WO2021256521A1 - サーボ型振動検出器及び振動制御装置 - Google Patents

サーボ型振動検出器及び振動制御装置 Download PDF

Info

Publication number
WO2021256521A1
WO2021256521A1 PCT/JP2021/022934 JP2021022934W WO2021256521A1 WO 2021256521 A1 WO2021256521 A1 WO 2021256521A1 JP 2021022934 W JP2021022934 W JP 2021022934W WO 2021256521 A1 WO2021256521 A1 WO 2021256521A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
coil
servo
permanent magnet
magnetic
Prior art date
Application number
PCT/JP2021/022934
Other languages
English (en)
French (fr)
Inventor
照雄 丸山
興三 岡本
道彦 谷
琢巳 岡田
Original Assignee
特許機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特許機器株式会社 filed Critical 特許機器株式会社
Priority to EP21826975.1A priority Critical patent/EP4177611A4/en
Priority to CN202180042081.XA priority patent/CN115769085A/zh
Priority to US18/001,710 priority patent/US20230228787A1/en
Publication of WO2021256521A1 publication Critical patent/WO2021256521A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/132Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electromagnetic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/02Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by magnetic means, e.g. reluctance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration

Definitions

  • the present invention is a vibration sensor or vibration isolation that detects the acceleration of a controlled object that is supported by the foundation and vibrates due to disturbance, or the absolute velocity or absolute displacement with respect to the inertial space, in a wide frequency band. It is related to the control device.
  • control signals are created and controlled based on displacement, velocity, and acceleration information from vibration sensors placed at multiple locations in a structure subject to vibration control (for example, a precision vibration isolation table). Active vibration control technology for controlling devices has become widespread.
  • FIG. 52 shows a model diagram of a conventional active vibration isolation table.
  • This active vibration isolation table is known as described in Patent Document 3.
  • a plurality of sets of pneumatic actuators (502a, 502b) for supporting the surface plate 501 are arranged on the floor surface 500.
  • a precision device (not shown) is mounted on the surface plate 501.
  • Reference numeral 503 is an acceleration sensor for detecting the vertical / horizontal acceleration of the platen 501
  • reference numeral 504 is an acceleration sensor for detecting the acceleration (vibration state of the foundation) of the floor surface 500.
  • Reference numerals 505a and 505b are displacement sensors for detecting the vertical and horizontal relative displacements of the surface plate 501 with respect to the floor surface 500, respectively. The output signals from each of these sensors are input to the controller 506, respectively.
  • a servo valve 508 controlled by the controller 506 is connected to the pneumatic actuator 502a via a pipe 507.
  • the internal pressure of the actuator 502a is controlled to drive the pneumatic actuator.
  • the disturbance to be removed by the vibration isolator is roughly classified into the ground motion disturbance caused by the vibration of the installation floor and the direct motion disturbance input from the vibration isolator.
  • the vibration caused by the movement of a person called walking vibration is 1 to 3 Hz
  • the vibration caused by a motor such as an air conditioner is 6 to 35 Hz
  • the resonance point of the floor or wall is about 10 to 100 Hz.
  • Skyscrapers and seismic isolated buildings have natural frequencies near 0.2 to 0.3 Hz.
  • due to wind sway a slight vibration of 0.1 to 1.0 Hz is generated in the building. Therefore, the vibration isolator is required not only to suppress high-frequency vibration but also to remove low-frequency vibration.
  • the vibration isolation device is required to have a function of having both "vibration suppression" due to direct motion disturbance in addition to "vibration isolation” due to ground motion disturbance.
  • a control method by state feedback is adopted. This is a method of controlling a control device based on acceleration / velocity / displacement information from vibration sensors arranged at a plurality of locations of a structure to be vibration controlled.
  • an acceleration signal is mainly used to control a state quantity of 10 Hz or higher
  • a velocity signal is mainly used to control a state quantity of 1 to 10 Hz
  • a displacement signal is used to control a state quantity of 1 Hz or lower. .. for example, (i) If acceleration feedback is applied using a signal from an acceleration sensor (using the acceleration sensor 503 in FIG.
  • the vibration isolation performance can be significantly improved in a wide frequency range.
  • the signal from the accelerometer (504 in FIG. 52) arranged directly under the platen 501 if the signal is converted into an absolute velocity or absolute displacement signal and feed forward is applied in the same manner, a wide frequency range is obtained. The vibration isolation performance can be improved.
  • the velocity and position information with respect to the inertial space are required. Since the accelerometer can measure the acceleration with respect to the inertial space, the acceleration applied to the controlled object can be detected by attaching the accelerometer to the controlled object. Therefore, in the conventional active vibration isolator, a method is adopted in which the velocity signal is obtained by integrating the output of the acceleration sensor once, and the displacement signal is obtained by further integrating twice.
  • FIG. 53 is a model diagram showing the basic configuration and detection principle of a capacitive acceleration sensor.
  • 301 is a main body for accommodating each member of the sensor
  • 302 is a mass body
  • 303 is a spring that mechanically supports the mass body 302 with respect to the vibration measurement surface A
  • 304 is an attenuator.
  • the mass body 302 also serves as a movable side electrode of the capacitance type sensor.
  • Reference numeral 305 is a fixed side electrode arranged on the opposite surface side of the movable side electrode (mass body 302)
  • reference numeral 306 is a gap portion between the two electrodes.
  • Reference numeral 307 is an electromagnetic actuator for driving the mass body 302 in the direction perpendicular to the vibration measuring surface A. Since the capacitance C is determined by the size of the gap in the gap 306, the relative displacement UX, which is the difference between the absolute displacement U of the ground motion and the absolute displacement X of the mass, can be detected by measuring this capacitance C.
  • the servo circuit 310 (indicated by a two-dot chain line) is composed of a displacement amplifier 311 that amplifies the relative displacement signal UX with a gain K P.
  • the actuator current i 0 is controlled by an amplifier with a proportional gain constant K P so that the relative displacement ux becomes zero.
  • the acceleration of the mass body 302 can be approximately obtained.
  • FIG. 54 is a front sectional view showing a specific structural example of the conventional linear motion accelerometer.
  • the basic principle of the linear motion type is disclosed in Patent Document 1. It is configured by the basic configuration and the detection principle shown in FIG. 53.
  • 11 is a permanent magnet
  • 12 is a pole piece part
  • 13 is a pole piece convex part
  • 14 is a permanent magnet side yoke material
  • 15 is a coil side yoke material
  • 16a is a force coil
  • 16b is a test coil
  • 17 is a coil bobbin
  • 18, 19 Is a coil bobbin support member made of a non-magnetic and non-conductive material
  • 20 is a front side disc-shaped spring
  • 21 is a rear side disc-shaped spring
  • 22 is a front side connecting member of the front side disc-shaped spring 20 and the coil side yoke material
  • Reference numeral 23 is a rear-side connecting member for the rear-side disc-shaped spring 21 and the coil-side yoke member 15.
  • 24 is a movable side electrode
  • 25 is a fixed side electrode
  • 26 is a front side panel
  • 27 is a central plate
  • 28 is a fastening member between the fixed side electrode 25 and the front side panel 26.
  • a magnetic gap portion 29 in the radial direction is formed between the outer peripheral portion of the pole piece portion 12 and the inner peripheral portion of the coil-side yoke member 15.
  • 29a is a gap on the permanent magnet side
  • 29b is a gap on the yoke material side.
  • a closed-loop magnetic circuit is formed by "permanent magnet 11-> pole piece portion 12-> magnetic gap portion 29-> coil-side yoke material 15-> permanent magnet-side yoke material 14."
  • the servo circuit includes a displacement detector 31, an amplifier 32, and a driver 33.
  • the amplifier 32 and the driver 33 are displacement amplifiers that amplify the relative displacement signal UX with a gain K P.
  • the actuator current i 0 is controlled by an amplifier with a proportional gain constant K P so that the relative displacement ux becomes zero.
  • FIG. 56 is a front sectional view showing an example of oscillating motion type disclosed in Patent Document 2, and 590a is It is located within the frame of the disk-shaped frame 590 with a pendulum.
  • the pendulum 590a is formed in the shape of a tongue piece whose circumference is partially cut out, and is supported by the frame body 590 via a hinge 590b.
  • the frame body 590, the pendulum 590a, and the hinge 590b are integrally formed of, for example, quartz glass.
  • the hinge 590b is thin and elastically deformable, and the pendulum 590a can be displaced in the vertical direction in the figure by an input acceleration.
  • 591 and 592 are a pair of magnetic yokes, 593 is a pole piece bottom, 594 is a permanent magnet, and 595 is a ball piece top.
  • the permanent magnet 594 is magnetized in the plate thickness direction, and an annular magnetic gap 596 is formed between the inner peripheral surface of the open end of the magnetic yokes 591 and 592 and the outer peripheral surface of the pole piece top 595, respectively.
  • a coil bobbin 598 around which a torquer coil 597 is wound so as to be located in each of these annular magnetic gaps 596 is attached to both plate surfaces of the pendulum 590a.
  • Capacitance electrodes 590c are formed in an arc shape on both plate surfaces of the pendulum 590a along the outer periphery of the tip side of the tongue piece shape.
  • Reference numeral 591e and 592e are electrode surfaces facing the capacitance electrode 590c at a predetermined interval.
  • the displacement of the pendulum 590a due to the acceleration input is detected as the change in the capacitance between the capacitance electrode 590c and the electrode surfaces 591e and 592e.
  • the electrode surfaces 591e and 592e have a common potential, and the detection signals of the capacitance electrodes 590c on both plate surfaces of the pendulum 590a are differentially amplified by a servo amplifier (not shown). Current is passed. Due to the interaction between this ToruCa current and the magnetic field of the permanent magnet 594, the displaced pendulum 590a returns to its original state and equilibrates at the neutral point.
  • the coil terminals 597a and 597b of the Torca coil 597 are bonded to a metal conductor (not shown) on the pendulum 590a and electrically bonded.
  • FIG. 58 shows a plan view of the pendulum 590a.
  • FIG. 58 (a) is one surface
  • FIG. 58 (b) is the other surface.
  • the frame body 590, the pendulum 590a, and the hinges 590b1 and 590b2 are formed by etching from, for example, a single quartz glass disk.
  • the pendulum conductor A is formed in an arc shape on the frame body 590 on one surface with a width approximately half the width of the frame body 590, and one end of the arcuate metal conductor is formed on one hinge 590b1 in the extension direction thereof. It is formed in a shape that is stretched toward the center, crosses the center of the pendulum 590a, and then is folded back toward the center.
  • the arcuate pendulum conductor A constitutes one input / output end of the ToruCa current.
  • the pendulum conductor B sandwiches the center of the pendulum 590a from the end of the pendulum conductor A located at the center of the pendulum 590a on one surface and is spaced substantially equal to the spacing between the bobbin conductors described later. It is formed with the same width as the pendulum conductor A toward the outer edge portion of the pendulum 10a. Further, the pendulum conductor B is formed continuously along the side surface of the outer edge portion of the pendulum 590a to the other surface at a position between the pair of hinges 590b1 and 590b2. The shape of the pendulum conductor B on the other surface is the same as the shape on one surface described above. The pendulum conductor B connects two left and right torquer coils 597 in series.
  • the pendulum conductor C is formed on the other surface in substantially the same shape as the pendulum conductor A described above.
  • the end portion of the pendulum conductor C is formed on the frame body 590 on one surface in an arc shape having a width substantially equal to that of the frame body 590.
  • the end portion of the pendulum conductor C on one surface and the pendulum conductor C on the other surface are continuously formed along the side surface on the inner diameter side of the frame body 590.
  • the arcuate pendulum conductor C constitutes the other input / output end of the ToruCa current.
  • the capacitance detection electrode D is formed in an arc shape along the outer edge of the pendulum 590a on one surface of the pendulum 590a, further propagates on the hinge 590b2, and is carried on the frame body 590 along the outer peripheral portion of the frame body 590.
  • the end portion is formed in an arc shape with a width approximately half the width of the frame body 590.
  • the capacitance detection electrode E is formed on the other surface of the pendulum 590a in the same manner as the capacitance detection electrode D. Further, the capacitance detection electrode E continues along the inner side surface of the frame body 590 to one surface of the frame body 590, and is a circle on one surface of the frame body 590 with a width substantially equal to that of the frame body 10. The ends are formed in an arc shape. Each end of the capacitance detection electrodes D and E on one surface of the frame 590 is connected to a servo amplifier (not shown).
  • Each of the pendulum conductors described above is formed of a thin film in which gold (Au) is sputtered or vacuum-deposited on the surfaces of a frame 590 made of quartz glass, a pendulum 590a, and hinges 590b1 and 590b2.
  • the difference in the basic structure between the linear motion type acceleration sensor and the rocking motion type acceleration sensor described above can be classified by the elastic support method of the movable part.
  • the spring is arranged in the circumferential direction of the axis with the moving direction of the movable part as the axis.
  • the oscillating motion type has a structure in which the movable part is supported by a cantilever beam having one end as a fixed end and the other as a free end.
  • Japanese Unexamined Patent Publication No. 2004-205284 Japanese Unexamined Patent Publication No. 2010-96509 Japanese Unexamined Patent Publication No. 2006-283966
  • FIG. 55a is a front view showing the shape of the front disc-shaped spring 20
  • FIG. 55b is a front sectional view in which the front side panel 26, the fixed side electrode 25, and the like are removed from the above-mentioned overall sensor view (FIG. 54).
  • FIG. 55c is an enlarged view of part A of FIG. 55b, showing a state in which the movable side electrode 24 is deformed in the axial direction.
  • each terminal of the force coil 16a and the verification coil 16b is connected to the control circuit installed outside. Further, including the conduction path connecting the movable side electrode 24 and the displacement detector 31 (FIG. 54), a total of five independent conduction paths are required. Since the two coils and the movable side electrode move in the axial direction, it is not possible to connect the five terminals and the external fixing portion with lead wires. Therefore, as shown in FIGS. 55a and 55c, the five conduction paths are formed by using the front side disc-shaped spring 20 and the rear side disc-shaped spring 21. That is, the two disc-shaped springs 20 and 21 are formed to serve as both the elastic support of the movable portion (coil bobbin 17, the movable side electrode 24, etc.) and the five independent conduction paths.
  • 34a, 34b, and 34c are the outer peripheral side fixing portions of the front side disc-shaped spring 20. As shown by the chain wire circle AA, these three outer peripheral side fixing portions are cut at three points in the circumferential direction in order to achieve electrical insulation. Reference numerals 35a, 35b, and 35c are inner peripheral side spring portions of the front side disc-shaped spring. As shown by the chain wire circle BB, these three inner peripheral side spring portions are cut at three points in the circumferential direction in order to achieve electrical insulation. 36a, 36b, and 36c are soldering portions for conducting the coil terminals and the inner peripheral side spring portions. FIG.
  • the coil wire diameter used in the servo type accelerometer is, for example, an ultrafine wire of about 30 ⁇ m.
  • the conventional servo type accelerometer requires the process of "cutting, insulation, and soldering" between the disk-shaped spring and the coil as a problem in terms of production technology due to the basic operating principle and structure. This complicated process has been a major factor in reducing the yield and reliability during mass production.
  • the small diameter disc springs applied to linear motion accelerometers must be of metallic material. The reason is that the mechanical resonance frequency determined by the inertial mass of the moving part and the spring rigidity is sufficiently low from the viewpoint of the performance of the sensor, and the value of the spring rigidity needs to be set small.
  • a disc-shaped spring having a small diameter is greatly deformed by a small external force. Therefore, it is difficult to adopt a structure that combines a non-metal material (for example, quartz glass) and a conductive thin film (conduction path) as used in a swinging motion accelerometer.
  • the conduction path for passing a plurality of signals connecting the movable member side and the fixed side must be formed by using the elastic member connecting the two. Do not get. As a result, a complicated structure and a production method are required, which increases the cost and is a major factor for lowering the yield and reliability at the time of mass production.
  • an active vibration isolation table 4-point support active control is assumed.
  • the actuators are arranged at the four corners, and the actuators are installed diagonally at two points in the horizontal X direction and two points in the Y direction.
  • Each actuator also incorporates an actuator that supports the load in the Z direction. Further, therefore, a total of eight actuators are arranged, and eight accelerometers are required to control each actuator. Including sensors that detect the acceleration of the floor surface, a total of nine expensive acceleration sensors are required. Therefore, in the case of a multi-axis control active vibration isolation table, there is a serious problem that the cost ratio to the whole is high due to the large number of acceleration sensors required.
  • the difficulty of wiring processing which is the main cause of the decrease in yield, is an unavoidable problem of the moving coil type (MC type) caused by the movement of the coil of the moving part.
  • the present invention returns to the origin that brings about this problem, and pays attention to the fact that the actuator part of the servo-type accelerometer forms a closed-loop magnetic circuit with three elements, that is, "permanent magnet", “coil”, and “yoke material”. did. If the "coil”, which is one of these three elements, is fixed, the fateful problem of the moving coil type (MC type), that is, the difficulty of wiring processing, which is the main cause of the decrease in yield, will be solved at once. To.
  • the servo-type vibration detector of the invention includes a fixing member, a movable member provided so as to be movable in a predetermined direction with respect to the fixing member, and configured so that a magnetic flux flows inside.
  • An elastic member that supports the fixed member so that the movable member is arranged via a gap portion, a displacement detecting unit that detects a displacement of the movable member in a predetermined direction, and the movable member in the displacement detecting unit.
  • the movable member is provided with at least a movable side yoke material forming a part of the closed loop magnetic circuit.
  • the coil is fixed to the fixed member side, the permanent magnet is arranged so that the magnetic flux flows in the gap between the fixed member and the movable member, and the movable member is the permanent magnet and the yoke material, or only this yoke material. Consists of.
  • the movable member is driven by the electromagnetic force generated by forming a closed-loop magnetic circuit. INDUSTRIAL APPLICABILITY According to the present invention, complicated moving coil type wiring processing is not required in the production process, and the mass production method can be greatly simplified and the production cost can be reduced.
  • the movable member further includes a permanent magnet forming the closed loop magnetic circuit, and the movable side yoke material is provided with respect to any magnetic pole surface of the permanent magnet.
  • the movable side yoke material is arranged in the coil, and the driving means applies a current to the coil to counteract the Lorentz force that the conducting wire through which the current flows receives in the magnetic field. It is configured to move the permanent magnet and the movable side yoke material in the predetermined direction by force.
  • Lorentz force which is an electromagnetic force
  • the force relationship between the fixed side and the moving side is relative, regardless of the type of driving principle. That is, in the present invention, when a current flows through the fixedly arranged coil, the reaction force of the Lorentz force that moves the permanent magnet in the axial direction is used.
  • the servo-type vibration detector of the invention according to claim 3 further includes a permanent magnet fixed to the fixing member and forming the closed-loop magnetic circuit, and the movable side with respect to any magnetic pole surface of the permanent magnet.
  • the yokes are provided apart from each other, and the movable side yoke material is arranged in the coil. Lorentz that the driving means receives a current flowing through the coil by applying a current to the coil in a magnetic field.
  • the movable side yoke material is configured to move in the predetermined direction by the reaction force of the force.
  • the actuator of the servo type accelerometer is configured by fixing not only the coil but also the permanent magnet and moving only the yoke material. That is, it is a proposal of a moving yoke type (MY type (tentative name)), which should be called a "third linear motor".
  • MY type moving yoke type
  • the feature of the MY accelerometer is (1) As with the MC type, the weight of the moving part can be reduced. (2) As with the MM type, there is no need for extra-fine wire processing of the coil. That is, it is possible to eliminate the disadvantages of both the MM type and the MC type and to have the advantages of both.
  • the displacement detection unit is fixed to the fixed member so as to face the movable side electrode provided on the movable member and the movable side electrode.
  • An electrode is provided, and the displacement of the movable member is detected based on a change in capacitance formed between the movable side electrode and the fixed side electrode.
  • the present invention can realize a high-resolution servo-type acceleration sensor by applying the capacitance type that can obtain the highest detection accuracy among various sensors.
  • the gap portion is a first gap portion and a second gap portion forming a radial gap between the movable member and the fixing member in the closed loop magnetic circuit.
  • a coil for generating the Lorentz force is fixedly arranged, and in the second gap portion, magnetism for flowing a magnetic flux between the movable member and the fixing member is provided. It is a connecting part.
  • the closed loop magnetic circuit in the conventional MC type, there is only one void portion forming the closed loop magnetic circuit, whereas in the case of the MM type or the MY type of the present invention, the closed loop magnetic circuit is used. Two voids are required to form.
  • the coil is fixedly installed in a magnetic field with a high magnetic flux density by providing a sub void (second void) as a "magnetic connection portion" with respect to the main void (first void) that mediates the coil. It is possible to generate Lorentz force in this coil.
  • the servo-type vibration detector of the invention according to claim 6 has a pole piece portion that is connected to any of the magnetic pole surfaces of the permanent magnet and forms a part of the movable side yoke material, the pole piece portion, or the pole piece portion.
  • the coil is fixedly arranged in the fixing member via the radial facing surface of the permanent magnet and the first gap portion, and the magnetic flux is provided between the other magnetic pole surface of the permanent magnet and the fixing member. It is composed of the magnetic connecting portion, and a closed loop magnetic circuit is formed by the permanent magnet, the pole piece portion, the first gap portion, the fixing member, and the magnetic connecting portion.
  • a magnetic connecting portion is provided so that magnetic flux flows between the other magnetic pole surface of the permanent magnet, which is a movable member, and the fixed member.
  • the magnetic connection portion, the permanent magnet, the pole piece portion, the gap portion, and the fixing member form a closed-loop magnetic circuit for driving the pole piece portion with Lorentz force.
  • the servo-type vibration detector of the invention according to claim 7 is fixedly arranged on the fixing member in a gap portion between the pole piece portion forming a part of the movable side yoke material and the pole piece portion and the fixing member.
  • the coil and the pole piece portion are arranged via one of the magnetic pole surfaces of the permanent magnet and the magnetic connecting portion, so that magnetic flux flows between the other magnetic pole surface of the permanent magnet and the fixing member.
  • the permanent magnet is fixedly arranged, and a closed loop magnetic circuit is formed by the permanent magnet, the magnetic connecting portion, the pole piece portion, and the fixing member.
  • one magnetic pole surface of the permanent magnet which is a fixed member, forms a magnetic path with the pole piece portion via the magnetic connecting portion, which is a movable member, and one magnetic pole surface of the permanent magnet is the fixed member and the magnetic flux.
  • a closed-loop magnetic circuit is formed so that
  • the servo-type vibration detector of the invention according to claim 8 has a pole piece portion having a substantially cylindrical shape.
  • the present invention has found that the following effects can be obtained by forming the pole piece portion into a cylindrical shape and making the thickness of the cylindrical portion thin and long.
  • the force constant (electrical / mechanical conversion efficiency) of the voice coil motor can be increased.
  • the increase in the inertial mass of the moving part can be reduced.
  • Heat generation can be suppressed even if the number of coil turns is increased to increase the generated force.
  • the above (1) has been found that the influence of the leakage magnetic flux on the generated force can be reduced by lengthening the pole piece portion. In the above (2), even if the pole piece portion is lengthened, the increase in mass is small if the thickness of the cylindrical portion is thin.
  • the above (3) utilizes the fact that the coil storage space on the opposite surface can be increased by lengthening the pole piece portion. That is, the coil wire diameter is increased to suppress an increase in the electrical resistance of the coil as the number of coil turns increases. Therefore, according to the above (1) to (3), the problem caused by the increase in the mass of the movable part by replacing the MC type with the MM type is solved.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to realize an MM type accelerometer that can obtain a signal transmission characteristic extending to a high frequency range (for example, 400 to 500 Hz or more) and high responsiveness.
  • the servo-type vibration detector of the invention according to claim 9 has the permanent magnet magnetized in the axial direction, the pole piece portion connected to one magnetic pole surface of the permanent magnet, and the radius of the pole piece portion. It is composed of the coil fixedly arranged on the inner surface of the housing via a gap portion on a direction facing surface, and the magnetic connecting portion provided so that magnetic flux flows between the other magnetic pole surface of the permanent magnet and the housing. It was done.
  • the servo type acceleration sensor can be realized with a simple component configuration by connecting the permanent magnet magnetized in the axial direction and the pole piece portion.
  • the radial separation distances between the movable member and the fixed member in the first gap portion and the second gap portion are set to ⁇ 1 and ⁇ 2, respectively, and ⁇ 1> ⁇ 2. It is configured to be.
  • the gap (sub-gap portion) of the magnetic connection portion is made narrower than that of the gap portion (main gap portion), and the magnetic resistance of the magnetic connection portion is made smaller than that of the gap portion. Therefore, the influence of the magnetic connection portion on the generated force can be reduced.
  • the mass of the movable part including the movable side magnetic material member is m
  • the mass of the permanent magnet is m p
  • K PT is the electrical gain determined by the product of the position sensor sensitivity K S , the adjustment gain K C and the proportional gain K P
  • K t is the force constant of the actuator
  • R a is the electrical resistance of the coil
  • K T K PT K as t / R a
  • the upper limit m max K T / (2 ⁇ f 0) of the movable part mass 2 and the case, the range of m min ⁇ m ⁇ m max It is set.
  • the lower limit of the mass m of the moving part of the MM type accelerometer is basically the mass m p of the permanent magnet.
  • the upper limit of the moving mass m is m max , which sets the resonance frequency f 0 required for the accelerometer, and has the electrical gain K PT of the control circuit, the force constant K t of the actuator, and the electrical resistance R of the coil. It can be decided by a.
  • the magnetic connecting portion is a radialally magnetized auxiliary permanent magnet, and the inner surface of the housing is provided with a gap portion on the radial facing surface of the auxiliary permanent magnet. It is composed of auxiliary coils fixedly arranged in.
  • the magnetic connection portion is composed of an auxiliary permanent magnet magnetized in the radial direction and an auxiliary coil arranged on the facing surface thereof.
  • the magnetic connecting portion functions as a sub-actuator, so that the force generated by the driving portion can be improved. Further, since the air gap between the auxiliary permanent magnet and the auxiliary coil can be set sufficiently large, the assembly work becomes easy.
  • the axis of the movable portion is eccentric with respect to the fixed side, the force generated in the radial direction applied to the movable portion is also small.
  • the servo-type vibration detector according to claim 13 has a first transmission unit and a second transmission unit that transmit magnetic flux in the radial direction between the movable member and the fixed member in the closed-loop magnetic circuit.
  • the first transmission portion has a gap in the radial direction between the movable member and the fixing member, and the coil for generating the Lorentz force is fixedly arranged in the gap.
  • the second transmission portion is fixed between the movable member and the fixing member by a disk-shaped spring made of a magnetic material in which magnetic flux flows in the radial direction, and the disk-shaped spring supports the movable member. It is configured to also serve as a member.
  • the first transmission portion is not a gap, but a magnetic path in which a disc-shaped spring itself made of a magnetic material forms a closed-loop magnetic circuit.
  • a servo-type accelerometer can be realized with a simple configuration.
  • the permanent magnet is a front side permanent magnet
  • the coil is a front side coil
  • the magnetic connection portion is a rear side permanent magnet magnetized in the radial direction.
  • the pole piece portion connected to one magnetic pole surface of the rear side permanent magnet and the radial facing surface of the other magnetic pole surface of the rear side permanent magnet are fixedly arranged on the inner surface of the housing via the gap portion.
  • the rear side coil is composed of the front side permanent magnet, the gap portion, the housing, the gap portion, the rear side permanent magnet, and the pole piece portion to form a closed loop magnetic circuit.
  • the front side permanent magnet is composed of a magnet magnetized in the radial direction
  • the elastic member is made of a conductive material having a substantially flat circular ring shape, and at least the outer peripheral side of the elastic member is interposed with a non-conductive material. It is fixed to the fixing member.
  • the elastic member (disk-shaped spring) is electrically insulated from the fixed side supporting the elastic member as a conduction path connecting the movable side electrode and the outside. Therefore, a minute capacitance signal between the fixed side electrode and the movable side electrode can be detected without being affected by disturbance noise.
  • the servo-type vibration detector of the invention according to claim 16 is configured such that a non-conductive material is interposed between the movable side electrode and the pole piece portion.
  • an eddy current is generated on the surface of the pole piece, but since the movable side electrode and the pole piece are electrically insulated, the capacitance signal is affected by this eddy current. Can be avoided.
  • the servo-type vibration detector of the invention according to claim 17 is provided on the movable side electrode member provided on each of the two end faces of the movable member and on the fixed member facing the movable side electrode member.
  • a differential sensor is configured by detecting the output difference between the fixed side electrode member and the two sets of capacitance sensors formed between the movable side electrode member and the electrode surface of the fixed side electrode member. be.
  • electrodes for detecting the capacitance are provided at two positions on the left and right. This constitutes a differential capacitive sensor.
  • two flat plate-shaped movable side electrode members are provided at one side shaft end of the movable member through a gap, and the two movable sides are provided.
  • the flat plate-shaped fixed side electrode member is arranged in the gap so as to be sandwiched between the electrode members, and the first is provided between the electrode surface Sa of the movable side electrode member and the electrode surface SA of the fixed side electrode member facing the movable side electrode member.
  • a electrostatic capacity sensor is configured
  • a second electrostatic capacity sensor is configured between the electrode surface SB on the back surface of the electrode surface SA and the electrode surface Sb of the movable side member facing the electrode surface SA. ..
  • two sets of capacitance sensors are configured from two movable side electrodes and one fixed side electrode provided at one side shaft end of the movable part. It is also applicable to accelerometers with actuators that can only be used at the main end of one axis on one side.
  • the servo-type vibration detector according to claim 19 is provided with one flat plate-shaped movable side electrode member at the end of the movable member, and electrode surfaces SAA are provided on the front and back surfaces of the movable side electrode member. And the electrode surface SBB is formed, and the two flat plate-shaped fixed side electrode members are arranged so as to sandwich the movable side electrode member through the gap, and the fixed side electrode member facing the electrode surface SAA is arranged.
  • a first capacitance sensor is configured between the electrode surfaces Saa of the above, and a second capacitance sensor is configured between the electrode surface Sbb of the fixed side electrode member facing the electrode surface SBB. It is a thing.
  • the present invention constitutes two sets of capacitance sensors from one movable side electrode and two fixed side electrodes provided at the one side shaft end of the movable part. Similar to the above-described embodiment, it can also be applied to an accelerometer having an actuator that can be used only at the main end of one axis on one side.
  • the coil is housed in a non-magnetic metal bobbin, and the metal bobbin is fitted to the inner surface of the hollow cylindrical portion of the fixing member. Is.
  • a non-magnetic material with good thermal conductivity for example, aluminum material
  • the coil bobbin is mounted in close contact with the inner surface of the housing.
  • the heat generated by the coil can be easily dissipated, so that sensor noise leading to thermal noise can be reduced.
  • the coil bobbin and the coil are installed in a floating state in the air. Since the member supporting the coil bobbin is a non-magnetic and non-conductive material, the heat dissipation effect of the coil due to heat conduction could not be expected.
  • the present invention utilizes the MM-type structural feature in which the coil can be fixed.
  • the servo-type vibration detector of the invention according to claim 21 is a depression in which the radial distance between the movable member and the fixing member is larger than that at both ends in the vicinity of the axial end surface of the coil that is in close contact with the inner surface of the fixing member.
  • the portion is formed on the inner surface of the housing.
  • the magnetic flux flowing vertically in the magnetic gap portion effectively contributes to the generated force of the actuator, whereas the magnetic flux flowing from the corner of the coil facing surface to the corner of the inner peripheral surface of the coil side yoke material leaks.
  • the recess formed in the coil-side yoke material greatly contributes to reducing the leakage flux.
  • the servo-type vibration detector of the invention according to claim 22 has a space between the permanent magnet and the pole piece portion, a coil bobbin in which the coil is housed and the fixing member, and an elastic member and the fixing member. At least one of the space or between the elastic member and the pole piece portion is configured to be fastened with a bolt of M0.5 to M1.0 mm.
  • the present invention applies an ultra-small bolt fastening method of M0.5 to M1.0 mm, which is applied in special fields such as watches, to an acceleration sensor composed of micro parts.
  • the reason why the ultra-small bolt fastening method can be applied is that it focuses on the feature of the MM type, which does not require ultra-fine wire processing and can simplify the component configuration of moving parts.
  • the product itself had to be discarded if it was rejected at the stage of quality evaluation at the time of mass production.
  • the sensor of the present invention many parts can be reused, and the yield at the time of mass production can be greatly improved.
  • the thickness of the adhesive interposed between the parts to be adhered and the non-uniformity of the thickness are factors that reduce the assembly accuracy.
  • high assembly accuracy can be ensured as long as the processing accuracy of each part can be obtained.
  • the operator since the operator does not need to be skilled, it is possible to reduce variations in product performance.
  • the elastic member is formed of a disk-shaped conductive material, and the inner peripheral portion and the outer peripheral portion of the elastic member are integrated with a thin plate material made of a non-conductive material. It has a modified structure.
  • the present invention combines the advantages of the adhesive method and the bolt fastening method.
  • a conductive material (metal) and an insulating material (ceramics, etc.) are previously integrated with an adhesive for parts that need to be electrically insulated. If the bolt fastening method is adopted through this process, the production process can be efficiently advanced with a simple configuration.
  • the servo-type vibration detector of the invention includes at least the movable member, and is equipped with a movable unit to which a movable side electrode is attached and a fixed side electrode arranged so as to face the movable side electrode.
  • the fixed unit is further provided, and the displacement detecting unit is formed so as to detect the capacitance formed between the movable side electrode and the fixed side electrode, and the movable unit and the fixed unit are formed.
  • a fitting structure is formed between the movable unit and the fixed unit so that the movable unit and the fixed unit can move in the relative axial direction, and the movable unit is formed.
  • a groove for adhesively fixing the unit and the fixed unit is formed on the outer surface of the movable unit and the fixed unit.
  • the present invention by applying the adhesive method at the final assembly stage, it is possible to make a structure in which the gap between the electrodes on the movable side and the fixed side can be adjusted to the optimum value while actually measuring the capacitance.
  • this method all the errors accumulated in the final process can be absorbed.
  • the two units can be fastened by irradiating the ultraviolet curable adhesive with an LED light to cure the adhesive.
  • the fixing member made of a conductive material, the bolt, the elastic member, and the elastic member are bonded and fixed with a thin plate made of a non-conductive member.
  • the non-conductive member is bolted to the fixing member, and the bolt head is configured to be electrically non-contact with the elastic member.
  • the elastic member (disk) is used as a conduction path for the capacitance signal between the electrodes, and the elastic member is electrically operated by using a metal bolt and a non-conductive member (for example, ceramics). It is fastened to the housing so as to be non-contact.
  • a minute capacitance signal can be transmitted without being affected by disturbance noise.
  • the elastic member is composed of a cantilever beam having one fixed end and the other free end, and the movable member is movable on the free end side of the cantilever beam. It is provided with a member.
  • the present invention applies a cantilever beam (pendulum structure) having one fixed end and the other free end to the elastic member. Since the cantilever beam structure enables low-rigidity support with a simple configuration, the resonance frequency (eigenvalue) of the moving part can be set sufficiently small.
  • the servo-type vibration detector of the invention uses a part of the cantilever beam as a conductive material and uses the signal of the displacement detection unit as a signal transmission path for connecting to the fixing member side.
  • the present invention utilizes the feature of the MM type that fixes the coil, and utilizes the point that only one capacitance signal is required as the electric signal extracted from the swinging movable side.
  • a plurality of signal transmission paths were formed on a cantilever beam made of a non-conductive material such as quartz glass by using a thin film forming technique.
  • a conductive (metal) material can be applied to the cantilever beam.
  • the magnetic connecting portion is a permanent magnet magnetized in the radial direction, and the pole piece portion arranged so as to maintain a gap with the inner peripheral surface of the permanent magnet.
  • the MY type acceleration sensor is configured from the outer peripheral surface of.
  • the present invention constitutes a magnetic circuit using a plurality of segment-type permanent magnets magnetized in the radial direction. Therefore, in a state where no current is applied to the force coil, no axial electromagnetic force is generated in the pole piece portion, and the pole piece portion can be kept in the same position.
  • the magnetic connection portion is connected to the permanent magnet magnetized in the axial direction and the magnetic pole surface of either the N pole or the S pole of the permanent magnet. It is composed of an arranged pole piece side yoke material and an inner peripheral surface of the pole piece portion arranged with a radial gap with respect to the outer peripheral surface of the pole piece side yoke material.
  • the present invention constitutes a magnetic circuit using a permanent magnet magnetized in the axial direction.
  • the magnetic circuit can be made into a simple configuration, and the performance of permanent magnets can be selected in a wide range. Since there are no restrictions on the size and shape of the permanent magnet, a wide range of demagnetization characteristics (holding force H c , saturation magnetic flux density B r), which are the most popular permanent magnet performance, can be selected. Since the permanent magnet performance has a margin, the void portion in the magnetic connection portion may be sufficiently large. This void becomes a magnetoresistance, but the performance of a permanent magnet sufficient to compensate for the loss can be obtained.
  • the servo-type vibration detector of the invention includes a fixing member, a movable member provided so as to be movable in a predetermined direction with respect to the fixing member, and configured to allow magnetic flux to flow inside, and the fixing member.
  • An elastic member that supports the movable member so as to be arranged via a gap portion, a displacement detection unit that detects a displacement of the movable member in a predetermined direction, and an origin of the movable member in the displacement detection unit.
  • a driving means for generating an electromagnetic force for returning the movable member to the origin position is provided, and the displacement detecting portion is provided on two electrode surfaces provided on the movable member.
  • a movable side electrode member having a Two sets of electrostatic capacity sensors are configured from a combination in which the electrode surfaces face each other, and the gap between the electrode surfaces of the two sets of electrostatic capacity sensors is out of phase due to the movement of the movable member in a predetermined direction.
  • the differential sensor is configured by arranging the movable side electrode member and the fixed side electrode member so as to change in the above direction and taking the difference between the output signals of the two sets of capacitance sensors.
  • the acceleration sensor by making the acceleration sensor a differential type, it is possible to realize a high-sensitivity sensor whose sensor output is not easily affected by disturbance signals such as noise and drift.
  • the absolute velocity signal and the absolute displacement signal obtained by completely integrating the acceleration output of the sensor of the present invention do not easily diverge. Therefore, when the sensor of the present invention is applied to an active vibration isolation table, in addition to the effect of improving the sensor sensitivity (for example, improving the positioning accuracy of the stage), a significant effect of improving the vibration isolation characteristics can be obtained in the low frequency region.
  • the vibration control device of the invention according to claim 32 is an absolute speed signal or 2 obtained by integrating the servo type vibration detector of the invention according to claim 31 and the acceleration signal output by the servo type vibration detector once. Absolute velocity feedback and / or absolute displacement feedback are applied to the vibration control device in order to obtain vibration isolation performance in the low frequency region by using the absolute displacement signal obtained by the rotational integration.
  • the noise and drift commonly added to the above two electrode outputs are canceled by taking the difference between the two sets of electrode outputs whose gaps change in opposite phases.
  • the absolute velocity signal in which the acceleration output is completely integrated and the absolute displacement signal do not diverge.
  • the acceleration sensor of this embodiment is applied to the active vibration isolation table, in addition to the effect of improving the sensor sensitivity (for example, improving the positioning accuracy of the stage), a significant effect of improving the vibration isolation characteristics can be obtained in the low frequency region.
  • the servo-type vibration detector of the invention includes a fixing member, a movable member provided so as to be movable in a predetermined direction with respect to the fixing member, and configured so that a magnetic flux flows inside, and the fixing member.
  • An elastic member that supports the movable member so as to be arranged via a gap portion, a displacement detection unit that detects a displacement of the movable member in a predetermined direction, and an origin of the movable member in the displacement detection unit.
  • a fixed-side yoke material provided with a driving means for generating an electromagnetic force for returning the movable member to the origin position when a relative displacement from the position is detected, and a fixed-side yoke material provided through the coil, and the fixed-side yoke.
  • the movable side is formed by forming a closed-loop magnetic circuit with the movable side yoke material arranged through the open end of the material and the gap, the fixed side yoke material, the gap portion, and the movable side yoke material to form an electromagnet.
  • the suction force generating means A for sucking the movable member including the yoke material to the coil side is used, and the suction force generating means B for generating the force in the direction opposite to the suction force generating means A by sandwiching the movable member is provided.
  • the driving means By arranging and controlling the current flowing through the coil, the driving means by Maxwell stress that moves the movable member in the axial direction is configured.
  • the present invention uses magnetic attraction due to Maxwell stress to drive the moving part.
  • the Maxwell stress has an overwhelmingly higher electromechanical conversion efficiency (thrust constant) of the generated force with respect to the input current than the Lorentz force, and is usually 20 times or more.
  • the acceleration sensor of the present embodiment can extremely increase the upper limit value of the measurable acceleration.
  • the yoke or the permanent magnet is configured to be movable while the coil is fixed, it is complicated like a conventional moving coil type servo type vibration detector. No complicated wiring process is required, and the mass production method can be greatly simplified and the production cost can be reduced.
  • FIG. 1a is an arrow view of AA in FIG. 1b
  • FIG. 1b is a front sectional view of the sensor body.
  • Model diagram of the magnetic circuit of the MM type accelerometer of the present invention Model diagram of the magnetic circuit of the conventional MC type accelerometer Graph of analysis results showing the relationship between the generated force F and the pole piece length L Graph showing the analysis result showing the relationship between the leakage coefficient ⁇ and the pole piece length L Graph showing the inertial mass m of the movable part with respect to the length L of the pole piece part Graph showing coil storage volume V C for pole piece length L
  • Control block diagram of the accelerometer used for theoretical analysis (1) Conventional MC type, (2) MM type of the present invention, (3) Graph comparing gain and phase characteristics for (1) to (3) above when only the inertial mass m is quadrupled in the conventional MC type specifications.
  • FIG. 20a is a front sectional view
  • FIG. 20b is a sectional view taken along the line AA of FIG. 20a.
  • FIGS. 22b and 22c are sectional views showing a segment type permanent magnet.
  • Front sectional view of the servo type accelerometer according to the tenth embodiment of the present invention The figure which shows that the differential servo type accelerometer according to Embodiment 10 can be composed of three units. A diagram showing the relationship between electrode output, noise and drift, and sensor acceleration output in the case of a conventional accelerometer. A diagram showing the relationship between two electrode outputs, noise and drift, and sensor acceleration output in the case of the acceleration sensor according to the tenth embodiment.
  • FIG. 28a is a front sectional view
  • FIG. 28b is a schematic view of a side surface of a pendulum which is one component constituting this sensor.
  • FIG. 41a is a front sectional view of a fixed side electrode unit
  • FIG. 41b is a front sectional view of a fixed side electrode unit. Front sectional view showing a state in which two units are fastened in the fifteenth embodiment.
  • FIG. 45a is a diagram showing the shape of a front spiral disk
  • FIG. 45b is a front sectional view of the acceleration sensor
  • FIG. 45c is a diagram showing the shape of a rear disk.
  • a servo-type accelerometer according to the 20th embodiment of the present invention is shown, FIG. 47a is a front sectional view, and FIG. 47b is an AA sectional view of FIG.
  • FIG. 47a Front sectional view of the servo type accelerometer according to the twenty-first embodiment of the present invention. Front sectional view of the servo type accelerometer according to the 22nd embodiment of the present invention. Front sectional view of the servo type accelerometer according to the 23rd embodiment of the present invention. Front sectional view of a servo-type accelerometer to which an optical sensor is applied to the present invention.
  • Model diagram of the conventional active vibration isolation table Model diagram showing the basic configuration and detection principle of a capacitive accelerometer
  • FIG. 55a is a front view showing the shape of a front disk-shaped spring
  • FIG. 55b is a front sectional view of FIG.
  • FIG. 55c Is an enlarged view of part A in Fig. 55b.
  • Front sectional view showing an example of a conventional rocking motion type acceleration sensor
  • FIG. 58 (a) shows one surface of the pendulum
  • FIG. 58 (b) shows the other surface.
  • the actuator part of the servo-type accelerometer forms a closed-loop magnetic circuit with three elements, that is, a "permanent magnet", a “coil”, and a "yoke material". If the "coil”, which is one of these three elements, is fixed, the fateful problem of the moving coil type (MC type), that is, the difficulty of wiring processing, which is the main cause of the decrease in yield, will be solved at once. To. Hereinafter, the present invention will be described separately in the following two steps. (I) Moving magnet type (MM type) accelerometer (II) Moving yoke type (MY type) accelerometer First, the above (I) will be described.
  • the servo type accelerometer is a moving coil type (MC type) in which the coil moves linearly in the axial direction or swings, whereas in this embodiment, the coil is fixed and the permanent magnet is in the axial direction. Move to.
  • MC type moving coil type
  • the MM type servo accelerometer is unprecedented in the past. The reason for this was that there was a stereotype (blind spot) that could be said to be an implicit premise that "the MM formula has a disadvantage in the transmission characteristics and high-speed response in the high frequency range because the inertial mass of the moving part increases.” Seem.
  • the present invention exploits this "blind spot" by the following ingenuity. That is, in this embodiment, (i) a magnetic circuit configuration that can reduce the weight of moving parts (ii) a magnetic pole shape that reduces the influence of leakage flux (iii) an increase in coil storage capacity is used to increase the generated force and generate heat.
  • a magnetic circuit configuration that can reduce the weight of moving parts
  • a magnetic pole shape that reduces the influence of leakage flux
  • an increase in coil storage capacity is used to increase the generated force and generate heat.
  • FIG. 1 shows an example of a servo-type acceleration sensor according to the first embodiment of the present invention
  • FIG. 1a is a spiral disk described later from the AA arrow view of FIG. 1b
  • FIG. 1b is a front sectional view of the sensor main body, which is an external view obtained by extracting only the sensor body.
  • 101 is a permanent magnet
  • 102 is a front pole piece portion
  • 103 is a cylindrical void portion (inertial mass adjusting portion described later) formed to reduce the weight of the front pole piece portion.
  • 104 is a rear-side pole piece portion
  • 105 is a coil-side yoke material
  • 106a is a force coil
  • 106b is a verification coil
  • 107 is a protruding portion formed on the inner surface of the coil-side yoke material.
  • Reference numeral 108 is a front side spiral disc spring (hereinafter, front side disc), and 109 is a rear side spiral disc spring (hereinafter, rear side disc). The front-side disc shown in FIG.
  • the movable side magnetic material member (movable side yoke material) is composed of a front side pole piece portion 102 and a rear side pole piece portion 104.
  • the fixed-side magnetic material member is the coil-side yoke material 105.
  • 110 is a movable side electrode
  • 111 is a fixed side electrode
  • 112a is a front side panel
  • 112b is a rear side panel
  • 113 is a central plate
  • 114 is a fastening member made of a non-conductive material that fastens the fixed side electrode and the front side panel. Is.
  • the movable side electrode 110 and the fixed side electrode 111 constitute a capacitance type displacement detection unit.
  • Reference numeral 115 is the inner peripheral surface of the coil-side yoke member 105, the coil mounting portions of the two coils (106a and 106b), and 116 is the coil facing surface of the front-side pole piece portion 102.
  • the force coil 106a and the verification coil 106b are bobbinless, and are mounted on the coil mounting portion 115 having a convex outer peripheral surface.
  • a radial magnetic gap portion 117 (first gap portion) is formed between the coil facing surface 116 and the coil mounting portion 115.
  • An annular gap 118 (a magnetic connecting portion which is a second gap) is provided between the protruding portion 107 of the coil-side yoke material and the rear-side pole piece portion 104 by a narrow gap.
  • a closed-loop magnetic circuit is formed by "permanent magnet 101-> front pole piece 102-> magnetic gap 117-> coil-side yoke material 105-> annular gap 118-> rear-side pole piece 104" as shown by the chain arrow. is doing.
  • the annular gap portion 118 shown in the chain line circle B has a gap set so that the magnetic resistance is sufficiently smaller than that of the magnetic gap portion 117.
  • the annular gap portion 118 is a magnetic connection portion for forming a closed-loop magnetic circuit in a magnetic circuit using a permanent magnet.
  • the Lorentz force which is an electromagnetic force
  • the force relationship between the fixed side and the moving side is relative, regardless of the type of driving principle. That is, if either the fixed side or the moving side is fixed, the other side moves.
  • a reaction force of Lorentz force that moves the movable portion in the axial direction is generated.
  • the movable portion of this embodiment is composed of a permanent magnet 101, a front pole piece portion 102, a rear side pole piece portion 104, and a movable side electrode 110.
  • 119a and 119b are leader wires of the force coil 106a
  • 120a and 120b are leader wires of the verification coil 106b.
  • These four lead wires pass through the coil-side yoke member 105 and the front-side panel 112a and are connected to a control circuit installed outside.
  • 121 is an inner peripheral side disc support ring
  • 121a is a cylindrical gap formed to reduce the weight of the inner peripheral side disc support ring
  • 122 is an outer peripheral side disc support ring.
  • the inner peripheral side disk support ring 121 and the outer peripheral side disk support ring 122 are made of a non-conductive material (insulating material).
  • the inner peripheral side disk support ring 121 can provide electrical insulation between the front side pole piece portion 102, which is a magnetic material, and the movable side electrode 110. An eddy current is generated on the surface of the pole piece portion, and the capacitance signal between the two electrodes can avoid the influence of this eddy current by this electrical insulation measure. Further, the outer peripheral side of the front disk 108 is electrically insulated from the coil side yoke member 105 by the outer peripheral side disk support ring 122. As the insulating material, mica (mica), porcelain (ceramics), glass and the like, which are inorganic solid insulating materials, can be applied.
  • the inner peripheral side disk support ring 121 is adhesively fixed between the movable side electrode 110, which is a conductive material, and the front side pole piece portion 102.
  • the inner peripheral side of the front disc 108 is held between the movable side electrode 110 and the inner peripheral side disc support ring 121.
  • the outer peripheral side of the front disk 108 is adhesively fixed to the outer peripheral disk support ring 122.
  • 123 is one of two conductors (leading wires) that detect the capacitance between the movable side electrode 110 and the fixed side electrode 111.
  • the end of the conducting wire 123 conducts with the disc-shaped spring 108 and is mounted in a groove (not shown) formed in the outer peripheral side disc support ring 122.
  • the front disk 108 also serves as a support for the movable portion and a conduction path for detecting the capacitance. That is, in order to detect a minute capacitance signal between the fixed side electrode 111 and the movable side electrode 110, the conduction path (front side disk 108, lead wire (lead wire) 123) connecting the movable side electrode 110 and the outside is Complete electrical insulation is achieved.
  • the force coil 106a and the verification coil 106 are arranged so as to wrap the permanent magnet 101 and the entire front pole piece portion 102 connecting the permanent magnets 101 in series from the outer peripheral side. Further, the annular void portion 118 having a magnetic resistance sufficiently smaller than that of the magnetic void portion 117 is arranged in the closed loop magnetic circuit.
  • the movable members that move in the axial direction are a permanent magnet 101, a front pole piece portion 102, a rear side pole piece portion 104, a movable side electrode 110, and an inner peripheral side disk support ring 121. Each movable member is provided with a cavity on the inner peripheral side in order to reduce the weight.
  • disc-shaped springs formed by a spiral curve were used for the front side and rear side discs 108 and 109 used in this embodiment. The same applies to this embodiment and the embodiments described later, but the shape of the spring is not limited to this spiral curve. From the characteristics required for the accelerometer, a spring structure and specifications that can obtain low rigidity and low resonance frequency may be selected. For example, a well-known cloud-shaped spring can be applied.
  • the axial length of the front pole piece portion 102 is L, and the axial length L is formed sufficiently long, and the front pole piece is formed.
  • a cylindrical void portion 103 (inertial mass adjusting portion) having a thin radial thickness is provided inside the portion. It should be noted that the following effects can be obtained by this configuration. That is, (1) The force constant (electrical / mechanical conversion efficiency) of the actuator can be increased. (2) The increase in the inertial mass of the moving part can be reduced. (3) Heat generation can be suppressed even if the number of coil turns is increased to increase the generated force.
  • FIG. 2 is a model diagram of the magnetic circuit of the MM type accelerometer of the present invention
  • FIG. 3 is a model diagram of the magnetic circuit of the conventional MC type accelerometer.
  • the code of each element in FIG. 2 corresponds to the code of each element in FIG. 1b.
  • the code of each element in FIG. 3 corresponds to the code of each element in FIG. 54.
  • the conventional MC type has only one void portion 29 forming a closed-loop magnetic circuit.
  • two gaps (117, 118) are required to form a closed-loop magnetic circuit, as shown in FIG.
  • the coil can be fixedly arranged in a magnetic field having a high magnetic flux density by providing a sub-vacancy portion (second void portion) as a magnetic connecting portion with respect to the main void portion (first void portion) in which the coil is interposed. Therefore, a large Lorentz force can be generated in this coil. Further, the gap of the first gap is set to ⁇ 1, the gap of the second gap is set to ⁇ 2, and ⁇ 1> ⁇ 2. By making the magnetic resistance of the magnetic connection portion sufficiently smaller than that of the first gap portion, the influence of the magnetic connection portion on the generated force can be reduced.
  • FIG. 4 is a graph showing the analysis result showing the relationship between the generated force F and the pole piece portion length L
  • FIG. 5 is a graph showing the analysis result showing the relationship between the leakage coefficient ⁇ and the pole piece portion length L.
  • the leakage coefficient ⁇ shows the ratio of the “total magnetic flux” to the “magnetic flux contributing to the generated force”, and the closer to ⁇ ⁇ 1, the larger the generated force. Is obtained.
  • the ratio of the effective magnetic flux (gap permeance) that passes vertically through the magnetic gap portion 117 to the leakage flux (leakage permeance) can be reduced.
  • the gap permeance is a magnetic flux that contributes to the generated force, and the leaked permeance does not contribute to the generated force. That is, according to the configuration of this embodiment, the generated force (electrical / mechanical conversion efficiency) for the same current can be increased.
  • the characteristic curve (1) is divided into a curve ⁇ and a curve ⁇ having greatly different gradients, and the intersection of the envelopes of each curve is defined as C. 0 ⁇ a range of L ⁇ L A, generated force F increases greatly with increasing pole piece portion length L.
  • the MC type sensor when the number of coil turns is increased and the length L is increased, the inertial mass also increases, so that the required generated force also increases. That is, the effect of increasing the length L is offset.
  • FIG. 6 is a graph showing the inertial mass m of the movable portion with respect to the length L of the pole piece portion.
  • the front pole piece portion is formed of a cylindrical shape having an outer diameter ⁇ D P and a thickness t in the radial direction.
  • FIG. 7 shows the coil storage volume V C with respect to the pole piece portion length L.
  • the radial gap of the magnetic gap 117 is 2.5 mm
  • the radial thickness of the coil housed in the magnetic gap 117 is 2 mm
  • the radial gap between the coil facing surface 116 and the coil is 0.5 mm.
  • the electrical resistance of the coil is proportional to the total length of the coil and inversely proportional to the cross-sectional area of the coil. Therefore, when the total coil length is multiplied by n, the electrical resistance does not increase if the coil cross-sectional area is multiplied by n and the coil alignment is multiplied by ⁇ n.
  • the coil storage area at this time may be ⁇ n ⁇ n.
  • linear motion type MM type which is the sensor of the present invention
  • conventional linear motion type moving sensor The basic performance of the coil type (hereinafter referred to as the linear motion type MC type) is evaluated by theoretical analysis.
  • Table 1 shows the specifications of the conventional direct-acting MC type and the sensor of the present invention (MM type) in comparison.
  • the inertial mass m is 1.25 g for the MC type and 5 g for the MM type.
  • inertial mass m 5g are (i) improved sensor sensitivity in the low frequency range, (ii) wideband frequency characteristics required for the active vibration isolation table, and (i) (ii) above. It is set from the condition that makes both. (Define the moving part mass m based on the mass m p of the permanent magnet)
  • Kpt Ks x Kc x Kp, where the position sensor sensitivity is Ks, the adjustment gain is Kc, and the proportional gain is Kp. This Kpt was set to be the same for the MM formula and the MC formula.
  • FIG. 8 is a control block diagram of the accelerometer used in the theoretical analysis.
  • the equations (1) to (3) showing the detection principle of the capacitance type acceleration sensor described above are replaced with the control block diagram.
  • FIG. 9 shows the specifications in Table 1, which are the following three cases: (1) conventional MC type, (2) MM type of the present invention, and (3) conventional MC type specifications in Table 1.
  • the gain and phase characteristics of the above (1) to (3) are compared.
  • the performance superiority or inferiority of the above three cases will be evaluated based on the gain characteristics on the premise that the device is mounted on the active vibration isolation table.
  • the gain characteristics of (1) and (2) do not change significantly.
  • phase characteristic near f 100 Hz (chain line circle A).
  • FIG. 10 is a comparison of the actuator generating force with respect to time for (1) the conventional MC type and (2) the MM type of the present invention in the specifications of Table 1.
  • the input acceleration is assumed to be a sine wave with an amplitude of 1.0 ⁇ 10 -6 m / s 2 (0.1 mGal).
  • the generated force is increased four times in proportion to the inertial mass as compared with the conventional MC formula. The effect of increasing the generated force due to the increase inertial mass can compensate for the weakness of the capacitance type, which reduces the sensitivity in the low frequency range.
  • FIG. 11 shows the specifications of Table 1 comparing the effects of mechanical noise on the sensor output for (1) the conventional MC type and (2) the MM type of the present invention. ..
  • the mechanical noise is a disturbance factor that hinders the smooth operation of the moving part.
  • a sinusoidal external force (mechanical noise) with an amplitude of 1.0 ⁇ 10 -6 N is applied to the output shaft of the actuator (see the control block diagram in FIG. 8).
  • the influence of the mechanical noise applied to the actuator on the sensor output is reduced to 1/4 as compared with the conventional type.
  • This effect is due to the fact that the increase in inertial mass increases the actuator generation force. That is, the weak point that the inertial mass of the moving part increases in the MM type as compared with the MC type indicates that it has an advantage against mechanical noise.
  • FIG. 12 shows the specifications in Table 1, which are the following three cases: (1) conventional MC type, (2) MM type of the present invention, and (3) conventional MC type specifications in Table 1 with inertial mass m.
  • the input acceleration is assumed to be a sine wave with an amplitude of 1.0 ⁇ 10 -6 m / s 2 (0.1 mGal).
  • the increase in coil current is small as compared with the conventional MC type.
  • the inertial mass m of the conventional MC type is quadrupled, the coil current increases in proportion to the inertial mass.
  • the reason for this is that in the present invention, the total length (number of turns) of the coil is increased by 1.6 times, and at the same time, the coil wire diameter is increased by 1.26 times.
  • a large coil storage space is provided by providing a sufficiently long cylindrical gap portion 103 (inertial mass adjusting portion having a length L) in the front pole piece portion 102. Because it was able to be formed.
  • the gap 103 has a cylindrical shape of a perfect circle, but the gap may not be a perfect circle because the purpose is to reduce the inertial mass. For example, it may be a polygonal shape or a shape having different inner diameters in the axial direction. Including these, we will call it a roughly cylindrical shape.
  • the difficulty of ultrafine wire processing which is a fateful weakness of the MC formula
  • the MM type of the present invention can obtain high frequency characteristics comparable to those of the conventional MC type. That is, the weak points of the MM formula are eliminated.
  • the influence of mechanical noise on the sensor output can be reduced to 1/4 as compared with the conventional MC type.
  • the effect of increasing the generated force due to the increase in inertial mass can compensate for the weakness of the capacitance type, in which the sensitivity decreases in the low frequency range.
  • a pole piece portion (102, 104) for forming a magnetic circuit is indispensable for the movable portion including the permanent magnet 101.
  • m p 1.52 g
  • the mass of the front pole piece portion 102 m 1 1.36 g
  • the mass of the rear side pole piece portion 104 m 2 0.63 g
  • the movable side electrode 111 and the inner peripheral side disk.
  • the upper limit value that can be set for the moving mass m will be considered.
  • the upper limit that can be set for the moving mass m has a great relation to the frequency bandwidth (resonance frequency f 0) of the accelerometer.
  • K PT is the product of position sensor sensitivity K S , adjustment gain K C , and proportional gain K P.
  • K t is the force constant of the actuator and R a is the electrical resistance of the coil. From the equation (5), the upper limit value m max of the moving part mass is determined from the resonance frequency f 0 (frequency bandwidth) required for the sensor.
  • the range of the mass of the moving part in which the present invention can be established as an acceleration sensor is m ⁇ m max .
  • FIG. 13 is a front sectional view of the servo type accelerometer according to the second embodiment of the present invention.
  • one of the features of the MM type accelerometer of the present invention is that complicated ultrafine wire processing, which can be said to be the fate of the MC type, is not required, and a significant cost reduction can be achieved in the production process.
  • the weak points of the MM type could be compensated for by devising the magnetic circuit and the shape of the parts constituting the magnetic circuit.
  • the present embodiment is a further thorough implementation of the basic concept of the present invention. That is, by selecting the component shape and the magnetic material, the inertial mass m of the moving part is close to that of the MC type, even though it is an MM type.
  • Reference numeral 351 is a front pole piece, 352 is a rear pole piece, and 353 is an inner peripheral side disc support ring.
  • Reference numeral 354 is a ring-shaped permanent magnet magnetized in the axial direction, and reference numeral 355 is a cylindrical void formed inside the front pole piece.
  • the front pole piece 351 is a main component constituting a magnetic circuit, and occupies a large proportion of the mass of the moving part.
  • permalloy which is a soft magnetic material and can be manufactured by press working, is used for the front pole piece.
  • Permalloy is a material with low coercive force and high magnetic permeability. Therefore, even if the thickness t of the cylindrical front pole piece is made sufficiently thin, the length L can be made sufficiently long without being affected by the magnetic resistance. As described above, as the length L of the front pole piece is longer, the influence of the leakage of magnetic flux on the generated force can be reduced, so that the generated force can be increased even with the same current. At the same time, since the coil storage volume can be increased, it is possible to select a coil specification (number of turns, wire diameter) that can suppress the heat generation of the coil.
  • the permanent magnet 354, the rear side pole piece 352, the inner peripheral side disc support ring 353, and the like are also hollow.
  • FIG. 14 is a front sectional view of the servo-type acceleration sensor according to the third embodiment of the present invention, and fully utilizes the above-mentioned advantages of the MM type. That is, contrary to the above-mentioned second embodiment, the inertial mass of the movable portion is thoroughly set to be large, and the sensor sensitivity in the low frequency range is significantly improved. However, the price is that the high frequency band is restricted.
  • 381 is a front pole piece
  • 382 is a rear pole piece
  • 383 is an inner peripheral side disc support member.
  • the front pole piece 381 and the rear pole piece 382 are movable side yoke materials. None of the components that make up the moving part form a cavity. The influence of using the front pole piece 381, which occupies a large proportion of the mass of the moving part, as a solid member is large.
  • an acceleration sensor (second embodiment) in which the inertial mass of the movable portion is thoroughly reduced in weight
  • an acceleration sensor in which the inertial mass of the movable portion is sufficiently increased (this embodiment), and the above (1).
  • an active vibration isolation / vibration suppression system that can cover from low frequencies to high frequencies can be realized (not shown).
  • FIG. 15 is a front sectional view of the servo type accelerometer according to the fourth embodiment of the present invention.
  • the closed-loop magnetic circuit is formed by providing an annular gap portion (for example, the chain line circle B in FIG. 1b) with a narrow gap.
  • the spiral disk-shaped spring itself is used as a member on which the magnetic circuit is formed, instead of the annular gap portion.
  • 401 is a rear side disk (second transmission part)
  • 402 is a front side disk made of a conductive material
  • 403 is a permanent magnet
  • 404 is a positioning pin, which are mounted in the center of the permanent magnet.
  • 405 is a front pole piece portion
  • 406 is an outer peripheral side disc support ring
  • 407 is an inner peripheral side disc support member
  • 408 is a coil side yoke material
  • 409 is a magnetic gap portion (first transmission portion).
  • a closed-loop magnetic circuit is formed by "permanent magnet 403-> front pole piece portion 405-> coil-side yoke material 408-> rear-side disk 401-> permanent magnet 403" as shown by the chain arrow.
  • the present embodiment is not limited to this, and other embodiments are the same, but the elastic support members discs 401 and 402 do not have to have a spiral shape, and may be, for example, a known cloud-shaped spring.
  • the rear side disc 401 and the front side disc 402 do not have to have the same shape and material.
  • an inner peripheral disk support member 407 made of a non-conductive material is interposed in order to electrically insulate the front pole piece portion 405.
  • the front disk 402 is preferably made of a non-magnetic material.
  • an outer peripheral side disk support ring 406 made of a non-conductive material is interposed in order to electrically insulate the coil side yoke material 408.
  • electrical insulation of the rear disk 401 is not required. According to this embodiment, which does not require a magnetic connection portion, a servo-type accelerometer can be realized with a simple configuration.
  • FIG. 16 is a front sectional view of the servo type accelerometer according to the fifth embodiment of the present invention.
  • 251 is a permanent magnet magnetized in the axial direction
  • 252 is a front pole piece portion
  • 253 is a space formed between the outer surface of the permanent magnet and the inner surface of the front pole piece.
  • 254 is a rear-side pole piece portion
  • 255 is a coil-side yoke material
  • 255a is a protruding portion formed on the inner surface of the coil-side yoke material
  • 256 is a force coil
  • 257 is a verification coil.
  • the coil mounting portion 266 on the inner peripheral surface of the side yoke material is formed with a coil facing surface in the front pole piece portion 252, and a radial magnetic gap portion 267 is formed between the coil facing surface 266 and the coil mounting portion 265.
  • the annular gap portion 268 due to a narrow gap is provided between the protruding portion 255a of the coil-side yoke material and the rear-side pole piece portion 254.
  • 269 is an outer peripheral side support ring
  • 270 is an inner peripheral side support ring.
  • the permanent magnet is housed inside a cylindrical gap portion 253, and one end surface is fixed to the front side end surface 271 of the front side pole piece. The other end face of the permanent magnet is fixed to the rear side pole piece.
  • FIG. 17 is a front sectional view of the servo type accelerometer according to the sixth embodiment of the present invention.
  • a magnetic path shape that can improve the heat dissipation effect and reduce the leakage flux by using a coil bobbin made of a material with good thermal conductivity is constructed. That is, both the effect of reducing the sensor noise leading to the thermal noise and the improvement of the generating force of the actuator are achieved at the same time.
  • 201 is a permanent magnet magnetized in the axial direction
  • 202 is a front pole piece
  • 203 is a cylindrical gap formed inside the front pole piece
  • 204 is a rear pole piece
  • 205 is a rear pole piece.
  • 206a is a force coil
  • 206b is a test coil.
  • 207 is a protruding portion formed on the inner surface of the coil side yoke material
  • 208 is a front side disk
  • 209 is a rear side disk
  • 210 is a movable side electrode
  • 211 is a fixed side electrode
  • 212a is a front side panel
  • 212b is a rear side.
  • Panel 213 is a central plate, 214 is a fastening member, 215 is a coil mounting portion on the inner peripheral surface of the coil side yoke material, 216 is a coil facing surface in the front side pole piece portion 202, coil facing surface 216 and a coil mounting portion 215. A magnetic void 217 in the radial direction is formed between them. Similar to the above-described embodiment, the annular gap portion 218 is provided between the protruding portion 207 of the coil-side yoke material and the rear-side pole piece portion 204 due to a narrow gap.
  • Reference numeral 219 is an outer peripheral side support ring, and reference numeral 220 is an inner peripheral side support member.
  • the coil bobbin 221 is a coil bobbin, 223 is a recessed portion formed between the outer peripheral portion of the coil bobbin and the yoke material 201 on the coil side, and in the embodiment, the coil bobbin 221 is made of a non-magnetic material and an aluminum material having good thermal conductivity.
  • FIG. 18 shows the flow of magnetic flux in this embodiment by an arrow (chain line).
  • the non-magnetic members that make up the accelerometer are displayed as an image of "sand".
  • Members made of magnetic materials are indicated by ordinary “diagonal lines”. That is, the front side panel 212a, the rear side panel 212b, the coil bobbin 221 and the force coil 206a, the verification coil 206b, the outer peripheral side support ring 220, the inner peripheral side support member 220, the front side disk 208, the rear side disk 209, and the movable side electrode 210. Is composed of non-magnetic members.
  • the magnetic flux A that flows vertically through the magnetic gap portion 217 effectively contributes to the generated force of this actuator.
  • the magnetic fluxes B 1 and B 2 flowing from the corner of the coil facing surface 216 to the corner of the inner peripheral surface 205 of the coil side yoke material are leakage fluxes and do not contribute to the generated force.
  • the ease of flow of magnetic flux in a magnetic circuit is expressed by the permeance, which is the reciprocal of the reluctance. That is, let P g be the gap permeance of the magnetic path through which the magnetic flux A flows.
  • the leakage permeance of the magnetic path through which the leakage fluxes B 1 and B 2 flow is P f1 and P f2 , respectively.
  • the recessed portion 223 formed in the coil-side yoke material greatly contributes to reducing the leakage flux B 2 and reducing the leakage permeance P f 2.
  • the recessed portion 223 is formed on the inner surface of the coil-side yoke member in the vicinity of the axial end surface of the coil so that the radial distance between the movable portion and the fixing member is longer than that of both ends.
  • the effect of reducing the leakage flux due to the recessed portion 223 is not limited to this embodiment. Further, since all the peripheral members through which the leakage flux B 1 flows are non-magnetic materials, the leakage permeance P f 1 can be made sufficiently small.
  • FIG. 19 shows the heat flow in this embodiment by an arrow (chain line).
  • the outer peripheral surface of the coil bobbin 221 is in close contact with the inner peripheral surface 215 of the coil-side yoke material. It extends so as to cover the recessed portion 223 and is in close contact with the side surface of the protruding portion 207 and the inner peripheral surface 215a. Therefore, as shown by the arrow in the figure, the heat generated by the coil can be easily dissipated to the front side panel 212a and the rear side panel 212b via the aluminum bobbin 221 ⁇ the coil side yoke material 205.
  • the coil bobbin 17 and the coils 16a and 16b are installed in a floating state in the air.
  • the coil bobbin support members 18 and 19 that support the coil bobbin 17 are non-magnetic and non-conductive materials. Further, since the disc-shaped springs 20 and 21 are thin plate materials, the heat dissipation effect of the coil due to heat conduction cannot be expected.
  • FIG. 20a is a front sectional view of the servo type acceleration sensor according to the seventh embodiment of the present invention
  • FIG. 20b is an AA sectional view of FIG. 20a.
  • the above-described embodiment is a sensor structure using permanent magnets all magnetized in the axial direction.
  • a magnetic circuit is configured by using a plurality of permanent magnets called a segment type magnetized in the radial direction.
  • 451 is a permanent magnet and 452 is a front pole piece.
  • the permanent magnet is composed of segment type permanent magnets 451a, 451b, 451c, and 451d magnetized in the radial direction, and is mounted on the front pole piece portion 452.
  • Reference numeral 453 is a cylindrical gap portion formed to reduce the weight of the front pole piece portion.
  • Reference numeral 454 is a rear side pole piece portion, 455 is a coil side yoke material, and 456 is a force coil, or a coil portion composed of a force coil and a verification coil.
  • 457 is a protrusion formed on the inner surface of the coil side yoke material
  • 458 is a front side disk
  • 459 is a rear side disk
  • 460 is a movable side electrode
  • 461 is a fixed side electrode
  • 462a is a front side panel
  • 462b is a rear side.
  • the panel, 463 is a central plate
  • 464 is a fastening member
  • 465 is a coil mounting portion on the inner peripheral surface of the coil-side yoke material
  • 466 is an outer peripheral surface of a permanent magnet, which corresponds to a coil facing surface.
  • a radial magnetic gap 467 is formed between the coil facing surface 466 and the coil mounting portion 465.
  • the annular gap portion 468 due to a narrow gap is provided between the protruding portion 457 of the coil-side yoke material and the rear-side pole piece portion 454.
  • 469 is an outer peripheral side support ring
  • 470 is an inner peripheral side support ring.
  • FIG. 21 is a front sectional view of the servo type accelerometer according to the eighth embodiment of the present invention.
  • the closed-loop magnetic circuit is formed by providing an annular gap portion (for example, the chain line circle B in FIG. 1b) with a narrow gap.
  • a magnetic connecting portion for forming a closed-loop magnetic circuit is configured by a combination of a segment-type permanent magnet magnetized in the radial direction and a fixed-side coil instead of the annular gap portion.
  • 651 is a segment type permanent magnet (auxiliary magnet), and 652 is a rear side pole piece part.
  • the segment type permanent magnet is composed of a plurality of segment type permanent magnets (see FIG. 20b) magnetized in the radial direction as in the seventh embodiment, and is mounted on the rear side pole piece portion 652.
  • Reference numeral 653 is a cylindrical gap portion formed to reduce the weight of the rear side pole piece portion.
  • 654 is a front pole piece portion
  • 655 is a permanent magnet magnetized in the axial direction
  • 656 is a front end surface of the front pole piece
  • 657 is a cylindrical gap portion formed inside the front pole piece. Is.
  • the permanent magnet 655 is housed inside the cylindrical gap portion 657, and one end surface is fixed to the front side end surface 656 of the front side pole piece. The other end face of the permanent magnet is fixed to the rear side pole piece. Similar to the fifth embodiment, the present embodiment also utilizes the cylindrical gap portion 657 of the front pole piece portion 654 and arranges the permanent magnet 655 in the gap portion in order to make the sensor body compact. There is.
  • 658 is the coil side yoke material
  • 659 is the front side force coil
  • 660 is the rear side force coil (auxiliary coil)
  • 661 is the verification coil part.
  • 662 is the front side disk
  • 663 is the rear side disk
  • 664 is the movable side electrode
  • 665 is the fixed side electrode
  • 666a is the front side panel
  • 666b is the rear side panel
  • 667 is the center plate
  • 668 is the fastening member
  • 669 is the coil.
  • the coil mounting portion on the inner peripheral surface of the side yoke material, 670 is the coil opposing surface (outer peripheral surface of the front pole piece portion), 671 is the magnetic gap portion, 672 is the outer peripheral side support ring, and 673 is the inner peripheral side support ring. ..
  • the magnetic connection portion is composed of a magnet magnetized in the radial direction and a fixed coil, both the front side and the rear side function as voice coil motors, so that the generated force can be improved.
  • the radial gap of the magnetic gap portion 671 is 2.5 mm, and the radial gap between the coil facing surface 670 and the coil is about 0.5 mm. Therefore, it is easier to assemble at the time of mass production as compared with the case where the annular gap portion is formed by a narrow gap (for example, the annular gap portion 118 of the first embodiment).
  • FIGS. 22b and 22c are sectional views showing a segment type permanent magnet magnetized in the radial direction used in the present embodiment.
  • the front permanent magnet is composed of a segment type magnet magnetized in the radial direction
  • the magnetic connection portion is also composed of a segment type magnet magnetized in the radial direction and a fixed coil. .. Since both the front side and the rear side function as voice coil motors, the generated power can be improved.
  • 701 is a front side permanent magnet
  • 702 is a rear side permanent magnet
  • 703 is a pole piece part (movable side yoke material).
  • Both the front side permanent magnet and the rear side permanent magnet are composed of a plurality of segment type permanent magnets magnetized in the radial direction, and are mounted on the pole piece portion 703. As shown in FIGS. 22b and 22c, the radial magnetizing directions of the permanent magnets are opposite.
  • 704 is the gap portion of the pole piece portion
  • 705 is the front side disk
  • 706 is the rear side disk
  • 707 is the movable side electrode
  • 708 is the fixed side electrode
  • 709a is the front side panel
  • 709b is the rear side panel
  • 710 is the center plate.
  • 711 is a fastening member
  • 712 is a coil-side yoke material
  • 713 is a coil bobbin
  • 714 is a front-side coil
  • 715 is a rear-side coil.
  • 716 is the outer peripheral side support ring
  • 717 is the inner peripheral side support ring
  • 718 is the front end surface of the pole piece portion
  • 719 is the rear side end surface of the pole piece portion
  • 720 is the support ring of the rear side disc spring
  • 721 is the support ring of the rear side disc spring.
  • It is a coil mounting portion which is an inner peripheral surface of the coil side yoke material 712.
  • 722a and 722b are magnetic gaps formed between the coil mounting portion and the two permanent magnets on the front side and the rear side.
  • a closed-loop magnetic circuit is formed by "permanent magnet 701-> coil side yoke material 712-> permanent magnet 702-> pole piece portion 703-> permanent magnet 713" as shown by the arrow of the chain wire.
  • the space formed by the rear-side permanent magnet and the rear-side coil is the magnetic connection portion.
  • both the front side and the rear side function as voice coil motors, so that the generated force can be improved.
  • the radial gap between the magnetic gap portions 722a and 722b is 2.5 mm, and the radial gap between the two permanent magnet outer peripheral surfaces and the coil bobbin is about 0.5 mm. Therefore, it is easier to assemble at the time of mass production as compared with the case where the annular gap portion is formed by a narrow gap (for example, the annular gap portion 118 of the first embodiment).
  • FIG. 23 is a front sectional view of the differential servo type acceleration sensor according to the tenth embodiment of the present invention. That is, paying attention to the structural feature of the direct-acting MM type in which both the left and right output shafts are open ends, differential static electricity is provided by providing electrodes for detecting capacitance at two locations on the left and right. It constitutes a capacitive sensor. By making the accelerometer differential, it is possible to realize a high-resolution sensor whose sensor output is not easily affected by disturbance signals such as noise and drift.
  • structure 301 is a permanent magnet
  • 302 is a front pole piece portion
  • 303 is a cylindrical void portion (inertial mass adjusting portion).
  • 304 is a rear-side pole piece portion
  • 305 is a coil-side yoke material
  • 306a is a force coil
  • 306b is a verification coil
  • 307 is a protruding portion formed on the inner surface of the coil-side yoke material.
  • Reference numeral 308 is a front side disk
  • reference numeral 309 is a rear side disk.
  • 310a is a front movable side electrode
  • 311a is a front fixed side electrode
  • 310b is a rear movable side electrode
  • 311b is a rear fixed side electrode.
  • 312a is the front side panel
  • 312b is the rear side panel
  • 313a is the front side central plate
  • 313b is the rear side central plate
  • 314a is the front side fastening member
  • 314b is the rear side fastening member.
  • Reference numeral 315 is an inner peripheral surface of the coil-side yoke member 305
  • 316 is a coil facing surface of the front pole piece portion
  • 317 is a radial magnetic gap formed between the coil facing surface 316 and the coil mounting portion 315.
  • An annular gap portion 318 due to a narrow gap is provided between the protruding portion 307 of the coil-side yoke material and the rear-side pole piece portion 304.
  • annular gap portion 318 has a narrow gap in which the magnetic resistance is sufficiently smaller than that of the magnetic gap portion 317.
  • a closed loop magnetic circuit is formed by "permanent magnet 301-> front pole piece portion 302-> magnetic gap portion 317-> coil side yoke material 305-> annular gap portion 318-> rear side pole piece portion 304". ..
  • the lead wires of the force coil 306a and the verification coil 306b pass through the coil side yoke member 305 and the front side panel 312a and are connected to the control circuit installed outside, as in the first embodiment (not shown). ..
  • 319a is a front side disk inner peripheral side support ring
  • 319b is a rear side disk inner peripheral side support ring
  • 320a is a front side disk outer peripheral side support ring
  • 320b is a rear side disk outer peripheral side support ring.
  • the four rings are made of a non-conductive material.
  • the method of fastening the front disc 308 and the rear disc 309 is the same as in the first embodiment. Further, the method of connecting the conductor wire for detecting the capacitance between the movable electrode and the fixed electrode and the outside is the same as that of the first embodiment (not shown).
  • FIG. 24 is a diagram showing that the differential servo type acceleration sensor according to the present embodiment can be configured by three units.
  • 330 is a front side unit
  • 331 is a drive unit
  • 332 is a rear side unit.
  • Each unit can be mounted as an independent unit.
  • the three units are united as shown by the arrows in the figure. After coalescence, the gap between the movable electrode and the fixed electrode on the front side and the gap between the movable electrode and the fixed electrode on the rear side may be adjusted.
  • the servo-type accelerometer of the present invention is extremely easy to select between a differential type and a non-differential type as compared with a conventional accelerometer.
  • the non-differential embodiment 1 FIG.
  • the adjustment between the electrode gaps performed at the final stage of mass production that is, the adjustment of the gap between the rear side movable side electrode 310b and the rear side fixed side electrode 311b can be performed independently of the front side. For example, after finishing the adjustment on the front side, the adjustment on the rear side may be performed.
  • FIG. 25 shows the relationship between the electrode output, noise and drift, and the sensor acceleration output in the case of the conventional acceleration sensor (see FIG. 54).
  • the electrode output is obtained by detecting the capacitance determined by the gap between the movable electrode 24 and the fixed electrode 25.
  • the noise and drift graph A is a sine wave plus a small positive bias value.
  • the sensor acceleration output (graph C) is the result of noise and drift (graph A) being applied to the electrode output (graph B).
  • FIG. 26 shows the relationship between the two electrode outputs, noise and drift, and the sensor acceleration output in the case of the acceleration sensor according to the present embodiment.
  • the electrode output B f on the front side detects the capacitance determined by the gap between the movable electrode 310 a and the fixed electrode 311 a
  • the electrode output B r on the rear side detects the capacitance determined by the gap between the movable electrode 310 b and the fixed electrode 311 b.
  • the front side electrode output B f ⁇ C f and the rear side electrode output B r ⁇ C r As a result, the acceleration output C s of the differential sensor becomes a waveform in which noise and drift are cancelled.
  • the absolute velocity signal D in which the acceleration output is completely integrated and the absolute displacement signal (not shown) do not diverge. Therefore, when the acceleration sensor of this embodiment is applied to the active vibration isolation table, in addition to the effect of improving the sensor sensitivity (for example, improving the positioning accuracy of the stage), a significant effect of improving the vibration isolation characteristics can be obtained in the low frequency region. ..
  • FIG. 27 is a front sectional view of the differential servo type acceleration sensor according to the eleventh embodiment of the present invention. Similar to the above-described 10th embodiment, the differential capacitance type sensor is configured by providing electrodes for detecting the capacitance at two positions on the left and right. Further, as in the ninth embodiment, the front permanent magnet is composed of a segment type magnet magnetized in the radial direction, and the magnetic connection portion is also composed of a segment type magnet magnetized in the radial direction and a fixed coil. There is.
  • 801 is a front side permanent magnet
  • 802 is a rear side permanent magnet
  • 803 is a pole piece part
  • 804 is a gap part of the pole piece part
  • 805 is a front side disk
  • 806 is a rear side disk
  • 807 is a front side movable electrode
  • 808 Is the front side fixed electrode
  • 809a is the front side panel
  • 809b is the rear side panel
  • 810 is the front side center plate
  • 811 is the front side fastening member
  • 812 is the coil side yoke material
  • 813 is the coil bobbin
  • 814 is the front side coil
  • 815 Is the rear side coil.
  • 816 is a front outer peripheral support ring
  • 817 is a front inner peripheral support ring
  • 818 is a front end surface of the pole piece
  • 819 is a rear end surface of the pole piece portion
  • 820 is an outer peripheral support ring of the rear side disk
  • 821 Is a coil mounting portion which is an inner peripheral surface of the coil-side yoke material
  • 822 is a magnetic gap portion formed between the coil mounting portion and two permanent magnets.
  • 823 is a rear side movable electrode
  • 824 is a rear side fixed electrode
  • 825 is a rear side central plate
  • 826 is a rear side fastening member
  • 827 is a rear side inner peripheral support ring.
  • FIG. 28 shows a swinging motion servo type acceleration sensor according to the twelfth embodiment of the present invention
  • FIG. 28a is a front sectional view
  • FIG. 28b is a schematic view of a side surface of a pendulum which is one component constituting this sensor. Is.
  • the magnetic circuit including the permanent magnet is configured symmetrically, the right side component will be described first.
  • 901a is a permanent magnet
  • 902a is a front pole piece
  • 903a is a cylindrical gap formed to reduce the weight of this front pole piece
  • 904a is a rear pole piece
  • 905a is a coil side yoke material.
  • 906a is an electromagnetic coil
  • 907a is a coil bobbin
  • 908a is a protruding portion formed on the inner surface of the coil-side yoke material.
  • the front pole piece portion 902a and the rear side pole piece portion 904a are movable side yoke materials.
  • 909 is a pendulum made of a non-magnetic and conductive material.
  • This pendulum is composed of a cantilever beam having one fixed end and the other free end, and a movable portion is provided on the free end side of the cantilever beam.
  • Reference numeral 910 is a housing having a tubular cavity at the top. This housing is made of non-magnetic material.
  • Reference numeral 911a is a plate material formed of an insulating material at the lower end of the pendulum. The pendulum is fixed while being sandwiched between the plate material 911a and the plate material 911b.
  • Reference numeral 912 is a hinge portion. The hinge portion determines the spring rigidity of the entire pendulum that swings.
  • Reference numeral 913a is a movable side electrode formed on the pendulum, and reference numeral 914a is a fixed side electrode.
  • the pendulum 909 which is a conductive material, also serves as a conducting wire as a common ground for connecting the detection signal of the capacitance between the left and right electrodes to the control circuit.
  • 915a is the coil facing surface of the pole piece 902a
  • 916a is the coil mounting surface.
  • a radial magnetic gap 917a is formed between the coil facing surface 915a and the coil mounting surface 916a.
  • An annular gap portion 918a due to a narrow gap is provided between the protruding portion 908a of the coil-side yoke material and the rear-side pole piece portion 904a.
  • the closed-loop magnetic circuit (permanent magnet 901a ⁇ front side pole piece portion 902a ⁇ magnetic gap portion 917a ⁇ coil side yoke material 905a ⁇ annular gap portion 918a ⁇ rear side pole piece portion 904a” (Not shown) is formed.
  • the gap of the annular gap portion 918a is set so that the magnetic resistance is sufficiently smaller than that of the magnetic gap portion 917a.
  • the annular gap portion is a magnetic connection portion for forming a closed-loop magnetic circuit in a magnetic circuit using a permanent magnet.
  • the leader wire for transmitting and receiving signals between the electromagnetic coil 906a and the control circuit installed outside is provided by utilizing the through hole formed in the coil side yoke member 905a and the housing 910 as in the first embodiment described above. (Not shown).
  • Reference numeral 920 denotes a control circuit provided in the lower gap portion of the housing 910.
  • each member is symmetrically configured with the pendulum 909 as the central axis.
  • the attachment symbol of the right side member is a and the attachment symbol of the left side member is b.
  • the electromagnetic coil 906a is arranged so as to wrap the permanent magnet 901a and the entire front pole piece portion 902a connecting the permanent magnets in series from the outer peripheral side, as in the first embodiment described above. ..
  • an annular gap portion 918a having a magnetic resistance sufficiently smaller than that of the magnetic gap portion 917a is arranged in the closed loop magnetic circuit.
  • the movable members that move in the axial direction are a permanent magnet 901a, a front pole piece portion 902a, and a rear side pole piece portion 904a.
  • FIG. 29 shows an example of the method of assembling the acceleration sensor according to the present embodiment.
  • the configuration of the linear accelerometer according to the first to eleventh embodiments described above can be applied to the components of the magnetic circuit.
  • the magnetic connection portion may be a combination of a segment type permanent magnet magnetized in the radial direction and a fixed side coil instead of the annular gap portion.
  • the pendulum 909 can use a conductive metal material.
  • a non-conductive material such as quartz glass is used for the pendulum 590a.
  • a conduction path for processing a plurality of independent signals was formed by a thin film in which gold (Au) was sputtered or vacuum-deposited.
  • the signal sent and received from the movable portion to the fixed side may be only the common ground of the left and right electrode signals. Therefore, the expensive sputtering equipment required in the conventional rocking type MC type (FIG. 56) production process is not required, and the production process can be greatly simplified and the cost can be reduced.
  • the common ground contact may be provided by using the pendulum fixing portions 911a and 911b (not shown).
  • FIG. 30 shows a oscillating motion type servo-type accelerometer according to the thirteenth embodiment of the present invention.
  • the above-mentioned embodiment 12 is simplified, and the capacitance detection electrode is composed of only one set.
  • 951 is a permanent magnet
  • 952 is a front pole piece part
  • 953 is a rear side pole piece part
  • 954 is a coil side yoke material
  • 955 is a force coil
  • 956 is a coil bobbin
  • 957 is formed on the inner surface of the coil side yoke material. It is a protruding part.
  • 958 is a pendulum made of a non-magnetic and conductive material
  • 959 is a rear-side housing of a non-magnetic material having a tubular cavity at the top
  • 960 is the fixed part of the pendulum
  • 961a and 961b are. It is a plate material formed of an insulating material at the lower end of the pendulum.
  • the fixing portion 960 of the pendulum is fixed while being sandwiched between the plate material 961a and the plate material 961b.
  • Reference numeral 962 is a hinge portion (elastically deformed portion). The hinge portion determines the spring rigidity of the entire pendulum that swings.
  • Reference numeral 963 is a movable side electrode formed at the upper end of the pendulum, and reference numeral 964 is a fixed side electrode.
  • the pendulum 958 which is a conductive material, also serves as a conduction path as a common ground for connecting the detection signal of the capacitance between the left and right electrodes to the control circuit.
  • the convex member 965 is a convex member made of an insulating material, and is adhesively fixed to the pendulum 958 at the upper part of the pendulum 958.
  • the convex member 965 is bonded and fitted with the front pole piece portion 952. Since the convex member is an insulating material, the front pole piece portion 952 and the pendulum 958 can maintain electrical insulation.
  • the annular gap 966 is a magnetic void and 967 is an annular void.
  • the annular gap is set so that the magnetic resistance is sufficiently smaller than that of the magnetic gap 966.
  • the annular gap portion is a magnetic connection portion for forming a closed-loop magnetic circuit in a magnetic circuit using a permanent magnet. Similar to the first and twelfth embodiments described above, by "permanent magnet 951 ⁇ front pole piece portion 952 ⁇ magnetic gap portion 966 ⁇ coil side yoke material 954 ⁇ annular gap portion 967 ⁇ rear side pole piece portion 953". , Forming a closed-loop magnetic circuit (not shown).
  • Reference numeral 968 is a rear side housing made of a non-magnetic material, in which a central plate 969 and a fixed side electrode 964 are fastened by a fastening member 970 at the upper portion.
  • Reference numeral 971 is a control circuit provided in the lower gap portion of the rear side housing 959.
  • the linear motion type has the moving direction of the movable part as the axis.
  • the spring is arranged in the circumferential direction of this axis.
  • the oscillating motion type has a structure in which the movable portion is supported by a cantilever beam having one end as a fixed end and the other as a free end. There is no difference between the linear motion type and the swing motion type in that the gap between the fixed electrode and the movable electrode is detected.
  • a magnetic circuit is formed by using the method of mounting the coil bobbin having good thermal conductivity shown in the sixth embodiment, the seventh embodiment, and the segment type magnet magnetized in the radial direction shown in the eighth embodiment. The method of doing so can also be applied.
  • FIG. 31 shows a servo-type acceleration sensor according to the fourteenth embodiment of the present invention, and shows a structure in which many parts constituting the sensor are bolted together.
  • 32 to 41 show an assembly process of the present embodiment sensor.
  • the conventional servo-type MC type accelerometer is configured by an adhesive method as shown in the examples of FIGS. 54 and 56.
  • the main reasons are (1) the shape of the part is micro, (2) it is necessary to reduce the weight of the moving part, and the above (1) and (2) are the main reasons.
  • it is difficult to construct by the bolt fastening method because of the complicated configuration that requires "cutting, insulation, and soldering" of the disc spring that supports both ends of the movable part.
  • the product was constructed by the adhesive method, the product itself had to be discarded if it was rejected at the stage of quality evaluation at the time of mass production.
  • a servo-type accelerometer composed of micro parts is applied with a microbolt fastening method of M0.5 to M1.0 mm, which is applied in special fields such as watches.
  • the outer diameter of the servo-type accelerometer to which the present invention is applied is about ⁇ 25 mm, which is smaller than the outer diameter of a 500-yen coin.
  • the reason why the bolt fastening method can be applied in this embodiment is focused on the feature of the MM type, which does not require ultra-fine wire processing and can simplify the component configuration of moving parts.
  • accelerometer many parts can be reused, and the yield at the time of mass production can be greatly improved.
  • the thickness of the adhesive interposed between the parts to be adhered and the non-uniformity of the thickness are factors that reduce the assembly accuracy.
  • the bolt fastening method high assembly accuracy can be ensured as long as the processing accuracy of each part can be obtained.
  • the operator since the operator does not need to be skilled, it is possible to reduce variations in product performance.
  • 751 is a permanent magnet having a hollow portion
  • 752 is a front pole piece portion
  • 753 is a cylindrical gap portion
  • 754 is a rear side pole piece portion
  • 755 is a coil side.
  • 756a is a force coil
  • 756b is a test coil
  • 757 is a protrusion formed on the rear side inner surface of the coil side yoke material.
  • 758 is the front side disk
  • 759 is the rear side disk
  • 760 is the movable side electrode
  • 761 is the fixed side electrode
  • 762a is the front side panel
  • 762b is the rear side panel
  • 763 is the center plate
  • 764 is the fixed side electrode and the front side.
  • It is a fastening member made of a non-conductive material for the side panel.
  • 765 is a coil bobbin
  • 766 is a coil bobbin mounting portion formed on the inner surface of the coil side yoke material
  • 767 is a coil facing surface which is an outer surface of the front side pole piece portion.
  • a radial magnetic gap 768 is formed between the coil facing surface 767 and the coil bobbin mounting portion 766.
  • An annular gap portion (magnetic connection portion) 769 due to a narrow gap is provided between the protruding portion 757 of the coil-side yoke material and the rear-side pole piece portion 7544.
  • 770 is an inner peripheral side disk support member
  • 771 is an outer peripheral side disk support member.
  • the two disc support members 770 and 771 are made of a non-conductive material (insulating material).
  • Reference numeral 772 is a ring-shaped nut made of a metal material mounted on one end surface of the inner peripheral side disc support member 770.
  • each fastening bolt 773a is a bolt for fastening three parts, a movable electrode 760, an inner peripheral side disk support member 770, and a ring-shaped nut 772.
  • the front disk 758 is sandwiched between the movable electrode 760 and the inner peripheral disk support member 770.
  • Reference numeral 773b is a bolt for fixing the outer peripheral side disk support member 771 to the coil side yoke member 755. As will be described later, the front disk 758 is adhesively fixed to the outer peripheral disk support member. Therefore, the bolt 773b has a role of fixing the outer peripheral end of the front disk 758.
  • 773c is a bolt that fastens the three parts of the front pole piece portion 752, the permanent magnet 751, and the rear side pole piece portion 754.
  • 773d is a bolt that fastens the outer peripheral portion of the rear side disc 759 and the coil side yoke member 755, and 773e is a bolt that fastens the inner peripheral portion of the rear side disc 759 and the rear side pole piece portion 754.
  • 773f is a bolt for fastening the coil bobbin 765 to the coil side yoke member 755.
  • 773g is a bolt for fastening the front side panel 762a and the rear side panel 762b.
  • FIGS. 32 to 34 show the assembly preparation stage, and in Step 1, the outer peripheral side disk support member 771 and the front side disk 758 made of ceramic are adhesively fixed at the portion of the chain line circle A. In Step 2, the inner peripheral side disk support member 770 made of ceramic and the ring-shaped nut 772 made of metal are adhesively fixed at the position of the chain wire circle B. In Step 3, the component in which the inner peripheral side disk support member 770 and the ring-shaped nut 772 are integrated is adhesively fixed to the opening of the front side pole piece portion 752.
  • FIGS. 35 to 36 show a process of mounting the coil bobbin 765 and processing the coil leader wire.
  • 774 is a leader wire of the force coil 756a and the test coil 756b
  • 775 is an inner groove formed on the inner surface of the coil side yoke material 755
  • 776 is a through hole formed in the radial direction of the coil side yoke material
  • 777 is the coil. It is an outer groove portion formed on the outer peripheral side of the side yoke material.
  • the inner groove portion 775, the through hole 776, and the outer groove portion 777 are not shown in FIG. 31.
  • Step 4 the coil bobbin 765 is inserted into the coil side yoke material, and at the same time, the tip portion of the coil leader wire 774 is pulled out to the outside by using the inner groove portion, the through hole, and the outer groove portion.
  • Step 5 the coil bobbin 765 is fastened to the coil side yoke member 755 by the bolt 773f.
  • FIG. 37 shows the shape of the front side disk 758 applied to the present embodiment.
  • 778 is a protruding end portion
  • 779 is a through hole formed in this protruding end portion.
  • FIG. 38a is a diagram showing a state in which the front pole piece portion 752 is mounted inside the coil side yoke member 755.
  • FIG. 38b is a partially enlarged view of the chain line E portion.
  • Reference numeral 780 is an electrode groove formed on the outer peripheral surface of the coil-side yoke member 755, and reference numeral 781 is a leader wire of the movable-side electrode 760.
  • Reference numeral 782 shows a state in which the leader wire 781 and the front disk 758 are electrically connected to each other by using the through hole 779 in the state where the coating of the leader wire 781 is peeled off.
  • a means for electrically conducting, soldering, a conductive adhesive, or the like can be selected.
  • Reference numeral 783 is a plurality of through holes formed in the front disk 758, and the inner diameter thereof is larger than that of the head 773bH of the fastening bolt 773b.
  • the front disc 758 and the outer peripheral disc support member 771 are already adhesively fixed. Therefore, if the outer peripheral side disk support member 771 is fixed to the coil side yoke member 755 with the fastening bolt 773b, electrical insulation can be maintained between the front side disk 758 and the coil side yoke member 755.
  • the head 773bH of the fastening bolt 773b and the through hole 783 are kept in non-contact.
  • the movable side electrode 760 is fastened to the ring-shaped nut 772 with the front side disc 758 and the inner peripheral side disc support member 770 held by the fastening bolt 773a. As described above, the disc support member 770 and the ring nut 772 are preliminarily integrated with an adhesive.
  • Step 7 shows the process of fastening the permanent magnet 751 and the rear side disk 759.
  • the permanent magnet 751 is fastened to the front pole piece portion 752 via the rear side pole piece portion 754 by the fastening bolt 773c.
  • the rear side disc 759 is fastened to the coil side yoke member 755 and the rear side pole piece portion 754 by the fastening bolt 773d and the fastening bolt 773e.
  • Step 8 shows the process of installing the sensor storage case at the final stage.
  • the fixed side electrode 761 is temporarily fixed to the front side panel 762a by the fastening member 764.
  • the front side panel 762a is fastened to the rear side panel 762b with a fastening bolt 773g so as to accommodate the coil side yoke member 755.
  • the structure for taking out the signal line 781 of the electrode and the leader line 774 of the coil to the outside is not limited to the present embodiment which is a bolt fastening structure. The same applies to other embodiments of the bonding method.
  • the bolt fastening method is applied until the final assembly stage except for the initial preparation stage.
  • the gap between the electrodes on the movable side and the fixed side is adjusted to the optimum value while actually measuring the capacitance. That is, it is a measure to absorb all the errors accumulated in the final process.
  • FIG. 41 shows two units to be fastened, FIG. 41a is referred to as a fixed side electrode unit 850, and FIG. 41b is referred to as a movable side electrode unit 851.
  • FIG. 42 is a diagram showing a state in which the two units are joined with an adhesive.
  • 852 is a movable side electrode
  • 853 is a fixed side electrode
  • 854a is a front side panel
  • 854b is a rear side panel
  • 855 is a central plate
  • 856 is a fastening member made of a non-conductive material between the fixed side electrode and the front side panel.
  • 857 is a coil-side yoke material
  • 858a is a movable unit-side fitting element
  • 858b is a fixed unit-side fitting element
  • 859 is a bolt for fastening the rear-side panel and the coil-side yoke material.
  • 860a is a movable unit side joint surface
  • 860b is a fixed unit side joint surface
  • 860bc is a tapered portion formed on the fixed unit side joint surface.
  • the movable unit side fitting element 858a and the fixed unit side fitting element 858b form a fitting structure.
  • 861 is an adhesive applied between the movable unit side joint surface 860a and the fixed unit side joint surface 860b.
  • an ultraviolet curable type is applied to the adhesive.
  • This adhesive cures when exposed to LED light. Therefore, in the stage prior to the LED light irradiation, the two units can move relatively in the axial direction while the radial movement is restricted by the fitting elements 858a and 858b forming the fitting structure.
  • the gap ⁇ z between the electrodes (the gap between the movable side electrode 852 and the fixed side electrode 853) is obtained from the measured value of the capacitance.
  • the movable unit 850 is moved in the axial direction (arrow C).
  • the two units can be fastened by irradiating the adhesive with an LED light to cure the adhesive.
  • the actuator function of the sensor can be measured and evaluated in the stage before fastening the two units (FIG. 41b), that is, in the state of the movable side electrode unit 851 alone.
  • the two units FIG. 41b
  • the frequency response characteristic and the transient response characteristic with respect to the force coil 756a current can be evaluated.
  • it is easy to replace and reuse each part by taking advantage of the characteristics of the bolt fastening method.
  • the fastening member 856 may be used for adjusting the inclination angle ⁇ ⁇ between the two electrode gaps.
  • an ultraviolet curable adhesive may be applied to the fastening member 856.
  • the method for adjusting ⁇ z (or ⁇ ⁇ ) between the two electrode gaps shown in the present embodiment can be applied to other embodiments of the present invention.
  • FIG. 43 is a front sectional view of the differential servo type acceleration sensor according to the 16th embodiment of the present invention.
  • the moving coil type (MC type) in which the coil moves is applied to the movable part.
  • 51 is a permanent magnet
  • 52 is a pole piece part
  • 53 is a pole piece convex part
  • 54 is a permanent magnet side yoke material
  • 55 is a coil side yoke material
  • 56a is a force coil
  • 56b is a test coil
  • 57 is a coil bobbin
  • 58, 59 is a coil bobbin
  • Is a coil bobbin support member 60 is a front disk, 61 is a rear disk, 62 is a front connecting member of a front disk 60 and a coil side yoke member 55, and 63 is a rear disk spring 61 and a coil side yoke member 55. It is a rear side connecting member.
  • a magnetic gap portion 64 in the radial direction is formed between the outer peripheral portion of the pole piece portion 52 and the inner peripheral portion of the coil-side yoke member 55.
  • 64a is a gap on the permanent magnet side
  • 64b is a gap on the yoke material side.
  • 65 is the movable side first electrode (electrode surface Sa)
  • 66 is the movable side second electrode (electrode surface Sb)
  • 67 is a cylindrical member
  • 68 is a fixed side electrode support member formed of a non-conductive material.
  • 69 is the fixed-side first electrode (electrode surface SA) formed on the fixed-side electrode support member 68
  • 70 is the fixed-side second electrode (electrode surface SB)
  • 71 is the movable-side first electrode 65 and the fixed-side first electrode.
  • the first void portion formed by 69 and 72 are the second void portions formed by the movable side second electrode 66 and the fixed side second electrode 70.
  • the movable side first electrode 65 and the movable side second electrode 66 are adhesively fixed via a cylindrical member 67. Further, the movable side first electrode 65 is adhesively fixed to the front side disc-shaped spring 60 at the outer peripheral portion.
  • the differential sensor is configured by independently detecting the two capacitance signals A and B.
  • 73a is an axial conductor wire that transmits the capacitance signal B in the axial direction
  • 73b is a radial conductor wire that transmits the capacitance signal B in the radial direction.
  • the currents flowing through the two capacitance signals A and B, the force coil 56a, and the test coil 56b are transmitted to the fixed side via the front side disc-shaped spring 60 and the rear side disc-shaped spring 61.
  • the two disc-shaped springs are divided in the circumferential direction, and form a plurality of independent signal transmission paths (not shown).
  • 74 is a front panel.
  • the portion indicated by the two-dot chain line AA shows the actuator portion that drives the two movable electrodes 65 and 66 in the axial direction.
  • the MC type (moving coil type) is applied to the actuator portion.
  • the MM type (moving magnet type) shown in the above-described embodiment may be used.
  • any form of actuator such as MC type, MM type, MI type, etc. may be applied.
  • one fixed-side electrode support member is sandwiched between two movable electrodes to form two sets of capacitance sensors. Contrary to this configuration, even if one movable electrode member is sandwiched between the two fixed side electrode support members, two sets of capacitance sensors can be configured.
  • 151 is a first fixed-side electrode support member
  • 152 is a second fixed-side electrode support member
  • 153 is a movable-side electrode member
  • 154 is a cylindrical connecting member
  • 151a is a first fixed-side electrode support.
  • 152a is a fixed-side second electrode (electrode surface Sbb) formed on the surface of the second fixed-side electrode support member 153, and 153b is a movable-side second electrode (electrode surface SBB) formed on the surface of the movable-side electrode member 153. ).
  • Reference numeral 155 is a first void portion formed by the movable side first electrode 153a and the fixed side first electrode 151a
  • reference numeral 156 is a second void portion formed by the movable side second electrode 153b and the fixed side second electrode 152a.
  • the two capacitance signals A and B have opposite phases. That is, the differential sensor is configured by independently detecting the two capacitance signals A and B as in the above-described embodiment.
  • the two-dot chain line BB in the figure is an actuator unit whose output is the connecting member 154.
  • An MC type, an MM type, or any form of actuator may be applied to the actuator portion BB.
  • FIG. 45 shows a servo-type acceleration sensor according to the eighteenth embodiment of the present invention
  • FIG. 45a shows the shape of the front side disk
  • FIG. 45b shows a front sectional view of the acceleration sensor main body
  • FIG. 45c shows the shape of the rear side disk.
  • the magnetic connection part (chain wire circle BB)
  • BB which is a magnetic path that constitutes a closed-loop magnetic circuit
  • 151 is a permanent magnet magnetized in the axial direction
  • 152 is a front pole piece portion
  • 153 is a space formed inside the pole piece
  • 154 is a rear side pole piece portion
  • 155 is a coil side yoke material
  • 156 is a coil side yoke material.
  • the force coil 157 is a protruding portion 158 and 159 formed on the inner surface of the coil-side yoke material
  • 159 is a front-side disk and a rear-side disk that support the movable portion.
  • 160 is a movable side electrode
  • 161 is a fixed side electrode
  • 162a is a front side panel
  • 162b is a rear side panel
  • 163 is a central plate
  • 164 is a fastening member
  • 165 is a magnetic gap portion.
  • the annular gap portion 166 due to a narrow gap is provided between the protruding portion 157 of the coil-side yoke material and the rear-side pole piece portion 154.
  • Reference numeral 167 is an outer peripheral side support ring
  • 168 is an inner peripheral side support ring.
  • the disc shapes that support the movable parts are significantly different between the front side and the rear side.
  • the front disk (FIG. 45a) is a spiral-shaped spring having a peak portion 158a and a groove portion 158b long in the circumferential direction.
  • the rear side disk (FIG. 45c) is composed of six peaks 159a perpendicular to the circumferential direction and a groove 159b between the peaks.
  • the width of the ridge 159a is set to be narrow and sufficiently support spacing R between the center portion and the peripheral portion longer.
  • the thickness of the rear side disc is sufficiently thinner than that of the front side disc.
  • the rigidity of the disc is inversely proportional to the cube of the plate thickness, for example, if the plate thickness is halved, the rigidity becomes 1/8.
  • the axial rigidity k a of the rear side disk is small like the front side disk, and the radial rigidity K r is extremely high. That is, in the magnetic connection portion BB, when the fixed side and the movable side shaft cores are eccentric, the movable side shaft has a sufficiently high centripetal rigidity k r with respect to the magnetic attraction force Fr generated in the centrifugal direction.
  • the core can be kept at the same radius.
  • ⁇ r be the amount of eccentricity of the movable side axis with respect to the fixed side axis.
  • the shape of the rear side disk is not limited to that shown in this embodiment. Any shape may be used as long as the radial rigidity k r is sufficiently higher than the axial rigidity k a.
  • the spiral angle ⁇ (see FIG. 45a) is defined as the gradient of the curve with respect to the circumferential direction, the curve may have a sufficiently large angle ⁇ . Within the range of 45 ⁇ ⁇ ⁇ 90 deg, a sufficiently high radial stiffness k r was obtained.
  • the shape of the front side disk is also not limited to the spiral curve shown in the present embodiment. As long as the plate thickness of the disc is sufficiently thin and can be kept within the elastic limit of the material, the shape may be similar to that of the rear side disc in the present embodiment.
  • precipitation hardening type high-strength stainless steel (SUS631) is applied to the rear side disk shown in FIG. 45c.
  • This material is a stainless steel in which extremely high hardness can be obtained by forming an intermetallic compound containing fine Al in martensite by precipitation hardening treatment after cold rolling.
  • the reason for using the special steel material is as follows. In order to maintain a small outer diameter of the disc and reduce the axial rigidity k a , the plate thickness must be thin and the width of the peak must be narrowed. Therefore, it is necessary to withstand a large generated stress as compared with the case where the spiral angle ⁇ shown in FIG. 45a is sufficiently small.
  • the applied high-strength stainless steel has a tensile strength (1400 to 1500 N / m 2 ) and a spring limit value about 3 times that of ordinary steel materials such as SUS304 (for example, SUS632J1).
  • SUS304 for example, SUS632J1
  • the above-mentioned findings and measures regarding the disc shape and the strength of the disc material shown in the present embodiment can be applied to the present invention if the tensile strength is> 1000 N / m 2. Applicable to all embodiments of.
  • MY type moving yoke type
  • the feature of the MY accelerometer is (1) As with the MC type, the weight of the moving part can be reduced. (2) As with the MM type, there is no need for extra-fine wire processing of the coil.
  • FIG. 46 is a front sectional view of the MY servo type acceleration sensor according to the nineteenth embodiment of the present invention.
  • 851 is a permanent magnet magnetized in the axial direction
  • 852 is a fixed side pole piece portion (pole piece side yoke material)
  • 852a is a tapered portion of this fixed side pole piece portion
  • 852b is a cylindrical portion of the fixed side pole piece portion.
  • 853 is a movable side pole piece portion (movable side yoke material)
  • 853a is a facing surface of the cylindrical portion 852b in the fixed side pole piece portion.
  • 854 is a space formed for weight reduction inside the movable side pole piece portion.
  • 855 is a coil-side yoke material
  • 855a is a permanent magnet-side yoke material
  • 856 is a force coil
  • 857 is a bias coil.
  • 858 is the front side disk
  • 859 is the rear side disk
  • 860 is the movable side electrode
  • 861 is the fixed side electrode
  • 862a is the front side panel
  • 862b is the rear side panel
  • 863 is the center plate
  • 864 is the fastening member
  • 865 is the coil.
  • 866 is the coil facing surface in the movable side pole piece portion
  • the radial magnetic gap portion 867 (first gap portion) is provided between the coil facing surface 866 and the coil mounting portion 865.
  • a gap portion 868 (second gap portion) due to a narrow gap is provided (chain line circle B) between the columnar portion 852B of the fixed side pole piece portion and the facing surface 853a thereof.
  • This chain line circle B is the magnetic connection portion.
  • Reference numerals 869 and 870 are an outer peripheral side support ring made of a non-conductive material and an inner peripheral side support member.
  • the operating principle of the sensor of this embodiment is the same as the above-mentioned MM type.
  • the reaction force of the Lorentz force which is the operating principle of the linear motor, acts on the movable side pole piece portion 853. Since the current of the force coil 856 and the acceleration due to the external force are in a proportional relationship, the acceleration is measured by detecting the current of the force coil 856.
  • the method of taking out the leader wire of the force coil 856, the bias coil 857, and the signal line of the electrode to the outside is the same as that of the above-described embodiment. A method similar to that of FIG. 1b, which is the first embodiment, or FIGS.
  • FIG. 36 and 38a which is the 14th embodiment with a bolt fastening structure, may be used.
  • an example thereof is a method in which an outer groove portion 777 is formed on the outer peripheral portion of the coil-side yoke member 755, and the coil 774 leader wire is mounted in this groove portion. Similar configurations can be applied to this embodiment and the embodiments described later (not shown).
  • the inertial mass of the movable part can be selected in a wide range.
  • the movable side pole piece portion 853 is formed in a cylindrical shape, but if the cylindrical portion is made thinner and lighter, the performance can be made by emphasizing the high frequency characteristics which are the characteristics of the MC type. If the movable side pole piece portion 853 is formed into a solid cylindrical shape and the inertial mass is increased, the performance can be made with emphasis on the low frequency characteristics characteristic of the MM type.
  • the performance of permanent magnets can be selected in a wide range. Since there are no restrictions on the dimensions and shape of the permanent magnet 851, a wide range of demagnetization characteristics (holding force H c , saturation magnetic flux density B r ), which is a favorite of permanent magnet performance, can be selected. Since there is a margin in the permanent magnet performance, the gap portion 868 in the magnetic connecting portion B may be sufficiently large. This void portion 868 becomes a magnetic resistance, but the performance of a permanent magnet sufficient to compensate for the loss can be obtained.
  • Coil specifications can be selected in a wide range. As shown in the present embodiment, if the movable side pole piece portion 853 has a thin cylindrical shape, the increase in inertial mass is small even if the movable side pole piece portion 853 is lengthened. By utilizing this point, the coil storage volume can be sufficiently increased, so that the coil wire diameter and the number of coil turns can be selected without increasing the electric resistance. Further, due to the above-mentioned features (1) to (3), since the actuator generating force can be selected in a wide range, an acceleration sensor having excellent sensor sensitivity from low frequency characteristics to high frequency characteristics can be realized.
  • the present embodiment relating to the MY type accelerometer and the embodiment described later are the same, but many findings and ideas regarding the MM type acceleration sensor of the present invention described in Section (I) can be applied to the MY type.
  • a structure that dissipates heat from the coil using a non-magnetic coil bobbin with good thermal conductivity and
  • cantilever with one fixed end and the other free end to the elastic member that supports the movable part.
  • the pendulum structure of the beam (iii) a structure that combines the bonding method and the tiny bolt fastening method for joining between each member, (iv) the inner and outer peripheral sides of the elastic member are non-conductive in order to achieve electrical insulation.
  • a structure that is fastened to the fixed side with an elastic material interposed therebetween (v) a structure that provides electrical insulation between the movable side electrode and the movable member (pole piece), and (vi) an axial direction composed of a magnetic material in the magnetic connection part.
  • a structure using a disc-shaped spring having sufficiently small rigidity can be applied.
  • a laminated steel plate for example, a plate
  • a ring-shaped disk having a thin plate thickness is superposed on a portion corresponding to the fixed side pole piece portion 852 constituting the magnetic connecting portion B and the movable side pole piece portion 853 which is the facing surface thereof. It is configured to be equipped with a thickness of 0.1 to 0.2 mm).
  • eddy current loss generated at relative moving points can be reduced, so that characteristics advantageous for high frequency characteristics can be obtained.
  • the magnetic connection portion for example, the B portion of FIG. 1 which is the first embodiment
  • the magnetic connection portion for example, the B portion of FIG. 1 which is the first embodiment
  • (20th Embodiment) 47 shows a MY servo type acceleration sensor according to the twenty-eighth embodiment of the present invention
  • FIG. 47a is a front sectional view
  • FIG. 47b is an AA sectional view of FIG. 47a.
  • a magnetic circuit is configured by using a plurality of segment type permanent magnets magnetized in the radial direction.
  • 551 is a permanent magnet
  • 552 is a pole piece part (movable side yoke material)
  • 552 is a fixed side yoke material.
  • the permanent magnet is composed of segment type permanent magnets 551a, 551b, 551c, and 551d magnetized in the radial direction, and is attached to the yoke material.
  • 554 is the internal space of the pole piece
  • 555 is the force coil
  • 556 is the verification coil
  • 557 is the front disk
  • 558 is the rear disk
  • 559 is the movable electrode
  • 560 is the fixed electrode
  • 561a is the front panel.
  • 561b is the rear side panel
  • 562 is the central plate
  • 563 is the fastening member
  • 564 is the coil mounting portion on the inner peripheral surface of the yoke material
  • 565 is the coil facing surface on the pole piece portion
  • a magnetic void portion 566 (first void portion) in the radial direction is formed between the spaces.
  • a gap portion 568 (second gap portion) due to a narrow gap is provided between the pole piece portions facing the inner peripheral surfaces 567a, 567b, 567c, and 567d of the permanent magnet 551. This gap portion 568 is a magnetic connecting portion.
  • Reference numerals 569 and 570 are an outer peripheral side support ring made of a non-conductive material and an inner peripheral side support member.
  • a closed-loop magnetic circuit is formed by "permanent magnet 551-> void portion 568-> pole piece portion 552-> magnetic gap portion 566-> fixed side yoke material 553-> permanent magnet 551" as shown by the arrow of the chain line.
  • the permanent magnet uses a segment type permanent magnet magnetized in the radial direction, an axial electromagnetic force (unbalanced) is applied to the pole piece portion 552 in a state where no current is applied to the force coil 555. Force) does not occur. Therefore, since the pole piece portion 552 can be kept at the same position, fine adjustment by the bias coil current as in the above-described embodiment is unnecessary.
  • a permanent magnet magnetized in the axial direction may be used to connect the permanent magnet to a yoke material in which a magnetic flux flows in the radial direction.
  • the shape of the yoke material may be the same as that of the segment type permanent magnet described above.
  • the fixed-side yoke material may be arranged so as to wrap around the outer peripheral portion of the pole piece portion (not shown).
  • a plurality of thin segment type permanent magnets magnetized in the radial direction may be mounted on the outer peripheral surface of the pole piece portion 552 facing the inner peripheral surfaces 567a to 567d of the permanent magnets 551. That is, it is a hybrid structure of MY type and MC type. With this configuration, the magnetic resistance of the magnetic connecting portion (magnetic gap portion 568) can be reduced.
  • FIG. 48 is a front sectional view of a differential servo type accelerometer according to the MY type according to the twenty-first embodiment of the present invention.
  • the focus is on the fact that the left and right output shafts are both open ends by constructing a magnetic circuit using permanent magnets that are MY type and magnetized in the radial direction.
  • a differential capacitive sensor can be realized.
  • By making the accelerometer differential it is possible to realize a high-resolution sensor whose sensor output is not easily affected by disturbance signals such as noise and drift.
  • 501 is a permanent magnet
  • 502 is a pole piece part
  • 503 is a yoke material.
  • the permanent magnet is composed of a plurality of segment type permanent magnets magnetized in the radial direction and is attached to the yoke material.
  • 504 is the internal space of the pole piece
  • 505 is the force coil
  • 506 is the verification coil
  • 507 is the front disk
  • 508 is the rear disk
  • 509 is the front movable electrode
  • 510 is the front fixed electrode
  • 511 is the rear side.
  • Movable electrode 512 is the rear side fixed electrode
  • 513a is the front side panel
  • 513b is the rear side panel
  • 514 is the front side center plate
  • 515 is the rear side center plate
  • 516 is the front side fastening member
  • 517 is the rear side fastening member.
  • 518 is a coil mounting portion on the inner peripheral surface of the yoke material
  • 519 is a coil counter surface on the pole piece portion
  • 520 is a magnetic gap portion
  • 521 is a gap portion which is a magnetic connection portion
  • 522, and 523 are non-conductive.
  • It is a front side outer peripheral support ring and a front side inner peripheral support member made of a material.
  • Reference numerals 524 and 525 are a rear side outer peripheral support ring made of a non-conductive material and a rear side inner peripheral support member.
  • the method of connecting the conductor wire for detecting the capacitance between the movable electrode and the fixed electrode to the outside is the same as that of the above-described embodiment (not shown).
  • the absolute velocity signal and the absolute displacement signal obtained by completely integrating the acceleration output of the sensor of the present invention do not easily diverge. Therefore, when the sensor of the present invention is applied to an active vibration isolation table, in addition to the effect of improving the sensor sensitivity (for example, improving the positioning accuracy of the stage), a significant effect of improving the vibration isolation characteristics can be obtained in the low frequency region.
  • Embodiments are examples of MM type and MY type acceleration sensors composed of a voice coil for generating Lorentz force and a permanent magnet.
  • an electromagnet that generates a magnetic attraction force due to Maxwell stress instead of a Lorentz force is applied. It is common with the embodiments (I) and (II) in that the coils constituting the electromagnet are fixed. Further, this embodiment may be considered as one of the alternative forms of the MY equation in Section (II) in that neither the coil nor the permanent magnet is moved and only the yoke material constituting the closed loop magnetic circuit is moved.
  • FIG. 49 is a front sectional view of the servo type accelerometer according to the 22nd embodiment of the present invention.
  • a servo-type accelerometer is constructed by combining an electromagnet that generates magnetic attraction and a permanent magnet.
  • 601 is a permanent magnet magnetized in the axial direction
  • 602 is a permanent magnet side pole piece portion
  • 603 is the permanent magnet side facing surface of the pole piece portion 602
  • 604 is the pole piece portion facing surface of the permanent magnet
  • 605. Is a space formed inside the pole piece portion 602
  • 606 is a permanent magnet side yoke material.
  • 607 is a coil bobbin
  • 608 is an electromagnet force coil (control coil)
  • 609 is a bias coil.
  • the yoke material on the electromagnet side is composed of 610 and 611
  • 610 is a yoke material on the outer peripheral side with respect to the shaft core of the coils 608 and 609
  • 611 is a yoke material on the shaft core side.
  • 612 is the pole piece portion (movable member side yoke material) on the electromagnet side
  • 613 is the center axis side facing surface of the pole piece portion 612
  • 614 is the pole piece portion side facing surface of the center shaft
  • 615 is the pole piece portion 612. It is a space formed inside.
  • 616 is an electromagnet side housing
  • 617 is a permanent magnet side housing
  • 618 is a movable member made of a non-magnetic material
  • 619 and 620 are fastening members that hold the movable member 618 from the left and right.
  • the fastening member is fixed from the left and right by the permanent magnet side housing and the electromagnet side housing.
  • 621a and 621b are the movable side electrode R and the fixed side electrode R.
  • 622a and 622b are the movable side electrode L and the fixed side electrode L.
  • the two electrodes formed on the left and right sides of the movable portion constitute a differential accelerometer.
  • the imaginary line 623 in the shaft core side yoke material 611 and the electromagnet side housing 616 is a through-passage required when a displacement sensor other than the capacitance type is used (described later in Supplement (3)).
  • the permanent magnet side pole piece portion 602 and the electromagnet side pole piece portion 612 are made of a magnetic material, and are fixed to the left and right at the center of the movable member 618 made of a non-magnetic material.
  • a closed loop magnetic circuit is formed by a member including "central shaft 611-> electromagnet side yoke material 610-> electromagnet side pole piece portion 612".
  • a closed loop magnetic circuit is formed by a member including "permanent magnet 601-> permanent magnet side pole piece portion 602-> permanent magnet side yoke material 606". As shown in the figure, the moving portion 618 is constantly subjected to the attractive force F m by the permanent magnet 601.
  • the movable portion 618 When the accelerometer is activated, the movable portion 618 is kept at the origin position by passing a current through the bias coil 609. In this state, if an external force is applied to the entire movable portion, a current flows through the force coil 608 so as to return the movable portion 618 to the origin position. Since the current of the force coil 608 and the acceleration due to the external force are in a proportional relationship, the acceleration is measured by detecting the current of the force coil 608.
  • the magnetic attraction force due to Maxwell stress is used to drive the moving part.
  • the Maxwell stress has an overwhelmingly higher electromechanical conversion efficiency (thrust constant) of the generated force with respect to the input current than the Lorentz force, which is usually 20 times or more.
  • the upper limit of the measurable acceleration may be small, instead of the Maxwell stress actuator, a configuration in which the Lorentz force actuator and the permanent magnet, which are the examples in Section (I), may be combined (not shown). ..
  • FIG. 50 is a front sectional view of the servo type accelerometer according to the 23rd embodiment of the present invention.
  • a servo-type accelerometer is constructed by symmetrically combining two electromagnets that generate magnetic attraction due to Maxwell stress.
  • 631a is a coil bobbin and 632a is an electromagnet force coil.
  • the yoke material on the electromagnet side is composed of 633a and 634a, 633a is the outer peripheral side yoke material with respect to the axis of the coil 632a, and 634a is the axis side yoke material (central axis).
  • 635a is the cylinder part of the pole piece made of non-magnetic material
  • 636a is the flat plate part (movable member side yoke material) of the pole piece made of magnetic material
  • 637a is the housing
  • 638 is the movable member made of non-magnetic material
  • 640a and 640b are the movable member 638. It is a fastening member that holds the magnet from the left and right.
  • the movable member is fastened from the left and right by fastening members 640a and 640b.
  • 641a is a movable side electrode and 642a is a fixed side electrode.
  • a differential accelerometer is composed of two electrodes formed on the left and right sides of the movable portion.
  • 643a is the first magnetic pole which is the tip of the central shaft
  • 644a is the second magnetic pole which is the tip of the yoke material on the outer peripheral side of the central shaft.
  • a closed-loop magnetic circuit is formed by "central shaft 634a-> yoke material 633a-> second magnetic pole 644a-> pole piece flat plate portion 636a-> first magnetic pole 643a-> central shaft 634a".
  • the shape of the yoke material constituting the electromagnet, the position of the coil, etc. may be in any form as long as a closed loop magnetic circuit is formed between the yoke material and the movable side member.
  • the Maxwell stress has an overwhelmingly higher electromechanical conversion efficiency (thrust constant) of the generated force with respect to the input current than the Lorentz force. Therefore, if this point is utilized, the acceleration sensor of the present embodiment is extremely high. Large acceleration can be measured. Further, for the purpose of micro-vibration measurement, since a large force can be generated even if the number of turns of the coil is small, it is possible to significantly reduce the size of the entire acceleration sensor including the actuator.
  • the magnetic material used for the actuator part of the servo type acceleration sensor electromagnetic stainless steel, pure iron, permalloy, tough palm, permendur, amorphous, etc. can be applied. Further, a magnetic material may be used for the parts constituting the closed-loop magnetic circuit, and a non-magnetic material may be used for the housing or the like which is the case for accommodating the actuator.
  • FIG. 51 shows a case where an optical displacement detecting means based on a triangular ranging method is used for the displacement detecting unit as an alternative to the capacitance type.
  • Reference numeral 575 is an actuator unit provided with the driving means, and 576 is a displacement detecting unit.
  • the displacement detection unit 576 is composed of a light source 577, a light projecting lens 578, a light receiving lens 579, and a light receiving element 580, and these elements are shown in an image diagram.
  • the actuator unit 575 shows a case where the MM type acceleration sensor structure according to the above-described embodiment is applied.
  • 581 is a permanent magnet
  • 582a is a front pole piece portion
  • 582b is a rear side pole piece portion
  • 582a and 582b constitute a movable side yoke material.
  • 583 is a fixed side yoke material
  • 584 is a force coil
  • 585 is a test coil
  • 586 is a front side disk
  • 587 is a rear side disk
  • 588 is a front side panel
  • 588b is a rear side panel
  • a gap portion 589 is provided between the fixed-side yoke members facing the surface due to a narrow gap, and this gap portion is a magnetic connecting portion.
  • Reference numerals 590 and 591 are an outer peripheral side support ring made of a non-conductive material and an inner peripheral side support member.
  • Reference numeral 592 is a laser beam
  • reference numeral 593 is a laser beam reflecting plate mounted on the inner peripheral side support member.
  • Reference numeral 594 is an opening surface formed on the front panel 588a through which the laser beam is passed.
  • the light receiving element 580 is called a PSD (Position Sensitive Device), and the displacement is measured from the difference in the imaging position on the PSD due to the change in the position of the laser light reflecting plate 593.
  • the optical displacement means a CMOS method, a CCD method, a specular reflection method, a diffuse reflection method, a line beam method, or the like can be applied.
  • a displacement detection method other than the optical method a linear proximity sensor or the like that utilizes a change in coil induction due to an eddy current generated in the object to be measured can also be applied.
  • FIG. 51 shows the case where the optical displacement sensor is applied to the MM type accelerometer structure, but the MY type and Maxwell stress electromagnet acceleration sensor structures according to the embodiments of Sections (II) and (III) can also be applied.
  • the member corresponding to the inner peripheral side support member 870 may be a laser light reflecting surface (corresponding to 593 in FIG. 51).
  • the gangway 623 (indicated by an imaginary line) formed in the yoke member 611 on the axis side and the housing 616 on the electromagnet side is used as a passage for laser light, and the pole piece portion 612 is described above.
  • the facing surface 613 on the central axis side may be a laser light reflecting surface.
  • an eddy current linear proximity sensor may be mounted inside the gangway 623.
  • the displacement detection unit 576 in FIG. 51 may be installed on the right side as well.
  • a member corresponding to the inner peripheral side support member 591 may be provided on the right side of the rear side pole piece portion 582b, and the laser light reflecting plate may be attached to the rear side pole piece portion.
  • a displacement detecting means other than the capacitance type is applied to the embodiment of the differential type sensor in Sections (I) to (III).
  • the portion corresponding to the inner peripheral support members 523 and 525 on the front side and the rear side is the laser light reflecting surface or the detection surface of the eddy current linear proximity sensor. And it is sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

コイルが固定された固定部材に対して、空隙を介して変位検出器と連結された可動部材を配置する。前記コイルを永久磁石、及び、前記可動側部材、及び、前記固定部材で構成される閉ループ磁気回路内に配置することで、前記可動側部材を軸方向に移動させるローレンツ力が発生させた。

Description

サーボ型振動検出器及び振動制御装置
 本発明は、基礎に対して支持され、外乱を受けて振動する制御対象物の加速度、あるいは、慣性空間に対する絶対速度、又は、絶対変位を、広い周波数帯域で信号検出する振動センサ、もしくは除振制御装置に関するものである。
 1.世の中のトレンド
 半導体製造プロセス、液晶製造プロセス、精密機械加工などの様々な分野で、微細な振動を遮断・抑制するための振動制御の利用が広がっている。これらのプロセスで用いられる走査型電子顕微鏡、半導体露光装置(ステッパ)などの微細加工・検査装置は、装置の性能を保障するための厳しい振動許容条件が要求される。今後、製品のさらなる高集積化・微細化と共に、加工プロセスの高速化と装置の大型化が進み、振動許容条件はますます厳しくなる傾向にある。
 2.除振装置が除去すべき外乱
 近年、振動制御対象の構造物(たとえば、精密除振台)の複数箇所に配置された振動センサからの変位・速度・加速度情報に基づいて制御信号を作り、制御装置を制御するアクティブ振動制御技術が普及している。
 図52に、従来のアクティブ除振台のモデル図を示す。このアクティブ除振台は、特許文献3にも記載されているように公知のものである。床面500には、定盤501を支持するための複数組の空気圧アクチュエータ(502a、502b)が配置されている。この定盤501の上に精密装置(図示せず)が搭載される。503は、定盤501の垂直・水平方向の加速度を検出するための加速度センサ、504は、床面500の加速度(基礎の振動状態)を検出する加速度センサである。505a、505bは、床面500に対する定盤501の垂直・水平方向相対変位をそれぞれ検出するための変位センサである。これら各センサからの出力信号がそれぞれコントローラ506に入力される。空気圧アクチュエータ502aには、配管507を介して、コントローラ506により制御されるサーボ弁508が接続されている。このサーボ弁508により、空気圧アクチュエータ502aへ供給・排気される圧縮空気の流量を調整することで、アクチュエータ502aの内圧が制御されて、空気圧アクチュエータを駆動する。
 除振装置において除去すべき外乱は、設置床の振動に起因する地動外乱と、除振台上から入力される直動外乱に大別される。
 地動外乱となる振動の発生源として、歩行振動と呼ばれる人の移動によるものは1~3Hz、エアコンなどのモータによるものは6~35Hz、床や壁の共振点は10~100Hz程度である。超高層・免振ビルでは0.2~0.3Hz近傍に固有振動数を有する。また風揺れによって、建築物は0.1~1.0Hzの微振動が発生する。したがって、除振台には、高周波の振動抑制だけではなく、低い周波数の振動を取り除くことも要求される。
 直動外乱による高周波振動の発生源として、除振台にたとえば位置決めステージ509が搭載されている場合、ステージの加減速運転によって、除振台を含めた構造物は打撃を受け、かつ駆動反力によって揺動する。この打撃による振動および駆動反力に起因した揺れを抑制しなければステージの性能を維持できない。要約すれば、除振装置は地動外乱による「除振」に加えて、直動外乱による「制振」の両方を併せ持つ機能が要求される。
 3.振動センサのアクティブ除振装置における役割
 アクティブ振動制御では、状態フィードバックによる制御方法が採られている。これは、振動制御対象の構造物の複数個所に配置された振動センサからの加速度・速度・変位情報に基づいて、制御装置を制御する方法である。広い周波数領域で除振性能を得るために、たとえば、加速度信号は主に10Hz以上の状態量を制御し、速度信号は1~10Hz、変位信号は1Hz以下の状態量を制御するのに用いられる。たとえば、
 (i)定盤501上に配置された加速度センサ(図52加速度センサ503を利用)からの信号を用いて、加速度フィードバックを施せば、質量Mの増加と等価となり、固有振動数を低下させ、共振ピークを低減させるなどの効果が得られる。
 (ii)上記加速度センサ(図52の503)からの信号を絶対速度あるいは絶対変位信号に変換し、フィードバックあるいはフィードフォワードを施せば、広い周波数領域で大幅な除振性能の改善ができる。
 (iii)定盤501直下に配置された加速度センサ(図52の504)からの信号を用いて、その信号を絶対速度あるいは絶対変位信号に変換し、同様にフィードフォワードを施せば、広い周波数領域で除振性能の改善ができる。
 上記(ii)(iii)の制御を行うためには、慣性空間に対する速度、位置情報が必要である。加速度センサは慣性空間に対する加速度を計測することができるため、加速度センサを制御対象に取り付けることで、制御対象に加わる加速度が検出できる。したがって、従来のアクティブ除振装置では、加速度センサの出力を1回積分することで速度信号を求め、さらに2回積分することで変位信号を求める方法が採用されている。
 4.加速度センサの基本構成と検出原理
 図53は、静電容量型加速度センサの基本構成と検出原理を示すモデル図である。301はセンサの各部材を収納する本体部、302は質量体、303は振動測定面Aに対して質量体302を機械的に支持するバネ、304は減衰器である。質量体302は静電容量型センサの可動側電極も兼ねている。305は可動側電極(質量体302)の対抗面側に配置された固定側電極、306は前記2つの電極間の空隙部である。
 307は振動測定面Aに対して、質量体302を垂直方向に駆動する電磁アクチュエータである。空隙部306の間隙の大きさで静電容量Cが決まるため、この静電容量Cを計測することにより、地動絶対変位Uと質量体の絶対変位Xの差である相対変位U-Xを検出できる。サーボ回路310(2点鎖線で示す)は、記相対変位信号U-Xを利得KPで増幅する変位増幅器311から構成される。
 以下、加速度センサの検出原理について、数式を用いて説明する。質量体302の質量をm、前記質量体を支持する機械ばね303のばね定数をk、減衰器304の減衰係数をc、アクチュエータ307の駆動力をF=Afi0とすれば、次の運動方程式が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 相対変位u-xが零になるように、比例ゲイン定数KPの増幅器により、アクチュエータの電流i0が制御される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 比例ゲイン定数KPが十分に大きく、式(3)の右辺における第3項と比べて、第1項、第2項が無視できるとすれば、
Figure JPOXMLDOC01-appb-M000004
 式(2)、式(4)からアクチュエータに流す電流i0を検出すれば、質量体302の加速度を近似的に求めることができる。
 5.従来のサーボ型加速度センサの具体構造
 サーボ型加速度計の具体的構造は、大きく分けて、(1)質量部が直線運動するタイプ、(2)質量部が揺動運動するタイプ、の2種類が用いられている。以下、この2種類の従来センサの実施例について説明する。
 (5-1)・・・直線運動式加速度センサの従来例
 図54は、従来の直線運動式加速度センサの具体構造例を示す正面断面図である。直線運動式の基本原理は特許文献1に開示されている。図53で示した基本構成と検出原理により構成されている。11は永久磁石、12はポールピース部、13はポールピース凸部、14は永久磁石側ヨーク材、15はコイル側ヨーク材、16aはフォースコイル、16bは検定コイル、17はコイルボビン、18,19は非磁性でかつ非導電性材料によるコイルボビン支持部材、20はフロント側ディスク状ばね、21はリアー側ディスク状ばね、22はフロント側ディスク状ばね20とコイル側ヨーク材15のフロント側連結部材、23はリアー側ディスク状ばね21とコイル側ヨーク材15のリアー側連結部材である。
 24は可動側電極、25は固定側電極、26はフロント側パネル、27は中央プレート、28は固定側電極25とフロント側パネル26の締結部材である。
 ポールピース部12の外周部とコイル側ヨーク材15の内周部間は半径方向の磁気空隙部29が形成されている。29aは永久磁石側空隙部、29bはヨーク材側空隙部である。「永久磁石11→ポールピース部12→磁気空隙部29→コイル側ヨーク材15→永久磁石側ヨーク材14」により、閉ループ磁気回路を形成している。磁気空隙部29の空間に配置されたフォースコイル16aに電流が流れると、可動側電極24を軸方向に移動させるローレンツ力が発生する。30は可動側電極24と固定側電極25で形成される空隙部である。空隙部30の間隙の大きさで静電容量Cが決まるため、静電容量Cを計測することにより、地動絶対変位Uと質量体の絶対変位Xの差である相対変位U-Xを検出できる。サーボ回路は、変位検出器31、増幅器32、ドライバー33から構成される。増幅器32、ドライバー33は、前記相対変位信号U-Xを利得KPで増幅する変位増幅器である。相対変位u-xが零になるように、比例ゲイン定数KPの増幅器により、アクチュエータの電流i0が制御される。フォースコイル16aに流す電流i0を検出すれば、前述したように、可動部に作用する加速度を求めることができる。
 (5-2)・・・揺動運動式加速度センサの従来例
 (1)センサの全体構成 図56は、特許文献2に開示された揺動運動式の一例を示す正面断面図で、590aは振子で円板状の枠体590の枠内に位置する。振子590aは、その周の一部が切り欠かれた舌片形状で形成され、ヒンジ590bを介して枠体590によって支持されている。これら枠体590、振子590a、ヒンジ590bは、例えば石英ガラスで一体に形成される。ヒンジ590bは肉薄とされ弾性変形可能であり、入力加速度により振子590aが同図の上下方向に変位可能とされている。
 591,592は一対の磁気ヨーク、593はポールピースボトム、594は永久磁石、595はボールピーストップである。 永久磁石594は、その板厚方向に着磁され、磁気ヨーク591,592の開放端内周面とポールピーストップ595の外周面との間に環状磁気空隙596がそれぞれ形成される。これら環状磁気空隙596内にそれぞれ位置するようにトルカコイル597が巻回されたコイルボビン598が、振子590aの両板面にそれぞれ取り付けられている。
 振子590aの両板面には、その舌片形状の先端側外周に沿って静電容量電極590cが円弧状にそれぞれ形成されている。591e,592eは、静電容量電極590cと所定の間隔を空けて対向する電極面である。
 このような構成を有するサーボ型加速度計においては、加速度入力による振子590aの変位が静電容量電極590cと電極面591e,592e間の静電容量の変化として検出される。電極面591e,592eは共通電位とされ、振子590aの両板面の静電容量電極590cの検出信号が図示しないサーボアンプにより差動増幅され、一対のトルカコイル597に静電容量差に基づいたトルカ電流が流される。このトルカ電流と永久磁石594による磁界との相互作用により、変位した振子590aは元に戻り、中立点で平衡する。この時のトルカ電流は振子590aに加わった加速度に比例するので、この電流から入力加速度が求められる。トルカコイル597のコイル端末597a,597bが振子590a上の図示しない金属導体に接着されて電気的に接合される。
 (2)振子の構造
 図58に、振子590aの平面図を示す。図58(a)は一方の面、図58(b)は他方の面である。枠体590、振子590a、ヒンジ590b1,590b2は、例えば一枚の石英ガラスの円板からエッチングによって形成される。 振子導体Aが、一方の面の枠体590上に、枠体590の幅の略半分の幅で円弧状に形成され、円弧状の金属導体の一端が一方のヒンジ590b1上をその延長方向に向けて延伸され、振子590aの中心部を超えた後にその中心部に向けて鈎状に折り返された形状で形成されている。円弧状の振子導体Aは、トルカ電流の一方の入出力端部を構成する。
 振子導体Bが、一方の面上で、振子590aの中央部に位置する振子導体Aの端部から振子590aの中心を挟んで、後述するボビン導体同士の間隔と略等しい間隔を空けた位置から振子10aの外縁部に向けて振子導体Aと同じ幅で形成されている。更に振子導体Bは、一対のヒンジ590b1,590b2の間の位置で振子590aの外縁部の側面を伝わって他方の面まで連続して形成されている。他方の面上の振子導体Bの形状は上記した一方の面上の形状と同じである。振子導体Bは、左右2つのトルカコイル597を直列に接続する。
 振子導体Cが、上記した振子導体Aと略同じ形状で他方の面上に形成される。振子導体Cの端部が、一方の面の枠体590上に枠体590と略等しい幅で円弧状に形成される。一方の面の振子導体Cの端部と他方の面の振子導体Cとは、枠体590の内径側の側面を伝わって連続して形成される。円弧状の振子導体Cは、トルカ電流の他方の入出力端を構成する。
 静電容量検出電極Dが、振子590aの一方の面上で振子590aの外縁に沿って円弧状に形成され、更にヒンジ590b2上を伝わって、枠体590上に枠体590の外周部に沿って枠体590の幅の略半分の幅で円弧状に端部が形成されている。
 また、静電容量検出電極Eが、振子590aの他方の面上で、静電容量検出電極Dと同様に形成されている。更に静電容量検出電極Eは、枠体590の内径側の側面を伝わって枠体590の一方の面上まで連続し、枠体590の一方の面上に枠体10と略等しい幅で円弧状に端部が形成されている。枠体590の一方の面上の静電容量検出電極D,Eのそれぞれの端部は図示しないサーボアンプに接続される。
 以上述べた各振子導体は、石英ガラスから成る枠体590、振子590a、ヒンジ590b1,590b2の表面に金(Au)がスパッタリング若しくは真空蒸着された薄膜で形成される。
 前述した直線運動式加速度センサと揺動運動式加速度センサにおいて、両者の基本構造の違いを可動部の弾性支持方法で分類できる。直線運動式は可動部の移動方向を軸芯として、この軸芯の円周方向にばねが配置される。揺動運動式は一端を固定端として、もう一方を自由端とする片持ちはりによって可動部が支持される構造である。
特開2004-205284号公報 特開2010-96509号公報 特開2006-283966号公報
 特許文献1に開示された直線運動式加速度センサの場合、基本動作原理・構造に起因する生産技術面での大きな課題があった。図55aはフロント側ディスク状ばね20の形状を示す正面図、図55bは前述したセンサ全体図(図54)からフロント側パネル26、固定側電極25などを取り外した正面断面図である。図55cは図55bのA部拡大図で、可動側電極24が軸方向に変形した状態を示す図である。
 フォースコイル16a、及び、検定コイル16bの各端子と外部に設置された制御回路を繋ぐためには、4本の導通路を必要とする。さらに可動側電極24と変位検出器31(図54)を繋ぐ導通路を含めると、総計5本の独立した導通路が必要である。前記2つのコイルと前記可動側電極は軸方向に移動するため、5本の端子と外部固定部の間をリード線で連結することはできない。そのため、図55a、図55cに示すように、5本の導通路はフロント側ディスク状ばね20、及び、リアー側ディスク状ばね21を利用して形成する。すなわち、2つのディスク状ばね20、21は可動部(コイルボビン17、可動側電極24等)の弾性支持と、前記5本の独立した導通路を兼ねて形成される。
 図55aにおいて、34a、34b、34cはフロント側ディスク状ばね20の外周側固定部である。この3つの外周側固定部は鎖線円AAで示すように、電気的絶縁を図るために、円周方向の3箇所で切断されている。35a、35b、35cは前記フロント側ディスク状ばねの内周側ばね部である。この3つの内周側ばね部は鎖線円BBで示すように、電気的絶縁を図るために、円周方向の3箇所で切断されている。36a、36b、36cは各コイル端子と前記内周側ばね部を導通させるための半田付け部である。図55cには、検定コイル16bの端子と内周側ばね部35cを半田付け部36cで導通させた状態を示している。ちなみに、サーボ型加速度センサに用いられるコイル線径は、たとえば、30μm程度の極細線である。
 すなわち、従来サーボ型加速度センサは、基本動作原理・構造に起因する生産技術面での課題として、ディスク状ばねとコイル間の「切断・絶縁・半田付け」の工程を必要とする。この複雑な工程が、量産時における歩留まりを低下させ、信頼性を低下させる主要因となっていた。長期信頼性を考慮したとき、直線運動式加速度センサに適用される小径のディスク状ばねは、金属材料でなければならない。その理由として、センサの性能面から可動部の慣性質量とばね剛性で決まる機械的共振周波数は充分に低く、ばね剛性の値は小さく設定する必要がある。小径のディスク状ばねは、小さな外力で大きく変形する。そのため、揺動運動式加速度センサで用いられているような非金属材料(たとえば、石英ガラス)と導伝性薄膜(導通路)を組み合わせた構造の採用は困難である。
 特許文献2に開示された従来揺動運動式加速度センサが、スパッタリング、真空蒸着などの高額な加工設備を必要とする薄膜工法を用いる理由は、(i)揺動運動する一対のトルカコイルと外部制御回路を繋ぐ導通路、(ii)揺動運動する振子590aの表面に形成された静電容量電極と外部制御回路を繋ぐ導通路、上記(i)(ii)を必要とするからである。上記複数の独立した導通路は弾性変形する肉薄のヒンジ590b1,590b2を利用して、その表面に薄膜形成されていた。図57に振子590aが揺動運動する状態を拡大して示す。
 この方法以外に、たとえば、細い複数の導線(ワイヤー)を、運動部材側と固定部材側に半田付け、あるいは導伝性接着剤などで連結する方法を想定する。この場合、ワイヤーの変形に伴うばね負荷が、前記ヒンジ部のばね剛性に並列に加わることになり、機械的共振周波数に影響を与える。またワイヤーに加わる繰り返し応力による疲労破壊など、信頼性の低下は回避できない。
 したがって、直線運動式、あるいは揺動運動式のいずれのサーボ型加速度センサにおいても、可動部材側と固定側を繋ぐ複数信号を流す導通路は、両者を連結する弾性部材を利用して形成せざるを得ない。その結果、複雑な構造と生産工法を必要とするため、コスト高となり、量産時における歩留まり・信頼性を低下させる大きな要因となっていた。
 アクティブ除振台を構成する一例として、4点支持アクティブ制御を想定する。この場合、アクチュータは四隅に配置され、アクチュータの設置向きは、水平X方向に2点、Y方向に2点が対角に配置される。また各アクチュータはZ方向の荷重を支持するアクチュータも組み込まれる。さらに、したがって、総計8個のアクチュータが配置され、各アクチュータの制御するための8個の加速度センサが必要である。さらに床面の加速度を検出するセンサを含めると、総計9個の高価な加速度センサが必要である。したがって、多軸制御のアクティブ除振台の場合、必要とされる加速度センサ個数の多さゆえに、全体に占めるコスト比率が高いという深刻な課題があった。
 前述したように、歩留まり低下の主要因である配線処理の難しさは、可動部のコイルが動くことに起因するムービング・コイル式(MC式)の不可避の課題である。本発明は、この課題をもたらす原点に立ち戻り、サーボ型加速度センサのアクチュエータ部は、3つの要素、すなわち、「永久磁石」、「コイル」、「ヨーク材」で閉ループ磁気回路を形成することに注目した。この3つの要素のひとつである「コイル」が固定されるならば、ムービング・コイル式(MC式)の宿命的課題、すなわち、歩留まり低下の主要因である配線処理の難しさは一挙に解決される。
 しかして、請求項1に係る発明のサーボ型振動検出器は、固定部材と、前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、前記可動部材の前記所定方向の変位を検出する変位検出部と、前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、前記駆動手段が、前記固定部材に固定されたコイルを具備し、前記可動部材が、閉ループ磁気回路の一部をなす可動側ヨーク材を少なくとも具備したものである。
 すなわち、本発明はコイルを固定部材側に固定して、固定部材と可動部材間の空隙に磁束が流れるように永久磁石を配置して、可動部材を永久磁石とヨーク材、あるいはこのヨーク材だけで構成する。可動部材は閉ループ磁気回路を形成することで生じる電磁気力で駆動される。本発明により、生産工程において、ムービング・コイル式の複雑な配線処理が不要となり、量産工法の大幅な簡素化と生産コストを低減できる。
 請求項2に係る発明のサーボ型振動検出器は、前記可動部材が、前記閉ループ磁気回路を形成する永久磁石をさらに具備し、前記永久磁石のいずれかの磁極面に対して前記可動側ヨーク材が連結されているとともに、当該可動側ヨーク材が前記コイル内に配置されており、前記駆動手段が、前記コイルに電流を印加することで、電流が流れる導線が磁界中で受けるローレンツ力の反力により、前記永久磁石及び前記可動側ヨーク材を前記所定方向に移動させるように構成したものである。
 すなわち、本発明は、磁界中に置かれた導体に電流が流れると、電磁力であるLorentz力が前記導体に発生する。あらゆるアクチュータは、その駆動原理の種類に関わらず、固定側と移動側の力関係は相対的である。すなわち、本発明では、固定配置された前記コイルに電流が流れると、前記永久磁石を軸方向に移動させるLorentz力の反力を利用したものである。
 請求項3に係る発明のサーボ型振動検出器は、前記固定部材に固定され、前記閉ループ磁気回路を形成する永久磁石をさらに具備し、前記永久磁石のいずれかの磁極面に対して前記可動側ヨークが離間させて設けられているとともに、当該可動側ヨーク材が前記コイル内に配置されており、前記駆動手段が、前記コイルに電流を印加することで電流が流れる導線が磁界中で受けるローレンツ力の反力により、前記可動側ヨーク材を前記所定方向に移動させるように構成したものである。
 すなわち、本発明は、コイルのみならず永久磁石も固定して、ヨーク材だけを動かすことでサーボ型加速度センサのアクチュータを構成したものである。すなわち、「第3のリニアモータ」とも言うべき、ムービング・ヨーク式(MY式(仮称))の提案である。MY式加速度センサの特徴は、
 (1)MC式同様に可動部質量の軽量化が図れる。
 (2)MM式同様にコイルの極細線処理が不要である。
 すなわち、MM式とMC式の両方の短所を解消すると共に、両方の長所を併せ持つことができる。
 請求項4に係る発明のサーボ型振動検出器は、前記変位検出部が、前記可動部材に設けられた可動側電極と、前記可動側電極と対向するように前記固定部材に固定された固定側電極と、を具備し、前記可動側電極と前記固定側電極との間で形成される静電容量の変化に基づいて前記可動部材の変位が検出されるように構成したものである。
 すなわち、本発明は、各種センサのなかで最も高い検出精度が得られる静電容量型を適用することにより、高分解能のサーボ型加速度センサを実現できる。
 請求項5に係る発明のサーボ型振動検出器は、前記空隙部は、前記閉ループ磁気回路内において前記可動部材と前記固定部材との間で半径方向空隙をなす第1空隙部と第2空隙部を具備しており、前記第1空隙部は前記ローレンツ力を発生するためのコイルが固定配置されており、前記第2空隙部は前記可動部材と前記固定部材の間に磁束を流すための磁気連結部としたものである。
 すなわち、本発明は、従来のMC式では、閉ループの磁気回路を形成する空隙部は1個だけであるのに対して、本発明のMM式、あるいはMY式の場合は、閉ループの磁気回路を形成するためには、2つの空隙部を必要とする。コイルを介在するメインの空隙部(第1空隙部)に対して、「磁気連結部」としてサブの空隙部(第2空隙部)を設けることで、磁束密度の高い磁界中にコイルを固定設置できて、このコイルにローレンツ力を発生させることができる。
 請求項6に係る発明のサーボ型振動検出器は、前記永久磁石のいずれかの磁極面と連結し、可動側ヨーク材の一部を構成するポールピース部と、このポールピース部、もしくは、前記永久磁石の半径方向対向面と前記第1空隙部を介して前記固定部材に固定配置された前記コイルと、前記永久磁石のもう一方の磁極面と前記固定部材間を磁束が流れるように設けられた前記磁気連結部から構成されており、前記永久磁石、前記ポールピース部、前記第1空隙部、前記固定部材、前記磁気連結部により閉ループ磁気回路を形成したものである。
 すなわち、本発明は、可動部材である永久磁石のもう一方の磁極面と固定部材間を磁束が流れるように磁気連結部を設けたものである。この磁気連結部と前記永久磁石、前記ポールピース部、前記空隙部、前記固定部材により、前記ポールピース部をLorentz力で駆動させるための閉ループ磁気回路を形成したものである。
 請求項7に係る発明のサーボ型振動検出器は、可動側ヨーク材の一部を構成するポールピース部と、前記ポールピース部と前記固定部材との空隙部内において前記固定部材に固定配置された前記コイルと、前記ポールピース部は前記永久磁石のいずれかの磁極面と前記磁気連結部を介して配置されており、前記永久磁石のもう一方の磁極面と前記固定部材間を磁束が流れるように前記永久磁石は固定配置されており、前記永久磁石、前記磁気連結部、前記ポールピース部、前記固定部材により閉ループ磁気回路を形成したものである。
 すなわち、本発明は固定部材である永久磁石の一方の磁極面は、可動部材である磁気連結部を経てポールピース部と磁路を形成して、永久磁石の一方の磁極面は固定部材と磁束が流れるように閉ループ磁気回路を形成したものである。
 請求項8に係る発明のサーボ型振動検出器は、前記ポールピース部は概略円筒形状で構成したものである。
 すなわち、本発明は、前記ポールピース部を円筒状にして、この円筒部の厚みを薄く、かつ長く構成することで下記効果が得られることを見出したものである。
 (1)ボイスコイルモータの力定数(電気・機械変換効率)を大きくできる。
 (2)可動部慣性質量の増加分を小さくできる。
 (3)コイル巻数を増加させて発生力を大きくしても、発熱を抑制できる。
 上記(1)は、前記ポールピース部を長くすることで、漏洩磁束が発生力に与える影響を低減できることを見出したものである。上記(2)は、前記ポールピース部を長くしても、円筒部の厚みが薄ければ質量の増加分は僅少である。上記(3)は、前記ポールピース部を長くすることで、その対抗面のコイル収納空間を増加できることを利用している。すなわち、コイル線径を大きくして、コイル巻数の増加に伴うコイルの電気抵抗の増大を抑制する。したがって、上記(1)~(3)により、MC式からMM式に置き換えることによる可動部の質量UPがもたらす課題が解消される。本発明により、高周波域(たとえば、400~500Hz以上)まで延びた信号伝達特性と、高い応答性が得られるMM式加速度センサが実現できる。
 請求項9に係る発明のサーボ型振動検出器は、軸方向に着磁された前記永久磁石と、この永久磁石の一方の磁極面に連結された前記ポールピース部と、このポールピース部の半径方向対向面に空隙部を介して前記ハウジングの内面に固定配置された前記コイルと、前記永久磁石のもう一方の磁極面と前記ハウジング間を磁束が流れるように設けられた前記磁気連結部で構成したものである。
 すなわち、本発明は、軸方向に着磁された前記永久磁石と前記ポールピース部を連結した構成により、シンプルな部品構成でサーボ型加速度センサが実現できる。
 請求項10に係る発明のサーボ型振動検出器は、第1空隙部と第2空隙部における前記可動部材と前記固定部材との半径方向離間距離をそれぞれδ1、及び、δ2として、δ1>δ2となるように構成したものである。
 すなわち、本発明は、前記磁気連結部の間隙(サブギャップ部)を前記空隙部(メインギャップ部)よりも狭くして、前記磁気連結部の磁気抵抗を前記空隙部のそれよりも小さくすることで、前記磁気連結部が発生力に与える影響を小さくできる。
 請求項11に係る発明のサーボ型振動検出器は、前記可動側磁性材料部材を含む可動部質量をm、前記永久磁石の質量をmp、前記可動部質量の下限値mmin=2mpとして、KPTを位置センサ感度KSと調整ゲインKCと比例ゲインKPの積で決まる電気的ゲイン、Ktをアクチュエータの力定数、Raを前記コイルの電気抵抗、KT= KPTKt/Raとして、f0を加速度センサに要求される共振周波数、前記可動部質量の上限値mmax=KT/(2πf0)2としたとき、mmin≦m≦mmaxの範囲に設定したものである。
 すなわち、本発明においては、MM式加速度センサの可動部質量mの下限値は永久磁石の質量mpが基本となることに着目した。前記永久磁石と連結する磁性材料部材(ポールピース部)形状の工夫等によって、従来MC式以上のアクチュータ発生力を得ると共に、可動部質量mの下限値mmin=2mpにすることができる。また可動部質量mの上限値mmaxは、加速度センサに要求される共振周波数f0を設定して、かつ、制御回路の電気的ゲインKPT、アクチュエータの力定数Kt、コイルの電気抵抗Raにより決めることができる。
 請求項12に係る発明のサーボ型振動検出器は、前記磁気連結部は径方向に着磁された補助永久磁石と、この補助永久磁石の半径方向対向面に空隙部を介して前記ハウジングの内面に固定配置された補助コイルから構成したものである。
 すなわち、本発明は、前記磁気連結部を径方向に着磁された補助永久磁石とその対向面に配置された補助コイルから構成する。この構成により、前記磁気連結部はサブ・アクチュエータとして機能するため、駆動部の発生力を向上できる。また、補助永久磁石と補助コイル間のエアーギャップは充分に大きく設定できるために、組立作業が容易となる。固定側に対して可動部の軸芯が偏芯した場合、可動部に加わる半径方向の発生力も僅少である。
 請求項13に係る発明のサーボ型振動検出器は、前記閉ループ磁気回路内には、前記可動部材と前記固定部材との間で半径方向に磁束を伝達する第1伝達部と第2伝達部を具備しており、前記第1伝達部は前記可動部材と前記固定部材との間で半径方向の空隙を有し、この空隙内に前記ローレンツ力を発生するための前記コイルが固定配置されており、前記第2伝達部は前記可動部材と前記固定部材との間は、半径方向に磁束が流れる磁性材料によるディスク形状ばねで固定されており、このディスク形状ばねは前記可動部材を支持する前記弾性部材を兼ねて構成したものである。
 すなわち、本発明は、前記第1伝達部を空隙ではなく、磁性材料で構成されたディスク状ばね自体が閉ループ磁気回路を形成する磁路としたものである。磁気連結部を必要としない本実施形態により、シンプルな構成でサーボ型加速度センサを実現できる。
 請求項14に係る発明のサーボ型振動検出器は、前記永久磁石をフロント側永久磁石、前記コイルをフロント側コイルとして、前記磁気連結部は、径方向に着磁されたリアー側永久磁石と、このリアー側永久磁石の一方の磁極面に連結された前記ポールピース部と、前記リアー側永久磁石のもう一方の磁極面の半径方向対向面に前記空隙部を介して前記ハウジングの内面に固定配置されたリアー側コイルから構成され、前記フロント側永久磁石、前記空隙部、前記ハウジング、前記空隙部、前記リアー側永久磁石、前記ポールピース部で閉ループ磁気回路を構成したものである。
 すなわち、本発明は、前記フロント側永久磁石を径方向に着磁された磁石で構成すると共に、前記磁気連結部を径方向に着磁された磁石と固定コイルにより構成したものである。フロント側とリアー側のいずれもボイスコイルモータとして機能するために発生力の向上が図れる。またコイル装着部と2つの永久磁石間の磁気空隙部の半径方向隙間を充分に大きく、たとえばδ=0.5mm程度に構成できる。狭いギャップで環状空隙部を構成する前述した実施形態と比べて、量産時の組み立ても容易である。
 請求項15に係る発明のサーボ型振動検出器は、前記弾性部材は概略平板円環形状をした導電性材料で構成されており、前記弾性部材の少なくとも外周側は、非導電性材料を介在して前記固定部材に固定されているものである。
 すなわち、本発明において、前記弾性部材(ディスク状ばね)は、可動側電極と外部を繋ぐ導通路として、前記弾性部材を支持する固定側に対して電気的絶縁が図られている。そのため、固定側電極と可動側電極間の微小な静電容量信号を、外乱ノイズの影響を受けないで検出できる。
 請求項16に係る発明のサーボ型振動検出器は、前記可動側電極と前記ポールピース部の間は、非導電性材料が介在するように構成したものである。
 すなわち、本発明において、前記ポールピースの表面には渦電流が発生するが、前記可動側電極と前記ポールピースの間は電気的に絶縁されているため、静電容量信号はこの渦電流の影響を回避できる。
 請求項17に係る発明のサーボ型振動検出器は、前記可動部材の2つの端面のそれぞれに設けられた可動側電極部材と、これらの可動側電極部材と対向して前記固定部材に設けられた固定側電極部材と、前記可動側電極部材と前記固定側電極部材の電極面間で形成される2組の静電容量センサの出力差を検出することで、差動式センサを構成したものである。
 すなわち、本発明は、左右の出力軸がいずれも開放端になる直動型MM式、あるいはMY式の構造上の特徴に注目して、静電容量を検出する電極を左右2箇所に設けることにより、差動式の静電容量式センサを構成したものである。
 請求項18に係る発明のサーボ型振動検出器は、前記可動部材の片側軸端部において、2つの平板状の前記可動側電極部材が隙間を介して設けられており、この2つの前記可動側電極部材に挟み込まれるように平板状の前記固定側電極部材を前記隙間内に配置して、前記可動側電極部材の電極面Saと対向する固定側電極部材の電極面SAの間で第1の静電容量センサを構成して、かつ、前記電極面SAの裏面の電極面SBと対向する前記可動側部材の電極面Sbの間で第2の静電容量センサを構成したことを特徴とする。
 すなわち、本発明は、前記可動部の片側軸端部に設けた2つの可動側電極と、1つの固定側電極から、2組の静電容量センサを構成したものである。片側1軸の主力端のみ利用可能なアクチュータを有する加速度センサにも適用可能である。
 請求項19に係る発明のサーボ型振動検出器は、前記可動部材の端部に1つの平板状の前記可動側電極部材が設けられており、この可動側電極部材の表裏面には電極面SAAと電極面SBBが形成されており、この可動側電極部材を隙間を介して挟み込むように2つの平板状の前記固定側電極部材を配置して、前記電極面SAAと対向する前記固定側電極部材の電極面Saaの間で第1の静電容量センサを構成して、かつ、前記電極面SBBと対向する前記固定側電極部材の電極面Sbbの間で第2の静電容量センサを構成したものである。
 すなわち、本発明は、前記可動部の片側軸端部に設けた1つの可動側電極と、2つの固定側電極から、2組の静電容量センサを構成したものである。前述した実施形態同様に、片側1軸の主力端のみ利用可能なアクチュータを有する加速度センサにも適用可能である。
 請求項20に係る発明のサーボ型振動検出器は、前記コイルは非磁性の金属製ボビンに収納されて、かつこの金属製ボビンは前記固定部材の中空円筒部分の内面に篏合されているものである。
 すなわち、コイルボビンに非磁性で熱伝導性の良い材料(たとえば、アルミ材)を用いて、かつこのコイルボビンを前記ハウジングの内面に密着して装着する。その結果、コイルの発熱は容易に放熱できるため、熱雑音に繋がるセンサノイズを低減できる。従来のMC式センサの場合は、コイルボビン、及び、コイルは空中に浮遊した状態で設置される。コイルボビンを支持する部材は非磁性で、かつ非導電性材料であるため、熱伝導によるコイルの放熱作用は期待できなかった。本発明は、コイルが固定できるMM式の構造上の特徴を利用したものである。
 請求項21に係る発明のサーボ型振動検出器は、前記固定部材の内面に密着する前記コイルの軸方向端面近傍で、前記可動部材と前記固定部材間の半径方向距離が両端と比べて大きい窪み部が前記ハウジングの内面に形成されているものである。
 すなわち、本発明は、磁気空隙部を垂直に流れる磁束は、アクチュエータの発生力に有効に寄与するのに対して、コイル対抗面のコーナーからコイル側ヨーク材内周面のコーナーに流れる磁束は漏れ磁束であり、発生力に寄与しない点に注目したものである。前記コイル側ヨーク材に形成された窪み部は、漏れ磁束を低減するのに大いに貢献する。
 請求項22に係る発明のサーボ型振動検出器は、前記永久磁石と前記ポールピース部との間、前記コイルが収納されたコイルボビンと前記固定部材との間、前記弾性部材と前記固定部材との間、又は、前記弾性部材と前記ポールピース部との間の少なくともいずれかはM0.5からM1.0mmのボルトにより締結されるように構成したものである。
 すなわち、本発明は、ミクロな部品で構成される加速度センサに、時計などの特殊分野で適用されるM0.5からM1.0mmの極小ボルト締結工法を適用したものである。極小ボルト締結工法の適用が可能となった理由は、極細線処理が不要で、可動部の部品構成を簡素化できるMM式の特徴に注目したものである。
 接着工法で製品を構成した従来加速度センサ場合、量産時における品質評価の段階で、不合格品となれば製品本体を破棄せざるを得なかった。本発明センサにおいては、多くの部品の再利用が可能であり、量産時における歩留まりをおおいに向上させることができる。また接着工法の場合は、接着する部品間に介在する接着剤の厚みと、この厚みの不均一性が組立精度を低下させる要因となっていた。本発明の場合は、各部品の加工精度さえ得られれば、高い組立精度を確保できる。また、作業者に熟練度を必要としないため、製品性能のばらつきを低減できる。
 請求項23に係る発明のサーボ型振動検出器は、前記弾性部材はディスク形状の導電性材料で形成されており、前記弾性部材の内周部と外周部は非導電性材料による薄板材と一体化した構造としたものである。
 すなわち、本発明は、接着工法とボルト締結工法のそれぞれの長所を組み合わせたものである。たとえば、組立準備段階において、電気的絶縁を図る必要がある部品は導電性材料(金属)と絶縁材料(セラミックスなど)を、予め接着剤により一体化しておく。この工程を経て、ボルト締結工法に移行すれば、シンプルな構成で効率良く生産工程を進行させることができる。
 請求項24に係る発明のサーボ型振動検出器は、少なくとも前記可動部材を含み、可動側電極が装着された可動ユニットと、前記可動側電極と対向するように配置される固定側電極が装着された固定ユニットと、をさらに備え、前記変位検出部が、前記可動側電極と前記固定側電極間で形成される静電容量を検出するように形成されており、前記可動ユニットと前記固定ユニットの相対的半径方向移動が規制された状態で、前記可動ユニットと前記固定ユニットが相対的軸方向移動できるように前記可動ユニットと前記固定ユニット間に嵌合構造が形成されているとともに、前記前記可動ユニットと前記固定ユニットトを接着固定するための溝部が前記前記可動ユニットと前記固定ユニットの外表面に形成されているものである。
 すなわち、本発明の適用により、最終の組み立て段階では接着工法を適用することで、静電容量を実測しながら、可動側と固定側の電極間隙間を最適値に調整できる構造にできる。この方法により、最終工程で集積されたすべての誤差を吸収できる。たとえば、静電容量が目標値に到達した時点で、紫外線硬化型接着剤にLEDライトを照射して接着剤を硬化すれば、前記2つのユニットは締結できる。
 請求項25に係る発明のサーボ型振動検出器は、導伝性材料で構成された前記固定部材と前記ボルトと前記弾性部材と、前記弾性部材は非導電性部材による薄板が接着固定されており、この非導電性部材は前記固定部材にボルト締結されており、前記ボルト頭部が前記弾性部材と電気的に非接触となるように構成されているものである。
 すなわち、本発明は、前記弾性部材(ディスク)を電極間の静電容量信号の導通路として利用すると共に、金属製ボルトと非導電性部材(たとえば、セラミックス)を用いて、前記弾性部材を電気的に非接触となるように前記ハウジングに締結したものである。この方法により、外乱ノイズの影響を受けることなく、微小な静電容量信号を伝達できる。
 請求項26に係る発明のサーボ型振動検出器は、前記弾性部材は一方を固定端、もう一方を自由端とする片持はりから構成されており、この片持はりの自由端側に前記可動部材を設けたものである。
 すなわち、本発明は、前記弾性部材に一方を固定端、もう一方を自由端とする片持はり(振子構造)を適用したものである。片持はり構造により、シンプルな構成で低剛性支持ができるため、可動部の共振周波数(固有値)を充分に小さく設定できる。
 請求項27に係る発明のサーボ型振動検出器は、前記片持はりの一部を導伝性材料にして、前記変位検出部の信号を固定部材側と繋ぐ信号伝達経路としたものである。
 すなわち、本発明は、コイルを固定するMM式の特徴を利用して、揺動運動する可動側から引き出す電気信号は、静電容量信号の一本だけでよい点を利用したものである。コイルが動くMC式の場合は、石英ガラスなどの非導電性材料で構成される片持はりに薄膜形成技術を用いて、複数の信号伝達経路を形成していた。本発明センサの場合は、前記片持はりに導伝性(金属)材料を適用することができる。
 請求項28に係る発明のサーボ型振動検出器は、前記磁気連結部において、前記弾性部材の半径方向剛性Krとして、前記固定側磁性材料部材の軸芯に対して前記可動側磁性材料部材の軸芯の偏芯量をδrとしたときの磁気吸引力による半径方向発生力をFrとして、負のばね剛性Kmr =Frrを定義して、Kr>Kmrとなるように構成したものである。
 すなわち、本発明は、磁気連結部において、部品精度、組立精度が充分に得られず、固定側と可動側の軸芯が偏芯した場合に、遠心方向の磁気吸引力Frが発生する。磁気回路で形成される負のばね剛性Kmr =Frrとして、ディスクの求心方向剛性をKr>Kmrとなるようにディスク仕様を選べば、磁気連結部は安定した状態を保つことができる。
 請求項29に係る発明のサーボ型振動検出器は、前記磁気連結部は径方向に着磁された前記永久磁石と、この永久磁石の内周面と空隙を保って配置された前記ポールピース部の外周面からMY式加速度センサを構成したものである。
 すなわち、本発明は、半径方向に着磁したセグメント型永久磁石を複数個用いて磁気回路を構成したものである。そのため、フォースコイルに電流を印加しない状態において、ポールピース部に軸方向の電磁力は発生せず、ポールピース部を同位置に保つことができる。
 請求項30に係る発明のサーボ型振動検出器は、前記磁気連結部は軸方向に着磁された前記永久磁石と、この永久磁石のN極とS極のいずれかの磁極面に連結して配置されたポールピース側ヨーク材と、このポールピース側ヨーク材の外周面に対して径方向の空隙を保って配置された前記ポールピース部の内周面から構成したものである。
 すなわち、本発明は、軸方向に着磁した永久磁石を用いて磁気回路を構成したものである。磁気回路をシンプルな構成にできて、永久磁石の性能を広い範囲で選択できる。永久磁石の寸法・形状に制約が無いため、永久磁石性能の指評である減磁特性(保持力Hc、飽和磁束密度Br)を幅広く選択できる。永久磁石性能に余裕があるために、磁気連結部における空隙部は充分に大きくても良い。この空隙部は磁気抵抗になるが、その損失を補うのに充分な永久磁石の性能が得られる。
 請求項31に係る発明のサーボ型振動検出器は、固定部材と、前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、前記可動部材の前記所定方向の変位を検出する変位検出部と、前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、前記変位検出部が、前記可動部材に設けられた2個の電極面を有する可動側電極部材と、前記固定部材に設けられた2個の電極面を有する固定側電極部材と、を具備し、前記可動側電極部材の各電極面と、前記固定側電極部材の各電極面とをそれぞれ対向させる組み合わせから2組の静電容量センサが構成されており、前記可動部材の所定方向移動によって、前記2組の静電容量センサのそれぞれの電極面間の隙間が逆位相で変化するように前記可動側電極部材と前記固定側電極部材を配置すると共に、前記2組の静電容量センサの出力信号の差をとることで、差動式センサを構成したものである。
 すなわち、本発明は、加速度センサを差動式にすることにより、センサ出力がノイズ、ドリフトなどの外乱信号の影響を受けにくい高感度センサが実現できる。
 本発明センサの加速度出力を完全積分して得られる絶対速度信号、及び絶対変位信号は容易には発散しない。したがって、本発明センサをアクティブ除振台に適用した場合、センサ感度向上による効果(たとえば、ステージの位置決め精度向上)に加えて、低周波数領域で大幅な除振特性向上効果が得られる。
 請求項32に係る発明の振動制御装置は、請求項31に係る発明のサーボ型振動検出器と、前記サーボ型振動検出器が出力する加速度信号を1回積分して得られる絶対速度信号又は2回積分することで得られる絶対変位信号を用いて、低周波数域の除振性能を得るために、絶対速度フィードバック、及び、又は、絶対変位フィードバックを振動制御装置に施したものである。
 すなわち、本発明は、隙間が逆位相で変化する2組の電極出力の差をとることにより、上記2つの電極出力に共通に加わるノイズとドリフトがキャンセルされる。
 その結果、前記加速度出力を完全積分した絶対速度信号、及び絶対変位信号は発散しない。本実施例の加速度センサをアクティブ除振台に適用した場合、センサ感度向上による効果(たとえば、ステージの位置決め精度向上)に加えて、低周波数領域で大幅な除振特性向上効果が得られる。
 請求項33に係る発明のサーボ型振動検出器は、固定部材と、前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、前記可動部材の前記所定方向の変位を検出する変位検出部と、前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、コイルを貫通して設けられた固定側ヨーク材と、この固定側ヨーク材の開放端と空隙を介して配置された可動側ヨーク材と、この固定側ヨーク材と前記空隙部と前記可動側ヨーク材で閉ループ磁気回路を形成して電磁石を構成することで、可動側ヨーク材を含む前記可動部材を前記コイル側に吸引させる吸引力発生手段Aとすると共に、前記可動部材を挟んで、吸引力発生手段Aとは逆方向の力を発生させる吸引力発生手段Bを配置して、前記コイルに流す電流を制御することで、前記可動部材を軸方向に移動させるマックスウェル応力による前記駆動手段を構成したものである。
 すなわち、本発明は、可動部を駆動するのにMaxwell応力による磁気吸引力を用いている。アクチュエータの外形寸法を同一条件下で比較すれば、Maxwell応力はLorentz力と比べて、入力電流に対する発生力の電気機械変換効率(推力定数)が圧倒的に高く、通常20倍以上である。この点を利用すれば、本実施形態の加速度センサは計測可能な加速度の上限値を極めて大きく出来る。
 本発明に係るサーボ型振動検出器であれば、コイルが固定された状態でヨーク又は永久磁石が移動可能に構成されているので、従来のムービング・コイル式のサーボ型振動検出器のような複雑な配線処理が不要となり、量産工法の大幅な簡素化と生産コストを低減できる。
本発明の実施形態1に係るサーボ型加速度センサを示すもので、図1aは図1bのAA矢視図、図1bはセンサ本体の正面断面図 本発明のMM式加速度センサの磁気回路のモデル図 従来のMC式加速度センサの磁気回路のモデル図 発生力Fとポールピース部長さLの関係を示す解析結果のグラフ 漏れ係数σとポールピース部長さLの関係を示す解析結果を示すグラフ ポールピース部を長さLに対する可動部の慣性質量mを示すグラフ ポールピース部長さLに対するコイル収納容積VCを示すグラフ 理論解析に用いた加速度センサの制御ブロック図 (1)従来MC式、(2)本発明MM式、(3)従来MC式仕様で慣性質量mだけが4倍の場合、上記(1)~(3)についてゲイン・位相特性を比較したグラフ (1)従来MC式、(2)本発明MM式について、時間に対するアクチュエータの発生力を比較したグラフ (1)従来MC式、(2)本発明MM式について、機械的ノイズがセンサ出力に与える影響を比較したグラフ (1)従来MC式、(2)本発明MM式、(3)従来MC式仕様で慣性質量mだけが4倍の場合、上記(1)~(3)について、コイル電流を比較したグラフ 本発明の実施形態2に係るサーボ型加速度センサの正面断面図 本発明の実施形態3に係るサーボ型加速度センサの正面断面図 本発明の実施形態4に係るサーボ型加速度センサの正面断面図 本発明の実施形態5に係るサーボ型加速度センサの正面断面図 本発明の実施形態6に係るサーボ型加速度センサの正面断面図 実施形態6における磁束の流れを矢印(鎖線)で図示した図 実施形態6における熱の流れを矢印(鎖線)で図示した図 本発明の実施形態7に係るサーボ型加速度センサであり、図20aは正面断面図、図20bは図20aのA-A断面図 本発明の実施形態8に係るサーボ型加速度センサの正面断面図 本発明の実施形態9に係るサーボ型加速度センサであり、図22aは正面断面図、図22bと図22cはセグメント型永久磁石を示す断面図 本発明の実施形態10に係るサーボ型加速度センサの正面断面図 実施形態10による差動式サーボ型加速度センサが3つのユニットから構成できることを示す図 従来式加速度センサの場合について、電極出力、ノイズとドリフト、センサ加速度出力の関係を示す図 実施形態10による加速度センサの場合について、2つの電極出力、ノイズとドリフト、センサ加速度出力の関係を示す図 本発明の実施形態11に係るサーボ型加速度センサの正面断面図 本発明の実施形態12に係る揺動運動式サーボ型加速度センサを示すもので、図28aは正面断面図、図28bはこのセンサを構成する一部品である振子の側面の概略図 実施形態12の組立方法の一例を示す図 本発明の実施形態13に係る揺動運動式サーボ型加速度センサの正面断面図 本発明の実施形態14に係るサーボ型加速度センサの正面断面図 実施形態14の組立工程のStep1を示す図 実施形態14の組立工程のStep2を示す図 実施形態14の組立工程のStep3を示す図 実施形態14の組立工程のStep4を示す図 実施形態14の組立工程のStep5を示す図 実施形態14のスパイラル・ディスクを示す図 実施形態14の組立工程のStep6を示す図 実施形態14の組立工程のStep7を示す図 実施形態14の組立工程のStep8を示す図 本発明の実施形態15に係るサーボ型加速度センサを示し、図41aは固定側電極ユニットの正面断面図、図41bは固定側電極ユニットの正面断面図 実施形態15における2つのユニットを締結した状態を示す正面断面図 本発明の実施形態16に係るサーボ型加速度センサの正面断面図 本発明の実施形態17に係るサーボ型加速度センサの正面断面図 本発明の実施形態18に係るサーボ型加速度センサを示し、図45aはフロント側スパイラル・ディスクの形状を示す図、図45bは加速度センサの正面断面図、図45cはリアー側ディスクの形状を示す図 本発明の実施形態19に係るサーボ型加速度センサの正面断面図 本発明の実施形態20に係るサーボ型加速度センサを示し、図47aは正面断面図、図47bは図47aのAA断面図 本発明の実施形態21に係るサーボ型加速度センサの正面断面図 本発明の実施形態22に係るサーボ型加速度センサの正面断面図 本発明の実施形態23に係るサーボ型加速度センサの正面断面図 本発明に光学式センサを適用したサーボ型加速度センサの正面断面図 従来のアクティブ除振台のモデル図 静電容量型加速度センサの基本構成と検出原理を示すモデル図 従来の直動運動式加速度センサの具体構造例を示す正面断面図 従来の直動運動式加速度センサにおいて、図55aはフロント側ディスク状ばねの形状を示す正面図、図55bは図54からフロント側パネル26、固定側電極25などを取り外した正面断面図、図55cは図55bのA部拡大図 従来の揺動運動式加速度センサの一例を示す正面断面図 揺動運動式加速度センサの振子が揺動運動する状態を拡大して示す図 揺動運動式加速度センサの振子の平面図を示し、図58(a)は振子の一方の面、図58(b)は他方の面を示す図
101 永久磁石
102 可動側部材
105 固定側部材
116、104 可動側ヨーク材
106 コイル
110 変位検出器の可動部
117 空隙部
 ここで、原点に立ち戻り、サーボ型加速度センサのアクチュエータ部は、3つの要素、すなわち、「永久磁石」、「コイル」、「ヨーク材」で閉ループ磁気回路を形成することに注目する。この3つの要素のひとつである「コイル」が固定されるならば、ムービング・コイル式(MC式)の宿命的課題、すなわち、歩留まり低下の主要因である配線処理の難しさは一挙に解決される。以下、本発明を次の2つのステップに分けて説明する。
 (I) ムービング・マグネット式(MM式)加速度センサ
 (II) ムービング・ヨーク式(MY式)加速度センサ
 まず、上記(I)から説明する。
 (第1実施形態)
 本実施形態は、永久磁石が動き、コイルが固定されるがゆえに極細線処理が不要なムービング・マグネット式(MM式)に着目した。従来サーボ型加速度センサはコイルが軸方向に直線移動する、あるいは揺動運動式するムービング・コイル式(MC式)であるのに対して、本実施形態ではコイルは固定されて永久磁石が軸方向に移動する。しかして、MM式のサーボ型加速度センサは過去に前例を見ない。その理由として、 「MM式は可動部の慣性質量が増大するために、 高周波域の伝達特性・高速応答性が不利になる」 という暗黙の前提とも言うべき固定観念(盲点)があった、と思われる。本発明は、以下示す工夫によりこの「盲点」を突いたものである。すなわち、本実施形態では、 (i)可動部の軽量化が図れる磁気回路の構成 (ii)漏れ磁束の影響を低減する磁極形状 (iii)コイル収納容積増大を利用して、発生力UPと発熱抑制を両立するコイル仕様 などの工夫により、MM式の弱点を解消すると共に、MC式を凌駕するセンサ性能を実現することができた。以下、下記(1)で本実施形態の具体構造と構造面での特徴について説明し、下記(2)で本発明が加速度センサの基本性能に与える効果を、理論解析により検証する。
 (1-1) 本実施形態の具体構造
 図1は、本発明の実施形態1に係るサーボ型加速度センサの一例を示すもので、図1aは図1bのAA矢視図から後述するスパイラル・ディスクだけを抽出した外観図、図1bはセンサ本体の正面断面図である。
 101は永久磁石、102はフロント側ポールピース部、103はこのフロント側ポールピース部を軽量化するために形成された円筒形状の空隙部(後述する慣性質量調節部)である。104はリアー側ポールピース部、105はコイル側ヨーク材、106aはフォースコイル、106bは検定コイル、107は前記コイル側ヨーク材の内面に形成された突出部である。108はフロント側スパイラル・ディスクばね(以下、フロント側ディスク)、109はリアー側スパイラル・ディスクばね(以下、リアー側ディスク)である。図1aに示すフロント側ディスクは、峰部108aと溝部108bから形成されており、前記リアー側ディスクも同様な形状の弾性部材である。すなわち、可動側磁性材料部材(可動側ヨーク材)はフロント側ポールピース部102とリアー側ポールピース部104から構成される。固定側磁性材料部材はコイル側ヨーク材105である。110は可動側電極、111は固定側電極、112aはフロント側パネル、112bはリアー側パネル、113は中央プレート、114は前記固定側電極と前記フロント側パネルを締結する非導電性材料による締結部材である。可動側電極110と固定側電極111により、静電容量型の変位検出部を構成している。115はコイル側ヨーク材105の内周面で、前記2つのコイル(106a、106b)のコイル装着部、116はフロント側ポールピース部102のコイル対抗面である。本実施例では、フォースコイル106a、検定コイル106bはボビンレスで構成されて、その外周面が凸形状のコイル装着部115に装着される。
 コイル対抗面116とコイル装着部115間は半径方向の磁気空隙部117(第1空隙部)が形成されている。前記コイル側ヨーク材の突出部107とリアー側ポールピース部104の間は、狭い間隙による環状空隙部118(第2空隙部である磁気連結部)が設けられている。「永久磁石101→フロント側ポールピース部102→磁気空隙部117→コイル側ヨーク材105→環状空隙部118→リアー側ポールピース部104」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。鎖線円Bに示す環状空隙部118は、磁気空隙部117と比べて磁気抵抗が充分に小さくなるように隙間を設定した。環状空隙部118は永久磁石を用いた磁気回路において、閉ループ磁気回路を形成するための磁気連結部である。良く知られているように、磁界中に置かれた導体に電流が流れると、電磁気力であるLorentz力が発生する。あらゆるアクチュータは、その駆動原理の種類に関わらず、固定側と移動側の力関係は相対的である。すなわち、固定側と移動側のいずれか一方を固定すれば、もう一方が移動する。本実施例では、磁気空隙部117の空間に固定配置されたフォースコイル106aに電流が流れると、可動部を軸方向に移動させるLorentz力の反力が発生する。本実施例の可動部は、永久磁石101、フロント側ポールピース部102、リアー側ポールピース部104、及び、可動側電極110から構成される。
 119a、119bはフォースコイル106aの引き出し線、120a、120bは検定コイル106bの引き出し線である。この4本の引き出し線は、コイル側ヨーク材105とフロント側パネル112aを貫通して、外部に設置された制御回路に繋がる。121は内周側ディスク支持リング、121aは内周側ディスク支持リングを軽量化するために形成した円筒形状の空隙部、122は外周側ディスク支持リングである。内周側ディスク支持リング121、外周側ディスク支持リング122は非導電性材料(絶縁材料)で構成した。
 内周側ディスク支持リング121によって、磁性材料であるフロント側ポールピース部102と可動側電極110間は電気的絶縁を図ることができる。前記ポールピース部の表面には渦電流が発生するが、この電気的絶縁対策によって、2つの電極間の静電容量信号はこの渦電流の影響を回避できる。また外周側ディスク支持リング122によって、フロント側ディスク108の外周側は、コイル側ヨーク材105に対して電気的絶縁が図られている。絶縁材料としては、無機固体絶縁材料であるマイカ(雲母)、磁器(セラミックス)、ガラスなどが適用できる。内周側ディスク支持リング121は導電性材料である可動側電極110とフロント側ポールピース部102の間で接着固定される。フロント側ディスク108の内周側は、可動側電極110と内周側ディスク支持リング121の間で矜持される。また、フロント側ディスク108の外周側は、外周側ディスク支持リング122に接着固定される。123は可動側電極110と固定側電極111間の静電容量を検出する2本の導線(引き出し線)の一方である。この導線123の端部はディスク状ばね108と導通すると共に、外周側ディスク支持リング122に形成された溝(図示せず)に装着される。フロント側ディスク108は、可動部の支持と静電容量を検出する導通路を兼ねている。すなわち、固定側電極111と可動側電極110間の微小な静電容量信号を検出するために、可動側電極110と外部を繋ぐ導通路(フロント側ディスク108、導線(引き出し線)123)は、完全な電気的絶縁が図られている。
 本実施形態では、永久磁石101と、この永久磁石101を直列に繋ぐフロント側ポールピース部102全体を外周側から包み込むように、フォースコイル106a、検定コイル106を配置した。さらに、磁気空隙部117と比べて充分に小さな磁気抵抗を有する環状空隙部118を閉ループ磁気回路内に配置した。軸方向に移動する可動部材は、永久磁石101、フロント側ポールピース部102、リアー側ポールピース部104、可動側電極110、内周側ディスク支持リング121である。いずれの可動部材も軽量化を図るために、内周側に空洞部を設けている。
 本実施形態で用いたフロント側、及び、リアー側ディスク108、109には、スパイラル曲線で形成されたディスク状ばねを用いた。本実施形態、及び、後述する実施形態も同様であるが、ばねの形状はこのスパイラル曲線に限定されるものではない。加速度センサに要求される特性から、低剛性かつ低共振周波数が得られるばね構造と仕様を選択すればよく、例えば、よく知られている雲形ばねなども適用できる。
 (1-2) 本実施形態の特徴
 本実施形態では、フロント側ポールピース部102の軸方向長さをLとして、この軸方向長さLを充分に長く形成して、かつ前記フロント側ポールピース部の内部に、半径方向厚みが薄い円筒形状の空隙部103(慣性質量調整部)を設けている。この構成により、下記効果が得られる点に注目する。すなわち、
  (1)アクチュータの力定数(電気・機械変換効率)を大きくできる。
  (2)可動部慣性質量の増加分を小さくできる。
  (3)コイル巻数を増加させて発生力を大きくしても、発熱を抑制できる。
 上記(1)の効果を図2~図7を用いて説明する。図2は本発明のMM式加速度センサの磁気回路のモデル図、図3は従来のMC式加速度センサの磁気回路のモデル図である。図2における各要素の符号は、図1bにおける各要素の符号に対応している。同様に、図3における各要素の符号は、図54における各要素の符号に対応している。ちなみに、従来のMC式は図3に示すように、閉ループの磁気回路を形成する空隙部29は1個だけである。本発明のMM式の場合は、閉ループの磁気回路を形成するためには、図2に示すように2つの空隙部(117、118)が必要である。コイルを介在するメインの空隙部(第1空隙部)に対して、磁気連結部としてサブの空隙部(第2空隙部)を設ける構成により、磁束密度の高い磁界中に前記コイルを固定配置できて、このコイルに大きなローレンツ力を発生できる。さらに、前記第1空隙部の隙間をδ1、第2空隙部の隙間をδ2として、δ1>δ2とする。前記磁気連結部の磁気抵抗を前記第1空隙部のそれよりも充分に小さくすることで、前記磁気連結部が発生力に与える影響を小さくできる。
 以下、上記解析モデルを用いて、永久磁石磁気回路の解析結果を示す。図4は発生力Fとポールピース部長さLの関係を示す解析結果のグラフ、図5は漏れ係数σとポールピース部長さLの関係を示す解析結果を示すグラフである。
 図4において、特性曲線(1)は、サマニウム・コバルト磁石を用いて、コイル全長は後述する表1の基本仕様(l=l0)とする。特性曲線(2)は、サマニウム・コバルト磁石を用いてコイル全長はl=l0×1.6の場合を示す。特性曲線(3)は、本実施形態におけるセンサ(図1)を示すもので、ネオジウム磁石を用いてコイル全長はl=l0×1.6の場合である。同図中のA点は、従来MC式のポールピース部長さL=LA=0.3cm、発生力F=0.0064Nを示す。同図中のB点は、本発明MM式のポールピース部長さL=LB=0.6cm、発生力F=0.018Nを示す。したがって、本発明MM式は従来MC式と比べて発生力は2.8倍増大している。
 図5のポールピース部長さLに対する漏れ係数を示すグラフにおいて、漏れ係数σは「全磁束」に対する「発生力に寄与する磁束」との比を示し、σ→1に漸近する程、大きな発生力が得られる。図5からポールピース部の軸方向長さLを大きく構成することで、漏れ磁束(漏れパーミアンス)に対する磁気空隙部117を垂直に通過する有効磁束(ギャップ・パーミアンス)の比率を小さくできる。上記ギャップ・パーミアンスは発生力に寄与する磁束であり、漏れパーミアンスは発生力に寄与しない。すなわち、本実施例の構成により、同一電流に対する発生力(電気・機械変換効率)を大きくできる。
 図4において、特性曲線(1)を、勾配が大きく異なる曲線αと曲線βに分けて、各曲線の包絡線の交点をCとする。0<L<LAの範囲では、発生力Fはポールピース部長さLの増加に伴い大きく増大する。L>LAの範囲では、発生力Fの増加は僅少である。そのため従来MC式センサのポールピース部長さは、L=LA(図2の場合はLA=0.3cm)に設定される場合が多い。その理由は、MC式センサの場合、コイル巻数をUPして長さLを増加させると、慣性質量も増大するために、必要とされる発生力も増える。すなわち、長さLを増加する効果が相殺されるからである。
 上記(2)はポールピース部を薄い板厚の円筒形状にすれば、前記ポールピース部を長くしても大きな質量増加にはならないことに注目したものである。図6はポールピース部を長さLに対する可動部の慣性質量mを示すグラフである。前記フロント側ポールピース部は、外形ΦDP、半径方向厚みtの円筒形状で構成される。ここで、ΦDP=10mm、t=1mmに設定した場合を想定する。図6において、ポールピース部長さLA=3mmのとき、可動部の総慣性質量m=4.48g、LA=6mmのとき、m=5.16gである。したがって、ポールピース部長さを2倍にした場合、総慣性質量に対する増加分は15%である。さらに、ポールピース部を同一外径で、厚みt=0.5mmに設定した場合を想定する。この場合、ポールピース部長さを2倍にしたとき、総慣性質量に対する増加分は8.4%である。
 上記(3)の特徴は、上記(2)の知見を利用したものである。図7は、ポールピース部長さLに対するコイル収納容積VCを示すものである。本実施形態では、磁気空隙部117の半径方向ギャップは2.5mm、この磁気空隙部117に収納されるコイルの半径方向厚みは2mm、コイル対抗面116とコイル間の半径方向ギャップ0.5mmである。上記条件でポールピース部長さL=3mmからL=6mmにすることで、コイル収納容積VCは2.7倍に増大する。しかし、可動部の慣性質量は、前述したように、ポールピース部の厚みt=1mmのとき15%、厚みt=0.5mmのとき8.4%しか増加しない。
 コイル収納容積が増大できることを利用すれば、コイル巻数を増加させて発生力を大きくしても、熱雑音に繋がる発熱を抑制できる。コイルの電気抵抗はコイル全長に比例して、コイル断面積に逆比例する。したがって、コイル全長をn倍にしたとき、コイル断面積をn倍、コイル線形は√n倍にすれば、電気抵抗は増大しない。このときのコイル収納面積は√n×nにすればよい。
 (2)本発明と従来センサの仕様比較
 本節では、(1)節で説明した(1)~(3)の構造面での特徴が、加速度センサの基本性能に与える効果を、従来MC式センサとの対比の基で理論解析により検証する。
 (2-1) 直動型MC式加速度センサと本発明センサの仕様
 ここで、本発明センサである直動型ムービング・マグネット式(以下直動型MM式)と、従来の直動型ムービング・コイル式(以下直動型MC式)の基本性能を理論解析により評価する。表1に従来直動型MC式と本発明センサ(MM式)の各仕様を対比して示す。
 (1)慣性質量mの仕様 慣性質量mは、MC式が1.25gに対して、MM式は5gである。MC式の慣性質量m=1.25gは、図54において、可動側電極24、フォースコイル16a、検定コイル16b、コイルボビン17、コイルボビン支持部材18,19より決定される。MM式の慣性質量m=5gは、可動側電極110、内周側ディスク支持リング121、フロント側ポールピース部102、永久磁石101、リアー側ポールピース部104の各質量の総和である。慣性質量m=5gの値は、前述したように、(i)低周波数域でのセンサ感度の向上、(ii)アクティブ除振台に要求される広帯域の周波数特性、上記(i)(ii)を両立させる条件から設定されたものである。(永久磁石の質量mpを基本に可動部質量mを定義する)
 (2)コイル全長とコイル抵抗Raの仕様 MM式のコイル全長はMC式のn=1.6倍に設定した。前述したように、コイル抵抗Raを同一にするために、MM式のコイル断面積はn倍、コイル線径は√n=1.26倍に設定した。したがって、コイル収納スペースSn=n×√n=2.0倍である。この構成により、両センサに同一の電流Iを流すと、MM式はMC式と比べて発熱量(W=I2×Ra)を同一のままで、上記(ii)を満足できる。かつアクチュエータの発生力はn倍以上にできる。
 (3)電気的ゲインの仕様 位置センサ感度をKs、調整ゲインをKc、比例ゲインをKpとして、電気的な総合ゲインKpt= Ks×Kc×Kpである。このKptは、MM式とMC式は同一に設定した。
Figure JPOXMLDOC01-appb-T000005
 
 (2-2) 理論解析結果
 図8は理論解析に用いた加速度センサの制御ブロック図である。前述した静電容量型加速度センサの検出原理を示す式(1)~(3)を制御ブロック図に置き換えたものである。
 (i)ゲイン・位相特性の比較
 図9は表1の仕様で、下記3ケース、すなわち、(1)従来MC式、(2)本発明MM式、(3)表1の従来MC式仕様で慣性質量mだけが4倍の場合、上記(1)~(3)についてゲイン・位相特性を比較したものである。以下、アクティブ除振台に搭載するという前提で、上記3ケースの性能優劣をゲイン特性により評価する。(1)(2)のゲイン特性は大きくは変わらない。(2)の本発明MM式において、共振周波数はf0=380Hzである。(3)の場合、共振周波数はf0=380→220Hzとなり、帯域幅は低減する。位相特性は、f=100Hz近傍(鎖線円A)における位相遅れで上記(1)~(3)を評価する。f=100Hz近傍における位相特性は、補足(2)で後述するように、アクティブ除振台に加速度センサを適用する場合の重要な性能評価指標である。f=100Hz近傍での位相遅れができるだけ小さくするのが好ましい。共振周波数f0が高い程、f=100Hz近傍での位相遅れも小さくできる。(1)(3)の位相特性は、f=100Hzではほぼ同等である。しかしf>100Hzでは、上記(3)の場合は大幅に位相遅れが発生する。上記(2)の本発明MM式では、(1)(3)と比べて、位相遅れは大幅に改善される。
 (ii)アクチュエータ発生力の比較
 図10は、表1の仕様で、(1)従来MC式、(2)本発明MM式について、時間に対するアクチュエータの発生力を比較したものである。入力加速度は振幅1.0×10 -6m/s2 (0.1mGal)の正弦波を仮定している。本発明MM式は、従来MC式と比べて、慣性質量に比例して発生力が4倍増大している。慣性質量増大に伴う発生力増大の効果は、低周波域で感度が低下する静電容量式の弱点を補うことができる。
 (iii)機械的ノイズの影響比較
 図11は、表1の仕様で、(1)従来MC式、(2)本発明MM式について、機械的ノイズがセンサ出力に与える影響を比較したものである。ここで、機械的ノイズとは可動部のスムーズな動作を阻害する外乱要因と仮定する。振幅1.0×10 -6Nの正弦波外力(機械的ノイズ)がアクチュエータの出力軸(図8の制御ブロック図参照)に加わる場合を仮定している。本発明では、アクチュータに加わる機械的ノイズがセンサ出力に与える影響は、従来式と比べて1/4に低減することが分かる。この効果は、慣性質量の増加がアクチュエータ発生力を増大させることに起因する。すなわち、MM式がMC式と比べて可動部の慣性質量が増加する弱点は、機械的ノイズに対しては逆に長所になる点を示すものである。
 (iv)コイル電流比較
 図12は表1の仕様で、下記3ケース、すなわち、(1)従来MC式、(2)本発明MM式、(3)表1の従来MC式仕様で慣性質量mだけが4倍の場合、上記(1)~(3)について、コイル電流を比較したものである。入力加速度は、振幅1.0×10 -6m/s2(0.1mGal)の正弦波を仮定している。本発明MM式は従来MC式と比べて、コイル電流の増加は僅少である。しかし、従来MC式の慣性質量mを4倍にした場合は、コイル電流は慣性質量に比例して増大する。この理由は、本発明では、コイル全長(巻数)を1.6倍にすると同時に、コイル線径を1.26倍に増大しているからである。この構成を可能にした理由は、前述したように、フロント側ポールピース部102に充分に長い円筒形状の空隙部103(長さLの慣性質量調整部)を設けることで、大きなコイル収納空間を形成できたからである。本実施例では、空隙部103は真円の円筒形状を用いたが、慣性質量を低減するのが目的であるため、空隙部は完全な真円でなくてもよい。たとえば、多角形の形状でもよく、軸方向で内径が異なる形状でもよい。これらを含めて概略円筒形状と呼ぶことにする。
 上記(i)~(iv)で示した本発明MM式実施形態の特徴を要約すれば、MC式の宿命的弱点である極細線処理の難しさを根本的に解消できると共に、下記効果が得られる。
  (1)本発明MM式は従来MC式と比べて、遜色の無い高周波特性を得ることができ
る。すなわち、MM式の弱点が解消される。
  (2)機械的ノイズがセンサ出力に与える影響は、従来MC式と比べて1/4に低減できる。また慣性質量増大に伴う発生力増大の効果は、低周波域で感度が低下する静電容量式の弱点を補うことができる。
  (3)従来MC式と比べて、コイル電流と熱雑音に繋がる発熱量の増加は僅少である。
 (2-3) 可動部質量mの設定範囲について
 本発明のMM式センサの可動部質量mが設定できる範囲について考察する。まず可動部質量mが設定できる下限値について考察する。 軽量化によって可動部質量mが限りなくMC式に近くなれば、MM式の伝達特性はMC式と同等になる。この場合、可動部質量mは永久磁石の質量mpより小さくできないため、質量mpの値がその限界を決める基本となる。本実施形態(図1b)において、永久磁石101を含む可動部には、磁気回路を形成するためのポールピース部(102、104)が必須である。本実施形態において、mp=1.52g、フロント側ポールピース部102の質量m1=1.36g、リアー側ポールピース部104の質量m2=0.63g、及び、可動側電極111、内周側ディスク支持リング353を含めてm3=1.45gであった。したがって、可動部の総質量m=mp+ m1+m2+m3=4.96≒5.0gである。ここで軽量化を図るために、部材m1、m2の板厚をt=1.0→0.5mmにすることで、m1+m2→1.0gにできる。前記可動側電極をアルミ化して、かつ各部材の板厚をt=1.0→0.5mmにすると、m3→0.5gである。ちなみに、磁路の磁気抵抗と機械加工時の部品精度を考慮して、板厚t=0.5mmは限界であった。この結果、可動部の総質量m=mp+m1+m2+m3=2.5gとなる。したがって、本発明のMM式センサの可動部質量の下限値mminは永久磁石の質量mpを基本とすれば、mmin=2mpである。ゆえに、本発明が加速度センサとして成立できる可動部質量の範囲はm≧2mpである。
 次に可動部質量mが設定できる上限値について考察する。可動部質量mが設定できる上限値は、加速度センサの周波数帯域幅(共振周波数f0)と大きな関わりを持っている。
Figure JPOXMLDOC01-appb-M000006
ここで
Figure JPOXMLDOC01-appb-M000007
 式(6)において、表1に示すように、KPTは位置センサ感度KS、調整ゲインKC、比例ゲインKPの積である。Ktはアクチュエータの力定数、Raはコイルの電気抵抗である。式(5)から可動部質量の上限値mmaxは、センサに要求される共振周波数f0(周波数帯域幅)から決まる。
Figure JPOXMLDOC01-appb-M000008
 ゆえに、本発明が加速度センサとして成立できる可動部質量の範囲はm≦mmaxである。前述したように、本発明センサをアクティブ除振台に適用した場合、f=100Hz近傍における位相特性が重要な性能評価指標である。f=100Hz近傍での位相遅れができるだけ小さくするのが好ましく、そのためには、共振周波数f0を高く設定する必要がある。実用的には、f0>250Hzであれば充分な性能が得られた。
(第2実施形態)
 図13は、本発明の実施形態2に係るサーボ型加速度センサの正面断面図である。本発明のMM式加速度センサの特徴の一つは、前述したように、MC式の宿命ともいうべき複雑な極細線処理が不要となり、生産工程において、大幅なコストダウンが図れる。しかし、MM式はMC式と比べて、可動部の慣性質量が増大するため、高周波特性が低下するというのが過去の常識的通念であったと思われる。しかし、磁気回路と磁気回路を構成する部品形状の工夫により、上記MM式の弱点は補えるというのが、本発明が提唱する基本コンセプトであった。
 本実施形態は、本発明の基本コンセプトをさらに徹底させたものである。すなわち、部品形状と磁性材料の選択により、MM式でありながら、可動部の慣性質量mをMC式に近づけたものである。351はフロント側ポールピース、352はリアー側ポールピース、353は内周側ディスク支持リングである。354は軸方向に着磁されたリング形状の永久磁石、355は前記フロント側ポールピースの内部に形成された円筒状の空隙部である。フロント側ポールピース351は磁気回路を構成する主要な構成部品であり、可動部の質量に大きな比率を占めている。本実施形態では、前記フロント側ポールピースに軟磁性材料で、プレス加工による製作が可能なパーマロイを用いた。パーマロイは保磁力が小さく高透磁率材料である。そのため円筒状の前記フロント側ポールピースの厚みtを充分に薄くしても、磁気抵抗の影響を受けないで、長さLを充分に長くできる。前述したように、前記フロント側ポールピースの長さLが長い程、磁束の漏れが発生力に与える影響を低減できるために、同一電流でも発生力を増加できる。同時にコイル収納容積の増大が図れるために、コイルの発熱を抑制できるコイル仕様(巻数、線径)を選ぶことができる。実施例では、厚みt<0.5mmにしてもアクチュエータの発生力に影響を与えない磁気回路を構成することができた。さらに本実施形態では、軽量化を図るために、永久磁石354、リアー側ポールピース352、内周側ディスク支持リング353なども中空形状にしている。
 (第3実施形態)
 第1実施形態において前述したように、本発明は次の点に着目したものである。
 すなわち、「可動部の慣性質量が増大するというMM式の弱点は、逆に低周波域のセンサ感度を向上させる長所になる」という点がポイントである。特に静電容量型は低周波数域のセンサ感度が低く、その弱点を補うことができる。図14は、本発明の実施形態3に係るサーボ型加速度センサの正面断面図であり、MM式の上記長所を徹底して活用したものである。すなわち、前述した第2実施形態とは逆に、可動部の慣性質量を徹底して大きく設定して、低周波数域におけるセンサ感度の大幅向上を図った。但し、その代償として高周波数帯域は制約される。381はフロント側ポールピース、382はリアー側ポールピース、383は内周側ディスク支持部材ある。フロント側ポールピース381とリアー側ポールピース382が可動側ヨーク材である。可動部を構成するいずれの部品も空洞部を形成していない。主に可動部質量に大きな比率を占めるフロント側ポールピース381を中実部材にした影響は大きい。
 本実施形態センサを、たとえば、アクティブ除振台に適用した場合、低周波域の除振特性の向上に重点をおいた制御システムの設計ができる。さらに、(1)可動部の慣性質量を徹底して軽量化した加速度センサ(第2実施形態)、(2)可動部の慣性質量を充分に大きくした加速度センサ(本実施形態)、上記(1)(2)の2つのセンサを組み合わせて除振台に搭載することで、低周波から高周波までをカバーできるアクティブ除振・制振システムが実現できる(図示せず)。
 (第4実施形態)
 図15は、本発明の実施形態4に係るサーボ型加速度センサの正面断面図である。前述した実施形態では、狭い隙間による環状空隙部(たとえば、図1bの鎖線円B)を設けることにより、閉ループ磁気回路を形成していた。本実施形態では、前記環状空隙部ではなく、スパイラル・ディスク状ばね自体を磁気回路が形成される部材としたものである。
 401はリアー側ディスク(第2伝達部)、402は導電性材料で構成されたフロント側ディスク、403は永久磁石、404は位置決めピンであり、前記永久磁石の中心部に装着されている。405はフロント側ポールピース部、406は外周側ディスク支持リング、407は内周側ディスク支持部材、408はコイル側ヨーク材、409は磁気空隙部(第1伝達部)である。「永久磁石403→フロント側ポールピース部405→コイル側ヨーク材408→リアー側ディスク401→永久磁石403」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。本実施形態に限定されず、他の実施形態も同様であるが、弾性支持部材であるディスク401、402はスパイラル形状でなくてもよく、例えば公知の雲形ばねでもよい。
 リアー側ディスク401とフロント側ディスク402は同一の形状・材料でなくてもよい。フロント側ディスク402は、その内周側において、フロント側ポールピース部405と電気的絶縁を図るために、非導電性材料による内周側ディスク支持部材407を介在している。フロント側ディスク402は非磁性材料で構成するのが好ましい。また、外周側において、コイル側ヨーク材408と電気的絶縁を図るために、非導電性材料による外周側ディスク支持リング406を介在している。しかし、リアー側ディスク401の電気的絶縁は不要である。磁気連結部を必要としない本実施形態により、シンプルな構成でサーボ型加速度センサを実現できる。
 (第5実施形態)
 図16は、本発明の実施形態5に係るサーボ型加速度センサの正面断面図である。フロント側ポールピース部の円筒状の空隙部を利用して、この空隙部に永久磁石を配置することにより、センサ本体のコンパクト化を図ったものである。251は軸方向に着磁された永久磁石、252はフロント側ポールピース部、253は前記永久磁石の外表面と前記フロント側ポールピースの内面間で形成される空間である。254はリアー側ポールピース部、255はコイル側ヨーク材、255aは前記コイル側ヨーク材の内面に形成された突出部、256はフォースコイル、257は検定コイルである。258はフロント側ディスク、259はリアー側ディスク、260は可動側電極、261は固定側電極、262aはフロント側パネル、262bはリアー側パネル、263は中央プレート、264は締結部材、265は前記コイル側ヨーク材の内周面におけるコイル装着部、266はフロント側ポールピース部252におけるコイル対抗面、コイル対抗面266とコイル装着部265間は半径方向の磁気空隙部267が形成されている。
 前記コイル側ヨーク材の突出部255aとリアー側ポールピース部254の間は、狭い間隙による環状空隙部268が設けられている点は前述した実施例同様である。269は外周側支持リング、270は内周側支持リングである。
 前記永久磁石は円筒状の空隙部253内部に収納されており、一方の端面は前記フロント側ポールピースのフロント側端面271に固定されている。また前記永久磁石のもう一方の端面は前記リアー側ポールピースに固定されている。
 「永久磁石251→フロント側ポールピース部252→磁気空隙部267→コイル側ヨーク材255→突出部255a→環状空隙部268→リアー側ポールピース部254→永久磁石251」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 (第6実施形態)
 図17は、本発明の実施形態6に係るサーボ型加速度センサの正面断面図である。熱伝導性の良い材料によるコイルボビンを用いて放熱効果を向上させると共に、漏れ磁束が低減できる磁路形状を構成したものである。すなわち、熱雑音に繋がるセンサノイズの低減効果と、アクチュータの発生力向上の2つを両立させたものである。
 201は軸方向に着磁された永久磁石、202はフロント側ポールピース部、203はこのフロント側ポールピース部の内部に形成された円筒状の空隙部、204はリアー側ポールピース部、205はコイル側ヨーク材、206aはフォースコイル、206bは検定コイルである。207は前記コイル側ヨーク材の内面に形成された突出部、208はフロント側ディスク、209はリアー側ディスク、210は可動側電極、211は固定側電極、212aはフロント側パネル、212bはリアー側パネル、213は中央プレート、214は締結部材、215は前記コイル側ヨーク材の内周面におけるコイル装着部、216はフロント側ポールピース部202におけるコイル対抗面、コイル対抗面216とコイル装着部215間は半径方向の磁気空隙部217が形成されている。前記コイル側ヨーク材の突出部207とリアー側ポールピース部204の間は、狭い間隙による環状空隙部218が設けられている点は前述した実施例同様である。219は外周側支持リング、220は内周側支持部材である。
 221はコイルボビン、223はこのコイルボビン外周部とコイル側ヨーク材201の間に形成された窪み部、実施例では、コイルボビン221は非磁性材料で、かつ熱伝導性の良いアルミ材を用いた。
 図18は、本実施例における磁束の流れを矢印(鎖線)で図示したものである。加速度センサを構成する非磁性部材を「砂地」のイメージで表示している。また磁性材料を用いた部材は通常の「斜線」で表示している。すなわち、フロント側パネル212a、リアー側パネル212b、コイルボビン221、フォースコイル206a、検定コイル206b、外周側支持リング220、内周側支持部材220、フロント側ディスク208、リアー側ディスク209、可動側電極210は非磁性部材で構成される。「永久磁石201→フロント側ポールピース部202→磁気空隙部217コイル側ヨーク材205→突出部207→環状空隙部218→リアー側ポールピース部204→永久磁石201」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 磁気空隙部217を垂直に流れる磁束Aは、本アクチュエータの発生力に有効に寄与する。コイル対抗面216のコーナーからコイル側ヨーク材内周面205のコーナーに流れる磁束B1、B2は漏れ磁束であり、発生力に寄与しない。磁気回路における磁束の流れ易さは、磁気抵抗の逆数であるパーミアンスで表現される。すなわち、磁束Aが流れる磁気経路のギャップ・パーミアンスをPgとする。漏れ磁束B1、B2が流れる磁気経路の漏れパーミアンスをそれぞれPf1、Pf2する。Pg≫Pf1、あるいは、Pg≫Pf2にすれば、大きな発生力を得ることができる。前記コイル側ヨーク材に形成された窪み部223は、漏れ磁束B2を低減して、漏れパーミアンスPf2を小さくするのに大いに貢献する。この窪み部223は前記コイルの軸方向端面近傍で、可動部と固定部材間の半径方向距離が両端と比べて長くなるように前記コイル側ヨーク材の内面に形成されているものである。この窪み部223による漏れ磁束の低減効果は本実施形態に限定されない。また、漏れ磁束B1が流れる周辺の部材は、すべて非磁性材料であるため、漏れパーミアンスPf1は充分に小さくできる。
 図19は、本実施例における熱の流れを矢印(鎖線)で図示したものである。コイルボビン221の外周面は、コイル側ヨーク材の内周面215に密着している。窪み部223を覆うように伸びて、突出部207の側面と内周面215aとも密着している。したがって、コイルの発熱は図中の矢印で示すように、アルミボビン221→コイル側ヨーク材205を経て、フロント側パネル212a、リアー側パネル212bに容易に放熱できる。
 図54で示した従来の直線運動式加速度センサ(MC式)の場合は、コイルボビン17、及び、コイル16a、16bは空中に浮遊した状態で設置される。コイルボビン17を支持するコイルボビン支持部材18,19は非磁性でかつ非導電性材料である。またディスク状バネ20、21は薄い板材のため、熱伝導によるコイルの放熱作用は期待できない。
 図56で示した従来の揺動運動式ムービング・コイル式(MC式)の場合も同様である。トルカコイル597と固定部(磁気ヨーク591、592)を繋ぐ熱伝導の経路には、熱伝導率の低い石英ガラス(非磁性でかつ非導電性材料)が介在しており、コイルの放熱は期待できない。すなわち、本実施例センサにおいて、従来式と比べて、コイルの放熱効果が充分に得られる理由は、コイルを壁面に固定・密着できるMM式の特徴を利用したものである。
 (第7実施形態)
 図20aは、本発明の実施形態7に係るサーボ型加速度センサの正面断面図、図20bは、図20aのA-A断面図である。前述した実施形態は、全て軸方向に着磁した永久磁石を用いたセンサ構造であった。本実施形態では、半径方向に着磁したセグメント型と呼ばれる永久磁石を複数個用いて磁気回路を構成した。
 451は永久磁石、452はフロント側ポールピース部である。前記永久磁石は半径方向に着磁したセグメント型永久磁石451a、451b、451c、451dより構成されて、フロント側ポールピース部452に装着されている。453は前記フロント側ポールピース部を軽量化するために形成された円筒状の空隙部である。454はリアー側ポールピース部、455はコイル側ヨーク材、456はフォースコイル、あるいは、フォースコイルと検定コイルから構成されたコイル部である。457は前記コイル側ヨーク材の内面に形成された突出部、458はフロント側ディスク、459はリアー側ディスク、460は可動側電極、461は固定側電極、462aはフロント側パネル、462bはリアー側パネル、463は中央プレート、464は締結部材、465は前記コイル側ヨーク材の内周面におけるコイル装着部、466は永久磁石の外周面であり、コイル対抗面に相当する。コイル対抗面466とコイル装着部465間は半径方向の磁気空隙部467が形成されている。前記コイル側ヨーク材の突出部457とリアー側ポールピース部454間は、狭い間隙による環状空隙部468が設けられている点は前述した実施例同様である。469は外周側支持リング、470は内周側支持リングである。「永久磁石451→磁気空隙部467→コイル側ヨーク材455→突出部457→環状空隙部468→リアー側ポールピース部454→フロント側ポールピース部452→永久磁石451」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 (第8実施形態)
 図21は、本発明の実施形態8に係るサーボ型加速度センサの正面断面図である。前述した実施形態では、狭い隙間による環状空隙部(たとえば、図1bの鎖線円B)を設けることにより、閉ループ磁気回路を形成していた。本実施形態では、前記環状空隙部ではなく、半径方向に着磁したセグメント型永久磁石と固定側コイルの組み合わせにより、閉ループ磁気回路を形成するための磁気連結部を構成している。
 651はセグメント型永久磁石(補助磁石)、652はリアー側ポールピース部である。前記セグメント型永久磁石は、第7実施形態同様に半径方向に着磁した複数のセグメント型永久磁石(図20b参照)より構成されて、リアー側ポールピース部652に装着されている。653は前記リアー側ポールピース部を軽量化するために形成された円筒状の空隙部である。654はフロント側ポールピース部、655は軸方向に着磁された永久磁石、656は前記フロント側ポールピースのフロント側端面、657は前記フロント側ポールピースの内部に形成された円筒状の空隙部である。永久磁石655は円筒状の空隙部657内部に収納されており、一方の端面は前記フロント側ポールピースのフロント側端面656に固定されている。また前記永久磁石のもう一方の端面は前記リアー側ポールピースに固定されている。本実施形態も第5実施形態同様に、フロント側ポールピース部654の円筒状の空隙部657を利用して、この空隙部に永久磁石655を配置することにより、センサ本体のコンパクト化を図っている。
 658はコイル側ヨーク材、659はフロント側フォースコイル、660はリアー側フォースコイル(補助コイル)、661は検定コイル部である。
 662はフロント側ディスク、663はリアー側ディスク、664は可動側電極、665は固定側電極、666aはフロント側パネル、666bはリアー側パネル、667は中央プレート、668は締結部材、669は前記コイル側ヨーク材の内周面におけるコイル装着部、670はコイル対抗面(フロント側ポールピース部の外周面)、671は磁気空隙部、672は外周側支持リング、673は内周側支持リングである。「永久磁石655→フロント側ポールピース部654→磁気空隙部671→コイル側ヨーク材658→永久磁石651→リアー側ポールピース部652→永久磁石655」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 本実施形態では、前記磁気連結部を径方向に着磁された磁石と固定コイルにより構成したため、フロント側とリアー側のいずれもボイスコイルモータとして機能するために発生力の向上が図れる。また、第1の実施形態同様に、磁気空隙部671の半径方向ギャップは2.5mm、コイル対抗面670とコイル間の半径方向ギャップは0.5mm程度で構成される。したがって、狭いギャップで環状空隙部を構成する場合(たとえば、第1の実施形態の環状空隙部118)と比べて、量産時の組み立ても容易である。
 (第9実施形態)
 図22aは、本発明の実施形態9に係るサーボ型加速度センサの正面断面図、図22bと図22cは本実施形態に用いた半径方向に着磁したセグメント型永久磁石を示す断面図である。
 本実施形態は、前記フロント側永久磁石を径方向に着磁されたセグメント型磁石で構成すると共に、前記磁気連結部も径方向に着磁されたセグメント型磁石と固定コイルにより構成したものである。フロント側とリアー側のいずれもボイスコイルモータとして機能するために発生力の向上が図れる。 701はフロント側永久磁石、702はリアー側永久磁石、703はポールピース部(可動側ヨーク材)である。前記フロント側永久磁石、前記リアー側永久磁石共に半径方向に着磁した複数のセグメント型永久磁石より構成されて、ポールピース部703に装着されている。図22bと図22cに示すように、各永久磁石における半径方向の着磁方向は逆である。
 704は前記ポールピース部の空隙部、705はフロント側ディスク、706はリアー側ディスク、707は可動側電極、708は固定側電極、709aはフロント側パネル、709bはリアー側パネル、710は中央プレート、711は締結部材、712はコイル側ヨーク材、713はコイルボビン、714はフロント側コイル、715はリアー側コイルである。716は外周側支持リング、717は内周側支持リング、718は前記ポールピース部のフロント側端面、719は前記ポールピース部のリアー側端面、720は前記リアー側ディスクばねの支持リング、721はコイル側ヨーク材712の内周面であるコイル装着部である。722a、722bは、このコイル装着部とフロント側とリアー側の2つの永久磁石の間に形成される磁気空隙部である。「永久磁石701→コイル側ヨーク材712→永久磁石702→ポールピース部703→永久磁石713」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。本実施形態では、前記リアー側永久磁石と前記リアー側コイルで構成される空間が磁気連結部である。本実施形態では、フロント側とリアー側のいずれもボイスコイルモータとして機能するために発生力の向上が図れる。また、磁気空隙部722a、722bの半径方向ギャップは2.5mm、前記2つの永久磁石外周面と前記コイルボビン間の半径方向ギャップは0.5mm程度で構成される。したがって、狭いギャップで環状空隙部を構成する場合(たとえば、第1の実施形態の環状空隙部118)と比べて、量産時の組み立ても容易である。
 (第10実施形態) 
 図23は、本発明の実施形態10に係る差動式サーボ型加速度センサの正面断面図である。すなわち、左右の出力軸がいずれも開放端になる直動型MM式の構造上の特徴に注目して、静電容量を検出する電極を左右2箇所に設けることにより、差動式の静電容量式センサを構成したものである。加速度センサを差動式にすることにより、センサ出力がノイズ、ドリフトなどの外乱信号の影響を受けにくい高分解能センサが実現できる。
 (i) 構造の説明
 301は永久磁石、302はフロント側ポールピース部、303は円筒状の空隙部(慣性質量調節部)である。304はリアー側ポールピース部、305はコイル側ヨーク材、306aはフォースコイル、306bは検定コイル、307は前記コイル側ヨーク材の内面に形成された突出部である。308はフロント側ディスク、309はリアー側ディスクである。310aはフロント側可動側電極、311aはフロント側固定側電極、310bはリアー側可動側電極、311bはリアー側固定側電極である。
 312aはフロント側パネル、312bはリアー側パネル、313aはフロント側中央プレート、313bはリアー側中央プレート、314aはフロント側締結部材、314bはリアー側締結部材である。315はコイル側ヨーク材305の内周面、316は前記フロント側ポールピース部のコイル対抗面、317はコイル対抗面316とコイル装着部315間に形成される半径方向の磁気空隙部である。前記コイル側ヨーク材の突出部307とリアー側ポールピース部304の間は、狭い間隙による環状空隙部318が設けられている。
 また、環状空隙部318は、磁気空隙部317と比べて磁気抵抗が充分に小さくなる狭い隙間を設定している。実施形態1同様に、「永久磁石301→フロント側ポールピース部302→磁気空隙部317→コイル側ヨーク材305→環状空隙部318→リアー側ポールピース部304」により閉ループ磁気回路を形成している。フォースコイル306aと検定コイル306bの引き出し線は、コイル側ヨーク材305とフロント側パネル312aを貫通して、外部に設置された制御回路に繋がる点は、実施形態1同様である(図示せず)。319aはフロント側ディスク内周側支持リング、319bはリアー側ディスク内周側支持リング、320aはフロント側ディスク外周側支持リング、320bはリアー側ディスク外周側支持リングである。前記4つのリングは非導電性材料で構成される。
 フロント側ディスク308とリアー側ディスク309の締結方法は、実施形態1同様である。また可動電極と固定電極間の静電容量を検出する導線と、外部を繋ぐ方法も実施形態1同様である(図示せず)。
 図24は、本実施形態による差動式サーボ型加速度センサが3つのユニットから構成できることを示す図である。330はフロント側ユニット、331は駆動ユニット、332はリアー側ユニットである。各ユニットはそれぞれ独立したユニットとして、各部品の装着が可能である。各ユニットの部品装着が完了すれば、図中の矢印に示すように、3つのユニットを合体する。合体後、前記フロント側の前記可動電極と前記固定電極の隙間、及び、前記リアー側の前記可動電極と前記固定電極の隙間を調整すればよい。本発明のサーボ型加速度センサは、従来式加速度センサと比べて、差動式と非差動式の選択が極めて容易である。ここで、非差動式の実施形態1(図1)と、差動式の本実施形態10(図23、図24)を比較する。差動式にするには、駆動ユニット331にリアー側可動側電極310bを附加して、リアー側ユニット332にリアー側固定側電極311bを装着するだけでよい。したがって、非差動式から差動式への選択は大きなコストアップにはならない。
 また量産最終段階で行う電極間隙間の調整、すなわち、リアー側可動側電極310bとリアー側固定側電極311b間の隙間の調整は、フロント側と独立して行うことができる。たとえば、フロント側の調整を終了後、リアー側の調整を行えばよい。
 (ii) ドリフト・ノイズ低減効果の説明
 以下、本実施例センサのドリフト・ノイズ低減効果を、従来式との対比の基で説明する。図25は従来式加速度センサ(図54参照)の場合について、電極出力、ノイズとドリフト、センサ加速度出力の関係を示す。電極出力は、可動電極24と固定電極25間の隙間で決まる静電容量を検出して得られる。ノイズとドリフトのグラフAは、正弦波に微小な正のバイアス値を加えたものである。センサ加速度出力(グラフC)は、電極出力(グラフB)にノイズとドリフト(グラフA)が印加された結果となる。
 さらに、アクティブ除振台においては、低周波数域の除振性能を得るために、絶対速度フィードバック、絶対変位フィードバックを施している。絶対速度信号を得るためには、加速度信号を1回積分し、絶対変位信号を得るためには、加速度信号を2回積分する必要がある。図25のグラフDは、センサ加速度出力(グラフC)を完全積分により一回積分して得られる絶対速度出力を示す。ノイズが重畳された速度信号は、ドリフトの影響により発散する。上記問題を解消するために、実際のアクティブ除振台では、完全積分1/sは用いることはできず、不完全積分1/(s+a)により、加速度センサの出力を積分して近似的な速度信号を得ている。さらに、この速度信号を同様な積分器により積分して近似的な変位信号を得る方法が採用されている。しかし、不完全積分を経由した信号は、低周波数領域において位相の遅れ角度は上記完全積分の場合の値にはならず、その結果、正確な負帰還信号は得られない。その結果、低周波数領域で位相が遅れると共に、ゲインが増大するために、充分な除振特性が得られないなどの問題点があった。
 図26は本実施形態による加速度センサの場合について、2つの電極出力、ノイズとドリフト、センサ加速度出力の関係を示す。
 フロント側の電極出力Bfは可動電極310aと固定電極311a間の隙間で決まる静電容量、リアー側の電極出力Brは可動電極310bと固定電極311b間の隙間で決まる静電容量を検出して得られる。これらの電極出力にノイズとドリフトが共通に加わることにより、フロント側電極出力Bf→Cfとなり、リアー側電極出力Br→Crとなる。その結果、差動センサの加速度出力Csはノイズとドリフトがキャンセルされた波形となる。さらに、加速度出力を完全積分した絶対速度信号D、及び絶対変位信号(図示せず)は発散しない。したがって、本実施例の加速度センサをアクティブ除振台に適用した場合、センサ感度向上による効果(たとえば、ステージの位置決め精度向上)に加えて、低周波数領域で大幅な除振特性向上効果が得られる。
 (第11実施形態)
 図27は、本発明の実施形態11に係る差動式サーボ型加速度センサの正面断面図である。前述した実施形態10同様に、静電容量を検出する電極を左右2箇所に設けることにより、差動式の静電容量式センサを構成したものである。また、第9実施形態同様に、フロント側永久磁石を径方向に着磁されたセグメント型磁石で構成すると共に、磁気連結部も径方向に着磁されたセグメント型磁石と固定コイルにより構成している。
 801はフロント側永久磁石、802はリアー側永久磁石、803はポールピース部、804は前記ポールピース部の空隙部、805はフロント側ディスク、806はリアー側ディスク、807はフロント側可動電極、808はフロント側固定電極、809aはフロント側パネル、809bはリアー側パネル、810はフロント側中央プレート、811はフロント側締結部材、812はコイル側ヨーク材、813はコイルボビン、814はフロント側コイル、815はリアー側コイルである。816はフロント側外周支持リング、817はフロント側内周支持リング、818は前記ポールピースのフロント側端面、819は前記ポールピース部のリアー側端面、820は前記リアー側ディスクの外周支持リング、821は前記コイル側ヨーク材の内周面であるコイル装着部、822はこのコイル装着部と2つの永久磁石の間に形成される磁気空隙部である。823はリアー側可動電極、824はリアー側固定電極、825はリアー側中央プレート、826はリアー側締結部材、827はリアー側内周支持リングである。
 以上、差動式センサの2つの実施形態について述べた。この差動式のアクチュエータ部の構成は、前述した本発明の他の実施形態(直動型MM式)で示した提案が適用できる。
(第12実施形態)  揺動式(1)
 図28は、本発明の実施形態12に係る揺動運動式サーボ型加速度センサを示すもので、図28aは正面断面図、図28bはこのセンサを構成する一部品である振子の側面の概略図である。本実施形態のサーボ型加速度センサは、永久磁石を含む磁気回路が左右対称に構成されているため、最初に右側構成部品について説明する。
 901aは永久磁石、902aはフロント側ポールピース部、903aはこのフロント側ポールピース部を軽量化するために形成された円筒状の空隙部、904aはリアー側ポールピース部、905aはコイル側ヨーク材、906aは電磁コイル、907aはコイルボビン、908aは前記コイル側ヨーク材の内面に形成された突出部である。フロント側ポールピース部902aとリアー側ポールピース部904aが可動側ヨーク材である。909は非磁性で、かつ導伝性を有する材料で形成された振子である。この振子は一方を固定端、もう一方を自由端とする片持はりから構成されており、この片持はりの自由端側に可動部は設けられている。910は上部に筒型の空洞部を有するハウジングである。このハウジングは非磁性材料により構成される。911aは前記振子の下端部において絶縁材料で形成された板材である。板材911aと板材911bに挟持された状態で、前記振子は固定される。912はヒンジ部である。このヒンジ部によって、揺動運動する前記振子全体のばね剛性が決定される。913aは前記振子に形成された可動側電極、914aは固定側電極である。この固定側電極とハウジング910が密着する壁面には、電気的絶縁被膜が形成されている(図示せず)。導伝性材料の振子909は左右の電極間静電容量の検出信号を、制御回路に繋ぐ共通アースとして導線を兼ねている。915aはポールピース902aのコイル対抗面、916aはコイル装着面である。コイル対抗面915aとコイル装着面916a間は半径方向の磁気空隙部917aが形成されている。前記コイル側ヨーク材の突出部908aとリアー側ポールピース部904aの間は、狭い間隙による環状空隙部918aが設けられている。前述した第1実施形態同様に、「永久磁石901a→フロント側ポールピース部902a→磁気空隙部917a→コイル側ヨーク材905a→環状空隙部918a→リアー側ポールピース部904a」により、閉ループ磁気回路(図示せず)を形成している。環状空隙部918aは、磁気空隙部917aと比べて磁気抵抗が充分に小さくなるように隙間を設定した。前記環状空隙部は永久磁石を用いた磁気回路において、閉ループ磁気回路を形成するための磁気連結部である。電磁コイル906aと外部に設置された制御回路間の信号を授受する引出線は、前述した第1実施形態同様に、コイル側ヨーク材905a、ハウジング910に形成された貫通穴を利用して設けられる(図示せず)。
 919aは絶縁材料で形成された凸形状部材であり、振子909の上部において、振子909と接着固定されている。この凸形状部材919aがフロント側ポールピース部902aと接着勘合される。前記凸形状部材が絶縁材料のために、フロント側ポールピース部902aと振子909は電気的絶縁を保つことができる。920はハウジング910の下部空隙部に設けられた制御回路である。
 本実施形態において、振子909を中心軸として、各部材は左右対象に構成されている。永久磁石901a、ポールピース部902aなどの各部材の図番は、右側部材の添付記号はa、左側部材の添付記号はbとしている。右側構成部品に注目すれば、前述した第1実施形態同様に、永久磁石901aと、この永久磁石を直列に繋ぐフロント側ポールピース部902a全体を外周側から包み込むように、電磁コイル906aを配置した。さらに、磁気空隙部917aと比べて充分に小さな磁気抵抗を有する環状空隙部918aを閉ループ磁気回路内に配置した。軸方向に移動する可動部材は、永久磁石901a、フロント側ポールピース部902a、リアー側ポールピース部904aである。
 図29に本実施形態による加速度センサの組み立て方法の一例を示す。フロント側ポールピース部902a、永久磁石901a、リアー側ポールピース部904aの3部品を接着剤で一体化した後、前記振子の凸形状部材919aに装着する。さらに、電磁コイル906aが収納されたコイルボビン907aをコイル側ヨーク材905aに装着後、ハウジング910の空洞部に勘合させる。
 磁気回路の構成部品は、前述した第1~第11実施形態における直動型加速度センサの構成が適用できる。たとえば、磁気連結部は環状空隙部ではなく、半径方向に着磁したセグメント型永久磁石と固定側コイルの組み合わせでもよい。
 本実施形態の特徴を、特許文献1に開示されている従来揺動式加速度センサの対比の基で説明する。本実施形態において振子909は導伝性の金属材料を用いることができる。図56に示した従来揺動式加速度センサにおいて、振子590aに石英ガラスなどの非導電性材料を用いる理由は、センサの可動側と固定側制御回路との間に複数本の独立信号(コイルと電極信号)の授受を必要とするからである。この石英ガラスの表面に、金(Au)がスパッタリング若しくは真空蒸着された薄膜により、複数の独立信号を処理する導通路が形成されていた。すなわち、MC式であるがゆえに必要とされる部材の選択と特殊工法であった。MM式である本実施形態の場合、可動部から固定側に授受する信号は、左右電極信号の共通アースだけでよい。そのため、従来の揺動型MC式(図56)の生産工程で必要とされる高価なスパッタリング設備などを必要とせず、生産工程の大幅な簡素化とコストダウンを図ることができる。上記共通アースの接点は前記振子の固定部911a、911bを利用して設ければよい(図示せず)。
 (第13実施形態)
 図30は、本発明の実施形態13に係る揺動運動式サーボ型加速度センサを示すものである。前述した実施形態12を簡素化して、静電容量検出電極を1セットだけで構成した。
 951は永久磁石、952はフロント側ポールピース部、953はリアー側ポールピース部、954はコイル側ヨーク材、955はフォースコイル、956はコイルボビン、957は前記コイル側ヨーク材の内面に形成された突出部である。
 958は非磁性で、かつ導伝性を有する材料で形成された振子、959は上部に筒型の空洞部を有する非磁性材料のリアー側ハウジング、960は前記振子の固定部、961a、961bは前記振子の下端部において絶縁材料で形成された板材である。板材961aと板材961bに挟持された状態で、前記振子の固定部960は固定される。962はヒンジ部(弾性変形部)である。このヒンジ部によって、揺動運動する前記振子全体のばね剛性が決定される。963は前記振子の上端部に形成された可動側電極、964は固定側電極である。導伝性材料の振子958は左右の電極間静電容量の検出信号を、制御回路に繋ぐ共通アースとして導通路を兼ねている。
 965は絶縁材料で形成された凸形状部材であり、振子958の上部において、振子958と接着固定されている。この凸形状部材965がフロント側ポールピース部952と接着勘合される。前記凸形状部材が絶縁材料のために、フロント側ポールピース部952と振子958は電気的絶縁を保つことができる。
 966は磁気空隙部、967は環状空隙部である。この環状空隙部は、磁気空隙部966と比べて磁気抵抗が充分に小さくなるように隙間を設定した。前記環状空隙部は永久磁石を用いた磁気回路において、閉ループ磁気回路を形成するための磁気連結部である。前述した第1、及び、第12実施形態同様に、「永久磁石951→フロント側ポールピース部952→磁気空隙部966→コイル側ヨーク材954→環状空隙部967→リアー側ポールピース部953」により、閉ループ磁気回路(図示せず)を形成している。
968は非磁性材で形成されたリアー側ハウジングであり、上部において、中央プレート969と固定側電極964が締結部材970により締結される。971はリアー側ハウジング959の下部空隙部に設けられた制御回路である。
 前述したように、直線運動式加速度センサと揺動運動式加速度センサにおいて、両者の基本構造の違いを可動部の弾性支持方法で分類すれば、直線運動式は可動部の移動方向を軸芯として、この軸芯の円周方向にばねが配置される。揺動運動式は、第12実施形態、及び、第13実施形態で示したように、一端を固定端として、もう一方を自由端とする片持ちはりによって可動部が支持される構造である。直線運動式と揺動運動式のいずれの動作原理も、固定電極と可動電極間の隙間を検出するという点で変わりはない。したがって、本発明の他の実施形態で示した提案も揺動運動式に適用できる。たとえば、第6実施形態で示した熱伝導性の良いコイルボビンを装着する方法、第7実施形態、及び、第8実施形態で示した半径方向に着磁したセグメント型磁石を用いて磁気回路を形成する方法なども適用できる。
 (第14実施形態)
 図31は、本発明の実施形態14に係るサーボ型加速度センサを示すもので、センサを構成する多くの部品をボルト締結した構造を示すものである。図32~図41は、本実施形態センサの組み立て工程を示す。従来のサーボ型MC式加速度センサは、図54、図56の事例に示すように接着工法で構成されていた。その理由は、(1)部品形状がミクロである、(2)可動部を軽量化する必要がある、上記(1)(2)が主な理由による。直動式加速度センサの場合、可動部の両端を支持するディスクばねの「切断・絶縁・半田付け」を必要とする複雑な構成のため、ボルト締結工法による構成は困難であった。接着工法で製品を構成した場合、量産時における品質評価の段階で、不合格品となれば製品本体を破棄せざるを得なかった。
 本実施形態は、ミクロな部品で構成されるサーボ型加速度センサに、時計などの特殊分野で適用されるM0.5からM1.0mmの極小ボルト締結工法を適用したものである。本発明を適用したサーボ型加速度センサの外径はΦ25mm程度であり、500円玉の外径よりも小さい。本実施形態でボルト締結工法の適用が可能となった理由は、極細線処理が不要で、可動部の部品構成を簡素化できるMM式の特徴に注目したものである。本実施形態加速度センサは、多くの部品の再利用が可能であり、量産時における歩留まりをおおいに向上させることができる。また接着工法の場合は、接着する部品間に介在する接着剤の厚みと、この厚みの不均一性が組立精度を低下させる要因となっていた。ボルト締結工法の場合は、各部品の加工精度さえ得られれば、高い組立精度を確保できる。また、作業者に熟練度を必要としないため、製品性能のばらつきを低減できる。
 (1)実施形態センサの全体構成
 図31において、751は中空部を有する永久磁石、752はフロント側ポールピース部、753は円筒状の空隙部、754はリアー側ポールピース部、755はコイル側ヨーク材、756aはフォースコイル、756bは検定コイル、757は前記コイル側ヨーク材のリアー側内面に形成された突出部である。758はフロント側ディスク、759はリアー側ディスク、760は可動側電極、761は固定側電極、762aはフロント側パネル、762bはリアー側パネル、763は中央プレート、764は前記固定側電極と前記フロント側パネルの非導電性材料による締結部材である。
 765はコイルボビン、766は前記コイル側ヨーク材の内面に形成されたコイルボビン装着部、767は前記フロント側ポールピース部の外表面であるコイル対抗面である。コイル対抗面767とコイルボビン装着部766間は半径方向の磁気空隙部768が形成されている。前記コイル側ヨーク材の突出部757とリアー側ポールピース部7544の間は、狭い間隙による環状空隙部(磁気連結部)769が設けられている。
 770は内周側ディスク支持部材、771は外周側ディスク支持部材である。2つのディスク支持部材770、771は非導電性材料(絶縁材料)で構成している。772は内周側ディスク支持部材770の片側端面に装着された金属材料によるリング状ナットである。以下、各部材間を締結するボルトについて説明する。
 (2)各締結ボルトの役割
 773aは可動電極760、内周側ディスク支持部材770、リング状ナット772の3部品を締結するボルトである。可動電極760と内周側ディスク支持部材770の間でフロント側ディスク758が挟持される。773bは外周側ディスク支持部材771をコイル側ヨーク材755に固定するボルトである。後述するように、フロント側ディスク758は前記外周側ディスク支持部材に接着固定されている。そのため、ボルト773bはフロント側ディスク758の外周端を固定する役割を有する。
 773cはフロント側ポールピース部752、永久磁石751、リアー側ポールピース部754の3部品を締結するボルトである。773dはリアー側ディスク759の外周部とコイル側ヨーク材755を締結するボルト、773eはリアー側ディスク759の内周部とリアー側ポールピース部754を締結するボルトである。773fはコイルボビン765をコイル側ヨーク材755に締結するボルトである。773gはフロント側パネル762aとリアー側パネル762bを締結するボルトである。
(3)組立工程の説明 以下、組立工程を各段階に分けて説明する。
 (3-1)組立準備段階
 本実施形態のセンサの組立工程の基本はボルト締結である。しかし、すべての部品をボルト締結する必要はなく、たとえば、電気的絶縁を図る必要がある部品は導電性材料(金属)と絶縁材料(セラミックスなど)を、予め接着剤により一体化しておけばよい。図32~図34は組立準備段階を示すもので、Step1において、セラミックで形成された外周側ディスク支持部材771とフロント側ディスク758を、鎖線円Aの箇所で接着固定する。Step2において、セラミックで形成された内周側ディスク支持部材770と金属で形成されたリング状ナット772を、鎖線円Bの箇所で接着固定する。Step3において、内周側ディスク支持部材770とリング状ナット772が一体化した部品をフロント側ポールピース部752の開口部に接着固定する。
 (3-2)コイルボビンの装着とコイル引出線処理
 図35~図36は、コイルボビン765の装着と、コイル引出線の処理を行う工程を示す。774はフォースコイル756aと検定コイル756bの引出線、775はコイル側ヨーク材755の内面に形成された内側溝部、776は前記コイル側ヨーク材の半径方向に形成された貫通穴、777は前記コイル側ヨーク材の外周側に形成された外側溝部である。内側溝部775、貫通穴776、外側溝部777は図31には記載していない。
 Step4において、コイルボビン765を前記コイル側ヨーク材に挿入すると同時に、前記内側溝部、前記貫通穴、前記外側溝部を利用して、コイル引出線774の先端部を外部に引き出している。Step5において、ボルト773fにより、コイルボビン765をコイル側ヨーク材755に締結する。
 (3-3)可動側電極の引出線処理とフロント側ポールピース部の装着
 図37は、本実施形態に適用したフロント側ディスク758の形状を示す。鎖線Dにおいて、778は突出端部、779はこの突出端部に形成された貫通穴である。Step6において、図38aはコイル側ヨーク材755の内部に、フロント側ポールピース部752が装着された状態を示す図である。図38bは鎖線E部の部分拡大図である。780はコイル側ヨーク材755の外周面に形成された電極用溝部、781は可動側電極760の引出線である。782は引出線781の被覆を剥がした状態で、貫通穴779を利用して、引出線781とフロント側ディスク758を電気的に導通させた状態を示す。電気的に導通させる手段として、半田付け、導電性接着剤などが選択できる。783はフロント側ディスク758に複数個形成された貫通穴であり、その内径は締結ボルト773bの頭部773bHよりも大きく形成されている。
 前述したように、フロント側ディスク758と外周側ディスク支持部材771は既に接着固定されている。そのため、締結ボルト773bにより外周側ディスク支持部材771をコイル側ヨーク材755に固定すれば、フロント側ディスク758とコイル側ヨーク材755間は電気的絶縁を維持できる。締結ボルト773bの頭部773bHと、貫通穴783は非接触を保っている。可動側電極760は、締結ボルト773aによりフロント側ディスク758と内周側ディスク支持部材770を矜持した状態で、リング状ナット772に締結される。前述したように、ディスク支持部材770とリング状ナット772は予め接着剤により一体化している。
 (3-4)最終組み立て段階
 Step7は永久磁石751とリアー側ディスク759を締結する工程を示す。図39に示すように、締結ボルト773cにより、永久磁石751はリアー側ポールピース部754を介在して、フロント側ポールピース部752に締結される。リアー側ディスク759は、締結ボルト773dと締結ボルト773eにより、コイル側ヨーク材755とリアー側ポールピース部754に締結される。
 Step8は、最終段階でセンサ収納ケース装着する工程を示す。図40に示すように、フロント側パネル762aには固定側電極761が締結部材764により仮固定されている。このフロント側パネル762aを、コイル側ヨーク材755を収納するように、締結ボルト773gにより、リアー側パネル762bと締結する。
 ちなみに、電極の信号線781、及び、コイルの引出線774を外部に取り出すための構造は、ボルト締結構造である本実施形態に限定されない。接着工法である他の実施形態にも同様に適用できる。
 (第15実施形態)
 前述した実施形態では、最初の準備段階を除き、最終の組立段階までボルト締結工法を適用した。本実施形態は、最終の組立段階では接着工法を適用することで、静電容量を実測しながら、可動側と固定側の電極間隙間を最適値に調整したものである。すなわち、最終工程で集積されたすべての誤差を吸収する方策である。
 図41は締結する2つのユニットを示し、図41aは固定側電極ユニット850、図41bは可動側電極ユニット851と呼ぶことにする。図42は前記2つのユニットを接着剤で接合した状態を示す図である。
 以下、第15施形態に対して、特記すべき箇所のみ説明する。852は可動側電極、853は固定側電極、854aはフロント側パネル、854bはリアー側パネル、855は中央プレート、856は前記固定側電極と前記フロント側パネルの非導電性材料による締結部材である。857はコイル側ヨーク材、858aは可動ユニット側嵌合要素、858bは固定ユニット側嵌合要素、859は前記リアー側パネルと前記コイル側ヨーク材を締結するボルトである。860aは可動ユニット側接合面、860bは固定ユニット側接合面、860bcは前記固定ユニット側接合面に形成されたテーパ部である。可動ユニット側嵌合要素858a及び固定ユニット側嵌合要素858bは嵌合構造を形成する。
 図42において、861は可動ユニット側接合面860aと固定ユニット側接合面860bの間に塗布された接着剤である。本実施形態では、接着剤に紫外線硬化型を適用した。この接着剤はLEDライトを照射することで硬化する。したがって、LEDライト照射の前段階では、前記2つのユニットは嵌合構造を形成する嵌合要素858a、858bにより半径方向移動が規制された状態で、相対的に軸方向に移動できる。電極間隙間δz(可動側電極852と固定側電極853間の隙間)は、静電容量の測定値から求められる。たとえば、固定ユニット851を固定した状態で、可動ユニット850を軸方向(矢印C)に移動させる。静電容量が目標値に到達した時点で、接着剤にLEDライトを照射して接着剤を硬化すれば、前記2つのユニットは締結できる。
 前記2つのユニットを締結する前段階(図41b)、すなわち、可動側電極ユニット851単体の状態で、センサのアクチュータ機能は計測評価できる。たとえば、可動側電極852の軸方向変位を検出する変位センサを別途配置すれば、フオースコイル756a電流に対する周波数応答特性、過渡応答特性などが評価できる。評価結果次第では、ボルト締結工法の特徴を活かし、各部品の交換・再利用は容易である。
 2つの電極間隙間δzを調節する上述した方法に加えて、2つの電極間隙間の傾斜角δθの調整に締結部材856を利用してもよい。この場合、締結部材856は、たとえば、紫外線硬化型接着剤を適用してもよい。本実施形態で示した2つの電極間隙間のδz(あるいはδθ)を調整する方法は、本発明の他の実施形態にも適用できる。
 (第16実施形態)
 図43は、本発明の実施形態16に係る差動式サーボ型加速度センサの正面断面図である。但し、可動部はコイルが動くムービング・コイル式(MC式)を適用している。51は永久磁石、52はポールピース部、53はポールピース凸部、54は永久磁石側ヨーク材、55はコイル側ヨーク材、56aはフォースコイル、56bは検定コイル、57はコイルボビン、58,59はコイルボビン支持部材、60はフロント側ディスク、61はリアー側ディスク、62はフロント側ディスク60とコイル側ヨーク材55のフロント側連結部材、63はリアー側ディスク状ばね61とコイル側ヨーク材55のリアー側連結部材である。ポールピース部52の外周部とコイル側ヨーク材55の内周部間は半径方向の磁気空隙部64が形成されている。64aは永久磁石側空隙部、64bはヨーク材側空隙部である。「永久磁石51→ポールピース部52→磁気空隙部64→コイル側ヨーク材55→永久磁石側ヨーク材54」により、閉ループ磁気回路を形成している点は、従来のMC式サーボ型加速度センサと同様である。
 65は可動側第1電極(電極面Sa)、66は可動側第2電極(電極面Sb)、67は円筒部材、68は非導電性材料で形成された固定側電極支持部材である。69は固定側電極支持部材68に形成された固定側第1電極(電極面SA)、70は固定側第2電極(電極面SB)、71は可動側第1電極65と固定側第1電極69で形成される第1空隙部、72は可動側第2電極66と固定側第2電極70で形成される第2空隙部である。可動側第1電極65と可動側第2電極66は円筒部材67を介在して接着固定されている。また可動側第1電極65は外周部において、フロント側ディスク状ばね60と接着固定されている。第1空隙部71の隙間で決まる静電容量信号A、第2空隙部72の隙間で決まる静電容量信号Bとすれば、2つの静電容量信号A、Bは逆位相となる。すなわち、2つの静電容量信号A、Bを独立して検出することで、差動式センサを構成している。73aは静電容量信号Bを軸方向に伝達する軸方向導体線、73bは半径方向に伝達する半径方向導体線である。2つの静電容量信号A、B、及び、フォースコイル56a、検定コイル56bに流れる電流は、フロント側ディスク状ばね60とリアー側ディスク状ばね61を経由して固定側に伝達される。前記2つのディスク状ばねは、円周方向に分割されており、独立した複数本の信号伝達経路(図示せず)を構成している。74はフロント側パネルである。
 図43において、2点鎖線AAで示す部分は、2つの可動電極65、66を軸方向に駆動させるアクチュータ部を示している。本実施形態では、このアクチュータ部にMC式(ムービング・コイル式)を適用した。このMC式の代わりに、前述した実施例で示したMM式(ムービング・マグネット式)を用いてもよい。あるいは、MC式、MM式、MI式など、どのような形態のアクチュータを適用してもよい。
 (第17実施形態) 
 前述した実施形態は、2個の可動電極の間に1個の固定側電極支持部材を挟持して2組の静電容量センサを構成したものであった。この構成とは逆に、2個の固定側電極支持部材の間に1個の可動電極部材を挟持しても、2組の静電容量センサを構成することができる。図44において、151は第1の固定側電極支持部材、152は第2の固定側電極支持部材、153は可動側電極部材、154は円筒形状の連結部材、151aは第1の固定側電極支持部材151の表面に形成された固定側第1電極(電極面Saa)、153aは可動側電極部材153の表面に形成された可動側第1電極(電極面SAA)である。152aは第2の固定側電極支持部材153の表面に形成された固定側第2電極(電極面Sbb)、153bは可動側電極部材153の表面に形成された可動側第2電極(電極面SBB)である。155は可動側第1電極153aと固定側第1電極151aで形成される第1空隙部、156は可動側第2電極153bと固定側第2電極152aで形成される第2空隙部である。
 第1空隙部155の隙間で決まる静電容量信号A、第2空隙部156の隙間で決まる静電容量信号Bとすれば、2つの静電容量信号A、Bは逆位相となる。すなわち、前述した実施例と同様に、2つの静電容量信号A、Bを独立して検出することで、差動式センサを構成している。同図中の2点鎖線BBは、連結部材154を出力とするアクチュエータ部である。このアクチュータ部BBには、MC式、MM式、あるいは、どのような形態のアクチュータを適用してもよい。
(第18実施形態) 
 図45は、本発明の実施形態18に係るサーボ型加速度センサを示し、図45aはフロント側ディスクの形状、図45bは加速度センサ本体の正面断面図、図45cはリアー側ディスクの形状を示す。閉ループ磁気回路を構成する磁路である磁気連結部(鎖線円BB)において、部品精度、組立精度が充分に得られず、固定側と可動側の軸芯が偏芯した場合に、遠心方向の磁気吸引力(同図のFr)が発生する。本実施形態はこの影響を極力低減するディスク形状を示すものである。
 151は軸方向に着磁された永久磁石、152はフロント側ポールピース部、153は前記ポールピースの内部に形成される空間、154はリアー側ポールピース部、155はコイル側ヨーク材、156はフォースコイル、157は前記コイル側ヨーク材の内面に形成された突出部、158、及び、159は可動部を支持するフロント側ディスク、及び、リアー側ディスクである。160は可動側電極、161は固定側電極、162aはフロント側パネル、162bはリアー側パネル、163は中央プレート、164は締結部材、165は磁気空隙部である。前記コイル側ヨーク材の突出部157とリアー側ポールピース部154の間は、狭い間隙による環状空隙部166が設けられている点は前述した実施例同様である。167は外周側支持リング、168は内周側支持リングである。「永久磁石151→フロント側ポールピース部152→磁気空隙部165→コイル側ヨーク材155→突出部157→環状空隙部166→リアー側ポールピース部154→永久磁石151」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している点も、前述した実施例同様である。リアー側ポールピース部154の形状は、前述した実施形態とは異なる。169は前記リアー側ポールピース部の中心部に形成された凸部、169aは前記リアー側ディスクの中心部を位置決めするための中心凸部、170は空隙部である。
 本実施形態では、図45aと図45cに示すように、可動部を支持するディスク形状はフロント側とリアー側では大きく異なる。フロント側ディスク(図45a)は、円周方向に長い峰部158aと溝部158bを有するスパイラル形状ばねである。それに対して、リアー側ディスク(図45c)は、円周方向に対して垂直な6本の峰部159aと、各峰部間の溝部159bから構成されている。前記リアー側ディスクの軸方向剛性Kaを小さくするために、峰部159aの幅は狭く、また中心部と外周部間の支持間隔Rを充分に長く設定している。前記リアー側ディスクの板厚は前記フロント側ディスクと比べて充分に薄い。ディスクの剛性は板厚の3乗に逆比例するために、たとえば、板厚が1/2になれば剛性は1/8になる。前記リアー側ディスクの軸方向剛性kaは、前記フロント側ディスク同様に小さく、半径方向剛性Krは極めて高い。すなわち、磁気連結部BBにおいて、固定側と可動側の軸芯が偏芯した場合に、遠心方向に発生する磁気吸引力Frに対して、充分に高い求心方向剛性krにより、可動側の軸芯を同一半径の位置に保つことができる。ここで、固定側の軸芯に対して可動側の軸芯の偏芯量をδrとする。δr=0の場合は遠心方向の磁気吸引力Fr =0である。しかし、δr>0となる偏芯が発生した場合は、磁気吸引力Fr と偏芯量δrはさらに増大する。遠心方向の磁気吸引力Fr と偏芯量δrの関係は非線形であり、磁界中に置かれた可動側の軸は不安定な釣合条件下にある。ここで、Kmr =Frrと定義すれば、Kmrは磁気回路で形成される負のばね剛性である。但し、Fr>0、及び、Kmr>0と定義する。したがって、ディスクの求心方向剛性をKr>Kmrとなるように選べば、磁気連結部BBは安定した状態を保つことができる。前記リアー側ディスクの形状は、本実施形態で示したものに限定されない。軸方向剛性kaに対して半径方向剛性krが充分に高ければ、どのような形状でもよい。たとえば、スパイラル形状の場合において、スパイラル角度α(図45a参照)を円周方向に対する曲線の勾配と定義すれば、角度αが充分に大きい曲線でもよい。45≦α≦90degの範囲ならば、充分に高い半径方向剛性krが得られた。前記フロント側ディスクの形状も、本実施形態で示したスパイラル曲線に限定されない。ディスクの板厚が充分に薄く、また材料の弾性限界の範囲内に収めることができれば、本実施形態における前記リアー側ディスクに近い形状でよい。
 本実施形態では、図45cに示すリアー側ディスクには、析出硬化型の高強度ステンレス鋼(SUS631)を適用した。この材料は、冷間圧延後析出硬化処理により、マルテンサイトに微細なAlを含む金属間化合物を生じさせることにより、非常に高い硬度の得られるステンレス鋼である。特殊な鋼材を用いたのは、次のような理由による。小さなディスク外径を維持して、軸方向剛性kaを小さくするためには、板厚を薄くかつ峰部の幅を狭くせざるを得ない。そのため、図45aに示すスパイラル角度αが充分に小さな場合と比べて、大きな発生応力に耐える必要がある。適用した高強度ステンレス鋼は、(たとえば、SUS304などの通常の鋼材と比較して、3倍程度の引張強さ(1400~1500N/m2)とバネ限界値を有する。その他、たとえば、SUS632J1などのステンレス鋼でもよく、引張強さ>1000N/m2であれば、本発明に適用できた。 本実施形態で示したディスク形状、及び、ディスク材料の強度等に関する上記知見と方策は、本発明のすべての実施形態に適用可能である。
 (II) ムービング・ヨーク式(MY式)加速度センサ
 前述した本発明の実施形態は、コイルが動く従来MC式に対して、永久磁石が動くMM式の提案であった。ここで、再び原点に立ち戻り、サーボ型加速度センサを構成するアクチュエータ部の磁気回路は、「永久磁石」、「コイル」、「ヨーク材」の3点の要素だけで閉ループを形成することに注目する。ここで、「永久磁石」と「コイル」を共に固定して、「ヨーク材」だけを動かすことでサーボ型加速度センサを構成できないか、というのが本実施形態の提案である。すなわち、「第3のリニアモータ」とも言うべき、ムービング・ヨーク式(MY式(仮称))の提案である。MY式加速度センサの特徴は、
 (1)MC式同様に可動部質量の軽量化が図れる。
 (2)MM式同様にコイルの極細線処理が不要である。
 すなわち、MM式とMC式の両方の短所を解消すると共に、両方の長所を併せ持つことができる。
 (第19実施形態)
 図46は、本発明の実施形態19に係るMY式サーボ型加速度センサの正面断面図である。851は軸方向に着磁された永久磁石、852は固定側ポールピース部(ポールピース側ヨーク材)、852aはこの固定側ポールピース部のテーパ部、852bは前記固定側ポールピース部の円柱部である。853は可動側ポールピース部(可動側ヨーク材)、853aは前記固定側ポールピース部における円柱部852bの対向面である。854は前記可動側ポールピース部内部において、軽量化のために形成される空間である。855はコイル側ヨーク材、855aは永久磁石側ヨーク材、856はフォースコイル、857はバイアスコイルである。858はフロント側ディスク、859はリアー側ディスク、860は可動側電極、861は固定側電極、862aはフロント側パネル、862bはリアー側パネル、863は中央プレート、864は締結部材、865は前記コイル側ヨーク材の内周面におけるコイル装着部、866は前記可動側ポールピース部におけるコイル対抗面、コイル対抗面866とコイル装着部865間は半径方向の磁気空隙部867(第1空隙部)が形成されている。前記前記固定側ポールピース部の円柱部852Bとその対向面853aの間は、狭い間隙による空隙部868(第2空隙部)が(鎖線円B)設けられている。この鎖線円Bが磁気連結部である。869、及び、870は非導電性材料による外周側支持リング、及び、内周側支持部材である。本実施形態において、フォースコイル856に電流を印加しない状態において、可動側ポールピース部853に微小な軸方向力が発生した場合は、バイアスコイル857にバイアス電流を流すことで、ポールピース部853を一定位置に保つことができる。「永久磁石851→固定側ポールピース部852→空隙部868→可動側ポールピース部853→磁気空隙部867→コイル側ヨーク材855→永久磁石側ヨーク材855a→永久磁石851」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 本実施形態センサの作動原理は前述したMM式と同様である。フォースコイル856に電流が印加されると、リニアモータの作動原理であるローレンツ力の反力が可動側ポールピース部853に作用する。フォースコイル856の電流と外力による加速度は比例関係にあるために、フォースコイル856の電流を検出することで、加速度が計測される。フォースコイル856、及び、バイアスコイル857の引出線、及び、電極の信号線を外部に取り出す方法は前述した実施形態と同様である。第1実施形態である図1b、あるいは、ボルト締結構造による第14実施形態である図36、図38aと同様な方法を用いればよい。図36で示したように、コイル側ヨーク材755の外周部に外側溝部777を形成して、この溝部にコイル774引出線を装着する方法がその一例である。本実施形態、及び、後述する実施形態も含めて同様な構成が適用できる(図示せず)。
 本発明によるMY式加速度センサの特徴を要約すれば次のようである。
 (1)可動部の慣性質量を広い範囲で選択できる。本実施形態では、可動側ポールピース部853は円筒形状で形成したが、円筒部を薄くして軽量化すれば、MC式の特徴である高周波特性を重視した性能にできる。可動側ポールピース部853を中実の円柱形状にして慣性質量を大きくすれば、MM型の特徴である低周波特性を重視した性能にできる。すなわち、可動側ポールピース部853の形状により、本センサを適用する対象(アクティブ除振台など)が要求する特性に合わせたセンサ仕様を、任意に選択できる。
 (2)永久磁石の性能を広い範囲で選択できる。永久磁石851の寸法・形状に制約が無いため、永久磁石性能の指評である減磁特性(保持力Hc、飽和磁束密度Br)を幅広く選択できる。永久磁石性能に余裕があるために、磁気連結部Bにおける空隙部868充分に大きくても良い。この空隙部868は磁気抵抗になるが、その損失を補うのに充分な永久磁石の性能が得られる。
 (3)コイル仕様も広い範囲で選択できる。本実施形態に示すように、可動側ポールピース部853を薄い板厚の円筒形状にすれば、可動側ポールピース部853を長くしても慣性質量の増加は僅少である。この点を利用すれば、コイル収納容積を充分に大きくできるために、電気抵抗を増加させないで、コイル線径とコイル巻数を選択できる。さらに、上記(1)~(3)の特徴により、アクチュータの発生力を広い範囲で選択できるために、低周波特性から高周波特性まで優れたセンサ感度を有する加速度センサが実現できる。
 MY式加速度センサに関する本実施形態、及び、後述する実施形態も同様であるが、(I)節で前述した本発明のMM式加速度センサに関する多くの知見、考案はMY式にも適用できる。たとえば、(i)非磁性で熱伝導性の良いコイルボビンを用いてコイルの発熱を放熱する構造、(ii)可動部を支持する弾性部材に一方を固定端、もう一方を自由端とする片持はりの振子構造、(iii)各部材間の接合に接着工法と極小ボルト締結工法を組み合わせた構造、(iv)弾性部材の内周側と外周側は、電気的絶縁を図るために、非導電性材料を介在して固定側に締結する構造、(v)可動側電極と可動部材(ポールピース)間の電気的絶縁を図る構造、(vi)磁気連結部に磁性材料で構成された軸方向剛性が充分に小さなディスク状ばねを用いる構造、などが適用できる。
 また磁気連結部Bを構成する固定側ポールピース部852と、その対向面である可動側ポールピース部853に相当する箇所に、薄い板厚のリング状円盤を重ね合わせた積層鋼板(例えば、板厚0.1~0.2mm)を装着する構成する。モータ、磁気制御軸受などで適用されているように、相対移動する箇所に発生する渦電流損失を低減できるために、高周波特性に有利な特性が得られる。本実施形態に限らず、後述する実施形態、及び、(I)節で説明したMM式における磁気連結部(例えば、第1実施形態である図1のB部)も同様である(図示せず)。
 (第20実施形態)
 図47は、本発明の実施形態20に係るMY式サーボ型加速度センサを示し、図47aは正面断面図、図47bは図47aのA-A断面図である。本実施形態では、半径方向に着磁したセグメント型永久磁石を複数個用いて磁気回路を構成した。
 551は永久磁石、552はポールピース部(可動側ヨーク材)、553は固定側ヨーク材である。前記永久磁石は半径方向に着磁したセグメント型永久磁石551a、551b、551c、551dにより構成されて、前記ヨーク材に装着されている。554は前記ポールピース部の内部空間、555はフォースコイル、556は検定コイル、557はフロント側ディスク、558はリアー側ディスク、559は可動側電極、560は固定側電極、561aはフロント側パネル、561bはリアー側パネル、562は中央プレート、563は締結部材、564は前記ヨーク材の内周面におけるコイル装着部、565は前記ポールピース部におけるコイル対抗面、コイル対抗面565とコイル装着部564間は半径方向の磁気空隙部566(第1空隙部)が形成されている。前記永久磁石551の内周面567a、567b、567c、567dと対向する前記ポールピース部の間は、狭い間隙による空隙部568(第2空隙部)が設けられている。この空隙部568が磁気連結部である。569、及び、570は非導電性材料による外周側支持リング、及び、内周側支持部材である。「永久磁石551→空隙部568→ポールピース部552→磁気空隙部566→固定側ヨーク材553→永久磁石551」により、鎖線の矢印で示すように、閉ループ磁気回路を形成している。
 本実施形態では、前記永久磁石は半径方向に着磁したセグメント型永久磁石を用いているために、フォースコイル555に電流を印加しない状態において、ポールピース部552に軸方向の電磁力(不平衡力)は発生しない。そのためポールピース部552を同位置に保つことができるため、前述した実施例のようなバイアスコイル電流による微調整は不要である。
半径方向に着磁したセグメント型永久磁石を用いる代わりに、軸方向に着磁した永久磁石を用いて、この永久磁石と半径方向に磁束が流れるようなヨーク材と連結してもよい。このヨーク材の形状は、前述したセグメント型永久磁石のような形状でもよい。この固定側ヨーク材を前記ポールピース部の外周部を包みこむように配置すればよい(図示せず)。
 あるいは、永久磁石551の内周面567a~567dと対向するポールピース部552の外周面に、半径方向に着磁した薄型のセグメント型永久磁石を複数個装着してもよい。すなわち、MY型とMC型のハイブリッド構造である。この構成により、磁気連結部(磁気空隙部568)の磁気抵抗を低減することができる。
 (第21実施形態)
 図48は、本発明の実施形態21に係るMY式による差動式サーボ型加速度センサの正面断面図である。MY式でかつ半径方向に着磁した永久磁石を用いて磁気回路を構成することにより、左右の出力軸がいずれも開放端になることに着目したものである。静電容量を検出する電極を左右2箇所に設けることにより、差動式の静電容量式センサが実現できる。加速度センサを差動式にすることにより、センサ出力がノイズ、ドリフトなどの外乱信号の影響を受けにくい高分解能センサが実現できる。
 501は永久磁石、502はポールピース部、503はヨーク材である。前記永久磁石は半径方向に着磁した複数個のセグメント型永久磁石により構成されて、前記ヨーク材に装着されている。504は前記ポールピース部の内部空間、505はフォースコイル、506は検定コイル、507はフロント側ディスク、508はリアー側ディスク、509はフロント側可動電極、510はフロント側固定電極、511はリアー側可動電極、512はリアー側固定電極、513aはフロント側パネル、513bはリアー側パネル、514はフロント側中央プレート、515はリアー側中央プレート、516はフロント側締結部材、517はリアー側締結部材である。518は前記ヨーク材の内周面におけるコイル装着部、519は前記ポールピース部におけるコイル対抗面、520は磁気空隙部、521は磁気連結部である空隙部、522、及び、523は非導電性材料によるフロント側外周支持リング、及び、フロント側内周支持部材である。524、及び、525は非導電性材料によるリアー側外周支持リング、及び、リアー側内周支持部材である。
 また前記可動電極と前記固定電極間の静電容量を検出する導線と、外部を繋ぐ方法は、前述した実施形態同様である(図示せず)。
 差動式である本発明センサの加速度出力を完全積分して得られる絶対速度信号、及び絶対変位信号は容易には発散しない。したがって、本発明センサをアクティブ除振台に適用した場合、センサ感度向上による効果(たとえば、ステージの位置決め精度向上)に加えて、低周波数領域で大幅な除振特性向上効果が得られる。
 (III) その他の実施形態
 前述した実施形態(I) (II)は、Lorentz力を発生させるボイスコイルと、永久磁石から構成されるMM式、及び、MY式加速度センサの実施例であった。以下示す実施形態は、Lorentz力ではなくMaxwell応力による磁気吸引力を発生させる電磁石を適用したものである。電磁石を構成するコイルが固定されるという点では、実施形態(I) (II)と共通である。また、コイルも永久磁石も動かさず、閉ループ磁気回路を構成するヨーク材のみ動かすという点で、本実施形態は(II)節のMY式の別形態のひとつと考えてもよい。
 (第22実施形態) 
 図49は、本発明の実施形態22に係るサーボ型加速度センサの正面断面図である。磁気吸引力を発生させる電磁石と永久磁石を組み合わせて、サーボ型加速度センサを構成したものである。
 601は軸方向に着磁された永久磁石、602は永久磁石側ポールピース部、603はポールピース部602の前記永久磁石側対向面、604は前記永久磁石の前記ポールピース部側対向面、605はポールピース部602の内部に形成される空間、606は永久磁石側ヨーク材である。607はコイルボビン、608は電磁石のフォースコイル(制御コイル)、609はバイアスコイルである。610、611により電磁石側のヨーク材を構成しており、610はコイル608、609の軸芯に対する外周側ヨーク材、611は軸芯側ヨーク材である。
 612は電磁石側のポールピース部(可動部材側ヨーク材)、613はポールピース部612の前記中心軸側対向面、614は前記中心軸の前記ポールピース部側対向面、615はポールピース部612の内部に形成される空間である。
 616は電磁石側ハウジング、617は永久磁石側ハウジング、618は非磁性材料による可動部材、619と620は可動部材618を左右から矜持する締結部材である。前記締結部材は前記永久磁石側ハウジングと前記電磁石側ハウジングにより左右から固定されている。621a、及び、621bは可動側電極R、及び、固定側電極Rである。622a、及び、622bは可動側電極L、及び、固定側電極Lである。前記可動部の左右に形成された2つの前記電極により、差動式の加速度センサを構成している。軸芯側ヨーク材611と電磁石側ハウジング616における想像線623は、静電容量式以外の変位センサを用いた場合に必要な貫通路である(補足(3)で後述)。
 永久磁石側ポールピース部602と電磁石側ポールピース部612は磁性材料で構成されており、非磁性材料による可動部材618の中心部で左右に固定されている。電磁石側は、「中心軸611→電磁石側ヨーク材610→電磁石側ポールピース部612」を含む部材で閉ループ磁気回路を形成している。永久磁石側は、「永久磁石601→永久磁石側ポールピース部602→永久磁石側ヨーク材606」を含む部材で閉ループ磁気回路を形成している。可動部618には、図中に示すように、永久磁石601による吸引力Fmが常時働いている。加速度センサの作動時には、バイアスコイル609に電流を流すことにより、可動部618を原点位置に保っている。この状態で、可動部分全体に外力が加われば、可動部618を原点位置に復帰させようにフォースコイル608に電流が流れる。フォースコイル608の電流と外力による加速度は比例関係にあるために、フォースコイル608の電流を検出することで、加速度が計測される。
 本実施形態の加速度センサでは、可動部を駆動するのにMaxwell応力による磁気吸引力を用いている。アクチュエータの外形寸法を同一条件下で比較すれば、Maxwell応力はLorentz力と比べて、入力電流に対する発生力の電気機械変換効率(推力定数)が圧倒的に高く、通常20倍以上である。この点を利用すれば、本実施形態の加速度センサは計測可能な加速度の上限値を極めて大きく出来る。
 但し、計測可能な加速度の上限値が小さくてもよい場合は、Maxwell応力アクチュエータの代わりに、(I) 節の実施例であるLorentz力アクチュエータと永久磁石を組み合せた構成でもよい(図示せず)。
 (第23実施形態)
 図50は、本発明の実施形態23に係るサーボ型加速度センサの正面断面図である。Maxwell応力による磁気吸引力を発生させる2つの電磁石を、左右対称に組み合わせて、サーボ型加速度センサを構成したものである。
 本加速度センサの部品構成は左右対称なため、図番右側の添字をa、左側の添字をbとする。まず右側の部品構成から説明する。631aはコイルボビン、632aは電磁石のフォースコイルである。
 633a、634aにより電磁石側のヨーク材を構成しており、633aはコイル632aの軸芯に対する外周側ヨーク材、634aは軸芯側ヨーク材(中心軸)である。635aは非磁性材料によるポールピースの筒部、636aは磁性材料によるポールピースの平板部(可動部材側ヨーク材)、637aはハウジング、638は非磁性材料による可動部材、640aと640bは可動部材638を左右から矜持する締結部材である。前記可動部材は締結部材640aと640bにより左右から締結されている。641aは可動側電極、642aは固定側電極である。前記可動部の左右に形成された2つの電極により、差動式の加速度センサを構成している。643aは前記中心軸の先端である第1磁極、644aは前記中心軸の外周側におけるヨーク材先端である第2磁極である。「中心軸634a→ヨーク材633a→第2磁極644a→ポールピースの平板部636a→第1磁極643a→中心軸634a」で閉ループ磁気回路を形成している。
 ちなみに、電磁石を構成するヨーク材の形状、コイルの位置などは、ヨーク材と可動側部材との間で閉ループ磁気回路が形成されるならば、どのような形態でもよい。
 左右の電磁石のフォースコイル632a、632bに電流が印加されない状態では、可動部材638には吸引力が働かないため、可動部材638は原点位置を保つ。可動部分全体に外力が加われば、可動部638を原点位置に復帰させように、それぞれのフォースコイル632a、632bに逆方向の電流が流れる。たとえば、右側フォースコイル632aにIR=I0+δIの電流が流れて、左側フォースコイル632bにIL=I0-δIの電流が流れる。このとき、左右の電流差はΔI= IR- IL=2δIである。各フォースコイルに流す電流差ΔIと外力による加速度は比例関係にあるために、この電流差ΔIを検出することで、加速度が計測される。
 前述したように、Maxwell応力はLorentz力と比べて、入力電流に対する発生力の電気機械変換効率(推力定数)が圧倒的に高いため、この点を利用すれば、本実施形態の加速度センサは極めて大きな加速度の計測が出来る。また、微振動計測を目的とするならば、コイルの巻数が少なくても大きな力を発生できるために、アクチュータを含む加速度センサ全体の大幅な小型化も可能となる。
 (補足) (1)磁性材料について
 以下、(I)~ (III)節で説明した実施形態に共通する内容について補足する。
 サーボ型加速度センサのアクチュエーア部に用いる磁性材料としては、電磁ステンレス鋼、純鉄、パーマロイ、タフパーム、パーメンジュール、アモルファスなどが適用できる。また、閉ループ磁気回路を構成する部品には磁性材料を用いて、アクチュータを収納するケースであるハウジングなどには非磁性材料を用いればよい。
(2)アクティブ除振台搭載時に要求される加速度センサの特性について
 たとえば、系全体の応答性(固有値)が数Hz~10数Hz程度のアクティブ空気圧サーボ除振装置に用いられる加速度センサに、何故、数百Hzの高い共振周波数が必要とされるかについて説明する。アクティブ除振台においては、比例変位フィードバックに加えて、加速度フィードバックが適用される。主に加速度フィードバックの適用は共振ピークを低減させるために、必須条件である。さて一巡伝達関数のBode線図上で、次の2点を満足すれば、よく知られているように系は安定である。
  (i)位相交点で正のゲイン余裕がある
  (ii)ゲイン交点で正の位相余裕がある。加速度フィードバックを施すことでゲインは上昇して、かつ位相は180度遅れる。
 そのため、系全体の応答性(固有値)が数Hz~10数Hz程度であっても、加速度フィードバックを施すことで、その影響が高い周波数のゲイン余裕、位相余裕に与えるのである。そのため、アクティブ除振台を構成する制御要素である加速度センサ、空気圧サーボバルブには高い共振周波数(高速応答性)が要求される。共振周波数f0が高い程、f=100Hz近傍での位相遅れも小さくできる。多くの実験結果により、f0>200Hzならば許容される範囲であるが、前述したように、f0≧ 250Hzならばより好ましい。またf=100Hz近傍において、位相遅れΔΦp<20degならば許容される範囲であるが、ΔΦp≦10degならばより好ましい。
(3)本発明に適用できる変位検出部の種類
  (I)~(III)節で説明した本発明の実施形態における変位検出手段は、すべて静電容量式を適用した場合を示した。しかし、本発明の特徴は、従来と異なるアクチュータ構造を適用することで得られるサーボ型センサとしての固有の効果であった。たとえば、
  (i)複数本のコイル信号を取り扱う極細線処理が簡素化されるために、量産時における歩留まりを大幅に向上できる。
  (ii)上記(i)の特徴を維持したままで、可動部を軽量化する工夫により高周波特性を向上できる。あるいは、可動部の慣性質量の選択により、高周波、低周波のいずれかの特性を重視した加速度センサが実現できる。
  (iii)差動式の適用により、センサ信号のドリフト・ノイズの低減が図れる etc.
 したがって、本発明の上記効果が得られる変位検出手段の形態は、静電容量式に限定されない。図51は静電容量式の代替として、変位検出部に三角測距方式を検出原理とした光学式変位検出手段を用いた場合を示す。575は前記駆動手段が設けられたアクチュータ部、576は前記変位検出部である。変位検出部576は光源577、投光レンズ578、受光レンズ579、受光素子580から構成されており、これらの要素をイメージ図で示す。アクチュータ部575は、前述した実施形態であるMM式加速度センサ構造を適用した場合を示す。581は永久磁石、582aはフロント側ポールピース部、582bはリアー側ポールピース部であり、582aと582bにより可動側ヨーク材を構成している。583は固定側ヨーク材、584はフォースコイル、585は検定コイル、586はフロント側ディスク、587はリアー側ディスク、588aはフロント側パネル、588bはリアー側パネル、前記リアー側ポールピース部の内周面と対向する前記固定側ヨーク材の間は、狭い間隙による空隙部589が設けられており、この空隙部が磁気連結部である。590、及び、591は非導電性材料による外周側支持リング、及び、内周側支持部材である。592はレーザ光であり、593は前記内周側支持部材に装着されたレーザ光反射板である。
 594はフロント側パネル588aに形成された前記レーザ光を通過させる開口面である。受光素子580はPSD(Position Sensitive Device)と呼ばれるもので、レーザ光反射板593の位置が変わることによるPSD上の結像位置の違いから変位を計測する。光学式変位手段としては、CMOS方式、CCD方式、正反射方式、拡散反射方式、ラインビーム方式などが適用できる。光学式以外の変位検出方式としては、測定対象物に発生する渦電流によるコイルのインダクダンス変化を利用したリニア近接センサなども適用できる。
 図51では、MM式加速度センサ構造に光学式変位センサを適用した場合を示したが、(II) (III)節の実施形態であるMY式、Maxwell応力電磁石による加速度センサ構造も適用できる。たとえば、第19実施形態である図46のMY式の場合は、内周側支持部材870に相当する部材をレーザ光反射面(図51における593に相当)とすればよい。
 あるいは、第22実施形態である図49の場合は、軸芯側ヨーク材611と電磁石側ハウジング616に形成した貫通路623(想像線で示す)をレーザ光の通路として、ポールピース部612の前記中心軸側対向面613をレーザ光反射面とすればよい。あるいは、貫通路623内部に渦電流リニア近接センサを装着してもよい。
 たとえば、光学式変位手段を用いてサーボ型加速度センサを差動式にする場合は、図51における前記変位検出部576を右側にも設置すればよい。この場合、内周側支持部材591に相当する部材をリアー側ポールピース部582bの右側に設けて、かつレーザ光反射板を前記リアー側ポールピース部に装着すればよい。(I) ~(III)節の差動式センサの実施形態に、静電容量式以外の変位検出手段を適用する場合も同様である。たとえば、第21実施形態のMY式(図48)の場合は、フロント側とリアー側の内周支持部材523、525に相当する箇所をレーザ光反射面、あるいは、渦電流リニア近接センサの検出面とすればよい。
 本発明によれば、複雑な配線処理の必要がなく、量産工法の大幅な簡素化と生産コストを低減が可能なサーボ型振動検出器を提供できる。

Claims (36)

  1.  固定部材と、
     前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、
     前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、
     前記可動部材の前記所定方向の変位を検出する変位検出部と、
     前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、
     前記駆動手段が、
      前記固定部材に固定されたコイルを具備し、
     前記可動部材が、
      閉ループ磁気回路の一部をなす可動側ヨーク材を少なくとも具備するサーボ型振動検出器。
  2.  前記可動部材が、
      前記閉ループ磁気回路を形成する永久磁石をさらに具備し、
     前記永久磁石のいずれかの磁極面に対して前記可動側ヨーク材が連結されているとともに、当該可動側ヨーク材が前記コイル内に配置されており、
     前記駆動手段が、前記コイルに電流を印加することで、電流が流れる導線が磁界中で受けるローレンツ力の反力により、前記永久磁石及び前記可動側ヨーク材を前記所定方向に移動させるように構成されている請求項1記載のサーボ型振動検出器。
  3.  前記固定部材に固定され、前記閉ループ磁気回路を形成する永久磁石をさらに具備し、
     前記永久磁石のいずれかの磁極面に対して前記可動側ヨークが離間させて設けられているとともに、当該可動側ヨーク材が前記コイル内に配置されており、
     前記駆動手段が、前記コイルに電流を印加することで電流が流れる導線が磁界中で受けるローレンツ力の反力により、前記可動側ヨーク材を前記所定方向に移動させるように構成されている請求項1記載のサーボ型振動検出器。
  4.  前記変位検出部が、
      前記可動部材に設けられた可動側電極と、
      前記可動側電極と対向するように前記固定部材に固定された固定側電極と、を具備し、
     前記可動側電極と前記固定側電極との間で形成される静電容量の変化に基づいて前記可動部材の変位が検出されるように構成された請求項1記載のサーボ型振動検出器。
  5.  前記空隙部は、前記閉ループ磁気回路内において前記可動部材と前記固定部材との間で半径方向空隙をなす第1空隙部と第2空隙部を具備しており、
     前記第1空隙部は前記ローレンツ力を発生するためのコイルが固定配置されており、
     前記第2空隙部は前記可動部材と前記固定部材の間に磁束を流すための磁気連結部としたことを特徴とする請求項2記載のサーボ型振動検出器。
  6.  前記永久磁石のいずれかの磁極面と連結し、可動側ヨーク材の一部を構成するポールピース部と、このポールピース部、もしくは、前記永久磁石の半径方向対向面と前記第1空隙部を介して前記固定部材に固定配置された前記コイルと、前記永久磁石のもう一方の磁極面と前記固定部材間を磁束が流れるように設けられた前記磁気連結部から構成されており、前記永久磁石、前記ポールピース部、前記第1空隙部、前記固定部材、前記磁気連結部により閉ループ磁気回路が形成されていることを特徴とする請求項5記載のサーボ型振動検出器。
  7.  可動側ヨーク材の一部を構成するポールピース部と、前記ポールピース部と前記固定部材との空隙部内において前記固定部材に固定配置された前記コイルと、前記ポールピース部は前記永久磁石のいずれかの磁極面と前記磁気連結部を介して配置されており、
     前記永久磁石のもう一方の磁極面と前記固定部材間を磁束が流れるように前記永久磁石は固定配置されており、前記永久磁石、前記磁気連結部、前記ポールピース部、前記固定部材により閉ループ磁気回路が形成されていることを特徴とする請求項5記載のサーボ型振動検出器。
  8.  前記ポールピース部は概略円筒形状で構成されていることを特徴とする請求項6記載のサーボ型振動検出器。
  9.  軸方向に着磁された前記永久磁石と、この永久磁石の一方の磁極面に連結された前記ポールピース部と、このポールピース部の半径方向対向面に空隙部を介して前記ハウジングの内面に固定配置された前記コイルと、前記永久磁石のもう一方の磁極面と前記ハウジング間を磁束が流れるように設けられた前記磁気連結部で構成されることを特徴とする請求項7記載のサーボ型振動検出器。
  10.  前記第1空隙部と前記第2空隙部における前記可動部材と前記固定部材との半径方向離間距離をそれぞれδ1、及び、δ2として、δ1>δ2であることを特徴とする請求項5記載のサーボ型振動検出器。
  11.  前記可動側ヨーク材を含む可動部質量をm、前記永久磁石の質量をmp、前記可動部質量の下限値mmin=2mpとして、KPTを位置センサ感度KSと調整ゲインKCと比例ゲインKPの積で決まる電気的ゲイン、Ktをアクチュエータの力定数、Raを前記コイルの電気抵抗、KT= KPTKt/Raとして、f0を加速度センサに要求される共振周波数、前記可動部質量の上限値mmax=KT/(2πf0)2としたとき、mmin≦m≦mmaxの範囲に設定したことを特徴とする請求項2記載のサーボ型振動検出器。
  12.  前記磁気連結部は径方向に着磁された補助永久磁石と、この補助永久磁石の半径方向対向面に空隙部を介して前記ハウジングの内面に固定配置された補助コイルから構成されることを特徴とする請求項5記載のサーボ型振動検出器。
  13.  前記閉ループ磁気回路内には、前記可動部材と前記固定部材との間で半径方向に磁束を伝達する第1伝達部と第2伝達部を具備しており、
     前記第1伝達部は前記可動部材と前記固定部材との間で半径方向の空隙を有し、この空隙内に前記ローレンツ力を発生するための前記コイルが固定配置されており、
     前記第2伝達部は、前記可動部材と前記固定部材との間は、半径方向に磁束が流れる磁性材料によるディスク形状ばねで固定されており、このディスク形状ばねは前記可動部材を支持する前記弾性部材を兼ねていることを特徴とする請求項2記載のサーボ型振動検出器。
  14.  前記永久磁石をフロント側永久磁石、前記コイルをフロント側コイルとして、前記磁気連結部は、径方向に着磁されたリアー側永久磁石と、このリアー側永久磁石の一方の磁極面に連結された前記ポールピース部と、前記リアー側永久磁石のもう一方の磁極面の半径方向対向面に前記空隙部を介して前記ハウジングの内面に固定配置されたリアー側コイルから構成され、前記フロント側永久磁石、前記空隙部、前記ハウジング、前記空隙部、前記リアー側永久磁石、前記ポールピース部で閉ループ磁気回路を構成していることを特徴とする請求項5記載のサーボ型振動検出器。
  15.  前記弾性部材は概略平板円環形状をした導電性材料で構成されており、前記弾性部材の少なくとも外周側は、非導電性材料を介在して前記固定部材に固定されていることを特徴とする請求項4記載のサーボ型振動検出器。
  16.  前記可動側電極と前記ポールピース部の間は、非導電性材料が介在していることを特徴とする請求項6記載のサーボ型振動検出器。
  17.  前記可動部材の2つの端面のそれぞれに設けられた可動側電極部材と、これらの可動側電極部材と対向して前記固定部材に設けられた固定側電極部材と、前記可動側電極部材と前記固定側電極部材の電極面間で形成される2組の静電容量センサの出力差を検出することで、差動式センサを構成したことを特徴とする請求項16記載のサーボ型振動検出器。
  18.  前記可動部材の端部において、2つの平板状の前記可動側電極部材が隙間を介して設けられており、この2つの前記可動側電極部材に挟み込まれるように平板状の前記固定側電極部材を前記隙間内に配置して、前記可動側電極部材の電極面Saと対向する固定側電極部材の電極面SAの間で第1の静電容量センサを構成して、かつ、前記電極面SAの裏面の電極面SBと対向する前記可動側部材の電極面Sbの間で第2の静電容量センサを構成したことを特徴とする請求項16記載のサーボ型振動検出器。
  19.  前記可動部材の端部に1つの平板状の前記可動側電極部材が設けられており、この可動側電極部材の表裏面には2つの電極面SAAと電極面SBBが形成されており、この可動側電極部材を隙間を介して挟み込むように2つの平板状の前記固定側電極部材を配置して、前記電極面SAAと対向する前記固定側電極部材の電極面Saaの間で第1の静電容量センサを構成して、かつ、前記電極面SBBと対向する前記固定側電極部材の電極面Sbbの間で第2の静電容量センサを構成したことを特徴とする請求項16記載のサーボ型振動検出器。
  20.  前記コイルは非磁性の金属製ボビンに収納されて、かつ金属製ボビンは前記固定部材の中空円筒部分の内面に嵌合されていることを特徴とする請求項2記載のサーボ型振動検出器。
  21.  前記固定部材の内面に密着する前記コイルの軸方向端面近傍で、前記可動部材と前記固定部材間の半径方向距離が前記コイルの両端と比べて大きい窪み部が前記固定部材の内面に形成されていることを特徴とする請求項2記載のサーボ型振動検出器。
  22.  前記永久磁石と前記ポールピース部との間、前記コイルが収納されたコイルボビンと前記固定部材との間、前記弾性部材と前記固定部材との間、又は、前記弾性部材と前記ポールピース部との間の少なくともいずれかはM0.5からM1.0mmのボルトにより締結されていることを特徴とする請求項5記載のサーボ型振動検出器。
  23.  前記弾性部材はディスク形状の導電性材料で形成されており、前記弾性部材の内周部と外周部は非導電性材料による薄板材と一体化した構造であることを特徴と請求項21記載のサーボ型振動検出器。
  24.  少なくとも前記可動部材を含み、可動側電極が装着された可動ユニットと、
     前記可動側電極と対向するように配置される固定側電極が装着された固定ユニットと、をさらに備え、
     前記変位検出部が、前記可動側電極と前記固定側電極間で形成される静電容量を検出するように形成されており、
     前記可動ユニットと前記固定ユニットの相対的半径方向移動が規制された状態で、前記可動ユニットと前記固定ユニットが相対的軸方向移動できるように前記可動ユニットと前記固定ユニット間に嵌合構造が形成されているとともに、
     前記前記可動ユニットと前記固定ユニットトを接着固定するための溝部が前記前記可動ユニットと前記固定ユニットの外表面に形成されていることを特徴とする請求項21記載のサーボ型振動検出器。
  25.  導伝性材料で構成された前記固定部材と前記ボルトと前記弾性部材と、
     前記弾性部材は非導電性部材による薄板が接着固定されており、
     この非導電性部材は前記固定部材にボルト締結されており、
     前記ボルト頭部が前記弾性部材と電気的に非接触となるように構成されていることを特徴とする請求項21記載のサーボ型振動検出器。
  26.  前記弾性部材は一方を固定端、もう一方を自由端とする片持はりから構成されており、この片持はりの自由端側に前記可動部材は設けられていることを特徴とする請求項1記載のサーボ型振動検出器。
  27.  前記片持はりの一部を導伝性材料にして、前記変位検出部の信号を固定部材側と繋ぐ信号伝達経路とすることを特徴とする請求項25記載のサーボ型振動検出器。
  28.  前記磁気連結部において、前記弾性部材の半径方向剛性Krとして、固定側磁性材料部材の軸芯に対して可動側磁性材料部材の軸芯の偏芯量をδrとしたときの磁気吸引力による半径方向発生力をFrとして、負のばね剛性Kmr =Frrを定義して、Kr>Kmrとなるように構成されていることを特徴とする請求項5記載のサーボ型振動検出器。
  29.  前記磁気連結部は径方向に着磁された前記永久磁石と、この永久磁石の内周面と空隙を保って配置された前記ポールピース部の外周面から構成されていることを特徴とする請求項6記載のサーボ型振動検出器。
  30.  前記磁気連結部は軸方向に着磁された前記永久磁石と、この永久磁石のN極とS極のいずれかの磁極面に連結して配置されたポールピース側ヨーク材と、このポールピース側ヨーク材の外周面に対して径方向の空隙を保って配置された前記ポールピース部の内周面から構成されていることを特徴とする請求項6記載のサーボ型振動検出器。
  31.  固定部材と、
     前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、
     前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、
     前記可動部材の前記所定方向の変位を検出する変位検出部と、
     前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、
     前記変位検出部が、
      前記可動部材に設けられた2個の電極面を有する可動側電極部材と、
      前記固定部材に設けられた2個の電極面を有する固定側電極部材と、を具備し、
     前記可動側電極部材の各電極面と、前記固定側電極部材の各電極面とをそれぞれ対向させる組み合わせから2組の静電容量センサが構成されており、
     前記可動部材の所定方向への移動によって、前記2組の静電容量センサのそれぞれの電極面間の隙間が逆位相で変化するように前記可動側電極部材と前記固定側電極部材を配置すると共に、前記2組の静電容量センサの出力信号の差をとることで、差動式センサを構成したことを特徴とするサーボ型振動検出器。
  32.  請求項31に係るサーボ型振動検出器と、
     前記サーボ型振動検出器が出力する加速度信号を1回積分して得られる絶対速度信号又は2回積分することで得られる絶対変位信号を用いて、絶対速度フィードバック又は絶対変位フィードバックを施す制御器と、を備えたことを特徴とする振動制御装置。
  33.  固定部材と、
     前記固定部材に対して所定方向に移動可能に設けられ、内部に磁束が流れるように構成された可動部材と、
     前記固定部材に対して前記可動部材が空隙部を介して配置されるように支持する弾性部材と、
     前記可動部材の前記所定方向の変位を検出する変位検出部と、
     前記変位検出部で前記可動部材の原点位置からの相対変位が検出された場合に、前記可動部材を原点位置に戻す電磁気力を発生させる駆動手段と、を備え、
     コイルを貫通して設けられた固定側ヨーク材と、この固定側ヨーク材の開放端と空隙を介して配置された可動側ヨーク材と、この固定側ヨーク材と前記空隙部と前記可動側ヨーク材で閉ループ磁気回路を形成して電磁石を構成することで、可動側ヨーク材を含む前記可動部材を前記コイル側に吸引させる吸引力発生手段Aとすると共に、
     前記可動部材を挟んで、吸引力発生手段Aとは逆方向の力を発生させる吸引力発生手段Bを配置して、前記コイルに流す電流を制御することで、前記可動部材を軸方向に移動させるマックスウェル応力による前記駆動手段を構成していることを特徴とするサーボ型振動検出器。
  34.  前記吸引力発生手段Bは永久磁石であることを特徴とする請求項33記載のサーボ型振動検出器。
  35.  前記吸引力発生手段Bは前記吸引力発生手段Aと同一原理の電磁石であることを特徴とする請求項33記載のサーボ型振動検出器。
  36.  前記吸引力発生手段Aと前記吸引力発生手段Bのそれぞれを構成する電磁石の電流差を検出することで、加速度信号を計測することを特徴とする請求項35記載のサーボ型振動検出器。
PCT/JP2021/022934 2020-06-17 2021-06-16 サーボ型振動検出器及び振動制御装置 WO2021256521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21826975.1A EP4177611A4 (en) 2020-06-17 2021-06-16 SERVO TYPE VIBRATION DETECTOR AND VIBRATION CONTROL DEVICE
CN202180042081.XA CN115769085A (zh) 2020-06-17 2021-06-16 伺服型振动检测器和振动控制装置
US18/001,710 US20230228787A1 (en) 2020-06-17 2021-06-16 Servo-type vibration detector and vibration control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104515 2020-06-17
JP2020104515A JP2021196307A (ja) 2020-06-17 2020-06-17 サーボ型振動検出器及び振動制御装置

Publications (1)

Publication Number Publication Date
WO2021256521A1 true WO2021256521A1 (ja) 2021-12-23

Family

ID=79197740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022934 WO2021256521A1 (ja) 2020-06-17 2021-06-16 サーボ型振動検出器及び振動制御装置

Country Status (5)

Country Link
US (1) US20230228787A1 (ja)
EP (1) EP4177611A4 (ja)
JP (1) JP2021196307A (ja)
CN (1) CN115769085A (ja)
WO (1) WO2021256521A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860268U (ja) * 1981-10-19 1983-04-23 日本航空電子工業株式会社 加速度計
US4922159A (en) * 1988-05-09 1990-05-01 Harris Corporation Linear precision actuator with accelerometer feedback
JPH10153618A (ja) * 1996-11-25 1998-06-09 Akashi:Kk 上下動サーボ型加速度計における振子質量体の支持装置
JP2004205284A (ja) 2002-12-24 2004-07-22 Akashi Corp サーボ型加速度計
JP2006283966A (ja) 2005-03-10 2006-10-19 Kurashiki Kako Co Ltd アクティブ除振装置
JP2010096509A (ja) 2008-10-14 2010-04-30 Japan Aviation Electronics Industry Ltd サーボ型加速度計

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313060A (ja) * 1991-02-19 1992-11-05 Sumitomo Electric Ind Ltd 加速度検出器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860268U (ja) * 1981-10-19 1983-04-23 日本航空電子工業株式会社 加速度計
US4922159A (en) * 1988-05-09 1990-05-01 Harris Corporation Linear precision actuator with accelerometer feedback
JPH10153618A (ja) * 1996-11-25 1998-06-09 Akashi:Kk 上下動サーボ型加速度計における振子質量体の支持装置
JP2004205284A (ja) 2002-12-24 2004-07-22 Akashi Corp サーボ型加速度計
JP2006283966A (ja) 2005-03-10 2006-10-19 Kurashiki Kako Co Ltd アクティブ除振装置
JP2010096509A (ja) 2008-10-14 2010-04-30 Japan Aviation Electronics Industry Ltd サーボ型加速度計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177611A4

Also Published As

Publication number Publication date
EP4177611A4 (en) 2024-08-28
JP2021196307A (ja) 2021-12-27
EP4177611A1 (en) 2023-05-10
US20230228787A1 (en) 2023-07-20
CN115769085A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US9746665B1 (en) High acceleration actuator
US6917690B2 (en) Electromagnetic transducer having multiple magnetic air gaps whose magnetic flux is in a same direction
JP5699269B2 (ja) 加速度計及びトランスデューサ
US10447132B2 (en) Electromechanical transducer
JP7018064B2 (ja) リラクタンスアクチュエータ
JP2984526B2 (ja) 光ピックアップ装置
US4685767A (en) Fine adjustment apparatus for optical system lens
JPH07113402A (ja) 電気/空気圧変換器
JPH0238912B2 (ja)
US5090243A (en) Preload system for accelerometer
WO2021256521A1 (ja) サーボ型振動検出器及び振動制御装置
JP2520199B2 (ja) 大振幅低周波振動装置
CN113314290A (zh) 多层磁路组件
JP3559604B2 (ja) 加速度計
JP3165836B2 (ja) サーボ加速度計
JP7504624B2 (ja) 発電素子、及び発電素子を用いた装置
WO2023112949A1 (ja) サーボ型振動検出器、及び、サーボ型振動検出器の評価方法
JP2023088766A (ja) サーボ型振動検出器及び振動制御装置
CN118696236A (zh) 伺服型振动检测器以及伺服型振动检测器的评价方法
JP2023089750A (ja) サーボ型振動検出器、及び、サーボ型振動検出器の評価方法
US20240031751A1 (en) Loudspeakers
RU2298151C1 (ru) Гироскоп
JP2023089752A (ja) サーボ型振動検出器
JP2010175453A (ja) サーボ加速度計
JP2023089749A (ja) サーボ型振動検出器、及び、組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826975

Country of ref document: EP

Effective date: 20230117