WO2021256194A1 - 画像表示装置及び電子機器 - Google Patents

画像表示装置及び電子機器 Download PDF

Info

Publication number
WO2021256194A1
WO2021256194A1 PCT/JP2021/019863 JP2021019863W WO2021256194A1 WO 2021256194 A1 WO2021256194 A1 WO 2021256194A1 JP 2021019863 W JP2021019863 W JP 2021019863W WO 2021256194 A1 WO2021256194 A1 WO 2021256194A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light emitting
emitting region
region
light
Prior art date
Application number
PCT/JP2021/019863
Other languages
English (en)
French (fr)
Inventor
誠一郎 甚田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020227040789A priority Critical patent/KR20230024890A/ko
Priority to US17/920,520 priority patent/US20230157126A1/en
Priority to DE112021003272.0T priority patent/DE112021003272T5/de
Publication of WO2021256194A1 publication Critical patent/WO2021256194A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/20Metallic electrodes, e.g. using a stack of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • This disclosure relates to image display devices and electronic devices.
  • Recent electronic devices such as smartphones, mobile phones, and PCs (Personal Computers) are equipped with various sensors such as cameras on the frame (bezel) of the display panel.
  • the number of sensors installed is increasing, and in addition to cameras, there are sensors for face recognition, infrared sensors, motion detection sensors, and the like.
  • a technique has been proposed in which a camera module is placed directly under the display panel and the subject light passing through the display panel is photographed by the camera module. In order to arrange the camera module directly under the display panel, it is necessary to make the display panel transparent (see Patent Document 1).
  • the display panel consists of multiple layers, and some layers have low visible light transmittance. Therefore, when the subject light that has passed through the display panel is photographed by the camera module, the captured image becomes dark or the image becomes blurry as a whole. Further, when the subject light passes through the display panel, the image quality of the captured image may be deteriorated due to the influence of flare and diffraction. The situation is the same when a sensor other than the camera module is placed directly under the display panel. Since the light is attenuated or modulated while passing through the display panel, the light received by the sensor or the light emitted from the sensor is projected. The reliability of the emitted light may decrease.
  • the present disclosure provides an image display device and an electronic device capable of preventing attenuation or modulation of light received or projected through a display surface.
  • the pixels in the first pixel region including some of the plurality of pixels are The first light emitting region and A second light emitting region having a higher visible light transmittance than the first light emitting region, A first self-luminous element that emits light from the first light emitting region, It has a second self-luminous element that emits light from the second light emitting region, and has.
  • the pixels in the second pixel area other than the first pixel area are A third light emitting region having a lower visible light transmittance than the second light emitting region,
  • An image display device comprising a third self-luminous element that emits light from the third light emitting region is provided.
  • the second light emitting region includes a region through which incident visible light is transmitted.
  • the first light emitting region and the third light emitting region may include a region that reflects incident visible light without transmitting it.
  • the pixel brightness in the first pixel region at the boundary portion between the first pixel region and the second pixel region may be substantially equal to the pixel brightness in the second pixel region.
  • At least a part of the first pixel region may be arranged so as to overlap a light receiving device that receives light incident through the image display device when viewed in a plan view from the display surface side of the image display device.
  • Each of the first self-luminous element, the second self-luminous element, and the third self-luminous element With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the contacts may be arranged in the first light emitting region and the third light emitting region.
  • At least the corners near the upper end of the contact may have a laminated structure in which a transparent conductive layer is arranged on a metal layer.
  • the inclination angle of the side surface of the contact with respect to the stacking direction changes stepwise or continuously, and the inclination angle with respect to the stacking direction may be larger in the vicinity of the upper end of the contact than in the vicinity of the lower end.
  • the lower electrode layer may have a laminated structure in which a first transparent conductive layer, a metal layer, and a second transparent conductive layer are laminated in this order.
  • Each pixel in the first pixel region and the second pixel region has a plurality of color pixels.
  • Each of the plurality of color pixels in the first pixel region has the first light emitting region and the second light emitting region.
  • Each of the plurality of color pixels in the second pixel region may have the third light emitting region.
  • Each pixel in the first pixel region and the second pixel region has a plurality of color pixels.
  • some color pixels have the first light emitting region and the second light emitting region, and the color pixels other than the partial color pixels are the first light emitting region.
  • the first light emitting region may be provided without the two light emitting regions.
  • pixels in the first pixel region have the second light emitting region without having the first light emitting region, and pixels other than the partial pixels have the second light emitting region. It may have the first light emitting region without the above.
  • the first pixel region may be provided at at least one of the four corners of the display unit having the plurality of pixels.
  • an image display device having a plurality of pixels arranged two-dimensionally and A light receiving device for receiving light incident through the image display device.
  • the pixels in the first pixel region including some of the plurality of pixels are The first light emitting region and A second light emitting region having a higher visible light transmittance than the first light emitting region, A first self-luminous element that emits light from the first light emitting region, It has a second self-luminous element that emits light from the second light emitting region, and has.
  • the pixels in the second pixel area other than the first pixel area are A third light emitting region having a lower visible light transmittance than the second light emitting region.
  • An electronic device comprising a third self-luminous element that emits light from the third light emitting region is provided.
  • the first pixel region may be a pixel region through which light incident on the light receiving device passes.
  • the light receiving device includes an image sensor that photoelectrically converts light incident through the second light emitting region, a distance measuring sensor that receives light incident through the second light emitting region and measures a distance, and the second light emitting region. It may include at least one of a temperature sensor that measures the temperature based on the light incident through the region.
  • FIG. 1A is a schematic cross-sectional view taken along the line AA. Sectional drawing which shows the laminated structure of a display layer. Schematic cross-sectional view of the pixel area 2B in which the sensor is arranged directly below.
  • FIG. 7 shows a second example of a solution to FIG. 7C.
  • the circuit diagram of the 3rd modification of the pixel circuit in a pixel area A flowchart showing a processing procedure for detecting a defective pixel and correcting an image.
  • the circuit diagram which shows the specific structure of the pixel circuit of each pixel in a pixel circuit.
  • the voltage waveform diagram of each part in the pixel circuit of FIG. A circuit diagram in which all the transistors in the pixel circuit are P-shaped.
  • the block diagram which shows the schematic structure of the image display device by this embodiment.
  • the circuit diagram which shows the basic structure of the pixel array part of FIG.
  • the timing diagram which shows the drive timing of each scan line and each signal line in a pixel array part.
  • FIG. 26 is a drive timing diagram of a pixel region having the pixel circuit of FIG. 26.
  • FIG. 27 is a drive timing diagram of a pixel region having the pixel circuit of FIG. 27.
  • FIG. 3 is a plan view of a plurality of color pixels in the pixel area 2B shown in FIG. AA'line cross-sectional view of FIG. 38.
  • FIG. 40 is a plan view of a plurality of color pixels having the pixel circuit of FIG. 40.
  • FIG. 41 is a cross-sectional view taken along the line BB'.
  • FIG. 43 is a plan view of a plurality of color pixels having the pixel circuit of FIG. 43.
  • FIG. 44 is a cross-sectional view taken along the line CC'of FIG. 44.
  • FIG. 4 is a plan view of a plurality of color pixels having the pixel circuit of FIG. 46.
  • FIG. 47 is a cross-sectional view taken along the line DD'of FIG. 47.
  • FIG. 2 is a cross-sectional view showing a first modification of the cross-sectional structure of FIG. 42.
  • FIG. 2 is a cross-sectional view showing a second modification of the cross-sectional structure of FIG. 42.
  • FIG. 1A is a schematic plan view of an image display device 1 according to an embodiment of the present disclosure.
  • the image display device 1 includes a display panel 2.
  • a flexible printed circuit board (FPC: Flexible Printed Circuits) 3 is connected to the display panel 2.
  • the display panel 2 is, for example, a glass substrate or a transparent film in which a plurality of layers are laminated, and a plurality of pixels are arranged vertically and horizontally on the display surface 2z.
  • a chip (COF: ChipOnFilm) 4 incorporating at least a part of the drive circuit of the display panel 2 is mounted on the FPC 3.
  • the drive circuit may be laminated on the display panel 2 as COG (Chip On Glass).
  • the image display device 1 can arrange various sensors that receive light through the display panel 2 directly under the display panel 2.
  • a configuration including an image display device 1 and a sensor is referred to as an electronic device.
  • the type of the sensor provided in the electronic device is not particularly limited, but for example, the image sensor that photoelectrically converts the light incident through the display panel 2, the light is projected through the display panel 2, and the light is reflected by the object.
  • the sensor arranged directly below the display panel 2 has at least the function of a light receiving device that receives light.
  • the sensor may have a function of a light emitting device that emits light through the display panel 2.
  • FIG. 1A shows an example of a specific location of the sensor arranged directly under the display panel 2 with a broken line.
  • the sensors are arranged at at least one of the four corners 2a of the display panel 2.
  • the sensor may be arranged at a place other than the four corners 2a.
  • the sensor on the display panel 2 needs to have a high visible light transmittance. Therefore, when an image is displayed on the display panel 2, the pixel region directly above the sensor on the display panel 2 may change in color and brightness as compared with other pixel regions.
  • the pixel area directly above the sensor is the four corners 2a of the display panel 2, even if the hue and brightness are slightly different from those of the other pixel areas, they are not so noticeable in appearance.
  • the camera module is often placed in the center of the bezel on the upper end side of the display panel 2. Therefore, also in this embodiment, as shown in the broken line frame 2a in FIG. 1B, the sensor may be arranged near the central portion on the upper end side of the display panel 2.
  • the pixel area in which the sensor is not directly arranged is referred to as a pixel area (second pixel area) 2A
  • the pixel area in which the sensor is directly arranged is referred to as a pixel area (first). Pixel area) 2B.
  • each pixel has a self-luminous element and does not require a backlight.
  • a typical example of a self-luminous element is an organic EL (Electroluminescence) element (hereinafter, also referred to as an OLED: Organic Light Emitting Diode). Since the backlight can be omitted from the self-luminous element, at least a part of the self-luminous element can be made transparent. In the following, an example of using an OLED as a self-luminous element will be mainly described.
  • the pixel region 2B of FIG. 1C is arranged so as to overlap a light receiving device that receives light incident through the display panel 2 when viewed in a plan view from the display surface side of the display panel 2.
  • the pixel region 2B of FIG. 1C has a light emitting region 2B1 and a non-light emitting region 2B2 for each pixel.
  • the light emitting region 2B1 is a region in which the light of the OLED is emitted.
  • Most of the light emitting region 2B1 is a region in which light in the visible light band (wavelength range of about 360 to 830 nm) cannot be transmitted, and as a more specific example, it refers to a region having a visible light transmittance of less than 50%. ..
  • the non-light emitting region 2B2 is a region in which the light of the OLED is not emitted. Most of the non-light emitting region 2B2 is a region capable of transmitting light in the visible light band described above, and as a more specific example, it refers to a region having a visible light transmittance of 50% or more. As described above, the light emitting region 2B1 in each pixel shown in FIG. 1C is a region for emitting the light emitted by the OLED, whereas the non-light emitting region 2B2 cannot emit the light emitted by the OLED. Further, the non-light emitting region 2B2 is a region having a higher visible light transmittance than the light emitting region 2B1. As described above, the non-light emitting region 2B2 includes a region that transmits the incident visible light, and the light emitting region 2B1 includes a region that reflects the incident visible light without transmitting it.
  • Each pixel in FIG. 1C includes, for example, three color pixels of a red (R) pixel, a green (G) pixel, and a blue (B) pixel.
  • R red
  • G green
  • B blue
  • each pixel may include a color pixel other than red, green, and blue, in the present embodiment, an example in which each pixel contains three color pixels of red, green, and blue will be mainly described.
  • Each color pixel in the pixel region 2B has the above-mentioned light emitting region 2B1 and non-light emitting region 2B2.
  • the area ratio between the light emitting region 2B1 and the non-light emitting region 2B2 is arbitrary. When only the light emitting region 2B1 emits the light emitted by the OLED, the larger the area of the light emitting region 2B1, the higher the brightness can be. As shown in FIG. 1C, the light emitting region 2B1 and the non-light emitting region 2B2 of each pixel are arranged adjacent to each other.
  • the pixel region 2A of FIG. 1D is not provided with a non-light emitting region in each pixel and has only a light emitting region 2A1.
  • Each light emitting region 2A1 is a region for emitting the light of the OLED.
  • the light emitting region 2A1 is a region having a lower rate of visible light than the non-light emitting region 2B2.
  • the light emitting region 2A1 includes a region that reflects incident visible light without transmitting it. That is, most of each pixel in the pixel region 2A emits light.
  • the pixel region 2B of FIG. 1C only a part of each pixel emits light. As described above, each pixel of FIG.
  • each pixel of FIG. 1D has a smaller light emitting area than each pixel of FIG. 1D. Since the brightness of each pixel is proportional to the light emitting area, it is easier to increase the brightness of the pixel of FIG. 1D having a larger light emitting area than that of FIG. 1C. In order to make the brightness of the pixel region 2B of FIG. 1C and the pixel region 2A of FIG. 1D the same, the emission brightness of the OLED in the pixel region 2B of FIG. It needs to be higher than the brightness.
  • the image display device 1 includes the pixel area 2A and the pixel area 2B.
  • the pixel in the pixel region 2A has a light emitting region (third light emitting region) 2A1 and an OLED (third self-luminous element).
  • the OLED (third self-luminous element) emits light from the light emitting region 2A1.
  • the pixel in the pixel region 2B has a light emitting region (first light emitting region) 2B1, a non-light emitting region 2B2, and an OLED (first self-luminous element).
  • the OLED (first self-luminous element) emits light from the light emitting region 2B1.
  • the pixels in the pixel region 2B may have a separate OLED (second self-luminous element). This OLED (second self-luminous element) emits light from the light emitting region (second light emitting region) 2B2.
  • FIG. 2 is a circuit diagram showing a connection relationship between the OLED 5 and the drive transistor Q1.
  • the gate-source voltage of the drive transistor Q1 is Vgs
  • the threshold voltage of the drive transistor Q1 is Vth
  • the drain-source current of the drive transistor Q1 is Ids
  • the gate width of the drive transistor Q1 is W
  • the gate length is L.
  • the drain-source current Ids of the drive transistor Q1 is expressed by the following equation (1).
  • FIG. 3 is a characteristic diagram showing the correlation between the current flowing through the OLED 5 and the emission brightness.
  • the solid line w1 in FIG. 3 shows the characteristics of the initial state of the OLED 5, and the broken line w2 shows the characteristics of the OLED 5 after deterioration.
  • the emission brightness of the OLED 5 tends to increase as the amount of current flowing through it increases, but as the deterioration progresses, the emission brightness does not increase even if a current flows.
  • the larger the amount of current per unit area of the OLED5 the larger the amount of decrease in the emission luminance when the OLED5 is deteriorated. Therefore, in order to extend the life of the OLED 5, it is desirable to increase the light emitting area of the OLED 5 to suppress the amount of current per unit area.
  • FIG. 4 is a schematic cross-sectional view taken along the line AA of FIG. 1A.
  • FIG. 4 shows an example in which an image pickup sensor 6b having a first image pickup unit 6a and an image pickup sensor 6d having a second image pickup unit 6c are arranged directly below both corners on the upper end side of the display panel 2.
  • a typical example of an electronic device provided with an image display device 1 and image pickup sensors 6b and 6d is a smartphone or the like.
  • Each of the image pickup sensors 6b and 6d may include, for example, single focus lenses 6e and 6f having different focal lengths from each other.
  • sensors other than the image pickup sensors 6b and 6d may be arranged directly under the display panel 2, an example in which the image pickup sensors 6b and 6d are arranged will be described below.
  • the transparent film 2b, the glass substrate 2c, the TFT layer 42, the display layer 2d, and the barrier layer 2e are arranged in this order from the side where the first imaging unit 6a and the second imaging unit 6c are arranged.
  • Touch sensor layer 2f, adhesive layer 2g, circular polarizing plate 2h, optical adhesive sheet (OCA: Optical Clear Adhesive) 2i, and cover glass 2j are arranged in this order.
  • the transparent film 2b may be omitted.
  • the display layer 2d is a layer constituting the OLED 5, and has a laminated structure as shown in FIG. 5, for example.
  • the barrier layer 2e is a layer that prevents oxygen and moisture from entering the display layer 2d.
  • a touch sensor is incorporated in the touch sensor layer 2f. There are various types of touch sensors such as a capacitance type and a resistance film type, and any method may be adopted. Further, an in-cell structure in which the touch sensor layer 2f and the display layer 2d are integrated may be used.
  • the adhesive layer 2g is provided for adhering the circularly polarizing plate 2h and the touch sensor layer 2f. A material having a high visible light transmittance is used for the adhesive layer 2g.
  • the circularly polarizing plate 2h is provided in order to reduce glare and enhance the visibility of the display surface 2z even in a bright environment.
  • the optical adhesive sheet 2i is provided to improve the adhesion between the circularly polarizing plate 2h and the cover glass 2j.
  • a material having a high visible light transmittance is used for the optical adhesive sheet 2i.
  • the cover glass 2j is provided to protect the display layer 2d and the like.
  • the TFT layer 42 is a layer on which a drive transistor Q1 or the like constituting a pixel circuit is formed, and may actually be formed of a plurality of layers.
  • the display layer 2d has an anode 2 m, a hole injection layer 2n, a hole transport layer 2p, a light emitting layer 2q, an electron transport layer 2r, an electron injection layer 2s, and an electron injection layer 2s in the order of stacking from the glass substrate 2c side. It is a laminated structure in which a cathode 2t is arranged.
  • the anode 2m is also called an anode electrode.
  • the hole injection layer 2n is a layer into which holes are injected from the anode electrode 2m.
  • the hole transport layer 2p is a layer that efficiently transports holes to the light emitting layer 2q.
  • the light emitting layer 2q recombines holes and electrons to generate excitons, and emits light when the excitons return to the ground state.
  • the cathode 2t is also called a cathode electrode.
  • the electron injection layer 2s is a layer into which electrons from the cathode electrode 2t are injected.
  • the electron transport layer 2r is a layer that efficiently transports electrons to the light emitting layer 2q.
  • the light emitting layer 2q contains an organic substance.
  • FIG. 6A is a schematic cross-sectional view of the pixel region 2B in which the sensor is arranged directly below
  • FIG. 6B is a schematic cross-sectional view of the pixel region 2A in which the sensor is not arranged directly below.
  • the location and direction in which the light from the OLED 5 is emitted are indicated by arrows.
  • the pixel region 2B as shown in FIG. 6A, light is emitted only in a part (light emitting region) 2B1 of each pixel.
  • the pixel region 2A as shown in FIG. 6B, light is emitted over the entire area of each pixel.
  • the light emitting area of each pixel is larger in the pixel region 2A than in the pixel region 2B.
  • FIGS. 7A, 7B and 7C the pixel brightness is the same in the pixel area 2A in which the sensor on the display panel 2 is not arranged directly below and the pixel area 2B in which the sensor is arranged directly below. It is a figure which shows an example.
  • FIG. 7A shows the positional relationship between the pixel areas 2A and 2B on the display panel 2.
  • FIG. 7B is a diagram showing pixel luminances of the pixel regions 2A and 2B.
  • FIG. 7C is a diagram showing the current per unit area flowing through the OLED 5 of each pixel in the pixel regions 2A and 2B.
  • FIG. 7C shows an example in which the area of the light emitting region 2B1 of the pixel region 2B is 1 ⁇ 2 of the area of the light emitting region 2A1 of the pixel region 2A.
  • the pixel brightness of the pixel areas 2A and 2B can be made substantially the same. Can be done.
  • the deterioration of the OLED 5 is accelerated, so that the OLED 5 of each pixel in the pixel area 2B deteriorates faster than the OLED 5 of each pixel in the pixel area 2A, and an afterimage is visually recognized. Problems such as seizure are likely to occur.
  • FIG. 8A and 8B are diagrams showing a first example of a solution to FIG. 7C.
  • FIG. 8A is a diagram showing pixel luminances of the pixel regions 2A and 2B.
  • FIG. 8B is a diagram showing the current per unit area flowing through the OLED 5 of each pixel in the pixel regions 2A and 2B.
  • the current flowing through the OLED 5 is gradually reduced as the pixel is closer to the pixel region 2B in the pixel region 2A without increasing the current flowing through the OLED 5 of each pixel in the pixel region 2B.
  • the pixel brightness in the pixel area 2A gradually decreases as it approaches the pixel area 2B, and the pixel brightness in the pixel area 2A adjacent to the pixel area 2B is in the pixel area 2B. It becomes almost the same as the pixel brightness.
  • FIG. 8B shows an example in which the area of the light emitting region 2B1 of the pixel region 2B is half the area of the light emitting region 2A1 of the pixel region 2A.
  • the currents flowing through the OLED 5 of each pixel are made substantially equal in the pixel areas 2A and 2B, and only a part of the pixel areas on the side close to the pixel area 2B in the pixel area 2A is exceptionally close to the pixel area 2B.
  • the current flowing through the OLED 5 can be adjusted relatively easily by adjusting the gate voltage of the drive transistor Q1. Alternatively, the drain voltage of the drive transistor Q1 may be adjusted.
  • the pixel brightness gradually decreases from the pixel areas 2A to 2B, and the pixel brightness does not change at the boundary position between the pixel areas 2A and 2B, so that there is no possibility that the observer feels a sense of discomfort in the pixel brightness. ..
  • FIG. 9 is a diagram showing a second example of a solution to FIG. 7C.
  • the left sectional view of FIG. 9 shows an example in which the light of the OLED 5 is emitted from the light emitting region 2B1 provided in a part of each pixel in the pixel region 2B in which the camera is arranged directly below.
  • the cross-sectional view on the right side of FIG. 9 shows an example in which the light of the OLED 5 is emitted even in the light emitting region 2B2 in the pixel region 2B.
  • the right sectional view of FIG. 9 shows an example in which the OLED 5a for causing the light emitting region 2B2 to emit light is provided separately from the OLED 5 for causing the light emitting region 2B1 to emit light.
  • the light emitting region 2B2 transmits visible light, the light from the corresponding OLED 5a is emitted not only from the display surface 2z side but also from the opposite side. Therefore, the amount of light emitted to the display surface 2z side is approximately 1 ⁇ 2 of the amount of light emitted by the OLED 5a. Since the light emitting region 2B1 is used as a reflective layer by expanding the anode electrode layer of the OLED 5, as will be described later, almost all the light emitted from the OLED 5 can be emitted from the display surface 2z side.
  • the right sectional view of FIG. 9 shows an example in which the light emitting area 2B1 and the light emitting area 2B2 of each pixel have the same area.
  • the amount of light emitted from the light emitting region 2B1 is 0.5
  • FIG. 10A is a circuit diagram showing a basic configuration of a pixel circuit 8 including an OLED 5.
  • the pixel circuit 8 of FIG. 10A is provided, for example, in each pixel in the pixel region 2A described above.
  • the pixel circuit 8 of FIG. 10A includes a drive transistor Q1, a sampling transistor Q2, and a pixel capacitance Cs in addition to the OLED 5.
  • the sampling transistor Q2 is connected between the signal line Sig and the gate of the drive transistor Q1.
  • a scanning line Gate is connected to the gate of the sampling transistor Q2.
  • the pixel capacitance Cs is connected between the gate of the drive transistor Q1 and the anode electrode of the OLED 5.
  • the sampling transistor Q2 supplies a voltage corresponding to the signal line voltage to the drive transistor Q1.
  • the drive transistor Q1 controls the current flowing through the OLED 5 by a voltage corresponding to the signal line voltage.
  • the OLED 5 emits light with an emission brightness corresponding to the current. When the OLED 5 emits light, the light is emitted through the light emitting region 2B1.
  • FIG. 10B is a circuit diagram of the pixel circuit 8 according to a modification of FIG. 10A.
  • the pixel circuit 8 of FIG. 10B is provided for each pixel in the pixel area 2B in which the camera is arranged directly below, and the pixel circuit 8 of each pixel in the pixel area 2A remains as shown in FIG. 10A.
  • the pixel circuit 8 of FIG. 10B conforms to the cross-sectional view on the right side of FIG.
  • the pixel circuit 8 of FIG. 10B adds a new OLED 5a to the pixel circuit 8 of FIG. 10A.
  • the OLED 5a is for emitting light in the light emitting region 2B2, is connected in parallel to the OLED 5 for emitting light in the light emitting region 2B1, and is provided in the display layer 2d in the light emitting region 2B2 of each pixel in the pixel region 2B. ..
  • the light emitted from the OLED 5a is emitted from the light emitting region 2B2 in each pixel.
  • Most of the pixel circuit 8 that controls the light emission of the OLED 5a is arranged inside the light emitting region 2B1. As a result, it is possible to suppress a decrease in the visible light transmittance of the light emitting region 2B2.
  • FIG. 11A is a diagram showing the pixel luminance of the display panel 2 when each pixel of the pixel region 2A has the pixel circuit 8 of FIG. 10A and each pixel in the pixel region 2B has the pixel circuit 8 of FIG. 10B. .. Further, FIG. 11B is a diagram showing a current per unit area flowing through each pixel of the pixel region 2A and the pixel region 2B of FIG. 11A.
  • the emission luminance of the OLED 5 of each pixel of the pixel area 2A and 2B is basically equal, and the exception is in the pixel area close to the pixel area 2B in the pixel area 2A.
  • the difference in pixel brightness between the pixel areas 2A and 2B can be reduced without increasing the current flowing through the OLED 5 of each pixel in the pixel area 2B, and the brightness variation of the display panel 2 becomes inconspicuous.
  • the pixel circuit 8 as shown in FIG. 12A can be considered.
  • FIG. 12A and 12B are circuit diagrams in which the switch transistor Q3 is added to FIG. 10B.
  • FIG. 12A the current flow when the switch transistor Q3 is on is indicated by an arrow.
  • FIG. 12B the current flow when the switch transistor Q3 is off is indicated by an arrow.
  • FIG. 13A is a cross-sectional view showing the current flow when the switch transistor Q3 is on
  • FIG. 13B is a cross-sectional view showing the current flow when the switch transistor Q3 is off.
  • the switch transistor Q3 switches whether or not the anode electrodes of the two OLEDs 5 and 5a are conductive to each other.
  • a reset signal RST is connected to the gate of the switch transistor Q3. When the reset signal RST reaches a high potential, the anode electrodes of the two OLEDs 5 and 5a conduct with each other.
  • the reset signal RST becomes a low potential according to the timing of operating the sensor arranged directly under the pixel area 2B. Thereby, during the operation of the sensor, the switch transistor Q3 can be turned off to stop the light emission of the OLED 5a for the light emitting region 2B2 so that the light is not emitted from the light emitting region 2B2.
  • both the light emitting region 2B1 and the light emitting region 2B2 in the pixel region 2B emit the light emitted by the OLEDs 5 and 5a. Eject.
  • the areas of the visible light non-transmissive portion 2B1 and the light emitting region 2B2 are equal, and the pixel brightness of the light emitting region 2B1 is 0.5, the pixel brightness of the light emitting region 2B2 on the display surface 2z side is 0.25.
  • the pixel brightness of the light emitting region 2B1 in the pixel region 2B changes slightly depending on whether the switch transistor Q3 is on or off.
  • how much the average brightness of each pixel in the display panel 2 is set can be adjusted by the signal line voltage shown in FIG. 12A or the like.
  • the average brightness of the display panel 2 can also be adjusted by adjusting the display period of each pixel within one frame period and the operation period of the sensor within one frame period.
  • the operating period of the sensor is preferably set to a partial period within one frame period from the viewpoint of suppressing flicker, but in some cases, the sensor may be operated within a period spanning a plurality of frames.
  • the pixel circuit 8 provided with the OLED 5a for causing the light emitting region 2B2 to emit light in each pixel in the pixel region 2B may have a circuit configuration other than the pixel circuit 8 of FIGS. 10B and 12A.
  • FIG. 14A is a circuit diagram of a first modification of the pixel circuit 8 in the pixel area 2B.
  • the pixel circuit 8 of FIG. 14A has a first pixel circuit 8a for causing the light emitting region 2B1 to emit light, and a second pixel circuit 8b for causing the light emitting region 2B2 to emit light.
  • the first pixel circuit 8a and the second pixel circuit 8b have the same circuit configuration, and have a sampling transistor Q2, a drive transistor Q1, and a pixel capacitance Cs.
  • the first pixel circuit 8a and the second pixel circuit 8b are also provided with signal lines separately.
  • the first pixel circuit 8a emits the OLED 5 with 100% duty when displaying a still image.
  • the second pixel circuit 8b causes the OLED 5a to emit light only during the operation period of the sensor, thereby suppressing deterioration of the OLED 5a.
  • the pixel circuit 8 of FIG. 14A requires a circuit area approximately twice that of the normal pixel circuit 8, the area of the light emitting region 2B2 has to be reduced, and the visible light transmittance is lowered.
  • the light emitting region 2B2 can be made to emit light at an arbitrary timing, and the current flowing through the OLED 5 in the first pixel circuit 8a of the light emitting region 2B1 is not affected by the light emission or the extinguishing of the light emitting region 2B2.
  • FIG. 14B is a circuit diagram of a second modification of the pixel circuit 8 in the pixel area 2B.
  • the switch transistor Q3 of FIG. 12A When the switch transistor Q3 of FIG. 12A is turned off, the drain-source current of the drive transistor Q1 does not flow to the OLED 5a for the light emitting region 2B2, and all the current flows to the OLED 5 for the light emitting region 2B1.
  • a leak current flows between the drain and the source of the switch transistor Q3
  • a current also flows in the OLED 5a for the light emitting region 2B2 according to the amount of the leak current, and in some cases, the OLED 5a for the light emitting region 2B2 emits light. Therefore, light may leak from the light emitting region 2B2.
  • a switch transistor Q3a having the opposite conductive type is additionally arranged between the gate of the switch transistor Q3 and the grounded node (same potential as the cathode electrode), and the switch transistor Q3a is provided at the gate of the switch transistor Q3a. Is inputting the reset signal RST. As a result, only one of the two switch transistors Q3 and Q3a is turned on. Therefore, when the switch transistor Q3 is turned off, the anode electrode of the OLED 5a for the light emitting region 2B2 is short-circuited with the cathode electrode, and the OLED 5a can be surely turned off.
  • FIG. 14C is a circuit diagram of a third modification of the pixel circuit 8 in the pixel area 2B.
  • the pixel circuit 8 of FIG. 14C differs from the pixel circuit 8 of FIG. 12A in that the switch transistor Q3 of FIG. 12A is composed of two switch transistors Q3b and Q3c connected by cascode.
  • a reset signal RST is input to the gates of the two switch transistors Q3b and Q3c.
  • the switch transistor Q3 By making the switch transistor Q3 have a double gate structure as shown in FIG. 14C, when the switch transistors Q3b and Q3c are off, there is no possibility that a leak current will flow through the switch transistors Q3b and Q3c, and the light emitting region is due to the leak current. The problem that the OLED 5 for 2B1 emits light does not occur.
  • the sensor is an image pickup sensor
  • defective pixels in which a leak current has occurred are detected in the switch transistor Q3 of FIG. 12A and the switch transistors Q3b and Q3c of FIG. 14C, and when it is detected that a leak current has occurred, the image pickup sensor The captured image can be corrected.
  • FIG. 15 is a flowchart showing a processing procedure for detecting defective pixels and correcting an image.
  • the flowchart of FIG. 15 is, for example, implemented in an inspection step after manufacturing the image display device 1 according to the present embodiment. Alternatively, the flowchart of FIG. 15 may be implemented on the user side after the image display device 1 according to the present embodiment is shipped.
  • step S1 all the pixels of the display panel 2 are displayed with the switch transistor Q3 of each pixel in the pixel area 2B turned on (step S1).
  • step S2 With the switch transistor Q3 turned off (step S2) and the light emitting region 2B2 in the pixel region 2B stopped emitting light, an image pickup is performed with the image pickup sensor (step S3).
  • step S3 the defective pixel having the switch transistor Q3 in which the leak current is generated is detected (step S4), and the coordinate position and the light emission characteristic of the defective pixel are written in the signal processing chip in the image display device 1 (step S4).
  • step S5 After that, when taking an image with the image pickup sensor, the information written in the signal processing chip is read out and the captured image is corrected (step S6). For example, for a pixel having a switch transistor Q3 through which a leak current flows, the brightness of the captured image becomes too high, so correction processing may be performed to reduce the brightness.
  • FIG. 16 is a circuit diagram showing a specific configuration of the pixel circuit 8 of each pixel in the pixel circuit 8B.
  • the pixel circuit 8 of FIG. 16 has three transistors Q4 to Q6 in addition to the drive transistor Q1, the sampling transistor Q2, and the switch transistor Q3 shown in FIG. 12A.
  • the drain of the transistor Q4 is connected to the gate of the drive transistor Q1, the source of the transistor Q4 is set to the voltage V1, and the gate signal Gate1 is input to the gate of the transistor Q4.
  • the drain of the transistor Q5 is connected to the anode electrode of the OLED 5, the source of the transistor Q5 is set to the voltage V2, and the gate signal Gate2 is input to the gate of the transistor Q5.
  • Transistors Q1 to Q5 are N-type transistors, while transistors Q6 are P-type transistors.
  • the source of the transistor Q6 is set to the power supply voltage Vccp
  • the drain of the transistor Q6 is connected to the drain of the drive transistor Q1
  • the gate signal Gate3 is input to the gate of the transistor Q6.
  • FIG. 17 is a voltage waveform diagram of each part in the pixel circuit 8 of FIG.
  • the operation of the pixel circuit 8 of FIG. 16 will be described with reference to the voltage waveform diagram of FIG.
  • the transistors Q2 and Q4 to Q5 are in the off state, and the gate voltage of the drive transistor Q1 is undefined.
  • the gate signal Gate2 becomes a high potential at time t1.
  • the transistor Q5 is turned on, and the node S connected to the source of the drive transistor Q1 drops sharply to the voltage V2.
  • the gate voltage G of the drive transistor Q1 also sharply drops to the voltage VF via the pixel capacitance Cs.
  • the gate signal Gate1 becomes a high potential.
  • the transistor Q4 is turned on, and the gate voltage G of the drive transistor rises to the voltage V1.
  • the OLED 5 is in a reverse bias state and does not emit light.
  • the gate signal Gate2 becomes a low potential, and the gate signal Gate3 also becomes a low potential.
  • the transistor Q5 is turned off and the transistor Q6 is turned on. Therefore, the source-drain current of the transistor Q6 flows through the drain-source of the drive transistor Q1 to the pixel capacitance Cs, and the electric charge is accumulated in the pixel capacitance Cs.
  • the Vth correction operation of the drive transistor Q1 is started.
  • the gate voltage of the drive transistor Q1 is V1
  • the voltage of the node S rises and the Vgs of the drive transistor Q1 decreases, so that the drive transistor Q1 is cut off. ,
  • the voltage of the node S becomes V1-Vth.
  • the drive transistor Q1 When the drive transistor Q1 is cut off, the drain-source current does not flow in the drive transistor Q1. After that, at time t4, the gate signal Gate3 becomes a high potential and the transistor Q6 is turned off. Further, the gate signal Gate1 also becomes a low potential, and the transistor Q4 is turned off. As a result, the electric charge corresponding to Vth is held in the pixel capacitance Cs. As described above, the times t3 to t4 are periods during which the threshold voltage Vth of the drive transistor Q1 is detected and corrected.
  • the gate signal Gate3 becomes low potential and the transistor Q6 turns on.
  • the drain voltage of the drive transistor Q1 becomes the power supply voltage Vcc, and the pixel circuit 8 transitions from the non-light emission period to the light emission period.
  • the sampling transistor Q2 is still on (time t6 to t7), the mobility correction of the drive transistor Q1 is performed.
  • the drain-source current of the drive transistor Q1 flows while the gate of the drive transistor Q1 is held by the signal line voltage Vsig.
  • the OLED 5 is in a reverse bias state and exhibits a simple capacitance characteristic instead of the rectification characteristic. Therefore, the drain-source current Ids of the drive transistor Q1 flows through the equivalent capacitance of the pixel capacitance Cs and the OLED 5, and the source voltage of the drive transistor Q1 rises. In FIG. 17, the increase in the source voltage is ⁇ V. Since this increase ⁇ V is subtracted from Vgs of the drive transistor Q1 held in the pixel capacitance Cs, negative feedback is applied.
  • the mobility ⁇ of the drive transistor Q1 can be corrected by negatively feeding back the drain-source current Ids of the drive transistor Q1 to the Vgs of the drive transistor Q1.
  • the negative feedback amount ⁇ V can be optimized by adjusting the time width from time t6 to t7.
  • the source voltage of the drive radister gradually rises, the reverse bias state of the OLED 5 is eliminated, and light emission is started. At this time, the current flowing through the OLED 5 is represented by the above-mentioned equation (1).
  • the transistors Q1 to Q5 are N-type transistors and the transistors Q6 are P-type transistors.
  • all the transistors Q1a to Q6a are composed of P-type transistors. You may.
  • the operation principle of the pixel circuit 8 of FIG. 18 is the same as that of the pixel circuit 8 of FIG. 15, and detailed operation description is omitted.
  • FIG. 19 is a circuit diagram of a pixel circuit 8 having a configuration different from that of FIGS. 16 and 18.
  • the pixel circuit 8 of FIG. 19 has P-type transistors Q11 to Q16, an N-type transistor Q17, and a pixel capacitance Cs.
  • the transistor Q13 is a drive transistor, and the transistor Q12 is a sampling transistor.
  • the transistor Q15 is turned on, and the initialization voltage Vint is supplied to the gate of the drive transistor Q13.
  • the initialization voltage Vint is a voltage lower than the signal line voltage, and the drive transistor Q13 is set to the on-bias state.
  • the transistors Q12 and Q17 are turned on.
  • the gate and drain of the drive transistor Q13 are short-circuited, and the drive transistor Q13 functions as a diode.
  • the transistors Q11 and Q14 are turned on, the charge corresponding to the signal line voltage is accumulated in the pixel capacitance Cs, the potential of the connection node S of the transistors Q12 and Q14 gradually rises, and the source voltage of the transistor Q11 becomes OLED5.
  • the threshold voltage of is exceeded, the OLED 5 starts emitting light.
  • the conductive type of each transistor in FIG. 19 may be reversed.
  • FIG. 20 is a block diagram showing a schematic configuration of the image display device 1 according to the present embodiment.
  • the image display device 1 includes a display panel 2, and a driver IC 11 is connected to the display panel 2 via an FPC 3 or the like.
  • the driver IC 11 may be a COF 4 mounted on the FPC 3, for example, as shown in FIG. 1A.
  • the signal transmission / reception between the display panel 2 and the driver IC 11 is performed via the wiring in the FPC 3.
  • a COG configuration may be configured in which at least a part of the circuits built in the driver IC 11 are laminated on the display panel 2.
  • the driver IC 11 may be mounted on the frame portion (bezel) of the display panel 2.
  • driver IC 11 may send and receive signals to and from the display panel 2.
  • the display panel 2 has a pixel array unit 12, a shift register (gate driver) 13, and a selector switch 14.
  • the pixel array unit 12 has a plurality of pixels arranged vertically and horizontally, and a sensor is arranged directly below a part of the pixel area (pixel area 2B).
  • Each pixel in the pixel area 2B has a pixel circuit 8 shown in FIG. 12A and the like, and each pixel in the pixel area 2A has a pixel circuit 8 shown in FIG. 10A and the like.
  • the pixel circuit 8 includes a member having a low visible light transmittance such as an anode electrode, most of the pixel circuits 8 of each pixel in the pixel region 2B in which the sensor is arranged directly below are arranged in the light emitting region 2B1. Has been done.
  • the shift register 13 is connected to a plurality of scanning lines, and sequentially supplies a gate pulse signal to each scanning line.
  • the shift register 13 is also called a scanning line drive circuit or a gate driver.
  • FIG. 20 shows an example having 480 scanning lines, but the number of scanning lines is not limited.
  • the selector switch 14 is connected to a plurality of signal lines, and sequentially supplies a signal line voltage to each signal line.
  • FIG. 20 shows an example in which 1920 signal lines are output from one selector switch 14, but even if a plurality of selector switches 14 are provided to reduce the number of signal lines connected to each selector switch 14. good.
  • the driver IC 11 includes an interface (I / F) circuit 15, a data latch circuit 16, a DAC 17, a timing generator 18, a frame memory 19, and a power supply circuit 20.
  • the I / F circuit 15 receives video data, control data, power supply voltage, and the like from a host processor 21 or the like provided outside the image display device 1.
  • the data latch circuit 16 latches video data at a predetermined timing.
  • the DAC 17 converts the video data latched by the data latch circuit 16 into an analog pixel voltage.
  • the timing generator 18 controls the latch timing of the data latch circuit 16 and the timing of D / A conversion by the DAC 17 based on the control data received by the I / F circuit 15.
  • the frame memory 19 has, for example, a memory capacity for storing video data for one frame displayed on the display panel 2.
  • the display panel 2 updates the display about 60 times per second, but it is not desirable to receive and display the video data from the host processor 21 each time because the power consumption increases. Therefore, when the same still image is displayed on the display panel 2, power consumption can be reduced by reading from the frame memory 19 and displaying the same image.
  • FIG. 21 is a circuit diagram showing the basic configuration of the pixel array unit 12 of FIG. 20.
  • the pixel array unit 12 has a plurality of scanning lines and a plurality of signal lines arranged vertically and horizontally, and a pixel circuit 8 is provided at each intersection of the scanning lines and the signal lines.
  • FIG. 21 shows an example in which each pixel circuit 8 has a sampling transistor Q2, a drive transistor Q1, a pixel capacitance Cs, and an OLED 5 for simplification, but in reality, the circuit shown in FIG. 16 and the like is shown.
  • Gate pulse signals are sequentially output from the gate driver (shift register) 13 to the plurality of scanning lines.
  • FIG. 22 is a timing diagram showing the drive timing of each scanning line and each signal line in the pixel array unit 12. As shown in FIG. 22, each scanning line is driven in line sequence, and a gate pulse signal is output in sequence. Further, the signal line voltage is supplied to each signal line at the timing when the gate pulse signal is supplied to each scanning line. Each pixel is composed of three color pixels, and the signal line voltage of each color pixel is supplied to the corresponding signal line at the same timing.
  • FIG. 23 is a circuit diagram showing a specific configuration of the pixel array unit 12 according to the present embodiment.
  • the area surrounded by the broken line frame is the pixel area 2B in which the sensor is arranged directly below, and the other area is the pixel area 2A.
  • the pixel region 2B has a first pixel circuit 8a for causing the light emitting region 2B1 to emit light, and a second pixel circuit 8b for causing the light emitting region 2B2 to emit light.
  • the pixel area 2A other than the pixel area 2B has only the first pixel circuit 8a because the sensor is not arranged directly below.
  • the first pixel circuit 8a and the second pixel circuit 8b in the pixel area 2B have the same circuit configuration as shown in FIG. 14A. Actually, since each pixel in the pixel area 2B has three color pixels, a first pixel circuit 8a and a second pixel circuit 8b are provided for each color pixel. Both the drains of the drive transistor Q1 in the first pixel circuit 8a and the second pixel circuit 8b provided for each color pixel are connected to a common power supply voltage Vccp. The first pixel circuit 8a and the second pixel circuit 8b in the same color pixel are arranged adjacent to each other in the horizontal (horizontal) direction.
  • the number of signal lines for each pixel in the pixel area 2B is twice as large as the number of signal lines for each pixel in the pixel area 2A. Whether or not the light emitting region 2B2 in the pixel region 2B emits light can be switched depending on whether or not the signal line voltage is supplied to the corresponding signal line.
  • both the light emitting area 2B1 and the light emitting area 2B2 arranged adjacent to each other in the horizontal (horizontal) direction in each pixel (color pixel) emit light.
  • the light emitting region 2B1 arranged adjacent to each other in the horizontal (horizontal) direction in each pixel (color pixel) emits light, but the light emitting region 2B2 does not emit light. Therefore, the sensor can receive the light incident through the light emitting region 2B2 or project the light through the light emitting region 2B2 without being affected by the light emitted from the light emitting region 2B2.
  • the first pixel circuit 8a and the second pixel circuit 8b in the pixel region 2B are mainly formed of members that reflect light, they are arranged inside the light emitting region 2B1. As a result, even if the second pixel circuit 8b is provided, the area of the light emitting region 2B2 can be secured, and the decrease in the brightness of each pixel in the pixel region 2B can be suppressed.
  • FIG. 24 is a circuit diagram showing a first modification example of the pixel array unit 12 according to the present embodiment.
  • the area surrounded by the broken line frame is the pixel area 2B in which the sensor is arranged directly below, and the other area is the pixel area 2A.
  • the light emitting region 2B1 and the non-light emitting region 2B2 are arranged adjacent to each other in the vertical (vertical) direction in the pixel (color pixel). Therefore, in the pixel area 2B, two scanning lines are provided for each pixel.
  • the pixel circuit 8 is connected to only one of them. Whether or not the non-light emitting region 2B2 in the pixel region 2B emits light can be switched depending on whether or not the gate pulse signal is supplied to the corresponding scanning line.
  • both the light emitting area 2B1 and the non-light emitting area 2B2 arranged adjacent to each other in the vertical (vertical) direction in each pixel (color pixel) emit light.
  • the light emitting region 2B1 arranged adjacent to each other in the vertical (vertical) direction in each pixel (color pixel) emits light, but the non-light emitting region 2B2 does not emit light. Therefore, the sensor can receive the light incident through the non-light emitting region 2B2 or project the light through the non-light emitting region 2B2 without being affected by the light emitted from the non-light emitting region 2B2.
  • FIG. 25 is a circuit diagram showing a second modification of the pixel array unit 12 according to the present embodiment.
  • the area surrounded by the broken line frame is the pixel area 2B in which the sensor is arranged directly below, and the other area is the pixel area 2A.
  • the pixel array unit 12 of FIG. 25 uses one pixel of the two pixels adjacent to each other in the vertical (vertical) direction as the light emitting region 2B1 and the other pixel as the non-light emitting region 2B2. When the sensor is not operated, all the pixels in the pixel area are made to emit light.
  • the pixels in the odd-numbered rows in the pixel region 2B are made to emit light, and the pixels in the even-numbered rows are not made to emit light.
  • the signal line voltage is set to zero at the drive timing of the scanning line of each pixel.
  • the pixels in the even-numbered rows in the pixel region 2B do not emit light, and the pixels in the even-numbered rows can be used as the non-light emitting region 2B2 to receive light by the sensor.
  • FIG. 26 is a circuit diagram showing a third modification example of the pixel array unit 12 according to the present embodiment.
  • the area surrounded by the broken line frame is the pixel area 2B in which the sensor is arranged directly below, and the other area is the pixel area 2A.
  • Each pixel (color pixel) in the pixel area 2B is provided with a pixel circuit 8 having the same circuit configuration as in FIG. 14B.
  • Each pixel circuit 8 has a switch transistor Q3 that switches whether or not to short-circuit the anode electrodes of the two OLEDs 5 and 5a.
  • a common reset signal RST is provided for each pixel group of each row arranged in the horizontal (horizontal) direction in the pixel region 2B, and all switch transistors Q3 included in the pixel group of each row are turned on or turned on at the same timing. Turn off.
  • the pixel circuit 8 is provided with a reset driver (RST driver) 22 that individually controls the timing at which the reset signal RST of each row is set to high for each row.
  • FIG. 27 is a circuit diagram showing a fourth modification of the pixel array unit 12 according to the present embodiment.
  • the area surrounded by the broken line frame is the pixel area 2B in which the sensor is arranged directly below, and the other area is the pixel area 2A.
  • the pixel array unit 12 of FIG. 27 is common to FIG. 26 in that the pixel circuit 8 having the same circuit configuration as that of FIG. 14B is provided in the pixel region 2B, but is input to the gate of the switch transistor Q3 in each pixel circuit 8. It differs from FIG. 26 in that all the reset signals RSTs to be generated are connected in common.
  • the pixel circuit 8 of FIG. 27 it is not possible to switch whether or not to emit light in the light emitting area 2B2 for each row in the pixel area 2B, but the light emitting area 2B2 of all the pixels in the pixel area 2B is displayed at an arbitrary timing. It is possible to switch whether or not to emit light.
  • the pixel array unit 12 of FIG. 27 does not require the reset driver 22 of FIG. 26, and the circuit configuration can be simplified as compared with FIG. 26.
  • FIG. 28 is a drive timing diagram of the pixel region 2B having the pixel circuit 8 of FIG. 26.
  • FIG. 28 shows an example in which a pixel group for three lines connected to three scanning lines Gates 0 to 2 exists in the pixel area 2B. Further, FIG. 28 shows an example in which the three reset signals RST0 to RST0 to 2 provided for each row sequentially change from high potential to low potential at different times.
  • the light emitting region 2B1 of each pixel of each row always emits light except for the period in which the signal line voltage is written.
  • the light emitting region 2B2 of each pixel in each row emits light only during the period when the reset signal RST has a high potential, and turns off during the period when the reset signal RST has a low potential.
  • the period during which the pixel group in the pixel area 2B is turned off is shifted for each row.
  • the sensor located directly below the pixel area 2B can be driven only during the period when all the pixel groups in each row are turned off.
  • the period during which all three rows of pixels are turned off is indicated by the arrow line y1.
  • the arrow line y1 is the operating period of the sensor. As can be seen from the length of the arrow line y1, when the timing at which the light emitting region 2B2 is turned off is different for each row in the pixel region 2B, the operation period of the sensor is shortened.
  • FIG. 29 is a drive timing diagram of the pixel region 2B having the pixel circuit 8 of FIG. 27.
  • the pixel circuit 8 of FIG. 27 since the three reset signals RST corresponding to the pixel groups for three rows in the pixel region 2B change at the same timing, the timing at which the light emitting region 2B2 of each pixel in each row is turned off is the same. Become. Therefore, the period during which the sensor can be operated is the period during which the light emitting region 2B2 of each pixel in each row is turned off, and the operation period of the sensor can be made longer than in FIG. 28.
  • FIG. 30 is a diagram showing a first example of pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 30 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly below.
  • each pixel in the pixel region 2A has three color pixels of red, green, and blue, and these color pixels are arranged vertically and horizontally in order.
  • each pixel (color pixel) has a light emitting region 2B1 and a non-light emitting region 2B2, and the light emitting region 2B1 emits light, but the non-light emitting region 2B2 does not emit light.
  • FIG. 30 is a diagram showing a first example of pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 30 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly
  • each pixel of the pixel area 2B1 includes three color pixels. Since the non-light emitting region 2B2 always transmits light, the sensor directly under the pixel region 2B can perform sensing at an arbitrary timing by receiving light via the non-light emitting region 2B2.
  • the pixel circuit 8 of each pixel may have a circuit configuration as shown in FIG. 10A, for example, and may have only one OLED 5.
  • FIG. 31 is a diagram showing a second example of the pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 31 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly below.
  • each pixel color pixel
  • two OLEDs 5 and 5a are arranged for each pixel (each color pixel) in the pixel region 2B.
  • FIG. 10B two OLEDs 5 and 5a are arranged for each pixel (each color pixel) in the pixel region 2B.
  • the light emitting region 2B1 is described as “non”, and the light emitting region 2B2 is described as “transparent”.
  • the light emitting region 2B1 constantly emits light during the display period of the display panel 2, whereas the light emitting region 2B2 emits light only during the period when the sensor does not operate, and turns off during the operation period of the sensor.
  • the pixel circuit 8 of each pixel has, for example, the circuit configuration of FIG. 12A.
  • FIG. 32 is a diagram showing a third example of the pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 32 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly below.
  • all the color pixels in the pixel region 2B have a light emitting region 2B1 and a light emitting region 2B2, whereas the pixel region 2B of FIG. 32 is vertical (vertical).
  • the pixels in the odd-numbered rows have only the light emitting region 2B1
  • the pixels in the even-numbered rows have only the light emitting region 2B2.
  • Both the odd-numbered row light emitting region 2B1 and the even-numbered row light emitting region 2B2 emit light from the OLED 5.
  • the pixel circuit 8 of each color pixel of FIG. 32 may have one OLED 5, and the circuit configuration can be simplified as compared with the pixel circuit 8 of the image display device 1 of FIG. However, since the pixel circuit 8 of each pixel (color pixel) in an even number of rows must stop the light emission of the light emitting region 2B2 when operating the sensor, a switch transistor Q3 or the like for stopping the light emission is required. ..
  • the pixels in the odd-numbered rows have the light emitting region 2B1 and the pixels in the even-numbered rows have the light emitting region 2B2, but the reverse may be performed. That is, the pixels in the odd-numbered rows may have the light emitting region 2B2, and the pixels in the even-numbered rows may have the light emitting region 2B1. Further, it is possible to switch whether each pixel has the light emitting region 2B1 or the light emitting region 2B2 in units of a plurality of pixel rows.
  • FIG. 33 is a diagram showing a fourth example of the pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 33 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly below.
  • each color pixel in the pixel region 2B has only one of the light emitting region 2B1 and the light emitting region 2B2.
  • the color pixels having the light emitting region 2B2 are arranged in a staggered pattern, and similarly, the color pixels having the light emitting region 2B1 are also staggered.
  • the emission brightness of the light emission region 2B2 is lower than the emission brightness of the light emission region 2B1, but the color pixels having the light emission region 2B2 are evenly dispersed in the pixel region 2B to reduce the brightness and the brightness variation. Becomes less noticeable.
  • FIG. 34 is a diagram showing a fifth example of the pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 34 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel area 2A in which the sensor is not arranged directly below.
  • FIG. 34 is a modification of FIG. 30, and the non-emission region 2B2 is not provided for some color pixels (for example, blue pixels having a particularly short emission life). Therefore, the blue pixel is only the light emitting region 2B1, and constantly emits light during the display period of the display panel 2. As described above, it is not necessary that all the color pixels in the pixel include the non-light emitting region 2B2, and only some of the color pixels may include the non-light emitting region 2B2.
  • FIG. 35 is a diagram showing a sixth example of the pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 35 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel areas 2A in which the sensor is not arranged directly below.
  • 35 is a modification of FIGS. 31 and 34, in which the non-light emitting region 2B2 of FIG. 34 can emit light. More specifically, the light emitting region 2B2 is made to emit light during the period when the sensor is not operated, and the light emitting region 2B2 is not made to emit light during the operation period of the sensor. For some color pixels (for example, blue pixels), the life of the pixels can be extended by not providing the light emitting region 2B2.
  • FIG. 36 is a diagram showing a seventh example of pixel arrangement of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 36 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel areas 2A in which the sensor is not arranged directly below.
  • each pixel has four color pixels of red, green, blue, and white in the pixel region 2A.
  • the arrangement order and area of these four color pixels are arbitrary, and FIG. 36 is only an example. It should be noted that color pixels other than white may be provided.
  • the white pixel in the pixel area 2B is the non-light emitting area 2B2.
  • the non-light emitting region 2B2 does not emit the light of the OLED 5, but can always transmit the light.
  • the image display device 1 of FIG. 36 can be easily manufactured by omitting the pixel circuit 8 in the white pixel region from the display panel 2 in which one pixel is composed of four color pixels.
  • the white pixels are originally provided to improve the brightness of the pixels, and by setting the white pixels to the non-light emitting area 2B2, the display panel 2 becomes slightly darker, but the hue of the pixels is not significantly affected. Therefore, by setting the white pixel to the non-light emitting region 2B2, it is possible to suppress the deterioration of the image quality of the display panel 2.
  • FIG. 37 is a diagram showing an eighth example of the image display device 1 according to the present embodiment.
  • the broken line frame in FIG. 36 is the pixel area 2B in which the sensor is arranged directly below, and the other areas are the pixel areas 2A in which the sensor is not arranged directly below.
  • the image display device 1 of FIG. 37 is common to FIG. 36 in that the white pixels of each pixel are set to the light emitting region 2B2, but is different from FIG. 36 in that the light emitting region 2B2 is made to emit light by the light of the OLED 5.
  • the white pixel emits light when the sensor is not operated, and turns off when the sensor is operated.
  • the brightness of the pixel region 2B of the display panel 2 can be improved as compared with FIG. 36.
  • FIG. 38 is a plan view of a plurality of color pixels in the pixel region 2B shown in FIG.
  • FIG. 38 shows a planar layout of a total of four color pixels, two color pixels horizontally and two color pixels vertically.
  • Each color pixel has a light emitting region 2B1 and a non-light emitting region 2B2 arranged adjacent to each other in the vertical direction.
  • the pixel circuit 8 of each color pixel has, for example, the circuit configuration shown in FIG. 10A.
  • the light from the OLED 5 is emitted from the light emitting region 2B1.
  • plan layout diagram PV2 on the right side of FIG. 38 shows the positional relationship between the light emitting region 2B1 and the non-light emitting region 2B2.
  • the plan layouts PV1 and PV2 on the left and right sides of FIG. 39 show the same pixel area.
  • each circuit element in the pixel circuit 8 shown in FIG. 10A is arranged inside the light emitting region 2B1.
  • the power supply line Vccp, the scanning line Gate, and the reset signal line RST are arranged substantially parallel to each other in the horizontal direction through the upper end side of the light emitting region 2B1.
  • the electrodes having a pixel capacitance Cs having a relatively large circuit area are arranged on the lower end side of the light emitting region 2B1.
  • the OLED 5 and the switch transistor Q3 are arranged in the lower right corner of the light emitting region 2B1.
  • the arrangement of each circuit element in FIG. 10A is an example, and various arrangements can be changed.
  • FIG. 39 is a cross-sectional view taken along the line AA'of FIG. 38.
  • the cross-sectional view of FIG. 39 shows the laminated structure in the pixel region 2B of the image display device 1.
  • FIG. 39 is a detailed representation of a partial cross-sectional structure around the display layer 2d in the cross-sectional structure of FIG. Specifically, FIG. 39 shows a cross-sectional structure around the OLED 5 and the switch transistor Q3 in FIG. 10A.
  • the upper surface of FIG. 39 is the display surface 2z side of the display panel 2, and the bottom surface of FIG. 39 is the side on which the sensor is arranged.
  • the first transparent substrate 31 From the bottom surface side to the top surface side of FIG. 39, the first transparent substrate 31, the first insulating layer 32, the first wiring layer 33, the second insulating layer 34, the second wiring layer 35, and the third insulating layer 36. It has an anode electrode layer 38, a fourth insulating layer 37, a display layer 2d, a cathode electrode layer 39, a fifth insulating layer 40, and a second transparent substrate 41.
  • the first transparent substrate 31 and the second transparent substrate 41 are made of, for example, quartz glass having excellent visible light transmittance. Alternatively, at least one of the first transparent substrate 31 and the second transparent substrate 41 may be formed of a transparent film.
  • a first wiring layer (M1) 33 for connecting each circuit element in the pixel circuit 8 is arranged on the first transparent substrate 31.
  • a first insulating layer 32 is arranged on the first transparent substrate 31 so as to cover the first wiring layer 33.
  • the first insulating layer 32 is, for example, a laminated structure of a silicon nitride layer and a silicon oxide layer having excellent visible light transparency.
  • a TFT layer 42 in which each transistor in the pixel circuit 8 is arranged is arranged on the first insulating layer 32.
  • FIG. 39 schematically shows the cross-sectional structure of the switch transistor Q3 formed in the TFT layer 42, but other transistors are also arranged in the same layer, and the first wiring layer 33 is formed by a contact (not shown). It is connected to the.
  • a second insulating layer 34 is arranged on the first insulating layer 32 so as to cover a transistor or the like.
  • the second insulating layer 34 is, for example, a laminated structure of a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer having excellent visible light transparency.
  • a trench 34a is formed in a part of the second insulating layer 34, and by filling the trench 34a with the contact member 34b, the second wiring layer (M2) 35 connected to the source, drain, etc. of each transistor is formed. It is formed.
  • FIG. 39 shows a second wiring layer 35 for connecting the switch transistor Q3 and the anode electrode of the OLED 5, but the second wiring layer 35 connected to other circuit elements is also arranged on the same layer. ing.
  • a third insulating layer 36 for covering the second wiring layer 35 and flattening the surface is arranged on the second insulating layer 34.
  • the third insulating layer 36 is made of a resin material such as acrylic resin.
  • the film thickness of the third insulating layer 36 is larger than the film thickness of the first to second insulating layers 32 and 34.
  • a trench 36a is formed in a part of the upper surface of the third insulating layer 36, and the contact member 36b is filled in the trench 36a to conduct conduction with the second wiring layer 35, and the contact member 36b is connected to the third insulating layer.
  • the anode electrode layer 38 is formed by extending to the upper surface side of the 36.
  • the anode electrode layer 38 has a laminated structure and includes a metal material layer.
  • the metal material layer generally has a low visible light transmittance and functions as a reflective layer that reflects light.
  • As a specific metal material for example, AlNd or Ag can be applied.
  • the lowermost layer of the anode electrode layer 38 is a portion in contact with the trench 36a and is easily broken, at least the corner portion of the trench 36a may be formed of a metal material such as AlNd.
  • the uppermost layer of the anode electrode layer 38 is formed of a transparent conductive layer such as ITO (Indium Tin Oxide).
  • the anode electrode layer 38 may have, for example, an ITO / Ag / ITO laminated structure. Ag is originally opaque, but by reducing the film thickness, the visible light transmittance is improved. Since the strength is weakened when Ag is thinned, it can function as a transparent conductive layer by forming a laminated structure in which ITO is arranged on both sides.
  • a fourth insulating layer 37 is arranged on the third insulating layer 36 so as to cover the anode electrode layer 38.
  • the fourth insulating layer 37 is also made of a resin material such as an acrylic resin like the third insulating layer 36.
  • the fourth insulating layer 37 is patterned according to the arrangement location of the OLED 5, and a recess 37a is formed.
  • the display layer 2d is arranged so as to include the bottom surface and the side surface of the recess 37a of the fourth insulating layer 37.
  • the display layer 2d has a laminated structure as shown in FIG.
  • a cathode electrode layer 39 is arranged on the display layer 2d.
  • the cathode electrode layer 39 is formed of a transparent conductive layer like the anode electrode layer 38.
  • the transparent conductive layer is formed of, for example, ITO / Ag / ITO.
  • a fifth insulating layer 40 is arranged on the cathode electrode layer 39.
  • the fifth insulating layer 40 is formed of an insulating material that flattens the upper surface and has excellent moisture resistance.
  • a second transparent substrate 41 is arranged on the fifth insulating layer 40.
  • the anode electrode layer 38 that functions as a reflective film is arranged in the light emitting region 2B1 and cannot transmit visible light.
  • the anode electrode layer 38 is not arranged in the non-light emitting region 2B2, and visible light can be transmitted.
  • the cathode electrode 39 shows an example in which the cathode electrode 39 is arranged in the non-light emitting region 2B2, but since the cathode electrode layer 39 is thinner than the anode electrode layer 38, it is part of the cathode electrode layer 39. Even if a metal film such as Ag is contained, the visible light transmittance is maintained.
  • the cathode electrode layer 39 may be terminated near the boundary between the light emitting region 2B1 and the non-light emitting region 2B2 so that the cathode electrode layer 39 is not arranged in the non-light emitting region 2B2.
  • FIG. 40 is a circuit diagram of a pixel circuit 8 in the case where each pixel in the pixel region 2B in which the sensor in the pixel array unit 12 is arranged directly below has the light emitting region 2B1 and the light emitting region 2B2, as shown in FIG. 31. be.
  • the circuit diagram of FIG. 40 is a simplification, and may actually be configured by the circuit of FIG. 16 or the like.
  • the pixel circuit 8 of FIG. 40 includes a drive transistor Q1, a sampling transistor Q2, a pixel capacitance Cs, a switch transistor Q3, and two OLEDs 5 and 5a. More specifically, as shown in FIG. 31, each of the three color pixels constituting each pixel includes a light emitting region 2B1 and a light emitting region 2B2, and for example, the pixel circuit 8 of FIG. 40 is arranged in the light emitting region 2B1. Has been done.
  • FIG. 41 is a plan view of a plurality of color pixels having the pixel circuit 8 of FIG. 40.
  • FIG. 41 shows a planar layout of a total of four color pixels, two color pixels horizontally and two color pixels vertically. Each color pixel has a light emitting region 2B1 and a light emitting region 2B2 arranged adjacent to each other in the vertical direction.
  • the plan layout diagram PV3 on the left side of FIG. 41 shows the layout arrangement of each circuit element of the pixel circuit 8, and the plan layout diagram PV4 on the right side of FIG. 41 shows the positional relationship between the light emitting region 2B1 and the light emitting region 2B2. ..
  • the plan layouts PV3 and PV4 on the left and right sides of FIG. 41 show the same pixel area.
  • each circuit element in the pixel circuit 8 shown in FIG. 40 is arranged inside the light emitting region 2B1.
  • the arrangement of each circuit element in FIG. 41 is an example, and various arrangements can be changed.
  • FIG. 42 is a cross-sectional view taken along the line BB'of FIG. 41.
  • the cross-sectional view of FIG. 42 shows the laminated structure in the pixel region 2B of the image display device 1.
  • FIG. 42 is a detailed representation of a partial cross-sectional structure around the display layer 2d in the cross-sectional structure of FIG. Specifically, FIG. 42 shows a cross-sectional structure around the two OLEDs 5, 5a and the switch transistor Q3 of FIG. 40.
  • FIG. 42 The upper surface of FIG. 42 is the display surface 2z side of the display panel 2, and the bottom surface of FIG. 42 is the side on which the sensor is arranged.
  • the cross-sectional structure of FIG. 42 is basically the same as that of FIG. 43.
  • the difference from FIG. 43 is that the OLED 5a is arranged, and FIG. 46 is provided with a contact 36a for conducting the anode electrode layer 38 of the OLED 5a and the second wiring layer 35.
  • FIG. 40 shows two second wiring layers 35 for connecting the switch transistor Q3 and the anode electrodes of the two OLEDs 5 and 5a, but the second wiring layer 35 connected to other circuit elements. Are also arranged in the same layer.
  • the anode electrode layer 38 since the anode electrode layer 38 is spread in the light emitting region 2B1, it functions as a reflective film that does not transmit visible light, whereas the anode electrode layer 38 in the light emitting region 2B2 is thinned. , It is possible to transmit the incident visible light. Alternatively, the anode electrode layer 38 in the light emitting region 2B2 may be terminated in the vicinity of the OLED 5a to further improve the visible light transmittance.
  • FIG. 43 is a circuit diagram of the pixel circuit 8 in the pixel region 2A in which the sensor is not arranged directly below.
  • Each pixel (color pixel) in the pixel region 2A includes a light emitting region 2A1, but does not include a non-light emitting region 2B2. Therefore, the pixel circuit 8 of FIG. 43 has a drive transistor Q1, a sampling transistor Q2, a pixel capacitance Cs, and one OLED 5, and the light emitting region 2A1 is made to emit light by the OLED 5.
  • FIG. 44 is a plan view of a plurality of color pixels having the pixel circuit 8 of FIG. 43.
  • FIG. 44 shows a planar layout of a total of four color pixels, two color pixels horizontally and two color pixels vertically. Each color pixel has a vertically long light emitting region 2A1.
  • the plan layout diagram PV5 on the left side of FIG. 44 shows the layout arrangement of each circuit element of the pixel circuit 8, and in fact, the plan layout views PV5 and PV6 on the left side and the right side of FIG. 44 show the same pixel area. ing.
  • Approximately the entire light emitting region 2A1 is covered with an anode electrode layer 38 that acts as a reflective film. Therefore, the light emitted by the OLED 5 is emitted from substantially the entire area of the pixel, and the brightness of the pixel can be improved.
  • FIG. 45 is a cross-sectional view taken along the line CC'of FIG. 44.
  • the layer structure of FIG. 45 is the same as that of FIG. 42, and the first to third insulating layers 36 are laminated in order on the first transparent substrate 31, and the anode electrode layer 38 is arranged on the third insulating layer 36.
  • a fourth insulating layer 37 is placed on the insulating layer 37, a display layer 2d and a cathode electrode layer 39 are laminated on the insulating layer 37, and a second transparent substrate 41 is placed on the display layer 2d and the cathode electrode layer 39.
  • FIG. 45 shows a cross-sectional structure around the drive transistor Q1.
  • the source of the drive transistor Q1 is connected to the anode electrode layer 38 of the OLED 5 via the second wiring layer 35.
  • the anode electrode layer 38 has a laminated structure, of which an opaque metal layer (for example, the AlNd layer) extends over most of the color pixels, which makes the light emitting region 2A1 opaque.
  • the cathode electrode layer 39 is arranged on the anode electrode layer 38 with the display layer 2d interposed therebetween, and the OLED 5 is formed. As described above, in the pixel region 2A shown in FIGS. 43 to 45, the anode electrode layer 38 and the cathode electrode layer 39 spread within each color pixel, and the anode electrode layer 38 functions as a light-reflecting reflective layer. The entire area of the color pixels can be set to the light emitting region 2A1.
  • each color pixel in the pixel region 2A in which the sensor is not directly arranged has only the light emitting region 2A1, but as shown in FIGS. 46 to 48, the pixel region 2A is included.
  • a light emitting region 2A1 and a light emitting region 2A2 may be provided so that both the light emitting region 2A1 and the light emitting region 2A2 emit light. Most of the light emitting region 2A1 does not transmit incident visible light, whereas most of the light emitting region 2A2 can transmit incident visible light.
  • FIG. 46 is a circuit diagram of the pixel circuit 8 in the pixel area 2A.
  • the pixel circuit 8 of FIG. 46 has a configuration in which the switch transistor Q3 is omitted from the pixel circuit 8 of FIG. 40.
  • FIG. 47 is a plan view of a plurality of color pixels having the pixel circuit 8 of FIG. 46.
  • the plan view of FIG. 47 has a plan layout in which the switch transistor Q3 is omitted from the plan view of FIG. 41.
  • the plan layout diagram PV7 on the left side of FIG. 47 shows the same pixel area as the plan layout diagram PV8 on the right side.
  • FIG. 48 is a cross-sectional view taken along the line of FIG. 47.
  • FIG. 48 shows the cross-sectional structure around the drive transistor Q1.
  • the second wiring layer 35 is connected to the drive transistor Q1, and the second wiring layer 35 is connected to the anode electrode layer 38.
  • the opaque metal layer in the anode electrode layer 38 extends to the vicinity of the boundary between the light emitting region 2A1 and the light emitting region 2A2.
  • the transparent conductive layer in the anode electrode layer 38 extends from the light emitting region 2A1 to the light emitting region 2A2.
  • the visible light transmittance in the light emitting region 2A2 can be improved.
  • a laminated film such as ITO-Ag-ITO is formed on the surface of the trench 36a formed in the third insulating layer 36, and the trench 36a is formed.
  • the disconnection of the anode electrode layer 38 at the corner is prevented.
  • FIG. 49 is a cross-sectional view showing a first modification of the cross-sectional structure of FIG. 42.
  • the taper angle of the trench 36a formed in the third insulating layer 36 with respect to the substrate depth (lamination) direction is made larger than that in FIG. 42.
  • a transparent conductive layer for example, ITO
  • the anode electrode layer 38 can be formed only with a thin ITO. Therefore, it is not necessary to form only the anode contact of the OLED 5a in a laminated film structure, and the opening size of the fourth insulating layer 37 can be expanded to the vicinity of the anode contact of the OLED 5a.
  • FIG. 50 is a cross-sectional view showing a second modification of the cross-sectional structure of FIG. 42.
  • a trench 36a having a diameter more uniform than that of FIG. 49 is formed in the third insulating layer 36, and the diameter is widened only near the upper end of the trench 36a.
  • a transparent conductive layer for example, ITO
  • ITO transparent conductive layer
  • the body portion of the trench 36a is formed at a steep angle along the normal direction of the display surface 2z, but the corner portion has a gentle curved surface shape. Therefore, even if a thin ITO is formed, disconnection at the corner of the trench 36a is unlikely to occur.
  • the trench 36a having the shape shown in FIG. 50 can be formed relatively easily by using, for example, a halftone mask. In the first exposure, a steep body portion of the trench 36a can be formed in the third insulating layer 36, and in the second exposure, a gentle curved surface can be formed in the upper end portion of the trench 36a.
  • the trench 36a in FIG. 50 has a smaller diameter of the body portion than the trench 36a in FIG. 49, the length in the lateral (horizontal) direction can be suppressed, and the area of the OLED 5 can be expanded accordingly.
  • the non-light emitting area 2B2 is provided in the pixel area 2B directly above the sensor, so that the display panel 2 can be displayed.
  • Light can be received by the sensor without being affected, and the reliability of sensing by the sensor can be improved. Therefore, for example, since it is not necessary to arrange the sensor on the bezel of the display unit of the electronic device, the degree of freedom in the design design of the electronic device can be further expanded.
  • the display unit of an electronic device such as a smartphone can be maximized to the size of the housing, not only the size of the display unit can be increased, but also the housing can be made smaller.
  • the display panel 2 when the display panel 2 is provided with the pixel area 2B in which the sensor is arranged directly below and the other pixel areas 2A, the brightness of the pixels on the side close to the pixel area 2B in the pixel area 2A.
  • the difference in brightness between the pixel areas 2A and 2B can be made as small as possible, and deterioration of the display quality of the display panel 2 can be suppressed.
  • the light emitting region 2B1 and the light emitting region 2B2 are provided in the pixel region 2B in which the sensor is arranged directly below, and the OLED 5a that emits the light emitting region 2B2 is provided separately from the OLED 5 that emits the light emitting region 2B1.
  • the brightness of the light emitting region 2B2 can be improved, and the difference in brightness between the pixel regions 2A and 2B can be reduced.
  • the pixel region 2B is displayed by controlling the light emitting region 2B2 to emit light during the period when the sensor is not operating and stopping the light emitting region 2B2 during the operating period of the sensor. It is possible to improve the reliability of sensing by the sensor while suppressing the variation in brightness of the panel 2.
  • the anode electrode layer 38 which normally functions as a reflective film, is formed of a laminated film such as ITO-Ag-ITO, and the film thickness of the metal material layer such as Ag is reduced to reduce the light emitting region.
  • the visible light transmittance of the anode electrode layer 38 in 2B2 can be increased.
  • a trench 36a is formed in the third insulating layer 36, and the taper angle of the side wall portion of the trench 36a is adjusted to adjust the trench 36a angle.
  • the film thickness of the anode electrode layer 38 can be reduced, and as a result, the visible light transmittance of the anode electrode layer 38 can be further improved.
  • the taper angle of the trench 36a is made steep at the body portion of the trench 36a and a gentle curved surface at the corner portion of the trench 36a, so that the diameter of the trench 36a is reduced and the anode electrode layer at the corner portion of the trench 36a is formed. It is possible to prevent the disconnection of 38.
  • the present technology can have the following configurations. (1) Equipped with a plurality of pixels arranged in a two-dimensional manner, The pixels in the first pixel region including some of the plurality of pixels are The first light emitting region and A second light emitting region having a higher visible light transmittance than the first light emitting region, A first self-luminous element that emits light from the first light emitting region, It has a second self-luminous element that emits light from the second light emitting region, and has. Of the plurality of pixels, the pixels in the second pixel area other than the first pixel area are A third light emitting region having a lower visible light transmittance than the second light emitting region, An image display device comprising a third self-luminous element that emits light from the third light emitting region.
  • the second light emitting region includes a region through which incident visible light is transmitted.
  • At least a part of the first pixel region is arranged so as to overlap a light receiving device that receives light incident through the image display device when viewed in a plan view from the display surface side of the image display device.
  • the image display device according to any one of (1) to (4).
  • Each of the first self-luminous element, the second self-luminous element, and the third self-luminous element With the lower electrode layer, A display layer arranged on the lower electrode layer and An upper electrode layer arranged on the display layer and It has a wiring layer arranged below the lower electrode layer and conducted to the lower electrode layer via a contact extending from the lower electrode layer in the stacking direction.
  • the image display device according to any one of (1) to (5), wherein the contact is arranged in the first light emitting region and the third light emitting region.
  • the image display device wherein at least the corner portion near the upper end of the contact has a laminated structure in which a transparent conductive layer is arranged on a metal layer.
  • the inclination angle of the side surface of the contact with respect to the stacking direction changes stepwise or continuously, and the inclination angle with respect to the stacking direction is larger in the vicinity of the upper end of the contact than in the vicinity of the lower end (6).
  • the image display device according to (7).
  • each pixel in the first pixel region and the second pixel region has a plurality of color pixels.
  • Each of the plurality of color pixels in the first pixel region has the first light emitting region and the second light emitting region.
  • Each pixel in the first pixel region and the second pixel region has a plurality of color pixels.
  • some color pixels have the first light emitting region and the second light emitting region, and the color pixels other than the partial color pixels are the first light emitting region. 2.
  • (13) The image display device according to any one of (1) to (12), wherein the first pixel region is provided at at least one of the four corners of the display unit having the plurality of pixels.
  • An image display device having a plurality of pixels arranged two-dimensionally, A light receiving device for receiving light incident through the image display device is provided.
  • the pixels in the first pixel region including some of the plurality of pixels are The first light emitting region and A second light emitting region having a higher visible light transmittance than the first light emitting region, A first self-luminous element that emits light from the first light emitting region, It has a second self-luminous element that emits light from the second light emitting region, and has.
  • the pixels in the second pixel area other than the first pixel area are A third light emitting region having a lower visible light transmittance than the second light emitting region, An electronic device comprising a third self-luminous element that emits light from the third light emitting region.
  • the light receiving device includes an image sensor that photoelectrically converts light incident through the second light emitting region, a distance measuring sensor that receives light incident through the second light emitting region and measures a distance, and the above-mentioned light receiving device.
  • 1 image display device 2 display panel, 2b transparent film, 2c glass substrate, 2d display layer, 2e barrier layer, 2f touch sensor layer, 2g adhesive layer, 2h circular electrode plate, 2i optical adhesive sheet, 2j cover glass, 3 FPC 4, Chip (COF), 5, 5a OLED, 6a 1st imaging unit, 6b imaging sensor, 6c 2nd imaging unit, 6d imaging sensor, 6e, 6f single focus lens, 11 driver IC, 12 pixel array unit, 13 shift Register (gate driver), 14 selector switch, 15 I / F circuit, 16 data latch circuit, 17 DAC, 18 timing generator, 19 frame memory, 20 power supply circuit, 21 host processor, 31 1st transparent board, 32 1st insulation Layer, 33 1st wiring layer, 34 2nd insulating layer, 35 2nd wiring layer, 36 3rd insulating layer, 37 4th insulating layer, 38 anode electrode layer, 39 cathode electrode layer, 40 5th insulating layer, 41st 2 Transparent substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[課題] 表示面を通して受光又は投光される光の減衰や変調を防止する。 [解決手段] 画像表示装置は、二次元状に配置される複数の画素を備える。複数の画素のうち一部の画素を含む第1画素領域内の画素は、第1発光領域と、前記第1発光領域より可視光透過率が高い第2発光領域と、第1発光領域から光を発光する第1自発光素子と、前記第2発光領域から光を発光する第2自発光素子と、を有し、複数の画素のうち第1画素領域以外の第2画素領域内の画素は、前記第2発光領域より可視光透過率が低い第3発光領域と、前記第3発光領域から光を発光する第3自発光素子と、を有する。

Description

画像表示装置及び電子機器
 本開示は、画像表示装置及び電子機器に関する。
 最近のスマートフォンや携帯電話、PC(Personal Computer)などの電子機器では、表示パネルの額縁(ベゼル)に、カメラなどの種々のセンサを搭載している。搭載されるセンサも増える傾向にあり、カメラの他に、顔認証用のセンサや赤外線センサ、動体検出センサなどがある。その一方で、デザイン上の観点や軽薄短小化の傾向から、画面サイズに影響を与えずに電子機器の外形サイズをできるだけコンパクトにすることが求められており、ベゼル幅は狭まる傾向にある。このような背景から、表示パネルの真下にカメラモジュールを配置して、表示パネルを通過した被写体光をカメラモジュールで撮影する技術が提案されている。表示パネルの真下にカメラモジュールを配置するには、表示パネルを透明化する必要がある(特許文献1参照)。
特開2011-175962号公報
 しかしながら、表示パネルは複数層からなり、一部の層は可視光透過率が低い。このため、表示パネルを通過した被写体光をカメラモジュールで撮影すると、撮影画像が暗くなったり、全体的にぼやけた画像になる。また、被写体光が表示パネルを通過する際に、フレアや回折の影響を受けて、撮影画像の画質が低下するおそれもある。カメラモジュール以外のセンサを表示パネルの直下に配置する場合も事情は同じであり、表示パネルを通過する間に光が減衰したり変調したりするため、センサで受光される光又はセンサから投光される光の信頼性が低下するおそれがある。
 そこで、本開示では、表示面を通して受光又は投光される光の減衰や変調を防止できる画像表示装置及び電子機器を提供するものである。
 上記の課題を解決するために、本開示によれば、
 二次元状に配置される複数の画素を備え、
 前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
 第1発光領域と、
 前記第1発光領域より可視光透過率が高い第2発光領域と、
 前記第1発光領域から光を発光する第1自発光素子と、
 前記第2発光領域から光を発光する第2自発光素子と、を有し、
 前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
 前記第2発光領域より可視光透過率が低い第3発光領域と、
 前記第3発光領域から光を発光する第3自発光素子と、を有する、画像表示装置が提供される。
 前記第2発光領域は、入射された可視光を透過させる領域を含み、
 前記第1発光領域及び前記第3発光領域は、入射された可視光を透過させずに反射させる領域を含んでもよい。
 前記第2画素領域内の画素のうち前記第1画素領域に近い画素ほど、前記第3発光領域の発光輝度を低下させてもよい。
 前記第1画素領域及び前記第2画素領域の境界部分における前記第1画素領域内の画素輝度と前記第2画素領域内の画素輝度とは略等しくてもよい。
 前記第1画素領域の少なくとも一部は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なるように配置されてもよい。
 前記第1自発光素子、前記第2自発光素子、及び前記第3自発光素子のそれぞれは、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記コンタクトは、前記第1発光領域及び前記第3発光領域に配置されてもよい。
 前記コンタクトの少なくとも上端付近の角部は、金属層の上に透明導電層を配置した積層構造であってもよい。
 前記コンタクトの側面は、積層方向に対する傾斜角度が段階的又は連続的に変化しており、前記コンタクトの上端付近は、下端付近よりも、積層方向に対する傾斜角度がより大きくてもよい。
 前記下部電極層は、第1透明導電層と、金属層と、第2透明導電層とを順に積層した積層構造であってもよい。
 前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
 前記第1画素領域内の前記複数の色画素のそれぞれは、前記第1可発光領域及び前記第2発光領域を有し、
 前記第2画素領域内の前記複数の色画素のそれぞれは、前記第3発光領域を有してもよい。
 前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
 前記第1画素領域内の前記複数の色画素のうち一部の色画素は、前記第1発光領域及び前記第2発光領域を有し、前記一部の色画素以外の色画素は、前記第2発光領域を有さずに前記第1発光領域を有してもよい。
 前記第1画素領域内の一部の画素は、前記第1発光領域を有さずに前記第2発光領域を有し、前記一部の画素以外の画素は、前記第2発光領域を有さずに前記第1発光領域を有してもよい。
 前記第1画素領域は、前記複数の画素を有する表示部の四隅の少なくとも一つに設けられてもよい。
 本開示によれば、二次元状に配置される複数の画素を有する画像表示装置と、
 前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
 前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
 第1発光領域と、
 前記第1発光領域より可視光透過率が高い第2発光領域と、
 前記第1発光領域から光を発光する第1自発光素子と、
 前記第2発光領域から光を発光する第2自発光素子と、を有し、
 前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
 前記第2発光領域より可視光透過率が低い第3発光領域と、
 前記第3発光領域から光を発光する第3自発光素子と、を有する、電子機器が提供される。
 前記第1画素領域は、前記受光装置に入射される光が通過する画素領域であってもよい。
 前記受光装置は、前記第2発光領域を通して入射された光を光電変換する撮像センサと、前記第2発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記第2発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含んでもよい。
本開示の一実施形態による画像表示装置の概略的な平面図。 図1Aとは異なる場所にセンサを配置した画像表示装置の平面図。 表示パネルの一部の画素領域2Bの拡大図。 表示パネルの一部の画素領域2Aの拡大図。 OLEDとドライブトランジスタとの接続関係を示す回路図。 OLEDを流れる電流と発光輝度との相関関係を示す特性図。 図1AのA-A線方向の模式的な断面図。 表示層の積層構造を示す断面図。 センサが直下に配置されている画素領域2Bの模式的な断面図。 センサが直下に配置されていない画素領域2Aの模式的な断面図。 表示パネル上の画素領域2Aと2Bの位置関係を示す平面図。 画素領域の画素輝度を示す図。 画素領域内の各画素のOLEDに流れる単位面積あたりの電流を示す図。 画素領域の画素輝度を示す図。 画素領域内の各画素のOLEDに流れる単位面積あたりの電流を示す図。 図7Cに対する解決策の第2例を示す図。 OLEDを含む画素回路の基本構成を示す回路図。 図10Aの一変形例による画素回路8の回路図。 図10A、図10Bの画素回路を有する表示パネルの画素輝度を示す図。 画素領域2Aと図11Aの画素領域2Bの各画素に流れる単位面積あたりの電流を示す図。 スイッチトランジスタがオンの場合の電流の流れを矢印で示す図。 スイッチトランジスタがオフの場合の電流の流れを矢印で示す図。 スイッチトランジスタがオンの場合の電流の流れを矢印で示した断面図。 スイッチトランジスタがオフの場合の電流の流れを矢印で示した断面図。 画素領域内の画素回路の第1変形例の回路図。 画素領域内の画素回路の第2変形例の回路図。 画素領域内の画素回路の第3変形例の回路図。 欠陥画素の検出と画像補正を行う処理手順を示すフローチャート。 画素回路内の各画素の画素回路の具体的な構成を示す回路図。 図16の画素回路内の各部の電圧波形図。 画素回路内の全トランジスタをP型にした回路図。 図16及び図18とは異なる構成の画素回路の回路図。 本実施形態による画像表示装置の概略構成を示すブロック図。 図20の画素アレイ部の基本的な構成を示す回路図。 画素アレイ部内の各走査線と各信号線の駆動タイミングを示すタイミング図。 本実施形態による画素アレイ部の具体的な構成を示す回路図。 本実施形態による画素アレイ部の第1変形例を示す回路図。 本実施形態による画素アレイ部の第2変形例を示す回路図。 本実施形態による画素アレイ部の第3変形例を示す回路図。 本実施形態による画素アレイ部の第4変形例を示す回路図。 図26の画素回路を有する画素領域の駆動タイミング図。 図27の画素回路を有する画素領域の駆動タイミング図。 本実施形態による画像表示装置の画素配置の第1例を示す図。 本実施形態による画像表示装置の画素配置の第2例を示す図。 本実施形態による画像表示装置の画素配置の第3例を示す図。 本実施形態による画像表示装置の画素配置の第4例を示す図。 本実施形態による画像表示装置の画素配置の第5例を示す図。 本実施形態による画像表示装置の画素配置の第6例を示す図。 本実施形態による画像表示装置の画素配置の第7例を示す図。 本実施形態による画像表示装置の第8例を示す図。 図30に示す画素領域2B内の複数の色画素の平面図。 図38のA-A‘線断面図。 画素アレイ部内のセンサが直下に配置される画素領域の画素回路の回路図。 図40の画素回路を有する複数の色画素の平面図。 図41の B-B‘線断面図。 センサが直下に配置されない画素領域の画素回路の回路図。 図43の画素回路を有する複数の色画素の平面図。 図44のC-C‘線断面図。 画素領域の画素回路の回路図。 図46の画素回路を有する複数の色画素の平面図。 図47のD-D‘線断面図。 図42の断面構造の第1変形例を示す断面図。 図42の断面構造の第2変形例を示す断面図。
 以下、図面を参照して、画像表示装置及び電子機器の実施形態について説明する。以下では、画像表示装置及び電子機器の主要な構成部分を中心に説明するが、画像表示装置及び電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 図1Aは本開示の一実施形態による画像表示装置1の概略的な平面図である。図1Aに示すように、本実施形態による画像表示装置1は、表示パネル2を備えている。表示パネル2には、例えばフレキシブル・プリント基板(FPC:Flexible Printed Circuits)3が接続されている。表示パネル2は、例えばガラス基板又は透明フィルム上に複数の層を積層したものであり、表示面2zには縦横に複数の画素が配置されている。FPC3の上には、表示パネル2の駆動回路の少なくとも一部を内蔵するチップ(COF:Chip On Film)4が実装されている。なお、駆動回路をCOG(Chip On Glass)として表示パネル2に積層してもよい。
 本実施形態による画像表示装置1は、表示パネル2の直下に、表示パネル2を通して光を受光する各種のセンサを配置可能としている。本明細書では、画像表示装置1とセンサを備えた構成を電子機器と呼ぶ。電子機器内に設けられるセンサの種類は特に問わないが、例えば、表示パネル2を通して入射された光を光電変換する撮像センサ、表示パネル2を通して光を投光するとともに、対象物で反射された光を表示パネル2を通して受光して、対象物までの距離を計測する距離計測センサ、表示パネル2を通して入射された光に基づいて温度を計測する温度センサなどである。このように、表示パネル2の直下に配置されるセンサは、光を受光する受光装置の機能を少なくとも備えている。なお、センサは、表示パネル2を通して光を投光する発光装置の機能を備えていてもよい。
 図1Aは表示パネル2の直下に配置されるセンサの具体的な場所の一例を破線で示している。図1Aのように、センサは、表示パネル2の四隅2aの少なくとも一つに配置される。なお、四隅2a以外の場所にセンサを配置してもよい。後述するように、センサは、表示パネル2を通して光を投光したり、受光したりするため、表示パネル2上のセンサは可視光透過率を高くする必要がある。このため、表示パネル2に画像を表示させたときに、表示パネル2上のセンサの直上の画素領域がそれ以外の画素領域と比べて、色合いや輝度が変化するおそれがある。図1Aのように、センサの直上の画素領域が表示パネル2の四隅2aであれば、色合いや輝度が他の画素領域と多少異なっていても、外見上あまり目立たなくなる。
 市販されているスマートフォンやタブレット、PC等では、表示パネル2の上端側ベゼルの中央部にカメラモジュールを配置していることが多い。よって、本実施形態においても、図1Bの破線枠2aに示すように、表示パネル2の上端側中央部付近にセンサを配置してもよい。本明細書では、表示パネル2内で、センサが直下に配置されていない画素領域を画素領域(第2画素領域)2Aと呼び、センサが直下に配置されている画素領域を画素領域(第1画素領域)2Bと呼ぶ。
 図1C及び図1Dは表示パネル2の一部の画素領域2B、2Aの拡大図である。図1Cはセンサが直下に配置されている画素領域2Bを示し、図1Dはセンサが直下に配置されていない画素領域2Aを示している。本実施形態による画像表示装置1は、各画素が自発光素子を有しており、バックライトを不要としている。自発光素子の代表例は、有機EL(Electroluminescence)素子(以下では、OLED:Organic Light Emitting Diodeとも呼ぶ)である。自発光素子は、バックライトを省略できるため、少なくとも一部を透明化することができる。以下では、自発光素子としてOLEDを用いる例を主に説明する。
 図1Cの画素領域2Bの少なくとも一部は、表示パネル2の表示面側から平面視したときに、表示パネル2を通して入射される光を受光する受光装置に重なるように配置される。図1Cの画素領域2Bは、画素ごとに、発光領域2B1と非発光領域2B2を有する。発光領域2B1とは、OLEDの光を発光させる領域である。発光領域2B1の大半は、可視光帯域(約360~830nmの波長範囲)の光を透過させることができない領域であり、より具体的な一例としては可視光透過率が50%未満の領域を指す。非発光領域2B2とは、OLEDの光を発光させない領域である。非発光領域2B2の大半は、上述した可視光帯域の光を透過させることができる領域であり、より具体的な一例としては可視光透過率が50%以上の領域を指す。このように、図1Cに示す各画素内の発光領域2B1は、OLEDが発光した光を射出する領域であるのに対し、非発光領域2B2は、OLEDが発光した光を射出することはできない。また、非発光領域2B2は、発光領域2B1より可視光透過率が高い領域である。このように、非発光領域2B2は、入射された可視光を透過させる領域を含み、発光領域2B1は、入射された可視光を透過させずに反射させる領域を含んでいる。
 図1Cの各画素は、例えば赤(R)画素、緑(G)画素及び青(B)画素の3つの色画素を含んでいる。各画素が赤緑青以外の色画素を含む場合もありうるが、本実施形態では主に各画素が赤緑青の3つの色画素を含む例を説明する。
 画素領域2B内の各色画素は、上述した発光領域2B1と非発光領域2B2を有する。発光領域2B1と非発光領域2B2の面積比は任意である。OLEDが発光した光を発光領域2B1のみが射出する場合には、発光領域2B1の面積が大きい方が輝度を高くできる。図1Cに示すように、各画素の発光領域2B1と非発光領域2B2は隣接して配置されている。
 一方、図1Dの画素領域2Aは、各画素内に非発光領域は設けられておらず、発光領域2A1のみを有する。各発光領域2A1は、OLEDの光を発光させる領域である。発光領域2A1は、非発光領域2B2より可視光とか率が低い領域である。発光領域2A1は、入射された可視光を透過させずに反射させる領域を含んでいる。すなわち、画素領域2A内の各画素は大部分が発光する。これに対して、図1Cの画素領域2Bでは、各画素の一部のみが発光する。このように、図1Cの各画素は、図1Dの各画素よりも、発光面積が小さくなる。各画素の輝度は、発光面積に比例するため、図1Cよりも発光面積が大きい図1Dの画素の方が輝度を上げやすくなる。図1Cの画素領域2Bと図1Dの画素領域2Aの輝度を同一にするには、発光面積が小さい図1Cの画素領域2B内のOLEDの発光輝度を図1Dの画素領域2A内のOLEDの発光輝度よりも高くする必要がある。
 このように、本実施形態による画像表示装置1は、画素領域2Aと画素領域2Bを備えている。画素領域2A内の画素は、発光領域(第3発光領域)2A1とOLED(第3自発光素子)を有する。OLED(第3自発光素子)は、発光領域2A1から光を発光する。画素領域2B内の画素は、発光領域(第1発光領域)2B1と、非発光領域2B2と、OLED(第1自発光素子)を有する。OLED(第1自発光素子)は、発光領域2B1から光を発光する。また、後述するように、画素領域2B内の画素は別個のOLED(第2自発光素子)を有する場合もある。このOLED(第2自発光素子)は、発光領域(第2発光領域)2B2から光を発光する。
 図2はOLED5とドライブトランジスタQ1との接続関係を示す回路図である。図2ではドライブトランジスタQ1のゲート-ソース間電圧をVgs、ドライブトランジスタQ1の閾値電圧をVth、ドライブトランジスタQ1のドレイン-ソース間電流をIds、ドライブトランジスタQ1のゲート幅をW、ゲート長をL、移動度をμ、ゲート酸化膜容量をCoxとすると、ドライブトランジスタQ1のドレイン-ソース間電流Idsは、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)からわかるように、ドライブトランジスタQ1のゲート-ソース間電圧Vgsが大きくなるほど、OLED5に流れる電流Idsは増大する。OLED5に流れる電流Idsが増大するほど、OLED5の発光輝度は高くなる。
 図3はOLED5を流れる電流と発光輝度との相関関係を示す特性図である。図3の実線w1はOLED5の初期状態の特性を示し、破線w2は劣化後のOLED5の特性を示す。図示のように、OLED5は電流を流す量を増やすほど発光輝度が高くなる傾向にあるが、劣化が進むと電流を流しても発光輝度は高くならなくなる。また、OLED5の単位面積あたりの電流量が大きいほど、OLED5の劣化時の発光輝度の低下量が大きくなる。よって、OLED5の長寿命化のためには、OLED5の発光面積をより大きくして、単位面積あたりの電流量を抑制するのが望ましい。
 図4は図1AのA-A線方向の模式的な断面図である。図4は、表示パネル2の上端側の両隅部の直下に第1撮像部6aを有する撮像センサ6bと第2撮像部6cを有する撮像センサ6dを配置した例を示している。画像表示装置1と撮像センサ6b、6dを備えた電子機器の代表的な例は、スマートフォンなどである。撮像センサ6b、6dのそれぞれは、例えば焦点距離が互いに相違する単焦点レンズ6e、6fを備えていてもよい。なお、表示パネル2の直下に撮像センサ6b、6d以外のセンサを配置してもよいが、以下では、撮像センサ6b、6dを配置する例を説明する。
 図4に示すように、表示パネル2は、第1撮像部6a及び第2撮像部6cが配置される側から順に、透明フィルム2b、ガラス基板2c、TFT層42、表示層2d、バリア層2e、タッチセンサ層2f、粘着層2g、円偏光板2h、光学粘着シート(OCA:Optical Clear Adhesive)2i、及びカバーガラス2jを順に配置した積層体である。
 透明フィルム2bは省略してもよい。表示層2dは、OLED5を構成する層であり、例えば図5のような積層構造である。バリア層2eは、表示層2dに酸素や水分が侵入するのを防止する層である。タッチセンサ層2fには、タッチセンサが組み込まれている。タッチセンサには、静電容量型や抵抗膜型など、種々の方式があるが、いずれの方式が採用されてもよい。また、タッチセンサ層2fと表示層2dを一体化したインセル構造にしてもよい。粘着層2gは、円偏光板2hとタッチセンサ層2fとを接着するために設けられている。粘着層2gには、可視光透過率が高い材料が用いられる。円偏光板2hは、ギラツキを低減したり、明るい環境下でも表示面2zの視認性を高めるために設けられている。光学粘着シート2iは、円偏光板2hとカバーガラス2jとの密着性を高めるために設けられている。光学粘着シート2iは、可視光透過率が高い材料が用いられる。カバーガラス2jは、表示層2d等を保護するために設けられている。
 TFT層42は、後述するように、画素回路を構成するドライブトランジスタQ1等が形成される層であり、実際には複数層から形成される場合もある。表示層2dは、図5に示すように、ガラス基板2c側から積層順に、陽極2m、正孔注入層2n、正孔輸送層2p、発光層2q、電子輸送層2r、電子注入層2s、及び陰極2tを配置した積層構造である。陽極2mは、アノード電極とも呼ばれる。正孔注入層2nは、アノード電極2mからの正孔が注入される層である。正孔輸送層2pは、正孔を発光層2qに効率よく運ぶ層である。発光層2qは、正孔と電子を再結合させて励起子を生成し、励起子が基底状態に戻る際に光を発光する。陰極2tは、カソード電極とも呼ばれる。電子注入層2sは、カソード電極2tからの電子が注入される層である。電子輸送層2rは、電子を発光層2qに効率よく運ぶ層である。発光層2qは有機物を含んでいる。
 図6Aはセンサが直下に配置されている画素領域2Bの模式的な断面図、図6Bはセンサが直下に配置されていない画素領域2Aの模式的な断面図である。図6Aと図6Bでは、OLED5からの光が発光される場所及び方向を矢印で示している。画素領域2Bでは、図6Aに示すように、各画素の一部(発光領域)2B1のみで発光される。一方、画素領域2Aでは、図6Bに示すように、各画素の全域で発光される。図6Aと図6Bを比較すればわかるように、画素領域2Bよりも画素領域2Aの方が各画素の発光面積が大きくなる。
 図7A、図7B及び図7Cは、表示パネル2上のセンサが直下に配置されていない画素領域2Aとセンサが直下に配置されている画素領域2Bとで、画素輝度が同じになるようにする例を示す図である。図7Aは表示パネル2上の画素領域2Aと2Bの位置関係を示している。図7Bは画素領域2Aと2Bの画素輝度を示す図である。図7Cは画素領域2Aと2B内の各画素のOLED5に流れる単位面積あたりの電流を示す図である。
 図7Bのように画素領域2Aと2Bで画素輝度を等しくするには、図7Cのように画素領域2B内の各画素のOLED5に流れる電流を、画素領域2A内の各画素のOLED5に流れる電流よりも多くする必要がある。これは、画素領域2Bにおける各画素内でOLED5の光を発光する発光領域2B1の面積が画素領域2Aにおける各画素内の発光領域2A1の面積よりも小さいためである。図7Cは、画素領域2Bの発光領域2B1の面積が画素領域2Aの発光領域2A1の面積の1/2の例を示している。この場合、画素領域2B内の各画素のOLED5に流れる電流を、画素領域2A内の各画素のOLED5に流れる電流の2倍にすれば、画素領域2Aと2Bの画素輝度をほぼ同じにすることができる。OLED5に流れる電流が多くなるほど、OLED5の劣化が促進されるため、画素領域2B内の各画素のOLED5は、画素領域2A内の各画素のOLED5よりも早く劣化してしまい、残像が視認される焼き付き等の不具合が生じやすくなる。
 図8A及び図8Bは図7Cに対する解決策の第1例を示す図である。図8Aは画素領域2Aと2Bの画素輝度を示す図である。図8Bは画素領域2Aと2B内の各画素のOLED5に流れる単位面積あたりの電流を示す図である。図8Bでは、画素領域2B内の各画素のOLED5に流れる電流を増やさずに、画素領域2A内の画素領域2Bに近い画素ほど、OLED5に流れる電流を徐々に小さくする。これにより、図8Aに示すように、画素領域2A内の画素輝度が、画素領域2Bに近づくほど徐々に低下し、画素領域2Bに隣接する画素領域2A内の画素輝度は、画素領域2B内の画素輝度とほぼ同一になる。
 図8Bは、画素領域2Bの発光領域2B1の面積が画素領域2Aの発光領域2A1の面積の1/2の例を示している。この場合、画素領域2Aと2Bで、各画素のOLED5に流れる電流を略等しくし、画素領域2A内の画素領域2Bに近い側の一部の画素領域だけは例外的に、画素領域2Bに近い画素ほど、OLED5に流れる電流をより小さくする。OLED5に流れる電流の調整は、ドライブトランジスタQ1のゲート電圧の調整により、比較的容易に行うことができる。あるいは、ドライブトランジスタQ1のドレイン電圧を調整してもよい。これにより、画素領域2Aから2Bにかけて、徐々に画素輝度が低下し、画素領域2Aと2Bの境界位置で画素輝度の変化が生じないことから、観察者に画素輝度の違和感を生じさせるおそれがなくなる。
 図8Bの場合、画素領域2Aと2Bで、OLED5に流れる最大電流は等しいため、OLED5の劣化の度合いにも差異は生じない。よって、図7Cのように、画素領域2B内の各画素のOLED5の劣化がより促進されるような不具合は生じない。
 図9は図7Cに対する解決策の第2例を示す図である。図9の左側断面図は、カメラが直下に配置されている画素領域2Bにおいて、各画素内の一部に設けられる発光領域2B1からOLED5の光を発光させる例を示している。一方、図9の右側断面図は、画素領域2Bにおける発光領域2B2でもOLED5の光を発光させる例を示している。図9の右側断面図は、発光領域2B1を発光させるためのOLED5とは別に、発光領域2B2を発光させるためのOLED5aを設ける例を示している。発光領域2B2は、可視光を透過させるため、対応するOLED5aからの光は、表示面2z側だけでなく、その反対側からも射出される。よって、表示面2z側に射出される光量は、OLED5aが発光する光量の略1/2になる。発光領域2B1は、後述するように、OLED5のアノード電極層を広げて反射層として使用するため、OLED5から発光された光のほぼすべてを表示面2z側から射出させることができる。
 図9の右側断面図は、各画素の発光領域2B1と発光領域2B2の面積が等しい例を示している。この場合、発光領域2B1から射出される光量を0.5とすると、発光領域2B2から表示面2z側に射出される光量は0.25になる。よって、図9の右側断面図の例だと、画素領域2A内の画素輝度を1とすると、画素領域2B内の画素輝度は0.5+0.25=0.75になり、画素領域2B内の各画素のOLED5に流れる電流を増やさなくても、輝度ばらつきを抑制できる。
 図10AはOLED5を含む画素回路8の基本構成を示す回路図である。図10Aの画素回路8は、例えば上述した画素領域2A内の各画素に設けられる。図10Aの画素回路8は、OLED5の他に、ドライブトランジスタQ1と、サンプリングトランジスタQ2と、画素容量Csとを備えている。サンプリングトランジスタQ2は、信号線SigとドライブトランジスタQ1のゲートとの間に接続されている。サンプリングトランジスタQ2のゲートには、走査線Gateが接続されている。画素容量Csは、ドライブトランジスタQ1のゲートとOLED5のアノード電極との間に接続されている。
 走査線Gateがハイ電位になると、サンプリングトランジスタQ2は、信号線電圧に応じた電圧をドライブトランジスタQ1に供給する。ドライブトランジスタQ1は、信号線電圧に応じた電圧により、OLED5に流れる電流を制御する。OLED5は、電流に応じた発光輝度で発光する。OLED5が発光すると、その光は発光領域2B1を通して射出される。
 図10Bは図10Aの一変形例による画素回路8の回路図である。図10Bの画素回路8は、カメラが直下に配置される画素領域2B内の各画素に設けられ、画素領域2A内の各画素の画素回路8は図10Aのままである。図10Bの画素回路8は、図9の右側断面図に準拠したものである。図10Bの画素回路8は、図10Aの画素回路8に新たなOLED5aを追加している。OLED5aは、発光領域2B2を発光するためのものであり、発光領域2B1を発光するためのOLED5に並列接続されており、画素領域2B内の各画素の発光領域2B2内の表示層2dに設けられる。OLED5aから発光された光は、各画素内の発光領域2B2から射出される。なお、OLED5aを発光制御する画素回路8の大部分は、発光領域2B1の内部に配置されている。これにより、発光領域2B2の可視光透過率の低下を抑制できる。
 図10Bの画素回路8を設けることで、図9の右側断面図に示すように、発光領域2B1と発光領域2B2の双方から表示面2z側に光を射出でき、画素領域2Aと2Bの画素輝度の違いを低減できる。
 図11Aは、画素領域2Aの各画素が図10Aの画素回路8を有し、画素領域2B内の各画素が図10Bの画素回路8を有する場合の表示パネル2の画素輝度を示す図である。また、図11Bは画素領域2Aと図11Aの画素領域2Bの各画素に流れる単位面積あたりの電流を示す図である。
 図11A及び図11Bに示す例では、画素領域2Aと2Bの各画素のOLED5の発光輝度を基本的には等しくし、例外的に、画素領域2A内の画素領域2Bに近接した画素領域内の画素領域2Bに近い画素ほど、OLED5の発光輝度を低くしている。これにより、画素領域2B内の各画素のOLED5に流れる電流を増やさなくても、画素領域2Aと2Bの画素輝度の違いを低減でき、表示パネル2の輝度ばらつきが目立たなくなる。
 ところで、画素領域2Bの直下に配置されるセンサの動作期間中は、画素領域2Bからの発光を停止するのが望ましい。画素領域2Bが発光している状態で、その直下のセンサで撮像等を行うと、センサの検出信号に、OLED5aによる発光成分が含まれてしまい、センサの検出信号の信頼性が低下するためである。そこで、図12Aのような画素回路8が考えられる。
 図12A及び図12Bは図10BにスイッチトランジスタQ3を追加した回路図である。図12AはスイッチトランジスタQ3がオンの場合の電流の流れを矢印で示している。また、図12BはスイッチトランジスタQ3がオフの場合の電流の流れを矢印で示している。また、図13AはスイッチトランジスタQ3がオンの場合の電流の流れを矢印で示した断面図、図13BはスイッチトランジスタQ3がオフの場合の電流の流れを矢印で示した断面図である。
 スイッチトランジスタQ3は、2つのOLED5、5aのアノード電極同士を導通するか否かを切り替える。スイッチトランジスタQ3のゲートにはリセット信号RSTが接続されている。リセット信号RSTがハイ電位になると、2つのOLED5、5aのアノード電極同士が導通する。
 リセット信号RSTは、画素領域2Bの直下に配置されたセンサを動作させるタイミングに合わせて、ロー電位になる。これにより、センサの動作中は、スイッチトランジスタQ3をオフさせて、発光領域2B2用のOLED5aの発光を停止させて、発光領域2B2から光が射出されないようにすることができる。
 スイッチトランジスタQ3がオンの場合は、図12Aの回路図及び図13Aの断面図に示すように、画素領域2B内の発光領域2B1と発光領域2B2の双方が、OLED5、5aで発光された光を射出する。可視光光非透過部2B1と発光領域2B2の面積が等しい場合、発光領域2B1の画素輝度を0.5とすると、発光領域2B2の表示面2z側の画素輝度は0.25になる。
 スイッチトランジスタQ3がオフの場合は、ドライブトランジスタQ1のドレイン-ソース間電流がすべてOLED5に流れるため、OLED5に流れる電流量は、スイッチトランジスタQ3がオンの場合の略2倍になる。よって、図12Bの回路図及び図13Bの断面図に示すように、画素領域2B内の発光領域2B2からは光が射出されなくなる代わりに、発光領域2B1からは、図12Aの2倍の輝度の光が射出される。図13Aでは、各画素の発光領域2B1と発光領域2B2を合わせた画素輝度が0.5+0.25=0.75であったのに対し、図13Bでは、各画素の画素機度は0.5×2=1.0となる。
 このように、スイッチトランジスタQ3がオンかオフかにより、画素領域2B内の発光領域2B1の画素輝度が若干変化する。ただし、表示パネル2内の各画素の平均輝度をどの程度の輝度に設定するかは、図12A等の信号線電圧により調整することができる。また、1フレーム期間内の各画素の表示期間や1フレーム期間内のセンサの動作期間を調整することでも、表示パネル2の平均輝度を調整できる。なお、センサの動作期間は、フリッカを抑制する観点では、1フレーム期間内の一部期間に設定するのが望ましいが、場合によっては、複数フレームにまたがる期間内にセンサを動作させてもよい。
 画素領域2B内の各画素内に、発光領域2B2を発光させるためのOLED5aを設ける画素回路8は、図10Bや図12Aの画素回路8以外の回路構成も考えられる。
 図14Aは画素領域2B内の画素回路8の第1変形例の回路図である。図14Aの画素回路8は、発光領域2B1を発光させるための第1画素回路8aと、発光領域2B2を発光させるための第2画素回路8bとを有する。第1画素回路8aと第2画素回路8bは同じ回路構成であり、サンプリングトランジスタQ2と、ドライブトランジスタQ1と、画素容量Csとを有する。第1画素回路8aと第2画素回路8bは、信号線も別個に設けている。
 第1画素回路8aは、静止画表示の際には100%デューティでOLED5を発光させる。第2画素回路8bは、センサの動作期間中のみ、OLED5aを発光させるようにして、OLED5aの劣化を抑制する。
 図14Aの画素回路8は、通常の画素回路8の略2倍の回路面積を必要とするため、発光領域2B2の面積を縮小せざるを得ず、可視光透過率が低くなる。その一方で、任意のタイミングで発光領域2B2を発光させることができ、発光領域2B2の発光又は消灯により、発光領域2B1の第1画素回路8a内のOLED5に流れる電流は影響を受けなくなる。
 図14Bは画素領域2B内の画素回路8の第2変形例の回路図である。図12AのスイッチトランジスタQ3がオフすると、ドライブトランジスタQ1のドレイン-ソース間電流は、発光領域2B2用のOLED5aには流れなくなり、すべての電流が発光領域2B1用のOLED5に流れる。ところが、スイッチトランジスタQ3のドレイン-ソース間にリーク電流が流れると、リーク電流の量に応じて、発光領域2B2用のOLED5aにも電流が流れ、場合によっては、発光領域2B2用のOLED5aが発光して、発光領域2B2から光が漏れ出すおそれがある。
 そこで、図14Bの画素回路8は、スイッチトランジスタQ3のゲートと接地ノード(カソード電極と同電位)との間に導電型が逆のスイッチトランジスタQ3aを追加で配置し、このスイッチトランジスタQ3aのゲートにはリセット信号RSTを入力している。これにより、2つのスイッチトランジスタQ3、Q3aのいずれか一方のみがオンするようになる。よって、スイッチトランジスタQ3がオフするときは、発光領域2B2用のOLED5aのアノード電極がカソード電極と短絡され、このOLED5aを確実に消灯させることができる。
 図14Cは画素領域2B内の画素回路8の第3変形例の回路図である。図14Cの画素回路8は、図12AのスイッチトランジスタQ3を、カスコード接続された2つのスイッチトランジスタQ3b、Q3cで構成する点で図12Aの画素回路8と異なる。2つのスイッチトランジスタQ3b、Q3cのゲートにはいずれもリセット信号RSTが入力されている。
 図14Cのように、スイッチトランジスタQ3をダブルゲート構造にすることで、これらスイッチトランジスタQ3b、Q3cがオフのときに、これらスイッチトランジスタQ3b、Q3cにリーク電流が流れるおそれがなくなり、リーク電流により発光領域2B1用のOLED5が発光するという不具合が起きなくなる。
 センサが撮像センサの場合、図12AのスイッチトランジスタQ3や図14CのスイッチトランジスタQ3b、Q3cでリーク電流が生じた欠陥画素を検出して、リーク電流が生じたことが検出されると、撮像センサの撮像画像を補正することができる。
 図15は欠陥画素の検出と画像補正を行う処理手順を示すフローチャートである。図15のフローチャートは、例えば、本実施形態による画像表示装置1を製造後の検査工程で実施される。あるいは、本実施形態による画像表示装置1を出荷後にユーザサイドで図15のフローチャートを実施してもよい。
 まず、画素領域2B内の各画素のスイッチトランジスタQ3をオンさせた状態で、表示パネル2の全画素を表示させる(ステップS1)。次に、スイッチトランジスタQ3をオフにして(ステップS2)、画素領域2B内の発光領域2B2の発光を停止させた状態で、撮像センサにて撮像を行う(ステップS3)。次に、撮像画像に基づいて、リーク電流が生じたスイッチトランジスタQ3を有する欠陥画素を検出し(ステップS4)、欠陥画素の座標位置と発光特性を画像表示装置1内の信号処理チップに書き込む(ステップS5)。その後、撮像センサで撮像する際には、信号処理チップに書き込んだ情報を読み出して撮像画像の補正処理を行う(ステップS6)。例えば、リーク電流が流れるスイッチトランジスタQ3を有する画素については、撮像画像の輝度が高くなりすぎるため、輝度を低下させるような補正処理を行ってもよい。
 図16は画素回路8B内の各画素の画素回路8の具体的な構成を示す回路図である。図16の画素回路8は、図12Aに示したドライブトランジスタQ1、サンプリングトランジスタQ2及びスイッチトランジスタQ3の他に、3つのトランジスタQ4~Q6を有する。トランジスタQ4のドレインはドライブトランジスタQ1のゲートに接続され、トランジスタQ4のソースは電圧V1に設定され、トランジスタQ4のゲートにはゲート信号Gate1が入力される。トランジスタQ5のドレインはOLED5のアノード電極に接続され、トランジスタQ5のソースは電圧V2に設定され、トランジスタQ5のゲートにはゲート信号Gate2が入力される。
 トランジスタQ1~Q5はN型トランジスタであるのに対して、トランジスタQ6はP型トランジスタである。トランジスタQ6のソースは電源電圧Vccpに設定され、トランジスタQ6のドレインはドライブトランジスタQ1のドレインに接続され、トランジスタQ6のゲートにはゲート信号Gate3が入力される。
 図17は図16の画素回路8内の各部の電圧波形図である。以下、図17の電圧波形図を参照して、図16の画素回路8の動作を説明する。
 初期状態(時刻t0)では、トランジスタQ2,Q4~Q5はオフ状態であり、ドライブトランジスタQ1のゲート電圧は不定である。
 その後、時刻t1でゲート信号Gate2がハイ電位になる。これにより、トランジスタQ5がオンし、ドライブトランジスタQ1のソースに繋がるノードSが電圧V2まで急激に低下する。これにより、ドライブトランジスタQ1のゲート電圧Gも、画素容量Csを介して電圧VFまで急激に低下する。
 その後、時刻t2でゲート信号Gate1がハイ電位になる。これにより、トランジスタQ4がオンし、ドライブトランジスのゲート電圧Gは、電圧V1に上昇する。この時点では、ノードSは電圧V2であり、ドライブトランジスタQ1のゲート-ソース間電圧Vgs=V1-v2>Vthである。ただし、ノードSの電圧V2は、OLED5の閾値電圧VthELよりも小さいことから、OLED5は逆バイアス状態であり、発光しない。
 その後、時刻t3では、ゲート信号Gate2がロー電位になり、ゲート信号Gate3もロー電位になる。これにより、トランジスタQ5がオフし、トランジスタQ6がオンする。よって、トランジスタQ6のソース-ドレイン間電流は、ドライブトランジスタQ1のドレイン-ソース間を経由して画素容量Csに流れ、画素容量Csに電荷が蓄積される。これにより、ドライブトランジスタQ1のVthの補正動作が開始される。この時点では、ドライブトランジスタQ1のゲート電圧はV1であり、電荷蓄積量が多くなるに従って、ノードSの電圧が上昇し、ドライブトランジスタQ1のVgsが低下することから、やがてドライブトランジスタQ1はカットオフし、ノードSの電圧はV1-Vthになる。
 ドライブトランジスタQ1がカットオフすると、ドライブトランジスタQ1にはドレイン-ソース間電流が流れなくなる。その後、時刻t4で、ゲート信号Gate3がハイ電位になり、トランジスタQ6はオフする。また、ゲート信号Gate1もロー電位になり、トランジスタQ4がオフする。これにより、画素容量CsにVthに応じた電荷が保持される。このように、時刻t3~t4は、ドライブトランジスタQ1の閾値電圧Vthを検出して補正する期間である。
 その後、時刻t5で走査線に繋がるゲート信号Gate4をハイ電位にすると、サンプリングトランジスタQ2がオンして、信号線電圧Vsigに応じた電荷が画素容量Csに蓄積される。これにより、ドライブトランジスタQ1のゲート-ソース間電圧Vgsは、Vsig-V1+Vthになる。説明の簡略化のために、V1=0とすると、Vgs=Vsig+Vthになる。
 サンプリング期間が終了する時刻t7より前の時刻t6でゲート信号Gate3がロー電位になり、トランジスタQ6がオンする。これにより、ドライブトランジスタQ1のドレイン電圧が電源電圧Vccになり、画素回路8は非発光期間から発光期間に遷移する。サンプリングトランジスタQ2がまだオンの間(時刻t6~t7)にドライブトランジスタQ1の移動度補正が行われる。時刻t6~t7の期間内は、ドライブトランジスタQ1のゲートが信号線電圧Vsigに保持された状態で、ドライブトランジスタQ1のドレイン-ソース間電流が流れる。ここで、V1-Vth<VthELと設定しておくことで、OLED5は逆バイアス状態になり、整流特性の代わりに単純な容量特性を示すようになる。よって、ドライブトランジスタQ1のドレイン-ソース間電流Idsは、画素容量CsとOLED5の等価容量に流れ、ドライブトランジスタQ1のソース電圧が上昇していく。図17では、ソース電圧の上昇分をΔVとしている。この上昇分ΔVは、画素容量Csに保持されたドライブトランジスタQ1のVgsから差し引かれるため、負帰還をかけたことになる。
 このように、ドライブトランジスタQ1のドレイン-ソース間電流Idsを、ドライブトランジスタQ1のVgsに負帰還することで、ドライブトランジスタQ1の移動度μを補正することができる。なお、負帰還量ΔVは、時刻t6~t7の時間幅を調整することで、最適化可能である。
 時刻t7で、ゲート信号Gate4がロー電位になると、サンプリングトランジスタQ2がオフする。これにより、ドライブトランジスタQ1のゲートは信号線から切り離され、ドライブトランジスタQ1のゲートは電圧(Vsig-ΔV+Vth)を保持する。
 ドライブトラジスタのソース電圧は徐々に上昇して、OLED5の逆バイアス状態は解消され、発光を開始する。このとき、OLED5に流れる電流は、上述した式(1)で表される。
 図16の画素回路8は、トランジスタQ1~Q5をN型トランジスタとし、トランジスタQ6をP型トランジスタとする例を示したが、図18のように、全てのトランジスタQ1a~Q6aをP型トランジスタで構成してもよい。図18の画素回路8も、動作原理は図15の画素回路8と同様であり、詳細な動作説明は割愛する。
 図19は図16及び図18とは異なる構成の画素回路8の回路図である。図19の画素回路8は、P型トランジスタQ11~Q16と、N型トランジスタQ17と、画素容量Csとを有する。トランジスタQ13はドライブトランジスタ、トランジスタQ12はサンプリングトランジスタである。
 まず、トランジスタQ15をオンして、ドライブトランジスタQ13のゲートに初期化電圧Vintが供給される。初期化電圧Vintは、信号線電圧よりも低い電圧であり、ドライブトランジスタQ13はオンバイアス状態に設定される。
 次に、トランジスタQ12とQ17がオンする。トランジスタQ17がオンすると、ドライブトランジスタQ13はゲートとドレインが短絡し、ダイオードとして機能する。その後、トランジスタQ11とQ14がオンすると、信号線電圧に応じた電荷が画素容量Csに蓄積されるととともに、トランジスタQ12とQ14の接続ノードSの電位が次第に上昇し、トランジスタQ11のソース電圧がOLED5の閾値電圧を超えると、OLED5が発光を開始する。図19の各トランジスタの導電型は逆にしてもよい。
 図16、図18及び図19に示すように、画素回路8の回路構成には、種々の変形例が考えられ、本実施形態では、任意の回路構成の画素回路8を適用可能である。
 図20は本実施形態による画像表示装置1の概略構成を示すブロック図である。図示のように、画像表示装置1は、表示パネル2を備えており、表示パネル2には、FPC3等を介してドライバIC11が接続されている。ドライバIC11は、例えば図1Aに示したように、FPC3上に実装されたCOF4であってもよい。この場合、表示パネル2とドライバIC11との信号の送受は、FPC3内の配線を介して行われる。あるいは、ドライバIC11に内蔵される少なくとも一部の回路を表示パネル2に積層したCOG構成にしてもよい。また、ドライバIC11は、表示パネル2の額縁部分(ベゼル)に実装してもよい。
 図20では、簡略化のために、1つのドライバIC11を図示しているが、複数のドライバIC11が表示パネル2と信号の送受を行ってもよい。
 表示パネル2は、画素アレイ部12と、シフトレジスタ(ゲートドライバ)13と、セレクタスイッチ14とを有する。画素アレイ部12は、上述したように、縦横に配置される複数の画素を有し、一部の画素領域(画素領域2B)の直下には、センサが配置されている。画素領域2B内の各画素は、図12A等に示した画素回路8を有し、画素領域2A内の各画素は、図10A等に示した画素回路8を有する。画素回路8には、アノード電極などの可視光透過率が低い部材が含まれるため、センサが直下に配置されている画素領域2Bにおける各画素の画素回路8の大半は、発光領域2B1内に配置されている。
 シフトレジスタ13は、複数の走査線に接続されており、各走査線に順次にゲートパルス信号を供給する。シフトレジスタ13は、走査線駆動回路やゲートドライバとも呼ばれる。図20では、480本の走査線を有する例を示しているが、走査線の数に制限はない。
 セレクタスイッチ14は、複数の信号線に接続されており、各信号線に順次に信号線電圧を供給する。表示パネル2の横方向に640画素がある場合、各画素が3つの色画素を有するため、信号線の本数は、640×3=1920本となる。図20では、一つのセレクタスイッチ14から1920本の信号線を出力する例を示しているが、複数のセレクタスイッチ14を設けて、各セレクタスイッチ14に接続される信号線の数を減らしてもよい。
 ドライバIC11は、インタフェース(I/F)回路15と、データラッチ回路16と、DAC17と、タイミングジェネレータ18と、フレームメモリ19と、電源回路20とを有する。I/F回路15は、画像表示装置1の外部に設けられるホストプロセッサ21等からの映像データ、制御データ、電源電圧等を受信する。データラッチ回路16は、映像データを所定のタイミングでラッチする。DAC17は、データラッチ回路16でラッチされた映像データをアナログ画素電圧に変換する。タイミングジェネレータ18は、I/F回路15で受信された制御データに基づいて、データラッチ回路16のラッチタイミングやDAC17でD/A変換するタイミングを制御する。フレームメモリ19は、例えば、表示パネル2に表示される1フレーム分の映像データを保存するメモリ容量を有する。表示パネル2は、1秒間に60回程度、表示を更新するが、その都度、ホストプロセッサ21からの映像データを受信して表示するのは、消費電力が増えるため、望ましくない。そこで、表示パネル2に同一の静止画を表示する場合には、フレームメモリ19から読み出して表示することで、消費電力の削減を図ることができる。
 図21は図20の画素アレイ部12の基本的な構成を示す回路図である。画素アレイ部12は、縦横に配置された複数の走査線と複数の信号線とを有し、走査線と信号線の各交差部分に画素回路8が設けられている。図21では、簡略化のために、各画素回路8がサンプリングトランジスタQ2と、ドライブトランジスタQ1と、画素容量Csと、OLED5とを有する例を示しているが、実際には、図16等の回路構成を有する。複数の走査線には、ゲートドライバ(シフトレジスタ)13からゲートパルス信号が線順次に出力される。
 図22は画素アレイ部12内の各走査線と各信号線の駆動タイミングを示すタイミング図である。図22に示すように、各走査線は、線順次に駆動され、ゲートパルス信号が順に出力される。また、各走査線にゲートパルス信号が供給されるタイミングに合わせて、各信号線に信号線電圧が供給される。各画素は3つの色画素で構成されるが、各色画素の信号線電圧は同タイミングで対応する信号線に供給される。
 図23は本実施形態による画素アレイ部12の具体的な構成を示す回路図である。図23の画素アレイ部12のうち、破線枠で囲んだ領域がセンサが直下に配置される画素領域2Bであり、それ以外が画素領域2Aである。画素領域2Bは、発光領域2B1を発光させるための第1画素回路8aと、発光領域2B2を発光させるための第2画素回路8bとを有する。一方、画素領域2B以外の画素領域2Aは、センサが直下に配置されていないことから、第1画素回路8aのみを有する。
 画素領域2Bにおける第1画素回路8aと第2画素回路8bは、図14Aに示した回路構成と同じである。実際には、画素領域2B内の各画素が3つの色画素を有するため、色画素ごとに、第1画素回路8aと第2画素回路8bが設けられる。色画素ごとに設けられる第1画素回路8aと第2画素回路8b内のドライブトランジスタQ1のドレインはいずれも、共通の電源電圧Vccpに接続されている。同一色画素内の第1画素回路8aと第2画素回路8bは、横(水平)方向に隣接して配置されている。このため、画素領域2B内の画素ごとの信号線の本数は、画素領域2A内の画素ごとの信号線の本数の2倍多く設けられている。画素領域2B内の発光領域2B2を発光させるか否かは、対応する信号線に信号線電圧を供給するか否かで切り替えることができる。
 画素領域2Bでは、センサを動作させない場合は、各画素(色画素)内の横(水平)方向に隣接して配置された発光領域2B1と発光領域2B2がともに発光する。一方、センサの動作期間中は、各画素(色画素)内の横(水平)方向に隣接して配置された発光領域2B1は発光するものの、発光領域2B2は発光しない。よって、センサは、発光領域2B2の発光の影響を受けることなく、発光領域2B2を通して入射された光を受光したり、発光領域2B2を通して光を投光することができる。
 画素領域2Bにおける第1画素回路8aと第2画素回路8bは、光を反射する部材で主に形成されているため、発光領域2B1の内部に配置される。これにより、第2画素回路8bを設けたとしても、発光領域2B2の面積を確保でき、画素領域2Bにおける各画素の輝度低下を抑制できる。
 図24は本実施形態による画素アレイ部12の第1変形例を示す回路図である。図24の画素アレイ部12のうち、破線枠で囲んだ領域がセンサが直下に配置される画素領域2Bであり、それ以外が画素領域2Aである。図24の画素アレイ部12における画素領域2Bでは、画素(色画素)内の縦(垂直)方向に発光領域2B1と非発光領域2B2を隣接して配置している。このため、画素領域2Bでは、画素ごとに2本ずつ走査線が設けられている。一方、画素領域2Aでは、画素ごとに2本ずつ走査線が設けられているものの、そのうちの1本のみに画素回路8が接続されている。画素領域2B内の非発光領域2B2を発光させるか否かは、対応する走査線にゲートパルス信号を供給するか否かで切り替えることができる。
 画素領域2Bでは、センサを動作させない場合は、各画素(色画素)内の縦(垂直)方向に隣接して配置された発光領域2B1と非発光領域2B2がともに発光する。一方、センサの動作期間中は、各画素(色画素)内の縦(垂直)方向に隣接して配置された発光領域2B1は発光するものの、非発光領域2B2は発光しない。よって、センサは、非発光領域2B2の発光の影響を受けることなく、非発光領域2B2を通して入射された光を受光したり、非発光領域2B2を通して光を投光することができる。
 図25は本実施形態による画素アレイ部12の第2変形例を示す回路図である。図25の画素アレイ部12のうち、破線枠で囲んだ領域がセンサが直下に配置される画素領域2Bであり、それ以外が画素領域2Aである。図25の画素アレイ部12は、縦(垂直)方向に隣接する2画素のうち、1画素を発光領域2B1として利用し、他の1画素を非発光領域2B2として利用する。センサを動作させない場合は、画素領域内の全画素を発光させる。センサの動作期間中は、例えば、画素領域2B内の奇数行の画素は発光させ、偶数行の画素は発光させないようにする。偶数行の画素については、各画素の走査線の駆動タイミングにおいて、信号線電圧をゼロにする。これにより、画素領域2B内の偶数行の画素は発光しなくなり、偶数行の画素を非発光領域2B2として利用して、センサにて光を受光することができる。
 図26は本実施形態による画素アレイ部12の第3変形例を示す回路図である。図26の画素アレイ部12のうち、破線枠で囲んだ領域がセンサが直下に配置されている画素領域2Bであり、それ以外が画素領域2Aである。画素領域2B内の各画素(色画素)には、図14Bと同様の回路構成の画素回路8が設けられている。各画素回路8は、2つのOLED5、5aのアノード電極を短絡させるか否かを切り替えるスイッチトランジスタQ3を有する。画素領域2B内の横(水平)方向に配置された各行の画素群ごとに、共通のリセット信号RSTが設けられており、各行の画素群に含まれる全スイッチトランジスタQ3は、同タイミングでオン又はオフする。画素回路8には、各行のリセット信号RSTをハイにするタイミングを各行ごとに個別に制御するリセットドライバ(RSTドライバ)22が設けられている。
 図26の画素アレイ部12では、画素領域2B内の各行ごとに、各画素の発光領域2B2を発光させるか否かを任意のタイミングで切り替えることができる。
 図27は本実施形態による画素アレイ部12の第4変形例を示す回路図である。図27の画素アレイ部12のうち、破線枠で囲んだ領域がセンサが直下に配置されている画素領域2Bであり、それ以外が画素領域2Aである。図27の画素アレイ部12は、画素領域2B内に図14Bと同様の回路構成の画素回路8を設けた点では図26と共通するが、各画素回路8内のスイッチトランジスタQ3のゲートに入力されるリセット信号RSTをすべて共通に接続した点で、図26とは異なっている。
 図27の画素回路8は、画素領域2B内の各行ごとに、発光領域2B2を発光させるか否かを切り替えることはできないが、任意のタイミングで、画素領域2B内の全画素の発光領域2B2を発光させるか否かを切り替えることができる。図27の画素アレイ部12は、図26のリセットドライバ22が不要であり、図26よりも回路構成を簡略化できる。
 図28は図26の画素回路8を有する画素領域2Bの駆動タイミング図である。図28は、画素領域2B内に3本の走査線Gate0~2に接続された3行分の画素群が存在する例を示している。また、図28では、行ごとに設けられる3つのリセット信号RST0~2が時間をずらして順次にハイ電位からロー電位に変化する例を示している。各行の各画素の発光領域2B1は、信号線電圧を書き込む期間以外は、常に発光している。一方、各行の各画素の発光領域2B2は、リセット信号RSTがハイ電位の期間だけ発光し、ロー電位の期間は消灯する。このため、各行ごとに、画素領域2B内の画素群が消灯する期間がずれる。画素領域2Bの直下に位置するセンサは、各行の画素群がいずれも消灯する期間のみ駆動することができる。図28では、3行分の画素分のいずれもが消灯する期間を矢印線y1で図示している。矢印線y1がセンサの動作期間である。矢印線y1の長さからわかるように、画素領域2B内の各行ごとに発光領域2B2が消灯するタイミングがずれている場合には、センサの動作期間が短くなる。
 図29は図27の画素回路8を有する画素領域2Bの駆動タイミング図である。図27の画素回路8は、画素領域2B内の3行分の画素群に対応する3つのリセット信号RSTが同じタイミングで変化するため、各行の各画素の発光領域2B2が消灯するタイミングが同じになる。よって、センサを動作させることが可能な期間は、各行の各画素の発光領域2B2が消灯する期間であり、図28よりもセンサの動作期間を長くできる。
 図30は本実施形態による画像表示装置1の画素配置の第1例を示す図である。図30の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されない画素領域2Aである。図示のように、画素領域2Aにおける各画素は、赤緑青の3つの色画素を有し、これら色画素が順繰りに縦横に配置されている。画素領域2Bでは、各画素(色画素)が発光領域2B1と非発光領域2B2を有し、発光領域2B1は発光するものの、非発光領域2B2は発光しない。図30では、発光領域2B1を「非」と表記し、非発光領域2B2を「窓」と表記している。画素領域2B1の各画素は3つの色画素を含んでいる。非発光領域2B2は、常時、光を透過するため、画素領域2Bの直下のセンサは、非発光領域2B2を介して光を受光することにより、任意のタイミングでセンシングを行うことができる。各画素(色画素)の画素回路8は、例えば図10Aのような回路構成でよく、OLED5は1個でよい。
 図31は本実施形態による画像表示装置1の画素配置の第2例を示す図である。図31の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されない画素領域2Aである。画素領域2Bでは、各画素(色画素)が発光領域2B1と発光領域2B2を有し、発光領域2B1と2B2の双方ともに発光可能である。この場合、例えば図10Bに示すように、画素領域2Bにおける各画素(各色画素)に2個ずつOLED5、5aが配置される。図31では、発光領域2B1を「非」と表記し、発光領域2B2を「透」と表記している。発光領域2B1は、表示パネル2の表示期間中は常時発光するのに対し、発光領域2B2はセンサが動作しない期間のみ発光し、センサの動作期間中は消灯する。各画素(色画素)の画素回路8は、例えば図12Aの回路構成である。
 図32は本実施形態による画像表示装置1の画素配置の第3例を示す図である。図32の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されない画素領域2Aである。上述した図30と図31の画素領域2Bは、画素領域2B内のすべての色画素が発光領域2B1と発光領域2B2を有しているのに対し、図32の画素領域2Bは、縦(垂直)方向に配置された画素のうち、奇数行の画素は発光領域2B1のみを有し、偶数行の画素は発光領域2B2のみを有する。奇数行の発光領域2B1と偶数行の発光領域2B2はいずれも、OLED5からの光を発光する。図32の各色画素の画素回路8は、1個のOLED5を有していればよく、図31の画像表示装置1の画素回路8よりも、回路構成を簡略化できる。ただし、偶数行の各画素(色画素)の画素回路8は、センサを動作させる際には発光領域2B2の発光を停止しなければならないため、発光停止のためのスイッチトランジスタQ3等が必要になる。
 なお、図32では、奇数行の画素が発光領域2B1を有し、偶数行の画素が発光領域2B2を有するが、逆にしてもよい。すなわち、奇数行の画素が発光領域2B2を有し、偶数行の画素が発光領域2B1を有していてもよい。また、複数の画素行単位で、各画素に発光領域2B1を持たせるか、発光領域2B2を持たせるかを切り替えてもよい。
 図33は本実施形態による画像表示装置1の画素配置の第4例を示す図である。図33の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されない画素領域2Aである。画素領域2B内の各色画素が発光領域2B1又は発光領域2B2のいずれか一方だけを有する点では図32と共通する。ただし、図33では、画素領域2B内の複数の画素に含まれる複数の色画素のうち、発光領域2B2を有する色画素が千鳥状に配置され、同様に、発光領域2B1を有する色画素も千鳥状に配置されている。上述したように、発光領域2B2の発光輝度は、発光領域2B1の発光輝度よりも低くなるが、発光領域2B2を有する色画素を画素領域2B内で均等に分散させることで、輝度低下や輝度ばらつきが目立ちにくくなる。
 図34は本実施形態による画像表示装置1の画素配置の第5例を示す図である。図34の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されていない画素領域2Aである。図34は図30の変形例であり、一部の色画素(例えば、発光寿命が特に短い青色画素)については、非発光領域2B2を設けていない。よって、青色画素は、発光領域2B1だけであり、表示パネル2の表示期間中は常時発光を行う。このように、画素内のすべての色画素が非発光領域2B2を備えている必要はなく、一部の色画素だけが非発光領域2B2を備えるようにしてもよい。
 図35は本実施形態による画像表示装置1の画素配置の第6例を示す図である。図35の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されていない画素領域2Aである。図35は図31及び図34の変形例であり、図34の非発光領域2B2を発光可能としたものである。より具体的には、センサを動作させていない期間は発光領域2B2を発光させ、センサの動作期間中は発光領域2B2を発光させないようにする。一部の色画素(例えば青色画素)については、発光領域2B2を設けないことで、画素の長寿命化を図ることができる。
 図36は本実施形態による画像表示装置1の画素配置の第7例を示す図である。図36の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されていない画素領域2Aである。図36の画像表示装置1は、画素領域2Aにおいて、各画素が赤緑青白の4つの色画素を有する。これら4つの色画素の配置順序や面積は任意であり、図36は一例にすぎない。なお、白色以外の色画素を設けてもよい。4つの色画素のうち、画素領域2Bにおける白色画素は非発光領域2B2としている。この非発光領域2B2は、OLED5の光を発光しないが、常時、光を透過させることができる。図36の画像表示装置1は、4つの色画素で一つの画素を構成する表示パネル2から、白画素領域内の画素回路8を省略することで容易に作製できる。白画素は、本来的には、画素の輝度向上のために設けられており、白画素を非発光領域2B2とすることで、表示パネル2は若干暗くなるが、画素の色合いにはあまり影響しないため、白色画素を非発光領域2B2とすることで、表示パネル2の画質低下を抑制できる。
 図37は本実施形態による画像表示装置1の第8例を示す図である。図36の破線枠がセンサが直下に配置される画素領域2Bであり、それ以外はセンサが直下に配置されていない画素領域2Aである。図37の画像表示装置1は、各画素の白画素を発光領域2B2にした点では図36と共通するが、発光領域2B2をOLED5の光で発光させる点で図36とは異なっている。白画素は、センサを動作させないときは発光し、センサを動作させるときは消灯する。これにより、図36よりも、表示パネル2の画素領域2Bの輝度を向上できる。
 次に、本実施形態による画像表示装置1の画素アレイ部12の構造をより詳細に説明する。図38は図30に示す画素領域2B内の複数の色画素の平面図である。図38には、横に2つの色画素と、縦に2つの色画素の計4つの色画素の平面レイアウトが図示されている。各色画素は、縦方向に隣接して配置された発光領域2B1と非発光領域2B2を有する。各色画素の画素回路8は、例えば図10Aに示す回路構成を有する。OLED5からの光は発光領域2B1から発光される。図38の左側の平面レイアウト図PV1は、画素回路8の各回路素子のレイアウト配置を示しており、図38の右側の平面レイアウト図PV2は発光領域2B1と非発光領域2B2の位置関係を示している。図39の左側と右側の平面レイアウト図PV1,PV2は同じ画素領域を示している。
 図38の左側に示すように、図10Aに示す画素回路8内の各回路素子は、発光領域2B1の内部に配置されている。例えば、電源線Vccp、走査線Gate、リセット信号線RSTは、発光領域2B1の上端側を通って横(水平)方向に略平行に配置されている。回路面積が比較的大きい画素容量Csの電極は、発光領域2B1の下端側に配置されている。OLED5とスイッチトランジスタQ3は、発光領域2B1の右下隅に配置されている。なお、図10Aの各回路素子の配置は一例であり、種々の配置変更が可能である。
 図39は図38のA-A‘線断面図である。図39の断面図は、画像表示装置1の画素領域2Bにおける積層構造を示している。図39は、図4の断面構造の中の表示層2dの周辺の一部の断面構造を詳細に図示したものである。具体的には、図39には、図10AのOLED5とスイッチトランジスタQ3の周辺の断面構造が図示されている。
 図39の上面は表示パネル2の表示面2z側であり、図39の底面はセンサが配置される側である。図39の底面側から上面側にかけて、第1透明基板31と、第1絶縁層32と、第1配線層33と、第2絶縁層34と、第2配線層35と、第3絶縁層36と、アノード電極層38と、第4絶縁層37と、表示層2dと、カソード電極層39と、第5絶縁層40と、第2透明基板41とを有する。
 第1透明基板31と第2透明基板41は、例えば、可視光透過性に優れた石英ガラス等で形成されている。あるいは第1透明基板31と第2透明基板41の少なくとも一方を、透明フィルムで形成してもよい。第1透明基板31の上に、画素回路8内の各回路素子を接続するための第1配線層(M1)33が配置されている。
 第1透明基板31の上には、第1配線層33を覆うように第1絶縁層32が配置されている。第1絶縁層32は、例えば、可視光透過性に優れたシリコン窒化層とシリコン酸化層の積層構造である。第1絶縁層32の上には、画素回路8内の各トランジスタが配置されるTFT層42が配置されている。図39は、TFT層42内に形成されるスイッチトランジスタQ3の断面構造を模式的に図示しているが、他のトランジスタも同一層に配置されており、不図示のコンタクトにより第1配線層33に接続されている。
 第1絶縁層32の上には、トランジスタ等を覆うように第2絶縁層34が配置されている。第2絶縁層34は、例えば、可視光透過性に優れたシリコン酸化層、シリコン窒化層及びシリコン酸化層の積層構造である。第2絶縁層34の一部にはトレンチ34aが形成されて、トレンチ34a内にコンタクト部材34bを充填することにより、各トランジスタのソースやドレイン等に接続される第2配線層(M2)35が形成されている。図39には、スイッチトランジスタQ3とOLED5のアノード電極とを接続するための第2配線層35が図示されているが、他の回路素子に接続される第2配線層35も同じ層に配置されている。
 第2絶縁層34の上には、第2配線層35を覆って表面を平坦化するための第3絶縁層36が配置されている。第3絶縁層36は、アクリル樹脂等の樹脂材料で形成されている。第3絶縁層36の膜厚は、第1~第2絶縁層32,34の膜厚よりも大きくしている。
 第3絶縁層36の上面の一部にはトレンチ36aが形成されて、トレンチ36a内にコンタクト部材36bを充填して第2配線層35との導通を図るとともに、コンタクト部材36bを第3絶縁層36の上面側まで延在させてアノード電極層38を形成している。アノード電極層38は積層構造であり、金属材料層を含んでいる。金属材料層は、一般には可視光透過率が低く、光を反射させる反射層として機能する。具体的な金属材料としては、例えばAlNdやAgを適用可能である。
 アノード電極層38の最下層は、トレンチ36aに接する部分であり、断線しやすいことから、少なくともトレンチ36aの角部は例えばAlNdなどの金属材料で形成される場合がある。アノード電極層38の最上層は、ITO(Indium Tin Oxide)などの透明導電層で形成されている。あるいは、アノード電極層38を、例えば、ITO/Ag/ITOの積層構造にしてもよい。Agは本来的には不透明であるが、膜厚を薄くすることで、可視光透過率が向上する。Agを薄くすると強度が弱くなるため、両面にITOを配置した積層構造にすることで、透明導電層として機能させることができる。
 第3絶縁層36の上には、アノード電極層38を覆うように第4絶縁層37が配置されている。第4絶縁層37も、第3絶縁層36と同様にアクリル樹脂等の樹脂材料で形成されている。第4絶縁層37は、OLED5の配置場所に合わせてパターニングされて、凹部37aが形成されている。
 第4絶縁層37の凹部37aの底面及び側面を含むように表示層2dが配置されている。表示層2dは、図5に示したような積層構造を有する。表示層2dの上には、カソード電極層39が配置されている。カソード電極層39は、アノード電極層38と同様に透明導電層で形成されている。透明導電層は、例えばITO/Ag/ITOで形成される。
 カソード電極層39の上には第5絶縁層40が配置されている。第5絶縁層40は、上面を平坦化するとともに耐湿性に優れた絶縁材料で形成される。第5絶縁層40の上には、第2透明基板41が配置されている。
 図39に示すように、発光領域2B1には、反射膜として機能するアノード電極層38が配置されており、可視光を透過させることはできない。これに対して、非発光領域2B2には、アノード電極層38が配置されておらず、可視光を透過させることができる。図39では、非発光領域2B2内にカソード電極39が配置される例を示しているが、カソード電極層39は、アノード電極層38よりも膜厚が薄いため、カソード電極層39の一部にAg等の金属膜が含まれていても、可視光透過性は維持される。なお、カソード電極層39を発光領域2B1と非発光領域2B2の境界付近で終端させて、非発光領域2B2内にカソード電極層39を配置させないようにしてもよい。
 図40は、図31に示すように、画素アレイ部12内のセンサが直下に配置される画素領域2B内の各画素が発光領域2B1と発光領域2B2を有する場合の画素回路8の回路図である。図40の回路図は、簡略化したものであり、実際には、図16等の回路で構成される場合もある。図40の画素回路8は、ドライブトランジスタQ1と、サンプリングトランジスタQ2と、画素容量Csと、スイッチトランジスタQ3と、2つのOLED5、5aとを備えている。より詳細には、図31に示すように、各画素を構成する3つの色画素のそれぞれが発光領域2B1と発光領域2B2を備えており、発光領域2B1内に例えば図40の画素回路8が配置されている。
 図41は図40の画素回路8を有する複数の色画素の平面図である。図41には、横に2つの色画素と、縦に2つの色画素の計4つの色画素の平面レイアウトが図示されている。各色画素は、縦方向に隣接して配置された発光領域2B1と発光領域2B2を有する。図41の左側の平面レイアウト図PV3は、画素回路8の各回路素子のレイアウト配置を示しており、図41の右側の平面レイアウト図PV4は発光領域2B1と発光領域2B2の位置関係を示している。図41の左側と右側の平面レイアウト図PV3,PV4は同じ画素領域を示している。
 図41の左側に示すように、図40に示す画素回路8内の各回路素子は、発光領域2B1の内部に配置されている。なお、図41の各回路素子の配置は一例であり、種々の配置変更が可能である。
 図42は図41のB-B‘線断面図である。図42の断面図は、画像表示装置1の画素領域2Bにおける積層構造を示している。図42は、図4の断面構造の中の表示層2dの周辺の一部の断面構造を詳細に図示したものである。具体的には、図42には、図40の2つのOLED5、5aとスイッチトランジスタQ3の周辺の断面構造が図示されている。
 図42の上面は表示パネル2の表示面2z側であり、図42の底面はセンサが配置される側である。図42の断面構造は、基本的には図43と同様である。図43との違いは、OLED5aが配置されていることであり、図46には、OLED5aのアノード電極層38と第2配線層35とを導通するためのコンタクト36aが設けられている。図40には、スイッチトランジスタQ3と2つのOLED5、5aのアノード電極とを接続するための2つの第2配線層35が図示されているが、他の回路素子に接続される第2配線層35も同じ層に配置されている。
 図42に示すように、発光領域2B1にはアノード電極層38が広がっているため、可視光を透過させない反射膜として機能するのに対し、発光領域2B2内のアノード電極層38は薄膜化しており、入射された可視光を透過させることができるようにしている。あるいは、発光領域2B2内のアノード電極層38をOLED5aの近傍で終端させて、さらに可視光透過率を向上させてもよい。
 図43はセンサが直下に配置されない画素領域2Aの画素回路8の回路図である。画素領域2Aの各画素(色画素)は、発光領域2A1を備えているものの、非発光領域2B2は備えていない。よって、図43の画素回路8は、ドライブトランジスタQ1と、サンプリングトランジスタQ2と、画素容量Csと、1つのOLED5とを有し、OLED5により発光領域2A1を発光させる。
 図44は図43の画素回路8を有する複数の色画素の平面図である。図44には、横に2つの色画素と、縦に2つの色画素の計4つの色画素の平面レイアウトが図示されている。各色画素は、縦長の発光領域2A1を有する。図44の左側の平面レイアウト図PV5は、画素回路8の各回路素子のレイアウト配置を示しており、実際には、図44の左側と右側の平面レイアウト図PV5、PV6は同一の画素領域を示している。発光領域2A1の略全域が反射膜として作用するアノード電極層38で覆われている。このため、OLED5で発光された光は、画素の略全域から射出され、画素の輝度を向上できる。
 図45は図44のC-C‘線断面図である。図45の層構成は、図42と同じであり、第1透明基板31の上に第1~第3絶縁層36を順に積層し、第3絶縁層36の上にアノード電極層38を配置し、その上に第4絶縁層37を配置し、その上に表示層2dとカソード電極層39を積層し、その上に第2透明基板41を配置している。図45には、ドライブトランジスタQ1の周辺の断面構造が図示されている。ドライブトランジスタQ1のソースは、第2配線層35を介してOLED5のアノード電極層38に接続されている。アノード電極層38は、積層構造であり、そのうちの不透明な金属層(例えばAlNd層)は色画素の大部分に広がっており、これにより、発光領域2A1は不透明になる。
 アノード電極層38の上には、表示層2dを挟んでカソード電極層39が配置されており、OLED5が形成されている。このように、図43~図45に示す画素領域2Aでは、各色画素内に広がるアノード電極層38とカソード電極層39を有し、アノード電極層38は光を反射する反射層として機能するため、色画素の全域を発光領域2A1にすることができる。
 図43~図45では、センサが直下に配置されていない画素領域2A内の各色画素が発光領域2A1のみを有する例を示したが、図46~図48に示すように、画素領域2A内に発光領域2A1と発光領域2A2を設けて、発光領域2A1と発光領域2A2をともに発光させてもよい。発光領域2A1の大半は、入射された可視光を透過させないのに対し、発光領域2A2の大半は、入射された可視光を透過させることができる。
 図46は画素領域2Aの画素回路8の回路図である。図46の画素回路8は、図40の画素回路8からスイッチトランジスタQ3を省略した構成である。
 図47は図46の画素回路8を有する複数の色画素の平面図である。図47の平面図は、図41の平面図からスイッチトランジスタQ3を省略した平面レイアウトになっている。図47の左側の平面レイアウト図PV7は、右側の平面レイアウト図PV8と同じ画素領域を示している。
 図48は図47のD-D‘線断面図である。図48はドライブトランジスタQ1の周辺の断面構造を示している。ドライブトランジスタQ1には、第2配線層35が接続されており、第2配線層35は、アノード電極層38に接続されている。アノード電極層38内の不透明な金属層は、発光領域2A1と発光領域2A2の境界付近まで広がっている。一方、アノード電極層38における透明導電層は、発光領域2A1から発光領域2A2にかけて広がっている。このように、発光領域2A2には、アノード電極層38における不透明な金属層が配置されていないため、発光領域2A2における可視光透過率を向上できる。
 図42では、スイッチトランジスタQ3とOLED5のアノード電極との接続のために、第3絶縁層36に形成したトレンチ36aの表面に、ITO-Ag-ITO等の積層膜を形成して、トレンチ36aの角部でのアノード電極層38の断線を防止している。アノード電極層38の断線を防止するには、積層膜を用いたり、あるいは透明導電層の膜厚を厚くする手法があるが、可視光透過率が低下するおそれがある。この点で、アノード電極層38はできるだけ膜厚を薄くするのが望ましい。アノード電極層38の膜厚を薄くしても断線を防止するための一手法として、トレンチ36aのテーパ角度を調整する手法がある。
 図49は図42の断面構造の第1変形例を示す断面図である。図49では、第3絶縁層36に形成するトレンチ36aの基板深さ(積層)方向に対するテーパ角度を図42よりも大きくしている。これにより、40nm程度の膜厚の透明導電層(例えば、ITO)をトレンチ36aの表面に形成しても、トレンチ36aの角部で断線するおそれが低くなる。図49によれば、アノード電極層38を薄いITOだけで形成できる。このため、OLED5aのアノードコンタクトのみを積層膜構造にする必要がなくなり、第4絶縁層37の開口寸法をOLED5aのアノードコンタクト付近まで広げることができる。
 アノード電極層38の断線は、トレンチ36aの角部で発生する可能性が高いため、トレンチ36aのテーパ角度をトレンチ36aの角部付近でのみ調整する手法も考えられる。
 図50は図42の断面構造の第2変形例を示す断面図である。図52では、第3絶縁層36に図49よりも径が一様なトレンチ36aを形成し、トレンチ36aの上端付近のみ径を広げる。そして、トレンチ36aの表面に40nm程度の透明導電層(例えば、ITO)を形成する。図50の場合、トレンチ36aの胴体部は表示面2zの法線方向に沿って急峻な角度で形成されるが、角部は緩やかな曲面形状である。このため、薄いITOを形成しても、トレンチ36aの角部での断線は起きにくくなる。図50のような形状のトレンチ36aは、例えばハーフトーンマスクを用いることで比較的容易に形成可能である。1回目の露光で第3絶縁層36に急峻なトレンチ36aの胴体部を形成し、2回目の露光でトレンチ36a上端部に緩やかな曲面を形成できる。
 図50のトレンチ36aは、図49のトレンチ36aよりも、胴体部分の径が小さいため、横(水平)方向の長さを抑制でき、その分、OLED5の面積を広げることができる。
 このように、本実施形態による画像表示装置1では、表示パネル2の直下にセンサを配置した場合でも、センサの直上の画素領域2B内に非発光領域2B2を設けるため、表示パネル2の表示に影響されることなく、センサにて光を受光することができ、センサによるセンシングの信頼性を向上できる。よって、例えば、電子機器の表示部のベゼルにセンサを配置しなくて済むことから、電子機器の意匠デザインの自由度をより広げることができる。
 このように、本実施形態によれば、スマートフォン等の電子機器の表示部を、筐体サイズまで最大化できることから、表示部のサイズをより大きくできるだけでなく、筐体をより小型化できる。
 また、本実施形態では、表示パネル2に、直下にセンサが配置される画素領域2Bとそれ以外の画素領域2Aを設けた場合に、画素領域2A内の画素領域2Bに近い側の画素の輝度を徐々に下げることにより、画素領域2Aと2Bの輝度差をできるだけ小さくするでき、表示パネル2の表示品質の劣化を抑制できる。
 また、本実施形態では、直下にセンサが配置される画素領域2B内に発光領域2B1と発光領域2B2を設け、発光領域2B1を発光させるOLED5とは別個に、発光領域2B2を発光させるOLED5aを設けることで、発光領域2B2の輝度を向上でき、画素領域2Aと2Bの輝度差を低減できる。
 また、本実施形態では、画素領域2Bについては、センサを動作させていない期間内は発光領域2B2を発光させ、センサの動作期間中は発光領域2B2の発光を停止させる制御を行うことで、表示パネル2の輝度ばらつきを抑制しつつ、センサによるセンシングの信頼性を向上できる。
 また、本実施形態では、通常は反射膜として機能するアノード電極層38を、ITO-Ag-ITOなどの積層膜で形成し、Ag等の金属材料層の膜厚を薄くすることで、発光領域2B2内のアノード電極層38の可視光透過率を高くすることできる。また、アノード電極層38と第2配線層35との導通を図る際に、第3絶縁層36にトレンチ36aを形成して、トレンチ36aの側壁部分のテーパ角度を調整することで、トレンチ36a角部でのアノード電極層38の断線が起きにくくすることで、アノード電極層38の膜厚を小さくでき、この結果、アノード電極層38の可視光透過率をより向上できる。あるいは、トレンチ36aのテーパ角度をトレンチ36aの胴体部では急峻にし、トレンチ36aの角部では緩やかな曲面にすることで、トレンチ36aの径を小さくしつつ、トレンチ36aの角部でのアノード電極層38の断線防止を図ることができる。
 なお、本技術は以下のような構成を取ることができる。
 (1)二次元状に配置される複数の画素を備え、
 前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
 第1発光領域と、
 前記第1発光領域より可視光透過率が高い第2発光領域と、
 前記第1発光領域から光を発光する第1自発光素子と、
 前記第2発光領域から光を発光する第2自発光素子と、を有し、
 前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
 前記第2発光領域より可視光透過率が低い第3発光領域と、
 前記第3発光領域から光を発光する第3自発光素子と、を有する、画像表示装置。
 (2)前記第2発光領域は、入射された可視光を透過させる領域を含み、
 前記第1発光領域及び前記第3発光領域は、入射された可視光を透過させずに反射させる領域を含む、(1)に記載の画像表示装置。
 (3)前記第2画素領域内の画素のうち前記第1画素領域に近い画素ほど、前記第3発光領域の発光輝度を低下させる、(1)又は(2)に記載の画像表示装置。
 (4)前記第1画素領域及び前記第2画素領域の境界部分における前記第1画素領域内の画素輝度と前記第2画素領域内の画素輝度とは略等しい、(3)に記載の画像表示装置。
 (5)前記第1画素領域の少なくとも一部は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なるように配置される、(1)乃至(4)のいずれか一項に記載の画像表示装置。
 (6)前記第1自発光素子、前記第2自発光素子、及び前記第3自発光素子のそれぞれは、
 下部電極層と、
 前記下部電極層の上に配置される表示層と、
 前記表示層の上に配置される上部電極層と、
 前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
 前記コンタクトは、前記第1発光領域及び前記第3発光領域に配置される、(1)乃至(5)のいずれか一項に記載の画像表示装置。
 (7)前記コンタクトの少なくとも上端付近の角部は、金属層の上に透明導電層を配置した積層構造である、(6)に記載の画像表示装置。
 (8)前記コンタクトの側面は、積層方向に対する傾斜角度が段階的又は連続的に変化しており、前記コンタクトの上端付近は、下端付近よりも、積層方向に対する傾斜角度がより大きい、(6)又は(7)に記載の画像表示装置。
 (9)前記下部電極層は、第1透明導電層と、金属層と、第2透明導電層とを順に積層した積層構造である、(6)乃至(8)のいずれか一項に記載の画像表示装置。
 (10)前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
 前記第1画素領域内の前記複数の色画素のそれぞれは、前記第1発光領域及び前記第2発光領域を有し、
 前記第2画素領域内の前記複数の色画素のそれぞれは、前記第3発光領域を有する、(1)乃至(9)のいずれか一項に記載の画像表示装置。
 (11)前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
 前記第1画素領域内の前記複数の色画素のうち一部の色画素は、前記第1発光領域及び前記第2発光領域を有し、前記一部の色画素以外の色画素は、前記第2発光領域を有さずに前記第1発光領域を有する、(1)乃至(9)のいずれか一項に記載の画像表示装置。
 (12)前記第1画素領域内の一部の画素は、前記第1発光領域を有さずに前記第2発光領域を有し、前記一部の画素以外の画素は、前記第2発光領域を有さずに前記第1発光領域を有する、(1)乃至(9)のいずれか一項に記載の画像表示装置。
 (13)前記第1画素領域は、前記複数の画素を有する表示部の四隅の少なくとも一つに設けられる、(1)乃至(12)のいずれか一項に記載の画像表示装置。
 (14)二次元状に配置される複数の画素を有する画像表示装置と、
 前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
 前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
 第1発光領域と、
 前記第1発光領域より可視光透過率が高い第2発光領域と、
 前記第1発光領域から光を発光する第1自発光素子と、
 前記第2発光領域から光を発光する第2自発光素子と、を有し、
 前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
 前記第2発光領域より可視光透過率が低い第3発光領域と、
 前記第3発光領域から光を発光する第3自発光素子と、を有する、電子機器。
 (15)前記第1画素領域は、前記受光装置に入射される光が通過する画素領域である、(14)に記載の電子機器。
 (16)前記受光装置は、前記第2発光領域を通して入射された光を光電変換する撮像センサと、前記第2発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記第2発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含む、(14)又は(15)に記載の電子機器。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1 画像表示装置、2 表示パネル、2b 透明フィルム、2c ガラス基板、2d 表示層、2e バリア層、2f タッチセンサ層、2g 粘着層、2h 円偏光板、2i 光学粘着シート、2j カバーガラス、3 FPC、4 チップ(COF)、5、5a OLED、6a 第1撮像部、6b 撮像センサ、6c 第2撮像部、6d 撮像センサ、6e、6f 単焦点レンズ、11 ドライバIC、12 画素アレイ部、13 シフトレジスタ(ゲートドライバ)、14 セレクタスイッチ、15 I/F回路、16 データラッチ回路、17 DAC、18 タイミングジェネレータ、19 フレームメモリ、20 電源回路、21 ホストプロセッサ、31 第1透明基板、32 第1絶縁層、33 第1配線層、34 第2絶縁層、35 第2配線層、36 第3絶縁層、37 第4絶縁層、38 アノード電極層、39 カソード電極層、40 第5絶縁層、41 第2透明基板

Claims (16)

  1.  二次元状に配置される複数の画素を備え、
     前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
     第1発光領域と、
     前記第1発光領域より可視光透過率が高い第2発光領域と、
     前記第1発光領域から光を発光する第1自発光素子と、
     前記第2発光領域から光を発光する第2自発光素子と、を有し、
     前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
     前記第2発光領域より可視光透過率が低い第3発光領域と、
     前記第3発光領域から光を発光する第3自発光素子と、を有する、画像表示装置。
  2.  前記第2発光領域は、入射された可視光を透過させる領域を含み、
     前記第1発光領域及び前記第3発光領域は、入射された可視光を透過させずに反射させる領域を含む、請求項1に記載の画像表示装置。
  3.  前記第2画素領域内の画素のうち前記第1画素領域に近い画素ほど、前記第3発光領域の発光輝度を低下させる、請求項1に記載の画像表示装置。
  4.  前記第1画素領域及び前記第2画素領域の境界部分における前記第1画素領域内の画素輝度と前記第2画素領域内の画素輝度とは略等しい、請求項3に記載の画像表示装置。
  5.  前記第1画素領域の少なくとも一部は、当該画像表示装置の表示面側から平面視したときに、当該画像表示装置を通して入射される光を受光する受光装置に重なるように配置される、請求項1に記載の画像表示装置。
  6.  前記第1自発光素子、前記第2自発光素子、及び前記第3自発光素子のそれぞれは、
     下部電極層と、
     前記下部電極層の上に配置される表示層と、
     前記表示層の上に配置される上部電極層と、
     前記下部電極層の下に配置され、前記下部電極層から積層方向に延びるコンタクトを介して前記下部電極層に導通される配線層と、を有し、
     前記コンタクトは、前記第1発光領域及び前記第3発光領域に配置される、請求項1に記載の画像表示装置。
  7.  前記コンタクトの少なくとも上端付近の角部は、金属層の上に透明導電層を配置した積層構造である、請求項6に記載の画像表示装置。
  8.  前記コンタクトの側面は、積層方向に対する傾斜角度が段階的又は連続的に変化しており、前記コンタクトの上端付近は、下端付近よりも、積層方向に対する傾斜角度がより大きい、請求項6に記載の画像表示装置。
  9.  前記下部電極層は、第1透明導電層と、金属層と、第2透明導電層とを順に積層した積層構造である、請求項6に記載の画像表示装置。
  10.  前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
     前記第1画素領域内の前記複数の色画素のそれぞれは、前記第1発光領域及び前記第2発光領域を有し、
     前記第2画素領域内の前記複数の色画素のそれぞれは、前記第3発光領域を有する、請求項1に記載の画像表示装置。
  11.  前記第1画素領域及び前記第2画素領域内の各画素は、複数の色画素を有し、
     前記第1画素領域内の前記複数の色画素のうち一部の色画素は、前記第1発光領域及び前記第2発光領域を有し、前記一部の色画素以外の色画素は、前記第2発光領域を有さずに前記第1発光領域を有する、請求項1に記載の画像表示装置。
  12.  前記第1画素領域内の一部の画素は、前記第1発光領域を有さずに前記第2発光領域を有し、前記一部の画素以外の画素は、前記第2発光領域を有さずに前記第1発光領域を有する、請求項1に記載の画像表示装置。
  13.  前記第1画素領域は、前記複数の画素を有する表示部の四隅の少なくとも一つに設けられる、請求項1に記載の画像表示装置。
  14.  二次元状に配置される複数の画素を有する画像表示装置と、
     前記画像表示装置を通して入射される光を受光する受光装置と、を備え、
     前記複数の画素のうち一部の画素を含む第1画素領域内の画素は、
     第1発光領域と、
     前記第1発光領域より可視光透過率が高い第2発光領域と、
     前記第1発光領域から光を発光する第1自発光素子と、
     前記第2発光領域から光を発光する第2自発光素子と、を有し、
     前記複数の画素のうち前記第1画素領域以外の第2画素領域内の画素は、
     前記第2発光領域より可視光透過率が低い第3発光領域と、
     前記第3発光領域から光を発光する第3自発光素子と、を有する、電子機器。
  15.  前記第1画素領域は、前記受光装置に入射される光が通過する画素領域である、請求項14に記載の電子機器。
  16.  前記受光装置は、前記第2発光領域を通して入射された光を光電変換する撮像センサと、前記第2発光領域を通して入射された光を受光して距離を計測する距離計測センサと、前記第2発光領域を通して入射された光に基づいて温度を計測する温度センサと、の少なくとも一つを含む、請求項14に記載の電子機器。
PCT/JP2021/019863 2020-06-15 2021-05-25 画像表示装置及び電子機器 WO2021256194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227040789A KR20230024890A (ko) 2020-06-15 2021-05-25 화상 표시 장치 및 전자 기기
US17/920,520 US20230157126A1 (en) 2020-06-15 2021-05-25 Image display device and electronic apparatus
DE112021003272.0T DE112021003272T5 (de) 2020-06-15 2021-05-25 Bildanzeigevorrichtung und elektronische einrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020103291A JP2023106645A (ja) 2020-06-15 2020-06-15 画像表示装置及び電子機器
JP2020-103291 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256194A1 true WO2021256194A1 (ja) 2021-12-23

Family

ID=79267874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019863 WO2021256194A1 (ja) 2020-06-15 2021-05-25 画像表示装置及び電子機器

Country Status (5)

Country Link
US (1) US20230157126A1 (ja)
JP (1) JP2023106645A (ja)
KR (1) KR20230024890A (ja)
DE (1) DE112021003272T5 (ja)
WO (1) WO2021256194A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11997863B2 (en) * 2018-11-20 2024-05-28 Sony Semiconductor Solutions Corporation Display device, method for manufacturing display device, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064938A (ja) * 2009-09-17 2011-03-31 Canon Inc 有機el素子及びその製造方法
US20110273409A1 (en) * 2010-05-06 2011-11-10 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
US20190197944A1 (en) * 2017-12-27 2019-06-27 Lg Display Co., Ltd. Electroluminescence display device and driving method thereof
CN110914891A (zh) * 2018-06-20 2020-03-24 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN111129085A (zh) * 2019-12-12 2020-05-08 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
CN111261688A (zh) * 2020-02-07 2020-06-09 武汉华星光电半导体显示技术有限公司 Oled显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084198B1 (ko) 2010-02-24 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064938A (ja) * 2009-09-17 2011-03-31 Canon Inc 有機el素子及びその製造方法
US20110273409A1 (en) * 2010-05-06 2011-11-10 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
US20190197944A1 (en) * 2017-12-27 2019-06-27 Lg Display Co., Ltd. Electroluminescence display device and driving method thereof
CN110914891A (zh) * 2018-06-20 2020-03-24 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
CN111129085A (zh) * 2019-12-12 2020-05-08 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
CN111261688A (zh) * 2020-02-07 2020-06-09 武汉华星光电半导体显示技术有限公司 Oled显示装置

Also Published As

Publication number Publication date
KR20230024890A (ko) 2023-02-21
DE112021003272T5 (de) 2023-05-25
US20230157126A1 (en) 2023-05-18
JP2023106645A (ja) 2023-08-02

Similar Documents

Publication Publication Date Title
TWI755990B (zh) 有機發光顯示設備
US11877481B2 (en) Display device having a sensor area
US11374067B2 (en) Display device
US20210126078A1 (en) Display device
KR20230026978A (ko) 디스플레이 기판 및 디스플레이 장치
WO2021256316A1 (ja) 画像表示装置及び電子機器
WO2021256194A1 (ja) 画像表示装置及び電子機器
KR20230035167A (ko) 표시 장치
JP5617319B2 (ja) 表示装置および電子機器
US11950470B2 (en) Display device with hole surrounded by data lines in different layers
TWI829365B (zh) 顯示裝置、電源供應裝置以及像素
CN116390596A (zh) 显示面板和显示装置
WO2021256185A1 (ja) 画像表示装置及び電子機器
US11672144B2 (en) Display device
US11869448B2 (en) Display device and display driving method
US11367768B2 (en) Display device
US20230419871A1 (en) Display device and driving method thereof
KR20230091373A (ko) 표시장치 및 그의 구동방법
CN116156944A (zh) 显示装置和显示面板
CN116390567A (zh) 显示装置
CN116896956A (zh) 显示装置
KR20240065545A (ko) 발광 표시 장치
CN116390599A (zh) 显示装置和显示面板
CN112750403A (zh) 显示设备、光电转换设备、电子设备、照明设备和移动体
KR20230046609A (ko) 터치 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825286

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21825286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP