WO2021254495A1 - 一种微纳米磁性纤维及微纳米磁性纤维制备方法 - Google Patents

一种微纳米磁性纤维及微纳米磁性纤维制备方法 Download PDF

Info

Publication number
WO2021254495A1
WO2021254495A1 PCT/CN2021/100978 CN2021100978W WO2021254495A1 WO 2021254495 A1 WO2021254495 A1 WO 2021254495A1 CN 2021100978 W CN2021100978 W CN 2021100978W WO 2021254495 A1 WO2021254495 A1 WO 2021254495A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
micro
nano
magnetic particles
glass
Prior art date
Application number
PCT/CN2021/100978
Other languages
English (en)
French (fr)
Inventor
陶光明
王蕊
向远卓
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021254495A1 publication Critical patent/WO2021254495A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/52Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated carboxylic acids or unsaturated esters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Definitions

  • This application relates to the field of functional fibers, in particular to a micro-nano magnetic fiber and a preparation method of the micro-nano magnetic fiber.
  • Patent Document 1 discloses a magnetic self-assembled mesoporous fiber and a preparation method thereof.
  • the method utilizes the sol-gel method to assemble the magnetic substance on the mesoporous fiber in situ, and the main steps are the precursor liquid containing metal salt and silicon, spinning or spinning, and high-temperature sintering.
  • the weight ratio of the magnetic substance is 5-60%.
  • Patent Document 2 discloses a method for preparing a high-efficiency magnetic carbon nanocomposite material for chromium-containing wastewater treatment.
  • the fiber preparation steps include graft modification of polystyrene, electrostatic spinning of modified polystyrene fiber, infiltration of ferric nitrate nonahydrate/absolute alcohol solution, drying, and calcination.
  • the fiber diameter is 0.5-2 microns.
  • the concentration of the ferric nitrate nonahydrate/absolute ethanol solution is 4 to 7%.
  • Patent Document 3 discloses a method for preparing Fe 3 O 4 /fungal fiber magnetic composite material. The steps include the preparation of nano-Fe 3 O 4 , the hydrothermal synthesis of fungal fibers and Fe 3 O 4. Nano Fe 3 O 4 is evenly dispersed on the surface of fungal fibers, and the composite material has good paramagnetism. Among them, the dosage ratio of fungal fiber and nano Fe 3 O 4 particles is 1:0 ⁇ 5:1
  • Patent Documents 1 to 3 are all based on chemical methods to prepare magnetic fibers. Due to the kinetic characteristics of the chemical reaction itself, the composition, size, and distribution of the magnetic particles in the prepared magnetic fibers are uncontrollable. At the same time, the content of magnetic particles is low, and the method is difficult to be widely applied to a variety of magnetic materials and polymers.
  • Patent Document 4 discloses a one-dimensional magnetic fiber material and a preparation method thereof.
  • the fiber is composed of a shell layer and a core layer, and is prepared by a high-voltage electrostatic spinning method.
  • the shell layer is made of p-type semiconductor polymer poly(p-phenylene vinylene) as the main material, and the thickness is 30-150nm.
  • the core layer is composed of magnetic Fe 3 O 4 nanoparticles and polyvinyl alcohol dispersion medium, and the particle size is 5-30 nm.
  • the magnetic nanofibers have an average diameter of 100-450nm and a length of 10 ⁇ m-10cm. The mass percentage of the magnetic Fe 3 O 4 nanoparticles is 2-56%.
  • Patent Document 4 uses electrospinning technology to prepare core-shell structured magnetic nanofibers.
  • the diameter of the fiber is limited to the order of hundreds of microns, the length is discontinuous, and the fiber outer layer must have a certain degree of conductivity, which largely limits this magnetic nanometer The scope of application of the fiber.
  • Patent Document 5 discloses a magnetic glass fiber and a preparation method thereof.
  • the magnetic glass fiber is obtained by drawing a mixture of 2-13wt.% nano-grade ferrite magnetic powder (CoFe 2 O 4 , BaFe 12 O 19 , NiFe 2 O 4 ) and quartz glass (SiO 2 ), and has obvious magnetic properties.
  • Patent Document 6 discloses a method for preparing magnetic nanocomposite particles and magnetic fibers. The steps include preparation of nano cellulose, preparation of magnetic nano composite particles, mixing of magnetic nano composite particles and carrier resin, mixing with raw material resin, and melt spinning.
  • the fiber exhibits a high paramagnetic response, and the fiber has good mechanical properties.
  • the magnetic nanocomposite particles of the invention are Fe 3 O 4 , and the mass percentage of the magnetic fiber is 5-30%.
  • Patent Document 7 discloses a method for preparing a magnetic field responsive fiber. The steps include preparation of Fe 3 O 4 nano-microspheres, preparation of Fe 3 O 4 /PDMS polymer monomer emulsion, and fiber curing and molding based on glass capillary templates. Because the mass ratio of the mixed Fe 3 O 4 nano-microspheres is very low ( ⁇ 1wt.%), the prepared fiber can turn red under an external magnetic field.
  • Patent Document 8 discloses a magnetic fiber and a manufacturing method thereof.
  • the fiber has a skin-core structure, and is obtained by compound spinning of a skin layer material and a core layer material extruded by a twin-screw uniformly, and the skin-core weight ratio is 3:7-7:3.
  • the skin layer material includes 57 to 89.7% polymer, 10 to 40% magnetic powder, 0.3 to 3% compatibilizer, and the core layer material includes 80 to 97.5% polymer, 2 to 15% metal powder, and 0.5 to 5% coupling agent.
  • Patent Document 9 discloses a method for preparing a nanofiber film with hard magnetic properties.
  • the fiber preparation steps include: demagnetization treatment of magnetic nanoparticles, mixed compounding of demagnetized magnetic nanoparticles and ethylene-vinyl alcohol copolymer, composite spinning, and extraction.
  • the magnetic nanoparticles (10-100 nm) are at least one of SrFe 12 O 19 , Fe 3 O 4 , and Nd 2 Fe 14 B.
  • the mass percentage of magnetic nanoparticles is 5-20%.
  • Patent Document 10 discloses a magnetic field induction assisted spinning forming device for conductive/magnetic conductive chemical fibers and a production method thereof.
  • the mixed melt precursor of the fiber is obtained by melt blending magnetic powder, dispersant, antioxidant and polymer.
  • the magnetic field generated by the electromagnetic coil installed on the spinning head is used to combine the magnetic particles in the melt Arrange in the direction of the magnetic field lines to form a microfiber or beaded structure.
  • the filaments are cooled and solidified, and then oiled, bundled, drawn and heat-set to obtain fibers.
  • the control magnetic field intensity is 0.01-2T
  • the magnetic powder is Fe, Ni, Co metal or alloy or oxygen
  • the content is 1-20wt.%.
  • Patent Document 11 discloses a method for preparing a magnetorheological elastomer with programmable magneto-induced deformation.
  • the magnetic wire is printed by a 3D printer integrated with a pre-structured magnetic field to produce magnetic short fibers with specific distribution and orientation.
  • the magnetic short fibers have arbitrary distribution and orientation.
  • the pre-structured magnetic field is 100-500mT.
  • the magnetic particles are carboxyl iron powder or NdFeB particles, and the content of the magnetic particles is 10-49.5wt.%,
  • Patent Documents 5-11 are all based on thermal methods (including melt composite spinning, wire drawing technology, 3D printing technology) for the preparation of magnetic fibers.
  • thermal methods including melt composite spinning, wire drawing technology, 3D printing technology
  • the content of magnetic material particles or magnetic composite material particles in the magnetic fiber obtained by the above technology is generally less than 50wt.%, the diameter of the magnetic particles that can be integrated in the fiber, and the structure and diameter of the fiber itself
  • the regulation and control capabilities of the company are also very limited.
  • Patent Document 1 CN102041584B Announcement Text
  • Patent Document 2 CN106732376B Announcement Text
  • Patent Document 3 CN107670648B Announcement Text
  • Patent Document 4 CN101768797A Publication text
  • Patent Document 5 CN100340510C Announcement Text
  • Patent Document 6 CN102978728A Publication text
  • Patent Document 7 CN104278352B Announcement Text
  • Patent Document 8 CN101649503B Announcement Text
  • Patent Document 9 CN106000116B Announcement Text
  • Patent Document 10 CN104963018B Announcement Text
  • Patent Document 11 CN109818523B Announcement Text
  • this application provides a method that can be used for most magnetic materials, magnetic composite materials and other functional materials.
  • the composite integration has universality, and at the same time, the preparation method of the micro-nano magnetic fiber and the micro-nano magnetic fiber with the ability to control the integrated concentration, distribution, structure and fiber diameter of the particles in the fiber.
  • a preparation method of micro-nano magnetic fiber characterized in that the micro-nano magnetic fiber includes a core layer, and the preparation method includes the following steps:
  • Compounding Compounding magnetic particles and substrates to obtain magnetic composite materials
  • Hot drawing using the magnetic structured preform to prepare micro-nano magnetic fibers using a hot drawing process.
  • the magnetic particles are compounded with the substrate to obtain a variety of magnetic composite materials
  • the magnetic structured preform is prepared by using the multiple magnetic composite materials.
  • micro-nano magnetic fibers 3. The method for preparing micro-nano magnetic fibers according to item 1 or 2, wherein the micro-nano magnetic fibers include a core layer and a cladding layer;
  • the magnetic structured preform is prepared by using the magnetic composite material and the material of the cladding layer.
  • micro-nano magnetic fibers according to any one of items 1 to 3, wherein the micro-nano magnetic fibers further include a high melting point functional layer;
  • the magnetic structured preform covers the material of the high-melting point functional layer, and mechanically synchronously with the material of the high-melting point functional layer, a thermal drawing process is used to prepare the micro-nano magnetic fiber.
  • the method for preparing micro-nano magnetic fibers characterized in that, in the processing step, a film winding method, a hot pressing method, an extrusion molding method, and 3D printing are used. One or two or more of the methods are used to prepare the magnetic structured preform.
  • the method for preparing micro-nano magnetic fibers according to item 5 characterized in that, in the processing step, the method for preparing the magnetic structured preform further includes one or more of the following methods: mechanical processing, Assembly method and heat curing method.
  • Secondary hot drawing using the second magnetic structured preform to prepare the second micro-nano magnetic fiber by a hot drawing process
  • the second magnetic structured preform is prepared by a 3D printing method.
  • the magnetic composite material is a magnetic composite material particle, a magnetic composite material film, or a magnetic composite material. Material powder.
  • the solvent dissolution method includes the following steps: solvent dissolution of the substrate, doping of the magnetic particles, and ultrasonic dispersion;
  • vacuum drying is further included.
  • the physical thermal melting method includes the following steps: physical thermal melting of the substrate, doping and extrusion of the magnetic particles.
  • the magnetic particles are selected from one or more of the following: metal magnetic particles, metal compounds Magnetic particles, metal alloy magnetic particles;
  • the metallic magnetic particles are selected from one or more of the following: ferromagnetic particles, cobalt magnetic particles, and nickel magnetic particles;
  • the metal compound magnetic particles are metal oxide magnetic particles; more preferably, the metal compound magnetic particles are selected from one or two of the following: Fe 3 O 4 magnetic particles, ⁇ -Fe 2 O 3 magnetic particles ;
  • the metal alloy magnetic particles are selected from one or more of the following: neodymium-iron-boron alloy magnetic particles, samarium-cobalt alloy magnetic particles, nickel-cobalt alloy magnetic particles, and iron-cobalt alloy magnetic particles.
  • the method for preparing micro/nano magnetic fibers according to any one of items 1 to 11, characterized in that the diameter of the magnetic particles is 0.005 to 250 m, preferably 0.005 to 100 m.
  • micro-nano magnetic fibers according to any one of items 1 to 12, wherein the substrate is selected from one or more of the following: polymers, inorganic glass materials and composite materials thereof .
  • the polymer is selected from one or more of the following: polymethylmethacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA), styrene dimethacrylic acid Methyl ester copolymer (SMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), poly Ethylene imine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyacrylonitrile (PAN) , Polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butene-styrene block copolymer (SEBS), acrylonitrile-butadiene-sty
  • the glass is selected from one or more of the following: chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, silicate glass, germanium silicate glass, and fluoride glass.
  • the solvent used in the solvent dissolution of the substrate is selected from one or more of the following: acetone, methyl ethyl ketone, and N-methylpyrrolidone , Dimethylacetamide (DMAC), dimethylformamide (DMF), chloroform, cyclohexane, toluene, ethylbenzene, cumene, xylene, bromobenzene, chlorobenzene, dichloromethane, dichloroethane Alkane, tetrachloroethane, tetrachloroethylene, styrene, limonene solvent, ethyl acetate, butyl acetate.
  • DMAC Dimethylacetamide
  • DMF dimethylformamide
  • chloroform chloroform
  • cyclohexane toluene
  • ethylbenzene cumene
  • xylene bromobenzene
  • chlorobenzene dichloromethan
  • micro-nano magnetic fibers according to any one of items 1 to 15, wherein the substrate, the magnetic composite material, and the micro-nano magnetic fibers are vacuum dried before use;
  • the vacuum drying temperature is 20 to 300°C, preferably 60 to 150°C;
  • the vacuum drying time is 2 to 2000 hours, preferably 12 to 50 hours.
  • the cladding layer comprises a substrate, and the substrate is selected from one or more of the following: polymers , Inorganic glass materials and their composite materials; the thermal expansion coefficient of the cladding material matches that of the magnetic composite material; or, the glass transition temperature or melting point of the cladding material is the same as that of the magnetic composite material The glass transition temperature or melting point match;
  • the polymer is selected from one or more of the following: polymethylmethacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA), styrene dimethacrylic acid Methyl ester copolymer (SMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), poly Ethylene imine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyacrylonitrile (PAN) , Polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butene-styrene block copolymer (SEBS), acrylonitrile-butadiene-sty
  • the glass is selected from one or more of the following: chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, silicate glass, germanium silicate glass, and fluoride glass;
  • the cladding layer further includes magnetic particles, and the magnetic particles are combined with the substrate to obtain the material of the cladding layer.
  • the hot pressing temperature is 25-600°C, more preferably 120-250°C;
  • the hot pressing time is 5 to 600 minutes, more preferably 10 to 20 minutes.
  • the extrusion temperature is 50-700°C, more preferably 200-400°C.
  • the printing temperature is 50-700°C, more preferably 200-400°C.
  • the curing temperature is 50-500°C, more preferably 150-300°C;
  • the curing time is 1 to 500 minutes, more preferably 20 to 40 minutes.
  • the drawing speed of the hot drawing process is 0.1 m/min to 5000 m/min.
  • micro-nano magnetic fiber wherein the micro-nano magnetic fiber includes a core layer, the core layer includes magnetic particles and a substrate, and the magnetic particles are distributed in the substrate;
  • the magnetic particles are selected from one or more of the following: metal magnetic particles, metal compound magnetic particles, and metal alloy magnetic particles;
  • the substrate is selected from one or more of the following: polymers, inorganic glass materials and composite materials thereof.
  • micro-nano magnetic fiber according to item 27 wherein the polymer is a thermoplastic polymer
  • the thermoplastic polymer is selected from one or more of the following: polymethyl methacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA), styrene dimethyl Methyl acrylate copolymer (SMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), Polyethyleneimine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyacrylonitrile (PAN) ), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butene-styrene block copolymer (SEBS), acrylonitrile-butadiene-styrene copo
  • micro-nano magnetic fiber according to item 27 or 28, wherein the glass is selected from, for example, one or two or more: chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, Silicate glass, germanium silicate glass and fluoride glass.
  • micro-nano magnetic fiber according to any one of items 27 to 29, wherein the metallic magnetic particles are selected from one or more of the following: ferromagnetic particles, cobalt magnetic particles, and nickel magnetic particles;
  • the metal compound magnetic particles are metal oxide magnetic particles; more preferably, the metal compound magnetic particles are selected from one or two of the following: Fe 3 O 4 magnetic particles, ⁇ -Fe 2 O 3 magnetic particles ;
  • the metal alloy magnetic particles are selected from one or more of the following: neodymium-iron-boron alloy magnetic particles, samarium-cobalt alloy magnetic particles, nickel-cobalt alloy magnetic particles, and iron-cobalt alloy magnetic particles.
  • micro-nano magnetic fiber according to any one of items 27 to 30, wherein the diameter of the magnetic particles is 0.005 to 250 ⁇ m, preferably 0.005 to 100 ⁇ m.
  • micro-nano magnetic fiber according to any one of items 27 to 31, wherein the micro-nano magnetic fiber has a columnar structure.
  • micro-nano magnetic fiber according to any one of items 27 to 32, wherein the cross-section of the micro-nano magnetic fiber is selected from one of the following: circular, circular, triangular, triangular, and rectangular , Rectangular ring, polygonal ring, irregular shape.
  • micro-nano magnetic fiber according to any one of items 27 to 33, wherein the diameter of the micro-nano magnetic fiber is 0.01-3000 ⁇ m, preferably 50-1000 ⁇ m.
  • micro-nano magnetic fiber according to any one of items 27 to 34, wherein the core layer has a multilayer structure from the inside to the outside, and in any layer of the core layer, the magnetic particles Evenly distributed in the layer.
  • micro-nano magnetic fiber according to item 35 wherein compared with each of the multiple layers of the core layer, at least two layers have different mass percentages of the magnetic particles.
  • micro-nano magnetic fiber according to item 35 or 36 characterized in that, compared to each of the multiple layers of the core layer, the mass percentage of the magnetic particles in each layer gradually decreases from the inside to the outside Or gradually increase or show non-monotonic changes.
  • micro-nano magnetic fiber according to any one of items 35 to 37, wherein the mass percentage of the magnetic particles in each of the multiple layers of the core layer is 0.01 wt.% to 0.01 wt.% to 75 wt.%, preferably 1 wt.% to 75 wt.%.
  • micro-nano magnetic fiber according to any one of items 27 to 34, wherein the cross-section of the core layer is circular, rectangular, triangular or irregular, and the cross-section is divided into two or There are more than three regions, so that the core layer is divided into two or more than three strip-like structures.
  • the magnetic particles are evenly distributed in the strip-like structure, and there are at least two strip-like structures. The mass percentage of magnetic particles in the structure is different.
  • micro-nano magnetic fiber according to item 39 wherein the core layer has a circular cross-section, and the cross-section is divided into two or more fan-shaped regions; optionally, the cross-section Divided into two equal semicircular areas.
  • micro-nano magnetic fiber according to item 39 wherein the core layer has a rectangular cross-section, and the cross-section is divided into two equal rectangular regions.
  • micro-nano magnetic fiber according to item 39 wherein the core layer has a triangular cross-section, and the cross-section is divided into two triangular regions.
  • micro-nano magnetic fiber according to any one of items 39 to 42, wherein the mass percentage of magnetic particles in each strip structure is 0.01 wt.% to 75 wt.%, more preferably 1 wt.% .% ⁇ 75wt.%.
  • micro-nano magnetic fiber according to any one of items 27 to 43, wherein the micro-nano magnetic fiber further comprises a high melting point functional layer, and the core layer wraps the high melting point functional layer;
  • the glass transition temperature and melting point of the material of the high melting point functional layer are respectively higher than the glass transition temperature and melting point of the material of the core layer, and the material of the high melting point functional layer is a fibrous material or Processed into fibrous material.
  • micro-nano magnetic fiber according to any one of items 27 to 44, wherein the micro-nano magnetic fiber further includes a cladding, the cladding includes a substrate, and the substrate is selected from the following one One or more than two types: polymers, inorganic glass materials and their composite materials; the material of the cladding layer and the material of the core layer can be heat drawn together, and the cladding layer wraps the core layer;
  • the thermal expansion coefficient of the material of the cladding layer matches the thermal expansion coefficient of the material of the core layer; or, the glass transition temperature and melting point of the material of the cladding layer are lower than the glass of the material of the core layer. Transition temperature and melting point;
  • the polymer is selected from one or more of the following: polymethyl methacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA), styrene dimethacrylic acid Methyl ester copolymer (SMMA), cycloolefin copolymer (COC), cycloolefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), poly Ethylene imine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyacrylonitrile (PAN) , Polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butene-styrene block copolymer (SEBS), acrylonitrile-butadiene-sty
  • the glass is selected from one or more of the following: chalcogenide glass, germanate glass, tellurite glass, metal oxide glass, silicate glass, germanium silicate glass, and fluoride glass.
  • micro-nano magnetic fiber according to item 45 wherein the core layer includes two or more strip-like structures, and the two or more strip-like structures are mutually discrete.
  • micro/nano magnetic fiber according to item 45 characterized in that, in the two or more strip structures, the magnetic particles have different mass percentages.
  • micro-nano magnetic fiber according to any one of items 45 to 47, wherein the mass percentage of the magnetic particles in each strip structure is 0.01 wt.% to 75 wt.%, preferably 1 wt.% .% ⁇ 75wt.%.
  • micro-nano magnetic fibers (which can be referred to as "fibers") provided in this application has a wide range of selection of magnetic materials and substrates, a high degree of freedom in structural design, and a controllable structure height compared to the existing magnetic fiber preparation methods. Preforms with different cross-sectional structures can be designed, and the distribution of different magnetic particles and other functional materials in the micro-nano magnetic fibers can be accurately designed, so that they can be made into micro-nano magnetic fibers with different structures by heating.
  • the micro-nano magnetic fibers provided in this application Compared with the prior art, the preparation method and micro-nano magnetic fiber have the following beneficial effects:
  • the prepared micro-nano magnetic fiber has a wide range of diameter adjustment, ranging from 0.01 to 3000 ⁇ m, while the diameter is uniform and controllable, and the diameter size error range is ⁇ 1%;
  • the doping concentration of magnetic particles is high, and the doping concentration can be precisely controlled within the range of 0.01 wt.% to 75 wt.%;
  • the cross-sectional structure of the prepared micro-nano magnetic fiber can be adjusted arbitrarily, so that the continuous and discrete magnetic domain distribution and the magnetic structure response in the cross-section are highly controllable. At the same time, the flexibility of the prepared micro-nano magnetic fiber Better, higher magnetic conversion efficiency;
  • micro-nano magnetic fibers It is possible to accurately design the distribution of different magnetic particles and other functional materials in the micro-nano magnetic fibers, so that they can be thermally drawn into micro-nano magnetic fibers with different structures, which can realize magnetic control actuation and light guide, electrical signal collection, and magnetic Integration of electrical conversion and high-strength mechanical properties;
  • the thermal drawing process used in this application is a process with a relatively high industrial maturity, and it is easy to realize large-scale and large-scale production under the condition of low equipment modification cost.
  • micro-nano magnetic fiber of the present application provides a foundation for biomedical, wearable, flexible actuation, and soft actuation magnetic functional fiber devices, and shows great application prospects and value in the medical, civilian and military fields. .
  • FIG. 1 is a schematic diagram of an apparatus for preparing micro-nano magnetic fibers by using a thermal drawing process according to a specific embodiment of the application.
  • FIG. 2A is a schematic diagram of a circular cross-section of a micro-nano magnetic fiber doped with a single concentration of magnetic particles according to a specific embodiment of the application.
  • 2B is a schematic diagram of a rectangular cross-section of a micro-nano magnetic fiber doped with a single concentration of magnetic particles according to a specific embodiment of the application.
  • 2C is a schematic diagram of a triangular cross-section of a micro-nano magnetic fiber doped with a single concentration of magnetic particles according to an embodiment of the application.
  • FIG. 3A is a schematic diagram of a circular cross-section of a micro-nano magnetic fiber with a multi-layer structure core layer according to a specific embodiment of the application.
  • FIG. 3B is a schematic diagram of a rectangular cross-section of a micro-nano magnetic fiber with a multi-layer structure core layer according to a specific embodiment of the application.
  • 3C is a schematic diagram of a triangular cross-section of a micro-nano magnetic fiber with a multi-layer structure core layer according to a specific embodiment of the application.
  • 4A is a schematic cross-sectional view of a micro-nano magnetic fiber with two strip-shaped core layers and including a cladding layer according to a specific embodiment of the application.
  • 4B is a schematic diagram of a rectangular cross-sectional view of a micro-nano magnetic fiber with two strip-shaped core layers and including a cladding layer according to a specific embodiment of the application.
  • 4C is a schematic cross-sectional view of a triangular cross-section of a micro-nano magnetic fiber with two strip-shaped core layers and including a cladding layer according to a specific embodiment of the application.
  • FIG. 4D is a schematic diagram of a circular cross-section of a micro-nano magnetic fiber with two strip-shaped core layers and including a cladding layer according to a specific embodiment of the application.
  • FIG. 4E is a schematic cross-sectional view of a rectangular cross-sectional view of a micro-nano magnetic fiber having a core layer with a plurality of strip-shaped structures and including a cladding layer according to a specific embodiment of the application.
  • 4F is a schematic cross-sectional view of a micro-nano magnetic fiber having a core layer with six strip-like structures according to a specific embodiment of the application.
  • FIG. 5 is a schematic cross-sectional view of a micro-nano magnetic fiber integrated with a silica optical fiber (white) and a metal electrode (black) according to a specific embodiment of the application.
  • FIG. 6 is a schematic diagram of a circular cross-sectional view of a micro-nano magnetic fiber having two discrete strip-shaped core layers and including a cladding layer according to a specific embodiment of the application.
  • Magnetic particles are permanent or soft magnetic micro-nano particles.
  • “Structured” means that the cross-section of the prepared micro/nano magnetic fiber can be prepared into any desired structure, such as a structure doped with a single concentration of magnetic particles, a structure doped with multiple concentrations of magnetic particles, a structure containing a cladding, and a structure without a cladding , Layer structure containing high melting point functional material, etc.; and the cross-section of the fiber can be any shape.
  • a "preform” is a material preform that can be used to draw fibers, and its structure determines the structure of the fiber.
  • Hot drawing refers to heating a part of the preform with a heat source to soften the preform, and then manually or mechanically stretching from one or both ends of the heated area, also known as “hot drawing”.
  • Co-stretchable functional material refers to a material whose material parameters, thermal expansion coefficient and softening temperature are matched with the magnetic composite material, so that it can be hot-drawn together with the magnetic composite material to form micro-nano magnetic fibers.
  • Machine thermal expansion coefficient refers to the phenomenon of material expansion and contraction due to temperature changes.
  • the matching of material thermal expansion coefficient means that different materials have the same or close thermal expansion coefficient.
  • the matching of the thermal expansion coefficient of the material can ensure the consistency of the fiber structure and the preform structure.
  • Glass transition temperature refers to the lowest temperature at which molecular chains in amorphous materials can move. The heat drawing process is manifested as the movement of material molecular chains on a microscopic level. Therefore, the heat drawing temperature must be above the glass transition temperature. Glass transition temperature matching means that different materials have the same or close glass transition temperature, ensuring that different materials can be heat drawn together into fibers.
  • Melting point matching means that the melting point of the functional material should be close to or higher than the glass transition temperature of the amorphous material used to ensure that the functional material can form fibers together with the amorphous material at the fiber thermal drawing temperature.
  • Mechanism synchronization means that during the thermal drawing process, the magnetic structured preform and the high melting point functional layer material are simultaneously drawn at the same drawing speed.
  • Thermoplastic polymer refers to a polymer that can be repeatedly heated and melted, formed in a softened or flowing state, and can maintain the shape of the mold after cooling. It is a linear or a polymer compound with a small amount of branched structure.
  • PMMA is polymethyl methacrylate, which has the advantages of high transparency, low price, and easy mechanical processing. It is a frequently used glass substitute material.
  • SMMA is a styrene dimethacrylate copolymer, which is a polyacrylic resin copolymer.
  • COC is a cyclic olefin copolymer, which is a high value-added thermoplastic engineering plastic made by the polymerization of cyclic olefin. Because of its high transparency, low dielectric constant, excellent heat resistance, chemical resistance, and melting Body fluidity, barrier properties and dimensional stability, etc., are widely used in the manufacture of various optical, information, electrical, and medical materials.
  • COP is a cycloolefin polymer used in medical optical components and high-end pharmaceutical packaging materials. Its raw materials are characterized by high transparency, low birefringence, low water absorption, high rigidity, high heat resistance, and water vapor airtightness. Good, compound FDA standard.
  • PC is a polycarbonate, a high molecular weight polymer containing carbonate groups in the molecular chain. According to the structure of the ester group, it can be divided into aliphatic, aromatic, aliphatic-aromatic and other types.
  • PPSU polyphenylsulfone resin, which is an amorphous thermal plastic with high transparency and high hydrolysis stability.
  • PES polyethersulfone, usually an amorphous polymer. Compared with polysulfone, polyethersulfone has better melt processability, lower melt viscosity, and low molding shrinkage (only about 0.6%) , Good dimensional stability.
  • PEI polyetherimide
  • a super engineering plastic made of amorphous polyetherimide which has the best high temperature resistance and dimensional stability, as well as chemical resistance, flame retardancy, electrical properties, high strength, High rigidity, etc., can be widely used in high temperature resistant terminals, IC bases, lighting equipment, FPCB (flexible circuit boards), liquid conveying equipment, aircraft internal parts, medical equipment and household appliances, etc.
  • PS polystyrene, which refers to a polymer synthesized from styrene monomer through radical addition polymerization. It is a colorless and transparent thermoplastic with a glass transition temperature higher than 100°C, so it is often used to make various disposable containers that need to withstand the temperature of boiling water, as well as disposable foam lunch boxes.
  • PP polypropylene, a thermoplastic synthetic resin with excellent performance, and a colorless and translucent thermoplastic lightweight general-purpose plastic. It has chemical resistance, heat resistance, electrical insulation, high-strength mechanical properties and good high wear-resistant processing properties.
  • Fluorine-containing resin is a type of thermoplastic resin that contains fluorine atoms in its molecular structure. It has excellent high and low temperature resistance, dielectric properties, chemical stability, weather resistance, non-combustibility, non-stickiness and low friction coefficient.
  • PVDF polyvinylidene fluoride, which mainly refers to the homopolymer of vinylidene fluoride or the copolymer of vinylidene fluoride and a small amount of other fluorine-containing vinyl monomers. It has the characteristics of both fluorine-containing resin and general resin. In addition to chemical resistance, high temperature resistance, oxidation resistance, weather resistance, and radiation resistance, it also has special properties such as piezoelectricity, dielectric properties, and hot spots.
  • PA is a polyamide resin, a polycondensation polymer compound with a -CONH structure in the molecule, which is usually obtained by polycondensation of dibasic acid and diamine.
  • the most prominent advantage of polyamide resin is that the range of softening point is extremely narrow. Unlike other thermoplastic resins, there is a gradual curing or softening process, which causes rapid curing when the temperature is slightly lower than the melting point.
  • PE polyethylene
  • Polyethylene is a thermoplastic resin made by polymerizing ethylene. In industry, it also includes copolymers of ethylene and a small amount of ⁇ -olefins. Polyethylene is odorless, non-toxic, feels like wax, has excellent low temperature resistance (the minimum use temperature can reach -100°C ⁇ -70°C), has good chemical stability, and can withstand most acids and alkalis (not resistant to oxidation) Nature acid).
  • PET polyethylene terephthalate, also commonly known as polyester resin. It is a polycondensate of terephthalic acid and ethylene glycol, a crystalline saturated polyester, a milky white or light yellow, highly crystalline polymer with a smooth and shiny surface. Creep resistance, fatigue resistance, good friction resistance, low abrasion and high hardness, with the greatest toughness among thermoplastics; good electrical insulation performance, and low temperature influence.
  • PAN is an acrylonitrile resin whose main monomer is acrylonitrile, which provides good gas barrier, chemical resistance, gas and taste retention. This resin has moderate tensile strength, good impact resistance when modified or oriented with rubber, and can be processed by means of extrusion, injection molding and thermoforming.
  • PVA polyvinyl alcohol
  • a water-soluble high-molecular polymer with a wide range of uses, and its performance is between plastic and rubber.
  • PVC polyvinyl chloride, a polymer material obtained by addition polymerization of vinyl chloride.
  • PU is a polyurethane resin, a polymer containing a urethane group (-NH-COO-) in its molecular structure.
  • SEBS is a polystyrene-polybutadiene-polystyrene triblock copolymer.
  • ABS is an acrylonitrile-butadiene-styrene copolymer, which is a thermoplastic polymer material with high strength, good toughness, and easy processing and molding.
  • PVDF polyvinylidene fluoride, a highly non-reactive thermoplastic fluoropolymer.
  • PEG polyethylene glycol, also known as polyethylene oxide, and refers to a polymer of ethylene oxide.
  • PTT polytrimethylene terephthalate, which has the characteristics of polyester and nylon.
  • Chalcogenide glass is a glass mainly composed of sulfide, selenide, and antimonide. It also includes oxide-containing chalcogenide glass. Chalcogenide glass has high processing efficiency and can be precisely molded.
  • DMAC dimethylacetamide, an aprotic, highly polar solvent with a slight ammonia odor and strong solubility. It can interact with water, aromatic compounds, esters, ketones, alcohols, ethers, benzene and trichloro Methane, etc. are arbitrarily miscible and can activate compound molecules. It is widely used as a solvent and catalyst.
  • DMF dimethylformamide
  • Magnetic particle diameter when the magnetic particle is a sphere, the diameter of the magnetic particle is the diameter of the sphere; when the magnetic particle is aspheric, the diameter of the magnetic particle is the diameter calculated when the volume of the non-sphere is equal to the volume of the sphere.
  • Fiber diameter means that when the fiber has a circular cross-section, the fiber diameter is the diameter of a circle; when the fiber has a non-circular cross-section, the fiber diameter is the diameter calculated when the non-circular cross-sectional area is equal to the circular cross-sectional area.
  • This application provides a method for preparing micro-nano magnetic fibers, characterized in that the micro-nano magnetic fibers include a core layer, and the preparation method includes the following steps:
  • Compounding Compounding magnetic particles and substrates to obtain magnetic composite materials
  • Hot drawing using the magnetic structured preform to prepare micro-nano magnetic fibers using a hot drawing process.
  • the magnetic particles are compounded with the substrate to obtain a variety of magnetic composite materials.
  • the substrates for preparing various magnetic composite materials can be different.
  • the doping concentration of the magnetic particles (the percentage of the mass of the magnetic particles in the magnetic composite material) may be different or the same; in the processing step, the multiple magnetic composite materials are directly used to prepare The magnetic structured preform, or the use of the multiple magnetic composite materials to prepare multiple preforms, and the use of multiple preforms to prepare the structured preform.
  • the mass percentage of magnetic particles in each magnetic composite material may be different or the same in the range of 0.01 wt.% to 75 wt.%, for example It can be 0.01wt.%, 0.1wt.%, 1wt.%, 5wt.%, 10wt.%, 20wt.%, 30wt.%, 40wt.%, 50wt.%, 51wt.%, 52wt.%, 53wt.
  • the magnetic particles and the substrate are uniformly compounded by a solvent dissolution method or a physical thermal fusion method or a combination of a solvent dissolution method and a physical thermal fusion method to obtain Magnetic composite material particles, magnetic composite material film or magnetic composite material powder.
  • the solvent dissolution method includes the following steps:
  • the solvent dissolution method further includes: step (4) vacuum drying to obtain a magnetic composite material.
  • the solvent may be selected from but not limited to acetone, methyl ethyl ketone, N-methylpyrrolidone, dimethylacetamide (DMAC), dimethylformamide (DMF), chloroform, cyclohexane , Toluene, ethylbenzene, cumene, xylene, bromobenzene, chlorobenzene, methylene chloride, dichloroethane, tetrachloroethane, tetrachloroethylene, styrene, limonene solvent, ethyl acetate, butyl acetate Any one or two or more of them.
  • the physical thermal melting method includes the following steps:
  • the obtained magnetic composite material can also be uniformly spread to appear as a thin film, that is, a magnetic composite material film, and the thin film composite material can be directly used to process a magnetic structured preform.
  • the magnetic composite film in order to ensure the uniformity of the doping of the magnetic particles in the magnetic structured preform, can be mechanically broken into particles or powder by a breaker to obtain magnetic composite particles. Or magnetic composite material powder, which is then used to process magnetic structured preforms.
  • the magnetic composite film is obtained by the solvent dissolution method. Compared with the physical thermal melting method, the magnetic particle doping of the solvent dissolution method is more uniform.
  • a combination of a solvent dissolution method and a physical thermal melting method is used to uniformly composite the magnetic particles with the substrate. Compared with the physical thermal melting method, the magnetic particles are more uniformly doped.
  • the method of combining the solvent dissolution method and the physical thermal melting method includes the following steps:
  • the above solid material is heated to above the glass transition temperature and extruded at a certain pressure, speed and shape to form a magnetic composite material.
  • the polymer is selected from but not limited to one or more of the following: polymethyl methacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA) , Styrene methyl dimethacrylate copolymer (SMMA), cyclic olefin copolymer (COC), cyclic olefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyether Sulfone resin (PES), polyethyleneimine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET) , Polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butylene-styrene block copolymer (SEBS), acrylonitrile-butadiene Olefin
  • PMMA poly
  • the magnetic particles are selected from one or more of the following: metal magnetic particles, metal compound magnetic particles, and metal alloy magnetic particles; preferably, the metal magnetic particles can be selected from From but not limited to ferromagnetic particles, cobalt magnetic particles, and nickel magnetic particles; the metal compound magnetic particles may be selected from but not limited to metal oxide magnetic particles; the metal oxide magnetic particles may be selected from but not limited to Fe 3 O 4 Magnetic particles, ⁇ -Fe 2 O 3 magnetic particles; the metal alloy magnetic particles can be selected from but not limited to nickel-cobalt alloy magnetic particles, iron-cobalt alloy magnetic particles, neodymium iron boron alloy (NdFeB) magnetic particles, samarium-cobalt alloy (SmCo) Magnetic particles.
  • the metal magnetic particles can be selected from From but not limited to ferromagnetic particles, cobalt magnetic particles, and nickel magnetic particles
  • the metal compound magnetic particles may be selected from but not limited to metal oxide magnetic particles
  • the metal oxide magnetic particles may be selected from but not limited to Fe 3 O 4 Magnetic particles,
  • the magnetic particles may be selected from one or more of the following: ferromagnetic particles, cobalt magnetic particles, nickel magnetic particles, Fe 3 O 4 magnetic particles, ⁇ -Fe 2 O 3 magnetic particles, neodymium-iron-boron alloy magnetic particles, samarium-cobalt alloy magnetic particles, nickel-cobalt alloy magnetic particles and iron-cobalt alloy magnetic particles.
  • the magnetic particles have a diameter of 0.005 to 250 ⁇ m, for example, 0.005 ⁇ m, 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 55 ⁇ m, 60 ⁇ m, 65 ⁇ m, 70 ⁇ m, 75 ⁇ m, 80 ⁇ m, 85 ⁇ m, 90 ⁇ m, 95 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 180 ⁇ m 200 ⁇ m, 210 ⁇ m, 220 ⁇ m, 230 ⁇ m, 240 ⁇ m, 250 ⁇ m, etc.
  • the micro-nano magnetic fiber includes a core layer
  • the magnetic composite material is used to prepare a magnetic structured preform, wherein the magnetic composite material may be One or more, the base materials of the multiple magnetic composite materials can be different or the same, and the mass percentage of the magnetic particles contained in the multiple magnetic composite materials can be different or the same.
  • the magnetic composite material finally forms the core layer in the micro-nano magnetic fiber.
  • the micro-nano magnetic fiber includes a core layer and a cladding layer
  • the magnetic structured preform is prepared by using the magnetic composite material and the cladding material
  • the magnetic composite material can be one or more
  • the base materials of the multiple magnetic composite materials can be different or the same
  • the mass percentage of the magnetic particles contained in the multiple magnetic composite materials It can be different or the same.
  • the magnetic composite material is used to form the core layer in the micro-nano magnetic fiber
  • the material of the cladding layer is used to form the cladding layer in the micro-nano magnetic fiber.
  • the cladding layer includes a substrate, and the substrate is selected from one or more of the following: polymers, inorganic glass materials and composite materials thereof; the polymer may be selected from but not limited to the following one or Two or more types: polymethyl methacrylate (PMMA), PMMA composite material doped with fluorinated polymer (F-PMMA), styrene dimethacrylate copolymer (SMMA), cyclic olefin copolymer ( COC), cycloolefin polymer (COP), polycarbonate (PC), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), polyethyleneimine (PEI), polystyrene (PS) , Polyamide (PA), polypropylene (PP), polyamide (PA), polypropylene (PP), polyamide (PA), polypropylene (PP), polyamide (PA), polypropylene (PP), polyamide (PA), polypropylene (PP), polyamide (PA), polypropylene (PP), poly
  • the cladding layer includes magnetic particles and a substrate, and the magnetic particles and the substrate are combined to obtain the material of the cladding layer.
  • the compounding method is the same as the compounding method when preparing the magnetic composite material.
  • the cladding layer only includes the substrate and does not include magnetic particles.
  • the cladding layer is the outermost layer with or without magnetic particles dispersed therein.
  • the core layer is one or more layers containing magnetic particles wrapped by the cladding layer.
  • the micro-nano magnetic fiber includes a core layer and a high melting point functional layer
  • the magnetic structured preform covers the high melting point functional layer
  • the material of the high melting point functional layer is mechanically synchronized with the material of the high melting point functional layer to prepare the micro/nano magnetic fiber by a hot drawing process, so as to realize the coating of the high melting point functional layer material in the process of hot drawing into the micro/nano magnetic fiber.
  • the glass transition temperature and melting point of the material of the high melting point functional layer are respectively higher than the glass transition temperature and melting point of the magnetic composite material
  • the material of the high melting point functional layer is a fibrous material or a processable material.
  • the fibrous material for example, can be silica fiber, metal electrode, semiconductor material, etc.
  • the material of the high melting point functional layer is used to form the high melting point functional layer.
  • the micro-nano magnetic fiber includes a core layer, a cladding layer, and a high melting point functional layer.
  • the magnetic composite material and the cladding layer are used to prepare the The magnetic structured preform, wherein the magnetic composite material can be one or more kinds, and the base materials of the multiple magnetic composite materials can be different or the same.
  • the mass percentage content of the particles can be different or the same; in the hot drawing step, the magnetic structured preform covers the material of the high melting point functional layer, and is mechanically different from the material of the high melting point functional layer.
  • the micro-nano magnetic fibers are prepared simultaneously by using a hot drawing process.
  • the magnetic composite material is used to form the core layer in the micro-nano magnetic fiber
  • the material of the cladding layer is used to form the cladding layer in the micro-nano magnetic fiber
  • the material of the high melting point functional layer is used to form a high melting point Functional layer.
  • the magnetic material in the processing step, is prepared by one or more of the film winding method, the hot pressing method, the extrusion molding method, and the 3D printing method. Structured preform; further, the method may also include one or more of the following methods: mechanical processing method, assembly method and thermal curing method.
  • the magnetic composite material is one or two or more magnetic composite material films
  • the magnetic structured preform is processed by the film winding method.
  • a magnetic composite material film is passed through The columnar original preform is obtained by hot pressing and mechanical processing, and then several other magnetic composite films are wound on the original preform in sequence, and the other several magnetic composite films are respectively formed into a preform, and then each preform is processed Heat curing treatment to obtain the final magnetic structured preform.
  • the Young's modulus of each magnetic composite material film is 0.01 to 1 GPa, for example, it can be 0.01 GPa, 0.02 GPa, 0.03 GPa, 0.04 GPa, 0.05 GPa, 0.06 GPa, 0.07 GPa, 0.08 GPa, 0.09 GPa, 0.1 GPa, 0.15GPa, 0.2GPa, 0.25GPa, 0.3GPa, 0.35GPa, 0.4GPa, 0.45GPa, 0.5GPa, 0.55GPa, 0.6GPa, 0.65GPa, 0.75GPa, 0.8GPa, 0.85GPa, 0.9GPa, 0.95GPa, 1GPa.
  • the hot pressing method refers to a method in which materials such as magnetic composite materials are heated and pressurized at the same time, and the materials are molded and sintered into a preform.
  • the method of the present application uses a hot pressing method to process a magnetic structured preform.
  • the magnetic composite material can be pressed into various shapes, one preform is pressed each time, and the magnetic structured preform can be prepared by mechanical processing and assembly methods for different preforms.
  • the mechanical processing method can cut the rectangular parallelepiped preform into a cylinder or an annular preform. More specifically, the cylindrical preform can also be assembled with the circular preform to prepare a magnetic structured preform.
  • the preforms of different shapes obtained by mechanical processing and cutting can also be used in other methods, such as film winding method, extrusion molding method, and 3D printing method.
  • the hot pressing temperature is not lower than the glass transition temperature or melting point of the magnetic composite material, and the hot pressing temperature is 25-600°C, preferably 120-250°C, for example 25°C, 35°C, 45°C , 55°C, 65°C, 75°C, 85°C, 95°C, 105°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165 °C, 170°C, 175°C, 180°C, 185°C, 190°C, 195°C, 200°C, 205°C, 210°C, 215°C, 220°C, 225°C, 230°C, 235°C, 240°C, 245°C
  • Extrusion molding method is a method in which materials are placed in a mold and then forced to pass through a hole mold to prepare a preform.
  • the method of the present application uses an extrusion molding method to process a magnetic structured preform.
  • a variety of magnetic composite materials can be put into a mold, and a magnetic structured preform containing a variety of magnetic composite materials can be directly extruded; a variety of magnetic composite materials can also be put into the mold separately , Extruding into different preforms respectively, and then using one or two or three of the assembly method, thermal curing method and mechanical processing method to prepare the final magnetic structured preform.
  • the extrusion temperature is not lower than the glass transition temperature or melting point of the magnetic composite material, and the extrusion temperature is 50-700°C, preferably 200-400°C, for example 50°C, 70°C, 90°C , 110°C, 130°C, 150°C, 170°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310 °C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C, 500°C, 600°C, 700°C.
  • the "3D printing method” is a method of quickly constructing objects based on digital model files, using bondable materials, and printing layer by layer.
  • the method of the present application uses a 3D printing method to directly process the magnetic structured preform.
  • other methods such as film winding, hot pressing, and extrusion can be used to prepare the final magnetic structured preform.
  • the micro-nano magnetic fiber includes a core layer, and the micro-nano magnetic fiber obtained in the thermal drawing step can be used as a structured magnetic composite material in the fiber state at the same time, using 3D printing Method for secondary processing and secondary heat drawing.
  • the method of this application includes the following steps:
  • Compounding Compounding magnetic particles and substrates to obtain magnetic composite materials
  • Processing preparing the magnetic structured preform by one or more of the film winding method, hot pressing method, extrusion molding method, and 3D printing method;
  • Hot drawing using the magnetic structured preform to prepare micro-nano magnetic fibers by a hot drawing process
  • the second magnetic structured preform is used to prepare the second micro-nano magnetic fiber by a hot drawing process.
  • the second micro-nano magnetic fiber includes a cladding two, and in the secondary processing step, the materials of the micro-nano magnetic fiber and the cladding two are 3D printed Method for preparing the second magnetic structured preform;
  • the second micro-nano magnetic fiber includes a high-melting-point functional layer two
  • the second magnetic structured preform covers the material of the high-melting-point functional layer two, and is in contact with the The material of the high melting point functional layer two is mechanically synchronously used to prepare the micro-nano magnetic fiber two by a heat drawing process.
  • the printing temperature of the 3D printing method for preparing the magnetic structured preform in the processing step, and the 3D printing method for preparing the magnetic structured preform in the secondary processing step is not lower than the glass transition temperature or melting point of the magnetic composite material; the printing temperature is 50-700°C, preferably 200-400°C, for example 50°C, 70°C °C, 90°C, 110°C, 130°C, 150°C, 170°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C, 390°C, 400°C, 500°C, 600°C, 700°C.
  • the "thermal curing method” is a method of curing the adhesive system by changing the energy of the molecule. In this application, it refers to the preparation of the final magnetic structured preform by heating and curing between different preforms.
  • the curing temperature of the thermal curing method in the processing step, is not lower than the glass transition temperature or melting point of the magnetic composite material; the curing temperature is 50-500 °C, preferably 150-300°C, for example 50°C, 70°C, 90°C, 110°C, 130°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C , 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360°C, 370°C, 380°C
  • the substrate, the magnetic composite material, and the micro-nano magnetic fiber are all vacuum dried before use;
  • the vacuum drying temperature is 20-300°C, preferably 60 ⁇ 150°C, for example 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, etc.;
  • the vacuum drying The time is 2 ⁇ 2000h, preferably 12 ⁇ 50h, for example 2h, 4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h, 24h, 26h, 28h, 30h, 32h
  • the temperature of the heat drawing process is 25-600°C, preferably 230-400°C, for example, 25°C, 50°C, 75°C, 100°C, 125°C , 150°C, 175°C, 200°C, 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C, 350°C, 360 °C, 370°C, 380°C, 390°C, 400°C, 450°C, 500°C, 550°C, 600°C;
  • the tension of the hot drawing process is 0 ⁇ 500g, preferably 10 ⁇ 50g, such as 0g, 2g, 4g, 6g, 8g, 10g, 12g, 14g, 16g, 18g, 20g, 22g, 24g, 26g, 28g, 30g, 32g, 34
  • FIG. 1 is a schematic diagram of an apparatus for preparing micro-nano magnetic fibers by using a thermal drawing process according to a specific embodiment of the application.
  • the preform clamp 2 is responsible for holding and fixing the preform 1 and feeding the rod, and the drawing tower heating furnace 3 is responsible for locally heating the preform 1 to soften it.
  • the drawing device 5 of the drawing tower is closed to realize the preform 1 Preparation of micro-nano magnetic fibers by hot-drawing.
  • the fiber diameter can be controlled by controlling the feeding speed of the clamp and the pulling speed of the traction device.
  • the fiber diameter is observed in real time by the fiber laser diameter gauge 4.
  • the fiber collection is realized by the fiber collection device 6 of the drawing tower.
  • the structure of the micro-nano magnetic fiber is determined by the structure of the magnetic structured preform.
  • the structure of the magnetic structured preform and the micro-nano magnetic fiber is not limited, and the structure is consistent in the direction along the fiber axis. It can be any axially invariant structure. More specifically, according to the distribution of magnetic particle concentration, the structure can be a single-concentration magnetic particle doped structure or a multi-concentration magnetic particle doped structure; according to the presence or absence of the cladding, It can be divided into a cladding structure and a non-cladding structure; the structure can also be a structure containing a high melting point functional layer and the like.
  • FIGS. 2A to 2C are schematic cross-sectional views of different shapes of micro-nano magnetic fibers doped with a single concentration of magnetic particles.
  • Figures 3A to 3C cross-sectional schematic diagrams of different shapes of micro-nano magnetic fibers with a multi-concentration magnetic particle doped structure, specifically a multi-layer structure core layer structure (also referred to as a "radial concentration distribution doped structure" ) Is a schematic cross-sectional view of different shapes of the micro-nano magnetic fibers.
  • FIG. 4A to 4F cross-sectional schematic diagrams of different shapes of micro-nano magnetic fibers with a multi-concentration magnetic particle doped structure, specifically, micro-nano magnetic fibers with a core layer of multiple non-discrete strip-like structures.
  • FIG 5 it is a schematic cross-sectional view of a micro-nano magnetic fiber with a high melting point functional layer structure, specifically a circular cross-sectional view of a micro-nano magnetic fiber with integrated silica fiber (white) and metal electrode (black) .
  • FIG 6 it is a schematic cross-sectional view of a micro-nano magnetic fiber with a multi-concentration magnetic particle doped structure. Specifically, it is a circular micro-nano magnetic fiber with two discrete strip-like structures and including a cladding layer. Schematic cross-section.
  • the color shades in Figures 2A to 6 can be used to distinguish the cladding, core, and high melting point functional layers of micro-nano magnetic fibers, or can indicate the level of doping concentration of magnetic particles, and the color is darker.
  • the light color represents a high, low or the same doping concentration of magnetic particles.
  • This application also provides micro-nano magnetic fibers prepared by any of the above-mentioned methods.
  • the present application also provides a micro-nano magnetic fiber, characterized in that the micro-nano magnetic fiber includes a core layer, the core layer includes magnetic particles and a substrate, and the magnetic particles are distributed in the substrate;
  • the magnetic particles are selected from one or more of the following: metal magnetic particles, metal compound magnetic particles, and metal alloy magnetic particles;
  • the substrate is selected from one or more of the following: polymers, inorganic glass materials and composite materials thereof.
  • the metal magnetic particles can be selected from but not limited to gold magnetic particles, silver magnetic particles, ferromagnetic particles, cobalt magnetic particles, nickel magnetic particles; the metal compound The magnetic particles may be selected from but not limited to metal oxide magnetic particles; the metal oxide magnetic particles may be selected from but not limited to Fe 3 O 4 magnetic particles, ⁇ -Fe 2 O 3 magnetic particles; the metal alloy magnetic particles may It is selected from but not limited to nickel-cobalt alloy magnetic particles, iron-cobalt alloy magnetic particles, neodymium iron boron alloy (NdFeB) magnetic particles, and samarium cobalt alloy (SmCo) magnetic particles.
  • the magnetic particles may be selected from one or more of the following: ferromagnetic particles, cobalt magnetic particles, nickel magnetic particles, Fe 3 O 4 magnetic particles, ⁇ -Fe 2 O 3 magnetic particles, neodymium iron boron alloy magnetic particles, samarium cobalt alloy magnetic particles, nickel-cobalt alloy magnetic particles and iron-cobalt alloy magnetic particles.
  • the polymer is selected from but not limited to one or more of the following: polymethylmethacrylate (PMMA), doped with fluorinated polymer PMMA composite material (F-PMMA), styrene dimethacrylate copolymer (SMMA), cyclic olefin copolymer (COC), cyclic olefin polymer (COP), polycarbonate (PC), polyphenylene Sulfone resin (PPSU), polyether sulfone resin (PES), polyethyleneimine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), poly-p-phenylene Ethylene dicarboxylate (PET), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butylene-styrene block copo
  • PMMA polymethylmethacrylate
  • F-PMMA doped with
  • the diameter of the magnetic particles is 0.005-250 ⁇ m, for example, 0.005 ⁇ m, 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m.
  • the micro-nano magnetic fiber of the present application has a diameter of 0.01-3000 ⁇ m, preferably 50-1000 ⁇ m, for example, 0.01 ⁇ m, 1 ⁇ m, 10 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 300 ⁇ m. , 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 700 ⁇ m, 800 ⁇ m, 900 ⁇ m, 1000 ⁇ m, 1100 ⁇ m, 1200 ⁇ m, 1300 ⁇ m, 1400 ⁇ m, 1500 ⁇ m, 1600 ⁇ m, 1700 ⁇ m, 1800 ⁇ m, 1900 ⁇ m, 2000 ⁇ m.
  • the micro-nano magnetic fiber has a columnar structure, and the cross-sectional shape of the micro-nano magnetic fiber is not limited, and can be selected from the following: circular, circular , Triangle, triangular ring, rectangle, rectangular ring, polygonal ring, irregular shape.
  • the micro-nano magnetic fiber of the present application can have any axially invariant structure, such as a structure doped with a single concentration of magnetic particles, a structure doped with multiple concentrations of magnetic particles, and a structure containing a cladding layer. , No cladding structure, high melting point functional layer structure, etc.
  • single-concentration doping of magnetic particles means that only one concentration of magnetic particles is uniformly distributed in the core layer.
  • Multi-concentration doping of magnetic particles refers to the fact that the mass percentages of magnetic particles in a variety of magnetic composite materials are not completely the same, so that the magnetic particles are doped in multiple concentrations in the micro/nano magnetic fibers.
  • the core layer has a multilayer structure from the inside to the outside, and in any layer of the core layer, the magnetic particles are uniformly distributed in the layer.
  • the mass percentage of the magnetic particles in each layer of the core layer is 0.01 wt.% to 75 wt.%, preferably 1 wt.% to 75 wt.%, for example, 0.01 wt.%, 0.1 wt.%, 1wt.%, 5wt.%, 10wt.%, 20wt.%, 30wt.%, 40wt.%, 50wt.%, 51wt.%, 52wt.%, 53wt.%, 54wt.%, 55wt.
  • micro-nano magnetic fiber of the present application compared to each of the multiple layers of the core layer, there may be two, three, four, five, or six layers, etc.
  • the mass percentage of magnetic particles is different.
  • the mass percentage of the magnetic particles in each layer gradually decreases from the inside to the outside.
  • the mass percentage of the magnetic particles in each layer gradually increases from the inside to the outside.
  • the cross-section of the core layer is circular, rectangular, triangular or irregular, and the cross-section is divided into two, three, four, and five. , Six, seven, eight, nine or more than ten regions, so that the core layer is divided into two, three, four, five, six, seven, eight, nine or ten.
  • the magnetic particles are uniformly distributed in the strip structure, and at least two strip structures have different mass percentages of the magnetic particles.
  • the cross section of the core layer is circular, and the cross section is divided into two, three, four, five, six, or more than seven sectors. Area; Preferably, the cross-section is divided into two equal semicircular areas, so that the core layer is divided into two strip-shaped structures, the magnetic particles are evenly distributed in each strip-shaped structure, the two The mass percentage of magnetic particles in each strip structure is different.
  • the cross section of the core layer is rectangular, and the cross section is divided into any two, three, four, or five equal rectangular regions.
  • the core layer has a triangular cross-section, and the cross-section is divided into any two triangular regions.
  • the triangle is an isosceles triangle, and the cross section is divided into any two equal triangular regions.
  • the micro-nano magnetic fiber of the present application includes a core layer and a high melting point functional layer, the core layer envelops the high melting point functional layer; the material of the high melting point functional layer
  • the glass transition temperature and melting point are respectively higher than the glass transition temperature and melting point of the material of the core layer, and the material of the high melting point functional layer is a fibrous material or a material that can be processed into a fibrous state, for example, Quartz optical fiber or metal semiconductor, etc.
  • the micro-nano magnetic fiber in the micro-nano magnetic fiber of the present application, includes a core layer and a cladding layer, and the material of the cladding layer and the material of the core layer can be heat-drawn together, the The cladding layer wraps the core layer; the thermal expansion coefficient of the material of the cladding layer is the same as the thermal expansion coefficient of the material of the core layer; or, the glass transition temperature and melting point of the material of the cladding layer are respectively lower than the core layer The glass transition temperature and melting point of the material of the layer.
  • the micro-nano magnetic fiber of the present application includes a core layer, a cladding layer, and a high-melting-point functional layer.
  • the core layer wraps the high-melting-point functional layer, and the clad layer wraps
  • the core layer; the material of the cladding layer and the material of the core layer can be heat-drawn together; the thermal expansion coefficient of the material of the cladding layer is the same as the thermal expansion coefficient of the material of the core layer; or, the The glass transition temperature and melting point of the material of the cladding layer are lower than the glass transition temperature and melting point of the material of the core layer, respectively.
  • the material of the cladding layer can be selected from one or more of the following polymers: polymethylmethacrylate (PMMA), doped with fluorinated Polymer PMMA composite material (F-PMMA), styrene dimethacrylate copolymer (SMMA), cyclic olefin copolymer (COC), cyclic olefin polymer (COP), polycarbonate (PC), poly Phenylsulfone resin (PPSU), polyethersulfone resin (PES), polyethyleneimine (PEI), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), Polyethylene terephthalate (PET), polyacrylonitrile (PAN), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyurethane (PU), styrene-ethylene/butylene-styrene block Copolymer (SEBS), polymethylmethacrylate (PMMA), doped with fluorinated Poly
  • the micro-nano magnetic fiber of the present application includes a core layer and a cladding layer, the cladding layer wraps the core layer; the core layer includes two, three, four, five, There are six or more discrete strip-shaped structures, and the two, three, four, five, six, or more than seven strip-shaped structures are mutually discrete, that is, they are not in contact with each other.
  • the cross-section of the micro-nano magnetic fiber may be circular, triangular, rectangular, or irregular.
  • the mass percentages of the magnetic particles in the discrete strip-shaped structures are not completely the same.
  • the mass percentage of the magnetic particles in any strip-shaped structure of the core material is 0.01 wt.% to 75 wt.%, preferably 1 wt.% to 1 wt.% to 75wt.%, for example, can be 0.1wt.%, 1wt.%, 5wt.%, 10wt.%, 20wt.%, 30wt.%, 40wt.%, 50wt.%, 51wt.%, 52wt.%, 53wt.
  • This application provides a micro-nano magnetic fiber with a single concentration of magnetic particle doped structure, as shown in FIGS. 2A to 2C.
  • the polymer is a cycloolefin copolymer (COC) and the magnetic particles are NdFeB micro-particles, which specifically includes the following steps:
  • COC cyclic olefin copolymer
  • the magnetic composite polymer with the NdFeB doping concentration of 30wt.% obtained in (1) is subjected to hot pressing and mechanical cold processing to obtain a magnetic structured preform with a NdFeB doping concentration of 30wt.%.
  • the magnetic structured preform The rod is round.
  • the hot pressing temperature is 160°C, and the hot pressing time is 20 min.
  • the heat drawing device as shown in Figure 1.
  • the magnetic structured preform with the NdFeB doping concentration of 30wt.% obtained in (2) was hot-drawn to obtain the micro-nano magnetic fiber with the NdFeB doping concentration of 30wt.%.
  • the cross section of the fiber is circular, as shown in Figure 2A. Show.
  • the hot drawing temperature is 240° C.
  • the drawing speed is 1 m/min
  • the diameter of the prepared micro-nano magnetic fiber is 300 ⁇ m.
  • This application provides a micro-nano magnetic fiber with a structure doped with a single concentration of magnetic particles, the polymer is a cycloolefin copolymer (COC), and the magnetic particles are NdFeB micron particles.
  • COC cycloolefin copolymer
  • COC cyclic olefin copolymer
  • the magnetic composite polymer with NdFeB doping concentration of 60wt.% obtained in (1) is subjected to hot pressing and mechanical cold working treatment to obtain a magnetic structured preform with NdFeB doping concentration of 60wt.%.
  • the hot pressing temperature is 140°C, and the hot pressing time is 20 min.
  • the magnetic structured preform with NdFeB doping concentration of 60 wt.% obtained in (2) is hot-drawn to obtain micro-nano magnetic fibers with NdFeB doping concentration of 60 wt.%, and the cross section of the fiber is circular.
  • the hot drawing temperature is 220°C
  • the drawing speed is 1m/min
  • the diameter of the prepared micro-nano magnetic fiber is 300 ⁇ m.
  • the hot drawing temperature is 220°C and the pulling speed is 9m/min
  • the diameter of the micro-nano magnetic fiber that can be prepared is 100 ⁇ m.
  • This embodiment provides a micro-nano magnetic fiber doped with radial concentration distribution, as shown in FIGS. 3A to 3C.
  • the polymer is F-PMMA and the magnetic particles are NdFeB micro-particles, which specifically includes the following steps:
  • the magnetic composite film with the NdFeB doping concentration of 75wt.% obtained in (1) is hot-pressed and mechanically cold processed to obtain the original preform with a NdFeB doping concentration of 75wt.%.
  • the NdFeB is doped by the film winding method.
  • the magnetic polymer films with impurity concentrations of 70wt.%, 50wt.%, and 20wt.% were successively wound around the original preform, and the preform after the film was thermally cured to obtain the radial concentration distribution doping Structure of the magnetic structured preform one.
  • the magnetic composite film with the NdFeB doping concentration of 20wt.% obtained in (1) was hot-pressed and mechanically cold worked to obtain the original preform with a NdFeB doping concentration of 20wt.%.
  • the second preform was doped with NdFeB by the film winding method.
  • the magnetic polymer films with impurity concentrations of 50wt.%, 70wt.%, and 75wt.% are respectively wound around the second original preform and thermally cured to obtain the second magnetic structured preform with a radial concentration distribution doped structure.
  • the cross-sections of the first and second magnetic structured preforms can be circular, rectangular or triangular.
  • the hot pressing temperature is 130°C, and the hot pressing time is 20 min.
  • the curing temperature is 120°C, and the curing time is 30 minutes.
  • the first magnetic structured preform and the second magnetic structured preform obtained in (2) with the radial concentration distribution doping structure are hot-drawn to obtain the micro/nano magnetic fiber with the radial concentration distribution doping structure, the cross section of which is round Shape, as shown in Figure 3A.
  • the cross-section of the micro-nano magnetic fiber can also be made into a rectangular or triangular shape, as shown in Figs. 3B to 3C.
  • the hot drawing temperature is 230° C.
  • the pulling speed is 1 m/min
  • the diameters of the prepared micro-nano magnetic fiber 1 and micro-nano magnetic fiber 2 are both 300 ⁇ m.
  • Example 1 Take the micro-nano magnetic fibers prepared in Examples 1 to 3 for comparison. The results are shown in Table 1. After 1T magnetic field magnetization, the magnetic particle doped concentration of the micro-nano magnetic fibers prepared in Example 2 is compared with that of 60wt.%. Example 1 has higher magnetic properties, indicating that the thermal drawing method of the present application can introduce high doping concentration of magnetic particles into the fiber, thereby achieving high magnetic response and high remanent magnetic field strength of the fiber. In each strip structure of the core layer of the micro-nano magnetic fiber with a radial concentration distribution doping structure prepared in Example 3, the highest doping concentration of magnetic particles is 75 wt.%, which is higher in magnetic properties than those of Example 1 and Example 2.
  • micro-nano magnetic fiber doped with a single concentration of magnetic particles indicates that the micro-nano magnetic fiber prepared by the thermal drawing method can help increase the concentration of magnetic particles, thereby achieving magnetic enhancement.
  • the micro/nano magnetic fiber with a radial concentration distribution doped structure prepared in Example 3 has a stronger mechanical strength than the micro/nano magnetic fiber doped with a single concentration of magnetic particles while achieving high concentration doping of magnetic particles.
  • the mechanical properties of the micro-nano magnetic fiber prepared by the hot drawing method can be greatly improved, thereby achieving a wider range of applications.
  • the doping structure with radial concentration distribution 1 and 2 have different doping concentration distributions of magnetic particles, and the doping structure with radial concentration distribution is a concentration distribution in which the doping concentration of magnetic particles decreases from the inside to the outside.
  • the second is a concentration distribution in which the doping concentration of magnetic particles increases from the inside to the outside.
  • the size of the residual magnetic field at a single point on the fiber surface of the radial concentration distribution doping structure is higher than that of the structure 1. Therefore, when only considering the size of the residual magnetic field of the fiber, the increasing magnetic particle concentration distribution from the inside to the outside will increase the size of the residual magnetic field of the micro/nano magnetic fiber.
  • This application provides a micro-nano magnetic fiber with a multi-concentration magnetic particle doped structure.
  • this embodiment provides a micro-nano magnetic fiber with a core layer with two strip structures and including a cladding layer, such as Shown in Figures 4A to 4C.
  • the polymer is cycloolefin copolymer (COC) and the magnetic particles are Fe 3 O 4 nanoparticles, which specifically includes the following steps:
  • COC cyclic olefin copolymer
  • the magnetic composite material obtained in (1) is hot-pressed, mechanically cold-worked, and then assembled with pure COC material to obtain an asymmetric structure containing a cladding layer (that is, the doping concentration of magnetic particles is on the cross-section of the magnetic structured preform
  • the magnetic structured preforms are distributed asymmetrically), and the magnetic structured preforms can be circular, rectangular or triangular.
  • the hot pressing temperature is 130°C, and the hot pressing time is 20 min.
  • the magnetic structured preform with asymmetric structure of doping concentration obtained in (2) is hot-drawn to obtain the micro-nano magnetic fiber with asymmetric structure including the cladding (that is, the doping concentration of the magnetic particles is in the cross-section of the micro-nano magnetic fiber).
  • the upper part is distributed asymmetrically), which can be circular, rectangular or triangular, as shown in Figs. 4A to 4C.
  • the hot drawing temperature is 240° C.
  • the drawing speed is 5 m/min
  • the diameter of the prepared micro-nano magnetic fiber is 100 ⁇ m.
  • Example 2 and Example 4 were compared, and the results are shown in Table 2 below.
  • the asymmetric structure of the micro-nano magnetic fiber prepared in Example 4 can realize non-contact rotation, twisting, bending and other actions under a 50 mT magnetic field.
  • the asymmetric structure of the micro-nano magnetic fiber prepared in Example 4 achieves high-concentration doping of magnetic particles and at the same time has a stronger mechanical strength than the micro-nano magnetic fiber with a single-concentration doped structure of magnetic particles. This shows that the structured fiber prepared by the thermal drawing method of the present application can greatly improve its mechanical properties and realize the diversification of fiber functions.
  • the present application provides a micro-nano magnetic fiber with a multi-concentration magnetic particle doping structure, which is specifically a micro-nano magnetic fiber with a magnetic particle doping concentration in a cross-section of a two-dimensional code structure or a cross structure. As shown in Figure 4E and Figure 4F.
  • the polymer is a cycloolefin copolymer (COC)
  • the magnetic particles are SrFe 12 O 19 micron particles, which specifically includes the following steps:
  • the six SrFe 12 O 19 doped magnetic composite powders obtained in step (1) are 3D printed into a cross-structured magnetic structured preform doped with SrFe 12 O 19.
  • the printing temperature is 260°C.
  • the magnetic structured preform with special-shaped structure doped with SrFe 12 O 19 obtained in (2) is hot-drawn to obtain a micro-nano magnetic fiber with a structure as shown in FIG. 4F.
  • the hot drawing temperature is 240° C.
  • the drawing speed is 0.5 m/min
  • the diameter of the prepared micro-nano magnetic fiber is 500 ⁇ m.
  • the micro-nano magnetic fiber obtained in this embodiment has a highly customized distribution of magnetic micro-particles.
  • the micro/nano magnetic fiber with the two-dimensional code structure or the cross structure prepared in this embodiment can realize non-contact rotation, twisting, bending and other actions under a magnetic field of 50 mT. The results are shown in Table 2 above.
  • This embodiment provides a micro-nano magnetic fiber integrated with multiple electrodes and optical fibers, as shown in FIG. 5.
  • the polymer is a cycloolefin copolymer (COC)
  • the magnetic particles are SrFe 12 O 19 micron particles, which specifically includes the following steps:
  • COC cyclic olefin copolymer
  • the magnetic composite material obtained in step (1) is hot-pressed and mechanically cold-worked to obtain a tubular magnet with an outer diameter of 18 mm, an inner through hole diameter of 2 mm, and a surrounding through hole diameter of 1 mm with a doping concentration of SrFe 12 O 19 of 60 wt.%.
  • the hot pressing temperature is 130°C, and the hot pressing time is 20 min.
  • the hot wire drawing temperature is 230°C, and the wire feeding speed and drawing speed of the quartz optical fiber and the metal electrode remain the same, which is 0.5m/min.
  • the wire feeding speed refers to the speed at which the optical fiber and electrode materials are uniformly lowered through control.
  • the diameter of the prepared micro-nano magnetic fiber is 500 ⁇ m.
  • micro-nano magnetic fibers obtained in the above embodiments have flexible magnetron control functions, light guide, and multi-electrode electrical signal reading functions. The results are shown in Table 2 above.
  • a micro-nano magnetic fiber having two discrete strip-shaped core layers and including a cladding layer, as shown in FIG. 6.
  • the polymers are COC polymers and PMMA polymers, and the magnetic microparticle material is NdFeB microparticles.
  • COC cyclic olefin copolymer
  • COC cyclic olefin copolymer
  • the magnetic structured preform obtained in (2) is hot-drawn to obtain a micro-nano magnetic fiber with a structure as shown in FIG. 4F.
  • the hot drawing temperature is 240° C.
  • the drawing speed is 0.5 m/min
  • the diameter of the prepared micro-nano magnetic fiber is 500 ⁇ m.
  • micro-nano magnetic fiber prepared in this embodiment can realize non-contact rotation, twisting, bending and other actions under a magnetic field of 50 mT.
  • the results are shown in Table 2 above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

公开一种微纳米磁性纤维制备方法,所述微纳米磁性纤维包括芯层,所述制备方法包括以下步骤:复合:将磁性粒子与基材进行复合,得到磁性复合材料;加工:利用磁性复合材料制备磁性结构化预制棒;热拉制:将磁性结构化预制棒采用热拉制工艺制备微纳米磁性纤维。还公开一种微纳米磁性纤维,其包括芯层,芯层包括磁性粒子和基材,磁性粒子分布在基材内;磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。本申请的方法对多数磁性材料、磁性复合材料及其他功能材料的复合集成具备普适性,且对制备的微纳米磁性纤维中磁性粒子浓度、分布、结构及纤维直径具有调控能力。

Description

一种微纳米磁性纤维及微纳米磁性纤维制备方法 技术领域
本申请涉及功能纤维领域,具体涉及一种微纳米磁性纤维及微纳米磁性纤维制备方法。
背景技术
磁性物质由于其对磁场在力学、电学上的高响应性,在生物医疗、可穿戴、软致动、柔性致动及环境修复等方面被广泛应用,近年来逐渐成为研究热点。而纤维态作为一种材料形态,存在于我们日常生活的方方面面,是一种极佳的技术载体。如何将各种磁材料(包括硬磁材料与软磁材料)以分布、浓度、结构高度可控的方式集成到纤维中,是将磁功能引入软体机器人、智能材料、生物医疗等应用的关键。
专利文献1公开了一种磁性自组装介孔纤维及其制备方法。该方法利用溶胶凝胶法将磁性物质原位组装到介孔纤维上,主要步骤为含有金属盐与硅的前体液、纺丝或甩丝、高温烧结。磁性物质重量占比为5~60%。
专利文献2中公开了一种用于含铬废水处理的高效磁性碳纳米复合材料的制备方法。结合静电纺丝技术与高温煅烧技术,其纤维制备步骤包括聚苯乙烯的接枝改性、改性聚苯乙烯纤维的静电纺丝、九水硝酸铁/无水乙醇溶液浸润、干燥、煅烧。纤维直径0.5~2微米。其中,九水硝酸铁/无水乙醇溶液浓度为4~7%。
专利文献3中公开了一种Fe 3O 4/真菌纤维磁性复合材料的制备方法。步骤包括纳米Fe 3O 4的制备、真菌纤维和Fe 3O 4的水热合成。纳米Fe 3O 4均匀分散在真菌纤维表面,复合材料具有较好的顺磁性。其中,真菌纤维和纳米Fe 3O 4颗粒的用量比为1:0~5:1
专利文献1~3均基于化学方法进行磁性纤维的制备。由于化学反应本身的动力学特征,制备的磁性纤维中的磁性颗粒的成分、大小及分布高度不可控,同时,磁颗粒含量较低,且方法难以对多种磁性材料及聚合物广泛应用。
专利文献4公开了一种一维磁性纤维材料及其制备方法。该纤维由壳 层、核层组成,通过高压静电纺丝法制备得到。壳层由p型半导体聚合物聚对苯乙炔为主要材质,厚度为30~150nm,核层由磁性Fe 3O 4纳米粒子和聚乙烯醇分散介质组成,粒子大小为5~30nm。磁性纳米纤维平均直径为100~450nm,长度为10μm~10cm。所述的磁性Fe 3O 4纳米粒子质量百分含量为2~56%。专利文献4通过静电纺丝技术进行核壳结构磁性纳米纤维的制备。由于静电纺丝技术本身的动力学特征与导电性需求,纤维的直径被限制在百微米量级、长度不连续、纤维外包层须有一定的导电性,很大程度上限制了这种磁性纳米纤维的应用范围。
专利文献5公开了一种磁性玻璃纤维及其制备方法。磁性玻璃纤维由2~13wt.%纳米级铁氧体磁粉(CoFe 2O 4,BaFe 12O 19,NiFe 2O 4)与石英玻璃(SiO 2)混合物料拉丝得到,具有明显的磁性能。
专利文献6公开了一种磁性纳米复合粒子及其磁性纤维的制备方法。步骤包括纳米纤维素的制备、磁性纳米复合粒子的制备、磁性纳米复合粒子与载体树脂的混合、与原料树脂的混合、熔融纺丝。纤维表现出较高顺磁响应,且纤维具有良好的力学性能。该发明磁性纳米复合粒子为Fe 3O 4,占磁性纤维的质量百分比为5~30%。
专利文献7中公开了一种磁场响应型纤维的制备方法。其步骤包括Fe 3O 4纳米微球的制备、Fe 3O 4/PDMS高分子单体乳液制备、基于玻璃毛细管模板的纤维固化成型。由于混合的Fe 3O 4纳米微球质量比很低(<1wt.%),制备的纤维能在外加磁场下变为红色。
专利文献8公开了一种磁性纤维及其制造方法。其纤维具有皮芯结构,由均匀混合双螺杆挤出的皮层料与芯层料复合纺丝得到,皮芯重量比为3:7~7:3。皮层料包括57~89.7%聚合物、10~40%磁粉、0.3~3%增容剂,芯层料包括80~97.5%聚合物、2~15%金属粉、0.5~5%偶联剂。
专利文献9中公开了一种硬磁特性的纳米纤维膜的制备方法。其纤维制备步骤包括:磁性纳米颗粒的退磁处理、退磁态磁性纳米颗粒与乙烯~乙烯醇共聚物混合复合、复合纺丝、萃取。磁性纳米颗粒(10~100nm)为SrFe 12O 19、Fe 3O 4、Nd 2Fe 14B中的至少一种。磁性纳米颗粒的质量百分比为5~20%。
专利文献10中公开了一种导电/导磁化学纤维的磁场诱导辅助纺丝成型装置及其生产方法。纤维的混合熔体前体由磁性粉体,分散剂,抗氧剂和聚合物进行熔融共混得到,利用安装在纺丝头上的电磁线圈产生的磁场作用, 将混合熔体中的磁性粒子按磁力线方向进行排列形成微纤或串珠结构,丝条经冷却固化,然后经上油、集束、牵伸和热定型,得到纤维。其中,控制磁场强度为0.01~2T,磁性粉体为Fe、Ni、Co金属或合金或氧体,含量为1~20wt.%。
专利文献11中公开了一种具有可编程磁致形变的磁流变弹性体的制备方法。将磁性线材通过集成有预结构磁场的3D打印机打印出具有特定分布及取向的磁性短纤维。磁性短纤维具有任意分布及取向。预结构磁场为100~500mT。所述磁性颗粒为羧基铁粉或NdFeB颗粒,磁性颗粒含量为10~49.5wt.%,
专利文献5~11均基于热方法(包括熔融复合纺丝、拉丝技术、3D打印技术)进行磁纤维的制备。然而,尚未有一种技术可以实现对多数磁性材料的应用,包括硬磁材料、软磁材料。同时,由于流变动力学的本质特征,上述技术得到的磁性纤维中磁性材料颗粒或磁性复合材料颗粒的含量普遍低于50wt.%,纤维中能集成的磁性颗粒的直径大小及纤维本身结构、直径的调控能力也非常有限。
现有技术文献
专利文献1 CN102041584B 公告文本
专利文献2 CN106732376B 公告文本
专利文献3 CN107670648B 公告文本
专利文献4 CN101768797A 公开文本
专利文献5 CN100340510C 公告文本
专利文献6 CN102978728A 公开文本
专利文献7 CN104278352B 公告文本
专利文献8 CN101649503B 公告文本
专利文献9 CN106000116B 公告文本
专利文献10 CN104963018B 公告文本
专利文献11 CN109818523B 公告文本
申请内容
为了解决现有技术中磁性纤维中集成的磁功能及其他功能单一、磁力转 化能力较低、机械性能差等问题,本申请提供了一种能对多数磁材料、磁复合材料及其他功能材料的复合集成具备普适性,同时,对纤维中颗粒集成浓度、分布、结构及纤维的直径的调控能力的微纳米磁性纤维及微纳米磁性纤维的制备方法。
本申请的具体技术方案如下:
1、一种微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维包括芯层,所述制备方法包括以下步骤:
复合:将磁性粒子与基材进行复合,得到磁性复合材料;
加工:利用所述磁性复合材料制备磁性结构化预制棒;
热拉制:将所述磁性结构化预制棒采用热拉制工艺制备微纳米磁性纤维。
2、根据项1所述的微纳米磁性纤维的制备方法,其特征在于,
所述复合步骤中,将磁性粒子与基材进行复合,得到多种磁性复合材料;
所述加工步骤中,利用所述多种磁性复合材料制备所述磁性结构化预制棒。
3、根据项1或2所述的微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维包括芯层和包层;
所述加工步骤中,利用所述磁性复合材料与所述包层的材料制备所述磁性结构化预制棒。
4、根据项1~3中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维还包括高熔点功能层;
所述热拉制步骤中,所述磁性结构化预制棒包覆所述高熔点功能层的材料,且与所述高熔点功能层的材料机械同步地采用热拉制工艺制备所述微纳米磁性纤维。
5、根据项1~4中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述加工步骤中,利用薄膜卷绕法、热压制法、挤出成型法、3D打印法中的一种或两种以上方法制备所述磁性结构化预制棒。
6、根据项5所述的微纳米磁性纤维制备方法,其特征在于,所述加工步骤中,制备所述磁性结构化预制棒的方法还包括如下一种或两种以上方法:机械加工法、组装法及热固化法。
7、根据项5或6所述的微纳米磁性纤维的制备方法,其特征在于,所 述热拉制步骤之后,还包括以下步骤:
二次加工:利用所述微纳米磁性纤维制备磁性结构化预制棒二;
二次热拉制:将所述磁性结构化预制棒二采用热拉制工艺制备所述微纳米磁性纤维二;
优选地,所述二次加工步骤中,通过3D打印法制备所述磁性结构化预制棒二。
8、根据项1~7中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,所述磁性复合材料为磁性复合材料颗粒、磁性复合材料薄膜或磁性复合材料粉末。
9、根据项1~8中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,利用溶剂溶解法将所述磁性粒子与所述基材进行复合;
优选地,所述溶剂溶解法包括以下步骤:所述基材的溶剂溶解、所述磁性粒子掺杂和超声分散;
更优选地,所述溶剂溶解法中,在所述超声分散步骤之后,还包括真空干燥。
10、根据项1~8中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,利用物理热熔融法将所述磁性粒子与所述基材进行复合;
优选地,所述物理热熔融法包括以下步骤:所述基材的物理热熔融、所述磁性粒子掺杂和挤出。
11、根据项10中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;
优选地,所述金属磁性粒子选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子;
优选地,所述金属化合物磁性粒子为金属氧化物磁性粒子;更优选地,所述金属化合物磁性粒子选自如下一种或两种:Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;
优选地,所述金属合金磁性粒子选自如下一种或两种以上:钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子、铁钴合金磁性粒子。
12、根据项1~11中任一项所述的微纳米磁性纤维的制备方法,其特征 在于,所述磁性粒子直径为0.005~250μm,优选为0.005~100μm。
13、根据项1~12中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。
14、根据项13所述的微纳米磁性纤维的制备方法,其特征在于,所述聚合物为热塑性聚合物;
优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
15、根据项9所述的微纳米磁性纤维的制备方法,其特征在于,所述基材的溶剂溶解所用的溶剂选自如下一种或两种以上:丙酮、丁酮、N-甲基吡咯烷酮、二甲基乙酰胺(DMAC)、二甲基甲酰胺(DMF)、氯仿、环己烷、甲苯、乙苯、异丙苯、二甲苯、溴苯、氯苯、二氯甲烷、二氯乙烷、四氯乙烷、四氯乙烯、苯乙烯、柠檬烯溶剂、乙酸乙酯、乙酸丁酯。
16、根据项1~15中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述基材、所述磁性复合材料和所述微纳米磁性纤维在使用前进行真空干燥;
所述真空干燥温度为20~300℃,优选为60~150℃;
所述真空干燥时间为2~2000小时,优选为12~50小时。
17、根据项3~16中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述包层包括基材,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料;所述包层的材料的热膨胀系数与所述磁性复合材料的热膨胀系数匹配;或者,所述包层的材料的玻璃化转变温度或熔点与所 述磁性复合材料的玻璃化转变温度或熔点匹配;
优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃;
优选地,所述包层还包括磁性粒子,将磁性粒子与基材进行复合,得到包层的材料。
18、根据项5或6所述的微纳米磁性纤维的制备方法,其特征在于,所述磁性复合材料为磁性复合材料薄膜,利用薄膜卷绕法进行加工,所述磁性复合材料薄膜的杨氏模量为0.01~1GPa。
19、根据项5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用热压制法进行加工,热压温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
优选地,所述热压温度为25~600℃,进一步优选为120~250℃;
优选地,热压时间为5~600min,进一步优选为10~20min。
20、根据项5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用挤出成型法进行加工,挤出温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
优选地,所述挤出温度为50~700℃,进一步优选为200~400℃。
21、根据项5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用3D打印法进行加工,打印温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
优选地,所述打印温度为50~700℃,进一步优选为200~400℃。
22、根据项6所述的微纳米磁性纤维的制备方法,其特征在于,利用热 固化法进行加工,固化温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
优选地,所述固化温度为50~500℃,进一步优选为150~300℃;
优选地,固化时间为1~500min,进一步优选为20~40min。
23、根据项1~22中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述热拉制工艺的温度为25~600℃,优选为230~400℃。
24、根据项1~23中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述热拉制工艺的张力为0~500g,优选为10~50g;
优选地,所述热拉制工艺的牵引速度为0.1m/min~5000m/min。
25、根据项1~24中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述磁性复合材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或为可加工成纤维态的材料。
26、根据项1~23中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述各种磁性复合材料中磁性粒子的质量百分含量为0.01wt.%~75wt.%。
27.一种微纳米磁性纤维,其特征在于,所述微纳米磁性纤维包括芯层,所述芯层包括磁性粒子和基材,所述磁性粒子分布在所述基材内;
所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;
所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。
28.根据项27所述的微纳米磁性纤维,其特征在于,所述聚合物为热塑性聚合物;
优选的,所述热塑性聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物 (ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚。
29.根据项27或28所述的微纳米磁性纤维,其特征在于,所述玻璃选自如一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
30.根据项27~29中任一项所述的微纳米磁性纤维,其特征在于,所述金属磁性粒子选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子;
优选地,所述金属化合物磁性粒子为金属氧化物磁性粒子;更优选地,所述金属化合物磁性粒子选自如下一种或两种:Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;
优选地,所述金属合金磁性粒子选自如下一种或两种以上:钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子、铁钴合金磁性粒子。
31.根据项27~30中任一项所述的微纳米磁性纤维,其特征在于,所述磁性粒子的直径为0.005~250μm,优选为0.005~100μm。
32.根据项27~31中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维为柱状结构。
33.根据项27~32中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维横截面选自如下一种:圆形、圆环形、三角形、三角环形、矩形、矩形环形、多边形环形、不规则形状。
34、根据项27~33中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维直径为0.01~3000μm,优选50~1000μm。
35.根据项27~34中任一项所述的微纳米磁性纤维,其特征在于,所述芯层为由内向外的多层结构,所述芯层的任意一层中,所述磁性粒子在所述层内均匀分布。
36.根据项35所述的微纳米磁性纤维,其特征在于,所述芯层的多层中的各层相比,至少有两层中所述磁性粒子的质量百分含量不同。
37.根据项35或36所述的微纳米磁性纤维,其特征在于,所述芯层的多层中的各层相比,各层中所述磁性粒子的质量百分含量从内向外逐渐降低或逐渐升高或呈非单调性变化。
38.根据项35~37中任一项所述的微纳米磁性纤维,其特征在于,所述 芯层的多层中的各层中所述磁性粒子的质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%。
39.根据项27~34中任一项所述的微纳米磁性纤维,其特征在于,所述芯层横截面为圆形、矩形、三角形或不规则形状,所述横截面分为两个或三个以上区域,从而所述芯层分为两个或三个以上条状结构,所述任意一条状结构中,所述磁性粒子在所述条状结构中均匀分布,至少有两个条状结构中磁性粒子质量百分含量不同。
40.根据项39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为圆形,所述横截面分为两个或三个以上扇形区域;可选地,所述横截面分为两个相等的半圆形区域。
41.根据项39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为矩形,所述横截面分为两个相等的矩形区域。
42.根据项39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为三角形,所述横截面分为两个三角形区域。
43.根据项39~42中任一项所述的微纳米磁性纤维,其特征在于,所述各条状结构中磁性粒子质量百分含量为0.01wt.%~75wt.%,更优选为1wt.%~75wt.%。
44.根据项27~43中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维还包括高熔点功能层,所述芯层包裹所述高熔点功能层;
优选地,所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述芯层的材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或可加工成纤维态的材料。
45.根据项27~44中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维还包括包层,所述包层包括基材,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料;所述包层的材料与所述芯层的材料可共同热拉制,所述包层包裹所述芯层;
优选地,所述包层的材料的热膨胀系数与所述芯层的材料的热膨胀系数匹配;或者,所述包层的材料的玻璃化转变温度及熔点分别低于所述芯层的材料的玻璃化转变温度及熔点;
优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲 基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
46.根据项45所述的微纳米磁性纤维,其特征在于,所述芯层包括两个或三个以上条状结构,所述两个或三个以上条状结构相互离散。
47.根据项45所述的微纳米磁性纤维,其特征在于,所述两个或三个以上条状结构中,所述磁性粒子的质量百分含量不同。
48.根据项45~47中任一项所述的微纳米磁性纤维,其特征在于,所述各条状结构中磁性粒子的质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%。
49.如项1~26中任一项所述的微纳米磁性纤维的制备方法制备的微纳米磁性纤维。
申请的效果
本申请提供的微纳米磁性纤维(可简称为“纤维”)的制备方法,相对于现有的磁性纤维制备方法,磁性材料及基材选择范围广,结构设计自由度高,结构高度可控,可以设计不同横截面结构的预制棒,可以准确设计不同磁性粒子及其它功能材料在微纳米磁性纤维中的分布,从而拉热制成为不同结构的微纳米磁性纤维,本申请提供的微纳米磁性纤维制备方法和微纳米磁性纤维,与现有技术相比,具有下述有益效果:
(1)磁性粒子及基材选择范围广,结构设计自由度高,结构高度可控,可以设计不同横截面结构的磁性结构化预制棒;
(2)制备的微纳米磁性纤维直径调控范围较广,为0.01~3000μm,同时直径均匀可控,直径尺寸误差范围为±1%;
(3)磁性粒子掺杂浓度高,且掺杂浓度可在0.01wt.%~75wt.%范围内精确调控;
(4)制备的微纳米磁性纤维的横截面结构任意可调,从而使得横截面内的连续、离散磁畴分布、磁结构化响应等高度可控,同时,制备的微纳米磁性纤维的柔韧性较好,磁力转化效率较高;
(5)可以准确设计不同磁性粒子及其它功能材料在微纳米磁性纤维中的分布,从而热拉制成为不同结构的微纳米磁性纤维,可实现磁控致动与导光、电信号采集、磁电转换、高强度机械性能的综合;
(6)本申请采用的热拉制工艺为工业成熟度较高的工艺,容易在设备改造成本较小的情况下实现大批量、规模化生产。
(7)本申请的微纳米磁性纤维为面向生物医疗、可穿戴、柔性致动、软致动的磁功能纤维器件提供了基础,在医疗、民用和军用领域均展现出巨大的应用前景和价值。
附图说明
图1为本申请一个具体实施方式的利用热拉制工艺制备微纳米磁性纤维的装置示意图。
图2A为本申请一个具体实施方式的单一浓度磁性粒子掺杂的微纳米磁性纤维的圆形横截面示意图。
图2B为本申请一个具体实施方式的单一浓度磁性粒子掺杂的微纳米磁性纤维的矩形横截面示意图。
图2C为本申请一个具体实施方式的单一浓度磁性粒子掺杂的微纳米磁性纤维的三角形横截面示意图。
图3A为本申请一个具体实施方式的具有多层结构芯层的微纳米磁性纤维圆形横截面示意图。
图3B为本申请一个具体实施方式的具有多层结构芯层的微纳米磁性纤维矩形横截面示意图。
图3C为本申请一个具体实施方式的具有多层结构芯层的微纳米磁性纤维三角形横截面示意图。
图4A为本申请一个具体实施方式的具有两个条状结构的芯层、且包括包层的微纳米磁性纤维圆形横截面示意图。
图4B为本申请一个具体实施方式的具有两个条状结构的芯层、且包括包层的微纳米磁性纤维矩形横截面示意图。
图4C为本申请一个具体实施方式的具有两个条状结构的芯层、且包括包层的微纳米磁性纤维三角形横截面示意图。
图4D为本申请一个具体实施方式的具有两个条状结构的芯层、且包括包层的微纳米磁性纤维圆形横截面示意图。
图4E为本申请一个具体实施方式的具有多个条状结构的芯层、且包括包层的微纳米磁性纤维矩形横截面示意图。
图4F为本申请一个具体实施方式的具有六个条状结构的芯层的微纳米磁性纤维横圆形截面示意图。
图5为本申请一个具体实施方式的集成有石英光纤(白色)与金属电极(黑色)的微纳米磁性纤维圆形横截面示意图。
图6为本申请一个具体实施方式的具有两个离散的条状结构的芯层、且包括包层的微纳米磁性纤维圆形横截面示意图。
符号说明
1预制棒                    2预制棒夹具
3拉丝塔加热炉              4纤维激光测径仪
5拉丝塔的牵引装置          6拉丝塔的纤维收集装置
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本文中的术语的含义如下:
“磁性粒子”为永磁性或软磁性的微纳米粒子。
“结构化”是指制备的微纳米磁性纤维的截面可以制备成任意需要的结构,例如单一浓度磁性粒子掺杂的结构、多浓度磁性粒子掺杂的结构、含包 层结构,无包层结构、含高熔点功能材料层结构等;且纤维横截面可以为任意形状。
“预制棒”是可以用来拉制纤维的材料预制件,其结构决定了纤维的结构。
“热拉制”是指通过热源对预制棒的部分区域进行加热,使预制棒软化,再从加热区域的一端或两端进行手动或机械拉伸,也称为“热拉丝”。
“可共拉功能材料”是指材料参数、热膨胀系数和软化温度等与磁性复合材料匹配,从而可与磁性复合材料一起热拉制成微纳米磁性纤维的材料。
“材料热膨胀系数”是指材料由于温度改变而有胀缩现象,材料热膨胀系数匹配,是指不同材料具备相同或接近的热膨胀系数。材料热膨胀系数的匹配能确保纤维结构与预制棒结构的一致性。
“玻璃化转变温度”是指非晶态材料中分子链段能运动的最低温度,热拉过程在微观上表现为材料分子链的运动,因此热拉温度要在玻璃化转变温度之上。玻璃化转变温度匹配是指不同材料具有相同或接近的玻璃化转变温度,确保不同材料可以一起热拉制成纤维。
“熔点匹配”是指功能材料的熔点要接近或高于所用非晶态材料的玻璃化转变温度,确保功能材料在纤维热拉制温度下能与非晶态材料共同形成纤维。
“机械同步”是指在热拉制过程中,磁性结构化预制棒与高熔点功能层的材料以相同的牵引速度,同步进行拉伸。
“热塑性聚合物”指的是能反复加热熔化、在软化或流动状态下成型,冷却后能保持模具形状的聚合物,为线型或含少量支链结构的高分子化合物。
“PMMA”为聚甲基丙烯酸甲酯,具有高透明度,低价格,易于机械加工等优点,是经常使用的玻璃替代材料。
“SMMA”为苯乙烯二甲基丙烯酸甲酯共聚物,是一种聚丙烯酸树脂共聚物。
“COC”为环烯烃共聚物,是一种由环烯烃聚合而成的高附加值的热塑性工程塑料,由于其具有高透明性、低电介常数、优良的耐热性、耐化学性、熔体流动性、阻隔性及尺寸稳定性等,被广泛地应用于制造各种光学、信息、电器、医用材料。
“COP”为环烯烃聚合物,是用于医学用光学部件和高端药品包装材料, 其原料特点为:高透明、低双折射率、低吸水、高刚性、高耐热、水蒸气气密性好,复合FDA标准。
“PC”为聚碳酸酯,是分子链中含有碳酸酯基的高分子聚合物,根据酯基的结构可分为脂肪族、芳香族、脂肪族-芳香族等多种类型。
“PPSU”为聚亚苯基砜树脂,是一种无定形的热性塑料,具有高度透明性、高水解稳定性。
“PES”为聚醚砜,通常是非晶态聚合物,与聚砜相比,聚醚砜有更好的熔融加工性和较低的熔体粘度,成型收缩率小(仅为0.6%左右),尺寸稳定性好。
“PEI”为聚醚酰亚胺,是无定形聚醚酰亚胺所制造的超级工程塑料,具有最佳之耐高温及尺寸稳定性,以及抗化学性、阻燃、电气性、高强度、高刚性等等,可广泛应用耐高温端子,IC底座、照明设备、FPCB(软性线路板)、液体输送设备、飞机内部零件、医疗设备和家用电器等。
“PS”为聚苯乙烯,是指由苯乙烯单体经自由基加聚反应合成的聚合物。它是一种无色透明的热塑性塑料,具有高于100℃的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。
“PP”为聚丙烯,是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。
“含氟树脂”为分子结构中含有氟原子的一类热塑性树脂。具有优异的耐高低温性能、介电性能、化学稳定性、耐候性、不燃性、不粘性和低的摩擦系数等特性。
“PVDF”为聚偏氟乙烯,主要指偏氟乙烯均聚物或者偏氟乙烯与其它少量含氟乙烯基单体的共聚物,它兼具含氟树脂和通用树脂的特性,除具有良好的耐化学腐蚀性、耐高温性、耐氧化性、耐候性、耐射线辐射性能外,还具有压电性、介电性、热点性等特殊性能。
“PA”为聚酰胺树脂,是分子中具有-CONH结构的缩聚型高分子化合物,它通常由二元酸和二元胺经缩聚而得。聚酰胺树脂最突出的优点为软化点的范围特别窄,而不象其它热塑性树脂那样,有一个逐渐固化或软化的过程,当温度稍低于熔点时就引起急速地固化。
“PE”为聚乙烯,是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100℃~-70℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。
“PET”为聚对苯二甲酸乙二醇酯,又俗称涤纶树脂。它是对苯二甲酸与乙二醇的缩聚物,属结晶型饱和聚酯,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。耐蠕变、抗疲劳性、耐摩擦性好,磨耗小而硬度高问,具有热塑性塑料中最大的韧性;电绝缘性能好,受温度影响小。
“PAN”为丙烯腈树脂,其主要单体是丙烯腈,它提供良好的气体阻挡层、耐化学药品性和保气、保味性能。这种树脂具有中等强度的拉伸强度,当用橡胶改性或定向后具有良好的抗冲性,并且可以通过挤塑、注塑成型和热成型等手段进行加工。
“PVA”为聚乙烯醇,是一种用途广泛的水溶性高分子聚合物,其性能介于塑料和橡胶之间。
“PVC”为聚氯乙烯,是氯乙烯经加成聚合反应得到的的高分子材料。
“PU”为聚氨酯树脂,是分子结构中含有氨基甲酸酯基团(-NH-COO-)的聚合物。
“SEBS”为聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物。
“ABS”为丙烯腈-丁二烯-苯乙烯共聚物,是一种强度高、韧性好、易于加工成型的热塑型高分子材料。
“PVDF”为聚偏二氟乙烯,是一种高度非反应性热塑性含氟聚合物。
“PEG”为聚乙二醇,也称聚环氧乙烷,是指环氧乙烷的聚合物。
“PTT”为聚对苯二甲酸丙二酯,这种材料兼有涤纶和锦纶的特点。
“硫系玻璃”为以硫化物、硒化物、锑化物为主要成分的玻璃,也包括含有氧化物的硫系化合物玻璃,硫系玻璃的加工效率高,可以精密模压。
“DMAC”为二甲基乙酰胺,是一种非质子高极性溶剂,有微氨气味,溶解力很强,能与水、芳香族化合物、酯、酮、醇、醚、苯和三氯甲烷等任意混溶,且能使化合物分子活化,广泛用作溶剂及催化剂。
“DMF”为二甲基甲酰胺,是一种无色透明液体,能和水及大部分有机溶剂互溶,是化学反应的常用溶剂。
“磁性粒子直径”,当磁性粒子为球体时,磁性粒子直径为球体的直径;当磁性粒子为非球体时,磁性粒子直径为非球体体积等于球体体积时计算所得到的直径。
“纤维直径”,当纤维为圆形截面时,纤维直径为圆形的直径;当纤维为非圆形截面时,纤维直径为非圆形截面面积等于圆形截面面积时计算所得到的直径。
本申请提供一种微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维包括芯层,所述制备方法包括以下步骤:
复合:将磁性粒子与基材进行复合,得到磁性复合材料;
加工:利用所述磁性复合材料制备磁性结构化预制棒;
热拉制:将所述磁性结构化预制棒采用热拉制工艺制备微纳米磁性纤维。
在一个具体实施方式中,本申请的方法,所述复合步骤中,将磁性粒子与基材进行复合,得到多种磁性复合材料,制备各种磁性复合材料的基材可不同,各种磁性复合材料两两之间,磁性粒子的掺杂浓度(磁性粒子占该种磁性复合材料的质量百分含量)可不同,也可以相同;所述加工步骤中,利用所述多种磁性复合材料直接制备所述磁性结构化预制棒,或者,利用所述多种磁性复合材料分别制备多种预制棒,再利用多种预制棒制备结构化预制棒。
在上述具体实施方式中,本申请的方法,各种磁性复合材料中,每种磁性复合材料中的磁性粒子的质量百分含量可在0.01wt.%~75wt.%范围内不同或相同,例如可为0.01wt.%、0.1wt.%、1wt.%、5wt.%、10wt.%、20wt.%、30wt.%、40wt.%、50wt.%、51wt.%、52wt.%、53wt.%、54wt.%、55wt.%、56wt.%、57wt.%、58wt.%、59wt.%、60wt.%、61wt.%、62wt.%、63wt.%、64wt.%、65wt.%、66wt.%、67wt.%、68wt.%、69wt.%、70wt.%、71wt.%、72wt.%、73wt.%、74wt.%、75wt.%等。
在一个具体实施方式中,本申请的方法,所述复合步骤中,利用溶剂溶解法或物理热熔融法或溶剂溶解法与物理热熔融法相结合的方法将磁性粒子与基材进行均匀复合,得到磁性复合材料颗粒、磁性复合材料薄膜或磁性复合材料粉末。
在一个具体实施方式中,本申请的方法,所述溶剂溶解法包括以下步骤:
(1)使用溶剂化学溶解所述基材;
(2)向所述基材中掺杂所述磁性粒子;
(3)超声搅拌分散所述掺杂磁性粒子的基材,得到胶体溶液。
在上述实施方式的优选实施方式中,得到胶体溶液后,所述溶剂溶解法还包括:步骤(4)真空干燥,得到磁性复合材料。
在一个具体实施方式中,所述溶剂可选自但不限于丙酮、丁酮、N-甲基吡咯烷酮、二甲基乙酰胺(DMAC)、二甲基甲酰胺(DMF)、氯仿、环己烷、甲苯、乙苯、异丙苯、二甲苯、溴苯、氯苯、二氯甲烷、二氯乙烷、四氯乙烷、四氯乙烯、苯乙烯、柠檬烯溶剂、乙酸乙酯、乙酸丁酯中任意一种或两种以上。
在一个具体实施方式中,本申请的方法,所述物理热熔融法包括以下步骤:
(1)物理热熔融所述聚合物,即在玻璃化转变温度以上处理所述聚合物,从而使聚合物在分子水平上有效地混合;
(2)向上述热熔融的聚合物中掺杂所述磁性粒子,形成混合物;
(3)将所述混合物以一定的压力、速度和形状挤出形成磁性复合材料。
在一个具体实施方式中,还可将得到的磁性复合材料均匀铺开,呈现薄膜状,即为磁性复合材料薄膜,薄膜态复合材料可直接用来加工磁性结构化预制棒。在一个优选的实施方式中,为保证磁性结构化预制棒中磁性粒子的掺杂均匀性,可将上述磁性复合材料薄膜通过打碎机机械打碎成颗粒或粉末态,分别得到磁性复合材料颗粒或磁性复合材料粉末,然后用以加工磁性结构化预制棒。
在一个优选的实施方式中,利用所述溶剂溶解法得到磁性复合材料薄膜。相比于物理热熔融法,溶剂溶解法的磁性粒子掺杂更均匀。
在一个具体实施方式中,利用溶剂溶解法与物理热熔融法相结合的方法将磁性粒子与基材进行均匀复合,相比于物理热熔融法,磁性粒子掺杂更均匀。所述溶剂溶解法与物理热熔融法相结合的方法包括以下步骤:
(1)使用溶剂化学溶解所述基材;
(2)向所述基材中掺杂所述磁性粒子;
(3)超声搅拌分散所述掺杂磁性粒子的基材,得到胶体溶液。
(4)将所述胶体溶液真空干燥,得到固态材料。
(5)将上述固态材料加热至玻璃化转变温度以上,以一定的压力、速度和形状挤出形成磁性复合材料。
在一个具体实施方式中,所述聚合物选自且不限于如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;所述玻璃选自且不限于如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
在一个具体实施方式中,本申请的方法,所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;优选地,所述金属磁性粒子可选自但不限于铁磁性粒子、钴磁性粒子、镍磁性粒子;所述金属化合物磁性粒子可选自但不限于金属氧化物磁性粒子;所述金属氧化物磁性粒子可选自但不限于Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;所述金属合金磁性粒子可选自但不限于镍钴合金磁性粒子、铁钴合金磁性粒子、钕铁硼合金(NdFeB)磁性粒子、钐钴合金(SmCo)磁性粒子。
在一个优选实施方式中,本申请的方法,所述磁性粒子可选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子,Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子、钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子和铁钴合金磁性粒子。
在一个具体实施方式中,本申请的方法,所述磁性粒子直径为0.005~250μm,例如可为0.005μm、0.01μm、0.05μm、0.1μm、0.5μm、1μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm、200μm、210μm、220μm、230μm、240μm、250μm等。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维包括芯层,所述加工步骤中,利用所述磁性复合材料制备磁性结构化预制棒,其中,所述磁性复合材料可为一种或多种,多种磁性复合材料的基材可不同,也可相同,多种磁性复合材料两两之间,所含磁性粒子的质量百分含量可不同,也可相同。所述磁性复合材料最终形成微纳米磁性纤维中的芯层。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维包括芯层和包层,所述加工步骤中,利用所述磁性复合材料与包层的材料制备所述磁性结构化预制棒,其中,所述磁性复合材料可为一种或多种,多种磁性复合材料的基材可不同,也可相同,多种磁性复合材料两两之间,所含磁性粒子的质量百分含量可不同,也可相同。所述磁性复合材料用于形成微纳米磁性纤维中的芯层,所述包层的材料用于形成微纳米磁性纤维中的包层。所述包层的材料的热膨胀系数与所述磁性复合材料的热膨胀系数匹配;或者,所述包层的材料的玻璃化转变温度或熔点分别低于所述磁性复合材料的玻璃化转变温度或熔点。具体地,所述包层包括基材,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料;所述聚合物可选自但不限于如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;所述玻璃可选自但不限于如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
在一个具体实施方式中,所述包层包括磁性粒子和基材,将磁性粒子与基材进行复合,得到包层的材料。所述复合与制备磁性复合材料时的复合方法相同。
在一具体实施方式中,所述包层只包括基材,不包括磁性粒子。
在本申请中,所述磁性微纳米纤维具有包层时,所述包层为最外面一层分散有磁性粒子或不含有磁性粒子的层。所述芯层为所述包层包裹的含有磁 性粒子的一层或多层。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维包括芯层和高熔点功能层,所述热拉制步骤中,所述磁性结构化预制棒包覆所述高熔点功能层的材料,且与所述高熔点功能层的材料机械同步地采用热拉制工艺制备所述微纳米磁性纤维,实现热拉制成微纳米磁性纤维过程中对高熔点功能层材料的包覆。其中,所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述磁性复合材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或为可加工成纤维态的材料,例如,可为石英光纤、金属电极和半导体材料等。所述高熔点功能层的材料用于形成高熔点功能层。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维包括芯层、包层和和高熔点功能层,所述加工步骤中,利用所述磁性复合材料与包层的材料制备所述磁性结构化预制棒,其中,所述磁性复合材料可为一种或多种,多种磁性复合材料的基材可不同,也可相同,多种磁性复合材料两两之间,所含磁性粒子的质量百分含量可不同,也可相同;所述热拉制步骤中,所述磁性结构化预制棒包覆所述高熔点功能层的材料,且与所述高熔点功能层的材料机械同步地采用热拉制工艺制备所述微纳米磁性纤维。其中,所述磁性复合材料用于形成微纳米磁性纤维中的芯层,所述包层的材料用于形成微纳米磁性纤维中的包层;所述高熔点功能层的材料用于形成高熔点功能层。
在一个具体实施方式中,本申请的方法,所述加工步骤中,利用薄膜卷绕法、热压制法、挤出成型法、3D打印法中的一种或两种以上方法制备所述磁性结构化预制棒;进一步地,所述方法还可包括如下一种或两种以上方法:机械加工法、组装法及热固化法。
在一个具体实施方式中,本申请的方法,所述磁性复合材料为一种或两种以上磁性复合材料薄膜,利用薄膜卷绕法加工磁性结构化预制棒,首先将一种磁性复合材料薄膜经过热压制、机械加工得到柱状的原始预制棒,然后顺次将另外几种磁性复合材料薄膜卷绕在原始预制棒上,另外几种磁性复合材料薄膜分别形成一个预制棒,再对各预制棒进行热固化处理,得到最终的磁性结构化预制棒。其中,所述各磁性复合材料薄膜的杨氏模量为0.01~1GPa,例如可为0.01GPa、0.02GPa、0.03GPa、0.04GPa、0.05GPa、0.06GPa、0.07GPa、0.08GPa、0.09GPa、0.1GPa、0.15GPa、0.2GPa、0.25GPa、 0.3GPa、0.35GPa、0.4GPa、0.45GPa、0.5GPa、0.55GPa、0.6GPa、0.65GPa、0.75GPa、0.8GPa、0.85GPa、0.9GPa、0.95GPa、1GPa。
热压制法是指将磁性复合材料等材料在加热并同时加压的条件下,使材料成型并烧结成预制棒的方法。在一个具体实施方式中,本申请的方法,利用热压制法加工磁性结构化预制棒。根据热压制模具的设置,可以将磁性复合材料压制成各种形状,每次压制出一个预制棒,可以对不同的预制棒利用机械加工法和组装法,制备磁性结构化预制棒。具体的,机械加工法可将长方体的预制棒切割成圆柱体、圆环体的预制棒。更具体的,圆柱体的预制棒还可与圆环体的预制棒利用组装法制备磁性结构化预制棒。可选地,所述机械加工切割得到的不同形状预制棒还可用于其它方法,例如薄膜卷绕法、挤出成型法、3D打印法。其中,热压温度不低于所述磁性复合材料的玻璃化转变温度或熔点,所述热压温度为25~600℃,优选为120~250℃,例如可为25℃、35℃、45℃、55℃、65℃、75℃、85℃、95℃、105℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃、200℃、205℃、210℃、215℃、220℃、225℃、230℃、235℃、240℃、245℃、250℃;所述热压时间为5~600min,优选为10~20min,例如可为5min、10min、11min、12min、13min、14min、15min、16min、17min、18min、19min、20min、25min、30min、35min、50min、60min、70min、80min、90min、100min、120min、140min、180min、22min、260min、300min、340min、380min、420min、460min、500min。
“挤出成型法”是将材料放入模具中,然后用强力挤压使其通过孔模成型制备预制棒的方法。在一个具体实施方式中,本申请的方法,利用挤出成型法加工磁性结构化预制棒。可选的,本申请中可将多种磁性复合材料放入一个模具中,直接挤压出含有多种磁性复合材料的磁性结构化预制棒;还可将多种磁性复合材料分别放入模具中,分别挤压成不同的预制棒,再将这些预制棒利用组装法、热固化法、机械加工法中的一种或两种或三种制备最终的磁性结构化预制棒。其中,挤出温度不低于所述磁性复合材料的玻璃化转变温度或熔点,所述挤出温度为50~700℃,优选为200~400℃,例如可为50℃、70℃、90℃、110℃、130℃、150℃、170℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310 ℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃、500℃、600℃、700℃。
“3D打印法”是一种以数字模型文件为基础,运用可粘合材料,通过逐层打印的方式来快速构造物体的方法。在一个具体实施方式中,本申请的方法,利用3D打印法直接加工所述磁性结构化预制棒。在另一个具体实施方式中,利用3D打印法加工得到预制棒之后,可以再使用其它方法如薄膜卷绕法、热压制法、挤出成型法制备最终的磁性结构化预制棒。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维包括芯层,所述热拉制步骤中得到的微纳米磁性纤维同时可作为纤维态的结构化磁性复合材料,使用3D打印法进行二次加工和二次热拉制,具体的,本申请的方法包括以下步骤:
复合:将磁性粒子与基材进行复合,得到磁性复合材料;
加工:用薄膜卷绕法、热压制法、挤出成型法、3D打印法中的一种或两种以上方法制备所述磁性结构化预制棒;
热拉制:将所述磁性结构化预制棒采用热拉制工艺制备微纳米磁性纤维;
二次加工:利用所述微纳米磁性纤维通过所述3D打印法制备磁性结构化预制棒二;
二次热拉制:将所述磁性结构化预制棒二采用热拉制工艺制备所述微纳米磁性纤维二。
在上述具体实施方式的可选实施方式中,所述微纳米磁性纤维二包括包层二,所述二次加工步骤中,利用所述微纳米磁性纤维与所述包层二的材料通过3D打印法制备所述磁性结构化预制棒二;
在上述具体实施方式的可选实施方式中,所述微纳米磁性纤维二包括高熔点功能层二,所述磁性结构化预制棒二包覆所述高熔点功能层二的材料,且与所述高熔点功能层二的材料机械同步地采用热拉制工艺制备所述微纳米磁性纤维二。
在一个具体实施方式中,本申请的方法,所述加工步骤中所述3D打印法制备所述磁性结构化预制棒的打印温度,以及所述二次加工步骤中所述3D打印法制备所述磁性结构化预制棒二的打印温度均不低于所述磁性复合材料的玻璃化转变温度或熔点;所述打印温度为50~700℃,优选为200~400 ℃,例如可为50℃、70℃、90℃、110℃、130℃、150℃、170℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃、500℃、600℃、700℃。
“热固化法”是通过改变分子的能量来固化胶粘剂体系的方法,本申请中是指不同预制棒之间通过加热固化的方法来进行制备得到最终的磁性结构化预制棒。在一个具体实施方式中,本申请的方法,所述加工步骤中,所述热固化法的固化温度不低于所述磁性复合材料的玻璃化转变温度或熔点;所述固化温度为50~500℃,优选为150~300℃,例如可为50℃、70℃、90℃、110℃、130℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃、390℃、400℃、450℃、500℃;所述固化时间为1~500min,优选为20~40min,例如可为1min、5min、10min、15min、20min、22min、24min、26min、28min、30min、32min、34min、36min、38min、40min、100min、130min、160min、190min、220min、250min、280min、310min、340min、370min、400min、430min、460min、490min、500min。
在一个具体实施方式中,本申请的方法,所述基材、所述磁性复合材料和所述微纳米磁性纤维在使用前均进行真空干燥;所述真空干燥温度为20~300℃,优选为60~150℃,例如可为20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃等;所述真空干燥时间为2~2000h,优选为12~50h,例如可为2h、4h、6h、8h、10h、12h、14h、16h、18h、20h、22h、24h、26h、28h、30h、32h、34h、36h、38h、40h、42h、44h、46h、48h、50h、60h、80h、100h、300h、500h、700h、1000h、1200h、1400h、4600h、1800h、2000h等。
在一个具体实施方式中,本申请的方法,所述热拉制工艺的温度为25~600℃,优选为230~400℃,例如可为25℃、50℃、75℃、100℃、125℃、150℃、175℃、200℃、230℃、240℃、250℃、260℃、270℃、280℃、290℃、300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380 ℃、390℃、400℃、450℃、500℃、550℃、600℃;所述热拉制工艺的张力为0~500g,优选为10~50g,例如可为0g、2g、4g、6g、8g、10g、12g、14g、16g、18g、20g、22g、24g、26g、28g、30g、32g、34g、36g、38g、40g、42g、44g、46g、48g、50g、100g、150g、200g、250g、300g、350g、400g、450g、500g;所述热拉制工艺的牵引速度为0.1m/min~5000m/min,例如可为0.1m/min、1m/min、10m/min、100m/min、300m/min、500m/min、700m/min、900m/min、1000m/min、2000m/min、3000m/min、4000m/min、5000m/min。
图1为本申请一个具体实施方式的利用热拉制工艺制备微纳米磁性纤维的装置示意图。预制棒夹具2负责加持固定预制棒1以及送棒,拉丝塔加热炉3负责局部加热预制棒1,从而使其软化,待预制棒下端掉落后,闭合拉丝塔的牵引装置5,实现预制棒1热拉丝制备微纳米磁性纤维。纤维直径可通过控制夹具的送棒速度以及牵引装置的牵引速度实现控制。纤维通过纤维激光测径仪4实时观测纤维直径。通过拉丝塔的纤维收集装置6实现纤维的收集。
在一个具体实施方式中,本申请的方法,所述微纳米磁性纤维的结构由所述磁性结构化预制棒的结构决定。所述磁性结构化预制棒和微纳米磁性纤维的结构不限,其结构在沿着纤维轴向的方向上保持一致。可为任意一种轴向不变结构,更具体地,按照磁性粒子浓度的分布,所述结构可为单一浓度磁性粒子掺杂结构、多浓度磁性粒子掺杂结构;按照包层的有无,可分为含包层结构和无包层结构;所述结构还可为含高熔点功能层结构等。如图2A~2C所示,为单一浓度磁性粒子掺杂的微纳米磁性纤维不同形状的横截面示意图。如图3A~3C所示,为多浓度磁性粒子掺杂结构的微纳米磁性纤维不同形状的横截面示意图,具体为多层结构芯层结构(也可称为“径向浓度分布掺杂结构”)的微纳米磁性纤维横不同形状的横截面示意图。如图4A~4F所示,为多浓度磁性粒子掺杂结构的微纳米磁性纤维不同形状的横截面示意图,具体为具有多个非离散的条状结构的芯层的微纳米磁性纤维不同形状的横截面示意图。如图5所示,为含高熔点功能层结构的微纳米磁性纤维圆形横截面示意图,具体为含集成有石英光纤(白色)与金属电极(黑色)的微纳米磁性纤维圆形横截面示意图。如图6所示,为多浓度磁性粒子掺杂结构的微纳米磁性纤维圆形横截面示意图,具体为具有两个离散的条状结构的芯层、且包括包层的微纳米磁性纤维圆形横截面示意图。
在一个具体实施方式中,图2A~图6中颜色深浅可用来区分微纳米磁性纤维的包层、芯层、和高熔点功能层,或者可以表示其中磁性粒子掺杂浓度的高低,颜色深较颜色浅所代表的磁性粒子掺杂浓度高、低、相同均可。
本申请还提供用上述任一种方法制备的微纳米磁性纤维。
另外,本申请还提供一种微纳米磁性纤维,其特征在于,所述微纳米磁性纤维包括芯层,所述芯层包括磁性粒子和基材,所述磁性粒子分布在所述基材内;
所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;
所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述金属磁性粒子可选自但不限于金磁性粒子、银磁性粒子、铁磁性粒子、钴磁性粒子、镍磁性粒子;所述金属化合物磁性粒子可选自但不限于金属氧化物磁性粒子;所述金属氧化物磁性粒子可选自但不限于Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;所述金属合金磁性粒子可选自但不限于镍钴合金磁性粒子、铁钴合金磁性粒子、钕铁硼合金(NdFeB)磁性粒子、钐钴合金(SmCo)磁性粒子。
在一个优选实施方式中,本申请的微纳米磁性纤维,所述磁性粒子可选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子,Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子、钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子和铁钴合金磁性粒子。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述聚合物选自且不限于如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;所述玻璃 选自且不限于如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述磁性粒子直径为0.005~250μm,例如可为0.005μm、0.01μm、0.05μm、0.1μm、0.5μm、1μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50μm、55μm、60μm、65μm、70μm、75μm、80μm、85μm、90μm、95μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm、200μm、210μm、220μm、230μm、240μm、250μm等。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述微纳米磁性纤维的直径为0.01~3000μm,优选50~1000μm,例如可为0.01μm、1μm、10μm、50μm、100μm、200μm、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1000μm、1100μm、1200μm、1300μm、1400μm、1500μm、1600μm、1700μm、1800μm、1900μm、2000μm。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述微纳米磁性纤维为柱状结构,所述微纳米磁性纤维横截面形状没有限制,可选自如下一种:圆形、圆环形、三角形、三角环形、矩形、矩形环形、多边形环形、不规则形状。
在一个具体实施方式中,本申请的微纳米磁性纤维,其可为任意一种轴向不变结构,例如单一浓度磁性粒子掺杂的结构、多浓度磁性粒子掺杂的结构、含包层结构,无包层结构、含高熔点功能层结构等。其中,“单一浓度磁性粒子掺杂”指的是只有一种浓度的磁性粒子在芯层中均匀分布。“多浓度磁性粒子掺杂”指的是多种磁性复合材料中的磁性粒子质量百分含量不完全相同,使得磁性粒子在微纳米磁性纤维中呈现多浓度掺杂。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层为由内向外的多层结构,所述芯层的任意一层中,所述磁性粒子在所述层内均匀分布。所述芯层的多层中的各层中所述磁性粒子的质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%,例如可为0.01wt.%、0.1wt.%、1wt.%、5wt.%、10wt.%、20wt.%、30wt.%、40wt.%、50wt.%、51wt.%、52wt.%、53wt.%、54wt.%、55wt.%、56wt.%、57wt.%、58wt.%、59wt.%、60wt.%、61wt.%、62wt.%、63wt.%、64wt.%、65wt.%、66wt.%、67wt.%、68wt.%、69wt.%、70wt.%、71wt.%、72wt.%、73wt.%、74wt.%、75wt.%等。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层的多层中的各层相比,可有两层、三层、四层、五层或六层等中的所述磁性粒子的质量百分含量不同。
在一个具体实施方式中,所述芯层的多层中的各层相比,各层中所述磁性粒子的质量百分含量从内向外逐渐降低。
在一个具体实施方式中,所述芯层的多层中的各层相比,各层中所述磁性粒子的质量百分含量从内向外逐渐升高。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层横截面为圆形、矩形、三角形或不规则形状,所述横截面分为两个、三个、四个、五个、六个、七个、八个、九个或十个以上区域,从而所述芯层分为两个、三个、四个、五个、六个、七个、八个、九个或十个以上条状结构,所述任意一条状结构中,所述磁性粒子在所述条状结构中均匀分布,至少有两个条状结构中磁性粒子质量百分含量不同。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层横截面为圆形,所述横截面分为两个、三个、四个、五个、六个或七个以上扇形区域;优选地,所述横截面分为两个相等的半圆形区域,从而所述芯层分为两个条状结构,所述磁性粒子在每个条状结构中均匀分布,所述两个条状结构中磁性粒子质量百分含量不同。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层横截面为矩形,所述横截面分为任意两个、三个、四个或五个等多个相等的矩形区域。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯层横截面为三角形,所述横截面分为任意两个三角形区域。在一个优选的实施方式中,所述三角形为等腰三角形,所述横截面分为任意两个相等的三角形区域。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述微纳米磁性纤维包括芯层和高熔点功能层,所述芯层包裹所述高熔点功能层;所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述芯层的材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或可加工成纤维态的材料,例如,可为石英光纤或金属半导体等。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述微纳米磁性纤维包括芯层和包层,所述包层的材料与所述芯层的材料的可共同热拉制,所述包层包裹所述芯层;所述包层的材料的热膨胀系数与所述芯层的材料的热 膨胀系数相同;或者,所述包层的材料的玻璃化转变温度及熔点分别低于所述芯层的材料的玻璃化转变温度及熔点。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述微纳米磁性纤维包括芯层、包层和高熔点功能层,所述芯层包裹所述高熔点功能层,所述包层包裹所述芯层;所述包层的材料与所述芯层的材料的可共同热拉制;所述包层的材料的热膨胀系数与所述芯层的材料的热膨胀系数相同;或者,所述包层的材料的玻璃化转变温度及熔点分别低于所述芯层的材料的玻璃化转变温度及熔点。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述包层的材料可选自如下一种或两种以上的聚合物:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;所述包层材料还可选自如下一种或两种以上的玻璃:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
在一个具体实施方式中,本申请的微纳米磁性纤维,其包括芯层和包层,所述包层包裹所述芯层;所述芯层包括两个、三个、四个、五个、六个或七个以上离散的条状结构,所述两个、三个、四个、五个、六个或七个以上条状结构相互离散,即两两之间相互不接触。
在上述具体实施方式中,所述微纳米磁性纤维的横截面可为圆形、三角形、矩形、不规则形状。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述各离散的条状结构中的磁性粒子的质量百分含量不完全相同。
在一个具体实施方式中,本申请的微纳米磁性纤维,所述芯材的任意一条状结构中所述磁性粒子的质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%,例如可为0.1wt.%、1wt.%、5wt.%、10wt.%、20wt.%、30wt.%、40wt.%、50wt.%、51wt.%、52wt.%、53wt.%、54wt.%、55wt.%、56wt.%、 57wt.%、58wt.%、59wt.%、60wt.%、61wt.%、62wt.%、63wt.%、64wt.%、65wt.%、66wt.%、67wt.%、68wt.%、69wt.%、70wt.%、71wt.%、72wt.%、73wt.%、74wt.%、75wt.%等。
实施例
实施例1
本申请提供了一种单一浓度磁性粒子掺杂结构的微纳米磁性纤维,如图2A~2C所示。
该实施例的微纳米磁性纤维的制备方法,聚合物为环烯烃类共聚物(COC),磁性粒子为NdFeB微米粒子,具体包括以下步骤:
(1)磁性复合材料的制备
取干燥的14g的环烯烃类共聚物(COC)颗粒,溶解于氯仿溶剂,加入6gNdFeB微米粒子,搅拌超声得到混合均匀的胶体溶液。常温下高比表面积烘干,真空干燥得到NdFeB掺杂浓度为30wt.%的磁性复合材料。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将(1)中得到的NdFeB掺杂浓度为30wt.%的磁性复合聚合物经热压制、机械冷加工处理,得到NdFeB掺杂浓度为30wt.%的磁性结构化预制棒,所述磁性结构化预制棒为圆形。热压温度为160℃,热压时间为20min。
(3)微纳米磁性纤维的制备
使用如图1所示的热拉制装置。将(2)得到的NdFeB掺杂浓度为30wt.%的磁性结构化预制棒进行热拉丝,得到NdFeB掺杂浓度为30wt.%的微纳米磁性纤维,纤维横截面为圆形,如图2A所示。热拉丝温度为240℃,牵引速度1m/min,制备得到的微纳米磁性纤维的直径为300μm。
实施例2
本申请提供了一种单一浓度磁性粒子掺杂的结构的微纳米磁性纤维,聚合物为环烯烃类共聚物(COC),磁性粒子为NdFeB微米粒子。
该实施例的微纳米磁性纤维的制备方法,具体包括以下步骤:
(1)磁性复合材料的制备
取干燥的20g的环烯烃类共聚物(COC)颗粒,溶解于氯仿溶剂,加入30gNdFeB微米粒子,搅拌超声得到均匀的胶体溶液。常温下高比表面积烘干,真空干燥得到NdFeB掺杂浓度为60wt.%的磁性复合材料。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将(1)中得到的NdFeB掺杂浓度为60wt.%的磁性复合聚合物经热压制、机械冷加工处理,得到NdFeB掺杂浓度为60wt.%的磁性结构化预制棒。热压温度为140℃,热压时间为20min。
(3)微纳米磁性纤维的制备
将(2)得到的NdFeB掺杂浓度为60wt.%的磁性结构化预制棒进行热拉丝,得到NdFeB掺杂浓度为60wt.%的微纳米磁性纤维,纤维横截面为圆形。热拉丝温度为220℃,牵引速度1m/min,制备得到的微纳米磁性纤维直径为300μm。当热拉丝温度为220℃,牵引速度9m/min,可制备得到的微纳米磁性纤维直径为100μm。
实施例3
本实施例提供了一种径向浓度分布掺杂的微纳米磁性纤维,如图3A~3C所示。
该实施例的微纳米磁性纤维的制备方法,聚合物为F-PMMA,磁性粒子为NdFeB微米粒子,具体包括以下步骤:
(1)磁性复合材料的制备
分别取干燥的16g、5g、3g、7.5g的F-PMMA颗粒,在丙酮溶剂中溶解,分别加入4g、5g、7g、22.5g的NdFeB微米粒子,搅拌超声得到4份均匀的胶体溶液。高比表面积常温烘干,真空干燥,得到NdFeB掺杂浓度分别为20wt.%、50wt.%、70wt.%、75wt.%的磁性复合材料薄膜。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将(1)中得到NdFeB掺杂浓度为75wt.%的磁性复合材料薄膜经热压制、机械冷加工处理,得到NdFeB掺杂浓度为75wt.%的原始预制棒一,利用薄膜卷绕法将NdFeB掺杂浓度分别为70wt.%、50wt.%、20wt.%的磁性聚合物薄膜依次卷绕在原始预制棒一外,对薄膜卷绕后的预制棒进行热固化处理, 得到径向浓度分布掺杂结构的磁性结构化预制棒一。将(1)中得到NdFeB掺杂浓度为20wt.%的磁性复合材料薄膜经热压制、机械冷加工处理,得到NdFeB掺杂浓度为20wt.%的原始预制棒二,利用薄膜卷绕法将NdFeB掺杂浓度分别为50wt.%、70wt.%、75wt.%的磁性聚合物薄膜依次卷绕在原始预制棒二外、热固化处理,得到径向浓度分布掺杂结构的磁性结构化预制棒二。所述磁性结构化预制棒一和二的横截面均可为圆形、矩形或三角形。热压温度为130℃,热压时间为20min。固化温度为120℃,固化时间为30min。
(3)微纳米磁性纤维的制备
将(2)得到的径向浓度分布掺杂结构的磁性结构化预制棒一和磁性结构化预制棒二进行热拉丝,得到径向浓度分布掺杂结构的微纳米磁性纤维,其横截面为圆形,如图3A所示。此外,微纳米磁性纤维截面还可制备成矩形或三角形,如图3B~3C所示。热拉丝温度为230℃,牵引速度1m/min,制备得到的微纳米磁性纤维一和微纳米磁性纤维二的直径均为300μm。
取实施例1~3制备的微纳米磁性纤维进行对比,结果如表1所示,在1T磁场充磁后,实施例2制备的磁性粒子掺杂浓度为60wt.%的微纳米磁性纤维相较于实施例1具有更高的磁性,说明通过本申请的热拉制方法可在纤维内引入高掺杂浓度的磁性粒子,从而实现纤维的高磁力响应与高剩磁场强。实施例3制备的径向浓度分布掺杂结构的微纳米磁性纤维的芯层的各条状结构中,最高磁性粒子掺杂浓度为75wt.%,其磁性高于实施例1和实施例2的单一浓度磁性粒子掺杂的微纳米磁性纤维,说明通过热拉制方法制备的微纳米磁性纤维有助于磁性粒子浓度的提高,由此实现磁性的增强。且实施例3所制备的径向浓度分布掺杂结构的微纳米磁性纤维在实现磁性粒子高浓度掺杂的同时,具有比单一浓度磁性粒子掺杂的微纳米磁性纤维更强的机械强度,说明通过热拉制方法制备的微纳米磁性纤维的力学性能可以得到极大提升,从而实现更广泛的应用。
实施例3中,径向浓度分布掺杂结构一、二中具有不同磁性粒子掺杂浓度分布,其中径向浓度分布掺杂结构一为磁性粒子掺杂浓度由内而外递减的浓度分布,结构二为磁性粒子掺杂浓度由内而外递增的浓度分布,径向浓度分布掺杂结构二的纤维表面单点剩磁场大小高于结构一。因此在仅考虑纤维剩磁场大小的情况下,由内而外递增的磁性粒子浓度分布将增加微纳米磁性纤维的剩磁场大小。
表1
Figure PCTCN2021100978-appb-000001
实施例4
本申请提供了一种多浓度磁性粒子掺杂结构的微纳米磁性纤维,具体的,本实施例提供了一种具有两个条状结构的芯层、且包括包层的微纳米磁性纤维,如图4A~4C所示。
该实施例的微纳米磁性纤维的制备方法,聚合物为环烯烃类共聚物(COC),磁性粒子为Fe 3O 4纳米粒子,具体包括以下步骤:
(1)磁性复合材料的制备
分别取干燥的30g、9g的环烯烃类共聚物(COC)颗粒,溶解于氯仿试剂,分别加入70g、1g的Fe 3O 4微米粒子,搅拌超声得到混合均匀的胶体溶液。高比表面积常温烘干、真空干燥,得到Fe 3O 4掺杂浓度分别为70wt.%、10wt.%的磁性复合材料。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将(1)得到的磁性复合材料进行热压制、机械冷加工处理,然后与纯COC材料组装,得到含有包层的、非对称结构(即磁性粒子的掺杂浓度在磁性结构化预制棒横截面上呈非对称分布)的磁性结构化预制棒,所述磁性结构化预制棒可为圆形、矩形或三角形。热压温度为130℃,热压时间为20min。
(3)微纳米磁性纤维的制备
将(2)得到的掺杂浓度非对称结构的磁性结构化预制棒进行热拉丝,得到包括包层的非对称结构的微纳米磁性纤维(即磁性粒子的掺杂浓度在微纳米磁性纤维横截面上呈非对称分布),其可为圆形、矩形或三角形,如图4A~4C所示。热拉丝温度为240℃,牵引速度5m/min,制备得到的微纳米磁性纤维的直径为100μm。
取实施例2和实施例4制备的微纳米磁性纤维进行对比,结果如下表2所示。在相同的磁性粒子掺杂浓度条件下,实施例4所制备的非对称结构的微纳米磁性纤维能够在50mT的磁场下实现非接触式的旋转、加捻、弯曲等动作。且实施例4所制备的非对称结构的微纳米磁性纤维在实现磁性粒子高浓度掺杂的同时,具有比单一浓度磁性粒子掺杂结构的微纳米磁性纤维更强的机械强度。由此说明通过本申请的热拉制方法制备的结构化纤维能够在极大提升其力学性能的同时,实现纤维功能的多样化。
表2
Figure PCTCN2021100978-appb-000002
实施例5
本申请提供了一种多浓度磁性粒子掺杂结构的微纳米磁性纤维,具体为磁性粒子掺杂浓度在截面上呈二维码结构或十字结构的微纳米磁性纤维。如图4E和图4F所示。
该实施例的微纳米磁性纤维的制备方法,聚合物为环烯烃类共聚物(COC),磁性粒子为SrFe 12O 19微米粒子,具体包括以下步骤:
(1)磁性复合材料的制备
分别取干燥的1g、3g、5g、7g、8g、9g的环烯烃类共聚物(COC)颗粒,分别溶解于氯仿试剂,分别加入9g、7g、5g、3g、2g、1g的SrFe 12O 19微米粒子,搅拌超声得到混合均匀的胶体溶液。高比表面积常温干燥、真空干燥,得到六种不同SrFe 12O 19掺杂浓度的磁性复合材料粉末。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将步骤(1)中得到的六种SrFe 12O 19掺杂浓度的磁性复合材料粉末3D打印为掺杂有SrFe 12O 19的十字结构的磁性结构化预制棒。打印温度为260℃。
(3)微纳米磁性纤维的制备
将(2)得到的掺杂有SrFe 12O 19的异形结构磁性结构化预制棒进行热拉丝,得到结构如图4F所示的微纳米磁性纤维。热拉丝温度为240℃,牵引速度0.5m/min,制备得到的微纳米磁性纤维的直径为500μm。
本实施例得到的微纳米磁性纤维具有高度定制化的磁性微米粒子分布。本实施例所制备的二维码结构或十字结构的微纳米磁性纤维能够在50mT的磁场下实现非接触式的旋转、加捻、弯曲等动作,结果如上表2所示。
实施例6
本实施例提供了一种集成有多电极及光纤的微纳米磁性纤维,如图5所示。
该实施例的微纳米磁性纤维的制备方法,聚合物为环烯烃类共聚物(COC),磁性粒子为SrFe 12O 19微米粒子,具体包括以下步骤:
(1)磁性复合材料的制备
取干燥的20g的环烯烃类共聚物(COC)颗粒,溶解于氯仿试剂,加入30g的SrFe 12O 19微米粒子,搅拌超声得到混合均匀的胶体溶液。高比表面积常 温干燥、真空干燥,得到SrFe 12O 19掺杂浓度为60wt.%的磁性复合材料。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
将步骤(1)中得到的磁性复合材料进行热压制、机械冷加工,得到外直径18mm、内部通孔直径2mm、周围通孔直径1mm的SrFe 12O 19掺杂浓度为60wt.%的管状的磁性结构化预制棒,图5中,中心的白色圆形部分代表内部通孔,黑色圆形部分代表周围通孔。热压温度为130℃,热压时间为20min。
(3)微纳米磁性纤维的制备:
将合适直径的石英光纤和金属电极分别穿过磁性结构化预制棒的内部通孔和周围通孔,下端固定,机械同步下对磁性结构化预制棒进行热拉丝,得到集成有光纤与多电极的微纳米磁性纤维。热拉丝温度为230℃,石英光纤、金属电极的送丝速度和牵引速度保持一致,为0.5m/min。其中,送丝速度是指通过控制,使光纤、电极材料均匀下降的速度。制备得到的微纳米磁性纤维的直径为500μm。
上述实施例得到的微纳米磁性纤维具有柔性磁控功能与导光、多电极电信号读取功能,结果如上表2所示。
实施例7
在本实施例中提供了一种具有两个离散的条状结构的芯层、且包括包层的微纳米磁性纤维,如图6所示。聚合物为COC聚合物与PMMA聚合物,磁性微米粒子材料为NdFeB微米粒子。
(1)磁性聚合物的制备
取干燥的20g的环烯烃类共聚物(COC)颗粒,溶解于氯仿试剂,加入30g的NdFeB微米粒子,搅拌超声得到混合均匀的胶体溶液。高比表面积常温干燥、真空干燥,得到NdFeB掺杂浓度为60wt.%的磁性复合材料。
再取干燥的5g的环烯烃类共聚物(COC)颗粒,溶解于氯仿试剂,加入45g的NdFeB微米粒子,搅拌超声得到混合均匀的胶体溶液。高比表面积常温烘干、真空干燥,得到NdFeB掺杂浓度为10wt.%的磁性复合材料。真空干燥的温度为70℃,时间为24h。
(2)磁性结构化预制棒的制备
取干燥的100g PMMA颗粒,在145℃下热压10min,机械打磨、钻孔后得到具有两根通孔(6mm、4mm)的圆柱状预制棒一(直径18mm)。
将(1)中干燥好的磁性复合材料分别在120、110℃下热压10min、机械打磨后得到直径分别为6mm、4mm的圆柱状预制棒二和三,插入(2)中的包层中,得到磁性结构化预制棒。
(3)微纳米磁性纤维的制备
将(2)得到的磁性结构化预制棒进行热拉丝,得到结构如图4F所示的微纳米磁性纤维。热拉丝温度为240℃,牵引速度0.5m/min,制备得到的微纳米磁性纤维的直径为500μm。
本实施例所制备的微纳米磁性纤维能够在50mT的磁场下实现非接触式的旋转、加捻、弯曲等动作,结果如上表2所示。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (49)

  1. 一种微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维包括芯层,所述制备方法包括以下步骤:
    复合:将磁性粒子与基材进行复合,得到磁性复合材料;
    加工:利用所述磁性复合材料制备磁性结构化预制棒;
    热拉制:将所述磁性结构化预制棒采用热拉制工艺制备微纳米磁性纤维。
  2. 根据权利要求1所述的微纳米磁性纤维的制备方法,其特征在于,
    所述复合步骤中,将磁性粒子与基材进行复合,得到多种磁性复合材料;
    所述加工步骤中,利用所述多种磁性复合材料制备所述磁性结构化预制棒。
  3. 根据权利要求1或2所述的微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维包括芯层和包层;
    所述加工步骤中,利用所述磁性复合材料与所述包层的材料制备所述磁性结构化预制棒。
  4. 根据权利要求1~3中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述微纳米磁性纤维还包括高熔点功能层;
    所述热拉制步骤中,所述磁性结构化预制棒包覆所述高熔点功能层的材料,且与所述高熔点功能层的材料机械同步地采用热拉制工艺制备所述微纳米磁性纤维。
  5. 根据权利要求1~4中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述加工步骤中,利用薄膜卷绕法、热压制法、挤出成型法、3D打印法中的一种或两种以上方法制备所述磁性结构化预制棒。
  6. 根据权利要求5所述的微纳米磁性纤维制备方法,其特征在于,所述加工步骤中,制备所述磁性结构化预制棒的方法还包括如下一种或两种以上方法:机械加工法、组装法及热固化法。
  7. 根据权利要求5或6所述的微纳米磁性纤维的制备方法,其特征在于,所述热拉制步骤之后,还包括以下步骤:
    二次加工:利用所述微纳米磁性纤维制备磁性结构化预制棒二;
    二次热拉制:将所述磁性结构化预制棒二采用热拉制工艺制备所述微纳米磁性纤维二;
    优选地,所述二次加工步骤中,通过3D打印法制备所述磁性结构化预制棒二。
  8. 根据权利要求1~7中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,所述磁性复合材料为磁性复合材料颗粒、磁性复合材料薄膜或磁性复合材料粉末。
  9. 根据权利要求1~8中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,利用溶剂溶解法将所述磁性粒子与所述基材进行复合;
    优选地,所述溶剂溶解法包括以下步骤:所述基材的溶剂溶解、所述磁性粒子掺杂和超声分散;
    更优选地,所述溶剂溶解法中,在所述超声分散步骤之后,还包括真空干燥。
  10. 根据权利要求1~8中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,利用物理热熔融法将所述磁性粒子与所述基材进行复合;
    优选地,所述物理热熔融法包括以下步骤:所述基材的物理热熔融、所述磁性粒子掺杂和挤出。
  11. 根据权利要求10中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述复合步骤中,所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;
    优选地,所述金属磁性粒子选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子;
    优选地,所述金属化合物磁性粒子为金属氧化物磁性粒子;更优选地,所述金属化合物磁性粒子选自如下一种或两种:Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;
    优选地,所述金属合金磁性粒子选自如下一种或两种以上:钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子、铁钴合金磁性粒子。
  12. 根据权利要求1~11中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述磁性粒子直径为0.005~250μm,优选为0.005~100μm。
  13. 根据权利要求1~12中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。
  14. 根据权利要求13所述的微纳米磁性纤维的制备方法,其特征在于,所述聚合物为热塑性聚合物;
    优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
    优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
  15. 根据权利要求9所述的微纳米磁性纤维的制备方法,其特征在于,所述基材的溶剂溶解所用的溶剂选自如下一种或两种以上:丙酮、丁酮、N-甲基吡咯烷酮、二甲基乙酰胺(DMAC)、二甲基甲酰胺(DMF)、氯仿、环己烷、甲苯、乙苯、异丙苯、二甲苯、溴苯、氯苯、二氯甲烷、二氯乙烷、四氯乙烷、四氯乙烯、苯乙烯、柠檬烯溶剂、乙酸乙酯、乙酸丁酯。
  16. 根据权利要求1~15中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述基材、所述磁性复合材料和所述微纳米磁性纤维在使用前进行真空干燥;
    所述真空干燥温度为20~300℃,优选为60~150℃;
    所述真空干燥时间为2~2000小时,优选为12~50小时。
  17. 根据权利要求3~16中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述包层包括基材,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料;所述包层的材料的热膨胀系数与所述磁性复合材料的热膨胀系数匹配;或者,所述包层的材料的玻璃化转变温度或熔点与所述磁性复合材料的玻璃化转变温度或熔点匹配;
    优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
    优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃;
    优选地,所述包层还包括磁性粒子,将磁性粒子与基材进行复合,得到包层的材料。
  18. 根据权利要求5或6所述的微纳米磁性纤维的制备方法,其特征在于,所述磁性复合材料为磁性复合材料薄膜,利用薄膜卷绕法进行加工,所述磁性复合材料薄膜的杨氏模量为0.01~1GPa。
  19. 根据权利要求5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用热压制法进行加工,热压温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
    优选地,所述热压温度为25~600℃,进一步优选为120~250℃;
    优选地,热压时间为5~600min,进一步优选为10~20min。
  20. 根据权利要求5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用挤出成型法进行加工,挤出温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
    优选地,所述挤出温度为50~700℃,进一步优选为200~400℃。
  21. 根据权利要求5或6所述的微纳米磁性纤维的制备方法,其特征在于,利用3D打印法进行加工,打印温度不低于所述磁性复合材料的玻璃化转变温度或熔点;
    优选地,所述打印温度为50~700℃,进一步优选为200~400℃。
  22. 根据权利要求6所述的微纳米磁性纤维的制备方法,其特征在于,利用热固化法进行加工,固化温度不低于所述磁性复合材料的玻璃化转变温 度或熔点;
    优选地,所述固化温度为50~500℃,进一步优选为150~300℃;
    优选地,固化时间为1~500min,进一步优选为20~40min。
  23. 根据权利要求1~22中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述热拉制工艺的温度为25~600℃,优选为230~400℃。
  24. 根据权利要求1~23中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述热拉制工艺的张力为0~500g,优选为10~50g;
    优选地,所述热拉制工艺的牵引速度为0.1m/min~5000m/min。
  25. 根据权利要求1~24中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述磁性复合材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或为可加工成纤维态的材料。
  26. 根据权利要求1~23中任一项所述的微纳米磁性纤维的制备方法,其特征在于,所述各种磁性复合材料中磁性粒子的质量百分含量为0.01wt.%~75wt.%。
  27. 一种微纳米磁性纤维,其特征在于,所述微纳米磁性纤维包括芯层,所述芯层包括磁性粒子和基材,所述磁性粒子分布在所述基材内;
    所述磁性粒子选自如下一种或两种以上:金属磁性粒子、金属化合物磁性粒子、金属合金磁性粒子;
    所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料。
  28. 根据权利要求27所述的微纳米磁性纤维,其特征在于,所述聚合物为热塑性聚合物;
    优选的,所述热塑性聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和 聚醚。
  29. 根据权利要求27或28所述的微纳米磁性纤维,其特征在于,所述玻璃选自如一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃。
  30. 根据权利要求27~29中任一项所述的微纳米磁性纤维,其特征在于,所述金属磁性粒子选自如下一种或两种以上:铁磁性粒子、钴磁性粒子、镍磁性粒子;
    优选地,所述金属化合物磁性粒子为金属氧化物磁性粒子;更优选地,所述金属化合物磁性粒子选自如下一种或两种:Fe 3O 4磁性粒子、γ-Fe 2O 3磁性粒子;
    优选地,所述金属合金磁性粒子选自如下一种或两种以上:钕铁硼合金磁性粒子、钐钴合金磁性粒子、镍钴合金磁性粒子、铁钴合金磁性粒子。
  31. 根据权利要求27~30中任一项所述的微纳米磁性纤维,其特征在于,所述磁性粒子的直径为0.005~250μm,优选为0.005~100μm。
  32. 根据权利要求27~31中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维为柱状结构。
  33. 根据权利要求27~32中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维横截面选自如下一种:圆形、圆环形、三角形、三角环形、矩形、矩形环形、多边形环形、不规则形状。
  34. 根据权利要求27~33中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维直径为0.01~3000μm,优选50~1000μm。
  35. 根据权利要求27~34中任一项所述的微纳米磁性纤维,其特征在于,所述芯层为由内向外的多层结构,所述芯层的任意一层中,所述磁性粒子在所述层内均匀分布。
  36. 根据权利要求35所述的微纳米磁性纤维,其特征在于,所述芯层的多层中的各层相比,至少有两层中所述磁性粒子的质量百分含量不同。
  37. 根据权利要求35或36所述的微纳米磁性纤维,其特征在于,所述芯层的多层中的各层相比,各层中所述磁性粒子的质量百分含量从内向外逐渐降低或逐渐升高或呈非单调性变化。
  38. 根据权利要求35~37中任一项所述的微纳米磁性纤维,其特征在于,所述芯层的多层中的各层中所述磁性粒子的质量百分含量为 0.01wt.%~75wt.%,更优选为1wt.%~75wt.%。
  39. 根据权利要求27~34中任一项所述的微纳米磁性纤维,其特征在于,所述芯层横截面为圆形、矩形、三角形或不规则形状,所述横截面分为两个或三个以上区域,从而所述芯层分为两个或三个以上条状结构,所述任意一条状结构中,所述磁性粒子在所述条状结构中均匀分布,至少有两个条状结构中磁性粒子质量百分含量不同。
  40. 根据权利要求39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为圆形,所述横截面分为两个或三个以上扇形区域;可选地,所述横截面分为两个相等的半圆形区域。
  41. 根据权利要求39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为矩形,所述横截面分为两个相等的矩形区域。
  42. 根据权利要求39所述的微纳米磁性纤维,其特征在于,所述芯层横截面为三角形,所述横截面分为两个三角形区域。
  43. 根据权利要求39~42中任一项所述的微纳米磁性纤维,其特征在于,所述各条状结构中磁性粒子质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%。
  44. 根据权利要求27~43中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维还包括高熔点功能层,所述芯层包裹所述高熔点功能层;
    优选地,所述高熔点功能层的材料的玻璃化转变温度及熔点分别高于所述芯层的材料的玻璃化转变温度及熔点,所述高熔点功能层的材料为纤维态的材料或可加工成纤维态的材料。
  45. 根据权利要求27~44中任一项所述的微纳米磁性纤维,其特征在于,所述微纳米磁性纤维还包括包层,所述包层包括基材,所述基材选自如下一种或两种以上:聚合物、无机玻璃材料及其复合材料;所述包层的材料与所述芯层的材料可共同热拉制,所述包层包裹所述芯层;
    优选地,所述包层的材料的热膨胀系数与所述芯层的材料的热膨胀系数匹配;或者,所述包层的材料的玻璃化转变温度及熔点分别低于所述芯层的材料的玻璃化转变温度及熔点;
    优选地,所述聚合物选自如下一种或两种以上:聚甲基丙烯酸甲酯(PMMA)、掺杂有氟化聚合物的PMMA复合材料(F-PMMA)、苯乙烯二甲 基丙烯酸甲酯共聚物(SMMA)、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚碳酸酯(PC)、聚亚苯基砜树脂(PPSU)、聚醚砜树脂(PES)、聚乙烯亚胺(PEI)、聚苯乙烯(PS)、聚酰胺(PA)、聚丙烯(PP)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚丙烯腈(PAN)、聚乙烯醇(PVA)、聚氯乙烯(PVC)、聚氨酯(PU)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚偏氟乙烯(PVDF)、聚乙二醇(PEG)、聚对苯二甲酸丙二酯(PTT)和聚醚;
    优选地,所述玻璃选自如下一种或两种以上:硫系玻璃、锗酸盐玻璃、碲酸盐玻璃、金属氧化物玻璃、硅酸盐玻璃、锗硅酸盐玻璃和氟化物玻璃;
    优选地,所述包层还包括磁性粒子。
  46. 根据权利要求45所述的微纳米磁性纤维,其特征在于,所述芯层包括两个或三个以上条状结构,所述两个或三个以上条状结构相互离散。
  47. 根据权利要求45所述的微纳米磁性纤维,其特征在于,所述两个或三个以上条状结构中,所述磁性粒子的质量百分含量不同。
  48. 根据权利要求45~47中任一项所述的微纳米磁性纤维,其特征在于,所述各条状结构中磁性粒子的质量百分含量为0.01wt.%~75wt.%,优选为1wt.%~75wt.%。
  49. 如权利要求1~26中任一项所述的微纳米磁性纤维的制备方法制备的微纳米磁性纤维。
PCT/CN2021/100978 2020-06-19 2021-06-18 一种微纳米磁性纤维及微纳米磁性纤维制备方法 WO2021254495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010567156.3A CN111663198B (zh) 2020-06-19 2020-06-19 一种微纳米磁性纤维及微纳米磁性纤维制备方法
CN202010567156.3 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021254495A1 true WO2021254495A1 (zh) 2021-12-23

Family

ID=72389057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100978 WO2021254495A1 (zh) 2020-06-19 2021-06-18 一种微纳米磁性纤维及微纳米磁性纤维制备方法

Country Status (2)

Country Link
CN (2) CN111663198B (zh)
WO (1) WO2021254495A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663198B (zh) * 2020-06-19 2021-07-30 华中科技大学 一种微纳米磁性纤维及微纳米磁性纤维制备方法
CN114302984B (zh) * 2020-11-02 2024-05-17 香港理工大学 可拉伸的导电纱线及其制造方法
CN112626636A (zh) * 2020-12-17 2021-04-09 和也健康科技有限公司 一种磁纤维及其制备工艺
CN113757296B (zh) * 2021-09-08 2023-03-21 青岛大学 一种刚度可调节的磁流变弹性体减震器及其制备工艺
CN113584632B (zh) * 2021-09-08 2023-06-13 青岛大学 基于微流控纺丝技术的磁流变弹性体及其制备方法
CN113799390A (zh) * 2021-09-13 2021-12-17 昆明理工大学 一种非接触式电磁加热的3d打印的方法
CN115044994A (zh) * 2022-06-29 2022-09-13 华中科技大学 一种发电复合纤维、制法及其应用
CN115491778B (zh) * 2022-09-14 2024-04-26 湖北光谷实验室 在功能纤维中集成多电极的装置、功能纤维的制备方法
CN116065245B (zh) * 2023-01-05 2024-04-19 华南理工大学 一种传导通路可控的聚合物纤维和制备装置及其制备方法
CN117074664B (zh) * 2023-10-13 2023-12-26 太原理工大学 基于SEBS/CoFe2O4的生物柔性传感器及其制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314045A (ja) * 1999-04-28 2000-11-14 Kanebo Ltd 織 物
CN101768797A (zh) * 2008-12-30 2010-07-07 黑龙江大学 一维磁性纤维材料及其制备方法和应用
CN103484973A (zh) * 2013-09-11 2014-01-01 昆山市万丰制衣有限责任公司 一种复合纳米纤维的制备工艺
CN108654528A (zh) * 2018-04-26 2018-10-16 华南理工大学 磁性高分子核壳结构微球及其制备方法和应用
CN110205688A (zh) * 2019-05-24 2019-09-06 华中科技大学 一种电热致变色纤维、其制备方法和应用
CN110205705A (zh) * 2019-05-24 2019-09-06 华中科技大学 一种热致变色纤维、其制备和应用
CN111663198A (zh) * 2020-06-19 2020-09-15 华中科技大学 一种微纳米磁性纤维及微纳米磁性纤维制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167416A (en) * 1980-11-19 1982-10-15 Kanebo Synthetic Fibers Ltd Magnetic fiber
JPS59173312A (ja) * 1983-03-23 1984-10-01 Chisso Corp 熱接着性磁性繊維およびその製造方法
CN100447312C (zh) * 2002-07-17 2008-12-31 中国石油化工股份有限公司 一种远红外磁性纤维及其制造方法
CN101649503B (zh) * 2009-09-11 2012-04-18 天津工业大学 一种磁性纤维及其制造方法
CN105110634B (zh) * 2015-06-25 2017-07-28 中国科学院西安光学精密机械研究所 多孔红外硫系玻璃光纤的制备方法
CN106087113B (zh) * 2016-06-23 2018-08-17 武汉斯托得科技有限责任公司 一种能打印连续性纤维的3d打印机、打印机喷头及打印机进料结构
CN107868984B (zh) * 2016-09-28 2020-10-02 湖州茂泰新材料科技有限公司 一种特种功能纺织纤维的制备方法
CN108439789B (zh) * 2018-03-27 2020-09-22 华南理工大学 一种透明纳米晶复合玻璃光纤的制备方法
CN108607478B (zh) * 2018-04-26 2021-05-14 华南理工大学 一种包覆荧光粉的有机物微球颗粒及其制备方法
CN110683753B (zh) * 2019-10-11 2021-08-27 华中科技大学 一种多材料多结构中红外光纤的低成本批量制备方法及系统
CN110776253A (zh) * 2019-10-15 2020-02-11 华南理工大学 一种同步探测光电化信号的复合玻璃光纤及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314045A (ja) * 1999-04-28 2000-11-14 Kanebo Ltd 織 物
CN101768797A (zh) * 2008-12-30 2010-07-07 黑龙江大学 一维磁性纤维材料及其制备方法和应用
CN103484973A (zh) * 2013-09-11 2014-01-01 昆山市万丰制衣有限责任公司 一种复合纳米纤维的制备工艺
CN108654528A (zh) * 2018-04-26 2018-10-16 华南理工大学 磁性高分子核壳结构微球及其制备方法和应用
CN110205688A (zh) * 2019-05-24 2019-09-06 华中科技大学 一种电热致变色纤维、其制备方法和应用
CN110205705A (zh) * 2019-05-24 2019-09-06 华中科技大学 一种热致变色纤维、其制备和应用
CN111663198A (zh) * 2020-06-19 2020-09-15 华中科技大学 一种微纳米磁性纤维及微纳米磁性纤维制备方法

Also Published As

Publication number Publication date
CN111663198B (zh) 2021-07-30
CN111663198A (zh) 2020-09-15
CN113718368B (zh) 2023-02-24
CN113718368A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2021254495A1 (zh) 一种微纳米磁性纤维及微纳米磁性纤维制备方法
Naeimirad et al. Recent advances in core/shell bicomponent fibers and nanofibers: A review
JP6771504B2 (ja) 耐熱性樹脂複合体
US10766181B2 (en) Magnetic feed material and its use in producing bonded permanent magnets by additive manufacturing
CN111732738B (zh) 一种制备微纳米磁性复合颗粒的方法及微纳米磁性复合颗粒
US8247528B2 (en) Composite material and method for making the same
KR20170054705A (ko) 그래핀으로 코팅된 금속나노입자와 나노카본을 포함하는 고강도 fdm 방식 3d 프린터용 고분자 필라멘트 및 이의 제조방법
CN107803983A (zh) 用于熔融沉积打印的形状记忆聚合物复合4d打印线的制备方法及应用方法
US20180229442A1 (en) Bonded permanent magnets produced by additive manufacturing
CN104769834A (zh) 卷曲和非卷曲加捻纳米纤维纱线及聚合物纤维扭转和拉伸驱动器
US20210370583A1 (en) Multiple layer filament and method of manufacturing
JP2010031227A (ja) 炭素ナノチューブ−金属−高分子ナノ複合材料の製造方法
CN107385537A (zh) 氧化石墨烯丙纶功能纤维的制备方法
Fakirov et al. Converting of bulk polymers into nanosized materials with controlled nanomorphology
EP2471842B1 (en) A process of forming a material having nano-particles
Deng et al. Recent progress on the confinement, assembly, and relaxation of inorganic functional fillers in polymer matrix during processing
KR102410037B1 (ko) 3d 프린팅이 가능한 탄소나노섬유 필라멘트 및 이의 제조방법
Rao et al. Effect of ZnO nanostructures on the optical properties of white light-emitting diodes
JPH05500353A (ja) 調節された多孔度のセラミック体およびその製造方法
TWI247722B (en) Assembled structures of carbon tubes and method for making the same
US20160090522A1 (en) Flexible heat-dissipating composite sheet including filler and low-viscosity polymerizable thermoplastic resin and cost effective mass producible method for preparing the same
KR101935344B1 (ko) 3d 프린터용 cnt 코팅 피크 조성물, 그 제조방법 및 cnt 코팅 피크 필라멘트
CN115044994A (zh) 一种发电复合纤维、制法及其应用
JP3768859B2 (ja) 高分子複合材料成形体及びその製造方法
Baby et al. Superparamagnetic characteristic of surface capped Mg0. 5Zn0. 5Fe2O4 nanoparticles reinforced polycarbonate nanocomposite fibers with mixed magnetic phases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826966

Country of ref document: EP

Kind code of ref document: A1