单元30为三色显示,即所述Micro LED发光单元30包括红色发光单元、绿色发光单元以及蓝色发光单元。所述Micro LED发光单元30的尺寸为1μm-100μm,所述Micro LED发光单元30的高度为1μm-20μm。其中,所述Micro LED发光单元30可以为基底面出射结构或者电极面出射结构,此处不做限制。
在另一种实施例中,所述Micro LED发光单元30采用蓝色显示结合色转换技术方案,也就是说,所述红色发光单元包括蓝色发光单元以及设于所述蓝色发光单元上的色转换层,该色转换层可将所述蓝色发光单元发出的蓝光转换为红光;所述绿色发光单元包括蓝色发光单元以及设于所述蓝色发光单元上的色转换层,该色转换层可将所述蓝色发光单元发出的蓝光转换为绿光。其中,所述色转换层为量子点膜或荧光粉等,此处不做特殊限定。
结合图3所示,为本申请实施例提供的彩膜基板具有Micro LED发光单元的示意图。由于所述Micro LED发光单元30具有尺寸小的优势,因此所述Micro LED发光单元30在所述基底上的正投影面积小于所述子像素区域P的面积,使得多个所述Micro LED发光单元30之间具有透光区300。
进一步的,所述Micro LED发光单元30在所述基底上的正投影面积占所述子像素区域P面积的10%-50%。
在所述第一像素区域100可以实现正常显示的情况下,又由于各所述Micro LED发光单元30的覆盖面积皆小于各子像素区域P的面积,因此,在所述子像素区域P内无所述Micro LED发光单元30覆盖的区域光线可以正常透过。可以通过对所述Micro LED发光单元30关闭,使所述第一像素区域100采集外界图像进入屏下传感器。如此一来,便可实现屏下指纹识别、屏下摄像头、屏下面部识别、屏下距离感知等各种屏下传感方案。
请参照图2所示,所述封装层40整面的设置于所述第一像素区域100和所述第二像素区域200内,所述封装层40可以为层叠的无机层和有机层,此处不做限制。所述封装层40的材料具有良好的耐高温性能以及良好的透光性。所述封装层40一方面用于对所述Micro LED发光单元30及所述第一驱动电路20进行保护和封装,避免外界水汽等进入彩膜基板内部对器件造成损伤;另一方面用于对形成有所述Micro LED发光单元30的所述基底表面进行平整化。所述封装层40的厚度为3μm-200μm,能够填平由于绑定所述Micro LED发光单元30而在基底上形成的段差。即所述封装层40背离所述基底10一侧的表面与所述基底10之间的距离大于所述Micro LED发光单元30背离所述基底10一侧的表面与所述基底10之间的距离。
进一步的,由于所述Micro LED发光单元30的高度通常为1μm-20μm,为保证彩膜基板的轻薄化,同时兼顾封装及平坦作用,所述封装层40的厚度可以为3μm-100μm。
其中,所述封装层40对应所述Micro LED发光单元30的部分的厚度小于所述封装层40对应所述Micro LED发光单元30之外的部分的厚度。
进一步的,所述封装层40对应所述Micro LED发光单元30的部分的厚度为2μm-80μm。因此,能够保证所述封装层40完全覆盖所述Micro LED发光单元30,以保证其良好的封装性能。
其中,所述封装层40背离所述基底10一侧的表面为平整面,因此所述封装层40的设置还有效的解决了所述Micro LED发光单元30绑定工艺中造成的较大段差。
为了不影响所述第一像素区域100的透光性能,所述封装层40的透光率大于或等于70%。
进一步的,所述封装层40的透光率大于或等于85%。
在一种实施例中,所述彩色色阻50背离所述基底10的一侧设有平坦层(未图示),所述平坦层位于所述第一像素区域100和所述第二像素区域200内,所述平坦层背离所述基底10一侧的表面为平整面,如此一来,所述平坦层可以对所述基底设置有所述彩色色阻50一侧的表面进行平整化。
在本实施例中,所述封装层40背向所述基底10一侧还设置有保护层,所述保护层用于保护所述封装层40不受损伤。
由于本申请的彩膜基板只在所述第一像素区域100内设置所述Micro LED发光单元30,而所述第一像素区域100的面积占比较小,因此无需依赖巨量转移的方式。如此一来,即可以实现Micro LED显示技术在显示面板/显示装置上的应用,又可以解决巨量显示画素转移时制程良率较低以及成本较高的问题。
在Micro LED显示技术应用于显示面板上时,由于在制备Micro LED的驱动电路以及绑定Micro LED发光单元的工艺都是需要在高温下进行的,高温会对显示面板上的元器件等造成一定的不良影响;尤其是Micro LED发光单元及其驱动电路制作在彩膜基板上时,制程的高温会影响彩膜基板上彩色色阻材料的特性,从而影响显示效果。
基于此,本申请的又一目的在于提供一种彩膜基板的制备方法,以解决Micro LED发光单元及其驱动电路制作在彩膜基板上时,高温制程影响彩色色阻材料特性的问题。
请参照图4所示,为本申请一种实施例提供的彩膜基板的制备方法流程图。所述方法包括以下步骤:
步骤S1,请参照图5(a)所示,在基底10的第一表面10a上对应第一像素区域100的位置制备第一驱动电路20以及与所述第一驱动电路20电连接的第一焊接电极20a,所述第一驱动电路20包括沿横向延伸的扫描线和沿纵向延伸的数据线,所述第一焊接电极20a位于相邻两所述扫描线与相邻两所述数据线界定出的子像素区域内。
其中,所述第一焊接电极20a包括一个N电极以及一个与N电极相对设置的P电极。
步骤S2,请参照图5(b)所示,将Micro LED发光单元30转印于所述基底10的第一像素区域100内,且将所述Micro LED发光单元30上的第二焊接电极30a与所述第一焊接电极20a电性绑定。
其中,所述第二焊接电极30a包括一个N电极以及一个与N电极相对设置的P电极,在绑定工艺中,所述Micro LED发光单元30的N电极与所述基底10上的N电极电连接,所述Micro LED发光单元30的P电极与所述基底10上的P电极电连接。
步骤S3,请参照图5(c)所示,在所述Micro LED发光单元30以及所述基底10上制备封装层40。
其中,所述封装层40能够填平所述Micro LED发光单元30与所述基底10形成的段差,且所述封装层40背离所述基底10的表面形成平整面。
步骤S4,请参照图5(d)所示,在所述基底10的第二表面10b上制备彩色色阻50,所述彩色色阻50形成于邻近所述第一像素区域100的第二像素区域200内。
其中,所述制备方法还包括在所述第二像素区域200内制备黑色矩阵60,所述黑色矩阵60位于相邻两所述彩色色阻50之间。所述彩色色阻50与所述黑色矩阵60制备的先后顺序此处不做限制。
在另一种实施例中,在所述步骤S2之后,所述制备方法还包括以下步骤:
在所述Micro LED发光单元上制备色转换薄膜,去除对应所述Micro LED发光单元之外的所述色转换薄膜,以形成正对所述Micro LED发光单元的色换换层。
由于本申请的彩膜基板是先在基底上制备第一驱动电路以及绑定Micro LED发光单元,之后再制作彩色色阻及黑色矩阵,因此,可以保证第一驱动电路制作工艺以及Micro LED发光单元绑定工艺中的高温制程不影响彩色色阻材料特性。
在本申请的另一种实施例中,还提供了一种彩膜基板的制备方法,如图6所示,与上述彩膜基板的制备方法的区别仅在于步骤S2,本实施例的步骤S2中又包括两个步骤,具体如下:
步骤S21,请参照图7(a)所示,以Micro LED发光单元30具有电性接触区的表面30b背离所述基底10的方式将所述Micro LED发光单元30转印于所述基底10的第一像素区域100内。
步骤S22,请参照图7(b)所示,在所述Micro LED发光单元30上制备导电薄膜,并对所述导电薄膜进行图案化,以形成电性连接所述Micro LED发光单元30的电性接触区与所述第一焊接电极20a的导电电极400。
其中,所述电性接触区包括相对设置的N接触区和P接触区,一个所述导电电极400将N接触区与基底10上的N电极电连接,一个所述导电电极400将P接触区与基底10上的P电极电连接。
由于本实施例的彩膜基板是先在基底上制备第一驱动电路以及绑定Micro LED发光单元,之后再制作彩色色阻及黑色矩阵,因此,可以保证第一驱动电路制作工艺以及Micro LED发光单元绑定工艺中的高温制程不影响彩色色阻材料特性。另外,又由于本实施例在Micro LED发光单元绑定工艺中,Micro LED发光单元无需设置传统的焊接电极,因此,可以减小Micro LED发光单元绑定后的高度。
本申请还提供一种显示面板,如图8所示,所述显示面板包括如上所述的彩膜基板1,和阵列基板2,以及位于所述彩膜基板1与所述阵列基板2之间的液晶层3。其中,所述阵列基板2上设置有第二驱动电路21,所述第二驱动电路21设置于第二显示区域200内。由于对应显示面板的第一像素区域100内不设置所述第二驱动电路21,因此不会影响所述第一像素区域100的透光性。
本申请还提供一种显示装置,如图9所示,所述显示装置包括如上所述的显示面板,以及背光模组4和传感器组件5。所述背光模组4对应第一像素区域100设有通孔41,所述传感器组件5正对所述通孔41设置。
其中,所述传感器组件5为光学式传感器,可以实现面部识别、距离感应、指纹识别等,此处不做限制。
综上所述,本申请提供的彩膜基板及其制备方法、显示面板、显示装置,通过采用微发光二极管显示技术与液晶显示技术相结合的形式,从而可以实现LCD极致全面屏显示。又由于彩膜基板在相邻两所述Micro LED发光单元之间设有透光区,所述透光区可以允许光线穿过,因此可以实现屏内传感集成方案。另外,由于本申请的彩膜基板是先在基底上制备第一驱动电路以及绑定Micro LED发光单元,之后再制作彩色色阻及黑色矩阵,因此,可以保证第一驱动电路制作工艺以及Micro LED发光单元绑定工艺中的高温制程不影响彩色色阻材料特性。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (19)

  1. 一种彩膜基板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,其中,所述彩膜基板包括:
    基底;
    多个Micro LED发光单元,对应所述第一像素区域设置于所述基底的一侧,其中,多个所述Micro LED发光单元之间设有透光区;
    彩色色阻,对应所述第二像素区域设于所述基底的相对另一侧。
  2. 根据权利要求1所述的彩膜基板,其中,所述基底面向所述Micro LED发光单元的一侧设有封装层,所述封装层位于所述第一像素区域和所述第二像素区域内。
  3. 根据权利要求2所述的彩膜基板,其中,所述封装层背离所述基底一侧的表面与所述基底之间的距离大于所述Micro LED发光单元背离所述基底一侧的表面与所述基底之间的距离。
  4. 根据权利要求3所述的彩膜基板,其中,所述封装层的厚度为3μm-100μm;所述封装层对应所述Micro LED发光单元的部分的厚度为2μm-80μm。
  5. 根据权利要求2所述的彩膜基板,其中,所述封装层的透光率大于或等于70%。
  6. 根据权利要求1所述的彩膜基板,其中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述基底面向所述Micro LED发光单元的一侧,所述Micro LED发光单元与所述第一驱动电路电连接。
  7. 根据权利要求6所述的彩膜基板,其中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述基底上的正投影面积小于所述子像素区域的面积。
  8. 根据权利要求7所述的彩膜基板,其中,所述Micro LED发光单元在所述基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
  9. 根据权利要求1所述的彩膜基板,其中,所述彩色色阻背离所述基底的一侧设有平坦层,所述平坦层位于所述第一像素区域和所述第二像素区域内,所述平坦层背离所述基底一侧的表面为平整面。
  10. 一种显示面板,其中,包括如权利要求1所述的彩膜基板。
  11. 一种彩膜基板,包括第一像素区域和邻近所述第一像素区域的第二像素区域,其中,所述第一像素区域为Micro LED显示区域,所述第二像素区域为液晶显示区域,所述彩膜基板包括:
    基底;
    多个Micro LED发光单元,对应所述第一像素区域设置于所述基底的一侧,其中,多个所述Micro LED发光单元之间设有透光区;
    彩色色阻,对应所述第二像素区域设于所述基底的相对另一侧。
  12. 根据权利要求11所述的彩膜基板,其中,所述基底面向所述Micro LED发光单元的一侧设有封装层,所述封装层位于所述第一像素区域和所述第二像素区域内。
  13. 根据权利要求12所述的彩膜基板,其中,所述封装层背离所述基底一侧的表面与所述基底之间的距离大于所述Micro LED发光单元背离所述基底一侧的表面与所述基底之间的距离。
  14. 根据权利要求13所述的彩膜基板,其中,所述封装层的厚度为3μm-100μm;所述封装层对应所述Micro LED发光单元的部分的厚度为2μm-80μm。
  15. 根据权利要求12所述的彩膜基板,其中,所述封装层的透光率大于或等于70%。
  16. 根据权利要求11所述的彩膜基板,其中,所述彩膜基板还包括第一驱动电路,所述第一驱动电路对应所述第一像素区域设于所述基底面向所述Micro LED发光单元的一侧,所述Micro LED发光单元与所述第一驱动电路电连接。
  17. 根据权利要求16所述的彩膜基板,其中,所述第一驱动电路包括沿横向延伸的扫描线和沿纵向延伸的数据线,相邻两所述扫描线与相邻两所述数据线界定出子像素区域,所述Micro LED发光单元在所述基底上的正投影面积小于所述子像素区域的面积。
  18. 根据权利要求17所述的彩膜基板,其中,所述Micro LED发光单元在所述基底上的正投影面积占所述子像素区域面积的10%-50%,所述Micro LED发光单元包括红色发光单元、绿色发光单元以及蓝色发光单元。
  19. 根据权利要求11所述的彩膜基板,其中,所述彩色色阻背离所述基底的一侧设有平坦层,所述平坦层位于所述第一像素区域和所述第二像素区域内,所述平坦层背离所述基底一侧的表面为平整面。
PCT/CN2020/097618 2020-06-01 2020-06-23 一种彩膜基板和显示面板 WO2021243766A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/969,562 US20230099140A1 (en) 2020-06-01 2020-06-23 Color filter substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010485380.8 2020-06-01
CN202010485380.8A CN111596484A (zh) 2020-06-01 2020-06-01 一种彩膜基板和显示面板

Publications (1)

Publication Number Publication Date
WO2021243766A1 true WO2021243766A1 (zh) 2021-12-09

Family

ID=72185976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097618 WO2021243766A1 (zh) 2020-06-01 2020-06-23 一种彩膜基板和显示面板

Country Status (3)

Country Link
US (1) US20230099140A1 (zh)
CN (1) CN111596484A (zh)
WO (1) WO2021243766A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596485A (zh) * 2020-06-08 2020-08-28 武汉华星光电技术有限公司 一种彩膜基板、显示面板、显示装置
CN111653585A (zh) * 2020-06-19 2020-09-11 武汉华星光电技术有限公司 显示面板及其制备方法、显示装置
TWI770813B (zh) * 2021-02-08 2022-07-11 友達光電股份有限公司 顯示裝置及其製造方法
CN113053254A (zh) * 2021-03-05 2021-06-29 武汉华星光电技术有限公司 显示面板及其制作方法、显示装置
CN113345927B (zh) * 2021-05-31 2023-06-02 武汉华星光电技术有限公司 屏下摄像头显示面板及透明显示区域的制备方法
CN113437114B (zh) * 2021-06-02 2022-12-06 Tcl华星光电技术有限公司 一种显示装置及其制备方法
WO2023004564A1 (zh) * 2021-07-27 2023-02-02 重庆康佳光电技术研究院有限公司 显示面板、显示屏、电子设备及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732816A (zh) * 2018-05-22 2018-11-02 武汉华星光电技术有限公司 面光源背光模组及液晶显示面板
CN110231735A (zh) * 2019-05-16 2019-09-13 武汉华星光电技术有限公司 显示装置
CN110275340A (zh) * 2019-06-10 2019-09-24 武汉华星光电技术有限公司 用于屏下辨识方案的液晶显示设备
CN110632789A (zh) * 2019-08-22 2019-12-31 武汉华星光电技术有限公司 显示装置
CN110794604A (zh) * 2019-11-29 2020-02-14 武汉华星光电技术有限公司 显示装置及显示装置的制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025848A (zh) * 2017-06-05 2017-08-08 京东方科技集团股份有限公司 一种显示基板、显示面板、显示装置及制作方法
US20190137814A1 (en) * 2017-11-03 2019-05-09 HKC Corporation Limited Display panel and method of manufacturing the same
CN109116619A (zh) * 2018-09-26 2019-01-01 京东方科技集团股份有限公司 彩膜基板、显示面板、掩膜板
US11061265B2 (en) * 2019-12-09 2021-07-13 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. COA substrate and display panel
US11411149B2 (en) * 2020-03-12 2022-08-09 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate, display panel, and manufacturing method of display panel
CN111399275A (zh) * 2020-04-15 2020-07-10 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN111596485A (zh) * 2020-06-08 2020-08-28 武汉华星光电技术有限公司 一种彩膜基板、显示面板、显示装置
CN111708196A (zh) * 2020-06-23 2020-09-25 武汉华星光电技术有限公司 显示面板及显示装置
CN112764260B (zh) * 2021-01-15 2023-10-17 Tcl华星光电技术有限公司 液晶显示面板和液晶显示装置
CN113345336B (zh) * 2021-05-31 2023-06-06 上海天马微电子有限公司 一种显示面板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732816A (zh) * 2018-05-22 2018-11-02 武汉华星光电技术有限公司 面光源背光模组及液晶显示面板
CN110231735A (zh) * 2019-05-16 2019-09-13 武汉华星光电技术有限公司 显示装置
CN110275340A (zh) * 2019-06-10 2019-09-24 武汉华星光电技术有限公司 用于屏下辨识方案的液晶显示设备
CN110632789A (zh) * 2019-08-22 2019-12-31 武汉华星光电技术有限公司 显示装置
CN110794604A (zh) * 2019-11-29 2020-02-14 武汉华星光电技术有限公司 显示装置及显示装置的制作方法

Also Published As

Publication number Publication date
US20230099140A1 (en) 2023-03-30
CN111596484A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021243766A1 (zh) 一种彩膜基板和显示面板
US11256121B2 (en) Liquid crystal display device for under-screen identification scheme
WO2021147987A1 (zh) 显示基板和显示装置
JP6639462B2 (ja) 発光ダイオードチップ及びこれを含む発光ダイオードディスプレイ装置
US20230004070A1 (en) Electronic device
WO2021258489A1 (zh) 显示面板及显示装置
WO2021248783A1 (zh) 一种彩膜基板、显示面板、显示装置
WO2021103390A1 (zh) 显示装置及显示装置的制作方法
US20220013597A1 (en) Display panel
WO2021012458A1 (zh) 无缝拼接屏
JP2023526706A (ja) 表示パネルおよび表示装置
CN212276177U (zh) 一种彩膜基板和显示面板
CN109037270B (zh) 一种显示面板及显示装置
WO2020019421A1 (zh) Led背光装置及led显示装置
JP2016206630A (ja) 表示装置及び電子機器
CN113345927B (zh) 屏下摄像头显示面板及透明显示区域的制备方法
CN113241361B (zh) Oled显示面板
US11536995B2 (en) Display panel and display device
CN110034158A (zh) 显示装置
CN212276178U (zh) 一种彩膜基板、显示面板、显示装置
WO2020168608A1 (zh) 大尺寸显示面板及其制作方法
CN114784047A (zh) 一种主动驱动式Micro-LED基板及显示装置及封装方法
CN114284322A (zh) 一种显示面板及显示装置
WO2021030971A1 (zh) 显示装置及制备方法、电子设备
KR102130143B1 (ko) 유기전계발광표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939315

Country of ref document: EP

Kind code of ref document: A1