WO2021256358A1 - 予兆判定装置、予兆判定システム、予兆判定方法及びプログラム - Google Patents
予兆判定装置、予兆判定システム、予兆判定方法及びプログラム Download PDFInfo
- Publication number
- WO2021256358A1 WO2021256358A1 PCT/JP2021/022042 JP2021022042W WO2021256358A1 WO 2021256358 A1 WO2021256358 A1 WO 2021256358A1 JP 2021022042 W JP2021022042 W JP 2021022042W WO 2021256358 A1 WO2021256358 A1 WO 2021256358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sign
- motor
- unit
- abnormality
- sign determination
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present disclosure relates to a sign determination device, a sign determination system, a sign determination method and a program.
- This application claims priority over Japanese Patent Application No. 2020-102906 filed in Japan on June 15, 2020 and Japanese Patent Application No. 2021-043598 filed in Japan on March 17, 2021. Incorporate the content here.
- Patent Document 1 describes an abnormality in a motor based on a reference amplitude probability density function obtained from a reference sinusoidal signal waveform of the rated current of the motor and an amplitude probability density function at the time of inspection obtained from the current waveform during operation of the motor.
- a technique for diagnosing an abnormality of an electric motor for determining whether or not there is an electric current is disclosed.
- Patent Document 1 discloses a technique for determining whether or not there is an abnormality in a bearing of a load driven by an electric motor.
- An object of the present disclosure is to provide a sign determination device, a sign determination system, a sign determination method and a program capable of appropriately determining a sign determination target.
- the sign determination device includes a measurement result acquisition unit that acquires the measurement result of the current flowing through the motor, an analysis unit that analyzes the measurement result by frequency and decomposes it into frequency components, and time-series data of the frequency component. Based on this, it is provided with a prediction unit for determining whether or not there is a sign of abnormality in at least one of the electric motor and the load of the electric motor.
- the sign determination system is an abnormality sign determination system including a sign determination device capable of communicating with a terminal device, and the terminal device is a requesting unit that requests an abnormality sign determination regarding a motor and a load of the motor.
- the sign determination device includes a measurement result acquisition unit that acquires the measurement result of the current flowing through the motor in response to a request from the terminal device, and an analysis that frequency-analyzes the measurement result and decomposes it into frequency components.
- the predictive determination method includes acquiring the measurement result of the current flowing through the motor, frequency-analyzing the current based on the measurement result and decomposing it into frequency components, and the time series of the frequency components. Based on the data, it includes determining whether or not there is a sign of abnormality in at least one of the motor and the load of the motor.
- the program according to the present disclosure is to acquire the measurement result of the current flowing through the motor to a computer, to analyze the current by frequency based on the measurement result and decompose it into frequency components, and to use the frequency component. Based on the series data, it is determined whether or not there is a sign of abnormality in at least one of the electric motor and the load of the electric motor, and the execution is performed.
- the terminal device has a request step for requesting a sign determination of an abnormality with respect to the electric motor and the load of the electric motor, and the sign determination device capable of communicating with the terminal device is the terminal device.
- the analysis step of frequency-analyzing the measurement result and decomposing it into frequency components, and the time-series data of the frequency components.
- a predictive determination method comprising a prediction step for determining whether or not there is a sign of abnormality in at least one of the electric motor and the load of the electric motor.
- FIG. 1 It is a figure which shows the structure of the sign determination system which concerns on 1st Embodiment. It is a schematic block diagram which shows the structure of the sign determination apparatus which concerns on 1st Embodiment. It is a figure which shows an example of the image which concerns on 1st Embodiment. It is a figure which shows an example of the factor information which concerns on 1st Embodiment. It is a figure which shows an example of time information in 1st Embodiment. It is a flowchart which shows an example of the operation of the sign determination system which concerns on 1st Embodiment. It is a figure which shows the structure of the sign determination system which concerns on 2nd Embodiment. FIG.
- FIG. 1 is a first diagram showing an example of teacher data in the second embodiment.
- FIG. 2 is a second diagram showing an example of teacher data in the second embodiment.
- It is a flowchart which shows an example of the operation of the sign determination system which concerns on 2nd Embodiment.
- It is a figure which shows the structure of the sign determination system which concerns on 5th Embodiment.
- It is a schematic block diagram which shows the structure of the computer which concerns on at least one Embodiment.
- the sign determination system 1 determines a sign of abnormality of the load 13 driven by the electric motor 11.
- FIG. 1 is a diagram showing a configuration of a sign determination system 1 according to the first embodiment.
- the sign determination system 1 includes a power source 10, an electric motor 11, an electric wire 12, a load 13, a measuring instrument 16, a converter 17, and a sign determination device 100.
- the electric power source 10 supplies an electric current to the electric motor 11 via the electric wire 12.
- the electric motor 11 receives a current from the power source 10 via the electric wire 12.
- the electric motor 11 that has received the electric current rotates the shaft 14A included in the electric motor 11 to rotate the shaft 14B included in the load 13.
- the shaft 14B is rotated by the motor 11. That is, the load 13 is driven by the electric motor 11. Further, the load 13 includes a bearing 15A and a bearing 15B that support the shaft 14B. Lubricating oil is supplied to the bearings 15A and 15B. The lubricating oil reduces the friction between the bearing 15A and the bearing 15B and the shaft 14B.
- the measuring instrument 16 measures the current flowing through the electric wire 12. That is, the measuring instrument 16 measures the current flowing through the electric motor 11 via the electric wire 12.
- An example of the measuring instrument 16 is a current transducer (CT).
- CT current transducer
- the measuring instrument 16 measures the current and acquires an analog current waveform.
- the converter 17 converts the analog current waveform acquired by the measuring instrument 16 into digital current data.
- the converter 17 transmits the converted digital current data to the sign determination device 100. That is, the converter 17 transmits the measurement result of the current flowing through the electric motor 11 to the sign determination device 100.
- the sign determination device 100 determines whether or not there is a sign of abnormality in the bearing 15A and the bearing 15B of the load 13 driven by the electric motor 11.
- An example of an abnormality in the bearing 15A and the bearing 15B is a change in the shape of the bearing 15A and the bearing 15B due to friction between the shaft 14B and the bearing 15A and the bearing 15B.
- FIG. 2 is a schematic block diagram showing the configuration of the sign determination device 100.
- the sign determination device 100 includes a measurement result acquisition unit 101, an analysis unit 102, an image generation unit 103, a detection unit 104, a first determination unit 105 (an example of a prediction unit), a calculation unit 106, and a second determination. It includes a unit 107, a specific unit 108, an update unit 109, an output unit 110, and a storage unit 111.
- the measurement result acquisition unit 101 acquires digital current data transmitted from the converter 17. That is, the measurement result acquisition unit 101 acquires the measurement result of the current flowing through the electric motor 11.
- the measurement result is digital current data.
- the analysis unit 102 decomposes the measurement result acquired by the measurement result acquisition unit 101 into a plurality of frequency components by the FFT (Fast Fourier Transform).
- the image generation unit 103 generates an image showing time-series data of each of the plurality of frequency components and time-series data of the energy value associated with the frequency component. Further, in the image generated by the image generation unit 103, the frequency component is shown as a color graph with time and frequency as axes, and the energy value is shown on the color graph. A color graph is represented by a set of points. FIG. 3 is an example of an image generated by the image generation unit 103.
- the analysis unit 102 decomposes the measurement result into two frequency components.
- FIG. 3 shows a color graph of the two decomposed frequency components. It is assumed that an abnormality occurs in the bearing 15 of the load 13 at time T2.
- the frequency values for the two energy values up to time T1 are constant band values.
- the values of the two frequency components obtained by decomposing the measurement result of the current are values in a constant band until the time T1.
- the value of the frequency component after the time T2 is changed by Z from the value of the constant band shown before the time T1.
- the frequency component has a value different from that at time T1.
- the horizontal axis of FIG. 3 indicates frequency and the vertical axis indicates time, the horizontal axis may indicate time and the vertical axis may indicate frequency.
- the energy value of each frequency component is shown in color.
- colors include blue, green, yellow, and red.
- the energy value is low, it is shown in blue, and as the energy value is high, the color is shown in the order of green, yellow, and red.
- the energy value of the frequency component indicating the state of the bearing has a certain value or more, it is shown in the same color (for example, red) before the time T1, T1 to T2, and after T2.
- the image generation unit 103 may show colors not only on the color graph but also in a place other than the color graph. For example, the image generation unit 103 may indicate a portion other than the color graph in the generated image in dark blue, and indicate that the energy value is zero or a value close to zero at the corresponding frequency.
- the detection unit 104 detects the change value of the frequency component based on the image generated by the image generation unit 103. For example, when the image is a graph as shown in FIG. 3, the detection unit 104 detects Z as a change value.
- the first determination unit 105 compares the change value detected by the detection unit 104 with a preset first threshold value, and determines whether or not there is a sign of abnormality in the bearing 15. For example, the first determination unit 105 determines that there is a sign of abnormality in the bearing 15 when the change value detected by the detection unit 104 is equal to or greater than the first threshold value. Further, the first determination unit 105 determines that there is no sign of abnormality of the bearing 15 when the change value detected by the detection unit 104 is not equal to or more than the first threshold value. When an abnormality occurs in the bearing 15, the value of the frequency component changes. Therefore, by comparing the changed value with a certain threshold value, it can be determined whether or not there is a sign of the abnormality in the bearing 15.
- the calculation unit 106 calculates the similarity based on the feature amount of the image associated with the factor that causes the abnormality of the bearing 15 and the feature amount of the image generated by the image generation unit 103. Examples of factors include poor lubrication, poor mounting, foreign matter intrusion, rust, and insufficient clearance.
- the user of the sign determination system 1 records in advance the factor information, which is the information relating the factor and the image, in the storage unit 111.
- the above image is an image showing time-series data of frequency components and energy values.
- FIG. 4 is an example of an image in factor information.
- the user of the sign determination system 1 records the factor information in which the image of A in FIG. 4 and the factor A are associated with each other in the storage unit 111.
- the user of the sign determination system 1 records the factor information in which the image of B in FIG. 4 and the factor B are associated with each other in the storage unit 111.
- the calculation unit 106 extracts the feature amount of the image as shown in FIG. 4 associated with the factor by the method of the convolutional neural network (CNN). Further, the calculation unit 106 extracts the feature amount of the image generated by the image generation unit 103 by the method of the convolutional neural network. The calculation unit 106 calculates the degree of similarity between the extracted features. The calculation unit 106 calculates the degree of similarity between the feature amount of a plurality of images associated with the factor in the factor information and the feature amount of the image generated by the image generation unit 103. That is, the calculation unit 106 calculates a plurality of similarities with each image in the plurality of factor information.
- CNN convolutional neural network
- the operation mode of the calculation unit 106 includes a mode in which the user of the sign determination system 1 extracts based on a known factor and a known image before the user of the sign determination system 1 uses the sign determination system 1.
- the second determination unit 107 determines whether or not the similarity calculated by the calculation unit 106 is equal to or higher than the preset second threshold value.
- the second determination unit 107 determines whether or not each of the plurality of similarities is equal to or higher than the second threshold value.
- the specific unit 108 identifies a factor related to the similarity calculated by the calculation unit 106. For example, when the similarity with the image of A in FIG. 4 is equal to or higher than the second threshold value, the second determination unit 107 determines that the degree is equal to or higher than the second threshold value.
- the identification unit 108 identifies the factors associated with the image of A in FIG. It is also possible to specify the site when the second determination unit 107 determines that the threshold value is equal to or higher than the second threshold value, and there is a sign in at least one of the first determination unit 105 or the second determination unit 107. Alternatively, it is possible to specify the site when it is determined that the threshold value is equal to or higher than the second threshold value.
- the identification unit 108 identifies the region by comparing the frequency component with the region information associated with the frequency component and the region where the abnormality occurs. ..
- Examples of the above-mentioned portion include an inner ring of the bearing 15, an outer ring of the bearing 15, and a ball between the inner ring and the outer ring of the bearing 15.
- the user of the sign determination system 1 records the site information in the storage unit 111 in advance. The user of the sign determination system 1 may record the newly generated site information in the storage unit 111 when the sign determination system 1 is used.
- the specific unit 108 compares F1, which is the value of the frequency component, with the site information.
- F1 of the value of the frequency component and the inner ring of the bearing 15 of the part are associated with the part information, the specific part 108 identifies the inner ring of the bearing 15 as the part where the abnormality occurs.
- the specifying unit 108 further specifies the time by comparing the specified factor with the time information in which the factor and the time until the abnormality occurs are associated with each other.
- the user of the sign determination system 1 records the time information in the storage unit 111 in advance.
- the user of the sign determination system 1 may record the time information newly generated when the sign determination system 1 is used in the storage unit 111.
- FIG. 5 is a diagram showing an example of time information in the first embodiment.
- the specific unit 108 identifies the factor A.
- the specifying unit 108 specifies the time T3.
- the specifying unit 108 may specify the time when the abnormality occurs instead of the time T3 until the abnormality occurs.
- the update unit 109 accepts an input from the outside and updates the factor information. For example, it is assumed that the image generated by the image generation unit 103 is determined that the similarity with the image in the factor information is not equal to or higher than the second threshold value.
- the output unit 110 outputs the image generated by the image generation unit 103 to a display device (not shown) included in the sign determination system 1.
- the user of the sign determination system 1 confirms the output image through the display device.
- the user of the sign determination system 1 identifies a factor that causes an abnormality in the bearing 15 by using a device other than the sign determination device 100.
- the user of the sign determination system 1 associates the newly specified factor with the output image and inputs it to the sign determination system 1 as factor information.
- the update unit 109 accepts the input and updates the factor information.
- the factor information can be updated even if the factor cannot be determined by the second determination unit 107, and the factors that can be determined by the second determination unit 107 can be increased.
- the output unit 110 outputs the content specified by the specific unit 108 to the notification device included in the sign determination system 1.
- the notification device include a display device, a speaker, and the like.
- the signal output by the output unit 110 include a signal indicating an image and a signal related to voice.
- the output unit 110 outputs the factor, the portion, and the time specified by the specific unit 108 to the display device.
- the user of the sign determination system 1 can confirm the cause of the abnormality of the bearing 15, the portion where the abnormality of the bearing 15 occurs, and the time until the abnormality of the bearing 15 occurs by displaying the display device. In this way, the output unit 110 outputs a signal indicating an image to the display device, so that the user can easily grasp the content specified by the specific unit 108.
- the storage unit 111 stores factor information, site information, and time information recorded by the user of the sign determination system 1.
- An example of the storage unit 111 is a hard disk.
- FIG. 6 is a flowchart showing the operation of the sign determination system 1.
- the measuring instrument 16 measures the current and acquires an analog current waveform (step S1).
- the converter 17 converts the analog current waveform acquired in step S1 into digital data (step S2).
- the measurement result acquisition unit 101 acquires the measurement result, which is digital data, from the converter 17 (step S3).
- the analysis unit 102 decomposes the measurement result acquired in step S3 into frequency components by FFT (step S4).
- the image generation unit 103 generates a color graph image showing time-series data of frequency components and energy values (step S5).
- the detection unit 104 detects the change value of the frequency component based on the image generated in step S5 (step S6).
- the first determination unit 105 compares the change value detected in step S6 with the first threshold value, and determines whether or not there is a sign of abnormality in the bearing 15 (step S7). When it is determined that there is no sign of abnormality (step S7: NO), the sign determination system 1 returns to step S1 and performs the operation from step S1. On the other hand, when it is determined that there is a sign of abnormality (step S7: YES), the calculation unit 106 calculates the similarity between the feature amount of the image in the factor information and the feature amount of the image generated in step S5 (step S7: YES). Step S8).
- the second determination unit 107 determines whether or not the similarity calculated in step S8 is equal to or greater than the second threshold value (step S9). When it is determined that the similarity is equal to or higher than the second threshold value (step S9: YES), the specifying unit 108 identifies a factor related to the similarity (step S10). The specific portion 108 identifies a portion where the abnormality of the bearing 15 occurs (step S11). Further, the specifying unit 108 specifies the time until an abnormality occurs in the bearing 15 (step S12).
- the output unit 110 outputs the content specified by the specific unit 108 to the notification device (step S13).
- the notification device displays the content specified by the specific unit 108 to the user of the sign determination system 1 (step S14).
- step S9 NO
- the output unit 110 outputs the image generated in step S5 to the display device (step S15).
- the specifying portion 108 identifies a portion where the abnormality of the bearing 15 occurs (step S11).
- the user of the sign determination system 1 identifies the cause of the abnormality by using a device different from the sign determination device 100.
- the user of the sign determination system 1 inputs new factor information related to the factor specified in step S16 into the sign determination system 1.
- the update unit 109 updates the factor information recorded in the storage unit 111 with the factor information input in step S17.
- the sign determination device 100 includes a measurement result acquisition unit 101 that acquires the measurement result of the current flowing through the motor 11, an analysis unit 102 that frequency-analyzes the measurement result and decomposes it into frequency components, and a time series of frequency components. It includes an image generation unit 103 that generates an image showing data, and a first determination unit 105 that determines whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the electric motor 11 based on the image.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the motor 11 based on the image showing the frequency component of the current of the motor 11. Further, the sign determination device 100 can determine whether or not the sign is present at a long distance even if the bearing 15 is not provided around the bearing 15 where vibration is generated and is affected by the temperature change.
- the analysis unit 102 of the sign determination device 100 decomposes into a plurality of frequency components by FFT, and the image shows the time series data of each of the plurality of frequency components.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the motor 11 based on an image showing a plurality of frequency components decomposed by the FFT.
- the image of the sign determination device 100 further shows time-series data of the energy value associated with the frequency component, and includes a detection unit 104 for detecting the change value of the frequency component based on the image. 1
- the determination unit 105 determines whether or not there is a sign by comparing the change value with a preset first threshold value.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the electric motor 11 based on the image showing the values of the frequency component and the energy.
- the frequency with respect to the energy value is shown as a color graph with time and frequency as axes, and the energy value is shown in color on the color graph of the color graph.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the electric motor 11 based on the image of the color graph showing the values of the frequency component and the energy.
- the sign determination device 100 includes a specific unit 108 that identifies a site by comparing the frequency component with the site information associated with the frequency component and the site where the abnormality occurs when it is determined that there is a sign.
- the sign determination device 100 identifies the site where the abnormality occurs based on the site information. As a result, the user of the sign determination device 100 can identify the portion where the abnormality of the bearing 15 occurs.
- the identification unit 108 of the sign determination device 100 further identifies the factor based on the factor information in which the image and the factor that causes the abnormality are associated with each other.
- the sign determination device 100 identifies the factor that causes the abnormality based on the factor information. As a result, the user of the sign determination device 100 can identify the cause of the abnormality of the bearing 15.
- the sign determination device 100 determines that there is a sign with the calculation unit 106 that calculates the similarity based on the feature amount of the image associated with the factor and the feature amount of the image generated by the image generation unit 103. If this is the case, a second determination unit 107 for determining whether or not the similarity is equal to or higher than a preset second threshold value is provided, and the specific unit 108 is determined to be equal to or higher than the second threshold value. , Identify the factors related to the calculated similarity.
- the sign determination device 100 calculates the degree of similarity based on the feature amount of the image and identifies the factor that causes the abnormality. As a result, the user of the sign determination device 100 can identify the cause of the abnormality of the bearing 15.
- the sign determination device 100 includes an update unit 109 that receives an input from the outside and updates the factor information when it is determined that the similarity is not equal to or higher than the second threshold value.
- the sign determination device 100 When the sign determination device 100 cannot specify the factor, the sign determination device 100 accepts an input from the outside and updates the factor information. Thereby, the sign determination device 100 can identify more factors.
- the specifying unit 108 of the sign determination device 100 further specifies the time by comparing the specified factor with the time information associated with the factor and the time until the abnormality occurs.
- the sign determination device 100 specifies the time until an abnormality occurs based on the time information. Thereby, the user of the sign determination device 100 can specify the time until the abnormality of the bearing 15 occurs.
- the sign determination device 100 includes an output unit 110 that outputs the contents specified by the specific unit 108.
- the sign determination device 100 outputs the factors specified by the specific unit 108, the part, the time, and the like. As a result, the user of the sign determination device 100 can confirm the factors, the parts, the time, and the like specified by the specific unit 108.
- the predictive determination method is to acquire the measurement result of the current flowing through the motor 11, frequency-analyze the measurement result and decompose it into frequency components, and generate an image showing time-series data of the frequency components. This includes determining whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the electric motor 11 based on the image.
- the user of the sign determination method determines whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the motor 11 based on the image showing the frequency component of the current of the motor 11. can do.
- the program according to the present disclosure allows the computer to acquire the measurement result of the current flowing through the motor 11, analyze the measurement result by frequency and decompose it into frequency components, and generate an image showing the time-series data of the frequency component. And, based on the image, it is executed as determining whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the electric motor 11.
- the user of the program can determine whether or not there is a sign of abnormality in the bearing 15 of the load 13 driven by the motor 11 based on the image showing the frequency component of the current of the motor 11. can.
- the sign determination system 1 determines the sign of abnormality of the bearing 15A and the bearing 15B of the load 13.
- the sign determination system 1 according to the second embodiment determines a sign for an abnormality including at least one of bearing 15, a broken rotor bar in the motor 11, a change in tension of the belt connecting the motor 11 and the load 13, and at least one of cavitation. do.
- the configuration of the sign determination system 1 according to the second embodiment is the same as the configuration of the sign determination system 1 according to the first embodiment shown in FIG. 1, the description of each configuration is omitted, and the configuration thereof will be described below.
- the present embodiment will be described with reference to the same reference numerals.
- the sign determination device 100 determines whether or not there is a sign of abnormality including at least one of the bearing 15, the broken rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and at least one of cavitation.
- the configuration of the sign determination device 100 is the same as the configuration of the sign determination device 100 according to the first embodiment shown in FIG. 2, the description of each configuration is omitted, and only the different configurations will be described. Further, hereinafter, the present embodiment will be described using the same reference numerals for the configuration.
- the image generation unit 103 greatly changes the frequency component as shown in the image shown in FIG. 3, similarly to the sign of abnormality of the bearing 15 according to the first embodiment. ..
- the analysis unit 102 decomposes the measurement result into two frequency components. It is assumed that the image generated by the image generator 103 shows a color graph of the two decomposed frequency components shown in FIG. 3, the bearing 15 at time T2, the breakage of the rotor bar in the motor 11, and the motor 11. It is assumed that an abnormality including at least one of cavitation and a change in tension of the belt connecting the load 13 has occurred. In this case, as in the first embodiment, the value of the frequency component after the time T2 is changed by Z from the value of the constant band shown before the time T1.
- the energy value of the frequency component indicating the state of the breakage of the rotor bar in the bearing 15 and the motor 11 and the change in the tension of the belt connecting the motor 11 and the load 13 has a certain value or more. If there is an abnormality including at least one of the breakage of the rotor bar in the bearing 15 and the motor 11 and the tension change of the belt connecting the motor 11 and the load 13 before the time T1 and after T1 to T2 and T2, this frequency component is present.
- the energy value of is subject to change. Cavitation is determined by increasing the energy values of multiple frequency components. When cavitation occurs at time T1, it can be determined by increasing the energy values of a plurality of frequency components after time T1 (for example, from blue to yellow).
- the detection unit 104 detects the change value of the frequency component based on the image generated by the image generation unit 103. For example, when the image is a graph as shown in FIG. 3, the detection unit 104 detects Z as a change value.
- the first determination unit 105 compares the change value detected by the detection unit 104 with a preset first threshold value, breaks the rotor bar in the bearing 15, the motor 11, and the belt connecting the motor 11 and the load 13. It is determined whether or not there is a sign of abnormality including at least one of tension change and cavitation. For example, in the first determination unit 105, when the change value detected by the detection unit 104 is equal to or greater than the first threshold value, the bearing 15, the rotor bar in the electric motor 11 is broken, and the tension of the belt connecting the electric motor 11 and the load 13 is changed. , Determine that there is a sign of anomalies including at least one of the cavitations.
- the first determination unit 105 breaks the rotor bar in the bearing 15 and the motor 11, and changes the tension of the belt connecting the motor 11 and the load 13. Determine that there are no signs of anomalies including at least one of the cavitations. If an abnormality including at least one of the bearing 15, the rotor bar in the motor 11, the breakage of the rotor bar, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation occurs, the value of the frequency component changes. By comparing with a certain threshold, whether or not there is a sign of abnormality including at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13, and cavitation. It can be determined.
- the calculation unit 106 is a feature amount of an image associated with a factor that causes an abnormality including at least one of bearing 15, a broken rotor bar in the motor 11, a change in tension of a belt connecting the motor 11 and a load 13, and at least one of cavitation. And, the similarity is calculated based on the feature amount of the image generated by the image generation unit 103. Examples of factors include poor lubrication, poor mounting, foreign matter intrusion, rust, and insufficient clearance of the bearing 15, breakage of the rotor bar in the motor 11, and tension of the belt connecting the motor 11 and the load 13. Changes include deterioration over time, and cavitation includes abnormalities in the pump (not shown) operated by the motor 11.
- the specific unit 108 illuminates the frequency component with the site information associated with the frequency component and the site where the abnormality occurs. At the same time, identify the site.
- Examples of the above-mentioned parts include the inner ring of the bearing 15 for the bearing 15, the outer ring of the bearing 15, the ball between the inner ring and the outer ring of the bearing 15, and the rotor bar and the motor 11 for the breakage of the rotor bar in the motor 11.
- the change in the tension of the belt connecting the load 13 and the load 13 is a belt, and the cavitation is a pump operated by an electric motor 11.
- the specific unit 108 compares F1, which is the value of the frequency component, with the site information. When the frequency component value F1 and the rotor bar are associated with the site information, the specific unit 108 identifies the rotor bar as the site where the abnormality occurs.
- the update unit 109 accepts an input from the outside and updates the factor information. For example, it is assumed that the image generated by the image generation unit 103 is determined that the similarity with the image in the factor information is not equal to or higher than the second threshold value.
- the user of the sign determination system 1 uses a device other than the sign determination device 100 to break the bearing 15, the rotor bar in the motor 11, and the tension of the belt connecting the motor 11 and the load 13. It is possible to identify the factors that cause anomalies, including at least one of change and cavitation.
- the output unit 110 outputs the content specified by the specific unit 108 to the notification device included in the sign determination system 1. For example, the output unit 110 outputs the factor, the portion, and the time specified by the specific unit 108 to the display device.
- the user of the sign determination system 1 causes an abnormality including at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation due to the display of the display device. And, the part where the abnormality occurs and the time until the abnormality occurs can be confirmed. In this way, the output unit 110 outputs a signal indicating an image to the display device, so that the user can easily grasp the content specified by the specific unit 108.
- step S7 the first determination unit 105 compares the change value detected in step S6 with the first threshold value, breaks the rotor bar in the bearing 15, the motor 11, and the belt connecting the motor 11 and the load 13. Determine if there is a sign of anomalies including at least one of tension changes and cavitation.
- step S11 via step S10 the specific portion 108 causes an abnormality including at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13, and cavitation. Identify the site.
- step S12 the specific portion 108 is the time until an abnormality including at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13 and the cavitation occurs.
- step S11 via step S15 the specific portion 108 has an abnormality including at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13. Identify the site of occurrence.
- the analysis unit 102 decomposes the frequency components into a plurality of frequency components, and the embodiment using the frequency components has been described.
- the frequency component that becomes the peak is used among the frequency components decomposed by the analysis unit 102. It is possible to acquire and take an aspect using the frequency component that becomes the peak.
- the peak frequency component is set with a threshold value at the frequency, and the frequency component that becomes the peak when the threshold value is exceeded is acquired. Further, by identifying the energy value of the frequency component that becomes the peak by color, it is possible to determine whether or not there is a sign of abnormality even if a peak occurs in an unexpected frequency component.
- the sign determination device 100 includes a measurement result acquisition unit 101 that acquires the measurement result of the current flowing through the motor 11, an analysis unit 102 that frequency-analyzes the measurement result and decomposes it into frequency components, and a time series of frequency components. It includes an image generator 103 that generates an image showing data, and based on the image, at least one of a bearing 15, a broken rotor bar in the motor 11, a change in tension of the belt connecting the motor 11 and the load 13, and cavitation. A first determination unit 105 for determining whether or not there is a sign of abnormality is provided.
- the sign determination device 100 determines at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13, and cavitation based on an image showing the frequency component of the current of the motor 11. It is possible to determine whether or not there is a sign of an abnormality including. Further, the sign determination device 100 can determine whether or not the sign is present at a long distance even if it is not provided around the electric motor 11 and the load 13.
- the analysis unit 102 of the sign determination device 100 decomposes into a plurality of frequency components by FFT, and the image shows the time series data of each of the plurality of frequency components.
- the sign determination device 100 is based on an image showing a plurality of frequency components decomposed by the FFT, the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and at least cavitation. It is possible to determine whether or not there is a sign of an abnormality including one.
- the image of the sign determination device 100 further shows time-series data of the energy value associated with the frequency component, and includes a detection unit 104 for detecting the change value of the frequency component based on the image. 1
- the determination unit 105 determines whether or not there is a sign by comparing the change value with a preset first threshold value.
- the sign determination device 100 determines at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation based on the image showing the values of the frequency component and the energy. It is possible to determine whether or not there is a sign of an abnormality including.
- the frequency with respect to the energy value is shown as a color graph with time and frequency as axes, and the energy value is shown in color on the color graph.
- the sign determination device 100 includes the bearing 15, the breakage of the rotor bar in the motor 11, the change in the tension of the belt connecting the motor 11 and the load 13, and at least the cavitation. It is possible to determine whether or not there is a sign of an abnormality including one.
- the sign determination device 100 includes a specific unit 108 that identifies a site by comparing the frequency component with the site information associated with the frequency component and the site where the abnormality occurs when it is determined that there is a sign.
- the sign determination device 100 identifies the site where the abnormality occurs based on the site information. As a result, the user of the sign determination device 100 identifies a site where an abnormality including at least one of the bearing 15, the broken rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation occurs. can do.
- the identification unit 108 of the sign determination device 100 further identifies the factor based on the factor information in which the image and the factor that causes the abnormality are associated with each other.
- the sign determination device 100 identifies the factor that causes the abnormality based on the factor information. As a result, the user of the sign determination device 100 identifies a factor that causes an abnormality including at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation. can do.
- the sign determination device 100 determines that there is a sign with the calculation unit 106 that calculates the similarity based on the feature amount of the image associated with the factor and the feature amount of the image generated by the image generation unit 103. If this is the case, a second determination unit 107 for determining whether or not the similarity is equal to or higher than a preset second threshold value is provided, and the specific unit 108 is determined to be equal to or higher than the second threshold value. , Identify the factors related to the calculated similarity.
- the sign determination device 100 calculates the degree of similarity based on the feature amount of the image and identifies the factor that causes the abnormality. As a result, the user of the sign determination device 100 identifies a factor that causes an abnormality including at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation. can do.
- the sign determination device 100 includes an update unit 109 that receives an input from the outside and updates the factor information when it is determined that the similarity is not equal to or higher than the second threshold value.
- the sign determination device 100 When the sign determination device 100 cannot specify the factor, the sign determination device 100 accepts an input from the outside and updates the factor information. Thereby, the sign determination device 100 can identify more factors.
- the specifying unit 108 of the sign determination device 100 further specifies the time by comparing the specified factor with the time information associated with the factor and the time until the abnormality occurs.
- the sign determination device 100 specifies the time until an abnormality occurs based on the time information. As a result, the user of the sign determination device 100 can take time until an abnormality including at least one of bearing 15, breakage of the rotor bar in the electric motor 11, change in tension of the belt connecting the electric motor 11 and the load 13 occurs, and cavitation. Can be identified.
- the sign determination device 100 includes an output unit 110 that outputs the contents specified by the specific unit 108.
- the sign determination device 100 outputs the factors specified by the specific unit 108, the part, the time, and the like. As a result, the user of the sign determination device 100 can confirm the factors, the parts, the time, and the like specified by the specific unit 108.
- the predictive determination method is to acquire the measurement result of the current flowing through the motor 11, frequency-analyze the measurement result and decompose it into frequency components, and generate an image showing time-series data of the frequency components. Based on the image, it is determined whether or not there is a sign of abnormality including at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13, and cavitation. Including doing.
- the user of the predictive determination method can use the bearing 15, the broken rotor bar in the electric motor 11, and the belt connecting the electric motor 11 and the load 13 based on the image showing the frequency component of the current of the electric motor 11. It is possible to determine whether or not there is a sign of abnormality including at least one of tension change and cavitation.
- the program according to the present disclosure allows the computer to acquire the measurement result of the current flowing through the motor 11, analyze the measurement result by frequency and decompose it into frequency components, and generate an image showing the time-series data of the frequency component. And, based on the image, whether there is a sign of abnormality including at least one of bearing 15, breakage of the rotor bar in the motor 11, change in tension of the belt connecting the motor 11 and the load 13, and cavitation. It is executed as a judgment.
- the user of the program executes the program to break the bearing 15, the rotor bar in the motor 11, and the tension change of the belt connecting the motor 11 and the load 13, based on the image showing the frequency component of the current of the motor 11. It can be determined if there is a sign of anomalies including at least one of the cavitations.
- the sign determination device 100 According to the third embodiment, the detection unit 104 detects the change value of the frequency component based on the generated image, and the first determination unit 105 detects the detection unit 104. It has been described as determining that there is a sign of abnormality when the change value detected by is equal to or higher than the first threshold value. Further, the calculation unit 106 has been described as extracting the feature amount of the image generated by the image generation unit 103 by the method of the convolutional neural network and calculating the similarity between the extracted feature amounts.
- the second determination unit 107 determines whether or not the similarity calculated by the calculation unit 106 is equal to or higher than the preset second threshold value.
- the identification unit 108 has been described as specifying a factor related to the similarity calculated by the calculation unit 106.
- the processing unit 112 which will be described later, identifies whether or not there is a sign of an abnormality, and if there is a sign of an abnormality, the time until the abnormality occurs. Identify the location of the anomaly and the cause of the anomaly.
- the sign determination device 100 includes a measurement result acquisition unit 101, an analysis unit 102, a processing unit 112 (an example of a processing unit), an update unit 109, an output unit 110, and a storage unit 111.
- the processing unit 112 Based on each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102, the processing unit 112 indicates the presence or absence of a sign of an abnormality, the time until the abnormality actually occurs, and the occurrence of the abnormality. Predict the location and the cause of the abnormality.
- the processing unit 112 uses, for example, a trained model (for example, a convolutional neural network) in which parameters are determined using teacher data, which is one of machine learning, so that the presence or absence of a sign of abnormality and the abnormality are actually present. Predict the time until occurrence, the location of the abnormality, and the cause of the abnormality.
- a trained model for example, a convolutional neural network
- the trained model used by the processing unit 112 to predict the sign of abnormality of the bearing 15 is referred to as the first trained model.
- a trained model used by the processing unit 112 to predict signs of anomalies including at least one of bearing 15, rotor bar breakage in motor 11, changes in tension of the belt connecting motor 11 and load 13, and at least one cavitation. is the second trained model.
- a first trained model that predicts a sign of abnormality of the bearing 15 is given as a specific example of the trained model so that the method of determining the parameters can be easily understood.
- the processing unit 112 predicts a sign of abnormality in the bearing 15 based on each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102.
- the processing unit 112 describes a trained model in which a sign of abnormality of the bearing 15 is predicted based on each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102.
- each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102 becomes one of the input data. Further, the time until an abnormality occurs in the input data, the location where the abnormality occurs, and the cause of the abnormality become one of the output data. Then, the combination of the input data and the output data corresponding to the input data becomes one of the teacher data. For example, before predicting the sign of abnormality by the sign determination device 100, each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102 when another device is used for predicting the sign of abnormality.
- the output data (that is, the time until the anomaly actually occurs, the location where the anomaly occurs, and the data indicating the cause of the anomaly) are specified.
- the output data (that is, the abnormality with respect to the time series data) is found in the input data which is the time series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102. Specify the time until the abnormality actually occurs, the location where the abnormality occurred, and the data indicating the cause of the abnormality).
- teacher data composed of a plurality of data in which input data and output data are combined.
- the teacher data is data used for determining the parameter value in the learning model in which the parameter value is not determined.
- FIG. 8 is a diagram showing an example of teacher data.
- the input data which is each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102, and the output data for the input data (that is, the time until the abnormality actually occurs, the location where the abnormality occurs, and the location where the abnormality occurs).
- Data indicating the cause of the abnormality is a set of data.
- the teacher data includes 10,000 sets of data.
- the teacher data is divided into, for example, training data, evaluation data, and test data.
- the ratio of the training data, the evaluation data, and the test data include 70%, 15%, 15%, 95%, 2.5%, and 2.5%.
- the teacher data of data # 1 to # 10000 is divided into data # 1 to # 7000 as training data, data # 7001 to # 8500 as evaluation data, and data # 8501 to # 10000 as test data 15%.
- data # 1 which is training data is input to the convolutional neural network, which is a learning model.
- the convolutional neural network outputs either the absence of anomalies, the time until anomalies actually occur, the location of the anomaly, and the cause of the anomaly.
- Input of training data Every time data is input to the convolutional neural network and there is no abnormality, or the time until the abnormality actually occurs, the location of the abnormality and the cause of the abnormality are output from the convolutional neural network. (In this case, each time the data of data # 1 to # 7000 is input to the convolutional neural network), the weighting of the data combination between the nodes is shown by performing back propagation, for example, according to the output. Change the parameters (ie, change the model of the convolutional neural network). In this way, the training data is input to the neural network to adjust the parameters.
- the input data (data # 7001 to # 8500) of the evaluation data are input in order to the convolutional neural network whose parameters have been changed by the training data.
- the convolutional neural network outputs either the absence of anomalies or the time until an anomaly actually occurs, the location of the anomaly, and the cause of the anomaly, depending on the input evaluation data.
- the output of the convolutional neural network becomes the output data associated with the input data in FIG. Change the parameters.
- the convolutional neural network (that is, the learning model) in which the parameters are determined in this way is the first trained model.
- the input data of the test data (data # 8501 to # 10000) is input in order to the convolutional neural network of the first trained model.
- the convolutional neural network of the trained model outputs either the absence of anomalies or the time until the anomalies actually occur, the location of the anomaly, and the cause of the anomaly, depending on the input test data. do.
- the convolutional neural network of the first trained model matches the output data associated with the input data in FIG. 8
- the convolutional neural network of the first trained model is desired. It is a model of. Further, even in one of the test data, if the output data output by the convolutional neural network of the first trained model does not match the output data associated with the input data in FIG.
- new teacher data is used.
- the determination of the parameters of the training model described above is repeated until a first trained model having the desired parameters is obtained.
- the first trained model is recorded in the storage unit 111.
- FIG. 9 is a diagram showing an example of teacher data.
- the parameters of the second trained model can be determined in the same manner as the first trained model described above. However, as shown in FIG. 9, the location where the abnormality occurs is not only the bearing but also the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, cavitation, etc., and there are multiple causes of the abnormality. do.
- FIG. 10 is a flowchart showing the operation of the sign determination system 1.
- the measuring instrument 16 measures the current and acquires an analog current waveform (step S1).
- the converter 17 converts the analog current waveform acquired in step S1 into digital data (step S2).
- the measurement result acquisition unit 101 acquires the measurement result, which is digital data, from the converter 17 (step S3).
- the analysis unit 102 decomposes the measurement result acquired in step S3 into frequency components by FFT (step S4).
- the processing unit 112 inputs each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102 into the trained model (step S21).
- the trained model of the processing unit 112 outputs the time until the abnormality actually occurs, the location where the abnormality occurs, and the cause of the abnormality (step S22).
- the output unit 110 outputs the content specified by the processing unit 112 (that is, the time until the abnormality actually occurs, the location where the abnormality occurs, and the cause of the abnormality) to the notification device (step S23).
- the notification device notifies the user of the sign determination system 1 of the content specified by the processing unit 112 (step S24).
- the processing unit 112 determines the presence or absence of a sign of abnormality and the abnormality is actually present based on each time-series data decomposed into a plurality of frequency components by the FFT by the analysis unit 102. Predict the time until occurrence, the location of the abnormality, and the cause of the abnormality.
- the sign determination device 100 includes an abnormality including at least one of the bearing 15, the breakage of the rotor bar in the motor 11, the tension change of the belt connecting the motor 11 and the load 13, and the cavitation. It is possible to determine whether or not there is a sign.
- the sign determination device 100 may be information in which the factor that causes the abnormality of the bearing 15 is associated with the image and the countermeasure against the factor. As a result, the user of the sign determination device 100 can confirm not only the factor but also an appropriate countermeasure for the factor.
- the update unit 109 of the sign determination device 100 may receive an input from the outside and update the time information or the part information.
- FIG. 11 is a diagram showing an example of the sign determination system 1 according to the fifth embodiment.
- the sign determination device 100 may be configured as a system capable of communicating with the terminal device 200 having the request unit 2001.
- the request unit 2001 of the terminal device 200 may request the sign determination device 100 to determine the sign of abnormality of the electric motor 11 and the load 13 of the electric motor 11.
- the terminal device 200 may have the function of the output unit 110, and the terminal device 200 may be configured to output the sign determination result of the abnormality in the sign determination device 100 as the above-mentioned notification device.
- FIG. 12 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
- the computer 1100 includes a processor 1110, a main memory 1120, a storage 1130, and an interface 1140.
- the above-mentioned sign determination device 100 is mounted on the computer 1100.
- the operation of each of the above-mentioned processing units is stored in the storage 1130 in the form of a program.
- the processor 1110 reads a program from the storage 1130, expands it into the main memory 1120, and executes the above processing according to the program. Further, the processor 1110 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 1120 according to the program.
- the program may be for realizing a part of the functions exerted by the computer 1100.
- the program may exert its function in combination with another program already stored in the storage 1130, or in combination with another program mounted on another device.
- the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
- PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate).
- PLDs Programmable Logic Device
- PAL Programmable Array Logic
- GAL Generic Array Logic
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate
- Examples of the storage 1130 include magnetic disks, magneto-optical disks, semiconductor memories, and the like.
- the storage 1130 may be internal media directly connected to the bus of computer 1100, or external media connected to the computer via interface 1140 or a communication line.
- this program is distributed to the computer 1100 via a communication line, the distributed computer 1100 may expand the program to the main memory 1120 and execute the above processing.
- the storage 1130 is a non-temporary tangible storage medium.
- the program may be for realizing a part of the above-mentioned functions. Further, the program may be a so-called difference file (difference program) that realizes the above-mentioned function in combination with another program already stored in the storage 1130.
- difference file difference program
- the sign determination device 100 includes a measurement result acquisition unit 101 that acquires the measurement result of the current flowing through the motor 11, an analysis unit 102 that frequency-analyzes the measurement result and decomposes it into frequency components, and a frequency component.
- a prediction unit 105 for determining whether or not at least one of the electric motor 11 and the load 13 of the electric motor 11 has a sign of abnormality is provided based on the time-series data of.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the electric motor 11 and the load 13 of the electric motor 11 based on the frequency component of the current of the electric motor 11. Further, the sign determination device 100 can determine whether or not the sign is present at a long distance even if it is not provided around the electric motor 11 and the load 13 which are affected by the generation of vibration, temperature change, and the like. ..
- the analysis unit 102 of the sign determination device 100 decomposes into a plurality of frequency components by the FFT, and the prediction unit (105, 112) uses the electric motor 11 based on the time series data of each of the plurality of frequency components. And whether or not there is a sign of abnormality in at least one of the loads 13.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 based on a plurality of frequency components decomposed by the FFT.
- the signs of abnormality of the motor 11 determined by the prediction unit (105, 112) of the sign determination device 100 are the breakage of the rotor bar in the motor 11, the change in the tension of the belt connecting the motor 11 and the load 13. And at least one of cavitation.
- the sign determination device 100 can determine whether or not there is a breakage of the rotor bar in the motor 11, a change in tension of the belt connecting the motor 11 and the load 13, and a sign of an abnormality including at least one of cavitation. ..
- the prediction unit (112) of the sign determination device 100 uses the time-series data of the frequency component as input data and the determination result of whether or not there is a sign of abnormality in the input data as output data. Includes trained models whose parameters have been determined using the data.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 by using the trained model whose parameters are determined using the teacher data.
- the sign determination device 100 includes an image generation unit 103 that generates an image showing time-series data of frequency components, and the prediction unit 105 has an abnormality in at least one of the motor 11 and the load 13 based on the image. Determine if there is a sign of.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 based on an image showing the frequency component of the current of the motor 11. The sign determination device 100 can determine whether or not the sign is present at a long distance even if it is not provided around the motor 11 and the load 13 which are affected by the generation of vibration, temperature change, and the like.
- the analysis unit 102 of the sign determination device 100 decomposes into a plurality of frequency components by FFT, and the image shows the time series data of each of the plurality of frequency components.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 based on an image showing a plurality of frequency components decomposed by the FFT.
- the image of the sign determination device 100 further shows the time-series data of the energy value associated with the frequency component, and the detection unit 104 that detects the change value of the frequency component based on the image.
- the prediction unit 105 determines whether or not there is a sign by comparing the change value with a preset first threshold value.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 based on an image showing the values of the frequency component and the energy.
- the frequency component is shown as a color graph centered on time and frequency, and the energy value is shown in color on the color graph.
- the sign determination device 100 can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 based on the image of the color graph showing the values of the frequency component and the energy.
- the sign determination device 100 compares the frequency component with the part information in which the frequency component and the part where the abnormality occurs are associated with the specific part 108 to specify the part. To prepare for.
- the sign determination device 100 identifies the site where the abnormality occurs based on the site information. Thereby, the user of the sign determination device 100 can identify the portion where the abnormality of at least one of the motor 11 and the load 13 occurs.
- the identification unit 108 of the sign determination device 100 further identifies the factor based on the factor information associated with the image and the factor that causes the abnormality.
- the sign determination device 100 identifies the factor that causes the abnormality based on the factor information. As a result, the user of the sign determination device 100 can identify the cause of the abnormality of the bearing 15.
- the sign determination device 100 has a calculation unit 106 that calculates the similarity based on the feature amount of the image associated with the factor and the feature amount of the image generated by the image generation unit 103, and the sign. If it is determined to be present, a second determination unit 107 for determining whether or not the similarity is equal to or higher than a preset second threshold value is provided, and the specific unit 108 is determined to be equal to or higher than the second threshold value. If so, identify the factors related to the calculated similarity.
- the sign determination device 100 calculates the degree of similarity based on the feature amount of the image and identifies the factor that causes the abnormality. Thereby, the user of the sign determination device 100 can identify the cause of the abnormality of at least one of the electric motor 11 and the load 13.
- the sign determination device 100 includes an update unit 109 that accepts an input from the outside and updates the factor information when it is determined that the similarity is not equal to or higher than the second threshold value.
- the sign determination device 100 When the sign determination device 100 cannot specify the factor, the sign determination device 100 accepts an input from the outside and updates the factor information. Thereby, the sign determination device 100 can identify more factors.
- the specifying unit 108 of the sign determination device 100 further specifies the time by comparing the specified factor with the time information associated with the factor and the time until the abnormality occurs.
- the sign determination device 100 specifies the time until an abnormality occurs based on the time information. Thereby, the user of the sign determination device 100 can specify the time until the abnormality of at least one of the electric motor 11 and the load 13 occurs.
- the sign determination device 100 includes an output unit 110 that outputs the contents specified by the specific unit 108.
- the sign determination device 100 outputs the factors specified by the specific unit 108, the part, the time, and the like. As a result, the user of the sign determination device 100 can confirm the factors, the parts, the time, and the like specified by the specific unit 108.
- the sign determination system 1 is an abnormality sign determination system including a sign determination device 100 capable of communicating with the terminal device 200, and the terminal device 200 is a sign of an abnormality with respect to the motor 11 and the load 13 of the motor 11.
- the sign determination device 100 includes a request unit 2001 that requests determination, and the sign determination device 100 frequency-analyzes the measurement result and the measurement result acquisition unit 101 that acquires the measurement result of the current flowing through the electric motor 11 in response to the request from the terminal device 200.
- An analysis unit 102 that decomposes into frequency components, and a prediction unit 105 that determines whether or not at least one of the motor 11 and the load 13 of the motor 11 has a sign of abnormality based on the time-series data of the frequency components. Be prepared.
- the sign determination system 1 can determine whether or not there is a sign of abnormality in at least one of the load 13 of the motor 11 and the motor 11 based on the frequency component of the current of the motor 11. Further, the sign determination device 100 can determine whether or not the sign is present at a long distance even if it is not provided around the electric motor 11 and the load 13 which are affected by the generation of vibration, temperature change, and the like. ..
- the predictive determination method according to the present disclosure is based on acquiring the measurement result of the current flowing through the motor 11, frequency-analyzing the measurement result and decomposing it into frequency components, and time-series data of the frequency components. , Includes determining whether at least one of the motor 11 and the load 13 of the motor 11 has a sign of abnormality.
- the user of the sign determination method can determine whether or not there is a sign of abnormality in at least one of the electric motor 11 and the load 13 of the electric motor 11 based on the frequency component of the current of the electric motor 11. can. Further, by using the sign determination method, the user of the sign determination method can see the above sign at a long distance even if it is not provided around the motor 11 and the load 13 which are affected by the generation of vibration and the temperature change. It can be determined whether or not.
- the program according to the present disclosure is based on the acquisition of the measurement result of the current flowing through the motor 11 on the computer, the frequency analysis of the measurement result and the decomposition into the frequency component, and the time series data of the frequency component. Then, it is determined whether or not at least one of the electric motor 11 and the load 13 of the electric motor 11 has a sign of abnormality.
- the user of the program can determine whether or not there is a sign of abnormality in at least one of the motor 11 and the load 13 of the motor 11 based on the frequency component of the current of the motor 11. can. Further, does the user of the program have the above-mentioned sign at a long distance by causing the computer to execute the program even if it is not provided around the motor 11 and the load 13 which are affected by the generation of vibration and the temperature change? It can be determined whether or not.
- the terminal device 200 has a request step for requesting a sign determination of an abnormality with respect to the motor 11 and the load of the motor 11, and is a sign determination device capable of communicating with the terminal device 200.
- the 100 has a measurement result acquisition step of acquiring the measurement result of the current flowing through the motor 11, an analysis step of frequency-analyzing the measurement result and decomposing it into frequency components, and time-series data of the frequency components. Based on the above, there is a prediction step for determining whether or not there is a sign of abnormality in at least one of the electric motor 11 and the load 13 of the electric motor 11.
- the user of the sign determination method can determine whether or not there is a sign of abnormality in at least one of the electric motor 11 and the load 13 of the electric motor 11 based on the frequency component of the current of the electric motor 11. can. Further, by using the sign determination method, the user of the sign determination method can see the above sign at a long distance even if it is not provided around the motor 11 and the load 13 which are affected by the generation of vibration and the temperature change. It can be determined whether or not.
- Predictive judgment system 10
- Power source 11
- Motor 12 Electric wire 13
- Load 14 Shaft 15
- Bearing 16 Measuring instrument 17
- Converter 100
- Predictive judgment device 101
- Measurement result acquisition unit 102
- Analysis unit 103
- Image generation unit 104
- Detection unit 105
- First judgment unit 106
- Calculation unit 107
- 2nd judgment unit 108
- Specific unit 109
- Update unit 110
- Output unit 111
- Storage unit 112
- Processing unit 200
- Terminal device 1100
- Computer 1110
- Processor 1120
- Main memory 1130
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Magnetic Record Carriers (AREA)
Abstract
予兆判定装置は、電動機を流れる電流の計測結果を取得する計測結果取得部と、計測結果を周波数解析して周波数成分に分解する解析部と、周波数成分の時系列データに基づいて、電動機および電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測部と、を備える。
Description
本開示は、予兆判定装置、予兆判定システム、予兆判定方法及びプログラムに関する。
本願は、2020年6月15日に日本に出願された特願2020-102906号、および、2021年3月17日に日本に出願された特願2021-043598号について優先権を主張し、その内容をここに援用する。
本願は、2020年6月15日に日本に出願された特願2020-102906号、および、2021年3月17日に日本に出願された特願2021-043598号について優先権を主張し、その内容をここに援用する。
特許文献1は、電動機の定格電流の基準正弦波信号波形から求められた参照振幅確率密度関数と、電動機の稼働時の電流波形から求められた点検時振幅確率密度関数に基づいて、電動機に異常があるか否かを判定する電動機の異常診断方法の技術が開示されている。
特許文献1には、電動機により駆動される負荷の軸受に異常があるか否かを判定する技術が開示されている。しかし、軸受の異常の検知だけではなく軸受以外の異常を検知する技術も求められている。
本開示の目的は、予兆判定対象を適切に判定することが可能な予兆判定装置、予兆判定システム、予兆判定方法及びプログラムを提供することにある。
本開示の目的は、予兆判定対象を適切に判定することが可能な予兆判定装置、予兆判定システム、予兆判定方法及びプログラムを提供することにある。
本開示に係る予兆判定装置は、電動機を流れる電流の計測結果を取得する計測結果取得部と、前記計測結果を周波数解析して周波数成分に分解する解析部と、前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測部と、を備える。
本開示に係る予兆判定システムは、端末装置と通信可能な予兆判定装置からなる異常の予兆判定システムであって、前記端末装置は、電動機および前記電動機の負荷に関して異常の予兆判定を要求する要求部と、を備え、前記予兆判定装置は、前記端末装置からの要求により、前記電動機を流れる電流の計測結果を取得する計測結果取得部と、前記計測結果を周波数解析して周波数成分に分解する解析部と、前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測部と、を備える。
本開示に係る予兆判定方法は、電動機を流れる電流の計測結果を取得することと、前記計測結果に基づいて、前記電流を周波数解析して周波数成分に分解することと、前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することと、を含む。
本開示に係るプログラムは、コンピュータに、電動機を流れる電流の計測結果を取得することと、前記計測結果に基づいて、前記電流を周波数解析して周波数成分に分解することと、前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することと、を実行させる。
本開示に係る予兆判定方法は、端末装置が、電動機および前記電動機の負荷に関して異常の予兆判定を要求する要求ステップと、を有し、前記端末装置と通信可能な予兆判定装置が、前記端末装置からの要求により、前記電動機を流れる電流の計測結果を取得する計測結果取得ステップと、前記計測結果を周波数解析して周波数成分に分解する解析ステップと、前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測ステップと、を有する予兆判定方法。
上記態様のうち少なくとも1つの態様によれば、電動機および電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することができる。
〈第1の実施形態〉
《予兆判定システムの構成》
以下、図面を参照しながら実施形態に係る予兆判定システム1の構成について詳しく説明する。
予兆判定システム1は、電動機11により駆動される負荷13の異常の予兆を判定する。
《予兆判定システムの構成》
以下、図面を参照しながら実施形態に係る予兆判定システム1の構成について詳しく説明する。
予兆判定システム1は、電動機11により駆動される負荷13の異常の予兆を判定する。
図1は、第1の実施形態に係る予兆判定システム1の構成を示す図である。
予兆判定システム1は、電力源10と、電動機11と、電線12と、負荷13と、計測器16と、変換器17と、予兆判定装置100を備える。
予兆判定システム1は、電力源10と、電動機11と、電線12と、負荷13と、計測器16と、変換器17と、予兆判定装置100を備える。
電力源10は電線12を介して電動機11に電流を供給する。
電動機11は電線12を介して電力源10から電流を受け入れる。電流を受け入れた電動機11は、電動機11が備える軸14Aを回転させて、負荷13が備える軸14Bを回転させる。
電動機11は電線12を介して電力源10から電流を受け入れる。電流を受け入れた電動機11は、電動機11が備える軸14Aを回転させて、負荷13が備える軸14Bを回転させる。
電動機11により軸14Bが回転される。すなわち、負荷13は電動機11により駆動される。また、負荷13は、軸14Bを支持する軸受15A及び軸受15Bを備える。軸受15A及び軸受15Bには潤滑油が供給される。潤滑油は軸受15A及び軸受15Bと軸14Bとの摩擦を低減させる。
計測器16は電線12を流れる電流を計測する。すなわち、計測器16は電線12を介して電動機11に流れる電流を計測する。計測器16の例としては、検流器(Current Transducer、CT)が挙げられる。計測器16は、電流を計測してアナログの電流波形を取得する。
変換器17は、計測器16で取得したアナログの電流波形をデジタルの電流データに変換する。変換器17は、変換したデジタルの電流データを予兆判定装置100に送信する。すなわち、変換器17は、電動機11を流れる電流の計測結果を予兆判定装置100に送信する。
《予兆判定装置の構成》
以下、予兆判定装置100の構成について説明する。
予兆判定装置100は、電動機11により駆動される負荷13の軸受15A及び軸受15Bの異常の予兆があるか否かを判定する。
軸受15A及び軸受15Bの異常の例としては、軸14Bと軸受15A及び軸受15Bの摩擦による、軸受15A及び軸受15Bの形状変化が挙げられる。
以下、予兆判定装置100の構成について説明する。
予兆判定装置100は、電動機11により駆動される負荷13の軸受15A及び軸受15Bの異常の予兆があるか否かを判定する。
軸受15A及び軸受15Bの異常の例としては、軸14Bと軸受15A及び軸受15Bの摩擦による、軸受15A及び軸受15Bの形状変化が挙げられる。
図2は、予兆判定装置100の構成を示す概略ブロック図である。
予兆判定装置100は、計測結果取得部101と、解析部102と、画像生成部103と、検出部104と、第1判定部105(予測部の一例)と、算出部106と、第2判定部107と、特定部108と、更新部109と、出力部110と、記憶部111を備える。
予兆判定装置100は、計測結果取得部101と、解析部102と、画像生成部103と、検出部104と、第1判定部105(予測部の一例)と、算出部106と、第2判定部107と、特定部108と、更新部109と、出力部110と、記憶部111を備える。
計測結果取得部101は、変換器17から送信されたデジタルの電流データを取得する。すなわち、計測結果取得部101は電動機11を流れる電流の計測結果を取得する。計測結果とは、デジタルの電流データである。
解析部102は、FFT(Fast Fourier Transform)により、計測結果取得部101が取得した計測結果を複数の周波数成分に分解する。
解析部102は、FFT(Fast Fourier Transform)により、計測結果取得部101が取得した計測結果を複数の周波数成分に分解する。
画像生成部103は複数の周波数成分のそれぞれの時系列データと、当該周波数成分に関連付けられたエネルギーの値の時系列データを示す画像を生成する。また、画像生成部103が生成する画像は、周波数成分を時間及び周波数を軸とするカラーグラフとして示し、カラーグラフ上にエネルギーの値を示す。カラーグラフは、点の集合によって表される。
図3は、画像生成部103が生成する画像の一例である。
図3は、画像生成部103が生成する画像の一例である。
例えば、解析部102は計測結果を2つの周波数成分に分解する。図3には、分解された2つの周波数成分のカラーグラフが示されている。時間T2に負荷13の軸受15の異常が発生したとする。
時間T1まで2つのエネルギー値に対する周波数の値は一定の帯域の値である。負荷13に異常がない場合、電動機11に流れる電流に変化が無いため、電流の計測結果の分解による2つの周波数成分の値は、時間T1までは一定の帯域の値である。
時間T2以降の周波数成分の値は、時間T1以前に示した一定の帯域の値からZの分が変化している。時間T2において軸受15に異常が発生し、電動機11に流れる電流の計測結果を分解した場合、時間T1とは異なる値の周波数成分となるためである。
図3の横軸が周波数を示し、縦軸が時間を示しているが、横軸に時間を示し、縦軸に周波数を示しても良い。
時間T1まで2つのエネルギー値に対する周波数の値は一定の帯域の値である。負荷13に異常がない場合、電動機11に流れる電流に変化が無いため、電流の計測結果の分解による2つの周波数成分の値は、時間T1までは一定の帯域の値である。
時間T2以降の周波数成分の値は、時間T1以前に示した一定の帯域の値からZの分が変化している。時間T2において軸受15に異常が発生し、電動機11に流れる電流の計測結果を分解した場合、時間T1とは異なる値の周波数成分となるためである。
図3の横軸が周波数を示し、縦軸が時間を示しているが、横軸に時間を示し、縦軸に周波数を示しても良い。
2つの周波数成分のカラーグラフ上には、それぞれの周波数成分のエネルギーの値が色で示される。色の例としては、青色、緑色、黄色、赤色が挙げられる。エネルギーの値が低い場合、青色で示し、エネルギーの値が高くなるほど、緑色、黄色、赤色の順で色を示すようになる。
軸受の状態を示す周波数成分のエネルギー値は、ある一定以上の値を持っている為、時間T1以前、T1~T2、T2以降も同色(例えば、赤色)で示される。
画像生成部103は、カラーグラフ上だけでなく、カラーグラフ以外の箇所に色を示しても良い。例えば、画像生成部103は、生成する画像においてカラーグラフ以外の箇所を濃い青色で示し、該当周波数に、エネルギーの値がゼロ又はゼロに近い値であることを示しても良い。
軸受の状態を示す周波数成分のエネルギー値は、ある一定以上の値を持っている為、時間T1以前、T1~T2、T2以降も同色(例えば、赤色)で示される。
画像生成部103は、カラーグラフ上だけでなく、カラーグラフ以外の箇所に色を示しても良い。例えば、画像生成部103は、生成する画像においてカラーグラフ以外の箇所を濃い青色で示し、該当周波数に、エネルギーの値がゼロ又はゼロに近い値であることを示しても良い。
検出部104は、画像生成部103が生成した画像に基づいて、周波数成分の変化値を検出する。例えば、画像が図3のようなグラフである場合、検出部104は変化値としてZを検出する。
第1判定部105は、検出部104が検出した変化値を、予め設定された第1閾値に照らし合わせて、軸受15の異常の予兆があるか否かを判定する。例えば、第1判定部105は、検出部104が検出した変化値が第1閾値以上である場合、軸受15の異常の予兆があると判定する。また、第1判定部105は、検出部104が検出した変化値が第1閾値以上でない場合、軸受15の異常の予兆がないと判定する。軸受15の異常が発生した場合、周波数成分の値は変化するため、変化値を一定の閾値に照らし合わせることで、軸受15の異常の予兆があるか否かを判定することができる。
算出部106は、軸受15の異常が発生する要因に関連付けられた画像の特徴量と、画像生成部103により生成された画像の特徴量に基づいて、類似度を算出する。要因の例としては、潤滑不良と、取り付け不良と、異物侵入と、錆と、すきま過少などが挙げられる。
予兆判定システム1のユーザは予め、要因と画像とを関連付けた情報である要因情報を、記憶部111に記録する。上記画像とは、周波数成分の時系列データとエネルギーの値を示す画像である。
図4は、要因情報における画像の一例である。例えば、予兆判定システム1のユーザは、図4のAの画像と要因Aとを関連付けた要因情報を記憶部111に記録する。また、予兆判定システム1のユーザは、図4のBの画像と要因Bとを関連付けた要因情報を記憶部111に記録する。
予兆判定システム1のユーザは予め、要因と画像とを関連付けた情報である要因情報を、記憶部111に記録する。上記画像とは、周波数成分の時系列データとエネルギーの値を示す画像である。
図4は、要因情報における画像の一例である。例えば、予兆判定システム1のユーザは、図4のAの画像と要因Aとを関連付けた要因情報を記憶部111に記録する。また、予兆判定システム1のユーザは、図4のBの画像と要因Bとを関連付けた要因情報を記憶部111に記録する。
例えば、算出部106は、畳み込みニューラルネットワーク(Convolution Neural Network、CNN)の手法により、要因に関連付けられた図4のような画像の特徴量を抽出する。また、算出部106は、畳み込みニューラルネットワークの手法により、画像生成部103が生成した画像の特徴量を抽出する。算出部106は、抽出した上記の特徴量の間の類似度を算出する。算出部106は、要因情報における要因に関連付けられた、複数の画像の特徴量と、画像生成部103により生成された画像の特徴量との類似度を算出する。すなわち、算出部106は、複数の要因情報におけるそれぞれの画像との間で、複数の類似度を算出する。
なお、算出部106の動作の態様としては、予兆判定システム1のユーザが予兆判定システム1を用いる前に、既知の要因と既知の画像に基づいて抽出する態様と、予兆判定システム1のユーザが予兆判定システム1を用いるときに、新たに発生した要因と新たに発生した画像とに基づいて抽出する態様が挙げられる。
なお、算出部106の動作の態様としては、予兆判定システム1のユーザが予兆判定システム1を用いる前に、既知の要因と既知の画像に基づいて抽出する態様と、予兆判定システム1のユーザが予兆判定システム1を用いるときに、新たに発生した要因と新たに発生した画像とに基づいて抽出する態様が挙げられる。
第2判定部107は、第1判定部105により予兆があると判定された場合、算出部106が算出した類似度が、予め設定された第2閾値以上であるか否かを判定する。算出部106が複数の類似度を算出した場合、第2判定部107は、複数の類似度のそれぞれについて、第2閾値以上であるか否かを判定する。
特定部108は、第2判定部107が第2閾値以上であると判定した場合、算出部106により算出された類似度に係る要因を特定する。例えば、図4のAの画像との類似度が第2閾値以上である場合、第2判定部107は第2閾値以上であると判定する。特定部108は図4のAの画像に関連付けられた要因を特定する。
尚、第2判定部107が第2閾値以上であると判定した場合に部位を特定することも可能であり、また、第1判定部105あるいは第2判定部107の少なくとも1方で予兆があるあるいは第2閾値以上であると判定した場合に部位を特定することが可能である。
尚、第2判定部107が第2閾値以上であると判定した場合に部位を特定することも可能であり、また、第1判定部105あるいは第2判定部107の少なくとも1方で予兆があるあるいは第2閾値以上であると判定した場合に部位を特定することが可能である。
また、特定部108は、第1判定部105により予兆があると判定された場合、周波数成分を、周波数成分と異常が発生する部位とが関連付けられた部位情報に照らし合わせて、部位を特定する。上記部位の例としては、軸受15の内輪と、軸受15の外輪と、軸受15の内輪と外輪の間のボールが挙げられる。
予兆判定システム1のユーザは予め、部位情報を記憶部111に記録する。なお、予兆判定システム1のユーザは予兆判定システム1を用いるときに新たに発生した部位情報を記憶部111に記録しても良い。
予兆判定システム1のユーザは予め、部位情報を記憶部111に記録する。なお、予兆判定システム1のユーザは予兆判定システム1を用いるときに新たに発生した部位情報を記憶部111に記録しても良い。
例えば、図3の周波数成分の値がF1からZの分だけ変化して、第1判定部105が軸受15の異常の予兆があると判定したとする。この場合、特定部108は周波数成分の値であるF1を部位情報に照らし合わせる。部位情報に周波数成分の値のF1と、部位の軸受15の内輪が関連付けられた場合、特定部108は軸受15の内輪を異常が発生する部位と特定する。
また、特定部108は、特定した要因を、要因と異常が発生するまでの時間を関連付けた時間情報と照らし合わせて、さらに時間を特定する。
予兆判定システム1のユーザは予め、時間情報を記憶部111に記録する。なお、予兆判定システム1のユーザは予兆判定システム1を用いるときに新たに発生した時間情報を記憶部111に記録しても良い。
予兆判定システム1のユーザは予め、時間情報を記憶部111に記録する。なお、予兆判定システム1のユーザは予兆判定システム1を用いるときに新たに発生した時間情報を記憶部111に記録しても良い。
図5は、第1の実施形態における時間情報の一例を示す図である。例えば、特定部108が要因Aを特定したとする。図5に示すように、時間情報において要因Aと、異常が発生するまでの時間T3が関連付けられている場合、特定部108は時間T3を特定する。
特定部108は異常が発生するまでの時間T3の代わりに、異常が発生する時刻を特定しても良い。
特定部108は異常が発生するまでの時間T3の代わりに、異常が発生する時刻を特定しても良い。
更新部109は、第2判定部107により類似度が第2閾値以上でないと判定された場合、外部から入力を受け入れて、要因情報を更新する。
例えば、画像生成部103が生成した画像が、要因情報における画像との類似度が、第2閾値以上でないと判定されたとする。出力部110は、予兆判定システム1が備えるディスプレイ装置(図示しない)に画像生成部103が生成した画像を出力する。予兆判定システム1のユーザはディスプレイ装置を通じて、出力された画像を確認する。予兆判定システム1のユーザが、予兆判定装置100以外の装置などを用いて軸受15の異常が発生する要因を特定する。予兆判定システム1のユーザは新たに特定した要因と、出力された画像とを関連付けて要因情報として、予兆判定システム1に入力する。更新部109は入力を受け入れて要因情報を更新する。
これにより、第2判定部107が判定できない要因であっても、要因情報を更新することができ、第2判定部107が判定できる要因を増やすことができる。
例えば、画像生成部103が生成した画像が、要因情報における画像との類似度が、第2閾値以上でないと判定されたとする。出力部110は、予兆判定システム1が備えるディスプレイ装置(図示しない)に画像生成部103が生成した画像を出力する。予兆判定システム1のユーザはディスプレイ装置を通じて、出力された画像を確認する。予兆判定システム1のユーザが、予兆判定装置100以外の装置などを用いて軸受15の異常が発生する要因を特定する。予兆判定システム1のユーザは新たに特定した要因と、出力された画像とを関連付けて要因情報として、予兆判定システム1に入力する。更新部109は入力を受け入れて要因情報を更新する。
これにより、第2判定部107が判定できない要因であっても、要因情報を更新することができ、第2判定部107が判定できる要因を増やすことができる。
出力部110は特定部108により特定した内容を、予兆判定システム1が備える報知装置に出力する。報知装置の例としては、ディスプレイ装置と、スピーカなどが挙げられる。出力部110が出力する信号は画像を示す信号と、音声に係る信号が挙げられる。
例えば、出力部110は特定部108が特定した要因と、部位と、時間をディスプレイ装置に出力する。予兆判定システム1のユーザはディスプレイ装置の表示により、軸受15の異常が発生する要因と、軸受15の異常が発生する部位と、軸受15の異常が発生するまでの時間を確認することができる。このように、出力部110がディスプレイ装置に画像を示す信号を出力することで、ユーザは容易に特定部108が特定した内容を把握できる。
例えば、出力部110は特定部108が特定した要因と、部位と、時間をディスプレイ装置に出力する。予兆判定システム1のユーザはディスプレイ装置の表示により、軸受15の異常が発生する要因と、軸受15の異常が発生する部位と、軸受15の異常が発生するまでの時間を確認することができる。このように、出力部110がディスプレイ装置に画像を示す信号を出力することで、ユーザは容易に特定部108が特定した内容を把握できる。
記憶部111は、予兆判定システム1のユーザにより記録された要因情報と、部位情報と、時間情報を記憶する。記憶部111の例としては、ハードディスクが挙げられる。
《予兆判定システムの動作》
以下、予兆判定システム1の動作について説明する。
図6は、予兆判定システム1の動作を示すフローチャートである。
以下、予兆判定システム1の動作について説明する。
図6は、予兆判定システム1の動作を示すフローチャートである。
計測器16は電流を計測してアナログの電流波形を取得する(ステップS1)。
変換器17はステップS1で取得したアナログの電流波形を、デジタルのデータに変換する(ステップS2)。
変換器17はステップS1で取得したアナログの電流波形を、デジタルのデータに変換する(ステップS2)。
計測結果取得部101は変換器17からデジタルのデータである計測結果を取得する(ステップS3)。
解析部102はステップS3で取得した計測結果をFFTにより周波数成分に分解する(ステップS4)。
解析部102はステップS3で取得した計測結果をFFTにより周波数成分に分解する(ステップS4)。
画像生成部103は周波数成分の時系列データおよびエネルギーの値を示すカラーグラフの画像を生成する(ステップS5)。
検出部104はステップS5で生成された画像に基づいて、周波数成分の変化値を検出する(ステップS6)。
検出部104はステップS5で生成された画像に基づいて、周波数成分の変化値を検出する(ステップS6)。
第1判定部105は、ステップS6で検出した変化値を、第1閾値に照らし合わせて、軸受15の異常の予兆があるか否かを判定する(ステップS7)。
異常の予兆がないと判定された場合(ステップS7:NO)、予兆判定システム1はステップS1に戻り、ステップS1からの動作を行う。
他方、異常の予兆があると判定された場合(ステップS7:YES)、算出部106は、要因情報における画像の特徴量と、ステップS5で生成された画像の特徴量の類似度を算出する(ステップS8)。
異常の予兆がないと判定された場合(ステップS7:NO)、予兆判定システム1はステップS1に戻り、ステップS1からの動作を行う。
他方、異常の予兆があると判定された場合(ステップS7:YES)、算出部106は、要因情報における画像の特徴量と、ステップS5で生成された画像の特徴量の類似度を算出する(ステップS8)。
第2判定部107は、ステップS8で算出された類似度が第2閾値以上であるか否かを判定する(ステップS9)。
類似度が第2閾値以上であると判定された場合(ステップS9:YES)、特定部108は、類似度に係る要因を特定する(ステップS10)。
特定部108は、軸受15の異常が発生する部位を特定する(ステップS11)。また、特定部108は、軸受15の異常が発生するまでの時間を特定する(ステップS12)。
類似度が第2閾値以上であると判定された場合(ステップS9:YES)、特定部108は、類似度に係る要因を特定する(ステップS10)。
特定部108は、軸受15の異常が発生する部位を特定する(ステップS11)。また、特定部108は、軸受15の異常が発生するまでの時間を特定する(ステップS12)。
出力部110は、特定部108が特定した内容を報知装置に出力する(ステップS13)。
報知装置は、特定部108が特定した内容を予兆判定システム1のユーザに表示する(ステップS14)。
報知装置は、特定部108が特定した内容を予兆判定システム1のユーザに表示する(ステップS14)。
他方、類似度が第2閾値未満であると判定された場合(ステップS9:NO)、出力部110は、ステップS5で生成した画像をディスプレイ装置に出力する(ステップS15)。その後、特定部108は、軸受15の異常が発生する部位を特定する(ステップS11)。
ステップS15で出力された表示により、予兆判定システム1のユーザは、予兆判定装置100とは別装置を用いて異常が発生する要因を特定する。予兆判定システム1のユーザはステップS16で特定された要因に係る新たな要因情報を予兆判定システム1に入力する。
更新部109は、ステップS17で入力された要因情報により、記憶部111に記録されている要因情報を更新する。
更新部109は、ステップS17で入力された要因情報により、記憶部111に記録されている要因情報を更新する。
《作用・効果》
本開示に係る予兆判定装置100は、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データを示す画像を生成する画像生成部103と、画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定する第1判定部105を備える。
本開示に係る予兆判定装置100は、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データを示す画像を生成する画像生成部103と、画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定する第1判定部105を備える。
予兆判定装置100は電動機11の電流の周波数成分を示す画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。また、予兆判定装置100は、振動が発生し、温度変化の影響のある軸受15の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
また、予兆判定装置100の解析部102は、FFTにより複数の周波数成分に分解し、画像は、複数の周波数成分のそれぞれの時系列データを示す。
予兆判定装置100は、FFTにより分解された複数の周波数成分を示す画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。
また、予兆判定装置100の画像は、周波数成分に関連付けられたエネルギーの値の時系列データを、さらに示し、画像に基づいて、周波数成分の変化値を検出する検出部104と、を備え、第1判定部105は、変化値を予め設定された第1閾値に照らし合わせて予兆があるか否かを判定する。
予兆判定装置100は、周波数成分及びエネルギーの値を示す画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。
また、予兆判定装置100の画像は、エネルギー値に対する周波数を時間及び周波数を軸とするカラーグラフとして示し、カラーグラフのカラーグラフ上にエネルギーの値を色で示す。
予兆判定装置100は、周波数成分及びエネルギーの値を示すカラーグラフの画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。
また、予兆判定装置100は、予兆があると判定された場合、周波数成分を、周波数成分と異常が発生する部位が関連付けられた部位情報に照らし合わせて、部位を特定する特定部108を備える。
予兆判定装置100は部位情報に基づいて、異常が発生する部位を特定する。これにより、予兆判定装置100のユーザは、軸受15の異常が発生する部位を特定することができる。
また、予兆判定装置100の特定部108は、予兆があると判定された場合、画像と異常が発生する要因が関連付けられた要因情報に基づいて、さらに要因を特定する。
予兆判定装置100は要因情報に基づいて、異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、軸受15の異常が発生する要因を特定することができる。
また、予兆判定装置100は、要因に関連付けられた画像の特徴量と、画像生成部103により生成された画像の特徴量に基づいて、類似度を算出する算出部106と、予兆があると判定された場合、類似度が、予め設定された第2閾値以上であるか否かを判定する第2判定部107と、を備え、特定部108は、第2閾値以上であると判定された場合、算出された類似度に係る要因を特定する。
予兆判定装置100は画像の特徴量に基づいて類似度を算出して異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、軸受15の異常が発生する要因を特定することができる。
また、予兆判定装置100は、類似度が第2閾値以上でないと判定された場合、外部から入力を受け入れて、要因情報を更新する更新部109を備える。
予兆判定装置100は、予兆判定装置100が要因を特定できない場合、外部から入力を受け入れて、要因情報を更新する。これにより、予兆判定装置100はより多くの要因を特定することができる。
また、予兆判定装置100の特定部108は、特定した要因を、要因と異常が発生するまでの時間を関連付けた時間情報と照らし合わせて、さらに時間を特定する。
予兆判定装置100は時間情報に基づいて、異常が発生するまでの時間を特定する。これにより、予兆判定装置100のユーザは、軸受15の異常が発生するまでの時間を特定することができる。
また、予兆判定装置100は、特定部108により特定した内容を出力する出力部110を備える。
予兆判定装置100は、特定部108が特定した要因と、部位と、時間などの内容を出力する。これにより、予兆判定装置100のユーザは、特定部108が特定した要因と、部位と、時間などの内容を確認することができる。
本開示に係る予兆判定方法は、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データを示す画像を生成することと、画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することを含む。
予兆判定方法のユーザは予兆判定方法を用いることにより、電動機11の電流の周波数成分を示す画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。
本開示に係るプログラムは、コンピュータを、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データを示す画像を生成することと、画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することとして実行させる。
プログラムのユーザはプログラムを実行させることにより、電動機11の電流の周波数成分を示す画像に基づいて、電動機11により駆動される負荷13の軸受15に異常の予兆があるか否かを判定することができる。
〈第2の実施形態〉
《予兆判定システムの構成》
以下、図面を参照しながら実施形態に係る予兆判定システム1の構成について詳しく説明する。
第1の実施形態に係る予兆判定システム1は、負荷13の軸受15A及び軸受15Bの異常の予兆を判定するものであった。第2の実施形態に係る予兆判定システム1は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常について予兆を判定する。
《予兆判定システムの構成》
以下、図面を参照しながら実施形態に係る予兆判定システム1の構成について詳しく説明する。
第1の実施形態に係る予兆判定システム1は、負荷13の軸受15A及び軸受15Bの異常の予兆を判定するものであった。第2の実施形態に係る予兆判定システム1は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常について予兆を判定する。
第2の実施形態に係る予兆判定システム1の構成は、図1に示した第1の実施形態に係る予兆判定システム1の構成と同様であるため各構成の説明を省略し、以後、当該構成については、同一符号を用いて本実施形態についての説明を行う。
《予兆判定装置の構成》
以下、予兆判定装置100の構成について説明する。
予兆判定装置100は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する。
以下、予兆判定装置100の構成について説明する。
予兆判定装置100は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する。
予兆判定装置100の構成は、図2に示した第1の実施形態に係る予兆判定装置100の構成と同様であるため各構成の説明を省略し、異なる構成についてのみ説明を行う。また、以後、当該構成については同一符号を用いて本実施形態についての説明を行う。
画像生成部103は、生成する画像に関して、異常の予兆がある場合、第1の実施形態に係る軸受15の異常の予兆と同様に、図3に示した画像のように周波数成分が大きく変化する。
例えば、解析部102は計測結果を2つの周波数成分に分解する。画像生成部103が生成する画像が図3に示した分解された2つの周波数成分のカラーグラフが示されているものとし、時間T2に軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生したとする。
この場合、第1の実施形態と同様に、時間T2以降の周波数成分の値は、時間T1以前に示した一定の帯域の値からZの分が変化している。時間T2において軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生し、電動機11に流れる電流の計測結果を分解した場合、時間T1とは異なる値の周波数成分となるためである。
この場合、第1の実施形態と同様に、時間T2以降の周波数成分の値は、時間T1以前に示した一定の帯域の値からZの分が変化している。時間T2において軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生し、電動機11に流れる電流の計測結果を分解した場合、時間T1とは異なる値の周波数成分となるためである。
軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化の状態を示す周波数成分のエネルギー値は、ある一定以上の値を持っている。時間T1以前、T1~T2、T2以降で、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化の少なくとも1つを含む異常があると、この周波数成分のエネルギー値は変化する場合がある。
キャビテーションは、複数の周波数成分のエネルギー値の増加により判別される。時間T1にてキャビテーションが発生した場合、時間T1以降の複数の周波数成分のエネルギー値が増加(例えば、青色から黄色)することで判別が可能となる。
キャビテーションは、複数の周波数成分のエネルギー値の増加により判別される。時間T1にてキャビテーションが発生した場合、時間T1以降の複数の周波数成分のエネルギー値が増加(例えば、青色から黄色)することで判別が可能となる。
検出部104は、画像生成部103が生成した画像に基づいて、周波数成分の変化値を検出する。例えば、画像が図3のようなグラフである場合、検出部104は変化値としてZを検出する。
第1判定部105は、検出部104が検出した変化値を、予め設定された第1閾値に照らし合わせて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する。例えば、第1判定部105は、検出部104が検出した変化値が第1閾値以上である場合、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があると判定する。また、第1判定部105は、検出部104が検出した変化値が第1閾値以上でない場合、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆がないと判定する。軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生した場合、周波数成分の値は変化するため、変化値を一定の閾値に照らし合わせることで、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
算出部106は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因に関連付けられた画像の特徴量と、画像生成部103により生成された画像の特徴量に基づいて、類似度を算出する。要因の例としては、軸受15については潤滑不良と、取り付け不良と、異物侵入と、錆と、すきま過少など、電動機11における回転子バーの折損、および電動機11と負荷13とをつなぐベルトの張力変化については経年劣化、キャビテーションについては電動機11により動作するポンプ(不図示)の異常などが挙げられる。
第1の実施形態と同様に、特定部108は、第1判定部105により予兆があると判定された場合、周波数成分を、周波数成分と異常が発生する部位とが関連付けられた部位情報に照らし合わせて、部位を特定する。上記部位の例としては、軸受15については軸受15の内輪と、軸受15の外輪と、軸受15の内輪と外輪の間のボール、電動機11における回転子バーの折損については回転子バー、電動機11と負荷13とをつなぐベルトの張力変化についてはベルト、キャビテーションについては電動機11により動作するポンプが挙げられる。
例えば、図3の周波数成分の値がF1からZの分だけ変化して、第1判定部105が電動機11における回転子バーの折損について異常の予兆があると判定したとする。この場合、特定部108は周波数成分の値であるF1を部位情報に照らし合わせる。部位情報に周波数成分の値のF1と、回転子バーが関連付けられた場合、特定部108は回転子バーを異常が発生する部位と特定する。
第1の実施形態と同様に、更新部109は、第2判定部107により類似度が第2閾値以上でないと判定された場合、外部から入力を受け入れて、要因情報を更新する。
例えば、画像生成部103が生成した画像が、要因情報における画像との類似度が、第2閾値以上でないと判定されたとする。このように判定された場合、予兆判定システム1のユーザが、予兆判定装置100以外の装置などを用いて軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因を特定することが可能である。
例えば、画像生成部103が生成した画像が、要因情報における画像との類似度が、第2閾値以上でないと判定されたとする。このように判定された場合、予兆判定システム1のユーザが、予兆判定装置100以外の装置などを用いて軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因を特定することが可能である。
第1の実施形態と同様に、出力部110は特定部108により特定した内容を、予兆判定システム1が備える報知装置に出力する。
例えば、出力部110は特定部108が特定した要因と、部位と、時間をディスプレイ装置に出力する。予兆判定システム1のユーザはディスプレイ装置の表示により、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因と、その異常が発生する部位と、その異常が発生するまでの時間を確認することができる。このように、出力部110がディスプレイ装置に画像を示す信号を出力することで、ユーザは容易に特定部108が特定した内容を把握できる。
例えば、出力部110は特定部108が特定した要因と、部位と、時間をディスプレイ装置に出力する。予兆判定システム1のユーザはディスプレイ装置の表示により、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因と、その異常が発生する部位と、その異常が発生するまでの時間を確認することができる。このように、出力部110がディスプレイ装置に画像を示す信号を出力することで、ユーザは容易に特定部108が特定した内容を把握できる。
《予兆判定システムの動作》
以下、予兆判定システム1の動作について説明する。
この場合の予兆判定システム1の動作を示すフローチャートは、第1の実施形態に係る予兆判定システム1の動作を示すフローチャートである図6と同様であるため、各処理内容の説明を省略し、異なる処理内容についてのみ説明を行う。
以下、予兆判定システム1の動作について説明する。
この場合の予兆判定システム1の動作を示すフローチャートは、第1の実施形態に係る予兆判定システム1の動作を示すフローチャートである図6と同様であるため、各処理内容の説明を省略し、異なる処理内容についてのみ説明を行う。
ステップS7において、第1判定部105は、ステップS6で検出した変化値を、第1閾値に照らし合わせて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する。
ステップS10を経由したステップS11では、特定部108は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する部位を特定する。また、ステップS12では、特定部108は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生するまでの時間を特定する。
ステップS10を経由したステップS11では、特定部108は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する部位を特定する。また、ステップS12では、特定部108は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生するまでの時間を特定する。
他方、ステップS15を経由したステップS11では、特定部108は、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する部位を特定する。
尚、本実施形態では、解析部102により複数の周波数成分に分解し、当該周波数成分を用いた形態について説明を行ったが、解析部102により分解した周波数成分のうち、ピークとなる周波数成分を取得し、当該ピークとなる周波数成分を用いた態様を取ることが可能となる。
このとき、ピークとなる周波数成分は、当該周波数における閾値を設けて、当該閾値を超えた場合にピークとなる周波数成分を取得する。
また、ピークとなる周波数成分のエネルギー値を色による識別化することで、想定外の周波数成分にピークが発生した場合でも、異常の予兆があるか否かを判別することが可能となる。
このとき、ピークとなる周波数成分は、当該周波数における閾値を設けて、当該閾値を超えた場合にピークとなる周波数成分を取得する。
また、ピークとなる周波数成分のエネルギー値を色による識別化することで、想定外の周波数成分にピークが発生した場合でも、異常の予兆があるか否かを判別することが可能となる。
《作用・効果》
本開示に係る予兆判定装置100は、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データを示す画像を生成する画像生成部103と、画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する第1判定部105を備える。
本開示に係る予兆判定装置100は、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データを示す画像を生成する画像生成部103と、画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定する第1判定部105を備える。
予兆判定装置100は電動機11の電流の周波数成分を示す画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。また、予兆判定装置100は、電動機11、負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
また、予兆判定装置100の解析部102は、FFTにより複数の周波数成分に分解し、画像は、複数の周波数成分のそれぞれの時系列データを示す。
予兆判定装置100は、FFTにより分解された複数の周波数成分を示す画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
また、予兆判定装置100の画像は、周波数成分に関連付けられたエネルギーの値の時系列データを、さらに示し、画像に基づいて、周波数成分の変化値を検出する検出部104と、を備え、第1判定部105は、変化値を予め設定された第1閾値に照らし合わせて予兆があるか否かを判定する。
予兆判定装置100は、周波数成分及びエネルギーの値を示す画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
また、予兆判定装置100の画像は、エネルギー値に対する周波数を時間及び周波数を軸とするカラーグラフとして示し、カラーグラフ上にエネルギーの値を色で示す。
予兆判定装置100は、周波数成分及びエネルギーの値を示すカラーグラフの画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
また、予兆判定装置100は、予兆があると判定された場合、周波数成分を、周波数成分と異常が発生する部位が関連付けられた部位情報に照らし合わせて、部位を特定する特定部108を備える。
予兆判定装置100は部位情報に基づいて、異常が発生する部位を特定する。これにより、予兆判定装置100のユーザは、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する部位を特定することができる。
また、予兆判定装置100の特定部108は、予兆があると判定された場合、画像と異常が発生する要因が関連付けられた要因情報に基づいて、さらに要因を特定する。
予兆判定装置100は要因情報に基づいて、異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因を特定することができる。
また、予兆判定装置100は、要因に関連付けられた画像の特徴量と、画像生成部103により生成された画像の特徴量に基づいて、類似度を算出する算出部106と、予兆があると判定された場合、類似度が、予め設定された第2閾値以上であるか否かを判定する第2判定部107と、を備え、特定部108は、第2閾値以上であると判定された場合、算出された類似度に係る要因を特定する。
予兆判定装置100は画像の特徴量に基づいて類似度を算出して異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生する要因を特定することができる。
また、予兆判定装置100は、類似度が第2閾値以上でないと判定された場合、外部から入力を受け入れて、要因情報を更新する更新部109を備える。
予兆判定装置100は、予兆判定装置100が要因を特定できない場合、外部から入力を受け入れて、要因情報を更新する。これにより、予兆判定装置100はより多くの要因を特定することができる。
また、予兆判定装置100の特定部108は、特定した要因を、要因と異常が発生するまでの時間を関連付けた時間情報と照らし合わせて、さらに時間を特定する。
予兆判定装置100は時間情報に基づいて、異常が発生するまでの時間を特定する。これにより、予兆判定装置100のユーザは、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常が発生するまでの時間を特定することができる。
また、予兆判定装置100は、特定部108により特定した内容を出力する出力部110を備える。
予兆判定装置100は、特定部108が特定した要因と、部位と、時間などの内容を出力する。これにより、予兆判定装置100のユーザは、特定部108が特定した要因と、部位と、時間などの内容を確認することができる。
本開示に係る予兆判定方法は、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データを示す画像を生成することと、画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することを含む。
予兆判定方法のユーザは予兆判定方法を用いることにより、電動機11の電流の周波数成分を示す画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
本開示に係るプログラムは、コンピュータを、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データを示す画像を生成することと、画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することとして実行させる。
プログラムのユーザはプログラムを実行させることにより、電動機11の電流の周波数成分を示す画像に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
〈第3の実施形態〉
以下、第3の実施形態に係る予兆判定装置100について説明する。
第1の実施形態および第2の実施形態に係る予兆判定装置100では、検出部104は生成された画像に基づいて、周波数成分の変化値を検出し、第1判定部105は、検出部104が検出した変化値が第1閾値以上である場合に、異常の予兆があると判定するものとして説明した。また、算出部106は、畳み込みニューラルネットワークの手法により、画像生成部103が生成した画像の特徴量を抽出し、抽出した特徴量の間の類似度を算出するものとして説明した。また、第2判定部107は、第1判定部105により予兆があると判定された場合、算出部106が算出した類似度が、予め設定された第2閾値以上であるか否かを判定し、第2判定部107が第2閾値以上であると判定した場合、特定部108は、算出部106により算出された類似度に係る要因を特定するものとして説明した。しかしながら、第3の実施形態に係る予兆判定装置100では、後述する処理部112が、異常の予兆があるか否かを特定し、異常の予兆がある場合にその異常が発生するまでの時間、異常の発生個所、および異常の要因を特定する。
以下、第3の実施形態に係る予兆判定装置100について説明する。
第1の実施形態および第2の実施形態に係る予兆判定装置100では、検出部104は生成された画像に基づいて、周波数成分の変化値を検出し、第1判定部105は、検出部104が検出した変化値が第1閾値以上である場合に、異常の予兆があると判定するものとして説明した。また、算出部106は、畳み込みニューラルネットワークの手法により、画像生成部103が生成した画像の特徴量を抽出し、抽出した特徴量の間の類似度を算出するものとして説明した。また、第2判定部107は、第1判定部105により予兆があると判定された場合、算出部106が算出した類似度が、予め設定された第2閾値以上であるか否かを判定し、第2判定部107が第2閾値以上であると判定した場合、特定部108は、算出部106により算出された類似度に係る要因を特定するものとして説明した。しかしながら、第3の実施形態に係る予兆判定装置100では、後述する処理部112が、異常の予兆があるか否かを特定し、異常の予兆がある場合にその異常が発生するまでの時間、異常の発生個所、および異常の要因を特定する。
予兆判定装置100は、図7に示すように、計測結果取得部101、解析部102、処理部112(処理部の一例)、更新部109、出力部110、および記憶部111を備える。
処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、異常の予兆の有無と、その異常が実際に発生するまでの時間、その異常の発生個所および異常の要因とを予測する。処理部112は、例えば、機械学習の1つである教師データを用いてパラメータを決定した学習済みモデル(例えば、畳み込みニューラルネットワーク)を用いることにより、異常の予兆の有無と、その異常が実際に発生するまでの時間、その異常の発生個所および異常の要因とを予測する。ここで、処理部112がそれぞれの予測に用いる学習済みモデルについて説明する。
なお、軸受15の異常の予兆を予測するために処理部112が用いる学習済みモデルを第1学習済みモデルとする。また、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆を予測するために処理部112が用いる学習済みモデルを第2学習済みモデルとする。なお、以下の説明では、パラメータの決定の仕方を容易に理解できるように、学習済みモデルの一具体例として軸受15の異常の予兆を予測する第1学習済みモデルを挙げている。
(第1学習済みモデル)
まず、第1学習済みモデルについて説明する。なお、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、軸受15の異常の予兆を予測するものである。ここでは、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、軸受15の異常の予兆を予測する場合の学習済みモデルについて説明する。
まず、第1学習済みモデルについて説明する。なお、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、軸受15の異常の予兆を予測するものである。ここでは、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、軸受15の異常の予兆を予測する場合の学習済みモデルについて説明する。
この場合、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データが入力データの1つとなる。また、その入力データに対する異常が発生するまでの時間、異常の発生個所および異常の要因が出力データの1つとなる。そして、入力データとその入力データに対応する出力データとの組み合わせが教師データの1つとなる。例えば、予兆判定装置100により異常の予兆を予測する前に、他の装置が異常の予兆の予測に使用した場合の解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データである入力データについて、出力データ(すなわち、異常が実際に発生するまでの時間、その異常の発生個所および異常の要因を示すデータ)を特定する。または、例えば、実験やシミュレーションなどを行うことにより、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データである入力データについて、出力データ(すなわち、その時系列データに対するその異常が実際に発生するまでの時間、その異常の発生個所および異常の要因を示すデータ)を特定する。このように、入力データと出力データとを組み合わせた複数のデータから成る教師データを用意することができる。なお、教師データとは、パラメータの値が決定されていない学習モデルにおいて、パラメータの値を決定するために使用されるデータである。
図8は、教師データの一例を示す図である。解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データである入力データと、その入力データに対する出力データ(すなわち、異常が実際に発生するまでの時間、その異常の発生個所および異常の要因を示すデータ)とが1組のデータとなる。図8に示す例では、教師データは、10000組のデータを含む。
例えば、図8に示す10000組のデータから成る教師データを用いて学習モデルにおけるパラメータを決定する場合を考える。この場合、教師データは、例えば、訓練データと、評価データと、テストデータとに分けられる。訓練データと、評価データと、テストデータとの割合の例としては、70%、15%、15%や95%、2.5%、2.5%などが挙げられる。例えば、データ#1~#10000の教師データが、訓練データとしてデータ#1~#7000、評価データとしてデータ#7001~#8500、テストデータ15%としてデータ#8501~#10000に分けられたとする。この場合、訓練データであるデータ#1を学習モデルである畳み込みニューラルネットワークに入力する。畳み込みニューラルネットワークは、異常の発生がないこと、または異常が実際に発生するまでの時間、その異常の発生個所および異常の要因のどちらかを出力する。訓練データの入力データが畳み込みニューラルネットワークに入力され、異常の発生がないこと、または異常が実際に発生するまでの時間、その異常の発生個所および異常の要因が畳み込みニューラルネットワークから出力される度に(この場合、データ#1~#7000のそれぞれのデータが畳み込みニューラルネットワークに入力される度に)、その出力に応じて例えばバックプロパゲーションを行うことにより、ノード間のデータの結合の重み付けを示すパラメータを変更する(すなわち、畳み込みニューラルネットワークのモデルを変更する)。このように、訓練データをニューラルネットワークに入力してパラメータを調整する。
次に、訓練データによってパラメータが変更された畳み込みニューラルネットワークに、評価データの入力データ(データ#7001~#8500)を順に入力する。畳み込みニューラルネットワークは、入力された評価データに応じて、異常の発生がないこと、または異常が実際に発生するまでの時間、その異常の発生個所および異常の要因のどちらかを出力する。ここで、畳み込みニューラルネットワークが出力するデータが、図8において入力データに関連付けられている出力データと異なる場合、畳み込みニューラルネットワークの出力が図8において入力データに関連付けられている出力データとなるようにパラメータを変更する。このように、パラメータが決定された畳み込みニューラルネットワーク(すなわち、学習モデル)が、第1学習済みモデルである。
次に、最終確認として、第1学習済みモデルの畳み込みニューラルネットワークに、テストデータ(データ#8501~#10000)の入力データを順に入力する。学習済みモデルの畳み込みニューラルネットワークは、入力されたテストデータに応じて、異常の発生がないこと、または異常が実際に発生するまでの時間、その異常の発生個所および異常の要因のどちらかを出力する。すべてのテストデータに対して、学習済みモデルの畳み込みニューラルネットワークが出力する出力データが、図8において入力データに関連付けられている出力データと一致する場合、第1学習済みモデルの畳み込みニューラルネットワークが所望のモデルである。また、テストデータのうちの1つでも、第1学習済みモデルの畳み込みニューラルネットワークが出力する出力データが、図8において入力データに関連付けられている出力データと一致しない場合、新たな教師データを用いて学習モデルのパラメータを決定する。上述の学習モデルのパラメータの決定は、所望のパラメータを有する第1学習済みモデルが得られるまで繰り返される。所望のパラメータを有する第1学習済みモデルが得られた場合、その第1学習済みモデルが記憶部111に記録される。
(第2学習済みモデル)
次に、第2学習済みモデルについて説明する。図9は、教師データの一例を示す図である。第2学習済みモデルは、上述の第1学習済みモデルと同様の方法でパラメータを決定することができる。ただし、図9に示すように、異常の発生箇所が軸受以外に電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションなどがあり、異常の要因も複数存在する。
次に、第2学習済みモデルについて説明する。図9は、教師データの一例を示す図である。第2学習済みモデルは、上述の第1学習済みモデルと同様の方法でパラメータを決定することができる。ただし、図9に示すように、異常の発生箇所が軸受以外に電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションなどがあり、異常の要因も複数存在する。
《予兆判定システムの動作》
以下、予兆判定システム1の動作について説明する。
図10は、予兆判定システム1の動作を示すフローチャートである。
以下、予兆判定システム1の動作について説明する。
図10は、予兆判定システム1の動作を示すフローチャートである。
計測器16は電流を計測してアナログの電流波形を取得する(ステップS1)。
変換器17はステップS1で取得したアナログの電流波形を、デジタルのデータに変換する(ステップS2)。
変換器17はステップS1で取得したアナログの電流波形を、デジタルのデータに変換する(ステップS2)。
計測結果取得部101は変換器17からデジタルのデータである計測結果を取得する(ステップS3)。
解析部102はステップS3で取得した計測結果をFFTにより周波数成分に分解する(ステップS4)。
解析部102はステップS3で取得した計測結果をFFTにより周波数成分に分解する(ステップS4)。
処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データを、学習済みモデルに入力する(ステップS21)。処理部112の学習済みモデルは、異常が実際に発生するまでの時間、その異常の発生個所および異常の要因を出力する(ステップS22)。
出力部110は、処理部112が特定した内容(すなわち、異常が実際に発生するまでの時間、その異常の発生個所および異常の要因)を報知装置に出力する(ステップS23)。
報知装置は、処理部112が特定した内容を予兆判定システム1のユーザに報知する(ステップS24)。
報知装置は、処理部112が特定した内容を予兆判定システム1のユーザに報知する(ステップS24)。
《作用・効果》
本開示に係る予兆判定装置100において、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、異常の予兆の有無と、その異常が実際に発生するまでの時間、その異常の発生個所および異常の要因とを予測する。
本開示に係る予兆判定装置100において、処理部112は、解析部102によるFFTによって複数の周波数成分に分解されたそれぞれの時系列データに基づいて、異常の予兆の有無と、その異常が実際に発生するまでの時間、その異常の発生個所および異常の要因とを予測する。
予兆判定装置100は、処理部112による予測結果に基づいて、軸受15、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、キャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
〈第4の実施形態〉
以下、第4の実施形態に係る予兆判定装置100について説明する。
予兆判定装置100は、要因情報として、軸受15の異常が発生する要因と、画像と、要因への対策とを関連付けた情報であっても良い。これにより、予兆判定装置100のユーザは、要因に加えて当該要因に適切な対策も確認することができる。
以下、第4の実施形態に係る予兆判定装置100について説明する。
予兆判定装置100は、要因情報として、軸受15の異常が発生する要因と、画像と、要因への対策とを関連付けた情報であっても良い。これにより、予兆判定装置100のユーザは、要因に加えて当該要因に適切な対策も確認することができる。
また、予兆判定装置100の更新部109は、外部から入力を受け入れて、時間情報又は部位情報を更新しても良い。
〈第5の実施形態〉
以下、第5の実施形態に係る予兆判定装置100について説明する。
図11は、第5の実施形態に係る予兆判定システム1の一例を示す図である。予兆判定システム1において、予兆判定装置100は、要求部2001を有する端末装置200と通信可能なシステムとして構成しても良い。この場合、端末装置200の要求部2001から予兆判定装置100へ、電動機11および電動機11の負荷13の異常の予兆判定の要求を行う構成としても良い。
また、端末装置200が出力部110の機能を有し、端末装置200が、前述した報知装置として、予兆判定装置100における異常の予兆判定結果を出力する構成としても良い。
以下、第5の実施形態に係る予兆判定装置100について説明する。
図11は、第5の実施形態に係る予兆判定システム1の一例を示す図である。予兆判定システム1において、予兆判定装置100は、要求部2001を有する端末装置200と通信可能なシステムとして構成しても良い。この場合、端末装置200の要求部2001から予兆判定装置100へ、電動機11および電動機11の負荷13の異常の予兆判定の要求を行う構成としても良い。
また、端末装置200が出力部110の機能を有し、端末装置200が、前述した報知装置として、予兆判定装置100における異常の予兆判定結果を出力する構成としても良い。
〈コンピュータ構成〉
図12は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ1100は、プロセッサ1110、メインメモリ1120、ストレージ1130、インタフェース1140を備える。
上述の予兆判定装置100は、コンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ1120に確保する。
図12は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ1100は、プロセッサ1110、メインメモリ1120、ストレージ1130、インタフェース1140を備える。
上述の予兆判定装置100は、コンピュータ1100に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ1120に確保する。
プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ1100は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インタフェース1140または通信回線を介してコンピュータに接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ1130は、一時的でない有形の記憶媒体である。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
〈付記〉
各実施形態に記載の予兆判定装置100は、例えば以下のように把握される。
各実施形態に記載の予兆判定装置100は、例えば以下のように把握される。
(1)本開示に係る予兆判定装置100は、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データに基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定する予測部105を備える。
予兆判定装置100は電動機11の電流の周波数成分に基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。また、予兆判定装置100は、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
(2)また、予兆判定装置100の解析部102は、FFTにより複数の周波数成分に分解し、予測部(105、112)は、複数の周波数成分のそれぞれの時系列データに基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定する。
予兆判定装置100は、FFTにより分解された複数の周波数成分に基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。
(3)また、予兆判定装置100の予測部(105、112)が判定する電動機11の異常の予兆は、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、およびキャビテーションの少なくとも1つを含む。
予兆判定装置100は、電動機11における回転子バーの折損、電動機11と負荷13とをつなぐベルトの張力変化、およびキャビテーションの少なくとも1つを含む異常の予兆があるか否かを判定することができる。
(4)また、予兆判定装置100の予測部(112)は、周波数成分の時系列データを入力データとし、入力データに対して異常の予兆があるか否かの判定結果を出力データとする教師データを用いてパラメータが決定された学習済みモデルを含む。
予兆判定装置100は、教師データを用いてパラメータが決定された学習済みモデルを用いて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。
(5)また、予兆判定装置100は、周波数成分の時系列データを示す画像を生成する画像生成部103、を備え、予測部105は、画像に基づいて電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定する。
予兆判定装置100は電動機11の電流の周波数成分を示す画像に基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。予兆判定装置100は、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
(6)また、予兆判定装置100の解析部102は、FFTにより複数の周波数成分に分解し、画像は、複数の周波数成分のそれぞれの時系列データを示す。
予兆判定装置100は、FFTにより分解された複数の周波数成分を示す画像に基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。
(7)また、予兆判定装置100の画像は、周波数成分に関連付けられたエネルギーの値の時系列データを、さらに示し、画像に基づいて、周波数成分の変化値を検出する検出部104と、を備え、予測部105は、変化値を予め設定された第1閾値に照らし合わせて予兆があるか否かを判定する。
予兆判定装置100は、周波数成分及びエネルギーの値を示す画像に基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。
(8)また、予兆判定装置100の画像は、周波数成分を時間及び周波数を軸とするカラーグラフとして示し、カラーグラフ上にエネルギーの値を色で示す。
予兆判定装置100は、周波数成分及びエネルギーの値を示すカラーグラフの画像に基づいて、電動機11および負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。
(9)また、予兆判定装置100は、予兆があると判定された場合、周波数成分を、周波数成分と異常が発生する部位が関連付けられた部位情報に照らし合わせて、部位を特定する特定部108を備える。
予兆判定装置100は部位情報に基づいて、異常が発生する部位を特定する。これにより、予兆判定装置100のユーザは、電動機11および負荷13の少なくとも一方の異常が発生する部位を特定することができる。
(10)また、予兆判定装置100の特定部108は、予兆があると判定された場合、画像と異常が発生する要因が関連付けられた要因情報に基づいて、さらに要因を特定する。
予兆判定装置100は要因情報に基づいて、異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、軸受15の異常が発生する要因を特定することができる。
(11)また、予兆判定装置100は、要因に関連付けられた画像の特徴量と、画像生成部103により生成された画像の特徴量に基づいて、類似度を算出する算出部106と、予兆があると判定された場合、類似度が、予め設定された第2閾値以上であるか否かを判定する第2判定部107と、を備え、特定部108は、第2閾値以上であると判定された場合、算出された類似度に係る要因を特定する。
予兆判定装置100は画像の特徴量に基づいて類似度を算出して異常が発生する要因を特定する。これにより、予兆判定装置100のユーザは、電動機11および負荷13の少なくとも一方の異常が発生する要因を特定することができる。
(12)また、予兆判定装置100は、類似度が第2閾値以上でないと判定された場合、外部から入力を受け入れて、要因情報を更新する更新部109を備える。
予兆判定装置100は、予兆判定装置100が要因を特定できない場合、外部から入力を受け入れて、要因情報を更新する。これにより、予兆判定装置100はより多くの要因を特定することができる。
(13)また、予兆判定装置100の特定部108は、特定した要因を、要因と異常が発生するまでの時間を関連付けた時間情報と照らし合わせて、さらに時間を特定する。
予兆判定装置100は時間情報に基づいて、異常が発生するまでの時間を特定する。これにより、予兆判定装置100のユーザは、電動機11および負荷13の少なくとも一方の異常が発生するまでの時間を特定することができる。
(14)また、予兆判定装置100は、特定部108により特定した内容を出力する出力部110を備える。
予兆判定装置100は、特定部108が特定した要因と、部位と、時間などの内容を出力する。これにより、予兆判定装置100のユーザは、特定部108が特定した要因と、部位と、時間などの内容を確認することができる。
(15)また、予兆判定システム1は、端末装置200と通信可能な予兆判定装置100からなる異常の予兆判定システムであって、端末装置200は、電動機11および電動機11の負荷13に関して異常の予兆判定を要求する要求部2001と、を備え、予兆判定装置100は、端末装置200からの要求により、電動機11を流れる電流の計測結果を取得する計測結果取得部101と、計測結果を周波数解析して周波数成分に分解する解析部102と、周波数成分の時系列データに基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定する予測部105と、を備える。
予兆判定システム1は、電動機11の電流の周波数成分に基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。また、予兆判定装置100は、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
(16)本開示に係る予兆判定方法は、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データに基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することを含む。
予兆判定方法のユーザは予兆判定方法を用いることにより、電動機11の電流の周波数成分に基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。また、予兆判定方法のユーザは予兆判定方法を用いることにより、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
(17)本開示に係るプログラムは、コンピュータに、電動機11を流れる電流の計測結果を取得することと、計測結果を周波数解析して周波数成分に分解することと、周波数成分の時系列データに基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定すること、を実行させる。
プログラムのユーザは、コンピュータにプログラムを実行させることにより、電動機11の電流の周波数成分に基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。また、プログラムのユーザは、コンピュータにプログラムを実行させることにより、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
(18)本開示に係る予兆判定方法は、端末装置200が、電動機11および電動機11の負荷に関して異常の予兆判定を要求する要求ステップと、を有し、端末装置200と通信可能な予兆判定装置100が、端末装置200からの要求により、電動機11を流れる電流の計測結果を取得する計測結果取得ステップと、計測結果を周波数解析して周波数成分に分解する解析ステップと、周波数成分の時系列データに基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定する予測ステップと、を有する。
予兆判定方法のユーザは予兆判定方法を用いることにより、電動機11の電流の周波数成分に基づいて、電動機11および電動機11の負荷13の少なくとも一方に異常の予兆があるか否かを判定することができる。また、予兆判定方法のユーザは予兆判定方法を用いることにより、振動の発生、温度変化などの影響のある電動機11および負荷13の周辺に設けられなくても、遠距離にて上記予兆があるか否かを判定することができる。
上記態様のうち少なくとも1つの態様によれば、電動機および電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することができる。
1 予兆判定システム
10 電力源
11 電動機
12 電線
13 負荷
14 軸
15 軸受
16 計測器
17 変換器
100 予兆判定装置
101 計測結果取得部
102 解析部
103 画像生成部
104 検出部
105 第1判定部
106 算出部
107 第2判定部
108 特定部
109 更新部
110 出力部
111 記憶部
112 処理部
200 端末装置
1100 コンピュータ
1110 プロセッサ
1120 メインメモリ
1130 ストレージ
1140 インタフェース
2001 要求部
10 電力源
11 電動機
12 電線
13 負荷
14 軸
15 軸受
16 計測器
17 変換器
100 予兆判定装置
101 計測結果取得部
102 解析部
103 画像生成部
104 検出部
105 第1判定部
106 算出部
107 第2判定部
108 特定部
109 更新部
110 出力部
111 記憶部
112 処理部
200 端末装置
1100 コンピュータ
1110 プロセッサ
1120 メインメモリ
1130 ストレージ
1140 インタフェース
2001 要求部
Claims (18)
- 電動機を流れる電流の計測結果を取得する計測結果取得部と、
前記計測結果を周波数解析して周波数成分に分解する解析部と、
前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測部と、
を備える予兆判定装置。 - 前記解析部は、
FFT(Fast Fourier Transform)により複数の前記周波数成分に分解し、
前記予測部は、
前記複数の周波数成分のそれぞれの時系列データに基づいて、前記電動機および負荷の少なくとも一方に異常の予兆があるか否かを判定する、
請求項1に記載の予兆判定装置。 - 前記予測部が判定する前記電動機の異常の予兆は、
前記電動機における回転子バーの折損、前記電動機と前記負荷とをつなぐベルトの張力変化、およびキャビテーションの少なくとも1つを含む、
請求項1又は請求項2に記載の予兆判定装置。 - 前記予測部は、
前記周波数成分の時系列データを入力データとし、前記入力データに対して前記異常の予兆があるか否かの判定結果を出力データとする教師データを用いてパラメータが決定された学習済みモデルを含む、
請求項1から請求項3の何れか1項に記載の予兆判定装置。 - 前記周波数成分の時系列データを示す画像を生成する画像生成部、
を備え、
前記予測部は、
前記画像に基づいて前記電動機および負荷の少なくとも一方に異常の予兆があるか否かを判定する、
請求項1に記載の予兆判定装置。 - 前記解析部は、
FFT(Fast Fourier Transform)により複数の前記周波数成分に分解し、
前記画像は、前記複数の周波数成分のそれぞれの時系列データを示す、
請求項5に記載の予兆判定装置。 - 前記画像は、前記周波数成分に関連付けられたエネルギーの値の時系列データを、さらに示し、
前記画像に基づいて、前記周波数成分の変化値を検出する検出部と、を備え、
前記予測部は、前記変化値を予め設定された第1閾値に照らし合わせて前記予兆があるか否かを判定する、
請求項5又は請求項6に記載の予兆判定装置。 - 前記画像は、前記周波数成分を時間及び周波数を軸とするカラーグラフとして示し、前記カラーグラフ上に前記エネルギーの値を色で示す、
請求項7に記載の予兆判定装置。 - 前記予兆があると判定された場合、前記周波数成分を、前記周波数成分と前記異常が発生する部位が関連付けられた部位情報に照らし合わせて、前記部位を特定する特定部と、
を備える請求項5から請求項8の何れか1項に記載の予兆判定装置。 - 前記特定部は、前記予兆があると判定された場合、前記画像と前記異常が発生する要因が関連付けられた要因情報に基づいて、さらに前記要因を特定する、
請求項9に記載の予兆判定装置。 - 前記要因に関連付けられた前記画像の特徴量と、前記画像生成部により生成された前記画像の特徴量に基づいて、類似度を算出する算出部と、
前記予兆があると判定された場合、前記類似度が、予め設定された第2閾値以上であるか否かを判定する第2判定部と、を備え、
前記特定部は、前記第2閾値以上であると判定された場合、算出された前記類似度に係る前記要因を特定する、
請求項10に記載の予兆判定装置。 - 前記類似度が前記第2閾値以上でないと判定された場合、外部から入力を受け入れて、前記要因情報を更新する更新部と、
を備える請求項11に記載の予兆判定装置。 - 前記特定部は、特定した前記要因を、前記要因と前記異常が発生するまでの時間を関連付けた時間情報と照らし合わせて、さらに前記時間を特定する、
を備える請求項10から請求項12の何れか1項に記載の予兆判定装置。 - 前記特定部により特定した内容を出力する出力部と、
を備える請求項9から請求項13の何れか1項に記載の予兆判定装置。 - 端末装置と通信可能な予兆判定装置からなる異常の予兆判定システムであって、
前記端末装置は、
電動機および前記電動機の負荷に関して異常の予兆判定を要求する要求部と、
を備え、
前記予兆判定装置は、
前記端末装置からの要求により、前記電動機を流れる電流の計測結果を取得する計測結果取得部と、
前記計測結果を周波数解析して周波数成分に分解する解析部と、
前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測部と、
を備える予兆判定システム。 - 電動機を流れる電流の計測結果を取得することと、
前記計測結果に基づいて、前記電流を周波数解析して周波数成分に分解することと、
前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することと、
を含む予兆判定方法。 - コンピュータに、
電動機を流れる電流の計測結果を取得することと、
前記計測結果に基づいて、前記電流を周波数解析して周波数成分に分解することと、
前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定することと、
を実行させるプログラム。 - 端末装置が、
電動機および前記電動機の負荷に関して異常の予兆判定を要求する要求ステップと、
を有し、
前記端末装置と通信可能な予兆判定装置が、
前記端末装置からの要求により、前記電動機を流れる電流の計測結果を取得する計測結果取得ステップと、
前記計測結果を周波数解析して周波数成分に分解する解析ステップと、
前記周波数成分の時系列データに基づいて、前記電動機および前記電動機の負荷の少なくとも一方に異常の予兆があるか否かを判定する予測ステップと、
を有する予兆判定方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020102906 | 2020-06-15 | ||
JP2020-102906 | 2020-06-15 | ||
JP2021-043598 | 2021-03-17 | ||
JP2021043598A JP2021197158A (ja) | 2020-06-15 | 2021-03-17 | 予兆判定装置、予兆判定システム、予兆判定方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256358A1 true WO2021256358A1 (ja) | 2021-12-23 |
Family
ID=79196376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/022042 WO2021256358A1 (ja) | 2020-06-15 | 2021-06-10 | 予兆判定装置、予兆判定システム、予兆判定方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021197158A (ja) |
TW (1) | TWI808433B (ja) |
WO (1) | WO2021256358A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560596A (ja) * | 1991-09-04 | 1993-03-09 | Hitachi Ltd | 回転機器異常診断装置 |
JPH08320721A (ja) * | 1995-05-24 | 1996-12-03 | Meidensha Corp | 故障予知装置の異常内容判定方法 |
US5726905A (en) * | 1995-09-27 | 1998-03-10 | General Electric Company | Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring |
JPH10133740A (ja) * | 1996-10-28 | 1998-05-22 | Shinryo Corp | 音響法による空調用フアン及びポンプの異常検出方法 |
JP2005241089A (ja) * | 2004-02-25 | 2005-09-08 | Mitsubishi Electric Corp | 機器診断装置、冷凍サイクル装置、機器診断方法、機器監視システム、冷凍サイクル監視システム |
US20160302019A1 (en) * | 2015-04-08 | 2016-10-13 | The Boeing Company | Vibration monitoring systems |
JP2018059821A (ja) * | 2016-10-06 | 2018-04-12 | 株式会社神戸製鋼所 | 回転機異常検出装置および該方法ならびに回転機 |
JP2018092453A (ja) * | 2016-12-06 | 2018-06-14 | 日本電気通信システム株式会社 | 学習装置、学習方法およびプログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI664409B (zh) * | 2018-04-27 | 2019-07-01 | 新光網股份有限公司 | 無線振動檢測裝置以及使用其之電動機系統 |
-
2021
- 2021-03-17 JP JP2021043598A patent/JP2021197158A/ja active Pending
- 2021-06-10 WO PCT/JP2021/022042 patent/WO2021256358A1/ja active Application Filing
- 2021-06-10 TW TW110121162A patent/TWI808433B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560596A (ja) * | 1991-09-04 | 1993-03-09 | Hitachi Ltd | 回転機器異常診断装置 |
JPH08320721A (ja) * | 1995-05-24 | 1996-12-03 | Meidensha Corp | 故障予知装置の異常内容判定方法 |
US5726905A (en) * | 1995-09-27 | 1998-03-10 | General Electric Company | Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring |
JPH10133740A (ja) * | 1996-10-28 | 1998-05-22 | Shinryo Corp | 音響法による空調用フアン及びポンプの異常検出方法 |
JP2005241089A (ja) * | 2004-02-25 | 2005-09-08 | Mitsubishi Electric Corp | 機器診断装置、冷凍サイクル装置、機器診断方法、機器監視システム、冷凍サイクル監視システム |
US20160302019A1 (en) * | 2015-04-08 | 2016-10-13 | The Boeing Company | Vibration monitoring systems |
JP2018059821A (ja) * | 2016-10-06 | 2018-04-12 | 株式会社神戸製鋼所 | 回転機異常検出装置および該方法ならびに回転機 |
JP2018092453A (ja) * | 2016-12-06 | 2018-06-14 | 日本電気通信システム株式会社 | 学習装置、学習方法およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
TW202202823A (zh) | 2022-01-16 |
TWI808433B (zh) | 2023-07-11 |
JP2021197158A (ja) | 2021-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10496466B2 (en) | Preprocessor of abnormality sign diagnosing device and processing method of the same | |
KR101874472B1 (ko) | 진동신호의 주파수 에너지를 이용한 회전체 고장 예측 시스템 및 방법 | |
JP7040851B2 (ja) | 異常検知装置、異常検知方法及び異常検知プログラム | |
WO2014103134A1 (en) | Predicting a time of failure of a device | |
JP2018119924A (ja) | 診断装置 | |
CN111509847A (zh) | 一种电网机组状态的智能检测系统及方法 | |
EP2541358B1 (en) | Method, monitoring system and computer program product for monitoring the health of a monitored system utilizing an associative memory | |
JP2015529813A (ja) | 遺伝的プログラミングを用いて発見された前兆的特徴からの、残存耐用寿命の推定 | |
KR102480899B1 (ko) | 다채널 신호를 이용한 모터 고장 진단 방법 및 장치 | |
Laayati et al. | Smart energy management system: SCIM diagnosis and failure classification and prediction using energy consumption data | |
CN114255784A (zh) | 一种基于声纹识别的变电站设备故障诊断方法及相关装置 | |
Hussain et al. | Fault Detection and Identification Using Deep Learning Algorithms in InductionMotors. | |
CN117910999A (zh) | 一种智能电厂设备检修方法及系统 | |
JPWO2004068078A1 (ja) | 状態判定方法と状態予測方法及び装置 | |
JP2003044123A (ja) | プラント診断装置 | |
WO2021256358A1 (ja) | 予兆判定装置、予兆判定システム、予兆判定方法及びプログラム | |
CN117994955A (zh) | 水电机组温度报警模型建立和报警方法及装置 | |
CN117591839A (zh) | 燃气轮机的故障预警方法、系统、电子设备和存储介质 | |
JP2006285884A (ja) | 故障診断方法およびそれを備えた制御装置 | |
CN117370879A (zh) | 一种风力机齿轮箱的实时在线故障诊断方法及系统 | |
Kavitha et al. | Magnetoresistance sensor-based rotor fault detection in induction motor using non-decimated wavelet and streaming data | |
EP4273520A1 (en) | Method and system for comprehensively diagnosing defect in rotating machine | |
CN116040483A (zh) | 起重机回转支承工作状态评估方法、系统及存储介质 | |
KR102212022B1 (ko) | 양수 수차의 건전성 자동 판정 방법 및 이를 위한 시스템 | |
JP2023021514A (ja) | 装置診断システムおよび装置診断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21825147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21825147 Country of ref document: EP Kind code of ref document: A1 |