WO2021254339A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2021254339A1
WO2021254339A1 PCT/CN2021/100155 CN2021100155W WO2021254339A1 WO 2021254339 A1 WO2021254339 A1 WO 2021254339A1 CN 2021100155 W CN2021100155 W CN 2021100155W WO 2021254339 A1 WO2021254339 A1 WO 2021254339A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
terminal
network device
access network
channel quality
Prior art date
Application number
PCT/CN2021/100155
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
徐海博
张梦晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237001655A priority Critical patent/KR20230025455A/ko
Priority to US18/002,201 priority patent/US20230345517A1/en
Priority to JP2022578723A priority patent/JP2023531011A/ja
Priority to EP21825178.3A priority patent/EP4152871A4/en
Publication of WO2021254339A1 publication Critical patent/WO2021254339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a data transmission method and device.
  • the terminal when the terminal is in the idle state or inactive state, if the terminal needs to transmit uplink data to the access network device, the terminal needs to initiate random access, such as a 4-step random access process or a 2-step random access process In the process, the uplink data is transmitted to the access network device after switching from the idle/inactive state to the connected state. Among them, if the uplink data is small packet data, the amount of data is small. At this time, a complete random access process needs to be initiated for less data to be transmitted, which will increase the signaling overhead and power consumption of the terminal.
  • random access such as a 4-step random access process or a 2-step random access process
  • the uplink data is transmitted to the access network device after switching from the idle/inactive state to the connected state.
  • the uplink data is small packet data, the amount of data is small. At this time, a complete random access process needs to be initiated for less data to be transmitted, which will increase the signaling overhead and power consumption of the terminal.
  • the terminal can transmit uplink data to the access network device during the random access process, or, through the access network device’s pre-configured uplink resources (such as configured grand, CG) Transmission of uplink data.
  • uplink data is transmitted on the random access process or CG
  • a channel with higher channel quality needs to be selected. Transmission of uplink data, therefore, how to select a channel with higher channel quality is a technical problem that needs to be solved urgently in the random access process or the successful transmission of uplink data on the CG.
  • the embodiments of the present application provide a data transmission method and device, so as to realize the sending of uplink data in a 2-step random access mode or a 4-step random access mode or a CG mode when the terminal is in a non-connected state.
  • a data transmission method includes: a terminal in a disconnected state obtains the channel quality between the terminal and an access network device, and when the channel quality is greater than a first threshold, the terminal determines that it is based on random access Send uplink data to the access network device in the CG method or the CG method.
  • the random access method includes the 2-step random access method or the 4-step random access method.
  • the terminal determines the random access method to send the uplink data to the access network device Sending uplink data includes: when the channel quality is greater than the second threshold, the terminal determines to send uplink data to the access network device based on 2-step random access, and when the channel quality is less than the second threshold, determines based on 4-step random access Send uplink data to the access network equipment in a way.
  • a first threshold and a second threshold can be configured for the terminal.
  • the first threshold is used for whether the terminal selects random access or CG to send uplink data
  • the second threshold is used for terminal selection.
  • the random access method is still a 4-step random access method to send uplink data, so that the terminal can reasonably choose the method of sending uplink data according to the first threshold and the second threshold, which improves the transmission efficiency of uplink data and avoids the selected transmission method.
  • Corresponding channel quality is poor, causing uplink data transmission failure and resource waste.
  • the method further includes: when the channel quality is less than the first threshold and the channel quality is greater than the fifth threshold, the terminal determines not to send uplink data to the access network device in a disconnected state, but based on 2 When the channel quality is less than the first threshold and the channel quality is less than the fifth threshold, the terminal determines not to send uplink data to the access network equipment in the non-connected state, but based on the fourth step random access. Access method to access the cell.
  • the uplink data can be sent without 2-step random access or 4-step random access, and only random access is initiated, that is, when the channel quality is not ideal In this case, the uplink data is not sent by random access to avoid failure of uplink data transmission.
  • a data transmission method includes: a terminal in a disconnected state obtains the channel quality between the terminal and the access network device, when the channel quality is greater than a sixth threshold, and the channel quality is greater than the seventh threshold
  • the terminal determines to send uplink data to the access network device based on the 2-step random access method
  • the channel quality is less than the sixth threshold and the channel quality is greater than the eighth threshold
  • it determines to send the uplink data to the access network device based on the 4-step random access method.
  • the network device sends uplink data.
  • a sixth threshold, a seventh threshold, and an eighth threshold can be configured for the terminal.
  • the sixth threshold is used for the terminal to choose whether to use a 2-step random access resource or a 4-step random access resource.
  • the seventh threshold is used for the terminal to choose whether to use the 2-step random access resource to send uplink data or random access
  • the eighth threshold is for the terminal to choose whether the 4-step random access resource to send uplink data or random access, so that the terminal can be based on
  • the sixth, seventh, and eighth thresholds reasonably select the method of sending uplink data to improve the transmission efficiency of uplink data, and avoid the problem of failure of uplink data transmission and waste of resources due to poor channel quality corresponding to the selected transmission mode.
  • the method further includes: when the channel quality is greater than the sixth threshold and the channel quality is less than the seventh threshold, the terminal determines not to send uplink data to the access network device in a disconnected state, but based on 2 When the channel quality is less than the sixth threshold and the channel quality is less than the eighth threshold, the terminal determines not to send uplink data to the access network equipment in the non-connected state, but based on the fourth step random access. Access method to access the cell.
  • the uplink data when the channel quality is less than the seventh threshold, the uplink data can be sent without 2-step random access, and only 2-step random access is initiated.
  • the channel quality is less than the eighth threshold, no The uplink data is sent in a 4-step random access mode, and only 4-step random access is initiated, that is, when the channel quality is not ideal, the uplink data is not sent in random access mode to avoid failure of uplink data transmission.
  • the terminal determines whether the TA used for uplink time synchronization between the terminal and the access network device is valid. When the TA is invalid, the terminal determines to send information based on random access. The access network device sends uplink data. When the TA is valid, the terminal determines to send the uplink data to the access network device based on the CG mode; the CG resource corresponding to the CG mode is pre-configured by the access network device for the terminal in the unconnected PUSCH mode. resource.
  • the method further includes: when the channel quality is greater than the third threshold, the terminal based on 2-step random access The first transmission resource corresponding to the mode of, sends uplink data to the access network device on the MsgA.
  • the first transmission resource is selected to send uplink data, so as to avoid the problem of the selected transmission resource. Poor, leading to failure of uplink data transmission and wasting of resources.
  • the configuration information corresponding to the first transmission resource includes a third threshold; or, the third threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter threshold.
  • the transmission parameter is greater than the transmission parameter threshold corresponding to the third threshold; or, the third threshold is included in at least one threshold, and each of the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first transmission resource belongs to the third threshold. Transmission parameter interval.
  • a threshold for the terminal to select a suitable transmission resource can be set in the configuration information of the transmission resource, or the threshold for the terminal to select a suitable transmission resource and the transmission parameter threshold can be set correspondingly, or The threshold for selecting a suitable transmission parameter at the terminal is set corresponding to the transmission parameter interval, and the configuration method is flexible and diverse, and the adaptability is strong.
  • the transmission parameters include one or more of MCS and TBS, that is, based on MCS and /TBS to measure the transmission requirements of a transmission resource, the transmission parameter designs are diverse and the flexibility is high.
  • the method further includes: when the channel quality is greater than the fourth threshold, the terminal sends to the access network device based on the first CG resource Upstream data.
  • the first CG resource is selected to send uplink data, so as to avoid the poor selection of CG resources. Uplink data transmission fails and resources are wasted.
  • the configuration information corresponding to the first CG resource includes a fourth threshold; or, the fourth threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter threshold.
  • the transmission parameter is greater than the transmission parameter threshold corresponding to the fourth threshold; or, the fourth threshold is included in at least one threshold, and each of the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first CG resource belongs to the fourth threshold. Transmission parameter interval.
  • a threshold for the terminal to select an appropriate CG resource can be set in the configuration information corresponding to the CG resource, or the threshold for the terminal to select an appropriate CG resource and the transmission parameter threshold can be set correspondingly, or The threshold for the terminal to select the appropriate transmission parameter is set corresponding to the transmission parameter interval, and the configuration mode is flexible and diverse, and the adaptability is strong.
  • TA invalidation includes one or more of the following: the validity period of the TA expires, and the distance between the current position of the terminal and the position of the terminal when the TA is activated is greater than the distance threshold; the channel quality and the terminal and the connection when the TA is activated The difference in channel quality between networked devices is greater than the channel quality change threshold. Based on this possible design, whether the TA of the terminal is invalid can be determined by whether the TA has timed out or whether the terminal is moving, etc. The determination method is flexible and diverse, and the application scenario is expanded.
  • the above-mentioned first threshold, second threshold, third threshold, fourth threshold, fifth threshold, sixth threshold, seventh threshold, and eighth threshold are configured by the access network device to the terminal, and the The unified configuration management of networked equipment is used for the terminal to select the appropriate method or the threshold of the transmission resource to send uplink data, centralized management, unified standards, and simplified system design.
  • the present application provides a communication device.
  • the communication device may be the above-mentioned terminal or a chip or a system on a chip in the terminal, and may also be a terminal for implementing the first aspect or any possible design or
  • the second aspect or any possible design of the second aspect is a functional module of the method.
  • the terminal can implement the functions performed by the terminal in the above-mentioned aspects or various possible designs, and the functions can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the terminal may include: a receiving unit and a processing unit;
  • the receiving unit is used to obtain the channel quality between the terminal and the access network device.
  • the processing unit is used to determine when the channel quality is greater than the first threshold to send uplink data to the access network device based on the random access method or the CG method.
  • the random access method includes a 2-step random access method or a 4-step random access method. Access method; for example, when the channel quality is greater than the second threshold, it is determined to send uplink data to the access network device based on 2-step random access; when the channel quality is less than the second threshold, it is determined to be based on 4-step random access. Ways to send uplink data to the access network equipment.
  • the receiving unit is used to obtain the channel quality between the terminal and the access network device.
  • the processing unit is used to determine when the channel quality is greater than the sixth threshold and the channel quality is greater than the seventh threshold to send uplink data to the access network device based on the 2-step random access method; when the channel quality is less than the sixth threshold, and the channel When the quality is greater than the eighth threshold, it is determined to send uplink data to the access network device based on the 4-step random access method.
  • the relevant execution actions of the processing unit and the receiving unit may refer to the description in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect. Go into details.
  • a communication device may be a terminal or a chip or a system on a chip in the terminal.
  • the terminal can implement the functions performed by the terminal in the above-mentioned aspects or various possible designs, and the functions can be implemented by hardware.
  • the terminal may include a processor and a communication interface.
  • the processor may be used to support the terminal to implement the functions involved in the first aspect or any possible design of the first aspect, for example: the processor is used to obtain the channel between the terminal and the access network device Quality. When the channel quality is greater than the first threshold, the terminal determines to send uplink data to the access network device based on random access or CG.
  • the terminal determines that the channel quality is based on 2-step random access.
  • the terminal determines to send the uplink data to the access network device based on the 4-step random access method.
  • the processor is used to obtain the channel quality between the terminal and the access network device, and when the channel quality is greater than the sixth threshold, and the channel quality is greater than the seventh threshold, it is determined that the channel quality is based on the 2-step random access method.
  • the network access device sends uplink data; when the channel quality is less than the sixth threshold and the channel quality is greater than the eighth threshold, it is determined to send uplink data to the access network device based on a 4-step random access method.
  • the communication device may further include a memory, and the memory is used to store necessary computer-executed instructions and data of the terminal.
  • the processor executes the computer-executable instructions stored in the memory, so that the communication device executes the first aspect or any possible design of the first aspect or the second or second aspect Any possible design of the data transmission method described.
  • a computer-readable storage medium may be a readable non-volatile storage medium, and the computer-readable storage medium stores instructions when it runs on a computer. , Causing the computer to execute the data transmission method described in the first aspect or any possible design of the foregoing aspects or the second aspect or any possible design of the second aspect.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the first aspect or any possible design of the foregoing aspects or any of the second or second aspects.
  • a communication device may be a terminal or a chip or a system on a chip in the terminal.
  • the terminal includes one or more processors and one or more memories.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the terminal is caused to execute the data transmission method described in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect.
  • the technical effects brought by any one of the fourth aspect to the seventh aspect can be referred to the above-mentioned first aspect or any one of the possible designs of the first aspect or the second aspect or any one of the possibilities of the second aspect.
  • the technical effects brought about by the design of this article will not be repeated here.
  • an embodiment of the present application provides a communication system.
  • the communication system may include: an access network device and a terminal, and the terminal includes the communication device or computer according to any one of the third to seventh aspects.
  • Program product or readable storage medium may be included in the communication system.
  • Figure 1a is a schematic diagram of a 4-step random access mode
  • Figure 1b is a schematic diagram of a 2-step random access method
  • Figure 1c is a schematic diagram of the CG mode
  • FIG. 2 is a simplified schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 4 is a flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 5a is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 5b is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 5c is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 5d is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 7a is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 7b is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 7c is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 7d is a flowchart of another data transmission method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of the composition of a communication device 80 provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the composition of a communication system provided by an embodiment of this application.
  • the connected (connected) state may be referred to as the radio resource control connected (RRC-connected) state.
  • the terminal In the connected state, the terminal is connected to a network device (for example, an access network device), and data transmission is performed between the two.
  • the terminal can receive downlink data from the network device or send uplink data to the network device.
  • the idle state may be referred to as the radio resource control idle (RRC-idle) state.
  • the terminal and the access network equipment are not connected, and the access network equipment does not know whether the terminal is within the coverage of the access network equipment, and the terminal can receive information from the access network equipment.
  • One or more of paging messages, synchronization signals, broadcast messages, or system information but cannot perform data transmission such as voice calls with access network equipment, and Internet access with large amounts of data.
  • the inactive (inactive) state may be referred to as the radio resource control (radio resource control inactive, RRC-inactive) state.
  • RRC-inactive radio resource control inactive
  • the terminal and the access network device are not connected, but the access network device can store the context of the terminal, and the terminal can receive paging messages, synchronization signals, and synchronization signals from the access network device.
  • the access network equipment such as voice calls, large data volume Internet access, and other data transmission.
  • the above three states can be converted to each other.
  • the network side device when the terminal has no data service, the network side device will send an RRC release (release) message to the terminal to make the terminal switch from the connected state to the idle state or the inactive state.
  • the network side device When there is a demand for downlink services on the network side, the network side device will periodically send paging messages to the terminal. After the terminal is paged, it triggers the terminal to switch to the connected state and initiate random access. After the random access is completed Enter the connected state and receive the downlink data sent by the network side. Or, when the terminal has an uplink service requirement, the terminal will also initiate random access, switch to the connected state, and send uplink data after the connected state.
  • Uplink data can include small uplink data (small data).
  • Uplink small packet data can refer to service data with a small amount of data. The number of bits is less than or equal to a preset value. The preset value is set as needed, and the service data is occupied during transmission. There are few transmission resources.
  • the uplink small packet data can be several bits (bit) of business data, or tens of bits of business data, or hundreds of bits or thousands of bits of business data.
  • the terminal needs to initiate random access first and go through the complete random access process. Switch to the connected state, and send the uplink small packet data in the connected state. After the uplink small packet data is sent, the network equipment may keep the terminal in the connected state for a long time. These steps will cause greater signaling overhead and increase the terminal’s Power consumption increases the data transmission delay.
  • the terminal can use random access (such as 2-step random access or 4-step random access). Step random access mode) or configuration scheduling (configuration grant, CG) mode to send uplink small packet data to the access network device.
  • random access such as 2-step random access or 4-step random access
  • Step random access mode or configuration scheduling (configuration grant, CG) mode to send uplink small packet data to the access network device.
  • CG configuration grant
  • Step (0) the access network device sends uplink resource configuration information to the terminal, and the terminal configures uplink resources for sending uplink data.
  • Step (1) The terminal sends a message one (Msg1) to the access network device to notify the access network device that there is a random access request. Among them, message one may also be referred to as a random access preamble (random access preamble).
  • the random access response may also be referred to as message two (Msg2).
  • Step (3) After receiving the random access response, the terminal sends a message three (Msg3) to the access network device, where Msg3 may include uplink small packet data and other information.
  • Step (4) the access network device sends a message four (Msg4) to the terminal, and the message four may include a response message determined by the bottom layer of the access network device and/or a high layer corresponding to the uplink packet data determined by the upper layer of the access network device Feedback.
  • the preamble preamble sequence
  • the terminal is randomly selected from an optional preamble set.
  • Msg2/Msg3/Msg4 all require the access network equipment to be scheduled to the terminal through the physical downlink control channel (PDCCH), such as: Before sending Msg2/Msg3/Msg4, the access network equipment will send Msg2 for scheduling The PDCCH of /Msg3/Msg4 sends or receives Msg2/Msg3/Msg4 at the time-frequency resource location indicated by the PDCCH.
  • PDCCH physical downlink control channel
  • Step (0) the access network device sends uplink configuration information to the terminal, and the uplink resource configuration information indicates the two steps configured for the terminal to send uplink data.
  • Random access resources The terminal sends MsgA to the access network device.
  • the MsgA may include a preamble, and may also include a physical uplink shared channel (PUSCH) associated with the preamble.
  • the PUSCH includes the uplink Packet data and other information.
  • PUSCH physical uplink shared channel
  • MsgB may include related information used for contention resolution between terminals, and may also include a response message determined by the bottom layer of the access network device and/or the access network The upper layer feedback information corresponding to the uplink small packet data determined by the upper layer of the device.
  • the preamble used by the terminal is randomly selected from an optional preamble set or a dedicated preamble set corresponding to the 2-step random access method.
  • MsgB needs to be scheduled by the access network device to the terminal through the PDCCH. For example, before sending the MsgB, the access network device will send a PDCCH for scheduling the MsgB, and receive the MsgB at the time-frequency resource location indicated by the PDCCH.
  • the network side pre-configures uplink resources or CG resources for the terminal.
  • the terminal When the terminal has uplink service requirements, it directly uses the pre-configured uplink resources to transmit uplink data.
  • the CG mode may specifically include the following steps ( 1)
  • the access network device sends uplink resource configuration information to the terminal, and configures the terminal with uplink resources for sending uplink data.
  • the PUSCH is carried in the configuration scheduling message, and the access network device receives the uplink small packet data accordingly.
  • the CG method shown in FIG. 1c may also include step (3).
  • the access network device sends a configuration scheduling response to the terminal, and the configuration scheduling response may include the bottom layer determination of the access network device.
  • the CG described in this application is a naming of a data transmission mode, which includes: pre-configured PUSCH resources for the terminal, and when the terminal has uplink service needs, the pre-configured PUSCH resource is used to send the uplink service data.
  • this data transmission method this application is not limited to naming it as CG, but can also be named as other names without limitation.
  • the terminal When the terminal sends uplink small packet data based on the above random access method or CG method, the channel quality requirements are higher. If the channel quality is poor, the terminal cannot implement the above random access method or CG method to send uplink small packet data. Resulting in the failure of upstream small packet data. Therefore, how to select a channel with high channel quality or that can meet the transmission requirements of the uplink small packet data is a key issue to ensure that the terminal successfully sends the uplink small packet data based on the random access mode or the CG mode.
  • the prior art only provides a threshold configured by the access network equipment, and it is determined to select the 2-step random method to initiate random access or the 4-step random access method to initiate random access, and this A technical means cannot guarantee/implement the successful sending of uplink small packets based on random access or CG.
  • an embodiment of the present application provides a data transmission method.
  • the method may include: the network side broadcasts a threshold, such as a first threshold.
  • the first threshold may be used to indicate whether the terminal can use random access to send uplink small packet data. For example, if the terminal determines that the channel quality is greater than the first threshold, the determination is based on random The access mode or CG mode sends uplink small packet data.
  • the network side broadcasts another threshold, such as the second threshold.
  • the second threshold is used to instruct the terminal to use random access mode to send uplink small packet data.
  • the 2-step random access method is still the 4-step random access method to send uplink small packet data.
  • the implementation manner can be referred to as described in Figs. 4 to 5d below.
  • the network side broadcasts a threshold, such as the sixth threshold.
  • the sixth threshold is used to instruct the terminal to use 2-step random access resources (optionally, it also includes CG resources) or use 4-step random access resources.
  • the network side broadcasts two more thresholds, such as the eighth threshold and the seventh threshold. These two thresholds are respectively used to indicate whether the terminal is using 2-step random access resources and 4-step random access resources. It can send uplink small packet data based on random access. If possible, the terminal sends uplink small packet data based on random access. If not, the terminal first accesses the network, establishes a connection with the network side device, and then transmits the uplink small packet data. Specifically, the implementation manner is described with reference to Figs. 6-7d below.
  • sending uplink data based on 2-step random access can replace the description of sending uplink data based on 2-step random access resources or sending PUSCH corresponding to MsgA in 2-step random access.
  • Sending uplink data based on 4-step random access can be replaced with the description of sending uplink data based on 4-step random access resources or sending uplink data based on the PUSCH corresponding to Msg3 in 4-step random access.
  • Initiating random access based on 2-step random access can be replaced with the description of initiating random access based on resources of 2-step random access or initiating random access based on premble corresponding to MsgA in 2-step random access, etc.
  • Initiating random access based on 4-step random access can be replaced by the description of initiating random access based on resources of 4-step random access or initiating random access based on premble corresponding to Msg1 in 4-step random access, etc.
  • the uplink data in the following embodiments may refer to uplink small packet data or other service data that can be sent through a random access process or CG mode, and is not limited.
  • the uplink data is sent based on the transmission resource corresponding to the 2-step random access method (or called the 2-step random access resource)
  • the uplink data is different from the premble.
  • the The uplink data can be data borne/carried on the PUSCH corresponding to MsgA.
  • the uplink data can be transmitted through the PUSCH.
  • the uplink data transmitted on the PUSCH corresponding to MsgA can be user plane (UP) data or control plane (control plane) data. Data of plane (CP), or data of dedicated traffic channel (dedicated traffic channel, DTCH), etc., are not limited.
  • the uplink data is a transport block (TB).
  • the uplink data is a media access control (MAC) packet data unit. PDU).
  • the Msg3 that carries the uplink data is different from the Msg3 that carries the control signaling in the prior art.
  • the uplink data carried in Msg3 can be UP data or CP data, or DTCH data, etc., which is not limited.
  • the data transmission method provided by the embodiments of this application can be used in the fourth generation (4G) system, the long term evolution (LTE) system, the fifth generation (5G) system, and the new radio (new radio, Any of the NR) system, the NR-vehicle-to-everything (V2X) system, and the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • 4G fourth generation
  • LTE long term evolution
  • 5G fifth generation
  • new radio new radio
  • Any of the NR system, the NR-vehicle-to-everything (V2X) system, and the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
  • the following uses the communication system shown in FIG. 2 as an example to describe the data transmission method provided in the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include an access network device and multiple terminals, such as terminal 1 and terminal 2.
  • the terminal can be in an idle state or an inactive state.
  • Fig. 2 is an exemplary framework diagram, and the number of nodes included in Fig. 2 is not limited, and in addition to the functional nodes shown in Fig. 2, other nodes, such as core network equipment, gateway equipment, Application servers, etc., are not restricted.
  • the access network equipment is mainly used to implement functions such as terminal resource scheduling, wireless resource management, and wireless access control.
  • the access network device may be any one of a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and some other access node.
  • the terminal may be a terminal equipment (terminal equipment) or a user equipment (user equipment, UE), a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
  • the terminal may be a mobile phone (mobile phone), a tablet computer, or a computer with wireless transceiver function, it may also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, or wireless in industrial control.
  • Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
  • the device used to implement the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system (for example, a chip or a processing system composed of multiple chips).
  • a chip system for example, a chip or a processing system composed of multiple chips.
  • each network element shown in FIG. 2, such as a terminal and an access network device may adopt the composition structure shown in FIG. 3 or include the components shown in FIG. 3.
  • 3 is a schematic diagram of the composition of a communication device 300 provided by an embodiment of this application.
  • the communication device 300 may be a terminal or a chip or on-chip in the terminal. system.
  • the communication device 300 may be the access network device or a chip or a system on a chip in the access network device.
  • the communication device 300 may include a processor 301, a communication line 302, and a communication interface 303. Further, the communication device 300 may further include a memory 304. Among them, the processor 301, the memory 304, and the communication interface 303 may be connected through a communication line 302.
  • the processor 301 may be a central processing unit (CPU), a general-purpose processor network processor (NP), a digital signal processing (DSP), a microprocessor, or a microcontroller , Programmable logic device (PLD) or any combination of them.
  • the processor 301 may also be other devices with processing functions, such as circuits, devices, or software modules.
  • the communication line 302 is used to transmit information between the components included in the communication device 300.
  • the communication interface 303 is used to communicate with other devices or other communication networks.
  • the other communication network may be Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the communication interface 303 may be a radio frequency module, a transceiver, or any device capable of realizing communication.
  • the embodiment of the present application is described by taking the communication interface 303 as a radio frequency module as an example, where the radio frequency module may include an antenna, a radio frequency circuit, etc., and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
  • the memory 304 is used to store instructions. Among them, the instruction may be a computer program.
  • the memory 304 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or it may be a random access memory (RAM) or Other types of dynamic storage devices that store information and/or instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media or other magnetic storage devices.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • optical disc storage optical disc storage
  • magnetic disk storage media or other magnetic storage devices Optical disc storage includes compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • the memory 304 may exist independently of the processor 301, or may be integrated with the processor 301.
  • the memory 304 may be used to store instructions or program codes or some data.
  • the memory 304 may be located in the communication device 300 or outside the communication device 300 without limitation.
  • the processor 301 is configured to execute instructions stored in the memory 304 to implement the data transmission method provided in the following embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the communication device 300 includes multiple processors.
  • the processor 301 in FIG. 3 it may also include a processor 307.
  • the communication apparatus 300 further includes an output device 305 and an input device 306.
  • the input device 306 is a keyboard, a mouse, a microphone, or a joystick
  • the output device 305 is a display screen, a speaker, and other devices.
  • the communication device 300 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system, or a device with a similar structure in FIG. 3.
  • the composition structure shown in FIG. 3 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than those shown in the figure, or combine certain components. , Or different component arrangements.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • each device in the following embodiments may have the components shown in FIG. 3, and the actions, terms, etc. involved in the various embodiments may refer to each other, and the names of messages or parameter names in messages that are exchanged between devices in each embodiment This is just an example, and other names can also be used in specific implementations without limitation.
  • FIG. 4 is a data transmission method provided by an embodiment of this application. As shown in FIG. 4, the method may include:
  • Step 401 The terminal obtains the channel quality between the terminal and the access network device.
  • the terminal may be any terminal in an idle state or an inactive state in the communication system shown in FIG. 2.
  • the access network device may be any access network device that can provide network services for the terminal in the communication system shown in FIG. 2.
  • the channel quality can be used to evaluate the quality of the transmission channel between the terminal and the access network equipment. The closer the terminal and the access network equipment, the higher the channel quality, and the transmission between the terminal and the access network equipment The better the channel, the higher the probability of successful uplink data transmission. Conversely, the longer the distance between the terminal and the access network equipment, the lower the channel quality, the worse the transmission channel between the terminal and the access network equipment, and the successful transmission of uplink data The lower the probability.
  • the channel quality may include reference signal received power (RSRP) or reference signal received quality (RSRQ) or signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal to interference plus noise ratio
  • the channel quality between the terminal and the access network device can be obtained by measuring the synchronization signal block (SSB) broadcast by the access network device, or by measuring the pre-configured
  • the information state information reference signal channel-state information-reference signal, CSI-RS
  • the measurement process can refer to the prior art.
  • Step 402 When the channel quality is greater than the first threshold, the terminal determines to send uplink data to the access network device based on the random access mode or the CG mode.
  • the first threshold may be pre-configured by the access network device to the terminal.
  • the access network device may send an RRC message carrying the first threshold to the terminal, and the terminal receives the RRC message and obtains the first threshold from the RRC message.
  • the RRC message may be a terminal-specific RRC message, and the receiving object of the RRC message is the terminal.
  • the RRC message may be an RRC release message.
  • the RRC message may be an RRC message broadcast by an access network device, and the recipient of the RRC message may be multiple terminals.
  • the RRC message may be a system information block (SIB) or the like.
  • SIB system information block
  • the first threshold may be used to indicate whether the terminal uses random access or CG to send uplink data, and the value of the first threshold may be set according to needs and is not limited.
  • the terminal can determine whether to send uplink data based on a random access mode or based on a CG mode to send uplink data to an access network device according to whether the timing advance (TA) is valid. For example, the terminal determines whether the TA is valid. When the TA is invalid, the terminal determines to send uplink data to the access network device based on random access; when the TA is valid, the terminal determines to send uplink data to the access network device based on the CG method.
  • TA timing advance
  • TA can be used to synchronize the uplink time between the terminal and the access network equipment.
  • the TA becomes invalid.
  • the following does not exist In any of the three situations, the TA is valid: (1) The validity period of the TA expires, and the TA becomes invalid.
  • the validity period of the TA can be determined by the access network equipment and notified to the terminal. After receiving the validity period of the TA notified by the access network equipment, the terminal starts a timer corresponding to the TA, and the running time of the timer is equal to the validity of the TA Time length, the timeout of the timer means that the validity period of the TA has timed out.
  • the distance threshold can be set according to needs and is not limited.
  • the distance threshold can be configured by the access network device to the terminal, and the configuration method is the same as that of the first threshold configured by the access network device for the terminal, and will not be repeated.
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is less than the distance threshold, which means that the terminal has a small moving distance, and the transmission channel between it and the access network device has not changed or has changed a little, and the TA is still applicable.
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is greater than the distance threshold, which means that the terminal has moved a larger distance and may be far away from the access network device, and the transmission channel between it and the access network device changes, such as change Bad, TA is invalid.
  • the distance between the terminal and the access network device can be characterized by the channel quality, and the distance between the two The closer, the better the channel quality, and the longer the distance between the two, the worse the channel quality.
  • the channel quality of the terminal is less than the channel quality threshold, it may also mean that the TA is invalid.
  • the channel quality of the terminal is greater than the channel quality threshold, the TA is valid.
  • the channel quality threshold may need to be set, and the channel quality threshold may be configured by the access network device to the terminal, and the configuration method is the same as that of the first threshold configured by the access network device for the terminal, and will not be repeated.
  • the channel quality change threshold can be set as required and is not limited.
  • the channel quality change threshold can be pre-configured by the access network device to the terminal, and the configuration method is the same as that of the first threshold configured by the access network device for the terminal, and will not be repeated.
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is started is less than the channel quality change threshold, which means that the transmission channel between the terminal and the access network device has not changed or has changed slightly, and the TA is still applicable;
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is activated is greater than the channel quality change threshold, which means that the channel quality is degraded and the TA is invalid.
  • the terminal can determine, according to the second threshold, whether to send uplink data based on random access to the access network device, whether to send uplink data based on 2-step random access or based on 4-step random access.
  • Upstream data may include: when the channel quality is greater than the second threshold, determining to send uplink data to the access network device based on 2-step random access; when the channel quality is less than the second threshold, determining based on the 4-step random access Send uplink data to the access network device in the incoming mode.
  • the second threshold may be configured to the terminal by the access network device, and its configuration method is the same as the manner in which the access network device configures the first threshold to the terminal, and will not be repeated.
  • the second threshold can be set as needed and is not limited.
  • the second threshold can be greater than the first threshold, and the second threshold can be used for the terminal to choose whether to send uplink data to the access network device based on the 2-step random access method or whether it is based on 4 Send uplink data to the access network equipment in a random access mode.
  • greater than the threshold can be replaced by the description as greater than or equal to the threshold, or less than the threshold can be replaced by the description It is less than or equal to the threshold, that is, the same threshold may be greater than or equal to the threshold and less than the threshold; or greater than the threshold, less than or equal to the threshold, there is no restriction.
  • greater than the first threshold and less than the first threshold can be replaced by the description as being greater than the first threshold, less than or equal to the first threshold; or greater than or equal to the first threshold, and less than the first threshold.
  • the method further includes:
  • Step 403 When the channel quality is less than the first threshold, the terminal determines not to send uplink data in a disconnected state, but initiates random access based on random access, and accesses the cell corresponding to the access network device.
  • the terminal may determine whether to initiate random access based on 2-step random access or 4-step random access based on the fifth threshold, for example, when the channel quality is less than the first threshold, and the channel When the quality is greater than the fifth threshold, the terminal determines not to send uplink data to the access network device in a disconnected state, but initiates random access based on a 2-step random access method to access the cell; when the channel quality is less than the first threshold, And when the channel quality is less than the fifth threshold, the terminal determines not to send uplink data to the access network device in a disconnected state, but initiates random access based on the random access step 4 to access the cell.
  • the fifth threshold for example, when the channel quality is less than the first threshold, and the channel When the quality is greater than the fifth threshold, the terminal determines not to send uplink data to the access network device in a disconnected state, but initiates random access based on a 2-step random access method to access the cell; when the channel quality is less than the first threshold, And when the channel quality is less than the fifth threshold,
  • the fifth threshold may be configured to the terminal by the access network device, and its configuration method is the same as the manner in which the access network device configures the first threshold to the terminal, and will not be repeated.
  • the fifth threshold can be set as needed and is not limited.
  • the fifth threshold can be less than the first threshold.
  • the fifth threshold can be used for the terminal to choose whether to initiate random access based on 2-step random access or 4-step random access. Initiate random access in the same way.
  • the terminal can reasonably select the method of sending uplink data according to the first threshold and the second threshold to improve the transmission efficiency of uplink data and avoid the failure of uplink data transmission due to the poor channel quality corresponding to the selected transmission mode. , The problem of waste of resources.
  • the terminal may send the uplink data based on the transmission resource corresponding to the 2-step random access method.
  • the transmission resources corresponding to the 2-step random access method may be referred to as 2-step random access resources or transmission resources corresponding to MsgA, and so on.
  • the 2-step random access method can correspond to one set of transmission resources or multiple sets of transmission resources, and is not limited.
  • the transmission resources corresponding to the 2-step random access method can be pre-configured to the terminal by the access network equipment.
  • a group of transmission resources can include "preamble" and "PUSCH".
  • the terminal can send MsgA on a group of transmission resources corresponding to the 2-step random access mode.
  • the MsgA includes the preamble and the PUSCH carrying uplink data.
  • the terminal may send uplink data based on the unique transmission resource.
  • transmission resources corresponding to the 2-step random access method when there are multiple transmission resources corresponding to the 2-step random access method, and different transmission resources correspond to different channel qualities, for example, different transmission resources correspond to different modulation and coding schemes (MCS). ) And/or transmission block speed (TBS), in order to ensure that the uplink data is successfully transmitted and the PUSCH that transmits the uplink data is successfully decoded, the terminal needs to select the appropriate transmission resource/channel quality from multiple sets of transmission resources. Good transmission resources to transmit uplink data.
  • MCS modulation and coding schemes
  • TBS transmission block speed
  • the terminal can select the first transmission resource from the multiple sets of transmission resources corresponding to the 2-step random access method according to the third threshold, and based on the first transmission resource, send the preamble and uplink data to the access network device on the MsgA ,
  • the uplink data is carried in the PUSCH corresponding to MsgA.
  • the third threshold may be configured to the terminal by the access network device, and its configuration method is the same as the manner in which the access network device configures the first threshold to the terminal, and will not be repeated here.
  • the third threshold can be set as needed and is not limited.
  • the third threshold can be greater than the first threshold, the third threshold can be equal to the second threshold, or the third threshold can be less than or equal to the minimum threshold of the at least one threshold.
  • the third threshold may be used for the terminal to select appropriate corresponding transmission resources for transmitting the uplink data when sending uplink data in a 2-step random access manner.
  • the association relationship between the third threshold and the first transmission resource is shown in the following manners (1) to (3):
  • the two-step random access method can correspond to one or more groups of transmission resources, one or more groups of transmission resources include the first transmission resource, and the configuration information corresponding to each group of transmission resources includes a threshold or multiple thresholds
  • the threshold included in the configuration information corresponding to each group of transmission resources is used for whether the terminal selects the transmission resource. If the channel quality is greater than the threshold included in the configuration information corresponding to the transmission resource, the transmission resource can be selected to send MsgA, and MsgA includes preamble. And the PUSCH that carries uplink data. On the contrary, the PUSCH corresponding to the transmission resource cannot be selected to send the uplink data.
  • the 4-step random access method is selected to send uplink data to the access network device.
  • the threshold corresponding to each transmission parameter can be carried in the configuration information and configured for the terminal, and the configuration method can refer to the above-mentioned way of configuring the first threshold for the terminal by the access network device, which will not be repeated.
  • the third threshold may be included in at least one threshold corresponding to the at least one set of transmission resources.
  • the terminal may compare the channel quality with a threshold corresponding to the transmission resource configured by the access network device, and determine that the channel quality is greater than the threshold corresponding to at least one set of transmission resources Which of these thresholds is larger, use the transmission resource (such as the first transmission resource) corresponding to the largest threshold (such as the third threshold) of these thresholds to send MsgA.
  • MsgA includes the preamble and the PUSCH carrying uplink data, or use the determined threshold
  • MsgA includes preamble and PUSCH carrying uplink data, which is not limited.
  • the upper row of data is uplink small packet data
  • the channel quality is RSRP as an example.
  • MsgA-RSRP-TheresholdsmallData-r17 to the configuration information corresponding to the MsgA configured by the access network device for the terminal.
  • MsgA-RSRP-TheresholdsmallData-r17 specifically indicates an RSRP threshold.
  • the RSRP threshold is used for whether the terminal sends uplink small packet data in MsgA.
  • MsgA-RSRP-TheresholdsmallData-r17 can be used to characterize the PUSCH resource in the transmission resource indicated by the configuration information. Under what conditions can it be used to send upstream small packets.
  • the terminal uses 4-step random access to send uplink small packet data. It should be noted that the specific meanings of the fields other than the field MsgA-RSRP-TheresholdsmallData-r17 in the following codes are described in the prior art and will not be repeated.
  • the two-step random access method can correspond to at least one group of transmission resources (such as one or more groups of transmission resources), at least one group of transmission resources includes the first transmission resource, and at least one group of transmission resources can correspond to at least one group Transmission parameters.
  • a group of transmission parameters may include MCS and/or TBS. This at least one group of transmission parameters can be divided into at least one transmission parameter interval, and the maximum value of the transmission parameter interval may be the maximum value of the at least one group of transmission parameters or greater The maximum value, the minimum value of the transmission parameter interval may be the minimum value in at least one set of transmission parameters or less than the minimum value.
  • a transmission parameter interval corresponds to a threshold.
  • the threshold corresponding to each transmission parameter interval can be used by the terminal to choose whether to send uplink data based on the transmission resource. If the channel quality is greater than the threshold corresponding to the transmission parameter interval, it can be selected in the transmission parameter interval.
  • the transmission resource corresponding to a certain set of transmission parameters sends MsgA. MsgA includes the preamble and the PUSCH carrying uplink data. On the contrary, the PUSCH corresponding to the transmission resource cannot be selected to send the uplink data.
  • the 4-step random access method is selected to send uplink data.
  • the transmission parameter interval and the threshold corresponding to the transmission parameter interval may be configured by the access network device to the terminal, and the configuration method can refer to the manner in which the access network device configures the first threshold value for the terminal, which will not be repeated.
  • the third threshold may be included in the above at least one threshold, and the transmission parameter of the first transmission resource belongs to a transmission parameter interval corresponding to the third threshold.
  • the terminal may compare the channel quality with the threshold corresponding to the transmission parameter interval configured by the access network device to determine which of the channel quality is more than at least one threshold If the threshold is large, use the transmission resource (such as the first transmission resource) corresponding to any transmission parameter in the transmission parameter interval corresponding to the largest threshold (such as the third threshold) of these thresholds to send uplink data, or use the determined threshold
  • the transmission resource corresponding to any transmission parameter in the transmission parameter interval corresponding to any threshold value of is not limited.
  • transmission parameter interval 1 may include transmission parameter interval 2
  • transmission parameter interval 1 and transmission parameter interval 2 include transmission parameters. It is completely different and is not limited.
  • the upper row data is the uplink small packet data as an example, the channel quality is RSRP, the transmission parameter is MCS, and the transmission parameter interval is the MCS interval.
  • MCS interval 1 MCS interval 1
  • MCS interval 2 MCS interval 3
  • the threshold value is an RSRP threshold value as an example, and different RSRP threshold values correspond to an MCS interval.
  • An MCS interval can be defined by a maximum boundary (upper bound) and a minimum boundary (lower bound).
  • Each bound corresponds to a transmission parameter.
  • each bound is a transmission parameter index value, that is, the MCS index value (I_MCS).
  • the transmission parameter index value is used to uniquely indicate a transmission parameter.
  • the access network device can carry the RSRP threshold and MCS interval in the following signaling and send it to the terminal.
  • the RSRP-MCS-Threshold List (MsgA-RSRP-MCS-TheresholdForsmallDataList) corresponding to MsgA in the r17 protocol -r17) can include N RSRP-MCS-thresholds (MsgA-RSRP-MCS-TheresholdForsmallData-r17), the value of N is 3, and each MsgA-RSRP-MCS-TheresholdForsmallData-r17 can include an RSRP threshold and Corresponding MCS interval: MsgA-RSRP-MCS-TheresholdForsmallDataList-r17SEQUENCE SIZE(1..N))OF MsgA-RSRP-MCS-TheresholdForsmallData-r17
  • the RSRP threshold and the MCS interval can be expressed in table form, as shown in Table 1 below, which shows the correspondence between the MCS interval and the RSRP threshold.
  • RSRP threshold 1 corresponds to MCS interval 1
  • RSRP threshold 2 corresponds to MCS interval 2.
  • RSRP threshold 3 corresponds to MCS interval 3.
  • the terminal can compare the channel quality with RSRP threshold 1 to RSRP threshold 3. If the channel quality is found to be greater than RSRP threshold 2, then use the transmission corresponding to the transmission parameters included in MCS interval 2 corresponding to RSRP threshold 2.
  • the resource sends uplink data. If it is found that the channel quality is smaller than the minimum of the three RSRP thresholds, the uplink data is sent based on the 4-step random access method.
  • RSRP threshold 1 MCS zone 1
  • RSRP threshold 2 MCS zone 2
  • RSRP threshold 3 MCS zone 3
  • the upper row data is the uplink small packet data
  • the channel quality is RSRP
  • the transmission parameter is TBS
  • the transmission parameter interval is the TBS interval.
  • TBS interval 1 TBS interval
  • TBS interval 2 TBS interval 3
  • TBS interval 3 TBS interval corresponds to
  • the threshold of is an example of RSRP threshold
  • different RSRP thresholds correspond to a TBS interval.
  • a TBS interval can be defined by an upper bound and a lower bound.
  • the specific value of upper bound and lower bound can be the size of a TBS.
  • the access network device may carry the RSRP threshold and the TBS interval in the following signaling and send it to the terminal.
  • MsgA-RSRP-TBS-TheresholdForsmallDataList-r17 may include N RSRP-TBS-threshold MsgA- In RSRP-TBS-TheresholdForsmallData-r17, the value of N is 3, and each MsgA-RSRP-TBS-TheresholdForsmallData-r17 includes a value of RSRP and a corresponding TBS interval.
  • MsgA-RSRP-TBS-TheresholdForsmallDataList-r17 SEQUENCE(SIZE(1..N)) OF MsgA-RSRP-TBS-TheresholdForsmallData-r17
  • the RSRP threshold and the TBS interval can be expressed in table form, as shown in Table 2 below, which shows the correspondence between the TBS interval and the RSRP threshold.
  • Table 2 shows the correspondence between the TBS interval and the RSRP threshold.
  • RSRP threshold 1 corresponds to TBS interval 1
  • RSRP threshold 2 corresponds to TBS interval 2.
  • RSRP threshold 3 corresponds to TBS interval 3.
  • the terminal can compare the channel quality with RSRP threshold 1 to RSRP threshold 3. If the channel quality is found to be greater than RSRP threshold 2, then use the transmission corresponding to the transmission parameters included in the TBS interval 2 corresponding to RSRP threshold 2.
  • the resource sends uplink data. If it is found that the channel quality is smaller than the minimum of the three RSRP thresholds, the uplink data is sent based on the 4-step random access method.
  • RSRP threshold 1 TBS interval 1 RSRP threshold 2 TBS zone 2 RSRP threshold 3 TBS zone 3
  • the two-step random access method can correspond to at least one set of transmission resources, at least one set of transmission resources includes the first transmission resource, at least one set of transmission resources corresponds to at least one transmission parameter threshold, and one transmission parameter threshold corresponds to one channel Quality threshold (referred to as threshold in this application), the threshold corresponding to the transmission parameter threshold corresponding to each group of transmission resources is used for whether the terminal selects the transmission resource. If the channel quality is greater than the threshold corresponding to the transmission parameter threshold corresponding to the transmission resource, then The transmission resource can be selected to send MsgA. MsgA includes the preamble and the PUSCH carrying uplink data. On the contrary, the PUSCH corresponding to the transmission resource cannot be selected to send uplink data. When the channel quality is lower than the threshold corresponding to the transmission parameter threshold corresponding to all the transmission resources, the 4-step random access method is selected to send the uplink data.
  • the transmission parameter, the transmission parameter threshold, and the channel quality threshold corresponding to the transmission parameter threshold can be configured by the access network device to the terminal, and the configuration method can refer to the above-mentioned way of configuring the first threshold value by the access network device to the terminal, which will not be repeated.
  • the third threshold may be included in at least one threshold corresponding to the above-mentioned at least one transmission parameter threshold.
  • the terminal may compare the channel quality with a threshold corresponding to the transmission parameter threshold configured by the access network device, and determine that the channel quality is greater than at least one transmission parameter threshold. Which of the thresholds is larger, use the transmission resource (such as the first transmission resource) corresponding to the transmission parameter threshold corresponding to the largest of these thresholds (such as the third threshold) to send MsgA, which includes the preamble and the PUSCH carrying uplink data, or , Use the transmission resource corresponding to the transmission parameter threshold corresponding to any one of the determined thresholds to send the MsgA.
  • the MsgA includes the preamble and the PUSCH carrying the uplink data, and is not limited.
  • the upper row data is uplink small packet data as an example
  • the channel quality is RSRP
  • the transmission parameter is MCS
  • the transmission parameter threshold is the MCS threshold.
  • MCS threshold 1 MCS threshold
  • MCS threshold 2 MCS threshold 3.
  • MCS threshold 3 MCS threshold corresponds to
  • the threshold value is an RSRP threshold value as an example, and different RSRP threshold values correspond to an MCS threshold value.
  • One MCS threshold can correspond to one index value I_MCS.
  • the access network device may carry the RSRP threshold and MCS threshold in the following signaling and send it to the terminal.
  • MsgA-RSRP-MCS-TheresholdForsmallDataList-r17 includes N MsgA-RSRP-MCS-TheresholdForsmallData -r17, the value of N is 3.
  • Each MsgA-RSRP-MCS-TheresholdForsmallData-r17 includes an RSRP threshold and a corresponding MCS index value, and the MCS index value is a corresponding MCS threshold.
  • the RSRP threshold and the MCS threshold can be expressed in table form, as shown in Table 3 below, which shows the correspondence between the MCS threshold and the RSRP threshold.
  • RSRP threshold 1 corresponds to MCS threshold 1
  • RSRP threshold 2 corresponds to MCS threshold 2.
  • RSRP threshold 3 corresponds to MCS threshold 3.
  • the terminal can compare the channel quality with RSRP threshold 1 to RSRP threshold 3. If the channel quality is found to be greater than RSRP threshold 2, the transmission resource corresponding to MCS threshold 2 corresponding to RSRP threshold 2 is used to send MsgA, MsgA Including preamble and PUSCH carrying uplink data. If it is found that the channel quality is smaller than the minimum of the three RSRP thresholds, the uplink data is sent based on the 4-step random access method.
  • the upper row data is uplink small packet data
  • the channel quality is RSRP
  • the transmission parameter is TBS
  • the transmission parameter threshold is the TBS threshold.
  • TBS threshold 1 TBS threshold
  • TBS threshold 2 TBS threshold 3
  • TBS threshold 3 TBS threshold 3
  • the threshold value of is an example of RSRP threshold
  • different RSRP thresholds correspond to a TBS threshold.
  • One TBS threshold can correspond to one index value I_TBS.
  • the access network device may carry the RSRP threshold and the TBS threshold in the following signaling and send it to the terminal.
  • MsgA-RSRP-TBS-TheresholdForsmallDataList-r17 includes N MsgA-RSRP-TBS-TheresholdForsmallData -r17, the value of N is 3.
  • Each MsgA-RSRP-TBS-TheresholdForsmallData-r17 includes an RSRP threshold and a corresponding TBS index value, and the TBS index value is a corresponding TBS threshold.
  • the RSRP threshold and the TBS threshold can be expressed in table form, as shown in Table 4 below, which shows the correspondence between the TBS threshold and the RSRP threshold.
  • RSRP threshold 1 corresponds to TBS threshold 1
  • RSRP threshold 2 corresponds to TBS threshold 2.
  • RSRP threshold 3 corresponds to TBS threshold 3.
  • the terminal can compare the channel quality with RSRP threshold 1 to RSRP threshold 3. If the channel quality is found to be greater than RSRP threshold 2, the transmission resource corresponding to TBS threshold 2 corresponding to RSRP threshold 2 is used to send MsgA, MsgA Including preamble and PUSCH carrying uplink data. If it is found that the channel quality is smaller than the minimum of the three RSRP thresholds, the uplink data is sent based on the 4-step random access method.
  • the terminal may send the uplink data based on the CG resource corresponding to the CG mode.
  • the terminal may send uplink data based on the unique CG resource.
  • the transmission The PUSCH of the uplink data is successfully decoded, and the terminal needs to select suitable CG resources/CG resources with better channel quality from multiple CG resources to transmit the uplink data.
  • the terminal can select the first CG resource from the multiple CG resources corresponding to the CG mode according to the fourth threshold, and send uplink data to the access network device based on the first CG resource. For example, when the channel quality is greater than the fourth threshold, The terminal sends uplink data to the access network device based on the first CG resource.
  • the CG resource corresponding to the CG mode is the PUSCH resource pre-configured by the access network device and used for the terminal in the disconnected state.
  • the way the access network device configures the CG resource to the terminal is the same as the above
  • the method of a threshold is the same, so I won't repeat it.
  • the relationship between the fourth threshold and the first CG resource may also include any one of the following three association relationships:
  • the CG mode can correspond to one or more CG resources, one or more CG resources include the first CG resource, the configuration information corresponding to each CG resource includes a threshold or multiple thresholds, and the configuration information corresponding to each CG resource The included threshold is used for whether the terminal selects the CG resource. If the channel quality is greater than the threshold included in the configuration information corresponding to the CG resource, the CG resource is selected to send uplink data, otherwise, the CG resource is not selected to send uplink data. When the channel quality is lower than the threshold included in the configuration information corresponding to all CG resources, the CG mode is not selected to send the uplink data, but the random access mode is selected to send the uplink data.
  • the configuration information corresponding to the first CG resource includes the fourth threshold.
  • the terminal may compare the channel quality with the threshold corresponding to the CG resource configured by the access network device, and determine that the channel quality is lower than the threshold corresponding to at least one CG resource Which of these thresholds is greater, use the CG resource (such as the first CG resource) corresponding to the largest threshold (such as the third threshold) of these thresholds to send uplink data, or use the CG resource corresponding to any one of the determined thresholds to send uplink data
  • the data is not restricted.
  • the implementation manner can refer to the above-mentioned manner (1), which will not be repeated.
  • the CG mode can correspond to at least one CG resource, at least one CG resource includes the first CG resource, and at least one CG resource can correspond to at least one transmission parameter.
  • the at least one transmission parameter can be divided into at least one transmission parameter interval.
  • the maximum value of may be the maximum value of one or more transmission parameters or be greater than the maximum value
  • the minimum value of the transmission parameter interval may be the minimum value of one or more transmission parameters or be smaller than the minimum value.
  • a transmission parameter interval corresponds to a threshold.
  • the threshold corresponding to each transmission parameter interval can be used by the terminal to choose whether to send uplink data based on the CG resource. If the channel quality is greater than the threshold corresponding to the transmission parameter interval, select a certain transmission parameter interval.
  • the CG resource corresponding to each transmission parameter sends uplink data; otherwise, the CG resource is not selected to send uplink data.
  • the CG mode is not selected to send the uplink data, but the random access mode is selected to send the uplink data.
  • the transmission parameter interval and the threshold corresponding to the transmission parameter interval may be configured by the access network device to the terminal, and the configuration method may refer to the manner in which the access network device configures the first threshold value for the terminal, which will not be repeated.
  • the fourth threshold may be included in the above at least one threshold, and the transmission parameter corresponding to the first CG resource belongs to the transmission parameter interval corresponding to the fourth threshold.
  • the terminal may compare the channel quality with the threshold corresponding to the transmission parameter interval configured by the access network device to determine which of the channel quality is more than at least one threshold If the threshold is large, use the CG resource (such as the first CG resource) corresponding to any transmission parameter in the transmission parameter interval corresponding to the largest threshold (such as the fourth threshold) of these thresholds to send uplink data, or use the determined threshold
  • the CG resource corresponding to any transmission parameter in the transmission parameter interval corresponding to any threshold of transmits uplink data, and there is no restriction.
  • the CG mode can correspond to at least one CG resource, at least one CG resource includes the first CG resource, at least one CG resource corresponds to at least one transmission parameter threshold, and one transmission parameter threshold corresponds to one channel quality threshold (referred to as threshold in this application),
  • the threshold corresponding to the transmission parameter threshold corresponding to each CG resource is used for whether the terminal selects the CG resource. If the channel quality is greater than the threshold corresponding to the transmission parameter threshold corresponding to the CG resource, the CG resource is selected to send uplink data, otherwise, When the channel quality is lower than the threshold corresponding to the transmission parameter threshold corresponding to all CG resources, the CG mode is not selected to send the uplink data, but the random access mode is selected to send the uplink data.
  • the transmission parameter, the transmission parameter threshold, and the channel quality threshold corresponding to the transmission parameter threshold can be configured by the access network device to the terminal, and the configuration method can refer to the above-mentioned way of configuring the first threshold value by the access network device to the terminal, which will not be repeated.
  • the fourth threshold may be included in at least one threshold corresponding to the at least one transmission parameter threshold.
  • the terminal may compare the channel quality with a threshold corresponding to the transmission parameter threshold configured by the access network device, and determine that the channel quality is greater than at least one transmission parameter threshold. Which of the thresholds is larger, use the CG resource (such as the first CG resource) corresponding to the transmission parameter threshold corresponding to the largest threshold (such as the fourth threshold) of these thresholds to send uplink data, or use any of the determined thresholds.
  • the CG resource corresponding to the transmission parameter threshold corresponding to the threshold sends uplink data, and there is no restriction.
  • the terminal can initiate random access based on the 4-step random access method, and after receiving Msg2, the Msg2 sent by the access network device includes Msg3 carrying uplink data is sent on the transmission resource indicated by the configuration information.
  • the terminal does not support CG, and the access network equipment configures a set of transmission resources for the terminal with 2-step random access as an example.
  • the terminal is based on the first and second thresholds.
  • the fifth threshold to select an appropriate method to send uplink data for detailed description:
  • the terminal obtains the channel quality between the terminal and the access network device, compares the channel quality with the first threshold; when the channel quality is greater than the first threshold, determines to send uplink data based on random access, and when the channel quality is less than the first threshold , It is determined not to send uplink data based on random access in the non-connected state, that is, the PUSCH resource corresponding to the random access method is not used to send the uplink data.
  • determining to send uplink data based on random access may include: comparing channel quality with a second threshold, and when the channel quality is greater than the second threshold, determining to send uplink data based on 2-step random access For example, the uplink data is sent based on the PUSCH corresponding to MsgA in the 2-step random access mode. On the contrary, when the channel quality is less than the second threshold, it is determined to send the uplink data based on the 4-step random access mode.
  • the terminal compares the channel quality with the fifth threshold.
  • the channel quality is greater than the fifth threshold, it determines that the channel quality is based on 2-step random access. Random access is initiated by the method. Conversely, when the channel quality is less than the fifth threshold, it is determined to initiate random access based on the 4-step random access method.
  • the terminal in the method shown in Figure 4 is based on the first threshold, the second threshold, And the fifth threshold selects an appropriate method to send uplink data for detailed description:
  • the terminal obtains the channel quality between the terminal and the access network equipment, compares the channel quality with a first threshold; when the channel quality is greater than the first threshold, determines whether to send uplink data based on random access or CG, and when the channel quality is less than the first threshold When a threshold is reached, it is determined not to send uplink data based on random access in a non-connected state.
  • determining whether to send uplink data based on random access or CG may include: checking whether TA is valid, if TA is valid, determining to send uplink data based on CG; if TA is invalid, comparing channel quality Compared with the second threshold, when the channel quality is greater than the second threshold, it is determined to send uplink data based on 2-step random access.
  • MsgA is sent based on the transmission resource corresponding to the 2-step random access. MsgA includes preamble and carries uplink data.
  • TA is invalid and the channel quality is less than the second threshold, it is determined to send uplink data based on 4-step random access.
  • the terminal compares the channel quality with the fifth threshold.
  • the channel quality is greater than the fifth threshold, it determines that the channel quality is based on 2-step random access. Random access is initiated by the method. Conversely, when the channel quality is less than the fifth threshold, it is determined to initiate random access based on the 4-step random access method.
  • the process of the terminal sending uplink data based on the CG mode can be referred to the above, and will not be repeated.
  • the terminal does not support CG, and the access network device configures the terminal with two-step random access corresponding to multiple sets of transmission resources.
  • the configuration information corresponding to the multiple sets of transmission resources includes information for whether the terminal selects the transmission resource.
  • the threshold value is an example.
  • the terminal selects an appropriate method to send uplink data according to the first threshold, the third threshold, and the fifth threshold.
  • multiple sets of transmission resources correspond to transmission parameter intervals, and the transmission parameter intervals correspond to thresholds, or the data transmission mode under the transmission parameter thresholds corresponding to multiple sets of transmission resources can be referred to as shown in FIG. 5c.
  • the terminal obtains the channel quality between the terminal and the access network device and compares the channel quality with a first threshold; when the channel quality is greater than the first threshold, it determines to send uplink data based on random access. When the quality is less than the first threshold, it is determined not to send uplink data based on random access in a non-connected state.
  • determining to send uplink data based on random access may include: comparing the channel quality with a threshold included in the configuration information corresponding to each transmission parameter in at least one transmission parameter, and when the channel quality is greater than these thresholds
  • MsgA includes the preamble and the PUSCH carrying uplink data.
  • the corresponding configuration information includes The smallest threshold among the thresholds is determined to send uplink data based on 4-step random access.
  • the terminal compares the channel quality with the fifth threshold.
  • the channel quality is greater than the fifth threshold, it determines that the channel quality is based on 2-step random access. Random access is initiated by the method. Conversely, when the channel quality is less than the fifth threshold, it is determined to initiate random access based on the 4-step random access method.
  • the terminal supports CG, and the access network device configures the terminal with multiple sets of transmission resources corresponding to the 2-step random access mode.
  • the configuration information corresponding to the multiple sets of transmission resources includes the threshold for whether the terminal selects the transmission resource.
  • the terminal selects an appropriate method to send uplink data according to the first threshold, the third threshold, and the fifth threshold.
  • multiple sets of transmission resources correspond to transmission parameter intervals, and the transmission parameter intervals correspond to thresholds, or the data transmission mode under the transmission parameter thresholds corresponding to multiple sets of transmission resources can be referred to as shown in FIG. 5d.
  • the terminal obtains the channel quality between the terminal and the access network equipment, compares the channel quality with the first threshold; when the channel quality is greater than the first threshold, determines whether to send uplink data based on random access or CG, and when the channel quality is less than When the first threshold is used, it is determined not to send uplink data based on random access in a non-connected state.
  • determining whether to send uplink data based on random access or CG may include: checking whether TA is valid, if TA is valid, determining to send uplink data based on CG, and if TA is invalid, comparing channels
  • the quality corresponds to the threshold included in the configuration information corresponding to each transmission parameter in the at least one transmission parameter.
  • MsgA MsgA includes the preamble and the PUSCH carrying uplink data.
  • the TA is invalid and the channel quality is less than the minimum threshold among the thresholds included in the configuration information corresponding to at least one transmission parameter, it is determined to send the uplink based on the 4-step random access method. data.
  • the terminal compares the channel quality with the fifth threshold.
  • the channel quality is greater than the fifth threshold, it determines that the channel quality is based on 2-step random access. Random access is initiated by the method. Conversely, when the channel quality is less than the fifth threshold, it is determined to initiate random access based on the 4-step random access method.
  • the process of the terminal sending uplink data based on the CG mode can be referred to the above, and will not be repeated.
  • the above Figures 4 to 5d are used to configure the terminal to select the first threshold for selecting whether to send uplink data based on random access, and for the terminal to select whether to transmit based on the 2-step random access method or the 4-step random access method.
  • the second threshold value of the uplink data is an example, and the data transmission method provided in the embodiment of the present application is described.
  • this application can also first configure a threshold for whether the terminal uses 2-step random access resources or 4-step random access resources, and then configure two thresholds, one of the two thresholds is used for the terminal Determine whether to send uplink data or initiate random access based on 2-step random access resources.
  • Another threshold is used for the terminal to determine whether to send uplink data or random access based on 4-step random access resources.
  • this method can be referred to as shown in FIG. 6 below.
  • FIG. 6 is a flowchart of another data transmission method provided by an embodiment of the application. As shown in FIG. 6, it may include:
  • Step 601 The terminal obtains the channel quality between the terminal and the access network device.
  • step 601 refers to the description of step 401, which will not be repeated.
  • Step 602 When the channel quality is greater than the sixth threshold and the channel quality is greater than the seventh threshold, the terminal determines to send uplink data to the access network device based on the 2-step random access method.
  • the sixth threshold may be pre-configured by the access network device to the terminal, and its configuration method is the same as the manner in which the access network device configures the first threshold value for the terminal, and will not be repeated.
  • the sixth threshold can be used for the terminal to choose to use 2-step random access resources (such as choosing to use 2-step random access resources to initiate random access or to send uplink data) or to choose to use 4-step random access resources (such as choosing to use Whether the resource of 4-step random access initiates random access or sends uplink data).
  • the seventh threshold may be pre-configured by the access network device to the terminal, and its configuration method is the same as the manner in which the access network device configures the first threshold value for the terminal, and will not be repeated.
  • the seventh threshold may be greater than the sixth threshold, or may be less than or equal to the sixth threshold, and is not limited.
  • the seventh threshold can be used for the terminal to choose whether to send uplink data based on the 2-step random access method or to initiate random access based on the 2-step random access method. For example, after the channel quality is greater than the sixth threshold, the terminal compares the channel quality with the seventh threshold. When the channel quality is greater than the seventh threshold, it determines to send uplink data based on 2-step random access. When the channel quality is less than the seventh threshold, It is determined not to send uplink data based on 2-step random access in the non-connected state, but to initiate random access based on 2-step random access to access the cell corresponding to the access network device.
  • the terminal can select the CG mode to send uplink data in preference to the 2-step random access mode. For example, after the channel quality is greater than the sixth threshold, the terminal determines whether the TA is valid before the terminal determines to send uplink data to the access network device based on 2-step random access. When the TA is invalid, the terminal compares the channel quality with the seventh threshold , According to the comparison result, it is determined that the uplink data is sent to the access network device based on the 2-step random access mode; when the TA is valid, the terminal determines to send the uplink data to the access network device based on the CG mode.
  • the relevant description of the TA and the method for determining whether the TA is invalid can refer to the description in step 402, and will not be repeated.
  • the terminal may send the MsgA based on the transmission resource corresponding to the 2-step random access method.
  • the MsgA includes the preamble and the PUSCH carrying the uplink data.
  • the process for the terminal to select a suitable transmission resource from one or more groups of transmission resources corresponding to the 2-step random access method to send uplink data can refer to the above, and will not be repeated.
  • the terminal determines to send the uplink data to the access network device based on the CG mode, it sends the uplink data based on the CG resource corresponding to the CG mode.
  • the process for the terminal to select which CG resource to send uplink data from one or more CG resources corresponding to the CG mode refers to the above, and will not be repeated.
  • Step 603 When the channel quality is less than the sixth threshold and the channel quality is greater than the eighth threshold, the terminal chooses to send uplink data to the access network device based on a 4-step random access method. When the channel quality is less than the eighth threshold, the terminal selects based on A 4-step random access method initiates random access and accesses the cell corresponding to the access network equipment.
  • the eighth threshold may be pre-configured to the terminal by the access network device, and its configuration method is the same as the manner in which the access network device configures the first threshold value for the terminal, and will not be repeated.
  • the eighth threshold may be greater than the sixth threshold, or may be less than or equal to the sixth threshold, and is not limited.
  • the eighth threshold can be used for the terminal to choose whether to send uplink data based on the 4-step random access method or to initiate random access based on the 4-step random access method.
  • the terminal can reasonably select the method of sending uplink data according to the sixth threshold, the eighth threshold, and the seventh threshold, so as to improve the transmission efficiency of the uplink data, and avoid the poor quality of the channel due to the selected transmission method. Uplink data transmission fails and resources are wasted.
  • the terminal does not support CG, and the access network equipment configures a set of transmission resources for the terminal with 2-step random access as an example.
  • the terminal in the method shown in Figure 6 is based on the sixth threshold and the eighth threshold.
  • the seventh threshold to select an appropriate method to send uplink data for detailed description:
  • the terminal obtains the channel quality between the terminal and the access network device, and compares the channel quality with the sixth threshold; when the channel quality is greater than the sixth threshold, it chooses to use the resources of 2-step random access, and when the channel quality is less than the sixth threshold, Choose to use 4-step random access resources.
  • the channel quality is greater than the seventh threshold, it is determined that the access network equipment is sent to the access network device based on the 2-step random access method.
  • Send uplink data For example, send MsgA based on the corresponding transmission resource of 2-step random access. MsgA includes preamble and PUSCH carrying uplink data.
  • the channel quality is less than the seventh threshold, it is determined not to be in the non-connected state based on 2-step random
  • the access method sends uplink data, but initiates random access based on the 2-step random access method to access the cell.
  • the terminal After the terminal chooses to use the resources of 4-step random access, it compares the channel quality with the eighth threshold. When the channel quality is greater than the eighth threshold, it is determined to send to the access network device based on the 4-step random access method. Uplink data, such as the transmission resources corresponding to the 4-step random access method, send uplink data through Msg3. On the contrary, when the channel quality is less than the eighth threshold, it is determined not to send uplink data based on the 4-step random access method in the disconnected state. , But based on the 4-step random access method to initiate random access to access the cell.
  • the terminal in the method shown in Figure 6 is based on the sixth threshold, the eighth threshold, and The seventh threshold selects an appropriate method to send uplink data for detailed description:
  • the terminal obtains the channel quality between the terminal and the access network device, and compares the channel quality with the sixth threshold; when the channel quality is greater than the sixth threshold, determines to select a 2-step random access resource to initiate random access or send uplink data, or Select the CG resource to send uplink data. When the channel quality is less than the sixth threshold, determine to select the 4-step random access resource to initiate random access or send uplink data. For example, as shown in Figure 7b, after the channel quality is greater than the sixth threshold, the terminal checks whether the TA is valid. If the TA is valid, it determines to send uplink data based on the CG mode. If the TA is invalid, compares the channel quality with the seventh threshold.
  • the channel quality is greater than the seventh threshold, it is determined to send uplink data based on the 2-step random access method.
  • the transmission resource corresponding to the 2-step random access method sends MsgA.
  • MsgA includes the preamble and the PUSCH carrying the uplink data.
  • the channel quality As shown in Figure 7b, after selecting the resource for 4-step random access, compare the channel quality with the eighth threshold. When the channel quality is greater than the eighth threshold, it is determined to send uplink data based on the 4-step random access method. For the transmission resources corresponding to the random access method, the uplink data is sent through Msg3. On the contrary, when the channel quality is less than the eighth threshold, it is determined not to send the uplink data based on the 4-step random access in the non-connected state, but based on the 4-step random access method. The random access method initiates random access to access the cell.
  • the process of the terminal sending uplink data based on the CG mode can be referred to the above, and will not be repeated.
  • the terminal does not support CG, and the access network device configures the terminal with two-step random access corresponding to multiple sets of transmission resources.
  • the configuration information corresponding to the multiple sets of transmission resources includes information for whether the terminal selects the transmission resource.
  • the threshold value is an example.
  • the terminal selects an appropriate method to send uplink data according to the sixth threshold, the third threshold, and the eighth threshold. It should be noted that multiple groups of transmission resources correspond to transmission parameter intervals, and the transmission parameter intervals correspond to thresholds, or the data transmission mode under the transmission parameter thresholds corresponding to multiple groups of transmission resources can be referred to as shown in FIG. 7c.
  • the terminal obtains the channel quality between the terminal and the access network device, compares the channel quality with the sixth threshold; when the channel quality is greater than the sixth threshold, determines to select the resource of 2-step random access to initiate random access Or send uplink data, and when the channel quality is less than the sixth threshold, it is determined to select a 4-step random access resource to initiate random access or send uplink data. For example, as shown in FIG.
  • the terminal compares the channel quality with the threshold included in the configuration information corresponding to each set of transmission parameters in at least one set of transmission parameters, and when the channel quality is greater than the first of these thresholds In the case of three thresholds, it is determined to send MsgA based on the first transmission resource corresponding to the configuration information including the third threshold. MsgA includes the preamble and the PUSCH carrying uplink data. On the contrary, if the channel quality is less than the threshold included in the configuration information corresponding to all transmission parameters It is determined that the uplink data will not be sent based on the 2-step random access method in the non-connected state, but the random access will be initiated based on the 2-step random access method to access the cell.
  • the terminal After the terminal chooses to use the 4-step random access resource, it compares the channel quality with the eighth threshold. When the channel quality is greater than the eighth threshold, it determines to send uplink data based on the 4-step random access method, such as For the transmission resources corresponding to the 4-step random access method, the uplink data is sent through Msg3. On the contrary, when the channel quality is less than the eighth threshold, it is determined not to send the uplink data based on the 4-step random access method in the non-connected state, but based on the 4-step random access method. Initiate random access in a random access mode to access the cell.
  • the manner in which the terminal selects the transmission resource based on the third threshold can be referred to as described in FIG. 4, which will not be repeated.
  • the terminal supports CG, and the access network device configures the terminal with multiple sets of transmission resources corresponding to the 2-step random access mode.
  • the configuration information corresponding to the multiple sets of transmission resources includes the threshold for whether the terminal selects the transmission resource.
  • the terminal selects an appropriate method to send uplink data according to the sixth threshold, the third threshold, and the eighth threshold in detail.
  • multiple groups of transmission resources correspond to transmission parameter intervals, and the transmission parameter intervals correspond to thresholds, or the data transmission mode under the transmission parameter thresholds corresponding to multiple groups of transmission resources can be referred to as shown in FIG. 7d.
  • the terminal obtains the channel quality between the terminal and the access network device, and compares the channel quality with the sixth threshold; when the channel quality is greater than the sixth threshold, determines to select a 2-step random access resource to initiate random access or send uplink data, or Select the CG resource to send uplink data. When the channel quality is less than the sixth threshold, determine to select the 4-step random access resource to initiate random access or send uplink data. For example, as shown in Figure 7d, after the channel quality is greater than the sixth threshold, the terminal checks whether the TA is valid. If the TA is valid, it determines to send uplink data based on the CG method. If the TA is invalid, compares the channel quality with at least one set of transmission parameters.
  • MsgA When the channel quality is greater than the third threshold among these thresholds, it is determined to send MsgA based on the first transmission resource corresponding to the configuration information including the third threshold.
  • MsgA includes preamble and For PUSCH carrying uplink data, on the contrary, if the channel quality is less than the smallest threshold among the thresholds included in the configuration information corresponding to all transmission parameters, it is determined not to send uplink data based on 2-step random access in the non-connected state, but based on 2-step The random access method initiates random access to access the cell.
  • the terminal After the terminal chooses to use the 4-step random access resource, it compares the channel quality with the eighth threshold. When the channel quality is greater than the eighth threshold, it determines to send uplink data based on the 4-step random access method, such as For the transmission resources corresponding to the 4-step random access method, the uplink data is sent through Msg3. On the contrary, when the channel quality is less than the eighth threshold, it is determined not to send the uplink data based on the 4-step random access method in the non-connected state, but based on the 4-step random access method. Initiate random access in a random access mode to access the cell.
  • the process of the terminal sending uplink data based on the CG mode can be referred to the above, and will not be repeated.
  • each node such as a terminal, an access network device, etc.
  • each node includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of the present application can divide functional modules of terminals, access network equipment, etc. according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a structural diagram of a communication device 80.
  • the communication device 80 may be a terminal, or a chip in the terminal, or a system on a chip.
  • the communication device 80 may be used to perform the functions of the terminal involved in the above-mentioned embodiments.
  • the communication device 80 shown in FIG. 8 includes: a receiving unit 801 and a processing unit 802;
  • the receiving unit 801 is used to obtain the channel quality between the terminal in the disconnected state and the access network device.
  • the receiving unit 801 may support the communication device 80 to perform step 401 and step 601.
  • the processing unit 802 is configured to, when the channel quality is greater than the first threshold, determine to send uplink data to the access network device based on the random access method or the CG method, the random access method includes a 2-step random access method or a 4-step random access method Random access; for example, when the channel quality is greater than the second threshold, it is determined to send uplink data to the access network device based on 2-step random access; when the channel quality is less than the second threshold, it is determined to be based on 4-step random access Send uplink data to the access network equipment in a way.
  • the processing unit 802 may support the communication device 80 to perform step 402 and step 403.
  • the receiving unit 801 is configured to obtain the channel quality between the terminal and the access network device.
  • the receiving unit 801 may support the communication device 80 to perform step 401 and step 601.
  • the processing unit 802 is configured to: when the channel quality is greater than the sixth threshold and the channel quality is greater than the seventh threshold, determine to send uplink data to the access network device based on the 2-step random access method; when the channel quality is less than the sixth threshold, and When the channel quality is greater than the eighth threshold, it is determined to send uplink data to the access network device based on the 4-step random access method.
  • the processing unit 802 may support the communication device 80 to perform step 602 and step 603.
  • the communication device 80 is used to perform the functions of the terminal in the data transmission method shown in the methods shown in FIGS. 4 to 7d, and therefore can achieve the same effect as the above data transmission method.
  • the communication device 80 shown in FIG. 8 includes: a processing module and a communication module.
  • the processing module is used to control and manage the actions of the communication device 80.
  • the processing module can integrate the functions of the processing unit 802 and can be used to support the communication device 80 to perform steps 401, 601, 602, and 603 as described herein. Other processes of the technology.
  • the communication module may integrate the functions of the receiving unit 801, and may be used to support communication between the communication device 80 and other network entities, for example, communication with the functional module or network entities shown in FIG. 2.
  • the communication device 80 may also include a storage module for storing program codes and data of the communication device 80.
  • the processing module can be a processor or a controller. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, it includes a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module can be a transceiver circuit or a communication interface.
  • the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 80 involved in the embodiment of the present application may be the communication device shown in FIG. 3.
  • FIG. 9 is a structural diagram of a communication system provided by an embodiment of the application.
  • the communication system may include: a terminal 90. It may also include access network equipment, where the function of the terminal 90 is the same as the function of the communication device 80.
  • the terminal 90 is used to obtain the channel quality between the non-connected terminal 90 and the access network device, and when the channel quality is greater than the first threshold, it is determined to be connected based on the random access mode or the CG mode.
  • the random access method includes 2-step random access or 4-step random access; for example, when the channel quality is greater than the second threshold, it is determined to connect based on 2-step random access.
  • the network access device sends uplink data; when the channel quality is less than the second threshold, it is determined to send the uplink data to the access network device based on a 4-step random access method.
  • the terminal 90 is used to obtain the channel quality between the terminal 90 and the access network device.
  • the channel quality is greater than the sixth threshold and the channel quality is greater than the seventh threshold, it is determined based on the 2-step random access
  • the channel quality is less than the sixth threshold and the channel quality is greater than the eighth threshold, it is determined to send the uplink data to the access network device based on the 4-step random access method.
  • the embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the foregoing method embodiments may be completed by a computer program instructing relevant hardware.
  • the program may be stored in the foregoing computer-readable storage medium. When the program is executed, it may include processes as in the foregoing method embodiments. .
  • the computer-readable storage medium may be the terminal of any of the foregoing embodiments, such as an internal storage unit including a data sending end and/or a data receiving end, such as a hard disk or memory of the terminal.
  • the computer-readable storage medium may also be an external storage device of the terminal, such as a plug-in hard disk, a smart media card (SMC), a secure digital (SD) card, and a flash memory card equipped on the terminal.
  • SMC smart media card
  • SD secure digital
  • the aforementioned computer-readable storage medium may also include both an internal storage unit of the aforementioned terminal and an external storage device.
  • the aforementioned computer-readable storage medium is used to store the aforementioned computer program and other programs and data required by the aforementioned terminal.
  • the aforementioned computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • Embodiment 1 A data transmission method, wherein the method includes:
  • the terminal obtains the channel quality between the terminal and the access network device, and the terminal is in a disconnected state;
  • the terminal determines to send uplink data to the access network device based on a random access method or a configuration scheduling CG method, and the random access method includes a 2-step random access method Or 4-step random access method;
  • the terminal determining to send uplink data to the access network device based on random access includes:
  • the terminal determines to send uplink data to the access network device based on the 2-step random access method
  • the terminal determines to send the uplink data to the access network device based on the 4-step random access method.
  • Embodiment 2 The method according to embodiment 1, wherein after the terminal determines to send uplink data to the access network device based on the 2-step random access method, the method further includes:
  • the terminal When the channel quality is greater than the third threshold, the terminal sends the uplink data to the access network device on the MsgA based on the first transmission resource corresponding to the 2-step random access method.
  • Embodiment 3 The method according to embodiment 2, wherein:
  • the configuration information corresponding to the first transmission resource includes the third threshold; or,
  • the third threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first transmission resource is greater than the transmission parameter threshold corresponding to the third threshold; or,
  • the third threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first transmission resource belongs to the transmission parameter interval corresponding to the third threshold.
  • Embodiment 4 The method according to any one of embodiments 1-3, wherein the determination by the terminal to be based on a random access mode or a configuration scheduling CG mode includes:
  • the terminal determines whether the timing advance TA is valid, and the TA is used for uplink time synchronization between the terminal and the access network device;
  • the terminal determines to send uplink data to the access network device based on the random access method
  • the terminal determines to send the uplink data to the access network device based on the CG mode; the CG resource corresponding to the CG mode is pre-configured by the access network device for The physical uplink shared channel PUSCH resource transmitted by the terminal in the unconnected state.
  • Embodiment 5 The method according to any one of embodiments 1-4, wherein after the terminal determines to send the uplink data to the access network device based on the CG mode, the method further includes:
  • the terminal When the channel quality is greater than the fourth threshold, the terminal sends the uplink data to the access network device based on the first CG resource.
  • Embodiment 6 The method according to embodiment 5, wherein:
  • the configuration information corresponding to the first CG resource includes the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first CG resource is greater than the transmission parameter threshold corresponding to the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first CG resource belongs to the transmission parameter interval corresponding to the fourth threshold.
  • Embodiment 7 The method according to embodiment 3 or 6, wherein:
  • the transmission parameters include one or more of the modulation and coding strategy MCS and the transmission block speed TBS.
  • Embodiment 8 The method according to any one of embodiments 4-7, wherein the invalidation of the TA includes one or more of the following: the validity period of the TA expires,
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is greater than a distance threshold
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is activated is greater than a channel quality change threshold.
  • Embodiment 9 The method according to any one of embodiments 1-8, wherein the method further comprises:
  • the terminal determines not to send uplink data to the access network device in a disconnected state, but based on the 2-step Access the cell by random access;
  • the terminal determines not to send uplink data to the access network device in a disconnected state, but based on the Step 4 Access the cell by random access.
  • Embodiment 10 The method according to any one of embodiments 1-9, wherein:
  • the first threshold, the second threshold, and the third threshold are configured by the access network device to the terminal.
  • Embodiment 11 A data transmission method, wherein the method includes:
  • the terminal obtains the channel quality between the terminal and the access network device, and the terminal is in a disconnected state;
  • the terminal determines to send uplink data to the access network device based on a 2-step random access method
  • the terminal determines to send the uplink data to the access network device based on a 4-step random access manner.
  • Embodiment 12 The method according to embodiment 11, wherein the terminal determining to send uplink data to the access network device based on a 2-step random access method includes:
  • the terminal determines whether the timing advance TA is valid, and the TA is used for uplink time synchronization between the terminal and the access network device;
  • the terminal determines to send uplink data to the access network device based on the 2-step random access method.
  • Embodiment 13 The method according to embodiment 12, wherein the method further comprises:
  • the terminal determines to send the uplink data to the access network device based on the CG mode; the CG resource corresponding to the CG mode is pre-configured by the access network device for The physical uplink shared channel PUSCH resource transmitted by the terminal in the unconnected state.
  • Embodiment 14 The method according to any one of embodiments 11-13, wherein after the terminal determines to send uplink data to the access network device based on the 2-step random access method, the method also includes:
  • the terminal When the channel quality is greater than the third threshold, the terminal sends the uplink data to the access network device on the MsgA based on the first transmission resource corresponding to the 2-step random access method.
  • Embodiment 15 The method according to embodiment 14, wherein:
  • the configuration information corresponding to the first transmission resource includes the third threshold; or,
  • the third threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first transmission resource is greater than the transmission parameter threshold corresponding to the third threshold; or,
  • the third threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first transmission resource belongs to the transmission parameter interval corresponding to the third threshold.
  • Embodiment 16 The method according to any one of embodiments 13-15, wherein, after the terminal determines to send the uplink data to the access network device based on the CG mode, the method further includes:
  • the terminal When the channel quality is greater than the fourth threshold, the terminal sends the uplink data to the access network device based on the first CG resource.
  • Embodiment 17 The method according to embodiment 16, wherein:
  • the configuration information corresponding to the first CG resource includes the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first CG resource is greater than the transmission parameter threshold corresponding to the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first CG resource belongs to the transmission parameter interval corresponding to the fourth threshold.
  • Embodiment 18 The method according to embodiment 15 or 17, wherein:
  • the transmission parameters include one or more of the modulation and coding strategy MCS and the transmission block speed TBS.
  • Embodiment 19 The method according to any one of embodiments 12-18, wherein the invalidation of the TA includes one or more of the following: the validity period of the TA expires,
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is greater than a distance threshold
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is activated is greater than a channel quality change threshold.
  • Embodiment 20 The method according to any one of embodiments 11-19, wherein the method further comprises:
  • the terminal determines not to send uplink data to the access network device in a disconnected state, but based on the Access the cell in 2-step random access mode;
  • the terminal determines not to send uplink data to the access network device in a disconnected state, but based on the Step 4 Access the cell by random access.
  • Embodiment 21 The method according to any one of embodiments 11-20, wherein:
  • the sixth threshold, the seventh threshold, and the eighth threshold are configured by the access network device to the terminal.
  • Embodiment 22 A communication device, wherein the communication device includes:
  • a receiving unit configured to obtain the channel quality between the terminal and the access network device, and the terminal is in a disconnected state
  • the processing unit is configured to determine to send uplink data to the access network device based on a random access method or a configuration scheduling CG method when the channel quality is greater than the first threshold, and the random access method includes 2-step random access Mode or 4-step random access mode;
  • determining to send uplink data to the access network device based on random access includes:
  • the channel quality is greater than the second threshold, it is determined to send uplink data to the access network device based on the 2-step random access method; when the channel quality is less than the second threshold, it is determined to be based on the 4-step random access.
  • the uplink data is sent to the access network device in a random access manner.
  • Embodiment 23 The communication device according to embodiment 22, wherein after determining that the uplink data is sent to the access network device based on the 2-step random access method, the processing unit is further configured to:
  • the uplink data is sent to the access network device on the MsgA.
  • Embodiment 24 The communication device according to embodiment 23, wherein:
  • the configuration information corresponding to the first transmission resource includes the third threshold; or,
  • the third threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first transmission resource is greater than the transmission parameter threshold corresponding to the third threshold; or,
  • the third threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first transmission resource belongs to the transmission parameter interval corresponding to the third threshold.
  • Embodiment 25 The communication device according to any one of the embodiments 22-24, wherein the processing unit determines a random access-based manner or a configuration-based scheduling CG manner, including:
  • the TA When the TA is valid, it is determined to send the uplink data to the access network device based on the CG mode; the CG resource corresponding to the CG mode is pre-configured by the access network device and used for the terminal The physical uplink shared channel PUSCH resource transmitted in the unconnected state.
  • Embodiment 26 The communication device according to any one of embodiments 22-25, wherein, after determining that the uplink data is sent to the access network device based on the CG mode, the processing unit is further configured to :
  • the terminal When the channel quality is greater than the fourth threshold, the terminal sends the uplink data to the access network device based on the first CG resource.
  • Embodiment 27 The communication device according to embodiment 26, wherein:
  • the configuration information corresponding to the first CG resource includes the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first CG resource is greater than the transmission parameter threshold corresponding to the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first CG resource belongs to the transmission parameter interval corresponding to the fourth threshold.
  • Embodiment 28 The communication device according to embodiment 24 or 27, wherein:
  • the transmission parameters include one or more of the modulation and coding strategy MCS and the transmission block speed TBS.
  • Embodiment 29 The communication device according to any one of the embodiments 25-28, wherein the invalidation of the TA includes one or more of the following: the validity period of the TA expires,
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is greater than a distance threshold
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is activated is greater than a channel quality change threshold.
  • Embodiment 30 The communication device according to any one of embodiments 22-29, wherein the processing unit is further configured to:
  • the channel quality is less than the first threshold and the channel quality is greater than the fifth threshold, it is determined not to send uplink data to the access network device in a disconnected state, but based on the 2-step random access Way to access the cell;
  • the channel quality is less than the first threshold and the channel quality is less than the fifth threshold, it is determined not to send uplink data to the access network device in a disconnected state, but based on the fourth step Access the cell by random access.
  • Embodiment 31 The communication device according to any one of the embodiments 22-30, wherein:
  • the first threshold, the second threshold, and the third threshold are configured by the access network device to the terminal.
  • Embodiment 32 A communication device, wherein the device includes:
  • a receiving unit configured to obtain the channel quality between the terminal and the access network device, and the terminal is in a disconnected state
  • a processing unit configured to determine to send uplink data to the access network device based on a 2-step random access method when the channel quality is greater than the sixth threshold and the channel quality is greater than the seventh threshold;
  • the channel quality is less than the sixth threshold and the channel quality is greater than the eighth threshold, it is determined to send the uplink data to the access network device based on a 4-step random access manner.
  • Embodiment 33 The communication device according to embodiment 32, wherein the processing unit is specifically configured to:
  • the network device sends uplink data.
  • Embodiment 34 The communication device according to embodiment 33, wherein the processing unit is further configured to:
  • the TA When the TA is valid, it is determined to send the uplink data to the access network device based on the CG mode; the CG resource corresponding to the CG mode is pre-configured by the access network device and used for the terminal The physical uplink shared channel PUSCH resource transmitted in the unconnected state.
  • Embodiment 35 The communication device according to any one of embodiments 32-34, wherein after determining to send uplink data to the access network device based on the 2-step random access method, the processing unit: Also used for:
  • the terminal When the channel quality is greater than the third threshold, the terminal sends the uplink data to the access network device on the MsgA based on the first transmission resource corresponding to the 2-step random access method.
  • Embodiment 36 The communication device according to embodiment 35, wherein:
  • the configuration information corresponding to the first transmission resource includes the third threshold; or,
  • the third threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first transmission resource is greater than the transmission parameter threshold corresponding to the third threshold; or,
  • the third threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first transmission resource belongs to the transmission parameter interval corresponding to the third threshold.
  • Embodiment 37 The communication device according to any one of embodiments 34-36, wherein, after determining to send the uplink data to the access network device based on the CG mode, the processing unit is further configured to :
  • the terminal When the channel quality is greater than the fourth threshold, the terminal sends the uplink data to the access network device based on the first CG resource.
  • Embodiment 38 The communication device according to embodiment 37, wherein:
  • the configuration information corresponding to the first CG resource includes the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, each of the at least one threshold corresponds to a transmission parameter threshold, and the transmission parameter of the first CG resource is greater than the transmission parameter threshold corresponding to the fourth threshold; or,
  • the fourth threshold is included in at least one threshold, and each threshold in the at least one threshold corresponds to a transmission parameter interval, and the transmission parameter of the first CG resource belongs to the transmission parameter interval corresponding to the fourth threshold.
  • Embodiment 39 The communication device according to embodiment 36 or 38, wherein:
  • the transmission parameters include one or more of the modulation and coding strategy MCS and the transmission block speed TBS.
  • Embodiment 40 The communication device according to any one of embodiments 33-39, wherein the invalidation of the TA includes one or more of the following: the validity period of the TA expires,
  • the distance between the current position of the terminal and the position of the terminal when the TA is started is greater than a distance threshold
  • the difference between the channel quality and the channel quality between the terminal and the access network device when the TA is activated is greater than a channel quality change threshold.
  • Embodiment 41 The communication device according to any one of the embodiments 32-40, wherein the processing unit is further configured to:
  • the channel quality is greater than the sixth threshold, and the channel quality is less than the seventh threshold, it is determined not to send uplink data to the access network device in a disconnected state, but based on the 2-step random Access method to access the cell;
  • the channel quality is less than the sixth threshold, and the channel quality is less than the eighth threshold, it is determined not to send uplink data to the access network device in a disconnected state, but based on the fourth step Access the cell by random access.
  • Embodiment 42 The communication device according to any one of the embodiments 32-41, wherein:
  • the sixth threshold, the seventh threshold, and the eighth threshold are configured by the access network device to the terminal.
  • Embodiment 43 A communication system, wherein the communication system includes:
  • the terminal is used to obtain the channel quality between the terminal and the access network device, and the terminal is in a disconnected state;
  • the terminal determines to send uplink data to the access network device based on a random access method or a configuration scheduling CG method, and the random access-based method includes a 2-step random access Or based on 4-step random access;
  • the terminal determining to send uplink data to the access network device based on random access includes:
  • the terminal determines to send uplink data to the access network device based on the 2-step random access method
  • the terminal determines to send the uplink data to the access network device based on the 4-step random access method.
  • Embodiment 44 A communication system, wherein the communication system includes:
  • the terminal is used to obtain the channel quality between the terminal and the access network device, and the terminal is in a disconnected state;
  • the terminal determines to send uplink data to the access network device based on a 2-step random access method
  • the terminal determines to send the uplink data to the access network device based on a 4-step random access manner.
  • Embodiment 45 A communication device, characterized in that the communication device includes one or more processors and a communication interface, and the one or more processing and the communication interface are used to support the communication device to perform as implemented The data transmission method described in any one of Examples 1-10 or the data transmission method described in any one of Embodiments 11-21.
  • Embodiment 46 A computer-readable storage medium, wherein the computer-readable storage medium includes computer instructions, and when the computer instructions are executed on a computer, the computer executes any of the instructions as in embodiment 1-10.
  • At least one (item) refers to one or more
  • “multiple” refers to two or more than two
  • “at least two (item)” refers to two or three And three or more
  • “and/or” is used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A, only B, and A at the same time And B three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • connection means that B is associated with A.
  • B can be determined from A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • connection appearing in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection to implement communication between devices, which is not limited in the embodiments of the present application.
  • transmit/transmission in the embodiments of the present application refers to two-way transmission, including sending and/or receiving actions.
  • the “transmission” in the embodiments of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals.
  • Uplink data transmission means uplink channel and/or uplink signal transmission
  • downlink data transmission means downlink channel and/or downlink signal transmission.
  • the "network” and “system” appearing in the embodiments of the present application express the same concept, and the communication system is the communication network.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to enable a device, such as a single-chip microcomputer, a chip, etc., or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种数据传输方法及装置,以实现终端处于非连接态时,通过2步随机接入的方式或者4步随机接入的方式或者CG方式向接入网设备发送上行数据。所述方法包括:终端获取其与接入网设备之间的信道质量,并在信道质量大于第一阈值时,确定基于随机接入的方式(2步随机接入的方式或者4步随机接入的方式)或者CG方式发送上行数据,或者,在信道质量大于第六阈值时,基于2步随机接入的方式或者CG方式发送上行数据,在信道质量小于第六阈值时,基于4步随机接入的方式发送上行数据。本申请方案可广泛适用于通信技术领域、人工智能、车联网、智能家居联网等领域。

Description

一种数据传输方法及装置
本申请要求于2020年6月20日提交国家知识产权局、申请号为202010569721.X、申请名称为“一种提供辅助信息的方法及UE”的中国专利申请的优先权,以及要求于2020年8月20日提交国家知识产权局、申请号为202010845774.X、申请名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
目前,在终端处于空闲(idle)态或非激活(inactive)态时,若终端需要向接入网设备传输上行数据,则终端需要发起随机接入,如4步随机接入过程或者2步随机过程,从idle/inactive态切换到连接(connected)态后向接入网设备传输上行数据。其中,若上行数据为小包数据,数据量较少,此时,传输较少的数据也需要发起一遍完整的随机接入过程,则会加大终端的信令开销和功率消耗。
为了降低终端的信令开销以及功率消耗,终端可以在随机接入过程中向接入网设备传输上行数据,或者,通过接入网设备为其预先配置的上行资源(如配置调度(configured grand,CG)传输上行数据。在随机接入过程或者CG上传输上行数据时,为了保证上行数据能够在随机接入过程或者CG上成功地传输至接入网设备,需要选择信道质量更高的信道来传输上行数据,因此,如何选择信道质量较高的信道是在随机接入过程或者CG上传输上行数据成功亟待解决的技术问题。
发明内容
本申请实施例提供一种数据传输方法及装置,以实现终端处于非连接态时通过2步随机接入的方式或者4步随机接入的方式或者CG方式发送上行数据。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种数据传输方法,所述方法包括:处于非连接态的终端获取终端与接入网设备之间的信道质量,当信道质量大于第一阈值时,终端确定基于随机接入的方式或者CG方式向接入网设备发送上行数据,随机接入的方式包括2步随机接入的方式或基于4步随机接入的方式,终端确定基于随机接入的方式向接入网设备发送上行数据,包括:当信道质量大于第二阈值时,终端确定基于2步随机接入的方式向接入网设备发送上行数据,当信道质量小于第二阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
基于第一方面所述的方法,可以为终端配置第一阈值以及第二阈值,第一阈值用于终端是否选择随机接入的方式或者CG方式发送上行数据,第二阈值用于终端选择2步随机接入的方式还是4步随机接入的方式发送上行数据,以使得终端可以依据第一阈值、第二阈值合理选择发送上行数据的方式,提高上行数据的传输效率,避免由于选择的传输方式对应的信道质量较差,导致上行数据传输失败,资源浪费的问题。
一种可能的设计中,所述方法还包括:当信道质量小于第一阈值,且信道质量大于第五阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于2步随机接入的方式接入小区;当信道质量小于第一阈值,且信道质量小于第五阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于第4步随机接入的方式接入小区。
基于该可能的设计,可以在信道质量小于第一阈值的情况下,不用2步随机接入的方式或者4步随机接入的方式发送上行数据,仅发起随机接入,即在信道质量不理想的情况下,不用随机接入的方式发送上行数据,以免上行数据传输失败。
第二方面,提供一种数据传输方法,所述方法包括:处于非连接态的终端获取终端与接入网设备之间的信道质量,当信道质量大于第六阈值,且信道质量大于第七阈值时,终端确定基于2步随机接入的方式向接入网设备发送上行数据,当信道质量小于第六阈值,且信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
基于第二方面所述的方法,可以为终端配置第六阈值、以及第七阈值以及第八阈值,第六阈值用于终端选择使用2步随机接入的资源还是4步随机接入的资源,第七阈值用于在终端选择2步随机接入的资源发送上行数据还是随机接入,第八阈值用于终端选择4步随机接入的资源发送上行数据还是随机接入,以使得终端可以依据第六阈值、第七阈值和第八阈值合理选择发送上行数据的方式,提高上行数据的传输效率,避免由于选择的传输方式对应的信道质量较差,导致上行数据传输失败,资源浪费的问题。
一种可能的设计中,所述方法还包括:当信道质量大于第六阈值,且信道质量小于第七阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于2步随机接入的方式接入小区;当信道质量小于第六阈值,且信道质量小于第八阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于第4步随机接入的方式接入小区。
基于该可能的设计,可以在信道质量小于第七阈值的情况下,不用2步随机接入的方式发送上行数据,仅发起2步随机接入,在信道质量小于第八阈值的情况下,不用4步随机接入的方式发送上行数据,仅发起4步随机接入,即在信道质量不理想的情况下,不用随机接入的方式发送上行数据,以免上行数据传输失败。
结合第一方面或第二方面,一种可能的设计中,终端确定用于终端与接入网设备之间上行时间同步的TA是否有效,当TA无效时,终端确定基于随机接入的方式向接入网设备发送上行数据,当TA有效时,终端确定基于CG方式向接入网设备发送上行数据;CG方式对应的CG资源为接入网设备预先配置的、用于终端在非连接态PUSCH资源。
基于该可能的设计,可以在终端支持CG的情况下,优先考虑基于CG方式,在预先配置的PUSCH资源上发送上行数据,无需通过随机接入过程,降低终端的功率消耗以及节省随机接入资源。
一种可能的设计中,在终端确定基于2步随机接入的方式向接入网设备发送上行数据之后,所述方法还包括:当信道质量大于第三阈值时,终端基于2步随机接入的 方式对应的第一传输资源,在MsgA上向接入网设备发送上行数据。
基于该可能的设计,可以在2步随机接入的方式对应的传输资源较多的情况下,当信道质量大于第三阈值时,选择第一传输资源发送上行数据,避免由于选择的传输资源的较差,导致上行数据传输失败,资源浪费的问题。
一种可能的设计中,第一传输资源对应的配置信息包括第三阈值;或者,第三阈值包括在至少一个阈值中,至少一个阈值中每个阈值对应一个传输参数阈值,第一传输资源的传输参数大于第三阈值对应的传输参数阈值;或者,第三阈值包括在至少一个阈值中,至少一个阈值中每个阈值对应一个传输参数区间,第一传输资源的传输参数属于第三阈值对应的传输参数区间。基于该可能的设计,可以在传输资源的配置信息中设置用于终端选择合适的传输资源的阈值,或者,将用于终端选择合适的传输资源的阈值与传输参数阈值对应设置,或者,将用于终端选择合适的传输参数的阈值与传输参数区间对应设置,配置方式灵活多样,适应性较强。
一种可能的设计中,传输参数包括MCS、TBS中一种或者多种参数,即基于MCS和/TBS来衡量一个传输资源的传输要求,传输参数设计多样,灵活性较高。
一种可能的设计中,在终端确定基于CG方式向接入网设备发送上行数据之后,所述方法还包括:当信道质量大于第四阈值时,终端基于第一CG资源向接入网设备发送上行数据。基于该可能的设计,可以在CG的方式对应的传输资源较多的情况下,当信道质量大于第四阈值时,选择第一CG资源发送上行数据,避免由于选择的CG资源的较差,导致上行数据传输失败,资源浪费的问题。
一种可能的设计中,第一CG资源对应的配置信息包括第四阈值;或者,第四阈值包括在至少一个阈值中,至少一个阈值中每个阈值对应一个传输参数阈值,第一CG资源的传输参数大于第四阈值对应的传输参数阈值;或者,第四阈值包括在至少一个阈值中,至少一个阈值中每个阈值对应一个传输参数区间,第一CG资源的传输参数属于第四阈值对应的传输参数区间。基于该可能的设计,可以在CG资源对应的配置信息中设置用于终端选择合适的CG资源的阈值,或者,将用于终端选择合适的CG资源的阈值与传输参数阈值对应设置,或者,将用于终端选择合适的传输参数的阈值与传输参数区间对应设置,配置方式灵活多样,适应性较强。
一种可能的设计中,TA无效包括下述一种或者多种:TA的有效期超时,终端的当前位置与TA启动时终端的位置间的距离大于距离阈值;信道质量与TA启动时终端与接入网设备之间的信道质量的差值大于信道质量变化阈值。基于该可能的设计,可以通过TA是否超时或者终端是否移动等确定终端的TA是否无效,确定方式灵活多样,扩大应用场景。
一种可能的设计中,上述第一阈值、第二阈值、第三阈值、第四阈值、第五阈值、第六阈值、第七阈值、第八阈值由接入网设备配置给终端,由接入网设备统一配置管理用于终端选择合适方式或传输资源发送上行数据的阈值,集中管理,标准统一,简化系统设计。
第三方面,本申请提供一种通信装置,该通信装置可以为上述终端或者终端中的芯片或者片上系统,还可以为终端中用于实现第一方面或第一方面的任一可能的设计或者第二方面或者第二方面的任一可能的设计所述的方法的功能模块。该终端可以实 现上述各方面或者各可能的设计中终端所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该终端可以包括:接收单元、处理单元;
一种可能的设计中,接收单元,用于获取终端与接入网设备之间的信道质量。处理单元,用于当信道质量大于第一阈值时,确定基于随机接入的方式或者CG方式向接入网设备发送上行数据,随机接入的方式包括2步随机接入的方式或4步随机接入的方式;如当信道质量大于第二阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第二阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
又一种可能的设计中,接收单元,用于获取终端与接入网设备之间的信道质量。处理单元,用于当信道质量大于第六阈值,且信道质量大于第七阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第六阈值,且信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
具体的,处理单元以及接收单元的相关执行动作可参照第一方面或者第一方面的任一可能的设计中所述或者第二方面或者第二方面的任一可能的设计中所述,不予赘述。
第四方面,提供了一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统。该终端可以实现上述各方面或者各可能的设计中终端所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该终端可以包括:处理器和通信接口。一种示例中,处理器可以用于支持终端实现上述第一方面或者第一方面的任一种可能的设计中所涉及的功能,例如:处理器用于获取终端与接入网设备之间的信道质量,当信道质量大于第一阈值时,终端确定基于随机接入的方式或者CG方式向接入网设备发送上行数据,如当信道质量大于第二阈值时,终端确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第二阈值时,终端确定基于4步随机接入的方式向接入网设备发送上行数据。又一种示例中,处理器用于获取终端与接入网设备之间的信道质量,当信道质量大于第六阈值,且信道质量大于第七阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第六阈值,且信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器,用于保存终端必要的计算机执行指令和数据。当所述通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行上述第一方面或者第一方面的任一种可能的设计或第二方面或第二方面的任一可能的设计所述的数据传输方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或者上述方面的任一种可能的设计或第二方面或第二方面的任一可能的设计所述的数据传输方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或者上述方面的任一种可能的设计或第二方面或第二方面的任一可能的设计所述的数据传输方法。
第七方面,提供了一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统,该终端包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述终端执行如第一方面或者第一方面的任一可能的设计或第二方面或第二方面的任一可能的设计所述的数据传输方法。
其中,第四方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计或第二方面或第二方面的任一可能的设计所带来的技术效果,不再赘述。
第八方面,本申请实施例提供一种通信系统,该通信系统可以包括:接入网设备、终端,所述终端包括如第三方面至第七方面中任一方面所述的通信装置或者计算机程序产品或者可读存储介质。
附图说明
图1a为4步随机接入的方式的示意图;
图1b为2步随机接入的方式的示意图;
图1c为CG方式的示意图;
图2为本申请实施例提供的一种通信系统的简化示意图;
图3为本申请实施例提供的一种通信装置示意图;
图4为本申请实施例提供的一种数据传输方法流程图;
图5a为本申请实施例提供的又一种数据传输方法的流程图;
图5b为本申请实施例提供的又一种数据传输方法的流程图;
图5c为本申请实施例提供的又一种数据传输方法的流程图;
图5d为本申请实施例提供的又一种数据传输方法的流程图;
图6为本申请实施例提供的一种数据传输方法流程图;
图7a为本申请实施例提供的又一种数据传输方法的流程图;
图7b为本申请实施例提供的又一种数据传输方法的流程图;
图7c为本申请实施例提供的又一种数据传输方法的流程图;
图7d为本申请实施例提供的又一种数据传输方法的流程图;
图8为本申请实施例提供的一种通信装置80的组成示意图;
图9为本申请实施例提供的一种通信系统的组成示意图。
具体实施方式
在介绍本申请实施例之前,对本申请实施例涉及的一些名词进行解释:
连接(connected)态,可以称为无线资源控制连接(radio resource control connected,RRC-connected)状态。在连接态下,终端和网络设备(例如接入网设备)连接,二者之间进行数据传输,如:终端可以接收来自网络设备的下行数据或者向网络设备发送上行数据。
空闲(idle)态,可以称为无线资源控制空闲(radio resource control idle,RRC-idle)状态。在空闲态下,终端和接入网设备(例如接入网设备)不连接,接入网设备不知道该终端是否在该接入网设备的覆盖范围内,终端可以接收来自接入网设备的寻呼 (paging)消息、同步信号、广播消息、或系统信息中的一种或多种,但无法和接入网设备进行语音通话、大数据量上网等数据传输。
非激活(inactive)态,可以称为无线资源控制非激活(radio resource control inactive,RRC-inactive)状态。在非连接态下,终端和接入网设备(例如接入网设备)不连接,但接入网设备中可以保存有终端的上下文,终端可以从接入网设备接收寻呼消息、同步信号、广播消息、或系统信息中的一种或多种,但无法和接入网设备进行语音通话、大数据量上网等数据传输。
其中,上述三种状态之间可以相互转换,例如,当终端没有数据业务的时候,网络侧设备会向终端发送RRC释放(release)消息,令终端从连接态转为空闲态或者非激活态。当网络侧有下行业务需求时,网络侧设备会周期性的向终端发送寻呼(paging)消息,终端被寻呼后,触发终端切换到连接态,发起随机接入,在完成随机接入后进入连接态,接收网络侧发送的下行数据。或者,当终端有上行业务需求时,终端也会发起随机接入,切换到连接态,并在连接态后发送上行数据。
其中,本申请实施例中,空闲态或者非激活态可以称为非连接态或者休眠状态。上行数据可以包括上行小包数据(small data),上行小包数据可以指数据量较小的业务数据,比特数小于等于预设值的业务数据,该预设值根据需要设置,该业务数据传输时占用的传输资源较少,如上行小包数据可以为几比特(bit)的业务数据、或者几十bit的业务数据、几百bit或者几千bit的业务数据。如果终端处于非连接态时存在上行业务需求,即使上行业务是一个上行小包数据,则为了传输该上行小包数据,终端也需要先发起随机接入,走一遍完整的随机接入流程,从非连接态切换到连接态,在连接态下发送上行小包数据,上行小包数据发送完后网络设备可能令终端在较长时间维持在连接态,这些步骤会造成较大的信令开销,加大终端的功率消耗,造成数据传输时延增加。
为了降低终端处于非连接态时发送上行小包数据的功率消耗,减小数据传输时延,一种可能的实现方式中,终端可以通过随机接入的方式(如2步随机接入的方式或4步随机接入的方式)或者配置调度(configuration grant,CG)方式向接入网设备发送上行小包数据。
参照图1a,为4步随机接入的方式,可以包括:步骤(0)、接入网设备向终端发送上行资源配置信息,为终端配置用于发送上行数据的上行资源。步骤(1)、终端向接入网设备发送消息一(Msg1),通知接入网设备有一个随机接入请求。其中,消息一也可以称为随机接入前导序列(random access preamble)。步骤(2)、接入网设备接收到Msg1后,向终端发送随机接入响应,随机接入响应也可以称为消息二(Msg2)。步骤(3)、终端接收到随机接入响应后,向接入网设备发送消息三(Msg3),其中Msg3可以包括上行小包数据以及其他信息。步骤(4)、接入网设备向终端发送消息四(Msg4),消息四可以包括接入网设备的底层确定的响应消息和/或接入网设备的高层确定的与上行小包数据对应的高层反馈信息。需要说明的是,在第一步终端发送random access preamble给接入网设备的时候,终端所使用的preamble(前导序列)是从一个可选的preamble集合中随机选择的。Msg2/Msg3/Msg4都是需要接入网设备通过物理下行控制信道(physical downlink control channel,PDCCH)调度给终端,如: 在发送Msg2/Msg3/Msg4之前,接入网设备会发送用于调度Msg2/Msg3/Msg4的PDCCH,在PDCCH指示的时频资源位置上发送或接收Msg2/Msg3/Msg4。
参照图1b,为2步随机接入的方式,可以包括:步骤(0)、接入网设备向终端发送上行配置信息,该上行资源配置信息指示为终端配置的用于发送上行数据的2步随机接入的资源。步骤(1)、终端向接入网设备发送MsgA,MsgA可以包括前导码(preamble),还可以包括与该preamble关联的物理上行共享信道(physical uplink shared channel,PUSCH),在该PUSCH中包括上行小包数据以及其他信息。步骤(2)、接入网设备接收MsgA,向终端回复MsgB,MsgB可以包括用于终端之间竞争解决的相关信息,还可以包括接入网设备的底层确定的响应消息和/或接入网设备的高层确定的与上行小包数据对应的高层反馈信息。需要说明的是,在终端发送MsgA给接入网设备的时候,终端所使用的preamble是从一个可选的preamble集合中或者2步随机接入的方式所对应的专用preamble集合中随机选择的。PUSCH与终端选择的preamble之间有关联关系。MsgB需要接入网设备通过PDCCH调度给终端,如:在发送MsgB之前,接入网设备会发送用于调度MsgB的PDCCH,在PDCCH指示的时频资源位置上接收MsgB。
参照图1c,为CG方式,网络侧为终端预先配置上行资源或者称为CG资源,当终端存在上行业务需求时,直接使用预先配置的上行资源传输上行数据,该CG方式具体可以包括:步骤(1)、接入网设备向终端发送上行资源配置信息,为终端配置用于发送上行数据的上行资源。步骤(2)、终端在接入网设备配置的上行资源上,向接入网设备发送包括上行小包数据的PUSCH,PUSCH携带在配置调度消息中,相应的,接入网设备接收上行小包数据。进一步的,图1c所示的CG方式还可以包括步骤(3),如步骤(3)所示,接入网设备向终端发送配置调度响应,配置调度响应可以包括接入网设备的底层确定的响应消息和/或接入网设备的高层确定的与上行小包数据对应的高层反馈信息。
需要说明的是,本申请所述的CG是一种数据传输方式的命名,该数据传输方式包括:预先为终端配置PUSCH资源,当终端存在上行业务需要时,使用预先配置的PUSCH资源发送上行业务数据。对于该数据传输方式,本申请不限于命名为CG,还可以命名为其他名称,不予限制。
当终端基于上述随机接入的方式或者CG方式发送上行小包数据时,对信道质量要求较高,如果信道质量较差,则终端无法实现基于上述随机接入的方式或者CG方式发送上行小包数据,导致上行小包数据失败。因此,如何选择信道质量较高或者能够满足上行小包数据的传输需求的信道是保证终端基于随机接入的方式或者CG方式成功发送上行小包数据的关键问题,针对这一问题,现有技术人员未给出任何解决方式,现有技术仅给出了利用接入网设备配置的一个阈值,确定选择2步随机的方式发起随机接入或者选择4步随机接入的方式发起随机接入,并且这一技术手段不能保证/实现成功地基于随机接入的方式或者CG方式发送上行小包数据。
为保证终端能够成功地基于随机接入的方式或者CG方式发送上行小包数据,一种可能的实现方式中,本申请实施例提供一种数据传输方法。该方法可以包括:网络侧广播一个阈值,如第一阈值,第一阈值可以用于指示终端能否采用随机接入的方式 发送上行小包数据,如终端确定信道质量大于第一阈值,确定基于随机接入的方式或者CG方式发送上行小包数据,同时,网络侧再广播另一个阈值,如第二阈值,第二阈值用于指示终端在采用随机接入的方式发送上行小包数据的情况下,采用2步随机接入的方式还是4步随机接入的方式发送上行小包数据。具体的,该实现方式可参照下述图4-图5d所述。
又一种的可能的实现方式中,网络侧广播一个阈值,如第六阈值,第六阈值用于指示终端在发送上行小包数据或者接入网络的时候,是使用2步随机接入的资源(可选的,也包括CG的资源)还是使用4步随机接入的资源,如终端确定信道质量大于第六阈值时,确定使用2步随机接入的资源或者CG资源来发送上行小包数据或者接入网络设备。同时,网络侧再广播两个阈值,如第八阈值、第七阈值,这两个阈值分别用于指示在使用2步随机接入的资源和4步随机接入的资源的情况下,终端是否能够基于随机接入的方式发送上行小包数据。若可以,则终端基于随机接入的方式发送上行小包数据,若不可以,则终端先接入网络,与网络侧设备建立连接,再传输上行小包数据。具体的,该实现方式参照下述图6-图7d所述。
需要说明的是,本申请中,基于2步随机接入的方式发送上行数据可以替换描述为基于2步随机接入的资源发送上行数据或者基于2步随机接入的方式中MsgA对应的PUSCH发送上行数据等。基于4步随机接入的方式发送上行数据可以替换描述为基于4步随机接入的资源发送上行数据或者基于4步随机接入的方式中的Msg3对应的PUSCH发送上行数据等。基于2步随机接入的方式发起随机接入可以替换描述为基于2步随机接入的资源发起随机接入或者基于2步随机接入的方式中的MsgA对应的premble发起随机接入等。基于4步随机接入的方式发起随机接入可以替换描述为基于4步随机接入的资源发起随机接入或者基于4步随机接入的方式中的Msg1对应的premble发起随机接入等。
下面结合说明书附图,对本申请实施例提供的数据传输方法进行描述。需要说明的是,下述实施例中的上行数据可以指上行小包数据或者其他能够通过随机接入过程或者CG方式发送的业务数据,不予限制。例如,当基于2随机接入的方式对应的传输资源(或称为2步随机接入的资源)发送上行数据时,该上行数据是不同于premble的,从物理层使用的信道来看,该上行数据可以是承载在/携带在MsgA对应的PUSCH的数据,该上行数据可以通过PUSCH传输,MsgA对应的PUSCH上传输的上行数据可以为用户面(user plane,UP)的数据或者控制面(control plane,CP)的数据,或者,为专用业务信道(dedicated traffic channel,DTCH)的数据等,不予限制。从物理层来看,该上行数据为一个传输块(transport block,TB),从高层协议上来看,该上行数据为一个媒体接入控制(media access control,MAC)分组数据单元(packet data unit,PDU)。当基于4随机接入的方式对应的传输资源(或称为4步随机接入的资源)发送上行数据时,携带上行数据的Msg3与现有技术中承载控制信令的Msg3不同,本申请中,Msg3中携带的上行数据可以为UP的数据或者CP的数据,或者,为DTCH的数据等,不予限制。
本申请实施例提供的数据传输方法可用于第四代(4th generation,4G)系统、长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新空 口(new radio,NR)系统、NR-车与任何事物通信(vehicle-to-everything,V2X)系统、物联网系统中的任一系统,还可以适用于其他下一代通信系统等,不予限制。下面以图2所示通信系统为例,对本申请实施例提供的数据传输方法进行描述。
图2是本申请实施例提供的一种通信系统的示意图,如图2所示,该通信系统可以包括接入网设备以及多个终端,如:终端1、终端2。在图2所示系统中,终端可以处于空闲态或者非激活态。需要说明的是,图2为示例性框架图,图2中包括的节点的数量不受限制,且除图2所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
其中,接入网设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,接入网设备可以为小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的数据传输方法。
在具体实现时,图2所示各网元,如:终端、接入网设备可采用图3所示的组成结构或者包括图3所示的部件。图3为本申请实施例提供的一种通信装置300的组成示意图,当该通信装置300具有本申请实施例所述的终端的功能时,该通信装置300可以为终端或者终端中的芯片或者片上系统。当通信装置300具有本申请实施例所述的接入网设备的功能时,通信装置300可以为接入网设备或者接入网设备中的芯片或者片上系统。
如图3所示,该通信装置300可以包括处理器301,通信线路302以及通信接口303。进一步的,该通信装置300还可以包括存储器304。其中,处理器301,存储器304以及通信接口303之间可以通过通信线路302连接。
其中,处理器301可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器301还可以是其它具有处理功能的装置,如电路、器件或软件模块等。
通信线路302,用于在通信装置300所包括的各部件之间传送信息。
通信接口303,用于与其他设备或其它通信网络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口303可以是射频模块、收发器或者任何能够实现通信的装置。本申请实施例以通信接口303为射频模块为例进行说明,其中,射频模块 可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器304,用于存储指令。其中,指令可以是计算机程序。
其中,存储器304可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等。
需要说明的是,存储器304可以独立于处理器301存在,也可以和处理器301集成在一起。存储器304可以用于存储指令或者程序代码或者一些数据等。存储器304可以位于通信装置300内,也可以位于通信装置300外,不予限制。处理器301,用于执行存储器304中存储的指令,以实现本申请下述实施例提供的数据传输方法。
在一种示例中,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
作为一种可选的实现方式,通信装置300包括多个处理器,例如,除图3中的处理器301之外,还可以包括处理器307。
作为一种可选的实现方式,通信装置300还包括输出设备305和输入设备306。输入设备306是键盘、鼠标、麦克风或操作杆等,输出设备305是显示屏、扬声器(speaker)等设备。
需要说明的是,通信装置300可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图3中类似结构的设备。此外,图3中示出的组成结构并不构成对该通信装置的限定,除图3所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下面结合图2所示通信系统,对本申请实施例提供的数据传输方法进行描述。其中,下述实施例中各设备可以具有图3所示部件,且各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
图4为本申请实施例提供的一种数据传输方法,如图4所示,该方法可以包括:
步骤401:终端获取终端与接入网设备之间的信道质量。
其中,终端可以为图2所示通信系统中处于空闲态或者非激活态的任一终端。接入网设备可以为图2所示通信系统中能够为该终端提供网络服务的任一接入网设备。
其中,信道质量可以用于评价终端与接入网设备之间的传输信道的好坏,终端与接入网设备之间距离越近,信道质量越高,终端与接入网设备之间的传输信道越好,成功传输上行数据的概率越高,反之,终端与接入网设备之间距离越远,信道质量越低,终端与接入网设备之间的传输信道越差,成功传输上行数据的概率越低。信道质量可以包括参考信号接收功率(reference signal received power,RSRP)或者参考信号接收质量(reference signal received quality,RSRQ)或者信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。
示例性的,终端处于非连接态时,可以通过测量接入网设备广播的同步信号块(synchronization signal block,SSB)获得终端与接入网设备之间的信道质量,或者,通过测量预先配置的信息状态信息参考信号(channel-state information-reference signal,CSI-RS)获得终端与接入网设备之间的信道质量,不予限制。具体的,该测量过程可参照现有技术。
步骤402:当信道质量大于第一阈值时,终端确定基于随机接入的方式或者CG方式向接入网设备发送上行数据。
其中,第一阈值可以由接入网设备预先配置给终端,如接入网设备可以向终端发送携带第一阈值的RRC消息,终端接收该RRC消息,从RRC消息中获取第一阈值。该RRC可以为终端特定的RRC消息,该RRC消息的接收对象为该终端,如该RRC消息可以为RRC释放消息等。或者,该RRC消息可以是接入网设备广播的RRC消息,RRC消息的接收对象可以为多个终端,如该RRC消息可以为系统信息块(system information block,SIB)等。第一阈值可以用于指示终端是否采用随机接入的方式或者CG方式发送上行数据,第一阈值的取值大小可以根据需要设置,不予限制。
其中,终端可以根据时间提前量(timing advance,TA)是否有效,确定是基于随机接入的方式发送上行数据还是基于CG方式向接入网设备发送上行数据。例如,终端确定TA是否有效,当TA无效时,终端确定基于随机接入的方式向接入网设备发送上行数据;当TA有效时,终端确定基于CG方式向接入网设备发送上行数据。
其中,TA可以用于终端与接入网设备之间上行时间同步,当存在下述(1)~(3)中三种情况任一种或者多种情况时TA失效,反之,不存在下述三种情况中任一种情况时,TA有效:(1)、TA的有效期超时,TA失效。
其中,TA的有效期可以由接入网设备确定并通知给终端,终端接收到接入网设备通知的TA的有效期后,启动与该TA对应的定时器,该定时器的运行时长等于TA的有效时长,该定时器超时则意味着TA的有效期超时。
(2)、当终端的当前位置与TA启动时终端的位置间的距离大于距离阈值时,TA失效。
其中,距离阈值可以根据需要设置,不予限制,距离阈值可以由接入网设备配置给终端,其配置方式与接入网设备为终端配置第一阈值相同,不予赘述。终端的当前位置与TA启动时终端的位置间的距离小于距离阈值意味着终端移动距离较小,其与接入网设备之间的传输信道未发生变化或者变化较小,TA仍适用。反之,终端的当前位置与TA启动时终端的位置间的距离大于距离阈值意味着终端移动距离较大,可能远离接入网设备,其与接入网设备之间的传输信道发生变化,如变差,TA失效。
可替换的,还可以根据终端与接入网设备之间的信道质量确定TA是否失效,如一种可能的方式中,终端与接入网设备之间的距离可以以信道质量来表征,二者距离越近,信道质量越好,二者距离越远,信道质量越差。当终端的信道质量小于信道质量阈值时,也可以意味着TA失效,当终端的信道质量大于信道质量阈值时,TA有效。
其中,信道质量阈值可以需要设置,信道质量阈值可以由接入网设备配置给终端,其配置方式与接入网设备为终端配置第一阈值相同,不予赘述。
(3)、当信道质量与TA启动时终端与接入网设备之间的信道质量的差值大于信 道质量变化阈值时,TA失效。
其中,信道质量变化阈值可以根据需要设置,不予限制,信道质量变化阈值可以由接入网设备预先配置给终端,其配置方式与接入网设备为终端配置第一阈值相同,不予赘述。信道质量与TA启动时终端与接入网设备之间的信道质量的差值小于信道质量变化阈值意味着终端与接入网设备之间的传输信道未发生变化或者变化较小,TA仍适用;信道质量与TA启动时终端与接入网设备之间的信道质量的差值大于信道质量变化阈值意味着信道质量变差,TA失效。
其中,终端可以根据第二阈值,确定基于随机接入的方式向接入网设备发送上行数据的情况下,是基于2步随机接入的方式发送上行数据还是基于4步随机接入的方式发送上行数据。具体的,该过程可以包括:当信道质量大于第二阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据,当信道质量小于第二阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
其中,第二阈值可以根据由接入网设备配置给终端,其配置方式与接入网设备向终端配置第一阈值的方式相同,不予赘述。第二阈值可以根据需要设置,不予限制,如第二阈值可以大于第一阈值,第二阈值可以用于终端选择基于2步随机接入的方式向接入网设备发送上行数据,还是基于4步随机接入的方式向接入网设备发送上行数据。
需要说明的是,本申请实施例中,对应同一阈值,存在大于该阈值、小于该阈值两种情况,其中,大于该阈值可以替换描述为大于或等于该阈值,或者,小于该阈值可以替换描述为小于或等于该阈值,即对于同一阈值可以存在大于或者等于该阈值、小于该阈值;或者,大于该阈值、小于或者等于该阈值这些情况,不予限制。例如,本申请中,大于第一阈值、小于第一阈值可以替换描述为存在大于第一阈值,小于或等于第一阈值;或者,大于或等于第一阈值,小于第一阈值这几种情况。
进一步的,如图4所示,所述方法还包括:
步骤403:当信道质量小于第一阈值时,终端确定不在非连接态发送上行数据,而是基于随机接入的方式发起随机接入,接入接入网设备对应的小区。
示例性的,终端可以基于第五阈值确定是基于2步随机接入的方式发起随机接入还是基于4步随机接入的方式发起随机接入,如:当信道质量小于第一阈值,且信道质量大于第五阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于2步随机接入的方式发起随机接入,接入小区;当信道质量小于第一阈值,且信道质量小于第五阈值时,终端确定不在非连接态下向接入网设备发送上行数据,而是基于第4步随机接入的方式发起随机接入,接入小区。
其中,第五阈值可以根据由接入网设备配置给终端,其配置方式与接入网设备向终端配置第一阈值的方式相同,不予赘述。第五阈值可以根据需要设置,不予限制,如第五阈值可以小于第一阈值,第五阈值可以用于终端选择基于2步随机接入的方式发起随机接入,还是基于4步随机接入的方式发起随机接入。
基于图4所示方法,终端可以依据第一阈值、第二阈值合理选择发送上行数据的方式,提高上行数据的传输效率,避免由于选择的传输方式对应的信道质量较差,导致上行数据传输失败,资源浪费的问题。
进一步的,终端确定基于2步随机接入的方式发送上行数据后,可以基于2步随机接入的方式对应的传输资源发送上行数据。其中,2步随机接入的方式对应的传输资源可以称为2步随机接入的资源或者MsgA对应的传输资源等等。本申请中,2步随机接入的方式可以对应一组传输资源或者多组传输资源,不予限制。2步随机接入的方式对应的传输资源可以由接入网设备预先配置给终端。一组传输资源可以包括“preamble”和“PUSCH”,终端可以在2步随机接入的方式对应的一组传输资源上发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH。
一种示例中,当有且仅有一个2步随机接入的方式对应的传输资源,终端可以基于该唯一的传输资源发送上行数据。
又一种示例中,当存在多个2步随机接入的方式对应的传输资源,且不同传输资源对应不同的信道质量,如不同传输资源对应不同的调制与编码策略(modulation and coding scheme,MCS)和/或传输块速度(transmission block speed,TBS)时,为了保证上行数据被成功传输,传输上行数据的PUSCH被成功解码,终端需要从多组传输资源中选择合适的传输资源/信道质量较好的传输资源来传输上行数据。如:终端可以依据第三阈值,从2步随机接入的方式对应的多组传输资源中选择出第一传输资源,基于第一传输资源,在MsgA上向接入网设备发送preamble以及上行数据,上行数据携带在MsgA对应的PUSCH中。
其中,第三阈值可以根据由接入网设备配置给终端,其配置方式与接入网设备向终端配置第一阈值的方式相同,不予赘述。第三阈值可以根据需要设置,不予限制,如第三阈值可以大于第一阈值,第三阈值可以等于第二阈值,或者第三阈值可以小于或等于上述至少一个阈值中的最小阈值等。第三阈值可以用于终端在基于2步随机接入的方式发送上行数据时,选择合适的用于传输上行数据的对应的传输资源。第三阈值与第一传输资源之间的关联关系如下方式(1)~方式(3)所示:
方式(1)、2步随机接入的方式可以对应一组或者多组传输资源,一组或者多组传输资源包括第一传输资源,每组传输资源对应的配置信息包括一个阈值或者多个阈值,每组传输资源对应的配置信息所包括的阈值用于终端是否选择该传输资源,如若信道质量大于该传输资源对应的配置信息所包括的阈值,则可以选择该传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,则不可以选择该传输资源对应的PUSCH发送上行数据。当信道质量低于所有传输资源对应的配置信息包括的阈值时,选择4步随机接入的方式向接入网设备发送上行数据。
其中,每个传输参数对应的阈值可以携带在配置信息中配置给终端,其配置方式可参照上述接入网设备配置第一阈值给终端的方式,不予赘述。第三阈值可以包括在上述至少一组传输资源对应的至少一个阈值中。
示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的传输资源对应的阈值,确定信道质量比至少一组传输资源对应的阈值中的哪些阈值大,使用这些阈值中最大阈值(如第三阈值)所对应的传输资源(如第一传输资源)发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,或者,使用确定的阈值中的任一阈值对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,不予限制。
例如,以上行数据为上行小包数据,信道质量为RSRP为例,如下代码所示,在接入网设备为终端配置的MsgA对应的配置信息中加入字段:MsgA-RSRP-TheresholdsmallData-r17。MsgA-RSRP-TheresholdsmallData-r17具体指示一个RSRP阈值,RSRP阈值用于终端是否在MsgA发送上行小包数据,MsgA-RSRP-TheresholdsmallData-r17可以用于表征该配置信息所指示的传输资源中的PUSCH资源在什么条件下才能被用来发送上行小包数据。当信道质量低于所有配置信息中的MsgA-RSRP-TheresholdsmallData-r17时,终端使用4步随机接入的方式发送上行小包数据。需要说明的是,下述代码中除字段MsgA-RSRP-TheresholdsmallData-r17之外的字段的具体含义参照现有技术所述,不予赘述。
Figure PCTCN2021100155-appb-000001
方式(2)、2步随机接入的方式可以对应至少一组传输资源(如一组或者多组传输资源),至少一组传输资源包括第一传输资源,至少一组传输资源可以对应至少一组传输参数,一组传输参数可以包括MCS和/或TBS,这至少一组传输参数可划分为至少一个传输参数区间,传输参数区间的最大值可以为至少一组传输参数中的最大值或者大于该最大值,传输参数区间的最小值可以为至少一组传输参数中的最小值或者小于该最小值。一个传输参数区间对应设置一个阈值,每个传输参数区间对应的阈值可以用于终端选择是否基于该传输资源发送上行数据,如若信道质量大于传输参数区间对应的阈值,则可以选择该传输参数区间中某组传输参数对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,则不可以选择该传输资源对应的PUSCH发送上行数据。当信道质量低于所有传输参数区间对应的阈值时,选择4步随机接入的方式发送上行数据。
其中,传输参数区间、传输参数区间对应的阈值可以由接入网设备配置给终端,其配置方式可参照上述接入网设备配置第一阈值给终端的方式,不予赘述。第三阈值可以包括在上述至少一个阈值中,第一传输资源的传输参数属于第三阈值对应的传输参数区间。
示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的传输参数区间所对应的阈值,确定信道质量比至少一个阈值中的哪些阈值大,使用这些阈值中最大阈值(如第三阈值)所对应的传输参数区间中的任一传输参数所对应的传输资源(如第一传输资源)发送上行数据,或者,使用确定的阈值中的任一阈值对应的传输参数区间中的任一传输参数对应的传输资源发送上行数据,不予限制。
需要说明的是,本申请中,不同传输参数区间包括的传输参数可以不重叠或者重叠,如传输参数区间1可以包括传输参数区间2,或者,传输参数区间1与传输参数区间2包括的传输参数完全不同,不予限制。
例如,以上行数据为上行小包数据为例,信道质量为RSRP,传输参数为MCS,传输参数区间为MCS区间,存在三个MCS区间:MCS区间1、MCS区间以及MCS区间3,MCS区间对应的阈值为RSRP阈值为例,不同RSRP阈值分别对应一个MCS区间。一个MCS区间可以由一个最大边界(upper bound)和一个最小边界(lower bound)定义,每个bound对应一个传输参数,如每个bound是一个传输参数索引值,即MCS索引值(I_MCS),该传输参数索引值用于唯一指示一个传输参数。具体的,接入网设备可以将RSRP阈值以及MCS区间携带在下述信令中发送给终端,如下述信令中,r17协议中MsgA对应的RSRP-MCS-阈值列表(MsgA-RSRP-MCS-TheresholdForsmallDataList-r17)中可以包括N个RSRP-MCS-阈值(MsgA-RSRP-MCS-TheresholdForsmallData-r17),N的取值为3,每个MsgA-RSRP-MCS-TheresholdForsmallData-r17中可以包括一个RSRP阈值以及对应的MCS区间:MsgA-RSRP-MCS-TheresholdForsmallDataList-r17SEQUENCE SIZE(1..N))OF MsgA-RSRP-MCS-TheresholdForsmallData-r17
Figure PCTCN2021100155-appb-000002
Figure PCTCN2021100155-appb-000003
其中,RSRP阈值以及MCS区间之间可以以表格形式表示,如下表一所示,示出了MCS区间与RSRP阈值之间的对应关系,RSRP阈值1对应MCS区间1、RSRP阈值2对应MCS区间2、RSRP阈值3对应MCS区间3,终端可以比较信道质量与RSRP阈值1~RSRP阈值3,如果发现信道质量大于RSRP阈值2,则使用RSRP阈值2对应的MCS区间2所包括的传输参数对应的传输资源发送上行数据。如果发现信道质量比这三个RSRP阈值中的最小阈值都要小,则基于4步随机接入的方式发送上行数据。
表一
RSRP阈值1 MCS区间1
RSRP阈值2 MCS区间2
RSRP阈值3 MCS区间3
又例如,以上行数据为上行小包数据为例,信道质量为RSRP,传输参数为TBS,传输参数区间为TBS区间,存在三个TBS区间:TBS区间1、TBS区间以及TBS区间3,TBS区间对应的阈值为RSRP阈值为例,不同RSRP阈值分别对应一个TBS区间。一个TBS区间可以由一个upper bound和一个lower bound定义。upper bound和lower bound的具体取值可以为一个TBS的大小。具体的,接入网设备可以将RSRP阈值以及TBS区间携带在下述信令中发送给终端,如下述信令中,MsgA-RSRP-TBS-TheresholdForsmallDataList-r17可以包括N个RSRP-TBS-阈值MsgA-RSRP-TBS-TheresholdForsmallData-r17,N的取值为3,每个MsgA-RSRP-TBS-TheresholdForsmallData-r17中包括一个RSRP的取值以及对应的TBS区间。
MsgA-RSRP-TBS-TheresholdForsmallDataList-r17 SEQUENCE(SIZE(1..N))OF MsgA-RSRP-TBS-TheresholdForsmallData-r17
MsgA-RSRP-TBS-TheresholdForsmallData-r17::=SEQUENCE{
MsgA-RSRP-TheresholdForsmallData-r17 RSRP-Range
MsgA-TBS-RangeForsmallData-r17 SEQUENCE{upper,lower}
}
其中,RSRP阈值以及TBS区间之间可以以表格形式表示,如下表二所示,示出了TBS区间与RSRP阈值之间的对应关系,RSRP阈值1对应TBS区间1、RSRP阈值2对应TBS区间2、RSRP阈值3对应TBS区间3,终端可以比较信道质量与RSRP阈值1~RSRP阈值3,如果发现信道质量大于RSRP阈值2,则使用RSRP阈值2对应的TBS区间2所包括的传输参数对应的传输资源发送上行数据。如果发现信道质量比这三个RSRP阈值中的最小阈值都要小,则基于4步随机接入的方式发送上行数据。
表二
RSRP阈值1 TBS区间1
RSRP阈值2 TBS区间2
RSRP阈值3 TBS区间3
方式(3)、2步随机接入的方式可以对应至少一组传输资源,至少一组传输资源包括第一传输资源,至少一组传输资源对应至少一个传输参数阈值,一个传输参数阈值对应一个信道质量阈值(本申请中简称阈值),每组传输资源对应的传输参数阈值所对应的阈值用于终端是否选择该传输资源,如若信道质量大于该传输资源对应的传输参数阈值所对应的阈值,则可以选择该传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,则不可以选择该传输资源对应的PUSCH发送上行数据。当信道质量低于所有传输资源对应的传输参数阈值所对应的阈值时,选择4步随机接入的方式发送上行数据。
其中,传输参数、传输参数阈值以及传输参数阈值对应的信道质量阈值可以由接入网设备配置给终端,其配置方式可参照上述接入网设备配置第一阈值给终端的方式,不予赘述。第三阈值可以包括在上述至少一个传输参数阈值对应的至少一个阈值中。
示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的传输参数阈值对应的阈值,确定信道质量比至少一个传输参数阈值对应的阈值中的哪些阈值大,使用这些阈值中最大阈值(如第三阈值)所对应的传输参数阈值对应的传输资源(如第一传输资源)发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,或者,使用确定的阈值中的任一阈值对应的传输参数阈值对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,不予限制。
例如,以上行数据为上行小包数据为例,信道质量为RSRP,传输参数为MCS,传输参数阈值为MCS阈值,存在三个MCS阈值:MCS阈值1、MCS阈值以及MCS阈值3,MCS阈值对应的阈值为RSRP阈值为例,不同RSRP阈值分别对应一个MCS阈值。一个MCS阈值可以对应一个索引值I_MCS。具体的,接入网设备可以将RSRP阈值以及MCS阈值携带在下述信令中发送给终端,如下述信令中,MsgA-RSRP-MCS-TheresholdForsmallDataList-r17中包括N个MsgA-RSRP-MCS-TheresholdForsmallData-r17,N的取值为3,每个MsgA-RSRP-MCS-TheresholdForsmallData-r17中包括一个RSRP阈值以及对应的MCS索引值,该MCS索引值为一个对应的MCS阈值。
Figure PCTCN2021100155-appb-000004
其中,RSRP阈值以及MCS阈值之间可以以表格形式表示,如下表三所示,示出了MCS阈值与RSRP阈值之间的对应关系,RSRP阈值1对应MCS阈值1、RSRP阈值2对应MCS阈值2、RSRP阈值3对应MCS阈值3,终端可以比较信道质量与RSRP阈值1~RSRP阈值3,如果发现信道质量大于RSRP阈值2,则使用RSRP阈值2对应的MCS阈值2对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH。如果发现信道质量比这三个RSRP阈值中的最小阈值都要小,则基于4步随机接入的方式发送上行数据。
表三
RSRP阈值1 MCS阈值1
RSRP阈值2 MCS阈值2
RSRP阈值3 MCS阈值3
又例如,以上行数据为上行小包数据为例,信道质量为RSRP,传输参数为TBS,传输参数阈值为TBS阈值,存在三个TBS阈值:TBS阈值1、TBS阈值以及TBS阈值3,TBS阈值对应的阈值为RSRP阈值为例,不同RSRP阈值分别对应一个TBS阈值。一个TBS阈值可以对应一个索引值I_TBS。具体的,接入网设备可以将RSRP阈值以及TBS阈值携带在下述信令中发送给终端,如下述信令中,MsgA-RSRP-TBS-TheresholdForsmallDataList-r17中包括N个MsgA-RSRP-TBS-TheresholdForsmallData-r17,N的取值为3,每个MsgA-RSRP-TBS-TheresholdForsmallData-r17中包括一个RSRP阈值以及对应的TBS索引值,该TBS索引值为一个对应的TBS阈值。
Figure PCTCN2021100155-appb-000005
其中,RSRP阈值以及TBS阈值之间可以以表格形式表示,如下表四所示,示出了TBS阈值与RSRP阈值之间的对应关系,RSRP阈值1对应TBS阈值1、RSRP阈值2对应TBS阈值2、RSRP阈值3对应TBS阈值3,终端可以比较信道质量与RSRP阈值1~RSRP阈值3,如果发现信道质量大于RSRP阈值2,则使用RSRP阈值2对应的TBS阈值2对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH。如果发现信道质量比这三个RSRP阈值中的最小阈值都要小,则基于4步随机接入的方式发送上行数据。
表四
RSRP阈值1 TBS阈值1
RSRP阈值2 TBS阈值2
RSRP阈值3 TBS阈值3
进一步的,终端确定基于CG方式发送上行数据后,可以基于CG方式对应的CG资源发送上行数据。具体的,一种示例中,当有且仅有一个CG方式对应的CG资源,如PUSCH资源时,终端可以基于该唯一的CG资源发送上行数据。
又一种示例中,当存在多个CG方式对应的CG资源,且不同CG资源对应不同的信道质量,如不同CG资源对应不同的MCS和/或TBS时,为了保证上行数据被成功传输,传输上行数据的PUSCH被成功解码,终端需要从多个CG资源中选择合适的CG资源/信道质量较好的CG资源来传输上行数据。如:终端可以依据第四阈值,从CG方式对应的多个CG资源中选择出第一CG资源,基于第一CG资源向接入网设备发送上行数据,如当信道质量大于第四阈值时,终端基于第一CG资源向接入网设备发送上行数据。
其中,CG方式对应的CG资源为接入网设备预先配置的、用于终端在非连接态下的PUSCH资源,接入网设备向终端配置CG资源的方式与上述接入网设备向终端配置第一阈值的方式相同,不予赘述。与第三阈值与第一传输资源之间的关联关系类似,第四阈值与第一CG资源的关系也可以包括下述三种关联关系中任一关联关系:
(1)CG方式可以对应一个或者多个CG资源,一个或者多个CG资源包括第一CG资源,每个CG资源对应的配置信息包括一个阈值或者多个阈值,每个CG资源对应的配置信息所包括的阈值用于终端是否选择该CG资源,如若信道质量大于该CG资源对应的配置信息所包括的阈值,则选择该CG资源发送上行数据,反之,则不选择该CG资源发送上行数据。当信道质量低于所有CG资源对应的配置信息包括的阈值时,则不选择CG方式发送上行数据,而是选择随机接入的方式发送上行数据。
其中,第一CG资源对应的配置信息包括第四阈值。示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的CG资源对应的阈值,确定信道质量比至少一个CG资源对应的阈值中的哪些阈值大,使用这些阈值中最大阈值(如第三阈值)所对应的CG资源(如第一CG资源)发送上行数据,或者,使用确定的阈值中的任一阈值对应的CG资源发送上行数据,不予限制。
具体的,其实现方式可参照上述方式(1)中所述,不予赘述。
(2)CG方式可以对应至少一个CG资源,至少一个CG资源包括第一CG资源,至少一个CG资源可以对应至少一个传输参数,这至少一个传输参数可划分为至少一个传输参数区间,传输参数区间的最大值可以为一个或多个传输参数中的最大值或者大于该最大值,传输参数区间的最小值可以为一个或多个传输参数中的最小值或者小于该最小值。一个传输参数区间对应设置一个阈值,每个传输参数区间对应的阈值可以用于终端选择是否基于该CG资源发送上行数据,如若信道质量大于传输参数区间对应的阈值,则选择该传输参数区间中某个传输参数对应的CG资源发送上行数据,反之,则不选择该CG资源发送上行数据。当信道质量低于所有传输参数区间对应的阈值时,不选择CG方式发送上行数据,而是选择随机接入的方式发送上行数据。
其中,传输参数区间、传输参数区间对应的阈值可以由接入网设备配置给终端, 其配置方式可参照上述接入网设备配置第一阈值给终端的方式,不予赘述。第四阈值可以包括在上述至少一个阈值中,第一CG资源对应的传输参数属于第四阈值对应的传输参数区间。
示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的传输参数区间所对应的阈值,确定信道质量比至少一个阈值中的哪些阈值大,使用这些阈值中最大阈值(如第四阈值)所对应的传输参数区间中的任一传输参数所对应的CG资源(如第一CG资源)发送上行数据,或者,使用确定的阈值中的任一阈值对应的传输参数区间中的任一传输参数对应的CG资源发送上行数据,不予限制。
具体的,该实现方式可参照上述方式(2)中所述,不予赘述。
(3)CG方式可以对应至少一个CG资源,至少一个CG资源包括第一CG资源,至少一个CG资源对应至少一个传输参数阈值,一个传输参数阈值对应一个信道质量阈值(本申请中简称阈值),每个CG资源对应的传输参数阈值所对应的阈值用于终端是否选择该CG资源,如若信道质量大于该CG资源对应的传输参数阈值所对应的阈值,则选择该CG资源发送上行数据,反之,当信道质量低于所有CG资源对应的传输参数阈值所对应的阈值时,不选择CG方式发送上行数据,而是选择随机接入的方式发送上行数据。
其中,传输参数、传输参数阈值以及传输参数阈值对应的信道质量阈值可以由接入网设备配置给终端,其配置方式可参照上述接入网设备配置第一阈值给终端的方式,不予赘述。第四阈值可以包括在上述至少一个传输参数阈值对应的至少一个阈值中。
示例性的,终端获取终端与接入网设备之间的信道质量之后,终端可以比较该信道质量与接入网设备配置的传输参数阈值对应的阈值,确定信道质量比至少一个传输参数阈值对应的阈值中的哪些阈值大,使用这些阈值中最大阈值(如第四阈值)所对应的传输参数阈值对应的CG资源(如第一CG资源)发送上行数据,或者,使用确定的阈值中的任一阈值对应的传输参数阈值对应的CG资源发送上行数据,不予限制。
具体的,该实现方式可参照上述方式(3)中所述,不予赘述。
进一步的,终端确定基于4步随机接入的方式发送上行数据后,终端可以基于4步随机接入的方式发起随机接入,并在接收到Msg2后,在接入网设备发送的Msg2中包括的配置信息所指示的传输资源上发送携带上行数据的Msg3。
下面结合图5a,以终端不支持CG,接入网设备为终端配置2步随机接入的方式对应的一组传输资源为例,对图4所示方法中终端根据第一阈值、第二阈值、以及第五阈值选择合适的方式发送上行数据进行详细说明:
终端获取终端与接入网设备之间的信道质量,比较信道质量与第一阈值;当信道质量大于第一阈值时,确定基于随机接入的方式发送上行数据,当信道质量小于第一阈值时,确定不在非连接态下基于随机接入的方式发送上行数据,即不使用随机接入的方式对应的PUSCH资源发送上行数据。其中,如图5a所示,确定基于随机接入的方式发送上行数据可以包括:比较信道质量与第二阈值,当信道质量大于第二阈值时,确定基于2步随机接入的方式发送上行数据,例如基于2步随机接入的方式中的MsgA对应的PUSCH发送上行数据,反之,当信道质量小于第二阈值时,确定基于4步随 机接入的方式发送上行数据。
如图5a所示,终端确定不在非连接态下基于随机接入的方式发送上行数据后,终端比较信道质量与第五阈值,当信道质量大于第五阈值时,确定基于2步随机接入的方式发起随机接入,反之,当信道质量小于第五阈值时,确定基于4步随机接入的方式发起随机接入。
下面结合图5b,以终端支持CG,接入网设备为终端配置2步随机接入的方式对应的一组传输资源为例,对图4所示方法中终端根据第一阈值、第二阈值、以及第五阈值选择合适的方式发送上行数据进行详细说明:
终端获取终端与接入网设备之间的信道质量,比较信道质量与第一阈值;当信道质量大于第一阈值时,确定基于随机接入的方式或者CG方式发送上行数据,当信道质量小于第一阈值时,确定不在非连接态下基于随机接入的方式发送上行数据。其中,如图5b所示,确定基于随机接入的方式或者CG方式发送上行数据可以包括:查看TA是否有效,若TA有效,则确定基于CG方式发送上行数据,若TA无效,则比较信道质量与第二阈值,当信道质量大于第二阈值时,确定基于2步随机接入的方式发送上行数据,例如基于2步随机接入的方式对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,当TA无效,且信道质量小于第二阈值时,确定基于4步随机接入的方式发送上行数据。
如图5b所示,终端确定不在非连接态下基于随机接入的方式发送上行数据后,终端比较信道质量与第五阈值,当信道质量大于第五阈值时,确定基于2步随机接入的方式发起随机接入,反之,当信道质量小于第五阈值时,确定基于4步随机接入的方式发起随机接入。
其中,终端基于CG方式发送上行数据的过程可参照上述,不予赘述。
下面结合图5c,以终端不支持CG,接入网设备为终端配置2步随机接入的方式对应的多组传输资源,多组传输资源对应的配置信息包括用于终端是否选择该传输资源的阈值为例,对图4所示方法中终端根据第一阈值、第三阈值以及第五阈值选择合适的方式发送上行数据进行详细说明。需要说明的是,多组传输资源对应传输参数区间,传输参数区间对应阈值,或者,多组传输资源对应传输参数阈值下的数据传输方式可参照图5c所示。
如图5c所示,终端获取终端与接入网设备之间的信道质量,比较信道质量与第一阈值;当信道质量大于第一阈值时,确定基于随机接入的方式发送上行数据,当信道质量小于第一阈值时,确定不在非连接态下基于随机接入的方式发送上行数据。其中,如图5c所示,确定基于随机接入的方式发送上行数据可以包括:比较信道质量与至少一个传输参数中每个传输参数对应的配置信息所包括的阈值,当信道质量大于这些阈值中的第三阈值时,确定基于包括第三阈值的配置信息所对应的第一传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,如果信道质量小于至少一个传输参数对应的配置信息包括的阈值中的最小阈值,则确定基于4步随机接入的方式发送上行数据。
如图5c所示,终端确定不在非连接态下基于随机接入的方式发送上行数据后,终端比较信道质量与第五阈值,当信道质量大于第五阈值时,确定基于2步随机接入的 方式发起随机接入,反之,当信道质量小于第五阈值时,确定基于4步随机接入的方式发起随机接入。
下面结合图5d,以终端支持CG,接入网设备为终端配置2步随机接入的方式对应的多组传输资源,多组传输资源对应的配置信息包括用于终端是否选择该传输资源的阈值为例,对图4所示方法中终端根据第一阈值、第三阈值以及第五阈值选择合适的方式发送上行数据进行详细说明。需要说明的是,多组传输资源对应传输参数区间,传输参数区间对应阈值,或者,多组传输资源对应传输参数阈值下的数据传输方式可参照图5d所示。
终端获取终端与接入网设备之间的信道质量,比较信道质量与第一阈值;当信道质量大于第一阈值时,确定基于随机接入的方式或者基于CG方式发送上行数据,当信道质量小于第一阈值时,确定不在非连接态下基于随机接入的方式发送上行数据。其中,如图5d所示,确定基于随机接入的方式或者基于CG方式发送上行数据可以包括:查看TA是否有效,若TA有效,则确定基于CG方式发送上行数据,若TA无效,则比较信道质量与至少一个传输参数中每个传输参数对应的配置信息所包括的阈值,当信道质量大于这些阈值中的第三阈值时,确定基于包括第三阈值的配置信息所对应的第一传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,如果TA无效,并且信道质量小于至少一个传输参数对应的配置信息包括的阈值中的最小阈值,则确定基于4步随机接入的方式发送上行数据。
如图5d所示,终端确定不在非连接态下基于随机接入的方式发送上行数据后,终端比较信道质量与第五阈值,当信道质量大于第五阈值时,确定基于2步随机接入的方式发起随机接入,反之,当信道质量小于第五阈值时,确定基于4步随机接入的方式发起随机接入。
其中,终端基于CG方式发送上行数据的过程可参照上述,不予赘述。
上述图4~图5d,以为终端配置用于选择是否基于随机接入的方式发送上行数据的第一阈值、以及用于终端选择基于2步随机接入的方式还是4步随机接入的方式发送上行数据的第二阈值为例,对本申请实施例提供的数据传输方法进行了描述。可替换的,本申请还可以先配置一个用于终端使用2步随机接入的资源还是4步随机接入的资源的阈值,再配置两个阈值,这两个阈值中的一个阈值用于终端确定是基于2步随机接入的资源发送上行数据还是发起随机接入,另一个阈值用于终端确定是基于4步随机接入的资源发送上行数据还是随机接入。具体的,该方式可参照下述图6所示。
图6为本申请实施例提供的又一种数据传输方法的流程图,如图6所示,可以包括:
步骤601:终端获取终端与接入网设备之间的信道质量。
具体的,步骤601可参照步骤401所述,不予赘述。
步骤602:当信道质量大于第六阈值,且信道质量大于第七阈值时,终端确定基于2步随机接入的方式向接入网设备发送上行数据。
其中,第六阈值可以由接入网设备预先配置给终端,其配置方式与接入网设备为终端配置第一阈值的方式相同,不予赘述。第六阈值可以用于终端选择使用2步随机接入的资源(如选择使用2步随机接入的资源发起随机接入还是发送上行数据)还是 选择使用4步随机接入的资源(如选择使用4步随机接入的资源发起随机接入还是发送上行数据)。
其中,第七阈值可以由接入网设备预先配置给终端,其配置方式与接入网设备为终端配置第一阈值的方式相同,不予赘述。第七阈值可以大于第六阈值,也可以小于或等于第六阈值,不予限制。第七阈值可以用于终端选择基于2步随机接入的方式发送上行数据还是基于2步随机接入的方式发起随机接入。例如,在信道质量大于第六阈值之后,终端比较信道质量与第七阈值,当信道质量大于第七阈值,则确定基于2步随机接入的方式发送上行数据,当信道质量小于第七阈值,则确定不在非连接态下基于2步随机接入的方式发送上行数据,而是基于2步随机接入的方式发起随机接入,接入接入网设备对应的小区。
其中,在终端支持CG的情况下,若TA有效,则为了降低信令开销,终端可以优先于2步随机接入的方式选择CG方式发送上行数据。例如,在信道质量大于第六阈值之后,终端确定基于2步随机接入的方式向接入网设备发送上行数据之前,终端确定TA是否有效,当TA无效时,终端比较信道质量与第七阈值,根据比较结果确定基于2步随机接入的方式向接入网设备发送上行数据;当TA有效时,终端确定基于CG方式向接入网设备发送上行数据。
其中,TA的相关描述以及TA是否无效的确定方式可参照步骤402中所述,不予赘述。
进一步的,终端确定基于2步随机接入的方式向接入网设备发送上行数据之后,可以基于2步随机接入的方式对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH。具体的,终端从2步随机接入的方式对应的一组或者多组传输资源中选择哪个合适的传输资源发送上行数据的过程可参照上述,不予赘述。
进一步的,终端确定基于CG方式向接入网设备发送上行数据之后,基于CG方式对应的CG资源发送上行数据。终端从CG方式对应的一个或者多个CG资源中选择哪个CG资源发送上行数据的过程参照上述,不予赘述。
步骤603:当信道质量小于第六阈值,信道质量大于第八阈值时,终端选择基于4步随机接入的方式向接入网设备发送上行数据,当信道质量小于第八阈值时,终端选择基于4步随机接入的方式发起随机接入,接入接入网设备对应的小区。
其中,第八阈值可以由接入网设备预先配置给终端,其配置方式与接入网设备为终端配置第一阈值的方式相同,不予赘述。第八阈值可以大于第六阈值,也可以小于或等于第六阈值,不予限制。第八阈值可以用于终端选择基于4步随机接入的方式发送上行数据还是基于4步随机接入的方式发起随机接入。
基于图4所示方法,终端可以依据第六阈值、第八阈值以及第七阈值合理选择发送上行数据的方式,提高上行数据的传输效率,避免由于选择的传输方式对应的道质量较差,导致上行数据传输失败,资源浪费的问题。
下面结合图7a,以终端不支持CG,接入网设备为终端配置2步随机接入的方式对应的一组传输资源为例,对图6所示方法中终端根据第六阈值、第八阈值、以及第七阈值选择合适的方式发送上行数据进行详细说明:
终端获取终端与接入网设备之间的信道质量,比较信道质量与第六阈值;当信道 质量大于第六阈值时,选择使用2步随机接入的资源,当信道质量小于第六阈值时,选择使用4步随机接入的资源。其中,如图7a所示,选择使用2步随机接入的资源之后,比较信道质量与第七阈值,当信道质量大于第七阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据,如基于2步随机接入的方式对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,当信道质量小于第七阈值时,确定不在非连接态基于2步随机接入的方式发送上行数据,而是基于2步随机接入的方式发起随机接入,接入小区。
如图7a所示,终端选择使用4步随机接入的资源之后,比较信道质量与第八阈值,当信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据,如基于4步随机接入的方式对应的传输资源,通过Msg3发送上行数据,反之,当信道质量小于第八阈值时,确定不在非连接态基于4步随机接入的方式发送上行数据,而是基于4步随机接入的方式发起随机接入,接入小区。
下面结合图7b,以终端支持CG,接入网设备为终端配置2步随机接入的方式对应的一组传输资源为例,对图6所示方法中终端根据第六阈值、第八阈值以及第七阈值选择合适的方式发送上行数据进行详细说明:
终端获取终端与接入网设备之间的信道质量,比较信道质量与第六阈值;当信道质量大于第六阈值时,确定选择2步随机接入的资源发起随机接入或者发送上行数据,或者选择CG资源发送上行数据,当信道质量小于第六阈值时,确定选择4步随机接入的资源发起随机接入或者发送上行数据。例如,如图7b所示,在信道质量大于第六阈值之后,终端查看TA是否有效,若TA有效,则确定基于CG方式发送上行数据,若TA无效,则比较信道质量与第七阈值,当信道质量大于第七阈值时,确定基于2步随机接入的方式发送上行数据,如基于2步随机接入的方式对应的传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,当信道质量小于第七阈值时,确定不在非连接态基于2步随机接入的方式发送上行数据,而是基于2步随机接入的方式发起随机接入,接入小区。
如图7b所示,选择使用4步随机接入的资源之后,比较信道质量与第八阈值,当信道质量大于第八阈值时,确定基于4步随机接入的方式发送上行数据,如基于4步随机接入的方式对应的传输资源,通过Msg3发送上行数据,反之,当信道质量小于第八阈值时,确定不在非连接态基于4步随机接入的方式发送上行数据,而是基于4步随机接入的方式发起随机接入,接入小区。
其中,终端基于CG方式发送上行数据的过程可参照上述,不予赘述。
下面结合图7c,以终端不支持CG,接入网设备为终端配置2步随机接入的方式对应的多组传输资源,多组传输资源对应的配置信息包括用于终端是否选择该传输资源的阈值为例,对图6所示方法中终端根据第六阈值、第三阈值以及第八阈值选择合适的方式发送上行数据进行详细说明。需要说明的是,多组传输资源对应传输参数区间,传输参数区间对应阈值,或者,多组传输资源对应传输参数阈值下的数据传输方式可参照图7c所示。
如图7c所示,终端获取终端与接入网设备之间的信道质量,比较信道质量与第六阈值;当信道质量大于第六阈值时,确定选择2步随机接入的资源发起随机接入或者 发送上行数据,当信道质量小于第六阈值时,确定选择4步随机接入的资源发起随机接入或者发送上行数据。例如,如图7c所示,在信道质量大于第六阈值之后,终端比较信道质量与至少一组传输参数中每组传输参数对应的配置信息所包括的阈值,当信道质量大于这些阈值中的第三阈值时,确定基于包括第三阈值的配置信息所对应的第一传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,如果信道质量小于所有传输参数对应的配置信息包括的阈值中的最小阈值,则确定不在非连接态基于2步随机接入的方式发送上行数据,而是基于2步随机接入的方式发起随机接入,接入小区。
如图7c所示,终端选择使用4步随机接入的资源之后,比较信道质量与第八阈值,当信道质量大于第八阈值时,确定基于4步随机接入的方式发送上行数据,如基于4步随机接入的方式对应的传输资源,通过Msg3发送上行数据,反之,当信道质量小于第八阈值时,确定不在非连接态基于4步随机接入的方式发送上行数据,而是基于4步随机接入的方式发起随机接入,接入小区。
具体的,终端基于第三阈值选择传输资源的方式可参照图4中所述,不予赘述。
下面结合图7d,以终端支持CG,接入网设备为终端配置2步随机接入的方式对应的多组传输资源,多组传输资源对应的配置信息包括用于终端是否选择该传输资源的阈值为例,对图6所示方法中终端根据第六阈值、第三阈值以及第八阈值选择合适的方式发送上行数据进行详细说明。需要说明的是,多组传输资源对应传输参数区间,传输参数区间对应阈值,或者,多组传输资源对应传输参数阈值下的数据传输方式可参照图7d所示。
终端获取终端与接入网设备之间的信道质量,比较信道质量与第六阈值;当信道质量大于第六阈值时,确定选择2步随机接入的资源发起随机接入或者发送上行数据,或者选择CG资源发送上行数据,当信道质量小于第六阈值时,确定选择4步随机接入的资源发起随机接入或者发送上行数据。例如,如图7d所示,在信道质量大于第六阈值之后,终端查看TA是否有效,若TA有效,则确定基于CG方式发送上行数据,若TA无效,则比较信道质量与至少一组传输参数中每组传输参数对应的配置信息所包括的阈值,当信道质量大于这些阈值中的第三阈值时,确定基于包括第三阈值的配置信息所对应的第一传输资源发送MsgA,MsgA包括preamble以及携带上行数据的PUSCH,反之,如果信道质量小于所有传输参数对应的配置信息包括的阈值中的最小阈值,则确定不在非连接态基于2步随机接入的方式发送上行数据,而是基于2步随机接入的方式发起随机接入,接入小区。
如图7d所示,终端选择使用4步随机接入的资源之后,比较信道质量与第八阈值,当信道质量大于第八阈值时,确定基于4步随机接入的方式发送上行数据,如基于4步随机接入的方式对应的传输资源,通过Msg3发送上行数据,反之,当信道质量小于第八阈值时,确定不在非连接态基于4步随机接入的方式发送上行数据,而是基于4步随机接入的方式发起随机接入,接入小区。
其中,终端基于CG方式发送上行数据的过程可参照上述,不予赘述。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端、接入网设备等为了实现上述功能,其包含了执行 各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端、接入网设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8示出了一种通信装置80的结构图,该通信装置80可以为终端,或者终端中的芯片,或者片上系统,该通信装置80可以用于执行上述实施例中涉及的终端的功能。作为一种可实现方式,图8所示通信装置80包括:接收单元801、处理单元802;
一种可能的设计中,接收单元801,用于获取处于非连接态的终端与接入网设备之间的信道质量。例如,接收单元801可以支持通信装置80执行步骤401、步骤601。
处理单元802,用于当信道质量大于第一阈值时,确定基于随机接入的方式或者CG方式向接入网设备发送上行数据,随机接入的方式包括2步随机接入的方式或4步随机接入的方式;如当信道质量大于第二阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第二阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。例如,处理单元802可以支持通信装置80执行步骤402、步骤403。
又一种可能的设计中,接收单元801,用于获取终端与接入网设备之间的信道质量。例如,接收单元801可以支持通信装置80执行步骤401、步骤601。
处理单元802,用于当信道质量大于第六阈值,且信道质量大于第七阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第六阈值,且信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。例如,处理单元802可以支持通信装置80执行步骤602、步骤603。
具体的,上述图4~图7d所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置80用于执行图4~图7d所示方法所示数据传输方法中终端的功能,因此可以达到与上述数据传输方法相同的效果。
作为又一种可实现方式,图8所示通信装置80包括:处理模块和通信模块。处理模块用于对通信装置80的动作进行控制管理,例如,处理模块可以集成处理单元802的功能,可以用于支持该通信装置80执行步骤401、步骤601、步骤602、步骤603及本文所描述的技术的其它过程。通信模块可以集成接收单元801的功能,可以用于支持通信装置80与其他网络实体的通信,例如与图2示出的功能模块或网络实体之间的通信。该通信装置80还可以包括存储模块,用于存储通信装置80的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合, 例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置80可以为图3所示通信装置。
图9为本申请实施例提供的一种通信系统的结构图,如图9所示,该通信系统可以包括:终端90。还可以包括接入网设备,其中,终端90的功能与通信装置80的功能相同。
一种示例中,终端90,用于获取处于非连接态的终端90与接入网设备之间的信道质量,当信道质量大于第一阈值时,确定基于随机接入的方式或者CG方式向接入网设备发送上行数据,随机接入的方式包括2步随机接入的方式或4步随机接入的方式;如当信道质量大于第二阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第二阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
又一种示例中,终端90,用于获取终端90与接入网设备之间的信道质量,当信道质量大于第六阈值,且信道质量大于第七阈值时,确定基于2步随机接入的方式向接入网设备发送上行数据;当信道质量小于第六阈值,且信道质量大于第八阈值时,确定基于4步随机接入的方式向接入网设备发送上行数据。
其中,终端90的具体执行动作参照图4-图7d所示方法中终端的相关动作,不予赘述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的终端,如:包括数据发送端和/或数据接收端的内部存储单元,例如终端的硬盘或内存。上述计算机可读存储介质也可以是上述终端的外部存储设备,例如上述终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述终端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述终端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
结合以上,本申请还提供如下实施例:
实施例1、一种数据传输方法,其中,所述方法包括:
终端获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
当所述信道质量大于第一阈值时,所述终端确定基于随机接入的方式或者配置调度CG方式向接入网设备发送上行数据,所述随机接入的方式包括2步随机接入的方式或4步随机接入的方式;
其中,所述终端确定基于随机接入的方式向接入网设备发送上行数据,包括:
当所述信道质量大于第二阈值时,所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据;
当所述信道质量小于第二阈值时,所述终端确定基于所述4步随机接入的方式向 所述接入网设备发送所述上行数据。
实施例2、根据实施例1所述的方法,其中,在所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述方法还包括:
当所述信道质量大于第三阈值时,所述终端基于所述2步随机接入的方式对应的第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
实施例3、根据实施例2所述的方法,其中,
所述第一传输资源对应的配置信息包括所述第三阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
实施例4、根据实施例1-3任一项所述的方法,其中,所述终端确定基于随机接入的方式或者基于配置调度CG方式,包括:
所述终端确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;
当所述TA无效时,所述终端确定基于所述随机接入的方式向接入网设备发送上行数据;
当所述TA有效时,所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
实施例5、根据实施例1-4任一项所述的方法,其中,在所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据之后,所述方法还包括:
当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
实施例6、根据实施例5所述的方法,其中,
所述第一CG资源对应的配置信息包括所述第四阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
实施例7、根据实施例3或者6所述的方法,其中,
所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
实施例8、根据实施例4-7任一项所述的方法,其中,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
实施例9、根据实施例1-8任一项所述的方法,其中,所述方法还包括:
当所述信道质量小于所述第一阈值,且所述信道质量大于第五阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
当所述信道质量小于所述第一阈值,且所述信道质量小于所述第五阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
实施例10、根据实施例1-9任一项所述的方法,其中,
所述第一阈值、所述第二阈值以及所述第三阈值由所述接入网设备配置给所述终端。
实施例11、一种数据传输方法,其中,所述方法包括:
终端获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
当所述信道质量大于第六阈值,且所述信道质量大于第七阈值时,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据;
当所述信道质量小于所述第六阈值,且所述信道质量大于第八阈值时,所述终端确定基于4步随机接入的方式向所述接入网设备发送所述上行数据。
实施例12、根据实施例11所述的方法,其中,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据,包括:
所述终端确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;
当所述TA无效时,所述终端确定基于所述2步随机接入的方式向接入网设备发送上行数据。
实施例13、根据实施例12所述的方法,其中,所述方法还包括:
当所述TA有效时,所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
实施例14、根据实施例11-13任一项所述的方法,其中,在所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述方法还包括:
当所述信道质量大于第三阈值时,所述终端基于所述2步随机接入的方式对应的第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
实施例15、根据实施例14所述的方法,其中,
所述第一传输资源对应的配置信息包括所述第三阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
实施例16、根据实施例13-15任一项所述的方法,其中,在所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据之后,所述方法还包括:
当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
实施例17、根据实施例16所述的方法,其中,
所述第一CG资源对应的配置信息包括所述第四阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
实施例18、根据实施例15或17所述的方法,其中,
所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
实施例19、根据实施例12-18任一项所述的方法,其中,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
实施例20、根据实施例11-19任一项所述的方法,其中,所述方法还包括:
当所述信道质量大于所述第六阈值,且所述信道质量小于所述第七阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
当所述信道质量小于所述第六阈值,且所述信道质量小于所述第八阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
实施例21、根据实施例11-20任一项所述的方法,其中,
所述第六阈值、所述第七阈值、所述第八阈值由所述接入网设备配置给所述终端。
实施例22、一种通信装置,其中,所述通信装置包括:
接收单元,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
处理单元,用于当所述信道质量大于第一阈值时,确定基于随机接入的方式或者配置调度CG方式向接入网设备发送上行数据,所述随机接入的方式包括2步随机接入的方式或4步随机接入的方式;
其中,确定基于随机接入的方式向接入网设备发送上行数据,包括:
当所述信道质量大于第二阈值时,确定基于所述2步随机接入的方式向所述接入网设备发送上行数据;当所述信道质量小于第二阈值时,确定基于所述4步随机接入的方式向所述接入网设备发送所述上行数据。
实施例23、根据实施例22所述的通信装置,其中,在确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述处理单元,还用于:
当所述信道质量大于第三阈值时,基于所述2步随机接入的方式对应的第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
实施例24、根据实施例23所述的通信装置,其中,
所述第一传输资源对应的配置信息包括所述第三阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
实施例25、根据实施例22-24任一项所述的通信装置,其中,处理单元确定基于随机接入的方式或者基于配置调度CG方式,包括:
确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;当所述TA无效时,确定基于所述随机接入的方式向接入网设备发送上行数据;
当所述TA有效时,确定基于所述CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
实施例26、根据实施例22-25任一项所述的通信装置,其中,在确定基于所述CG方式向所述接入网设备发送所述上行数据之后,所述处理单元,还用于:
当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
实施例27、根据实施例26所述的通信装置,其中,
所述第一CG资源对应的配置信息包括所述第四阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
实施例28、根据实施例24或者27所述的通信装置,其中,
所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
实施例29、根据实施例25-28任一项所述的通信装置,其中,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
实施例30、根据实施例22-29任一项所述的通信装置,其中,所述处理单元,还用于:
当所述信道质量小于所述第一阈值,且所述信道质量大于第五阈值时,确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
当所述信道质量小于所述第一阈值,且所述信道质量小于所述第五阈值时,确定 不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
实施例31、根据实施例22-30任一项所述的通信装置,其中,
所述第一阈值、所述第二阈值以及所述第三阈值由所述接入网设备配置给所述终端。
实施例32、一种通信装置,其中,所述装置包括:
接收单元,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
处理单元,用于当所述信道质量大于第六阈值,且所述信道质量大于第七阈值时,确定基于2步随机接入的方式向所述接入网设备发送上行数据;
当所述信道质量小于所述第六阈值,且所述信道质量大于第八阈值时,确定基于4步随机接入的方式向所述接入网设备发送所述上行数据。
实施例33、根据实施例32所述的通信装置,其中,处理单元,具体用于:
确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;当所述TA无效时,确定基于所述2步随机接入的方式向接入网设备发送上行数据。
实施例34、根据实施例33所述的通信装置,其中,所述处理单元,还用于:
当所述TA有效时,确定基于所述CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
实施例35、根据实施例32-34任一项所述的通信装置,其中,在确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述处理单元,还用于:
当所述信道质量大于第三阈值时,所述终端基于所述2步随机接入的方式对应的第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
实施例36、根据实施例35所述的通信装置,其中,
所述第一传输资源对应的配置信息包括所述第三阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
实施例37、根据实施例34-36任一项所述的通信装置,其中,在确定基于所述CG方式向所述接入网设备发送所述上行数据之后,所述处理单元,还用于:
当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
实施例38、根据实施例37所述的通信装置,其中,
所述第一CG资源对应的配置信息包括所述第四阈值;或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值; 或者,
所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
实施例39、根据实施例36或38所述的通信装置,其中,
所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
实施例40、根据实施例33-39任一项所述的通信装置,其中,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
实施例41、根据实施例32-40任一项所述的通信装置,其中,所述处理单元,还用于:
当所述信道质量大于所述第六阈值,且所述信道质量小于所述第七阈值时,确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
当所述信道质量小于所述第六阈值,且所述信道质量小于所述第八阈值时,确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
实施例42、根据实施例32-41任一项所述的通信装置,其中,
所述第六阈值、所述第七阈值、所述第八阈值由所述接入网设备配置给所述终端。
实施例43、一种通信系统,其中,该通信系统包括:
终端,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
当所述信道质量大于第一阈值时,所述终端确定基于随机接入的方式或者配置调度CG方式向接入网设备发送上行数据,所述基于随机接入的方式包括基于2步随机接入的方式或基于4步随机接入的方式;
其中,所述终端确定基于随机接入的方式向接入网设备发送上行数据,包括:
当所述信道质量大于第二阈值时,所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据;
当所述信道质量小于第二阈值时,所述终端确定基于所述4步随机接入的方式向所述接入网设备发送所述上行数据。
实施例44、一种通信系统,其中,该通信系统包括:
终端,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
当所述信道质量大于第六阈值,且所述信道质量大于第七阈值时,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据;
当所述信道质量小于所述第六阈值,且所述信道质量大于第八阈值时,所述终端确定基于4步随机接入的方式向所述接入网设备发送所述上行数据。
实施例45、一种通信装置,其特征在于,所述通信装置包括一个或者多个处理器、通信接口,所述一个或者多个处理以及所述通信接口用于支持所述通信装置执行如实施例1-10任一项所述的数据传输方法或者实施例11-21任一项所述的数据传输方法。
实施例46、一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如实施例1-10任一项所述的数据传输方法或者如实施例11-21任一项所述的数据传输方法。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布 到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备,如:可以是单片机,芯片等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (31)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
    当所述信道质量大于第一阈值时,所述终端确定基于随机接入的方式或者配置调度CG方式向接入网设备发送上行数据,所述随机接入的方式包括2步随机接入的方式或4步随机接入的方式;
    其中,所述终端确定基于随机接入的方式向接入网设备发送上行数据,包括:
    当所述信道质量大于第二阈值时,所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据;
    当所述信道质量小于第二阈值时,所述终端确定基于所述4步随机接入的方式向所述接入网设备发送所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述方法还包括:
    当所述信道质量大于第三阈值时,所述终端基于所述2步随机接入的方式对应的第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一传输资源对应的配置信息包括所述第三阈值;或者,
    所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
    所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述终端确定基于随机接入的方式或者基于配置调度CG方式,包括:
    所述终端确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;
    当所述TA无效时,所述终端确定基于所述随机接入的方式向接入网设备发送上行数据;
    当所述TA有效时,所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述终端确定基于所述CG方式向所述接入网设备发送所述上行数据之后,所述方法还包括:
    当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一CG资源对应的配置信息包括所述第四阈值;或者,
    所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值; 或者,
    所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
  7. 根据权利要求3或者6所述的方法,其特征在于,
    所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
    所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
    所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    当所述信道质量小于所述第一阈值,且所述信道质量大于第五阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
    当所述信道质量小于所述第一阈值,且所述信道质量小于所述第五阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述第一阈值、所述第二阈值以及所述第三阈值由所述接入网设备配置给所述终端。
  11. 一种数据传输方法,其特征在于,所述方法包括:
    终端获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
    当所述信道质量大于第六阈值,且所述信道质量大于第七阈值时,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据;
    当所述信道质量小于所述第六阈值,且所述信道质量大于第八阈值时,所述终端确定基于4步随机接入的方式向所述接入网设备发送所述上行数据。
  12. 根据权利要求11所述的方法,其特征在于,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据,包括:
    所述终端确定时间提前量TA是否有效,所述TA用于所述终端与所述接入网设备之间上行时间同步;
    当所述TA无效时,所述终端确定基于所述2步随机接入的方式向接入网设备发送上行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    当所述TA有效时,所述终端确定基于配置调度CG方式向所述接入网设备发送所述上行数据;所述CG方式对应的CG资源为所述接入网设备预先配置的、用于所述终端在非连接态传输的物理上行共享信道PUSCH资源。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,在所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据之后,所述方法还包括:
    当所述信道质量大于第三阈值时,所述终端基于所述2步随机接入的方式对应的 第一传输资源,在MsgA上向所述接入网设备发送所述上行数据。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一传输资源对应的配置信息包括所述第三阈值;或者,
    所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一传输资源的传输参数大于所述第三阈值对应的传输参数阈值;或者,
    所述第三阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一传输资源的传输参数属于所述第三阈值对应的传输参数区间。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,在所述终端确定基于配置调度CG方式向所述接入网设备发送所述上行数据之后,所述方法还包括:
    当所述信道质量大于第四阈值时,所述终端基于第一CG资源向所述接入网设备发送所述上行数据。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一CG资源对应的配置信息包括所述第四阈值;或者,
    所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数阈值,所述第一CG资源的传输参数大于所述第四阈值对应的传输参数阈值;或者,
    所述第四阈值包括在至少一个阈值中,所述至少一个阈值中每个阈值对应一个传输参数区间,所述第一CG资源的传输参数属于所述第四阈值对应的传输参数区间。
  18. 根据权利要求15或17所述的方法,其特征在于,
    所述传输参数包括调制编码策略MCS、传输块速度TBS中一种或者多种参数。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述TA无效包括下述一种或者多种:所述TA的有效期超时,
    所述终端的当前位置与所述TA启动时所述终端的位置间的距离大于距离阈值;
    所述信道质量与所述TA启动时所述终端与所述接入网设备之间的信道质量的差值大于信道质量变化阈值。
  20. 根据权利要求11-19任一项所述的方法,其特征在于,所述方法还包括:
    当所述信道质量大于所述第六阈值,且所述信道质量小于所述第七阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述2步随机接入的方式接入小区;
    当所述信道质量小于所述第六阈值,且所述信道质量小于所述第八阈值时,所述终端确定不在非连接态下向所述接入网设备发送上行数据,而是基于所述第4步随机接入的方式接入小区。
  21. 根据权利要求11-20任一项所述的方法,其特征在于,
    所述第六阈值、所述第七阈值、所述第八阈值由所述接入网设备配置给所述终端。
  22. 一种通信系统,其特征在于,所述通信系统包括:
    终端,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
    当所述信道质量大于第一阈值时,所述终端确定基于随机接入的方式或者配置调度CG方式向接入网设备发送上行数据,所述基于随机接入的方式包括基于2步随机 接入的方式或基于4步随机接入的方式;
    其中,所述终端确定基于随机接入的方式向接入网设备发送上行数据,包括:
    当所述信道质量大于第二阈值时,所述终端确定基于所述2步随机接入的方式向所述接入网设备发送上行数据;
    当所述信道质量小于第二阈值时,所述终端确定基于所述4步随机接入的方式向所述接入网设备发送所述上行数据。
  23. 一种通信系统,其特征在于,所述通信系统包括:
    终端,用于获取所述终端与接入网设备之间的信道质量,所述终端处于非连接态;
    当所述信道质量大于第六阈值,且所述信道质量大于第七阈值时,所述终端确定基于2步随机接入的方式向所述接入网设备发送上行数据;
    当所述信道质量小于所述第六阈值,且所述信道质量大于第八阈值时,所述终端确定基于4步随机接入的方式向所述接入网设备发送所述上行数据。
  24. 一种数据传输方法,其特征在于,所述方法包括:
    接入网设备为终端配置第一阈值,所述终端处于非连接态;其中,所述第一阈值用于所述终端确定向所述接入网设备发送上行数据还是不向所述接入网设备发送上行数据。
  25. 根据权利要求24所述的方法,其特征在于,所述第一阈值用于所述终端确定向所述接入网设备发送上行数据还是不向所述接入网设备发送上行数据,包括:
    如果所述终端与所述接入网设备之间的信道质量大于所述第一阈值,则确定通过随机接入方式向所述接入网设备发送上行数据或者通过配置调度CG方式向所述接入网设备发送上行数据;或者,
    如果所述终端与所述接入网设备之间的信道质量小于所述第一阈值,则确定不向所述接入网设备发送上行数据。
  26. 根据权利要求25所述的方法,其特征在于,所述确定通过随机接入方式向所述接入网设备发送上行数据或者通过CG方式向所述接入网设备发送上行数据,包括:
    如果为所述终端配置有CG资源且时间提前量TA有效,则通过所述CG方式向所述接入网设备发送上行数据;反之,
    如果未为所述终端配置CG资源和/或所述TA无效,但所述终端与所述接入网设备之间的信道质量大于第二阈值,则通过2步随机接入方式向所述接入网设备发送上行数据;反之,
    如果未为所述终端配置CG资源和/或所述TA无效,但所述终端与所述接入网设备之间的信道质量小于第二阈值,则通过4步随机接入方式向所述接入网设备发送上行数据。
  27. 根权利要求26所述的方法,其特征在于,
    所述第二阈值由所述接入网设备配置。
  28. 一种通信装置,其特征在于,所述通信装置包括一个或者多个处理器、通信接口,所述一个或者多个处理以及所述通信接口用于支持所述通信装置执行如权利要求1-10任一项所述的数据传输方法或者权利要求11-21任一项所述的数据传输方法或者权利要求24-27任一项所述的数据传输方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-10任一项所述的数据传输方法或者如权利要求11-21任一项所述的数据传输方法或者权利要求24-27任一项所述的数据传输方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机如权利要求1-10任一项所述的数据传输方法或者权利要求11-21任一项所述的数据传输方法或者权利要求24-27任一项所述的数据传输方法。
  31. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-10任一项所述的数据传输方法或者权利要求11-21任一项所述的数据传输方法或者权利要求24-27任一项所述的数据传输方法。
PCT/CN2021/100155 2020-06-20 2021-06-15 一种数据传输方法及装置 WO2021254339A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237001655A KR20230025455A (ko) 2020-06-20 2021-06-15 데이터 전송 방법 및 장치
US18/002,201 US20230345517A1 (en) 2020-06-20 2021-06-15 Data Transmission Method and Apparatus
JP2022578723A JP2023531011A (ja) 2020-06-20 2021-06-15 データ送信方法および装置
EP21825178.3A EP4152871A4 (en) 2020-06-20 2021-06-15 DATA TRANSMISSION METHOD AND APPARATUS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010569721 2020-06-20
CN202010569721.X 2020-06-20
CN202010845774.X 2020-08-20
CN202010845774.XA CN113825245A (zh) 2020-06-20 2020-08-20 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021254339A1 true WO2021254339A1 (zh) 2021-12-23

Family

ID=78912217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100155 WO2021254339A1 (zh) 2020-06-20 2021-06-15 一种数据传输方法及装置

Country Status (6)

Country Link
US (1) US20230345517A1 (zh)
EP (1) EP4152871A4 (zh)
JP (1) JP2023531011A (zh)
KR (1) KR20230025455A (zh)
CN (1) CN113825245A (zh)
WO (1) WO2021254339A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117242834A (zh) * 2022-04-15 2023-12-15 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716856A (zh) * 2016-08-10 2019-05-03 Idac控股公司 轻连接和自主移动性
WO2019090646A1 (zh) * 2017-11-09 2019-05-16 华为技术有限公司 通信装置的随机接入方法、装置和存储介质
CN110856276A (zh) * 2019-11-15 2020-02-28 展讯通信(上海)有限公司 非连接态ue的数据传输、接收方法及装置、终端、基站
US20200137761A1 (en) * 2018-10-31 2020-04-30 Asustek Computer Inc. Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244932B (zh) * 2010-05-12 2014-09-24 电信科学技术研究院 一种资源分配的方法、系统和装置
JP2020036058A (ja) * 2017-01-10 2020-03-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US11647543B2 (en) * 2017-03-23 2023-05-09 Comcast Cable Communications, Llc Power control for random access
CN109314968B (zh) * 2018-09-13 2021-06-04 北京小米移动软件有限公司 资源配置方法、上行传输方法、装置、设备及存储介质
CN111278157B (zh) * 2019-01-25 2022-03-25 维沃移动通信有限公司 随机接入资源的选择方法及终端
GB2592061A (en) * 2020-02-14 2021-08-18 Nec Corp Communication system
EP3934346A1 (en) * 2020-07-01 2022-01-05 Nokia Technologies Oy User equipment operation during an inactive state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716856A (zh) * 2016-08-10 2019-05-03 Idac控股公司 轻连接和自主移动性
WO2019090646A1 (zh) * 2017-11-09 2019-05-16 华为技术有限公司 通信装置的随机接入方法、装置和存储介质
US20200137761A1 (en) * 2018-10-31 2020-04-30 Asustek Computer Inc. Method and apparatus for transmission using preconfigured uplink resources in a wireless communication system
CN110856276A (zh) * 2019-11-15 2020-02-28 展讯通信(上海)有限公司 非连接态ue的数据传输、接收方法及装置、终端、基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "RACH based NR small data transmission", 3GPP DRAFT; R2-2007540, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912256 *
SAMSUNG: "Overall procedure for data transfer in inactive state", 3GPP DRAFT; R2-168051, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20161114 - 20161118, 4 November 2016 (2016-11-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051192344 *
See also references of EP4152871A4

Also Published As

Publication number Publication date
EP4152871A1 (en) 2023-03-22
KR20230025455A (ko) 2023-02-21
US20230345517A1 (en) 2023-10-26
CN113825245A (zh) 2021-12-21
JP2023531011A (ja) 2023-07-20
EP4152871A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP6974454B2 (ja) データ通信方法および装置
US11452069B2 (en) Communication method and communications device
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
JP6487878B2 (ja) シグナリングオーバーヘッドを低減するためのシステム及び方法
CN101873537A (zh) 业务指示方法、监听窗口扩展方法、休眠参数调整方法
WO2018201486A1 (zh) 一种消息发送方法、消息接收方法及对应设备
WO2021036910A1 (zh) 数据传输方法及装置
WO2021163979A1 (zh) 通信方法、设备及系统
JP6697095B2 (ja) 通信方法と通信装置
WO2021254339A1 (zh) 一种数据传输方法及装置
US20230362959A1 (en) Method and system for managing configuration and control information of mbs services in wireless network
CN116671188A (zh) 侧链通信的非连续接收
CN107734598A (zh) 一种系统信息变更指示方法、ue、网络侧设备和系统
US20230319942A1 (en) Communication method and apparatus
WO2021103026A1 (zh) 在带宽部分上进行通信的方法
WO2022022742A1 (zh) 一种寻呼方法及装置
US9197430B2 (en) Method for receiving multicast service and terminal employing same
WO2023272624A1 (zh) 一种追踪参考信号的窗口配置方法及装置
CN115604664A (zh) 一种多播业务修改通知方法及通信装置
CN114007265A (zh) 一种通信方法及装置
WO2023065251A1 (zh) 混合自动重传请求harq进程分配方法及装置
WO2018058453A1 (zh) 通信方法、终端设备和基站
US12010651B2 (en) Wireless communication method, terminal, and network device
WO2021142634A1 (zh) 一种多播业务传输方法及装置
WO2022193282A1 (zh) 资源选取方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578723

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237001655

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2021825178

Country of ref document: EP

Effective date: 20221216

NENP Non-entry into the national phase

Ref country code: DE