WO2021256306A1 - ソーダリグニンの分離方法 - Google Patents

ソーダリグニンの分離方法 Download PDF

Info

Publication number
WO2021256306A1
WO2021256306A1 PCT/JP2021/021481 JP2021021481W WO2021256306A1 WO 2021256306 A1 WO2021256306 A1 WO 2021256306A1 JP 2021021481 W JP2021021481 W JP 2021021481W WO 2021256306 A1 WO2021256306 A1 WO 2021256306A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
precipitate
less
acid
black liquor
Prior art date
Application number
PCT/JP2021/021481
Other languages
English (en)
French (fr)
Inventor
歩 田上
令治 金子
豊 塗木
志穂 辻
正一 宮脇
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2022531677A priority Critical patent/JPWO2021256306A1/ja
Publication of WO2021256306A1 publication Critical patent/WO2021256306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives

Definitions

  • the present invention relates to a method for separating lignin dissolved in the black liquor in high yield using the black liquor discharged from the step of steaming lignocellulosic as a raw material.
  • lignin As a substitute for petroleum, it has been studied to use lignin as a raw material by converting it into a phenol resin, an epoxy resin or the like. Lignin is abundant in lignocellulosic such as wood, but in order to extract it, chemical treatment using an acid, alkali, or an organic solvent, mechanical treatment such as pulverization is required.
  • a mixed solution of acidic sulfite and sulfurous acid is added to wood and steamed at 130 to 145 ° C to elute lignin in the wood as lignin sulfonate (for example, Patent Document 1), and then kraft steaming.
  • Patent Document 3 uses kraft black liquor as a raw material, it is inevitable that hydrogen sulfide having an odor and toxicity will be generated when the black liquor is adjusted to be acidic. In addition, since sodium sulfide is used in kraft cooking, there is a concern that sulfur components may remain in the finally obtained lignin product. As another issue, it is industrially important to increase the yield of the obtained lignin and reduce the manufacturing cost.
  • An object of the present invention is to separate lignin in high yield from the black liquor discharged from the step of steaming lignocellulosic with soda.
  • the present inventors have obtained lignocellulosic in which the ratio (S / V ratio) of syringaldehyde and vanillin obtained by subjecting to alkali nitrobenzene oxidation is equal to or less than a specific value. It has been found that the above object can be achieved by separating lignin as a raw material while controlling the pH of the black liquor discharged from the step of cooking soda.
  • Step a) A step of adding an acid and / or carbon dioxide to the black liquor to precipitate lignin under the condition of pH less than 10, and then dehydrating to obtain a lignin precipitate A.
  • Step b) A step of suspending the lignin precipitate A and adjusting the pH to less than 3 to precipitate lignin.
  • Step c) A step of dehydrating and washing and dehydrating the lignin precipitated in the step b) to obtain a lignin precipitate C.
  • (2) The method according to (1), wherein dehydration in the steps a) and / or step c) is performed by a filter press device.
  • lignin can be separated in high yield from the black liquor discharged from the step of steaming lignocellulosic with soda.
  • the present invention is a method for separating lignin from black liquor discharged from a step of steaming soda using lignocellulosic as a raw material, wherein the lignocellulosic is the ratio of syringaldehyde and vanillin obtained by subjecting to alkali nitrobenzene oxidation. (S / V ratio) is 3.5 or less, and is a method including the following steps a), b), and c).
  • Step a) A step of adding acid and / or carbon dioxide to the black liquor to precipitate lignin under the condition of pH less than 10, and then dehydrating to obtain lignin precipitate A.
  • Step b) A step of suspending the lignin precipitate A and adjusting the pH to less than 3 to precipitate the lignin.
  • Step c) A step of dehydrating and washing and dehydrating the lignin precipitated in step b) to obtain a lignin precipitate C.
  • Lignin is a high molecular weight phenolic compound having a basic skeleton such as guaiacyl lignin (G type), syringyl lignin (S type), and p-hydroxyphenyl lignin (H type), and is contained in all plants. ..
  • Examples of the lignin of the herbaceous plant include lignin contained in gramineous plants (straw, rice straw, corn, bamboo, etc.). Such herbaceous plant-derived lignin has all H-type, G-type and S-type as basic skeletons. Lignin of woody plants does not contain lignin having H type as a basic skeleton.
  • coniferous lignin has G type as a basic skeleton
  • hardwood lignin has G type and S type as a basic skeleton.
  • the composition ratio of G type and S type differs depending on the tree species.
  • Alkaline nitrobenzene oxidation method is one of the methods for analyzing the composition ratio, and the ratio (S / V ratio) of syringaldehyde and vanillin produced by oxidation from syringyl lignin and guaicial lignin, respectively, is the S-type and G-type of lignin.
  • the composition ratio of can be estimated.
  • the lignocellulosic raw material used in the present invention has an S / V ratio of 3.5 or less, preferably 3.0 or less, from the viewpoint of being able to separate lignin in a high yield.
  • a plant containing lignin and a residue obtained by extracting components other than lignin from the plant can be used.
  • wood such as wood chips, pulp produced from wood, and pulp such as cotton linter pulp obtained from the fibers around cotton seeds; bagasse (squeezed sugar cane), rice straw, and corn stalks.
  • Plant stems / leaves / fruit bunches such as leaves and palm empty fruit bunches
  • plant husks such as paddy husks, palm husks and coconut husks
  • papers such as newspapers, cardboards, magazines and woodfree papers
  • giant kelp, combs and wakame Nori, Maxa, Spirilna, Donariera, Chlorella, Senedesmus and other algae.
  • Wood chips include eucalyptus, beech, sina, white birch, poplar, acacia, oak, Acer mono, sennoki, elm, kiri, magnolia, yanagi, sen, ubamegashi, konara, oak, horse chestnut, zelkova, mizume, mizuki, and ash. Illustrated. Of these, eucalyptus chips are preferable from the viewpoint of availability of existing equipment and raw material cost, and the eucalyptus is Eucalyptus globulus, Eucalyptus nitens, and Eucalyptus grandis.
  • eucalyptus euro Philadelphia eucalyptus urophylla
  • eucalyptus euro grandis eucalyptus urograndis
  • eucalyptus Shitoriodora eucalyptus citriodora
  • eucalyptus Teretikorunisu eucalyptus tereticornis
  • eucalyptus Perita eucalyptus pellita
  • eucalyptus robusta eucalyptus robusta
  • Eucalyptus degrupta Eucalyptus camaldrensis, etc.
  • Eucalyptus camaldrensis which has a high yield of lignin due to its small S / V ratio, is preferable.
  • eucalyptus hybrids such as Eucalyptus camaldrensis X Europhila produced by crossing Eucalyptus camaldrensis and Europhila, Eucalyptus camaldrensis X Grandis, which is a hybrid with Grandis, etc. Can include.
  • the above-mentioned lignocellulosic raw material is put into a cooking pot together with a cooking liquid consisting of a caustic soda solution and used for soda cooking.
  • a cooking liquid consisting of a caustic soda solution and used for soda cooking.
  • the cooking type such as 1 Vessel liquid phase type, 1 Vessel gas phase / liquid phase type, 2 Vessel liquid phase / gas phase type, and 2 Vessel liquid phase type is not particularly limited.
  • Soda cooking can be performed by putting the lignocellulosic raw material together with the cooking liquid in a pressure-resistant container, but the shape and size of the container are not particularly limited.
  • the liquid ratio of the lignocellulosic raw material to the cooking solution can be, for example, 1.0 to 40 L / kg, preferably 1.5 to 30 L / kg, and more preferably 2.0 to 30 L / kg.
  • the liquid ratio of the lignocellulosic raw material to the chemical solution can be, for example, 1.0 to 5.0 L / kg, preferably 1.5 to 4.5 L / kg, and 2.0 to 4 .0 L / kg is more preferable.
  • various cooking aids can be used in combination in addition to caustic soda (NaOH).
  • Caustic soda NaOH
  • an alkaline cooking solution containing 0.01 to 5% by mass of the quinone compound per absolute dry mass of the lignocellulosic raw material may be added to the cooking kettle. If the amount of the quinone compound added is less than 0.01% by mass, the amount of lignin extracted into the black liquor is not sufficient. Further, even if the addition amount of the quinone compound exceeds 5% by mass, no further improvement in the extraction amount of lignin is observed.
  • the quinone compound used is a quinone compound as a so-called known cooking aid, a hydroquinone compound or a precursor thereof, and at least one compound selected from these can be used.
  • these compounds include anthraquinone, dihydroanthraquinone (eg, 1,4-dihydroanthraquinone), tetrahydroanthraquinone (eg, 1,4,4a, 9a-tetrahydroanthraquinone, 1,2,3,4-tetrahydroanthraquinone).
  • Methylanthraquinone eg 1-methylanthraquinone, 2-methylanthraquinone
  • methyldihydroanthraquinone eg 2-methyl-1,4-dihydroanthraquinone
  • methyltetrahydroanthraquinone eg 1-methyl-1,4,4a
  • 9a-tetrahydroanthraquinone 2-methyl-1,4,4a, 9a-tetrahydroanthraquinone
  • other quinone compounds such as anthraquinone (generally 9,10-dihydroxyanthraquinone) and methylanthrahydroquinone (eg, 2-methyl).
  • Anthraquinone dihydroanthraquinone (eg, 1,4-dihydro-9,10-dihydroxyanthraquinone) or an alkali metal salt thereof (eg, disodium salt of anthraquinone, 1,4-dihydro-9,10-).
  • Hydroquinone compounds such as dihydroxyanthraquinone disodium salt
  • precursors such as anthraquinone, anthraquinone, methylanthronone, and methylanthranolol can be mentioned. These precursors have the potential to be converted to quinone or hydroquinone compounds under cooking conditions.
  • the caustic soda addition rate per absolute dry mass of the lignocellulosic raw material can be 1 to 50% by mass, and preferably 10 to 30% by mass. If the addition rate is less than 1% by mass, the extraction of lignin becomes insufficient, and if it exceeds 50% by mass, the yield and quality of the pulp are lowered.
  • the soda cooking is preferably carried out in a temperature range of 120 to 180 ° C, more preferably 140 to 160 ° C. If the temperature is too low, delignin (decrease in copper value) is insufficient, while if the temperature is too high, the degree of polymerization (viscosity) of cellulose decreases.
  • the cooking time in the present invention is the time from when the cooking temperature reaches the maximum temperature to when the temperature starts to decrease, but the cooking time is preferably 60 minutes or more and 600 minutes or less, and 120 minutes or more and 360 minutes or less. Is even more preferable. If the cooking time is less than 60 minutes, pulping and transfer of lignin to black liquor are insufficient, and if it exceeds 600 minutes, the efficiency of pulp production may deteriorate and a side reaction of eluted lignin may occur. Not preferred.
  • the treatment temperature and the treatment time can be set by using the H factor (Hf) as an index.
  • the H factor is a guideline for expressing the total amount of heat applied to the reaction system in the cooking process, and is expressed by the following formula.
  • the H factor is calculated by integrating the time from the time when the chips and water are mixed to the time when the cooking is completed.
  • the H factor is preferably 250 to 6000.
  • Hf ⁇ exp (43.20-16113 / T) dt
  • the black liquor obtained after cooking can be subjected to various treatments, if necessary.
  • the unbleached pulp obtained after cooking can be subjected to various treatments, for example, bleaching treatment, if necessary.
  • Step a A step of adding acid and / or carbon dioxide to the black liquor to precipitate lignin under the condition of pH less than 10, and then dehydrating to obtain lignin precipitate A>.
  • acid and / or carbon dioxide By adding acid and / or carbon dioxide to the black liquor obtained after soda cooking to make a suspension with the pH of the black liquor set to less than 10, the lignin dissolved in the black liquor is precipitated as an insoluble matter. Is possible.
  • This step may be repeated twice or more.
  • the pH of the black liquor may be 1 to 9 or may be adjusted to 2 to 8. When the pH of the black liquor is 10 or more, the insoluble matter of lignin is not sufficiently produced.
  • the acid used may be an inorganic acid or an organic acid.
  • Examples of the inorganic acid include sulfuric acid, sulfurous acid, hydrochloric acid, nitric acid, nitric acid, phosphoric acid, carbonic acid and the like, and sulfuric acid is preferable. Further, the residual acid discharged from the chlorine dioxide generator may be used. Examples of the organic acid include acetic acid, lactic acid, oxalic acid, citric acid, formic acid and the like.
  • the black liquor can be concentrated using an evaporator or the like before adjusting the pH, and the solid content is preferably 10% by mass or more and 40% by mass or less, preferably 18% by mass or more and 40% by mass or less. Is more preferable.
  • the solid content is too low, the precipitation of lignin is not sufficient, and the efficiency of lignin recovery is also poor. Further, if the solid content is too high, the viscosity of the black liquor becomes high, and it becomes difficult to recover the precipitate of lignin.
  • the treatment temperature when acid and / or carbon dioxide is added in the step of adjusting the pH of the black liquor to less than 10 is preferably room temperature to 100 ° C. If the temperature exceeds 100 ° C., lignin is condensed and separation becomes difficult. As long as the temperature does not exceed 100 ° C., a higher temperature is preferable from the viewpoint of increasing the yield of the finally obtained lignin precipitate.
  • the method of adding carbon dioxide is not particularly limited, but there is a method of blowing under atmospheric pressure or a method of blowing carbon dioxide in a closed container and pressurizing (0.1 to 1 MPa).
  • the carbon dioxide may be pure carbon dioxide gas, but gas containing carbon dioxide generated from a combustion exhaust gas discharged from an incinerator, a boiler or the like, a lime firing step, or the like can also be used.
  • a flocculant may be added to promote the precipitation of lignin.
  • the flocculant include aluminum sulfate band, aluminum chloride, polyaluminum chloride, polyamine, DADMAC, melamine colloid, and dicyandiamide.
  • a precipitate containing lignin By adding acid and / or carbon dioxide to the black liquor to adjust the pH of the black liquor to less than 10, a precipitate containing lignin can be obtained.
  • the cake-like precipitate is separated by dehydrating this precipitate and washing it with water if necessary (lignin precipitate A).
  • a filter press, a drum press, a centrifugal dehydrator, a suction filtration device and the like can be used as a device for dehydrating and washing the precipitate.
  • the water used for washing is not particularly limited, but industrial water, tap water and the like can be used, and the pH is preferably 1 to 9, and the electric conductivity is preferably 0.2 S / m or less.
  • the temperature of the water used for washing is preferably 20 to 80 ° C, more preferably 50 to 80 ° C. If the temperature of the water used for cleaning is too low, it tends to be clogged during cleaning, which makes the cleaning operation difficult.
  • Step b) A step of suspending the lignin precipitate A and adjusting the pH to less than 3 to precipitate the lignin>
  • water is added to the cake-like lignin precipitate A obtained in step a) and suspended.
  • the water used at this time may be the same water as the water used for washing in step a).
  • an acid is added to the lignin suspension to adjust the pH to less than 3, and the lignin is precipitated.
  • the acid used may be either an inorganic acid or an organic acid used in step a).
  • the inorganic acid examples include sulfuric acid, sulfurous acid, hydrochloric acid, nitric acid, nitric acid, phosphoric acid, carbonic acid and the like, and sulfuric acid is preferable.
  • the residual acid discharged from the chlorine dioxide generator may be used.
  • the organic acid examples include acetic acid, lactic acid, oxalic acid, citric acid, formic acid and the like.
  • the lignin precipitate A may be adjusted to a pH of less than 3 by suspending it in an acidic solution prepared by adding an acid in advance to precipitate lignin.
  • the acid used to prepare the acidic solution may be either an inorganic acid or an organic acid used in step a).
  • Examples of the inorganic acid include sulfuric acid, sulfurous acid, hydrochloric acid, nitric acid, nitric acid, phosphoric acid, carbonic acid and the like, and sulfuric acid is preferable. Further, the residual acid discharged from the chlorine dioxide generator may be used. Examples of the organic acid include acetic acid, lactic acid, oxalic acid, citric acid, formic acid and the like.
  • Step c) A step of dehydrating and washing and dehydrating the lignin precipitated in step b) to obtain a lignin precipitate C>
  • the lignin precipitated in step b) is dehydrated and washed and dehydrated to obtain a cake-like lignin precipitate C.
  • it is desirable to carry out the washing until the electric conductivity of the washing filtrate becomes 0.2 S / m or less. Under conditions where the electrical conductivity of the wash filtrate exceeds 0.2 S / m, inorganic salts such as sodium may remain in the finally obtained lignin, which is not desirable.
  • a filter press, a drum press, a centrifugal dehydrator, a suction filtration apparatus and the like can be used as in step a).
  • the water used for washing the precipitated lignin may be the same water as the water used for washing in step a).
  • the solid content of the lignin precipitate C is preferably 25% by mass or more. If the concentration of solid content is low, the handling of the prepared lignin will be poor. In addition, it takes a long time to remove the water when it is made into a dried product.
  • the S / V ratio of the lignin precipitate C is preferably 3.0 or less, more preferably 2.5 or less, from the viewpoint of dehydration.
  • Lignin can also be purified by adding an organic solvent to the lignin precipitate C obtained in step c) to dissolve it and separating the insoluble matter which is an impurity.
  • the organic solvent to be added is a non-solvent or a poor solvent for saccharides, for example, alcohols containing methanol, ethanol, isopropyl alcohol, 2-methoxyl ethanol, butanol and the like, ethers including 1,4-dioxane, tetrahydrofuran and the like.
  • a filter press, a drum press, a centrifugal dehydrator, a suction filtration device, or the like can be used as a method for solid-liquid separation of the insoluble matter in the suspension.
  • the lignin obtained in the present invention can be used as a raw material for thermosetting resins, dispersants, adhesives, and rigid polyurethane foams. Further, by further reducing the molecular weight, it can be used as a raw material for a phenol resin or an epoxy resin.
  • Lignin precipitate A was separated by suction dehydration using a glass filter (GS-25, manufactured by ADVANTEC).
  • a glass filter GS-25, manufactured by ADVANTEC
  • ⁇ Step b)> Half the amount of water of the black liquor was added to the lignin precipitate A to form a slurry again, and sulfuric acid was added to the slurry to adjust the pH to 2, and the lignin was precipitated.
  • the slurry (solid content concentration: about 10%) was preheated to 80 ° C.
  • Step c)> After suction dehydration using a glass filter (GS-25, manufactured by ADVANTEC) and solid-liquid separation, the solid content remaining on the glass filter is washed with hot water (80 ° C.), which is half the amount of black liquor, and lignin precipitates.
  • the slurry (solid content concentration: about 10%) was preheated to 60 ° C. ⁇ Step c)> After suction dehydration using a glass filter (GS-25, manufactured by ADVANTEC) and solid-liquid separation, the solid content remaining on the glass filter is washed with hot water (60 ° C.), which is half the amount of black liquor, and lignin precipitates. I got the thing C. The washing was carried out until the electric conductivity of the washing filtrate became 0.2 S / m or less. The electrical conductivity was measured using a portable pH / ORP / electrical conductivity meter D-74 (manufactured by HORIBA). The solid content of the obtained lignin precipitate C was 22% by mass. Alkaline nitrobenzene oxidation analysis after drying the precipitate revealed an S / V ratio of 3.9. The yield of the dried precipitate C with respect to the solid content of the black liquor was 15.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

アルカリニトロベンゼン酸化に供して得られるシリンガアルデヒドとバニリンの比(S/V比)が3.5以下であるリグノセルロースを原料とし、下記の各工程を含んでなる方法により、リグニンを高い収率で分離する。工程a)黒液に酸及び/又は二酸化炭素を添加してpH10未満の条件でリグニンを沈殿させ、その後に脱水し、リグニン沈殿物Aを得る工程、工程b)前記リグニン沈殿物Aを懸濁してpH3未満に調整してリグニンを沈殿させる工程、工程c)前記工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、リグニン沈殿物Cを得る工程。

Description

ソーダリグニンの分離方法
 本発明は、リグノセルロースをソーダ蒸解する工程から排出される黒液を原料として、前記黒液に溶解しているリグニンを高収率で分離する方法に関する。
 近年、石油の代替としてリグニンを原料として、フェノール樹脂、エポキシ樹脂等に変換して利用することが検討されている。リグニンは木材などのリグノセルロース中に多量に存在するが、抽出するためには酸、アルカリ、あるいは有機溶媒を使用する化学処理、粉砕等の機械的処理が必要である。例えば、サルファイト蒸解法では、酸性亜硫酸塩と亜硫酸の混液を木材に加えて、130~145℃で蒸煮し木材中のリグニンをリグニンスルホン酸塩として溶出させ(例えば、特許文献1)、クラフト蒸解法では、苛性ソーダ(NaOH)と硫化ソーダ(NaS)を主成分とする薬品を木材に加えて、150~170℃程度で蒸解して、クラフトリグニンとして溶出させる。これらの蒸解法とは別に、苛性ソーダ等のアルカリ水溶液を木材に加えてリグニンを溶出することが検討されている(特許文献2)。
 また、抽出されたリグニンを効率よく分離することも重要である。例えば、クラフト蒸解法等で得られる黒液を酸性化してリグニンを沈殿させて脱水し、リグニン濾過ケーキを洗浄してリグニンを得ることが開示されている(特許文献3)。
特開2001-89986号公報 特開2014-208803号公報 特表2008-513549号公報
 しかしながら、特許文献3の方法ではクラフト黒液を原料とするため、黒液を酸性に調整する際に臭気および毒性を有する硫化水素が発生することが避けられない。また、クラフト蒸解では硫化ソーダを使用するために、最終的に得られるリグニン製品に硫黄成分が残存する懸念がある。また、別の課題として、得られるリグニンの収率を上げて製造コストの低減を図ることも工業的には重要である。
 本発明の課題は、リグノセルロースをソーダ蒸解する工程から排出される黒液からリグニンを高収率で分離することである。
 本発明者らはこれらの目的を達成するために検討を重ねた結果、アルカリニトロベンゼン酸化に供して得られるシリンガアルデヒドとバニリンの比(S/V比)が特定の値以下であるリグノセルロースを原料として、ソーダ蒸解する工程から排出される黒液のpHを制御しながらリグニンを分離することにより上記目的が達成されることを見出した。
 すなわち本願は下記の発明を提供するものである。
(1) リグノセルロースを原料として、ソーダ蒸解する工程から排出される黒液からリグニンを分離する方法であって、前記リグノセルロースは、アルカリニトロベンゼン酸化に供して得られるシリンガアルデヒドとバニリンの比(S/V比)が3.5以下であり、下記の各工程を含んでなる方法。
工程a)前記黒液に酸及び/又は二酸化炭素を添加してpH10未満の条件でリグニンを沈殿させ、その後に脱水し、リグニン沈殿物Aを得る工程。
工程b)前記リグニン沈殿物Aを懸濁してpH3未満に調整してリグニンを沈殿させる工程。
工程c)前記工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、リグニン沈殿物Cを得る工程。
(2) 前記工程a)及び/又は工程c)における脱水をフィルタープレス装置で行う(1)に記載の方法。
(3) 前記工程b)において、前記リグニン沈殿物Aを懸濁した後に酸を添加してpH3未満とする(1)又は(2)に記載の方法。
(4) 前記工程b)において、前記リグニン沈殿物Aを酸性溶液に懸濁しpH3未満とする(1)又は(2)に記載の方法。
(5) 前記工程c)の洗浄脱水で得られる洗浄ろ液の電気伝導度が、0.2S/m以下になるまで前記洗浄脱水を行う、(1)~(4)のいずれかに記載の方法。
(6) 前記黒液の固形分が10質量%以上、40質量%以下であり、且つ前記リグニン沈殿物Cの固形分が25質量%以上である、(1)~(5)のいずれかに記載の方法。
(7) 前記リグノセルロースのS/V比が3.0以下である(1)~(6)のいずれかに記載の方法。
(8) 前記リグニン沈殿物CのS/V比が3.0以下である(1)~(7)のいずれかに記載の方法。
 本発明によれば、リグノセルロースをソーダ蒸解する工程から排出される黒液から、リグニンを高収率で分離することが可能となる。
 本発明は、リグノセルロースを原料として、ソーダ蒸解する工程から排出される黒液からリグニンを分離する方法であって、前記リグノセルロースは、アルカリニトロベンゼン酸化に供して得られるシリンガアルデヒドとバニリンの比(S/V比)が3.5以下であり、下記の工程a)、工程b)、及び工程c)を含んでなる方法である。
工程a)黒液に酸及び/又は二酸化炭素を添加してpH10未満の条件でリグニンを沈殿させ、その後に脱水し、リグニン沈殿物Aを得る工程。
工程b)リグニン沈殿物Aを懸濁してpH3未満に調整してリグニンを沈殿させる工程。
工程c)工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、リグニン沈殿物Cを得る工程。
 以下に本発明の各工程について具体的に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。
[リグノセルロース原料]
 リグニンは、グアイアシルリグニン(G型)、シリンギルリグニン(S型)、p-ヒドロキシフェニルリグニン(H型)などの基本骨格からなる高分子フェノール性化合物であって、植物全般に含まれている。草本植物のリグニンとしては、例えば、イネ科植物(麦わら、稲わら、とうもろこし、タケなど)に含まれるリグニンが挙げられる。このような草本系植物由来リグニンは、H型、G型およびS型の全てを基本骨格としている。木本植物のリグニンは、H型を基本骨格とするリグニンを含まず、例えば、針葉樹系リグニンはG型を基本骨格とし、広葉樹系リグニンは、G型およびS型を基本骨格としている。
 G型とS型の構成比は樹種によって異なっていることが知られている。構成比の分析方法の一つとしてアルカリニトロベンゼン酸化法があり、シリンギルリグニン及びグアイシアルリグニンからそれぞれ酸化により生成するシリンガアルデヒドとバニリンの比(S/V比)でリグニンのS型とG型の構成比を推定することができる。
 本発明に用いるリグノセルロース原料としては、高収率でリグニンを分離できる観点から、S/V比が3.5以下、好ましくは3.0以下である。
 原料のリグノセルロースとしては、リグニンを含有する植物体、植物体からリグニン以外の成分が抽出された残渣を使用することができる。
 具体的には、木材チップなどの各種木材、木材から製造されるパルプ、綿の種子の周囲の繊維から得られるコットンリンターパルプなどのパルプ類;バガス(サトウキビの搾りかす)、稲わら、とうもろこし茎・葉、パーム空果房などの植物茎・葉・果房類;籾殻、パーム殻、ココナッツ殻などの植物殻類;新聞紙、ダンボール、雑誌、上質紙などの紙類;ジャイアントケルプ、コンブ、ワカメ、ノリ、マクサ、スピリルナ、ドナリエラ、クロレラ、セネデスムスなどの藻類などが挙げられる。木材チップとしては、ユーカリ、ブナ、シナ、シラカバ、ポプラ、アカシア、ナラ、イタヤカエデ、センノキ、ニレ、キリ、ホオノキ、ヤナギ、セン、ウバメガシ、コナラ、クヌギ、トチノキ、ケヤキ、ミズメ、ミズキ、アオダモ等が例示される。これらのうち、既存設備の利用可能性及び原料コストの観点から、ユーカリのチップが好ましく、ユーカリとしては、ユーカリ・グロブラス(Eucalyptus  globulus)、ユーカリ・ナイテンス(Eucalyptus  nitens)、ユーカリ・グランディス(Eucalyptus  grandis)、ユーカリ・ユーロフィラ(Eucalyptus  urophylla)、ユーカリ・ユーログランディス(Eucalyptus  urograndis)、ユーカリ・シトリオドーラ(Eucalyptus  citriodora)、ユーカリ・テレティコルニス(Eucalyptus tereticornis)、ユーカリ・ペリータ(Eucalyptus pellita)、ユーカリ・ロブスタ(Eucalyptus robusta)、ユーカリ・デグラプタ(Eucalyptus deglupta)、ユーカリ・カマルドレンシス(Eucalyptus  camaldulensis)等がある。これらのうちで、S/V比が小さいためにリグニンの収率が高いユーカリ・カマルドレンシスが好ましい。さらには、ユーカリの交配種、例えば、ユーカリ・カマルドレンシスとユーロフィラを交配して作出されたユーカリ・カマルドレンシスXユーロフィラ、グランディスとの交配種であるユーカリ・カマルドレンシスXグランディスなどを含むことができる。
[ソーダ蒸解]
 上記のリグノセルロース原料は、苛性ソーダ溶液からなる蒸解液と共に蒸解釜へ投入され、ソーダ蒸解に供する。また、1ベッセル液相型、1ベッセル気相/液相型、2ベッセル液相/気相型、2ベッセル液相型などの蒸解型式なども特に限定はない。
 ソーダ蒸解は、リグノセルロース原料を蒸解液とともに耐圧性容器に入れて行うことができるが、容器の形状や大きさは特に制限されない。リグノセルロース原料と蒸解液の液比は、例えば、1.0~40L/kgとすることができ、1.5~30L/kgが好ましく、2.0~30L/kgがさらに好ましい。また別の態様において、リグノセルロース原料と薬液の液比は、例えば、1.0~5.0L/kgとすることができ、1.5~4.5L/kgが好ましく、2.0~4.0L/kgがさらに好ましい。
 また、本発明のソーダ蒸解においては、苛性ソーダ(NaOH)の他に種々の蒸解助剤を併用することもできる。例えば、リグノセルロース原料の絶乾質量当たり0.01~5質量%のキノン化合物を含むアルカリ性蒸解液を蒸解釜に添加してもよい。キノン化合物の添加量が0.01質量%未満であると黒液中に抽出されるリグニンの抽出量が十分ではない。また、キノン化合物の添加量が5質量%を超えてもさらなるリグニンの抽出量の向上が認められない。
 使用されるキノン化合物はいわゆる公知の蒸解助剤としてのキノン化合物、ヒドロキノン化合物又はこれらの前駆体であり、これらから選ばれた少なくとも1種の化合物を使用することができる。これらの化合物としては、例えば、アントラキノン、ジヒドロアントラキノン(例えば、1,4-ジヒドロアントラキノン)、テトラヒドロアントラキノン(例えば、1,4,4a,9a-テトラヒドロアントラキノン、1,2,3,4-テトラヒドロアントラキノン)、メチルアントラキノン(例えば、1-メチルアントラキノン、2-メチルアントラキノン)、メチルジヒドロアントラキノン(例えば、2-メチル-1,4-ジヒドロアントラキノン)、メチルテトラヒドロアントラキノン(例えば、1-メチル-1,4,4a,9a-テトラヒドロアントラキノン、2-メチル-1,4,4a,9a-テトラヒドロアントラキノン)等のキノン化合物であり、アントラヒドロキノン(一般に、9,10-ジヒドロキシアントラセン)、メチルアントラヒドロキノン(例えば、2-メチルアントラヒドロキノン)、ジヒドロアントラヒドロアントラキノン(例えば、1,4-ジヒドロ-9,10-ジヒドロキシアントラセン)又はそのアルカリ金属塩等(例えば、アントラヒドロキノンのジナトリウム塩、1,4-ジヒドロ-9,10-ジヒドロキシアントラセンのジナトリウム塩)等のヒドロキノン化合物であり、アントロン、アントラノール、メチルアントロン、メチルアントラノール等の前駆体が挙げられる。これら前駆体は蒸解条件下ではキノン化合物又はヒドロキノン化合物に変換する可能性を有している。
 蒸解液は、リグノセルロース原料の絶乾質量当たりの苛性ソーダ添加率を1~50質量%とすることができ、10~30質量%とすることが好ましい。添加率が1質量%未満であるとリグニンの抽出が不十分となり、50質量%を超えるとパルプの収率の低下や品質の低下が起こる。
 ソーダ蒸解は、120~180℃の温度範囲で行うことが好ましく、140~160℃がより好ましい。温度が低すぎると脱リグニン(カッパー価の低下)が不十分である一方、温度が高すぎるとセルロースの重合度(粘度)が低下する。また、本発明における蒸解時間とは、蒸解温度が最高温度に達してから温度が下降し始めるまでの時間であるが、蒸解時間は、60分以上600分以下が好ましく、120分以上360分以下がさらに好ましい。蒸解時間が60分未満ではパルプ化およびリグニンの黒液への移行が不十分であり、600分を超えるとパルプ生産効率の悪化や溶出したリグニンの副次的反応が起こる可能性があるために好ましくない。
 また、本発明におけるソーダ蒸解は、Hファクター(Hf)を指標として、処理温度及び処理時間を設定することができる。Hファクターとは、蒸解過程で反応系に与えられた熱の総量を表す目安であり、下記の式によって表わされる。Hファクターは、チップと水が混ざった時点から蒸解終了時点まで時間積分することで算出する。Hファクターとしては、250~6000が好ましい。
 Hf=∫exp(43.20-16113/T)dt
 本発明においては、蒸解後得られた黒液は、必要に応じて、種々の処理に供することができる。また、蒸解後得られた未漂白パルプは、必要に応じて、種々の処理、例えば、漂白処理を行うことができる。
<工程a)黒液に酸及び/又は二酸化炭素を添加してpH10未満の条件でリグニンを沈殿させ、その後に脱水し、リグニン沈殿物Aを得る工程>
 ソーダ蒸解後に得られる黒液に酸及び/又は二酸化炭素を添加して、黒液のpHを10未満として懸濁液とすることにより、黒液中に溶解しているリグニンを不溶物として沈殿させることが可能となる。この工程は2回以上繰り返して行ってもよい。黒液のpHは1~9としてもよく、2~8に調整してもよい。黒液のpHが10以上では、リグニンの不溶物が十分に生成しない。使用する酸は無機酸でも有機酸でもよい。無機酸としては、硫酸、亜硫酸、塩酸、硝酸、亜硝酸、リン酸、炭酸等が挙げられ、硫酸が好ましい。また、二酸化塩素発生装置から排出される残留酸を使用してもよい。有機酸としては、酢酸、乳酸、蓚酸、クエン酸、ギ酸等が挙げられる。なお、黒液はpHを調整する前に、エバポレーターなどを用いて濃縮することができ、固形分は10質量%以上、40質量%以下であることが好ましく、18質量%以上、40質量%以下であることがより好ましい。固形分が低すぎるとリグニンの沈殿が十分でなく、また、リグニン回収の効率も悪い。また、固形分が高すぎると黒液の粘度が高くなり、リグニンの沈殿回収が困難となる。
 黒液のpHを10未満に調整する工程で酸及び/又は二酸化炭素を添加する場合の処理温度は室温~100℃が好ましい。温度が100℃を超えるとリグニンが縮合するために分離が困難となる。100℃を超えない範囲であれば、最終的に得られるリグニン沈殿物の収率が高くなる観点から、温度が高い方が好ましい。
 二酸化炭素を加える方法は特に限定されないが、大気圧下で吹き込む方法、あるいは密閉容器中で二酸化炭素を吹き込んで加圧(0.1~1MPa)する方法がある。二酸化炭素としては、純粋な二酸化炭素ガスでもよいが、焼却炉、ボイラーなどから排出される燃焼排ガス、石灰焼成工程などから発生する二酸化炭素を含むガスを用いることもできる。
 また、必要に応じて凝集剤を添加して、リグニンの沈殿を促進させてもよい。凝集剤としては、硫酸バンド、塩化アルミ、ポリ塩化アルミ、ポリアミン、DADMAC、メラミン酸コロイド、ジシアンジアミドが挙げられる。
 黒液に酸及び/又は二酸化炭素を添加して、黒液のpHを10未満に調整することによって、リグニンを含有する沈殿物が得られる。この沈殿物を脱水し、必要に応じて水で洗浄することによりケーキ状の沈殿物を分取する(リグニン沈殿物A)。沈殿物を脱水・洗浄するための装置としては、フィルタープレス、ドラムプレス、遠心脱水装置、吸引濾過装置等を使用することができる。洗浄する際に使用する水は特に限定されないが、工業用水、水道水等を使用することができ、pHは1~9、電気伝導度が0.2S/m以下であることが好ましい。洗浄する際に使用する水の温度は、20~80℃が好ましく、50~80℃がより好ましい。なお、洗浄に使用する水の温度が低すぎると、洗浄時に詰まりやすくなり、洗浄操作が困難となる。
<工程b)リグニン沈殿物Aを懸濁してpH3未満に調整してリグニンを沈殿させる工程>
 工程b)では、工程a)で得られたケーキ状のリグニン沈殿物Aに水を加えて懸濁させる。この際に使用される水は工程a)で洗浄に使用する水と同様の水でよい。次にリグニン懸濁液に酸を添加してpH3未満に調整してリグニンを沈殿させる。使用する酸は工程a)で使用する無機酸、有機酸いずれでもよい。無機酸としては、硫酸、亜硫酸、塩酸、硝酸、亜硝酸、リン酸、炭酸等が挙げられ、硫酸が好ましい。また、二酸化塩素発生装置から排出される残留酸を使用してもよい。有機酸としては、酢酸、乳酸、蓚酸、クエン酸、ギ酸等が挙げられる。また、リグニン沈殿物Aは、予め酸を加えて調製した酸性溶液に懸濁することによりpH3未満に調整してリグニンを沈殿させてもよい。酸性溶液を調製するのに使用する酸は工程a)で使用する無機酸、有機酸いずれでもよい。無機酸としては、硫酸、亜硫酸、塩酸、硝酸、亜硝酸、リン酸、炭酸等が挙げられ、硫酸が好ましい。また、二酸化塩素発生装置から排出される残留酸を使用してもよい。有機酸としては、酢酸、乳酸、蓚酸、クエン酸、ギ酸等が挙げられる。
<工程c)工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、リグニン沈殿物Cを得る工程>
 工程c)では、工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、ケーキ状のリグニン沈殿物Cを得る。洗浄は、最終的に得られるリグニンに含まれる不純物含量を十分に低下させる観点から、洗浄ろ液の電気伝導度が0.2S/m以下になるまで行うことが望ましい。洗浄ろ液の電気伝導度が0.2S/mを超える条件では、最終的に得られるリグニン中にナトリウムのような無機塩が残留する可能性があり、望ましくない。リグニン沈殿物を脱水及び洗浄脱水するための装置としては、工程a)と同様にフィルタープレス、ドラムプレス、遠心脱水装置、吸引濾過装置等を使用することができる。沈殿させたリグニンの洗浄に使用される水は工程a)で洗浄に使用する水と同様の水でよい。また、リグニン沈殿物Cの固形分は25質量%以上が望ましい。固形分の濃度が低いと調製したリグニンのハンドリングが悪くなる。加えて、乾燥品とする場合に水分を除去するのに長時間を要する。また、リグニン沈殿物CのS/V比は、脱水性の観点から好ましくは3.0以下、より好ましくは2.5以下である。
 工程c)で得られたリグニン沈殿物Cに有機溶媒を添加して溶解させ、不純物である不溶物を分離することによって、リグニンを精製することもできる。添加する有機溶媒としては、糖類の非溶媒または貧溶媒であり、例えば、メタノール、エタノール、イソプロピルアルコール、2-メトキシルエタノール、ブタノールなどを含むアルコール類、1,4-ジオキサン、テトラヒドロフランなどを含むエーテル類、アセトンやメチルエチルケトンなどを含むケトン類、アセトニトリルなどを含むニトリル類、ピリジンなどを含むアミン類、ホルムアミドなどを含むアミド類、酢酸エチル、酢酸メチルなどを含むエステル類、ヘキサンなどを含む脂肪族炭化水素、ベンゼン、トルエン等を含む芳香族炭化水素などのうち、一種類または複数を混合したもの、若しくは一種類または複数を混合し、水を加えたものを用いることができる。特に、アセトンが好ましい。懸濁液中の不溶物を固液分離する方法としては、フィルタープレス、ドラムプレス、遠心脱水装置、吸引濾過装等を使用することができる。
 本発明で得られるリグニンは、熱硬化性樹脂、分散剤、接着剤、硬質ポリウレタンフォームの原料として利用できる。また、さらに低分子化することによりフェノール樹脂原料やエポキシ樹脂原料として利用することもできる。
 以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、本明細書において%は特に断らない限り質量%を示す。
[実施例1]
 ユーカリ・カマルドレンシスのチップ(S/V比=3.0)を原料とする、蒸解温度150℃、Hファクター=400の条件の連続蒸解釜運転のソーダ蒸解パルプ工場から黒液(固形分濃度18.1%)を得た。
<工程a)>
 黒液をビーカーに入れ、80℃に予熱した後、二酸化炭素0.3MPaで加圧した耐圧容器内で撹拌しながら、30分処理し、pH7.5に調整した。ガラスフィルター(GS-25、ADVANTEC社製)を用いて吸引脱水し、リグニン沈殿物Aを分離した。
<工程b)>
 リグニン沈殿物Aに黒液の半量の水を加えて、再度スラリー化し、スラリーに硫酸を加えpHを2に調整し、リグニンを沈殿させた。スラリー(固形分濃度:約10%)を80℃に予熱した。
<工程c)>
 ガラスフィルター(GS-25、ADVANTEC社製)を用いて吸引脱水し、固液分離した後、ガラスフィルター上に残った固形分を黒液の半量の熱水(80℃)で洗浄し、リグニン沈殿物Cを得た。なお、洗浄は洗浄ろ液の電気伝導度が0.2S/m以下となるまで行った。電気伝導度は、ポータブル型pH・ORP・電気伝導度メータD-74(HORIBA製)を用いて測定した。得られたリグニン沈殿物Cの固形分は、27質量%であった。沈殿物Cを乾燥した後にアルカリニトロベンゼン酸化分析したところS/V比は2.1だった。また沈殿物C乾燥物の黒液固形分に対する収率は19.8%だった。
[比較例1]
<ソーダ蒸解>
 2.4L容の回転型オートクレーブに絶乾質量300gのユーカリ・グロブラスのチップ(S/V比=4.0)を入れ、水酸化ナトリウム20%(対チップ質量)、液比3L/kgとなるように水酸化ナトリウムを水に混合した蒸解薬液に、テトラヒドロアントラキノン(1,4-ジヒドロ-9,10-ジヒドロキシアントラセンジナトリウム、川崎化成工業株式会社製、商品名:SAQ)を0.02%(対チップ質量)となるよう添加して、160℃、Hファクター=500でソーダ蒸解を行い、黒液(固形分濃度27.0%)を得た。
<工程a)>
 黒液をビーカーに入れ、60℃に予熱した後、二酸化炭素0.3MPaで加圧した耐圧容器内で撹拌しながら、30分処理し、pH7.5に調整した。ガラスフィルター(GS-25、ADVANTEC社製)を用いて吸引脱水し、リグニン沈殿物Aを分離した。
<工程b)>
 リグニン沈殿物Aに黒液の半量の水を加えて、再度スラリー化し、スラリーに硫酸を加えpHを2に調整し、リグニンを沈殿させた。スラリー(固形分濃度:約10%)を60℃に予熱した。
<工程c)>
 ガラスフィルター(GS-25、ADVANTEC社製)を用いて吸引脱水し、固液分離した後、ガラスフィルター上に残った固形分を黒液の半量の熱水(60℃)で洗浄し、リグニン沈殿物Cを得た。なお、洗浄は洗浄ろ液の電気伝導度が0.2S/m以下となるまで行った。電気伝導度は、ポータブル型pH・ORP・電気伝導率メータD-74(HORIBA製)を用いて測定した。得られたリグニン沈殿物Cの固形分は、22質量%であった。沈殿物を乾燥した後にアルカリニトロベンゼン酸化分析したところS/V比は3.9だった。また沈殿物C乾燥物の黒液固形分に対する収率は15.6%だった。
[アルカリニトロベンゼン酸化によるシリンガアルデヒドとバニリンの比(S/V比)の測定]
 アセトン-水(10:1,v/v)で前抽出した試料400mgを2N水酸化ナトリウム水溶液6mLおよびニトロベンゼン0.5mLと共に20mL容ステンレスオートクレーブに封入し、170℃、2時間、振とうしながら処理した。処理後、内容物はガラスフィルターでろ別し、ろ液をジクロロメタンで抽出し、過剰のニトロベンゼンを除去した。水層を1N塩酸でpH2とした後、内部標準として3-エトキシ-4-ハイドロキシベンズアルデヒドを含むジクロロメタン1mLを加え、ジクロロメタンでニトロベンゼン酸化分解物を抽出した。減圧乾燥した後、トリメチルシリル化してガスクロマトグラフィーでバニリンとシリンガアルデヒドを定量し、S/V比を算出した。
 

Claims (8)

  1.  リグノセルロースを原料として、ソーダ蒸解する工程から排出される黒液からリグニンを分離する方法であって、前記リグノセルロースは、アルカリニトロベンゼン酸化に供して得られるシリンガアルデヒドとバニリンの比(S/V比)が3.5以下であり、下記の各工程を含んでなる方法。
    工程a)前記黒液に酸及び/又は二酸化炭素を添加してpH10未満の条件でリグニンを沈殿させ、その後に脱水し、リグニン沈殿物Aを得る工程。
    工程b)前記リグニン沈殿物Aを懸濁してpH3未満に調整してリグニンを沈殿させる工程。
    工程c)前記工程b)で沈殿させたリグニンを脱水及び洗浄脱水し、リグニン沈殿物Cを得る工程。
  2.  前記工程a)及び/又は工程c)における脱水をフィルタープレス装置で行う請求項1に記載の方法。
  3.  前記工程b)において、前記リグニン沈殿物Aを懸濁した後に酸を添加してpH3未満とする請求項1又は2に記載の方法。
  4.  前記工程b)において、前記リグニン沈殿物Aを酸性溶液に懸濁しpH3未満とする請求項1又は2に記載の方法。
  5.  前記工程c)の洗浄脱水で得られる洗浄ろ液の電気伝導度が、0.2S/m以下になるまで前記洗浄脱水を行う、請求項1~4のいずれかに記載の方法。
  6.  前記黒液の固形分が10質量%以上、40質量%以下であり、且つ前記リグニン沈殿物Cの固形分が25質量%以上である、請求項1~5のいずれかに記載の方法。
  7.  前記リグノセルロースのS/V比が3.0以下である請求項1~6のいずれかに記載の方法。
  8.  前記リグニン沈殿物CのS/V比が3.0以下である請求項1~7のいずれかに記載の方法。
PCT/JP2021/021481 2020-06-19 2021-06-07 ソーダリグニンの分離方法 WO2021256306A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531677A JPWO2021256306A1 (ja) 2020-06-19 2021-06-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-105750 2020-06-19
JP2020105750 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256306A1 true WO2021256306A1 (ja) 2021-12-23

Family

ID=79267886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021481 WO2021256306A1 (ja) 2020-06-19 2021-06-07 ソーダリグニンの分離方法

Country Status (2)

Country Link
JP (1) JPWO2021256306A1 (ja)
WO (1) WO2021256306A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513549A (ja) * 2004-09-14 2008-05-01 リグノボースト・エイ・ビー リグニンを黒色液から分離する方法
JP2008248425A (ja) * 2007-03-30 2008-10-16 Nippon Paper Industries Co Ltd 機械パルプの退色性改善方法
JP2010095816A (ja) * 2008-10-16 2010-04-30 Oji Paper Co Ltd ケミカルパルプ原材料配合管理方法
WO2016121648A1 (ja) * 2015-01-26 2016-08-04 日本製紙株式会社 キシラン含有物の製造方法
JP2019173236A (ja) * 2018-03-29 2019-10-10 日本製紙株式会社 リグニン分解物の製造方法
JP2020041227A (ja) * 2018-09-06 2020-03-19 日本製紙株式会社 リグニンを分離する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513549A (ja) * 2004-09-14 2008-05-01 リグノボースト・エイ・ビー リグニンを黒色液から分離する方法
JP2008248425A (ja) * 2007-03-30 2008-10-16 Nippon Paper Industries Co Ltd 機械パルプの退色性改善方法
JP2010095816A (ja) * 2008-10-16 2010-04-30 Oji Paper Co Ltd ケミカルパルプ原材料配合管理方法
WO2016121648A1 (ja) * 2015-01-26 2016-08-04 日本製紙株式会社 キシラン含有物の製造方法
JP2019173236A (ja) * 2018-03-29 2019-10-10 日本製紙株式会社 リグニン分解物の製造方法
JP2020041227A (ja) * 2018-09-06 2020-03-19 日本製紙株式会社 リグニンを分離する方法

Also Published As

Publication number Publication date
JPWO2021256306A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP3348387B2 (ja) ギ酸を添加した酢酸によるパルプの製法
SU1194282A3 (ru) Способ разложени лигноцеллюлозного материала
US4259147A (en) Pulping process
CN108660837A (zh) 一种植物纤维原料中纤维素、半纤维素及木质素三组分的分离方法
RU2534067C2 (ru) Способ получения целлюлозы из биомассы, содержащей лигноцеллюлозу
JP6723943B2 (ja) キシラン含有物の製造方法
CA2935611C (en) Method for extracting lignin
CN101565907B (zh) 预提取半纤维素的蔗渣碱法制浆方法及其产品
CN109826044B (zh) 棉杆中纤维素、半纤维素、木质素的分离方法
FI117632B (fi) Menetelmä massan valmistamiseksi
CN110230228A (zh) 秸秆原料联产纤维素材料、糠醛和木质素的方法
KR100694840B1 (ko) 옥수숫대 셀룰로오스로부터의 기계펄프의 제조방법
CN103074790A (zh) 一种生物质原料的综合利用工艺
JP2021183660A (ja) リグニンの洗浄方法および分離方法
JPS58502155A (ja) 木材その他のリグノセルロ−ス製品の脱リグニン方法
WO2021256306A1 (ja) ソーダリグニンの分離方法
JP6662423B1 (ja) リグニンを分離する方法
US2192202A (en) Pulping process
JP2021188004A (ja) 広葉樹ソーダリグニンの分離方法
JP2021155661A (ja) ソーダリグニンの分離方法
JP2012214432A (ja) 高純度リグニンの製造方法
RU2620551C1 (ru) Способ комплексной переработки древесины березы
JP2022101150A (ja) 低分子化された単離リグニンの製造方法
JP2017155008A (ja) 芳香族モノマーの製造方法
JP2019173237A (ja) 芳香族モノマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824766

Country of ref document: EP

Kind code of ref document: A1