WO2021256465A1 - 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 - Google Patents
緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 Download PDFInfo
- Publication number
- WO2021256465A1 WO2021256465A1 PCT/JP2021/022675 JP2021022675W WO2021256465A1 WO 2021256465 A1 WO2021256465 A1 WO 2021256465A1 JP 2021022675 W JP2021022675 W JP 2021022675W WO 2021256465 A1 WO2021256465 A1 WO 2021256465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shock absorber
- ave
- lubricating oil
- frictional force
- pentaerythritol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/74—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/68—Esters
- C10M129/76—Esters containing free hydroxy or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/003—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/04—Fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/04—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/3278—Details for lubrication
Definitions
- the present invention relates to a lubricant composition for a shock absorber, a shock absorber, and a method for adjusting the friction characteristics of the lubricant for the shock absorber.
- the vibration damping force of a shock absorber is a combination of a hydraulic damping force generated by a valve and a frictional force generated by a piston rod and an oil seal or a sliding portion of a piston and a cylinder. ..
- the damping force of the shock absorber is large, the steering stability is increased but the riding comfort is deteriorated.
- the damping force of the shock absorber is small, the steering stability is deteriorated but the riding comfort is good. Is known to be.
- Non-Patent Document 1 Non-Patent Document 1
- the shock absorber exerts vibration damping force by reciprocating motion, but it takes a certain amount of time for the hydraulic damping force to rise, while the frictional force is highly responsive, so when transitioning from a stationary state to a sliding state or when there is a slight amplitude.
- Friction force is an important factor of the damping force of the shock absorber.
- the vibration damping force is also reduced and the steering stability is deteriorated.
- a lubricating oil composition for a shock absorber that can achieve both.
- the present invention is to provide a lubricant composition for a shock absorber, a shock absorber, and a method for adjusting the friction characteristics of the lubricant for a shock absorber, which can achieve both steering stability and ride comfort.
- the gist of the present invention is the following (1) to (6) lubricating oil compositions for shock absorbers.
- a lubricating oil composition for a shock absorber having the friction characteristics of the following formula (1), where the ratio ( ⁇ F sa- F ave ⁇ / F ave ) to the average frictional force F ave at time is taken as responsive RI.
- the average ratio of the frictional force F ave ( ⁇ F sa -F ave ⁇ / F ave) and is responsive RI is 0.1 or more and the mean frictional force F ave in the minute amplitude at zero during.
- Lubricating oil composition for shock absorbers less than 12.
- the lubricant composition for a shock absorber according to any one of (1) to (7) above which contains only pentaerythritol diester and pentaerythritol tetraester as the pentaerythritol ester.
- the gist of the present invention is the shock absorber of (10) below.
- (10) A shock absorber containing the lubricant composition for a shock absorber according to any one of (1) to (9) above.
- the gist of the present invention is the method for adjusting the friction characteristics of the lubricant for a shock absorber according to any one of the following (11) to (13).
- (11) A method for adjusting the frictional characteristics of a lubricant composition for a shock absorber containing a base oil and a pentaerythritol ester, which is a peak value of the frictional force at the time of a slight amplitude when shifting from a stationary state to a sliding state.
- a lubricating oil composition for a shock absorber a lubricating oil additive, and a method for adjusting the friction characteristics of the lubricating oil for a shock absorber, which can achieve both steering stability and ride comfort.
- the shock absorber is a device that generates a damping force by the lubricating oil that passes through the valve attached to the piston by the movement of the piston rod, and mainly affects the stability and ride quality of the vehicle.
- the damping force of the shock absorber is generated between the hydraulic pressure generated by the pressure change when the lubricant for the shock absorber passes through the valve, and the lubricating oil for the shock absorber and the piston member (oil seal, rod guide, piston band, etc.). It consists of frictional force.
- FIG. 1 is a graph showing the measurement result, and is a graph showing the ratio of the hydraulic pressure and the frictional force for each operating speed of the shock absorber.
- the ratio of the frictional force to the damping force is high, while the operating speed of the shock absorber is usually faster than 30 mm / s. It was found that the ratio of oil pressure to damping force increases in the high speed range.
- the operating speed of the shock absorber is higher than 30 mm / s during normal vibration when the impact input from the outside is large so that a certain ride comfort can be obtained even on rough roads.
- Lubricating oils for shock absorbers have been developed in which the frictional force during normal vibration becomes smaller so that the damping force becomes larger during (fast normal vibration).
- road conditions have been improved, and the frequency of occurrence of normal vibration in which the operating speed of the shock absorber is faster than 30 mm / s has decreased.
- a displacement sensor was attached in parallel to a shock absorber and 2 kHz.
- the displacement of the shock absorber was measured at intervals, and the operating speed of the shock absorber and the frequency distribution of the displacement were calculated.
- the operating speed of the shock absorber was ⁇ 30 mm / s or less at a rate of 50% or more, and the mode speed was ⁇ 10 mm / s or less.
- the amplitude of the shock absorber was ⁇ 1.5 mm or less at a rate of at least 50%.
- vibration having an operating speed of the shock absorber of ⁇ 30 mm / s or less or an amplitude of ⁇ 2.0 mm or less is referred to as “micro vibration”, and the piston speed is faster than ⁇ 30 mm / s and is faster than ⁇ 30 mm / s. Vibration with an amplitude larger than ⁇ 2.0 mm is called "normal vibration".
- the operating speed of the shock absorber is ⁇ 30 mm / s or less, or the amplitude is ⁇ 2.0 mm or less.
- Micro-vibration occurs frequently.
- most of the damping force is composed of frictional force, and it is important to adjust the frictional force at the time of micro-vibration.
- the micro-vibration is a minute vibration that is less perceptible (has little effect on ride comfort)
- the steering stability is improved rather than reducing the frictional force during the micro-vibration. Therefore, it is preferable to increase the frictional force.
- the conventional lubricating oil for shock absorbers is designed so that the frictional force during normal vibration is reduced by paying attention to the riding comfort during normal vibration, and as a result, the frictional force during slight vibration is also reduced. was there.
- the frictional force during normal vibration average frictional force during normal vibration
- the more the frictional force during micro-vibration average friction during micro-vibration. This is because the force) tends to be small.
- the average friction force F1-2 at the time of normal vibration is the average friction at the time of normal vibration in the lubricating oil for the shock absorber of the conventional examples 2 and 3. Since the force is smaller than the force F2-2, 3-2, the average friction force F1-1 at the time of slight vibration of the conventional example 1 is also larger than the average friction force F2-1, 3-1 at the time of the slight vibration of the conventional examples 2 and 3. Also becomes smaller.
- the lubricant for the shock absorber having a large frictional force at the time of the minute vibration is used (for example, when the lubricating oil for the shock absorber of the conventional example 3 in FIG. 3 is used). However, the frictional force during slight vibration becomes large and the steering stability becomes high, but the frictional force during normal vibration also becomes large and the riding comfort deteriorates.
- the lubricating oil for a shock absorber has an elongation-shrinkability, and the operating direction of the shock absorber changes like a spring when the shock absorber moves from the contracted state to the stretched state or from the stretched state to the contracted state. It has been found that an acting force is generated to give vibration to the shock absorber.
- FIG. 4A shows a Lissajous figure showing the result of measuring the damping force of the shock absorber according to the operating speed of the shock absorber.
- FIG. 4 (B) shows an enlarged view of the portion B of FIG. 4 (A).
- the damping force of the shock absorber is zero because the shock absorber does not generate a damping force.
- the damping force of the shock absorber has hysteresis as shown in FIG. 4 (A), and as shown in FIG. 4 (B), the damping force is zero even at the timing when the operating speed of the shock absorber becomes zero. It does not become. This is due to the action of the springiness (oil column rigidity and pouring foam) of the lubricating oil for the shock absorber, even when the operating speed of the shock absorber is zero, the force in the direction of accelerating the vibration of the shock absorber (direction opposite to the damping force).
- the springy action of the shock absorber lubricant is greater during micro-vibration than during normal vibration, and therefore, due to the springiness of the shock absorber lubricant during micro-vibration. It is important to suppress the generated force (force in the direction opposite to the damping force) by the frictional force of the lubricating oil for the shock absorber.
- the acceleration area the area where the damping force changes acceleratingly
- the acceleration becomes larger (the acceleration response angle becomes smaller). It is important that the shock absorber lubricating oil exerts a sufficient frictional force during vibration.
- a lubricating oil composition for a shock absorber that can increase the frictional force at the time of slight vibration without increasing the frictional force at the time of normal vibration.
- the purpose is to provide. Specifically, even when the frictional force during normal vibration is about the same as that of the conventional lubricating oil for shock absorbers, such as the lubricating oil for shock absorbers of Examples 1 and 2 shown in FIG. 5, slight vibration occurs.
- the rate of increase in frictional force ⁇ (ratio of the amount of change in frictional force of the shock absorber ⁇ F to the amount of change in the operating speed of the shock absorber ⁇ V ( ⁇ F / ⁇ V)) with time is the conventional lubricating oil for shock absorbers (conventional example 1). ) It is an object of the present invention to provide a lubricant composition for a shock absorber having a higher value. In other words, the lubricating oil for shock absorbers tends to have a larger average frictional force during normal vibration as the average frictional force during microvibration increases. It is an object of the present invention to provide a lubricating oil composition for a shock absorber having a high rate of increase ⁇ . It should be noted that FIG.
- FIG. 3 is a diagram for explaining the relationship between the operating speed of the shock absorber and the frictional force of the lubricant for the shock absorber in a general lubricating oil for a shock absorber
- FIG. 5 is a diagram for explaining the relationship between the operating speed of the shock absorber and the frictional force of the lubricating oil for the shock absorber. It is a figure for demonstrating the relationship between the operation speed of a shock absorber and the frictional force of the lubricant for a shock absorber in the lubricating oil for a shock absorber.
- a lubricant for a shock absorber having such friction characteristics will be described.
- the lubricating oil for a shock absorber includes (A) a base oil and (B) a friction modifier, and the (B) friction modifier is (B1) zinc dithiophosphate (hereinafter, also referred to as ZnDTP). ) And (B2) pentaerythritol.
- the base oil in the lubricant for the shock absorber according to the present embodiment is a mineral oil and / or a synthetic oil.
- the types of mineral oils and synthetic oils are not particularly limited, and examples of the mineral oils include paraffin-based mineral oils, intermediate-based mineral oils, and naphthen-based mineral oils obtained by ordinary refining methods such as solvent refining and hydrogenated refining. Can be mentioned.
- Examples of the synthetic oil include polybutene, polyolefin [ ⁇ -olefin (co) polymer], various esters (for example, polyol ester, dibasic acid ester, phosphoric acid ester, etc.), and various ethers (for example, poly).
- the lubricant for a shock absorber according to this embodiment contains a friction modifier.
- the friction modifier is not particularly limited, but may contain various friction modifiers such as phosphorus-based, amine-based, and ester-based. By adjusting the amount of the friction modifier added, the friction coefficient of the lubricant for the shock absorber can be adjusted. Further, the friction modifier according to the present embodiment contains at least (B1) zinc dithiophosphate and (B2) pentaerythritol ester, as described below.
- Zinc dithiophosphate (ZnDTP) ZnDTP is generally a compound represented by the following formula 1, and has a function of assisting the adjustment of the friction coefficient by the friction modifier.
- R represents an individual hydrocarbon group, and examples thereof include a linear primary alkyl group, a branched secondary alkyl group, and an aryl group.
- a plurality of types (structures) of ZnDTP are known, such as those having a primary alkyl group, a secondary alkyl group, or an aryl group. It contains two types of ZnDTP to be described.
- the lubricant for the shock absorber according to the present embodiment contains ZnDTP shown in the following formula 2 as the first ZnDTP.
- R 11 to R 14 are alkyl groups, and the alkyl group has a primary alkyl group and a secondary alkyl group. That is, the following three one or more of R 11 ⁇ R 14 is a primary alkyl group, the remainder of R 11 ⁇ R 14 are secondary alkyl groups.
- the primary alkyl group is not particularly limited, and for example, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and the like.
- examples thereof include n-octyl group, n-nonyl group, n-decyl group, isoamyl group, isobutyl group, 2-methylbutyl group, 2-ethylhexyl group, 2,3-dimethylbutyl group and 2-methylpentyl group.
- An alkyl group having 4 to 12 carbon atoms for example, an isobutyl group (4 carbon atoms) or a 2-ethylhexyl group (8 carbon atoms) is preferable.
- the secondary alkyl group is not particularly limited, and for example, an isopropyl group, a sec-butyl group, a 1-ethylpropyl group, a 2-ethylhexyl group, a 4-methyl-2-pentyl group and the like can be used. Although it may be mentioned, it is preferably an alkyl group having 3 to 6 carbon atoms (for example, an isopropyl group (3 carbon atoms)).
- the ratio of the primary alkyl group to the secondary alkyl group is not particularly limited, but it is preferable that the ratio of the primary alkyl group is higher than that of the secondary alkyl group.
- the content of the first ZnDTP is not particularly limited, but is preferably 0.1% by mass or more, and more preferably 0.4% by mass or more in the lubricant for the shock absorber.
- the content of the first ZnDTP is preferably 4.0% by mass or less, and more preferably 2.0% by mass or less in the lubricant for the shock absorber.
- the lubricant for the shock absorber according to the present embodiment contains the first ZnDTP having both the primary alkyl group and the secondary alkyl group, so that the riding comfort is obtained when the friction modifier is added.
- buffer lubricants containing ZnDTP with only primary alkyl groups and / or ZnDTP with only secondary alkyl groups in addition to being easily adjustable to a coefficient of friction suitable for steering stability. Compared with oil, the variation in the coefficient of friction can be suppressed and the riding comfort can be further improved.
- the lubricant for a shock absorber has a second ZnDTP having a structure different from that of the first ZnDTP as a friction modifier.
- the second ZnDTP is represented by the following formula 3. [In the above-mentioned Chemical formula 3, R 21 to R 24 are secondary alkyl groups. That is, the second ZnDTP has no primary alkyl group and only a secondary alkyl group. ]
- the number of carbon atoms of the secondary alkyl group contained in the second ZnDTP is not particularly limited, and for example, an isopropyl group, a sec-butyl group, a 1-ethylpropyl group, a 2-ethylhexyl group, a 4-methyl-2-pentyl group and the like are used.
- examples of the secondary alkyl group include an alkyl group having 3 to 8 carbon atoms (for example, an isopropyl group (3 carbon atoms), a 2-ethylhexyl group (8 carbon atoms), an isobutyl group (4 carbon atoms), and the like. ) Is preferable.
- the content of the second ZnDTP is not particularly limited, but is preferably smaller than that of the first ZnDTP, and is 20 weight by weight with respect to the amount of ZnDTP added (total amount of the first ZnDTP and the second ZnDTP). It is preferably% or less.
- the riding comfort can be further improved as compared with the case where only the first ZnDTP is contained. Specifically, the micro-vibration during traveling can be further reduced as compared with the case where only the first ZnDTP is contained. Further, by setting the second ZnDTP as a ZnDTP having a secondary alkyl group having 3 to 8 carbon atoms, the difference in the coefficient of friction between the fine amplitude (low velocity) and the normal amplitude (high velocity) can be reduced. , Riding comfort can be improved.
- Pentaerythritol ester is a tetrahydric sugar alcohol, and is a compound in which a hydroxyl group, which is a terminal substituent of pentaerythritol, is ester-bonded to a fatty acid residue.
- Pentaerythritol esters are pentaerythritol tetraesters in which all four terminal substituents are ester-bonded to fatty acid residues, and pentaerythritol monoesters and penta, which are partial esters in which any terminal substituent is ester-bonded to fatty acid residues.
- PE4E pentaerythritol tetraester
- PE3E pentaerythritol triester
- PE2E pentaerythritol diester
- PE1E pentaerythritol monoester
- the fatty acid residue is not particularly limited, and can be, for example, a fatty acid residue of C6 to C22 such as a stearic acid residue or an oleic acid residue.
- a fatty acid residue of C6 to C22 such as a stearic acid residue or an oleic acid residue.
- caprylic acid, capric acid, oleic acid, stearic acid, myristic acid, palmitic acid, linoleic acid, adipic acid, pelargonic acid, toll fatty acid, coconut fatty acid, coconut fatty acid, and beef fatty acid may be exemplified. can.
- the (B2) pentaerythritol ester contains (b21) PE4E and a pentaerythritol ester other than (b22) PE4E, that is, PE3E, PE2E or PE1E.
- PE2E will be used as the pentaerythritol ester other than (b22) EP4E, but the pentaerythritol ester other than PE4E is not limited to PE2E and may be PE3E or PE1E.
- a mixture of PE3E and PE2E, a mixture of PE3E and PE1E, a mixture of PE2E and PE1E, or a mixture of PE3E, PE2E and PE1E can also be used.
- PE4E When manufacturing PE4E, it is technically difficult to manufacture only PE4E, and PE1E, PE2E, and PE3E may coexist in PE4E. Therefore, even if it is commercially available as "pentaerythritol tetraester", it is not composed only of PE4E but mainly contains PE4E, but in addition to PE4E, PE3E, PE2E, PE1E and the like are also included. included.
- the "pentaerythritol tetraester" may be a mixture of pentaerythritol esters commercially available as “pentaerythritol tetraester", or a pentaerythritol ester containing 80% or more of “pentaerythritol tetraester". It can also be a mixture.
- the "pentaerythritol diester" may be a mixture of pentaerythritol esters commercially available as “pentaerythritol diester", or a pentaerythritol ester containing 80% or more of “pentaerythritol diester". It can be a mixture.
- the lubricating oil composition for a shock absorber according to the present invention can exert a high frictional force even when a slight vibration with little sensation (does not affect the riding comfort) is input, and also has sensation.
- Such a lubricant composition for a shock absorber like the lubricant for the shock absorber of Examples 1 and 2 shown in FIG. 5, has an average friction during normal vibration as compared with the conventional lubricant for a shock absorber (conventional example 1).
- the lubricant for a shock absorber having such friction characteristics is defined based on the peak friction force F sa at a fine amplitude and the average friction force F ave at a fine amplitude.
- the peak value F sa and the average friction force Ave at the time of a slight amplitude can be measured by using, for example, the friction test apparatus 10 shown in FIG.
- FIG. 6 is a block diagram of the friction test device 10 according to the present embodiment.
- the friction test device 10 is a pin-on-disc type friction test device, in which a disc test piece 2 fixed on a slide bearing 1 is reciprocated by an electromagnetic vibration exciter 3.
- the frictional force generated by pressing and sliding the pin test piece 4 is measured by using a strain gauge 6 attached to the fixed shaft 5 of the pin test piece 4.
- the lubricating oil for the shock absorber and the oil seal as an element that affects the friction characteristics of the shock absorber
- the acrylonitrile butadiene rubber used as the oil seal in the shock absorber ( NBR) was used for the pin test piece 4, and the tip of the pin test piece 4 was cut so as to have an angle of 140 °, imitating the shape of an oil lip.
- a hard chrome plating film used for the surface of the piston rod was used.
- the frictional force between the NBR pin test piece 4 and the chrome-plated disc test piece 2 is measured, but the copper ball and the chrome-plated disc test piece 2 are measured. The frictional force between them may be measured.
- the friction test device 10 is used to reciprocate the pin test piece 4 and the disk test piece 2 at an amplitude of ⁇ 2.0 mm, a frequency of 1.5 Hz, a load of 20 N, and a temperature of 30 ° C. to lubricate the shock absorber. It is a figure which shows the result of having measured the frictional force of oil.
- FIG. 7 shows that the operating directions of the pin test piece 4 and the disc test piece 2 are reversed in the phases of ⁇ / 2 and 3 ⁇ / 2. In the example shown in FIG.
- the lubricating oil composition for a shock absorber contains a pentaerythritol ester, and as shown in FIG. 7, has a peak frictional force when shifting from a stationary state to a sliding state as a frictional characteristic. .. In this way, by using the friction test device 10, the peak value F sa of the frictional force at the time of transition from the stationary state to the sliding state and the average frictional force F ave of the sliding state at the time of slight vibration are measured. Can be done.
- the difference between the peak value F sa of the frictional force and the average frictional force Ave at the time of transition from the stationary state to the sliding state at the time of minute amplitude is small.
- the shock absorber lubricating oil according to the present embodiment has a friction characteristic in which the responsive RI of the shock absorber lubricating oil at a fine amplitude and the average friction force Ave at a fine amplitude are related to the following equation (4). It is characterized by having. RI> 1.75 x F ave -0.05 ... (4)
- FIG. 8 shows a shock absorber lubricating oil composition (conventional Examples B1 to B4 and Comparative Examples C1 and C2) not included in the present embodiment and a shock absorber lubricating oil composition (Examples S1 to S9) according to the present embodiment.
- the friction characteristics of the conventional shock absorber lubricants (B1 to B4) are shown as a straight line A
- the friction characteristics of the shock absorber lubricants (S1 to S9) according to the present embodiment are shown as a straight line B.
- a line indicating the RI 1.75 ⁇ F ave -0.05 in the equation (4) as a straight line C.
- the lubricant for a shock absorber according to the present embodiment has a friction characteristic of RI> 1.75 ⁇ Fave ⁇ 0.05, and in FIG. 8, the buffer is plotted in the shaded area on the upper side of the straight line C. This applies to dexterous lubricants.
- the conventional example B1 shows the friction characteristics of the lubricating oil for a shock absorber containing only the base oil.
- Comparative Examples C1 and C2 and Examples S1 to S9 are buffer lubricating oils containing pentaerythritol diester and / or pentaerythritol tetraester as pentaerythritol esters.
- Comparative Example C1 is a lubricant for a shock absorber having only pentaerythritol diester as a pentaerythritol ester
- Comparative Example C2 is 80% pentaerythritol diester and 20% pentaerythritol tetraester as a pentaerythritol ester. It is a blended lubricant for shock absorbers.
- the proportions of pentaerythritol tetraester in the pentaerythritol ester were 40%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, and 100%, respectively. It is a lubricant for a shock absorber containing pentaerythritol diester and pentaerythritol tetraester.
- the shock absorber lubricants (Examples S1 to S9) according to the present embodiment have an average frictional force Fave at a slight amplitude as compared with the conventional shock absorber lubricants B1 to B4. It is a lubricant for shock absorbers with high responsive RI at small amplitude, and because it has high responsive RI at small amplitude, high frictional force can be obtained even at small amplitude, and steering stability at small amplitude can be improved. At the same time, since the average friction force Fave at the time of fine amplitude is low, the average frictional force at the time of normal amplitude tends to be suppressed to a low level, and the riding comfort can be improved.
- the responsive RI at a fine amplitude can be adjusted by adjusting the composition of the pentaerythritol diester and the pentaerythritol tetraester.
- the friction characteristics can be adjusted according to the application and needs of the shock absorber.
- the responsive RI at a fine amplitude may be adjusted.
- the responsive RI to the average frictional force Ave at a fine amplitude higher, and in addition to the friction characteristics of the above formula (4), at a fine amplitude
- the ratio (RI / Fave ) of the responsive RI and the average frictional force Fave at a slight amplitude is preferably 2.0 or more, and more preferably 2.5 or more.
- the lubricating oil for shock absorbers (Examples S1 to S9) according to the present embodiment is not particularly limited as long as it has the friction characteristics shown in the above formula (4), but the responsive RI at a minute amplitude is 0.10.
- the above is preferable, 0.15 or more is more preferable, and 0.20 or more is further preferable.
- the responsive RI at the time of the minute amplitude contributes to the steering stability at the time of the minute amplitude, and if the peak value F sa of the frictional force at the transition from the rest state to the sliding state is high, the minute amplitude This is because the frictional force at the time becomes high and the steering stability at the time of a small amplitude increases.
- the lubricant for the shock absorber according to the present embodiment preferably has an average frictional force Fave of less than 0.12 at a minute amplitude.
- the buffer lubricating oil tends to have a larger average frictional force during normal vibration as the average frictional force Ave during slight vibration increases, and when the average frictional force during normal amplitude increases, the ride quality tends to increase. This is to damage.
- the lubricating oil for the shock absorber contains (B2) pentaerythritol ester as a friction modifier, and the peak frictional force when shifting from the stationary state to the sliding state at the time of fine amplitude.
- the equation (4 ) Has a friction characteristic of RI> 1.75 ⁇ Fave-0.05.
- the lubricant for the shock absorber since the responsive RI at the fine amplitude is high, a high frictional force can be obtained at the fine amplitude, so that the steering stability is high and the average at the fine amplitude is obtained. Since the frictional force F ave is low, the average frictional force at the time of normal amplitude tends to be suppressed to a low level, the riding comfort can be improved, and a lubricating oil composition capable of achieving both steering stability and riding comfort can be obtained. Can be provided.
- the ratio of the average friction force F ave at ( ⁇ F sa -F ave ⁇ / F ave) and is responsive RI is 0.1 or more and the mean frictional force F ave at minute amplitude 0.12 It can be configured to have a frictional characteristic of less than.
- FIG. 9 is a graph showing the relationship between the responsive RI of the lubricant for the shock absorber and the average friction force Ave at the time of fine amplitude, which is the same as that of FIG. 8, and the responsive RI at the time of the fine amplitude is 0.1.
- the lubricating oil for shock absorbers having the above-mentioned friction characteristics and having an average frictional force Ave at a minute amplitude of less than 0.12 is shaded. Similar to the shock absorber lubricating oil according to the above-described embodiment, such a shock absorber lubricating oil also has a high friction characteristic with a high responsive RI at a fine amplitude while suppressing an average frictional force at a normal amplitude. Sufficient frictional force can be obtained at the time of amplitude and steering stability at the time of slight amplitude can be improved, and frictional force at the time of normal amplitude can be suppressed and riding comfort can be improved.
- the lubricating oil composition may be configured such that the pentaerythritol ester is "mainly PE4E".
- the pentaerythritol ester "mainly PE4E” can mean one having the highest proportion of PE4E among PE1E, PE2E, PE3E and PE4E, or one containing 50% or more of PE4E.
- PE4E it is technically difficult to manufacture only PE4E, and PE1E, PE2E, PE3E and the like are mixed.
- pentaerythritol ester can also be defined as the "mainly PE4E” pentaerythritol ester in the present invention.
- pentaerythritol ester which is "mainly PE4E”
- pentaerythritol ester can be defined as follows. That is, for a pentaerythritol ester in which PE3E, PE2E, PE1E and the like are mixed in addition to PE4E, the ester group is measured, and the pentaerythritol ester having an average number of ester groups larger than 3 is "mainly PE4E". It can also be specified as an erythritol ester.
- the hydroxyl group can be measured, and the pentaerythritol ester having an average number of hydroxyl groups smaller than 1 can be specified as the "mainly PE4E" pentaerythritol ester.
- the average number of ester groups or hydroxyl groups in the pentaerythritol ester can be measured using, for example, gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry.
- such a pentaerythritol ester mainly contains PE4E having no hydroxyl group, but also partially contains PE3E, PE2E, and PE1E containing a hydroxyl group, and the hydroxyl value of pentaerythritol containing these hydroxyl groups is 0. It is preferably 5 mgKOH / g or more, more preferably 1.0 mgKOH / g or more, and even more preferably 1.5 mgKOH / g or more.
- the hydroxyl value of the shock absorber lubricant is preferably 0.5 mgKOH / g or more, more preferably 1.0 mgKOH / g or more, and 1.5 mgKOH. It is more preferably / g or more.
- the composition may contain pentaerythritol ester in an amount of 0.5% by mass or more, more preferably 1.0% by mass or more.
- pentaerythritol ester may be contained in an amount of 0.5% by mass or more, preferably 1.0% by mass or more.
- the decrease of ZnDTP can be effectively suppressed, and as a result, the deterioration of the lubricant for the shock absorber can be suppressed.
- the hydroxyl value of the shock absorber lubricating oil is 0.5 mgKOH / g or more, but the pentaerythritol ester contained in the shock absorber lubricating oil is mainly used.
- the content of the pentaerythritol ester is 5% by mass or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Fluid-Damping Devices (AREA)
Abstract
課題:操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物、潤滑油添加剤、および緩衝器用潤滑油組成物の摩擦特性の調整方法を提供する。 解決手段:基油と、ペンタエリスリトールエステルと、を含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、下記式(1)の摩擦特性を有する、緩衝器用潤滑油組成物。 RI>1.75×Fave-0.05 …(1)
Description
本発明は、緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法に関する。
従来、緩衝器の制振力は、バルブで発生する油圧減衰力と、ピストンロッドとオイルシールまたはピストンとシリンダの摺動部で発生する摩擦力とを合わせた力となることが知られている。また、緩衝器の制振力が大きい場合には操縦安定性は増すが乗り心地が悪化し、反対に、緩衝器の制振力が小さい場合には操縦安定性は悪化するが乗り心地が良好となることが知られている。そのため、近年では、乗り心地性に着目し、緩衝器用潤滑油に添加する摩擦調整剤を調整することで、緩衝器用潤滑油の摩擦力を小さくし、緩衝器の制振力を小さくする研究が行われてきた(たとえば非特許文献1)。
ショックアブソーバの技術動向とトライボロジー(中西 博、トライボロジスト 2009年(Vol.54)9号 598頁)
緩衝器は往復運動により制振力を発揮するが、油圧減衰力が立ち上がるまでは一定時間がかかる一方、摩擦力は応答性が高いため、静止状態から滑り状態に移行する際や、微振幅時には、摩擦力が緩衝器の制振力の重要なファクターとなる。しかしながら、従来のように、乗り心地性に着目し、緩衝器用潤滑油の摩擦力を小さくしてしまうと、制振力も小さくなり、操縦安定性が悪化してしまうという問題があった。特に、近年は、整備された道路が多く、通常振幅よりも微振幅の振動が発生することが多いため、静止状態から滑り状態に移行する際や微振幅時において、操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物が望まれていた。
本発明は、操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物、緩衝器、緩衝器用潤滑油の摩擦特性の調整方法を提供することである。
本発明は下記(1)ないし(6)の緩衝器用潤滑油組成物を要旨とする。
(1)基油と、ペンタエリスリトールエステルと、を含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、下記式(1)の摩擦特性を有する、緩衝器用潤滑油組成物。
RI>1.75×Fave-0.05 …(1)
(2)基油と、ペンタエリスリトールエステルと、を含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)である応答性RIが0.1以上であり、かつ、前記微振幅時における平均摩擦力Faveが0.12未満である、緩衝器用潤滑油組成物。
(3)応答性RIと微振幅時の平均摩擦力Faveとの比(RI/Fave)が2.0以上である、上記(1)または(2)に記載の緩衝器用潤滑油組成物。
(4)応答性RIが0.15以上である、上記(3)に記載の緩衝器用潤滑油組成物。
(5)前記ペンタエリスリトールエステルとして、ペンタエリスリトールテトラエステルと、ペンタエリスリトールテトラエステル以外のペンタエリスリトールエステルを有する、上記(1)ないし(4)のいずれかに記載の緩衝器用潤滑油組成物。
(6)ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が40%以上である、上記(1)ないし(5)のいずれかに記載の緩衝器用潤滑油組成物。
(7)ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が60%以上である、上記(6)に記載の緩衝器用潤滑油組成物。
(8)ペンタエリスリトールエステルとして、ペンタエリスリトールジエステルと、ペンタエリスリトールテトラエステルとのみを含有する、上記(1)ないし(7)のいずれかに記載の緩衝器用潤滑油組成物。
(9)ペンタエリスリトールエステルを5%以上含有することを特徴とする、上記(1)ないし(8)のいずれかに記載の緩衝器用潤滑油組成物。
(1)基油と、ペンタエリスリトールエステルと、を含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、下記式(1)の摩擦特性を有する、緩衝器用潤滑油組成物。
RI>1.75×Fave-0.05 …(1)
(2)基油と、ペンタエリスリトールエステルと、を含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)である応答性RIが0.1以上であり、かつ、前記微振幅時における平均摩擦力Faveが0.12未満である、緩衝器用潤滑油組成物。
(3)応答性RIと微振幅時の平均摩擦力Faveとの比(RI/Fave)が2.0以上である、上記(1)または(2)に記載の緩衝器用潤滑油組成物。
(4)応答性RIが0.15以上である、上記(3)に記載の緩衝器用潤滑油組成物。
(5)前記ペンタエリスリトールエステルとして、ペンタエリスリトールテトラエステルと、ペンタエリスリトールテトラエステル以外のペンタエリスリトールエステルを有する、上記(1)ないし(4)のいずれかに記載の緩衝器用潤滑油組成物。
(6)ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が40%以上である、上記(1)ないし(5)のいずれかに記載の緩衝器用潤滑油組成物。
(7)ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が60%以上である、上記(6)に記載の緩衝器用潤滑油組成物。
(8)ペンタエリスリトールエステルとして、ペンタエリスリトールジエステルと、ペンタエリスリトールテトラエステルとのみを含有する、上記(1)ないし(7)のいずれかに記載の緩衝器用潤滑油組成物。
(9)ペンタエリスリトールエステルを5%以上含有することを特徴とする、上記(1)ないし(8)のいずれかに記載の緩衝器用潤滑油組成物。
また、本発明は下記(10)の緩衝器を要旨とする。
(10)上記(1)ないし(9)のいずれかに記載の緩衝器用潤滑油組成物を含有する緩衝器。
(10)上記(1)ないし(9)のいずれかに記載の緩衝器用潤滑油組成物を含有する緩衝器。
さらに、本発明は下記(11)ないし(13)のいずれかの緩衝器用潤滑油の摩擦特性の調整方法を要旨とする。
(11)基油と、ペンタエリスリトールエステルとを含有する緩衝器用潤滑油組成物の摩擦特性の調整方法であって、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、平均摩擦力Faveよりも応答性RIが高くなるように、応答性RIおよび微振動時の平均摩擦力Faveに基づいて、前記緩衝器用潤滑油組成物の摩擦特性を調整する、調整方法。
(12)前記緩衝器用潤滑油組成物が下記式(2)の摩擦特性を有するように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、上記(11)に記載の調整方法。
RI>1.75×Fave-0.05 …(2)
(13)応答性RIが0.1以上となり、かつ、平均摩擦力Faveが0.12未満となるように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、上記(11)に記載の調整方法。
(11)基油と、ペンタエリスリトールエステルとを含有する緩衝器用潤滑油組成物の摩擦特性の調整方法であって、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、平均摩擦力Faveよりも応答性RIが高くなるように、応答性RIおよび微振動時の平均摩擦力Faveに基づいて、前記緩衝器用潤滑油組成物の摩擦特性を調整する、調整方法。
(12)前記緩衝器用潤滑油組成物が下記式(2)の摩擦特性を有するように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、上記(11)に記載の調整方法。
RI>1.75×Fave-0.05 …(2)
(13)応答性RIが0.1以上となり、かつ、平均摩擦力Faveが0.12未満となるように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、上記(11)に記載の調整方法。
本発明によれば、操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物、潤滑油添加剤、および緩衝器用潤滑油の摩擦特性の調整方法を提供することができる。
以下に、本発明に係る緩衝器用潤滑油組成物、緩衝器および緩衝器用潤滑油の摩擦特性の調整方法の実施形態を、緩衝器用潤滑油を例示して説明する。以下においては、まず、緩衝器の減衰力、油圧力、および摩擦力の関係について説明する。
緩衝器は、ピストンロッドの動きで、ピストンに取り付けられたバルブを通過する潤滑油により減衰力を発生させる装置であり、主に車両の安定性と乗り心地に影響を与えるものである。緩衝器の減衰力は、緩衝器用潤滑油がバルブを通過する際の圧力変化により生じる油圧力と、緩衝器用潤滑油とピストンの部材(オイルシール、ロッドガイド、ピストンバンドなど)との間で生じる摩擦力とから構成される。
緩衝器の減衰力を構成する緩衝器用潤滑油の油圧力と摩擦力との関係を調べたところ、以下のような関係を有することがわかった。すなわち、油圧力が発生しないようにバルブを外してバルブレスの緩衝器を準備し、摩擦力のみが発揮される状態とした。そして、通常の緩衝器(バルブを有し油圧力と摩擦力とが生じる緩衝器)とバルブレスの緩衝器(摩擦力のみが生じる緩衝器)において、緩衝器の動作速度ごとの減衰力を測定し、緩衝器の動作速度(ピストン速度)ごとに、油圧力および摩擦力がどの割合で発揮するかを測定した。図1は、当該測定結果を示すグラフであり、緩衝器の動作速度ごとの油圧力と摩擦力との比率を示す図である。図1に示すように、緩衝器の動作速度が30mm/s以下の極低速域においては、減衰力における摩擦力の割合が高くなり、一方、緩衝器の動作速度が30mm/sよりも速い通常速域においては、減衰力における油圧力の割合が高くなることがわかった。
また、従来の緩衝器用潤滑油では、悪路においても一定の乗り心地性が得られるように、外部から入力される衝撃が大きい通常振動時(たとえば、緩衝器の動作速度が30mm/sよりも速い通常振動時)に減衰力が大きくなるよう、通常振動時の摩擦力が小さくなる緩衝器用潤滑油が開発されてきた。しかしながら、近年、道路状況が改善され、緩衝器の動作速度が30mm/sよりも速い通常振動が発生する頻度は減っている。たとえば、国道と同程度の凹凸を有する路面を再現したテストコースにおいて、排出量1.8Lの排気量の乗用車で、時速60kmで走行した走行試験において、変位センサーを緩衝器に並列に取り付け、2kHz間隔で緩衝器の変位を測定し、緩衝器の動作速度と変位の周波数分布を計算した。その結果、図2(A)に示すように、緩衝器の動作速度は50%以上の割合で±30mm/s以下となり、最頻速度は±10mm/s以下となった。また、図2(B)に示すように、少なくとも50%の割合で、緩衝器の振幅が±1.5mm以下となった。本発明においては、緩衝器の動作速度が±30mm/s以下、または、振幅が±2.0mm以下の振動を「微振動」といい、また、ピストン速度が±30mm/sよりも速く、かつ、振幅が±2.0mmよりも大きい振動を「通常振動」という。
このように、道路状況の良い道路を走行する場合は、図2(A),(B)に示すように、緩衝器の動作速度が±30mm/s以下、または、振幅が±2.0mm以下の微振動が高い頻度で発生する。そして、微振動時は、図1に示すように、減衰力のほとんどが摩擦力で構成され、微振動時の摩擦力を調整することが重要となる。具体的には、微振動は、体感性の少ない(乗り心地性への影響が少ない)微小な振動であるため、微振動時においては、摩擦力を小さくすることよりも、操縦安定性を高めるために摩擦力を大きくすることが好ましい。しかしながら、従来の緩衝器用潤滑油は、通常振動時の乗り心地性に着目して通常振動時の摩擦力が小さくなるように設計されており、その結果、微振動時の摩擦力も小さくなるという問題があった。これは、従来の緩衝器用潤滑油では、図3に示すように、通常振動時における摩擦力(通常振動時の平均摩擦力)が小さいほど、微振幅時における摩擦力(微振動時の平均摩擦力)が小さくなる傾向があるためである。たとえば、図3に示す例に示すように、従来例1の緩衝器用潤滑油は、通常振動時の平均摩擦力F1-2が従来例2,3の緩衝器用潤滑油における通常振動時の平均摩擦力F2-2,3-2よりも小さいため、従来例1の微振動時の平均摩擦力F1-1も、従来例2,3の微振動時の平均摩擦力F2-1,3-1よりも小さくなる。また反対に、微振動時の操縦安定性を高めるために、微振幅時の摩擦力が大きい緩衝器用潤滑油を用いた場合(たとえば図3の従来例3の緩衝器用潤滑油を用いた場合)、微振動時の摩擦力は大きくなり操縦安定性は高くなるが、通常振動時の摩擦力も大きくなり乗り心地性が悪化してしまうという問題が生じる。
また、緩衝器用潤滑油は、伸長収縮性を有し、緩衝器の動作方向が変化し、収縮状態から伸長状態へと向かう際に、あるいは伸長状態から収縮状態に向かう際に、バネのように作用する力が生じ、緩衝器に振動を付与することが分かってきている。たとえば、図4(A)に、緩衝器の動作速度に応じた緩衝器の減衰力を測定した結果をリサージュ図形で表す。また、図4(B)に、図4(A)のB部分の拡大図を示す。一般に、緩衝器の動作速度(あるいは緩衝器に入力される振動)がゼロであれば、緩衝器は減衰力を生じないため、緩衝器の減衰力はゼロとなる。しかしながら、緩衝器の減衰力は、図4(A)に示すようにヒステリシスを有し、図4(B)に示すように、緩衝器の動作速度がゼロとなったタイミングにおいても減衰力がゼロとはならない。これは、緩衝器用潤滑油のバネ性(油柱剛性と注中泡)の作用により、緩衝器の動作速度がゼロの場合でも、緩衝器の振動を加速する方向の力(減衰力と反対方向の力)が生じるためと考えられる。また、図4(A)に示すように、このような緩衝器用潤滑油のバネ性の作用は、通常振動時よりも微振動時に大きくなるため、微振動時に、緩衝器用潤滑油のバネ性により生じる力(減衰力と反対方向の力)を緩衝器用潤滑油の摩擦力で抑えることが重要となる。具体的には、図4(B)において斜線で示す加速エリア(減衰力が加速的に変化するエリア)が小さくなるように、あるいは加速度が大きくなる(加速応答角度が小さくなる)ように、微振動時において、緩衝器潤滑油が十分な摩擦力を発揮することが重要となる。
そこで、本発明では、操縦安定性と乗り心地性とを両立するために、通常振動時における摩擦力を大きくすることなく、微振動時における摩擦力を大きくすることができる緩衝器用潤滑油組成物を提供することを目的とする。具体的には、図5に示す実施例1,2の緩衝器用潤滑油のように、従来の緩衝器用潤滑油の従来例1と通常振動時の摩擦力が同程度である場合でも、微振動時における摩擦力の上昇率θ(緩衝器の動作速度の変化量ΔVに対する緩衝器用潤滑油の摩擦力の変化量ΔFの比(ΔF/ΔV))が、従来の緩衝器用潤滑油(従来例1)よりも高い緩衝器用潤滑油組成物を提供することを目的とする。言い換えると、緩衝器用潤滑油は、微振動時の平均摩擦力が大きいほど通常振動時の平均摩擦力も大きくなる傾向にあるため、微振動時の平均摩擦力に対して、微振動時の摩擦力の上昇率θが高い緩衝器用潤滑油組成物を提供することを目的とする。なお、図3は、一般的な緩衝器用潤滑油における、緩衝器の動作速度と緩衝器用潤滑油の摩擦力との関係を説明するための図であり、図5は、本発明の目的とする緩衝器用潤滑油における、緩衝器の動作速度と緩衝器用潤滑油の摩擦力との関係を説明するための図である。以下に、このような摩擦特性を有する緩衝器用潤滑油について説明する。
本実施形態に係る緩衝器用潤滑油は、(A)基油と、(B)摩擦調整剤と、を有し、(B)摩擦調整剤は、(B1)ジチオリン酸亜鉛(以下、ZnDTPともいう)と、(B2)ペンタエリスリトールとを含有する。
(A)基油
本実施形態に係る緩衝器用潤滑油における基油は、鉱油及び/又は合成油である。鉱油や合成油の種類に特に制限はなく、鉱油としては、例えば、溶剤精製、水添精製などの通常の精製法により得られたパラフィン基系鉱油、中間基系鉱油又はナフテン基系鉱油などが挙げられる。また、合成油としては、例えば、ポリブテン、ポリオレフィン〔α-オレフィン(共)重合体〕、各種のエステル(例えば、ポリオールエステル、二塩基酸エステル、リン酸エステルなど)、各種のエーテル(例えば、ポリフェニルエーテルなど)、アルキルベンゼン、アルキルナフタレンなどが挙げられる。 本発明においては、基油として、上記鉱油を一種用いてもよく、二種以上組み合わせて用いてもよい。また、上記合成油を一種用いてもよく、二種以上組み合わせて用いてもよい。更には、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。
本実施形態に係る緩衝器用潤滑油における基油は、鉱油及び/又は合成油である。鉱油や合成油の種類に特に制限はなく、鉱油としては、例えば、溶剤精製、水添精製などの通常の精製法により得られたパラフィン基系鉱油、中間基系鉱油又はナフテン基系鉱油などが挙げられる。また、合成油としては、例えば、ポリブテン、ポリオレフィン〔α-オレフィン(共)重合体〕、各種のエステル(例えば、ポリオールエステル、二塩基酸エステル、リン酸エステルなど)、各種のエーテル(例えば、ポリフェニルエーテルなど)、アルキルベンゼン、アルキルナフタレンなどが挙げられる。 本発明においては、基油として、上記鉱油を一種用いてもよく、二種以上組み合わせて用いてもよい。また、上記合成油を一種用いてもよく、二種以上組み合わせて用いてもよい。更には、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。
(B)摩擦調整剤
本実施形態に係る緩衝器用潤滑油は摩擦調整剤を含有する。摩擦調整剤は、特に限定されないが、リン系、アミン系、またはエステル系などの種々の摩擦調整剤を含有することができる。摩擦調整剤の添加量を調整することで、緩衝器用潤滑油の摩擦係数を調整することができる。また、本実施形態に係る摩擦調整剤は、下記に説明するように、少なくとも(B1)ジチオリン酸亜鉛と(B2)ペンタエリスリトールエステルとを含有する。
本実施形態に係る緩衝器用潤滑油は摩擦調整剤を含有する。摩擦調整剤は、特に限定されないが、リン系、アミン系、またはエステル系などの種々の摩擦調整剤を含有することができる。摩擦調整剤の添加量を調整することで、緩衝器用潤滑油の摩擦係数を調整することができる。また、本実施形態に係る摩擦調整剤は、下記に説明するように、少なくとも(B1)ジチオリン酸亜鉛と(B2)ペンタエリスリトールエステルとを含有する。
(B1)ジチオリン酸亜鉛(ZnDTP)
ZnDTPは、一般に、下記化1で表される化合物であり、摩擦調整剤による摩擦係数の調整を補助する機能を有する。
[上記化1において、Rはそれぞれ個別の炭化水素基を示し、直鎖状の一級アルキル基、分枝状の二級アルキル基、またはアリール基が挙げられる。]
ZnDTPは、一般に、下記化1で表される化合物であり、摩擦調整剤による摩擦係数の調整を補助する機能を有する。
このように、ZnDTPとしては、一級アルキル基、二級アルキル基、またはアリール基を有するものなど複数の種類(構造)が知られているが、本実施形態に係る緩衝器用潤滑油では、以下に説明する2種類のZnDTPを含有する。
すなわち、本実施形態に係る緩衝器用潤滑油は、第1のZnDTPとして、下記化2で示すZnDTPを含有する。
[上記化2中、R11~R14はアルキル基であり、当該アルキル基は第一級アルキル基および第二級アルキル基を有する。すなわち、R11~R14のうち1つ以上3つ以下は第一級アルキル基であり、R11~R14のうち残りは第二級アルキル基である。]
第1のZnDTPにおいて、第一級アルキル基は、特に限定されず、たとえばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、イソアミル基、イソブチル基、2-メチルブチル基、2-エチルヘキシル基、2,3-ジメチルブチル基、2-メチルペンチル基などが挙げられるが、炭素数4~12のアルキル基(たとえばイソブチル基(炭素数4)や2-エチルヘキシル基(炭素数8)であることが好ましい。
また、第1のZnDTPにおいて、第二級アルキル基は、特に限定されず、たとえばイソプロピル基、sec-ブチル基、1-エチルプロピル基、2-エチルヘキシル基、4-メチル-2-ペンチル基などが挙げられるが、炭素数3~6のアルキル基(たとえばイソプロピル基(炭素数3))であることが好ましい。
また、第1のZnDTPにおいて、第一級アルキル基と第二級アルキル基の割合は、特に限定されないが、第二級アルキル基に対して、第一級アルキル基の割合が高い方が好ましい。
第1のZnDTPの含有量は、特に限定されないが、緩衝器用潤滑油において0.1質量%以上含有することが好ましく、0.4質量%以上含有することがより好ましい。また、第1のZnDTPの含有量は、緩衝器用潤滑油において4.0質量%以下とすることが好ましく、2.0質量%以下とすることがより好ましい。
このように、本実施形態に係る緩衝器用潤滑油では、第一級アルキル基および第二級アルキル基の両方を有する第1のZnDTPを含むことにより、摩擦調整剤を添加した場合に乗り心地性および操縦安定性に適した摩擦係数に容易に調整することができることに加えて、第一級アルキル基のみを有するZnDTP、および/または、第二級アルキル基のみを有するZnDTPを含有する緩衝器用潤滑油と比べて、摩擦係数のバラツキを抑えることができ、乗り心地性をより向上することができる。
さらに、本実施形態に係る緩衝器用潤滑油は、摩擦調整剤として、第1のZnDTPとは異なる構造の、第2のZnDTPを有する。第2のZnDTPは、下記化3で表される。
[上記化3中、R21~R24は第二級アルキル基である。すなわち、第2のZnDTPは第一級アルキル基を有さず、第二級アルキル基のみを有する。]
第2のZnDTPが有する第二級アルキル基の炭素数は、特に限定されず、たとえばイソプロピル基、sec-ブチル基、1-エチルプロピル基、2-エチルヘキシル基、4-メチル-2-ペンチル基などが挙げられるが、第二級アルキル基として、炭素数3~8のアルキル基(たとえばイソプロピル基(炭素数3)、2-エチルヘキシル基(炭素数8)、または、イソブチル基(炭素数4)など)が好ましい。
また、第2のZnDTPの含有量は、特に限定されないが、第1のZnDTPよりも少ない方が好ましく、ZnDTPの添加量(第1のZnDTPおよび第2のZnDTPの合計量)に対して20重量%以下となることが好ましい。
なお、ZnDTPがどのようなアルキル基を含有しているかは、公知の測定方法により測定することができる。たとえば、C13-NMRを用いてZnDTPの構造を決定することもできるし、FT-IRの指紋領域を用いてP-O-Cの吸収帯、P=S P-Sの吸収帯の特徴から、アルキル基が第一級アルキル基または第二級アルキル基であるかを分析することでZnDTPの構造を決定することもできる。
(B1)ジチオリン酸として、第二級アルキル基のみを有する第2のZnDTPを含有することで、第1のZnDTPのみを含有する場合と比べて、乗り心地をより向上させることができる。具体的には、走行時における微振動を、第1のZnDTPのみを含有する場合と比べて、より低減することができる。また、第2のZnDTPを炭素数3~8の第二級アルキル基を有するZnDTPとすることで、微振幅(低速度)と通常振幅(高速度)における摩擦係数の差を小さくすることができ、乗り心地性を向上させることができる。
(B2)ペンタエリスリトールエステル
ペンタエリスリトールエステルは、4価の糖アルコールであり、ペンタエリスリトールが有する末端置換基である水酸基が脂肪酸残基とエステル結合している化合物である。ペンタエリスリトールエステルは、4つ全ての末端置換基が脂肪酸残基とエステル結合したペンタエリスリトールテトラエステルと、いずれかの末端置換基が脂肪酸残基とエステル結合した部分エステルであるペンタエリスリトールモノエステル、ペンタエリスリトールジエステルおよびペンタエリスリトールトリエステルとがある。以下においては、ペンタエリスリトールテトラエステルをPE4E、ペンタエリスリトールトリエステルをPE3E、ペンタエリスリトールジエステルをPE2E、ペンタエリスリトールモノエステルをPE1Eと略称して説明する。
ペンタエリスリトールエステルは、4価の糖アルコールであり、ペンタエリスリトールが有する末端置換基である水酸基が脂肪酸残基とエステル結合している化合物である。ペンタエリスリトールエステルは、4つ全ての末端置換基が脂肪酸残基とエステル結合したペンタエリスリトールテトラエステルと、いずれかの末端置換基が脂肪酸残基とエステル結合した部分エステルであるペンタエリスリトールモノエステル、ペンタエリスリトールジエステルおよびペンタエリスリトールトリエステルとがある。以下においては、ペンタエリスリトールテトラエステルをPE4E、ペンタエリスリトールトリエステルをPE3E、ペンタエリスリトールジエステルをPE2E、ペンタエリスリトールモノエステルをPE1Eと略称して説明する。
本実施形態に係るペンタエリスリトールエステルにおいて、脂肪酸残基は、特に限定されず、たとえば、ステアリン酸残基やオレイン酸残基などのC6~C22の脂肪酸残基とすることができる。また、脂肪酸残基として、カプリル酸、カプリン酸、オレイン酸、ステアリン酸、ミリスチン酸、パルミチン酸、リノール酸、アジピン酸、ペラルゴン酸、トール脂肪酸、ヤシ脂肪酸、ココナツ脂肪酸、牛脂脂肪酸を例示することもできる。
本実施形態に係る緩衝器用潤滑油において、(B2)ペンタエリスリトールエステルは、(b21)PE4Eと、(b22)PE4E以外のペンタエリスリトールエステル、すなわち、PE3E、PE2EまたはPE1Eとを含有する。以下においては、(b22)EP4E以外のペンタエリスリトールエステルとして、PE2Eを用いて説明するが、PE4E以外のペンタエリスリトールエステルは、PE2Eに限定されず、PE3EやPE1Eであってもよい。また、PE4E以外のペンタエリスリトールエステルとして、PE3EとPE2Eの混合物、PE3EとPE1Eの混合物、PE2EとPE1Eの混合物、あるいは、PE3E、PE2EおよびPE1Eの混合物を用いることもできる。
なお、PE4Eを製造する場合、PE4Eだけを製造することは技術的に困難であり、PE4EにPE1E、PE2E、PE3Eが混在してしまう場合がある。そのため、「ペンタエリスリトールテトラエステル」として市販されているものであっても、PE4Eのみで構成されているのではなく、PE4Eを主に含むが、PE4Eの他に、PE3E、PE2E、あるいはPE1Eなども含まれる。そのため、本発明に係る「ペンタエリスリトールテトラエステル」は、「ペンタエリスリトールテトラエステル」として市販されているペンタエリスリトールエステルの混合物としてもよいし、「ペンタエリスリトールテトラエステル」を80%以上含むペンタエリスリトールエステルの混合物とすることもできる。同様の理由から、本発明に係る「ペンタエリスリトールジエステル」は、「ペンタエリスリトールジエステル」として市販されているペンタエリスリトールエステルの混合物としてもよいし、「ペンタエリスリトールジエステル」を80%以上含むペンタエリスリトールエステルの混合物とすることができる。なお、PE1EおよびPE3Eについても同様である。
(緩衝器潤滑油の摩擦特性)
本発明に係る緩衝器用潤滑油組成物は、上述したように、体感性の少ない(乗り心地に影響しない)微振動が入力された場合でも高い摩擦力を発揮することができ、かつ、体感性が大きい(乗り心地に影響する)通常振動が入力された場合には摩擦力を抑えることで、操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物である。このような緩衝器用潤滑油組成物は、図5に示す実施例1,2の緩衝器用潤滑油のように、従来の緩衝器用潤滑油(従来例1)と比べて、通常振動時の平均摩擦力F1-2を大きくすることなく、微振動時において、緩衝器の動作速度の変化量ΔVに対する緩衝器用潤滑油の摩擦力の変化量ΔFの比(ΔF/ΔV)が高い緩衝器用潤滑油組成物であることを特徴とする。
本発明に係る緩衝器用潤滑油組成物は、上述したように、体感性の少ない(乗り心地に影響しない)微振動が入力された場合でも高い摩擦力を発揮することができ、かつ、体感性が大きい(乗り心地に影響する)通常振動が入力された場合には摩擦力を抑えることで、操縦安定性と乗り心地性とを両立することができる緩衝器用潤滑油組成物である。このような緩衝器用潤滑油組成物は、図5に示す実施例1,2の緩衝器用潤滑油のように、従来の緩衝器用潤滑油(従来例1)と比べて、通常振動時の平均摩擦力F1-2を大きくすることなく、微振動時において、緩衝器の動作速度の変化量ΔVに対する緩衝器用潤滑油の摩擦力の変化量ΔFの比(ΔF/ΔV)が高い緩衝器用潤滑油組成物であることを特徴とする。
本実施形態では、このような摩擦特性を有する緩衝器用潤滑油を、微振幅時におけるピーク摩擦力Fsaおよび微振幅時における平均摩擦力Faveに基づいて定義する。
ここで、微振幅時におけるピーク値Fsaと平均摩擦力Faveは、たとえば、図6に示す摩擦試験装置10を用いて測定することができる。図6は、本実施形態に係る摩擦試験装置10の構成図である。摩擦試験装置10は、図6に示すように、ピン・オン・ディスク型の摩擦試験装置であり、スライドベアリング1上に固定したディスク試験片2を電磁加振機3により往復運動させ、これにピン試験片4を押し当てて摺動させて生じた摩擦力を、ピン試験片4の固定軸5に取り付けたひずみゲージ6を用いて計測するものである。また、緩衝器の摩擦特性に影響する要素として緩衝器用潤滑油とオイルシールとの組み合わせがあるため、図6に示す摩擦試験装置10では、緩衝器においてオイルシールとして使用されるアクリロニトリル・ブタジエンゴム(NBR)をピン試験片4に用い、オイルリップ形状を模してピン試験片4の先端を140°の角度となるようにカットした。また、ディスク試験片2には、ピストンロッド表面に使用する硬質クロムめっき膜を用いた。なお、図6に示す例では、NBRのピン試験片4とクロムめっきされたディスク試験片2との間の摩擦力を測定しているが、銅ボールとクロムめっきされたディスク試験片2との間の摩擦力を測定してもよい。
図7は、上記摩擦試験装置10を用いて、振幅±2.0mm、周波数1.5Hz、荷重20Nおよび温度30℃で、ピン試験片4とディスク試験片2とを往復させて、緩衝器用潤滑油の摩擦力を測定した結果を示す図である。図7においては、π/2および3π/2の位相において、ピン試験片4とディスク試験片2との動作方向が反転していることを示す。図7に示す例では、ピン試験片4とディスク試験片2の動作方向を反転するため、π/2および3π/2のタイミングで一時的に静止状態となり、その直後に、静止状態から滑り状態へと移行する。本実施形態に係る緩衝器用潤滑油組成物は、ペンタエリスリトールエステルを含有することで、摩擦特性として、図7に示すように、静止状態から滑り状態へと移行する際に摩擦力のピークを有する。このように、摩擦試験装置10を用いることで、静止状態から滑り状態へと移行する際の摩擦力のピーク値Fsaと、微振動時における滑り状態の平均摩擦力Faveとを測定することができる。
さらに、本実施形態では、下記式(3)に示すように、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比を、緩衝器用潤滑油の応答性RIとして定義する。
RI=(Fsa-Fave)/Fave ・・・(3)
RI=(Fsa-Fave)/Fave ・・・(3)
そして、本実施形態に係る緩衝器用潤滑油は、摩擦特性として、微振幅時における緩衝器用潤滑油の応答性RIと、微振幅時の平均摩擦力Faveとが、下記式(4)の関係を有することを特徴とする。
RI>1.75×Fave-0.05 …(4)
RI>1.75×Fave-0.05 …(4)
図8は、本実施形態に含まれない緩衝器用潤滑油組成物(従来例B1~B4および比較例C1,C2)および本実施形態に係る緩衝器用潤滑油組成物(実施例S1~S9)における、微振幅時の応答性RIと微振幅時の平均摩擦力Faveとの関係を示すグラフであり、縦軸に微振幅時の応答性RIを、横軸に微振幅時の平均摩擦力Faveを示す。また、図8においては、従来の緩衝器用潤滑油(B1~B4)の摩擦特性を直線Aとして示し、本実施形態に係る緩衝器用潤滑油(S1~S9)の摩擦特性を直線Bとして示す。また、上記式(4)のRI=1.75×Fave-0.05を示す線を直線Cとして示す。本実施形態に係る緩衝器用潤滑油は、RI>1.75×Fave-0.05という摩擦特性を有するものであり、図8においては、直線Cの上側の網掛けエリアにプロットされる緩衝器用潤滑油が該当する。
また、図8において、従来例B1は、基油のみの緩衝器用潤滑油の摩擦特性を示す。さらに、比較例C1,C2および実施例S1~S9は、ペンタエリスリトールエステルとしてペンタエリスリトールジエステルおよび/またはペンタエリスリトールテトラエステルを含有する緩衝器用潤滑油である。具体的には、比較例C1は、ペンタエリスリトールエステルとしてペンタエリスリトールジエステルのみを有する緩衝器用潤滑油であり、比較例C2はペンタエリスリトールエステルとして、ペンタエリスリトールジエステルを80%、ペンタエリスリトールテトラエステルを20%配合した緩衝器用潤滑油である。同様に、実施例S1~S9は、それぞれ、ペンタエリスリトールエステルにおけるペンタエリスリトールテトラエステルの割合が40%,60%,70%,75%,80%,85%,90%,95%,100%となるように、ペンタエリスリトールジエステルとペンタエリスリトールテトラエステルとを配合した、緩衝器用潤滑油である。
図8に示すように、本実施形態に係る緩衝器用潤滑油(実施例S1~S9)は、従来の緩衝器用潤滑油B1~B4と比べて、微振幅時の平均摩擦力Faveに対して、微振幅時の応答性RIが高い緩衝器用潤滑油であり、微振幅時の応答性RIが高いため、微振幅時でも高い摩擦力が得られ、微振幅時の操縦安定性を高めることができるとともに、微振幅時の平均摩擦力Faveが低いことから通常振幅時における平均摩擦力も低く抑えられる傾向があり乗り心地性を高めることもできる。また、図8に示す実施例S1~S9のように、ペンタエリスリトールエステルにおいて、ペンタエリスリトールジエステルとペンタエリスリトールテトラエステルとの配合を調整することで、微振幅時の応答性RIを調整することができ、緩衝器の用途やニーズに合わせて摩擦特性を調整することができる。なお、ペンタエリスリトールエステル以外の摩擦調整剤を添加することで、微振幅時の応答性RIを調整する構成としてもよい。
また、本実施形態に係る緩衝器用潤滑油では、微振幅時の平均摩擦力Faveに対する応答性RIをより高くすることが好ましく、上記式(4)の摩擦特性に加えて、微振幅時の応答性RIと微振幅時の平均摩擦力Faveとの比(RI/Fave)が2.0以上とすることが好ましく、2.5以上とすることがより好ましい。
さらに、本実施形態に係る緩衝器用潤滑油(実施例S1~S9)は、上記式(4)に示す摩擦特性を有すれば、特に限定されないが、微振幅時における応答性RIが0.10以上であることが好ましく、0.15以上であることがより好ましく、0.20以上であることがさらに好ましい。微振幅時の応答性RIは、微振幅時における操縦安定性に寄与するものであり、静止状態から滑り状態へと移行する際の摩擦力のピーク値Fsaが高ければ、その分、微振幅時における摩擦力は高くなり、微振幅時における操縦安定性は増加するためである。
加えて、本実施形態に係る緩衝器用潤滑油は、図8に示すように、微振幅時の平均摩擦力Faveが0.12未満であることが好ましい。上述したように、緩衝器用潤滑油は、微振動時の平均摩擦力Faveが大きいほど通常振動時における平均摩擦力も大きくなる傾向にあり、通常振幅時の平均摩擦力が大きくなると、乗り心地性を損なうためである。
以上のように、本実施形態に係る緩衝器用潤滑油は、摩擦調整剤として、(B2)ペンタエリスリトールエステルを含有し、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、上記式(4)に示すRI>1.75×Fave-0.05の摩擦特性を有する。これにより、本実施形態に係る緩衝器用潤滑油では、微振幅時の応答性RIが高いため、微振幅時において高い摩擦力が得られるため、操縦安定性が高くなるとともに、微振幅時の平均摩擦力Faveが低いことから通常振幅時の平均摩擦力も低く抑えられる傾向にあり、乗り心地性も高めることができ、操縦安定性と乗り心地性を両立することが可能な潤滑油組成物を提供することができる。
以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。
たとえば、上述した実施形態に変えて、緩衝器用潤滑油を、微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)である応答性RIが0.1以上であり、かつ、微振幅時における平均摩擦力Faveが0.12未満である摩擦特性を有する構成とすることができる。ここで、図9は、図8と同じ、緩衝器用潤滑油の応答性RIと微振幅時の平均摩擦力Faveとの関係を示すグラフであり、微振幅時の応答性RIが0.1以上であり、かつ、微振幅時の平均摩擦力Faveが0.12未満である摩擦特性を有する緩衝器用潤滑油を網掛けで示している。このような緩衝器用潤滑油も、上述した実施形態に係る緩衝器用潤滑油と同様に、通常振幅時の平均摩擦力を抑えながら、微振幅時の応答性RIが高い摩擦特性を有するため、微振幅時において十分な摩擦力が得られ微振幅時の操縦安定性を高めることができるとともに、通常振幅時における摩擦力を抑えることができ乗り心地性を高めることができる。
また、上述した実施形態に加えて、潤滑油組成物において、ペンタエリスリトールエステルを「主にPE4E」とする構成とすることができる。ここで、「主にPE4Eである」ペンタエリスリトールエステルとは、PE1E、PE2E、PE3EおよびPE4Eの中でPE4Eの割合が最も多いもの、あるいは、PE4Eを50%以上含むものを意味することができる。また、PE4Eを製造する場合、PE4Eだけを製造することは技術的に困難であり、PE1E、PE2E、PE3Eなどが混在してしまう。そのため、実際に、「ペンタエリスリトールテトラエステル」として市販されているものであっても、PE4Eのみで構成されているのではなく、PE4Eを主に含むが、PE4Eの他に、PE3E、PE2E、あるいはPE1Eなども含まれる。そのため、「PE4E」として市販されているペンタエリスリトールエステルを、本発明における「主にPE4Eである」ペンタエリスリトールエステルとして定義することもできる。
さらに、「主にPE4E」であるペンタエリスリトールエステルは、以下のように定義することもできる。すなわち、PE4Eに加えて、PE3E、PE2E、PE1Eなども混在するペンタエリスリトールエステルについて、エステル基を測定し、エステル基の平均数が3よりも大きいペンタエリスリトールエステルを、「主にPE4E」であるペンタエリスリトールエステルとして特定することもできる。また、ペンタエリスリトールエステルについて、水酸基を測定し、水酸基の平均数が1よりも小さいペンタエリスリトールエステルを、「主にPE4E」であるペンタエリスリトールエステルとして特定することもできる。ペンタエリスリトールエステルのエステル基または水酸基の平均数は、たとえばガスクロマトグラフィー質量分析法や液体クロマトグラフィー質量分析法を用いて測定することができる。
また、このようなペンタエリスリトールエステルは、水酸基を有しないPE4Eを主に含むが、水酸基を含むPE3E、PE2E、PE1Eも一部含まれており、これら水酸基を含むペンタエリスリトールによる水酸基価が、0.5mgKOH/g以上であることが好ましく、1.0mgKOH/g以上であることがより好ましく、1.5mgKOH/g以上であることがさらに好ましい。
緩衝器用潤滑油の水酸基価を0.5mgKOH/g以上とすることで、ペンタエリスリトールの分解(ペンタエリスリトールの分解による緩衝器用潤滑油の劣化)を抑制し、緩衝器用潤滑油の耐摩耗性を向上することができる。特に、緩衝器用潤滑油の劣化を抑制する観点から、緩衝器用潤滑油の水酸基価は0.5mgKOH/g以上であることが好ましく、1.0mgKOH/g以上であることがより好ましく、1.5mgKOH/g以上であることがさらに好ましい。
また、ペンタエリスリトールエステルを、0.5質量%以上含有し、より好ましくは1.0質量%以上含有する構成とすることもできる。ペンタエリスリトールエステルの含有量を0.2質量%以上とすることで、ZnDTPを含有する緩衝器用潤滑油の摩擦係数の変動を抑制することができる。そのため、ペンタエリスリトールエステルの分解も考慮し、ペンタエリスリトールエステルを0.5質量%以上含有するものとし、好ましくは1.0質量%以上含有することができる。
また、ペンタエリスリトールエステルを2.0質量%以上含有する構成とすることも好ましい。ペンタエリスリトールエステルが存在しない場合、ZnDTPが分解などにより減少してしまい、これにより緩衝器用潤滑油の摩擦係数が上昇し摩耗が発生してしまうためである。ペンタエリスリトールエステルを2.0質量%以上含有することで、ZnDTPの減少を有効に抑制することができ、その結果、緩衝器用潤滑油の劣化を抑制することができる。
また、ペンタエリスリトールエステルを5.0質量%以上含有する構成とすることがさらに好ましい。これは、緩衝器用潤滑油の劣化を抑制するためには、緩衝器用潤滑油の水酸基価を0.5mgKOH/g以上とすることが好ましいが、緩衝器用潤滑油に含まれるペンタエリスリトールエステルは、主に、水酸基を有しないペンタエリスリトールテトラエステルであり、緩衝器用潤滑油の水酸基価を0.5mgKOH/g以上とするためには、ペンタエリスリトールエステルの含有量を5質量%以上とすることが好ましいためである。
Claims (13)
- 基油と、ペンタエリスリトールエステルと、を含有し、
微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、下記式(1)の摩擦特性を有する、緩衝器用潤滑油組成物。
RI>1.75×Fave-0.05 …(1) - 基油と、ペンタエリスリトールエステルと、を含有し、
微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)である応答性RIが0.1以上であり、かつ、微振幅時における平均摩擦力Faveが0.12未満である、緩衝器用潤滑油組成物。 - 応答性RIと微振幅時の平均摩擦力Faveとの比(RI/Fave)が2.0以上である、請求項1または2に記載の緩衝器用潤滑油組成物。
- 応答性RIが0.15以上である、請求項3に記載の緩衝器用潤滑油組成物。
- 前記ペンタエリスリトールエステルとして、ペンタエリスリトールテトラエステルと、ペンタエリスリトールテトラエステル以外のペンタエリスリトールエステルを有する、請求項1ないし4のいずれかに記載の緩衝器用潤滑油組成物。
- ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が40%以上である、請求項1ないし5のいずれかに記載の緩衝器用潤滑油組成物。
- ペンタエリスリトールエステル中における、ペンタエリスリトールテトラエステルの配合比率が60%以上である、請求項6に記載の緩衝器用潤滑油組成物。
- ペンタエリスリトールエステルとして、ペンタエリスリトールジエステルと、ペンタエリスリトールテトラエステルとのみを含有する、請求項1ないし7のいずれかに記載の緩衝器用潤滑油組成物。
- ペンタエリスリトールエステルを5%以上含有することを特徴とする、請求項1ないし8のいずれかに記載の緩衝器用潤滑油組成物。
- 請求項1ないし9のいずれかに記載の緩衝器用潤滑油組成物を含有する緩衝器。
- 基油と、ペンタエリスリトールエステルとを含有する緩衝器用潤滑油組成物の摩擦特性の調整方法であって、
微振幅時における、静止状態から滑り状態に移行する際の摩擦力のピーク値Fsaおよび平均摩擦力Faveの差と、微振幅時における平均摩擦力Faveとの比({Fsa-Fave}/Fave)を応答性RIとした場合に、平均摩擦力Faveに対する応答性RIをより高くするように、応答性RIおよび微振幅時の平均摩擦力Faveに基づいて、前記緩衝器用潤滑油組成物の摩擦特性を調整する、調整方法。 - 前記緩衝器用潤滑油組成物が下記式(2)の摩擦特性を有するように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、請求項11に記載の調整方法。
RI>1.75×Fave-0.05 …(2) - 応答性RIが0.1以上となり、かつ、平均摩擦力Faveが0.12未満となるように、ペンタエリスリトールエステルを添加することで、前記緩衝器用潤滑油組成物の摩擦特性を調整する、請求項11に記載の調整方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/010,601 US20230313064A1 (en) | 2020-06-19 | 2021-06-15 | Shock absorber lubricant composition, shock absorber, and method for adjusting frictional property of shock absorber lubricant |
DE112021003316.6T DE112021003316T5 (de) | 2020-06-19 | 2021-06-15 | Schmiermittelzusammensetzung für stossdämpfer, stossdämpfer und verfahren zur einstellung einer reibeigenschaft eines stossdämpferschmiermittels |
CN202180043553.3A CN115698237A (zh) | 2020-06-19 | 2021-06-15 | 缓冲器用润滑油组合物、缓冲器及缓冲器用润滑油的摩擦特性的调整方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-105938 | 2020-06-19 | ||
JP2020105938A JP7469151B2 (ja) | 2020-06-19 | 2020-06-19 | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256465A1 true WO2021256465A1 (ja) | 2021-12-23 |
Family
ID=79242001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/022675 WO2021256465A1 (ja) | 2020-06-19 | 2021-06-15 | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230313064A1 (ja) |
JP (1) | JP7469151B2 (ja) |
CN (1) | CN115698237A (ja) |
DE (1) | DE112021003316T5 (ja) |
WO (1) | WO2021256465A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7454438B2 (ja) * | 2020-04-23 | 2024-03-22 | カヤバ株式会社 | 緩衝器および緩衝器用潤滑油の摩擦特性の調整方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224653A (ja) * | 2011-04-14 | 2012-11-15 | Lion Corp | 潤滑油基油 |
WO2013141235A1 (ja) * | 2012-03-23 | 2013-09-26 | 出光興産株式会社 | 緩衝器用潤滑油組成物 |
WO2014010697A1 (ja) * | 2012-07-12 | 2014-01-16 | 出光興産株式会社 | 緩衝器用潤滑油組成物 |
WO2015025972A1 (ja) * | 2013-08-23 | 2015-02-26 | 出光興産株式会社 | 緩衝器用潤滑油組成物、及び緩衝器の摩擦低減方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101405376B (zh) * | 2006-03-22 | 2012-10-17 | 国际壳牌研究有限公司 | 功能性流体组合物 |
JP6826498B2 (ja) * | 2017-06-08 | 2021-02-03 | Eneos株式会社 | 緩衝器用潤滑油組成物 |
JP7264616B2 (ja) * | 2018-10-26 | 2023-04-25 | Kyb株式会社 | 緩衝器用潤滑油組成物、緩衝器用潤滑油の摩擦調整用添加剤および潤滑油添加剤 |
-
2020
- 2020-06-19 JP JP2020105938A patent/JP7469151B2/ja active Active
-
2021
- 2021-06-15 DE DE112021003316.6T patent/DE112021003316T5/de active Pending
- 2021-06-15 WO PCT/JP2021/022675 patent/WO2021256465A1/ja active Application Filing
- 2021-06-15 US US18/010,601 patent/US20230313064A1/en active Pending
- 2021-06-15 CN CN202180043553.3A patent/CN115698237A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224653A (ja) * | 2011-04-14 | 2012-11-15 | Lion Corp | 潤滑油基油 |
WO2013141235A1 (ja) * | 2012-03-23 | 2013-09-26 | 出光興産株式会社 | 緩衝器用潤滑油組成物 |
WO2014010697A1 (ja) * | 2012-07-12 | 2014-01-16 | 出光興産株式会社 | 緩衝器用潤滑油組成物 |
WO2015025972A1 (ja) * | 2013-08-23 | 2015-02-26 | 出光興産株式会社 | 緩衝器用潤滑油組成物、及び緩衝器の摩擦低減方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022000490A (ja) | 2022-01-04 |
CN115698237A (zh) | 2023-02-03 |
DE112021003316T5 (de) | 2023-04-20 |
JP7469151B2 (ja) | 2024-04-16 |
US20230313064A1 (en) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021070433A1 (ja) | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦調整方法 | |
WO2020218025A1 (ja) | 緩衝器用潤滑油組成物、摩擦調整用添加剤、潤滑油添加剤、緩衝器および緩衝器用潤滑油の摩擦調整方法 | |
WO2021256465A1 (ja) | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 | |
US9290434B2 (en) | Lubricity improver | |
WO2020084606A1 (ja) | 緩衝器用潤滑油組成物、摩擦調整用添加剤、潤滑油添加剤、緩衝器および緩衝器用潤滑油の摩擦調整方法 | |
JP7316207B2 (ja) | 緩衝器用潤滑油組成物、摩擦調整用添加剤、潤滑油添加剤、緩衝器および緩衝器用潤滑油の摩擦調整方法 | |
JP7492578B2 (ja) | 潤滑油組成物、緩衝器及び摺動機構 | |
US11254890B2 (en) | Lubricant composition | |
WO2021215144A1 (ja) | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 | |
WO2023068163A1 (ja) | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 | |
JP2022182560A (ja) | 緩衝器用潤滑油組成物、緩衝器、および緩衝器用潤滑油の摩擦特性の調整方法 | |
JP6854371B2 (ja) | 基油及びそれを含む潤滑油 | |
JP2023062821A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21826973 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21826973 Country of ref document: EP Kind code of ref document: A1 |