WO2023065251A1 - 混合自动重传请求harq进程分配方法及装置 - Google Patents

混合自动重传请求harq进程分配方法及装置 Download PDF

Info

Publication number
WO2023065251A1
WO2023065251A1 PCT/CN2021/125428 CN2021125428W WO2023065251A1 WO 2023065251 A1 WO2023065251 A1 WO 2023065251A1 CN 2021125428 W CN2021125428 W CN 2021125428W WO 2023065251 A1 WO2023065251 A1 WO 2023065251A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resource
automatic repeat
repeat request
hybrid automatic
harq process
Prior art date
Application number
PCT/CN2021/125428
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003311.1A priority Critical patent/CN116326182A/zh
Priority to PCT/CN2021/125428 priority patent/WO2023065251A1/zh
Publication of WO2023065251A1 publication Critical patent/WO2023065251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the technical field of communications, and in particular to a hybrid automatic repeat request (HARQ) process allocation method and device.
  • HARQ hybrid automatic repeat request
  • the terminal when the terminal is in the idle state or inactive state, it can directly send data to the network side through the exclusive physical uplink shared channel PUSCH (Physical Uplink Shared Channel) resource configured by the network , complete small data transmission (Small Data Transmission, SDT).
  • PUSCH Physical Uplink Shared Channel
  • SDT Small Data Transmission
  • the network side configures the dedicated PUSCH resource to the terminal in a periodic allocation manner.
  • the network side will also allocate a Hybrid Automatic Repeat Request (HARQ) process for the exclusive PUSCH resource of each cycle, so as to ensure that the terminal can use different HARQ processes to cache data on different resources and perform data retransmission. pass.
  • HARQ Hybrid Automatic Repeat Request
  • the embodiment of the first aspect of the present application proposes a hybrid automatic repeat request HARQ process allocation method, the method is executed by a terminal device, and the method includes:
  • a corresponding hybrid automatic repeat request (HARQ) process is allocated for the uplink resource.
  • HARQ hybrid automatic repeat request
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • allocating a corresponding HARQ process for the uplink resource according to the association relationship includes: determining that the allocation mode of the HARQ process is the first allocation mode Next, according to the association relationship between the at least one beam and the at least one uplink resource, allocate a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource.
  • HARQ hybrid automatic repeat request
  • the method further includes: allocating a hybrid automatic repeat request HARQ process for each uplink resource period when it is determined that the hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the allocating a corresponding Hybrid Automatic Repeat Request (HARQ) process for the uplink resource according to the association relationship between the at least one beam and the at least one uplink resource includes: assigning at least one HARQ process corresponding to the at least one beam One uplink resource is allocated to the same HARQ process.
  • HARQ Hybrid Automatic Repeat Request
  • the method further includes: determining the hybrid automatic repeat request (HARQ) process allocation manner according to the configuration or agreement of the network device.
  • HARQ hybrid automatic repeat request
  • the determining the hybrid automatic repeat request HARQ process allocation method according to the configuration of the network device or the protocol agreement includes: after receiving the association relationship between the uplink resource and the beam configured by the network device In the case of , it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the determining the hybrid automatic repeat request HARQ process allocation method according to the configuration of the network device or the protocol agreement includes: after receiving the association relationship between the uplink resource and the beam configured by the network device , and when the uplink resource is used for small data transmission SDT, it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the determining the hybrid automatic repeat request HARQ process allocation method according to the configuration of the network device or the protocol agreement includes: when the association between the uplink resource and the beam configured by the network device is not received relationship, or if the uplink resource is not used for small data transmission SDT, determine that the hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the embodiment of the second aspect of the present application proposes a hybrid automatic repeat request HARQ process allocation method, the method is executed by a network device, and the method includes:
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • the method further includes: when it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode, sending the configured at least one beam and at least one uplink resource to the terminal device corresponding relationship.
  • the method further includes: the hybrid automatic repeat request HARQ process allocation method further includes a second allocation method, and the second allocation method is used to allocate a hybrid automatic repeat request HARQ process for each uplink resource period. process.
  • the association relationship is used to allocate the same HARQ process for at least one uplink resource corresponding to the at least one beam.
  • the embodiment of the third aspect of the present application proposes a hybrid automatic repeat request HARQ process allocation device, the device includes:
  • transceiver unit configured to receive an association relationship between uplink resources and beams configured by the network device
  • a processing unit configured to allocate a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship.
  • HARQ hybrid automatic repeat request
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • the processing unit is specifically configured to: in a case where it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode, according to the association relationship between the at least one beam and at least one uplink resource , to allocate a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource.
  • HARQ hybrid automatic repeat request
  • the processing unit is further configured to: allocate a hybrid automatic repeat request HARQ process for each uplink resource period when it is determined that the hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the processing unit is specifically configured to: allocate the same HARQ process to at least one uplink resource corresponding to the at least one beam.
  • processing unit is further configured to: determine the hybrid automatic repeat request (HARQ) process allocation manner according to the configuration of the network device or the protocol agreement.
  • HARQ hybrid automatic repeat request
  • the processing unit is specifically configured to: determine that the hybrid automatic repeat request HARQ process allocation mode is the first allocation in the case of receiving the association relationship between the uplink resource and the beam configured by the network device Way.
  • the processing unit is specifically configured to: determine the hybrid when receiving the association relationship between the uplink resource and the beam configured by the network device, and the uplink resource is used for small data transmission SDT
  • the automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the processing unit is specifically configured to: if the association relationship between the uplink resource and the beam configured by the network device is not received, or the uplink resource is not used for small data transmission SDT, determine the The hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the embodiment of the fourth aspect of the present application proposes a hybrid automatic repeat request HARQ process allocation device, the device includes:
  • a processing unit configured to configure an association relationship between uplink resources and beams of the terminal device
  • a transceiver unit configured to send the association relationship to the terminal device, so that the terminal device allocates a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship.
  • HARQ hybrid automatic repeat request
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • the processing unit is further configured to: send the configured at least one beam and at least one The association relationship corresponding to the uplink resources.
  • the hybrid automatic repeat request HARQ process allocation manner further includes a second allocation manner, and the second allocation manner is used to allocate a hybrid automatic repeat request HARQ process for each uplink resource period.
  • the association relationship is used to allocate the same HARQ process for at least one uplink resource corresponding to the at least one beam.
  • the embodiment of the fifth aspect of the present application provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the hybrid automatic repeat request (HARQ) process allocation method described in the embodiment of the first aspect above.
  • HARQ hybrid automatic repeat request
  • the embodiment of the sixth aspect of the present application provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the hybrid automatic repeat request (HARQ) process allocation method described in the embodiment of the second aspect above.
  • HARQ hybrid automatic repeat request
  • the embodiment of the seventh aspect of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the hybrid automatic repeat request (HARQ) process allocation method described in the embodiment of the first aspect above.
  • HARQ hybrid automatic repeat request
  • the embodiment of the eighth aspect of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the hybrid automatic repeat request (HARQ) process allocation method described in the embodiment of the second aspect above.
  • HARQ hybrid automatic repeat request
  • the embodiment of the ninth aspect of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the hybrid automatic repeat request HARQ process allocation method described in the embodiment of the first aspect above be realized.
  • the embodiment of the tenth aspect of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the HARQ process allocation method described in the embodiment of the second aspect above is be realized.
  • the embodiment of the eleventh aspect of the present application provides a computer program that, when running on a computer, causes the computer to execute the HARQ process allocation method described in the embodiment of the first aspect.
  • the embodiment of the twelfth aspect of the present application provides a computer program that, when running on a computer, causes the computer to execute the HARQ process allocation method described in the embodiment of the second aspect.
  • a method and device for allocating a HARQ process provided by an embodiment of the present application, by receiving the association relationship between the uplink resource and the beam configured by the network device, and according to the association relationship, allocate the corresponding HARQ for the uplink resource
  • the HARQ process can allocate the HARQ process number according to the association relationship between the uplink resource and the beam, thereby avoiding the HARQ process conflict during data transmission, and avoiding the waste of the HARQ process caused by allocating too many HARQ process numbers, reducing overhead, and saving resources. Improve the efficiency and reliability of data transmission.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a hybrid automatic repeat request HARQ process allocation method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a hybrid automatic repeat request HARQ process allocation method provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a hybrid automatic repeat request HARQ process allocation method provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a hybrid automatic repeat request HARQ process allocation method provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a hybrid automatic repeat request HARQ process allocation device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a hybrid automatic repeat request HARQ process allocation device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another hybrid automatic repeat request HARQ process allocation device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • first, second, and third may use terms such as first, second, and third to describe various information, such information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present application, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE Long Term Evolution
  • 5G new air interface system 5G new air interface system
  • other future new mobile communication systems 5G new air interface system
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (Evolved NodeB, eNB), a transmission point (Transmission Reception Point, TRP), a next-generation base station (Next Generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (Wireless Fidelity, WiFi) system, etc.
  • Evolved NodeB, eNB evolved base station
  • TRP Transmission Reception Point
  • gNB next-generation base station
  • gNB next-generation base station
  • WiFi wireless Fidelity
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (Central Unit, CU) and a distributed unit (Distributed Unit, DU), wherein the CU may also be called a control unit (Control Unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (Mobile Station, MS), mobile terminal equipment (Mobile Terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone (Mobile Phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality ( Augmented Reality, AR) terminal equipment, wireless terminal equipment in Industrial Control, wireless terminal equipment in Self-Driving, wireless terminal equipment in Remote Medical Surgery, smart grid ( Wireless terminal devices in Smart Grid, wireless terminal devices in Transportation Safety, wireless terminal devices in Smart City, wireless terminal devices in Smart Home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device 102 When the terminal device 102 is in the idle state (IDLE)/inactive state (INACTIVE), it can use the dedicated PUSCH resource configured by the network device 101, that is, the configuration permission CG (Configure Grant) or the preallocated uplink resource PUR (Preallocated Uplink Resource) , and directly send the small data to the network device 101 .
  • the network device 101 configures the terminal device 101 with an RRC Release (Radio Resource Control Release, unlimited resource control release) message to configure the uplink resource used in the idle state/inactive state, the cell where the uplink resource is located, and the BWP (BandWidth Part, bandwidth part ).
  • the network device 101 allocates the uplink resource to the terminal device 102 in a periodic allocation manner. At the same time, the network device 101 will also allocate a hybrid automatic repeat request HARQ process for each period of uplink resources, so as to ensure that the terminal device 102 can use different HARQ processes to cache data and perform data retransmission on different resources.
  • the network device 101 will send different signals through different downlink beams, and when the terminal device 102 transmits uplink signals through the uplink resource in the idle state/inactive state, the network device 101 needs to know the current time of the terminal device 102 to receive the signal. Downlink beam information, so as to send downlink data and control signaling to the terminal device 102 through the corresponding downlink beam. Therefore, the uplink resource used by the terminal device 102 to send the uplink signal needs to be bound with the corresponding downlink beam, so that when the network device 101 receives the signal on the uplink resource, it can know the beam that the terminal device 102 can receive the downlink signal . Uplink resources of multiple periods may be bound with multiple downlink beams. When sending data, before selecting an uplink resource, the terminal device 102 needs to first select a downlink beam that meets the channel quality requirements, and then select an uplink resource corresponding to the beam for uplink transmission.
  • the network device 101 allocates a hybrid automatic repeat request (HARQ) process for each period of uplink resources.
  • the device 101 allocates a total of 4 HARQ processes to the terminal device 102, and there is one HARQ process for each uplink resource cycle.
  • the cycle number sequence (period 1/2/3/4/5/6/7/8)
  • the HARQ process The allocation sequence of numbers in each uplink resource period is (1/2/3/4/1/2/3/4).
  • the terminal device 102 will only select one beam and the uplink resources of one period corresponding to the beam for transmission when actually transmitting, that is, the terminal device 102 only uses one HARQ process, and the HARQ processes of other uplink resource periods will be idle. Furthermore, when the terminal device 102 transmits uplink data again, after the terminal device 102 selects a beam again, the HARQ process number of the periodic uplink resource corresponding to the beam may be different from the HARQ process number of the periodic uplink resource of the previous data transmission The number conflicts, so that the new data overwrites the previously sent data in the same HARQ process, so that the previously sent data cannot be retransmitted, resulting in data sending failure.
  • the corresponding hybrid automatic repeat request HARQ process is allocated for the uplink resource, and the HARQ process number can be assigned according to the uplink resource and beam.
  • hybrid automatic repeat request (HARQ) process allocation method and device thereof provided by the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 is a schematic flowchart of a hybrid automatic repeat request (HARQ) process allocation method provided by an embodiment of the present application. It should be noted that the hybrid automatic repeat request (HARQ) process allocation method in the embodiment of the present application is executed by a terminal device. As shown in Figure 2, the method may include the following steps:
  • Step 201 receiving an association relationship between uplink resources and beams configured by a network device.
  • the uplink resource is a physical uplink shared channel PUSCH resource configured by the network device
  • the beam is a beam used by the network device to send downlink data.
  • the uplink resource is a configuration grant CG (Configure Grant) or a preallocated uplink resource PUR (Preallocated Uplink Resource);
  • the identifier of the beam includes an SSB (Synchronous Signal Block, synchronous signal block) identifier and a CSI-RS (Channel State Information Reference Signal, at least one of the channel state information reference signal) identifiers.
  • the association relationship is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; at least one beam with consecutive numbers Beams; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets Beam: a plurality of consecutive beams in the transmission cycle of a plurality of consecutive synchronization signal block SSB bursts.
  • one synchronization signal block SSB burst set transmission period may include at least one synchronization signal block SSB burst set.
  • the numbers of multiple consecutive beams in a synchronization signal block SSB burst set may be discontinuous, because the number of a beam may correspond to the number of one or more synchronization signal block SSBs, for example, in an SSB burst set, There are 8 SSBs, numbered 0-7, but there may be four beams in this burst set, and the beams are numbered 1/2/3/4/1/2/3/4, so in this burst
  • the numbers of multiple consecutive beams in the set may be 2/3/4/1.
  • the number of the beam is also the identifier of the beam.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods .
  • At least one uplink resource in one uplink resource period may be at least one frequency domain resource in one uplink resource period, at least one time domain resource in one uplink resource period, or at least one DMRS (Demodulation Reference Signal, demodulation signal) resources.
  • DMRS Demodulation Reference Signal, demodulation signal
  • the uplink resource when the uplink resource is a frequency domain resource, the PRB (Physical Resource Block, physical resource block) of each uplink resource is different; when the uplink resource is a time domain resource, the time slot or symbol of each uplink resource is different; When the uplink resource is a DMRS resource, each uplink resource corresponds to a different DMRS.
  • PRB Physical Resource Block, physical resource block
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to an uplink resource in at least one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in multiple consecutive uplink resource periods.
  • association relationship between the at least one beam and the at least one uplink resource may be any one of the above-mentioned association relationships between the at least one beam and the above-mentioned any one of the uplink resources, and only exemplary ones are written here.
  • the rest of the corresponding associations are similar to the three exemplary ones written, so they are not listed one by one.
  • Step 202 according to the association relationship, allocate a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource.
  • HARQ hybrid automatic repeat request
  • the allocation method is: allocating the same HARQ process for at least one uplink resource corresponding to at least one beam. That is, the HARQ processes on at least one uplink resource corresponding to the at least one beam are the same.
  • the HARQ processes on the uplink resources in at least one uplink resource period corresponding to at least one beam in one synchronization signal block SSB burst set are the same.
  • the HARQ process on at least one uplink resource in one uplink resource period corresponding to at least one beam in one synchronization signal block SSB burst set is the same.
  • the HARQ process on at least one uplink resource in multiple consecutive uplink resource periods corresponding to at least one beam in one synchronization signal block SSB burst set is the same.
  • the method further includes determining a hybrid automatic repeat request (HARQ) process allocation manner according to the configuration of the network device or the protocol agreement.
  • HARQ hybrid automatic repeat request
  • the allocation method is: assigning the same HARQ process to at least one uplink resource corresponding to at least one beam.
  • the allocation method is as follows: one HARQ process is allocated for each uplink resource period.
  • the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the hybrid automatic repeat request HARQ process allocation method is the first allocation Way.
  • the hybrid automatic repeat request HARQ process allocation method is the second Allocation.
  • the corresponding hybrid automatic repeat request HARQ process is allocated for the uplink resource, and the HARQ process number can be determined according to the association relationship between the uplink resource and the beam. allocation, thereby avoiding HARQ process conflicts during data transmission, and avoiding the waste of HARQ processes caused by allocating too many HARQ process numbers, reducing overhead, saving resources, and improving the efficiency and reliability of data transmission.
  • FIG. 3 is a schematic flowchart of a hybrid automatic repeat request (HARQ) process allocation method provided by an embodiment of the present application. It should be noted that the hybrid automatic repeat request (HARQ) process allocation method in the embodiment of the present application is executed by a terminal device. As shown in Figure 3, the method may include the following steps:
  • Step 301 receiving an association relationship configured by a network device corresponding to at least one beam and at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; at least one beam with consecutive numbers Beams; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets Beam: a plurality of consecutive beams in the transmission cycle of a plurality of consecutive synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods.
  • the association relationship is an association relationship corresponding to any one of the above-mentioned beams and any one of the above-mentioned uplink resources.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to an uplink resource in at least one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in multiple consecutive uplink resource periods.
  • Step 302 according to the configuration of the network device or the protocol agreement, determine the HARQ process allocation mode of the hybrid automatic repeat request.
  • the hybrid automatic repeat request HARQ process allocation mode is implicitly indicated.
  • the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the hybrid automatic repeat request HARQ process allocation method is the first allocation Way.
  • the hybrid automatic repeat request HARQ process allocation method is the second Allocation.
  • Step 303 in the case where it is determined that the HARQ process allocation mode is the first allocation mode, according to the association relationship between at least one beam and at least one uplink resource, allocate the corresponding HARQ process for the uplink resource process.
  • allocating a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource includes: assigning at least one uplink resource corresponding to the at least one beam , allocating the same HARQ process. That is, the HARQ processes on at least one uplink resource corresponding to the at least one beam are the same.
  • HARQ hybrid automatic repeat request
  • the HARQ processes on the uplink resources in at least one uplink resource period corresponding to at least one beam in one synchronization signal block SSB burst set are the same.
  • the network device configures multiple HARQ processes for the terminal device, and the terminal device is allocated sequentially according to the sequence of HARQ process numbers according to the association relationship.
  • association relationship as "at least one beam in one synchronization signal block SSB burst set corresponds to at least one uplink resource in one uplink resource period" as an example, a detailed description will be given. Other association relationships are similar and will not be listed here. For convenience of description, the association relationship is "N beams in one synchronization signal block SSB burst set correspond to uplink resources in M uplink resource periods”.
  • the uplink resource cycle is T, which is configured by the network device to the terminal device.
  • the counting unit of the cycle configuration identifier is a symbol, that is, the number of symbols in the configuration cycle T. It can be understood that the counting unit of the cycle T is a symbol.
  • the HARQ process on the uplink resources in one SSB association period is the same, that is, in one SSB association period, the HARQ of the uplink resource allocation in each period of the M uplink resource periods is the same.
  • the network device configures multiple HARQ processes for the terminal device, they are allocated in sequence according to the order of the SSB association period and the order of the HARQ process numbers. For example, the HARQ process numbers assigned to the M uplink resource periods in the first SSB association period are 1. The HARQ process number assigned to the M uplink resource periods in the second SSB association period is 2, and so on.
  • the calculation method of the HARQ process number configured by the terminal device for uplink resources is as follows:
  • the HARQ process number allocated for the initial periodic uplink resource (or any periodic uplink resource among the M periodic uplink resources) is:
  • HARQ Process ID [floor(CURRENT_symbol/ssbAssocationPeriod) mod nrofHARQ-Processes+harq-ProcID-Offset].
  • CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot)
  • SFN System Frame Number
  • numberOfSlotsPerFrame represents the number of consecutive time slots in each frame
  • numberOfSymbolsPerSlot represents the number of consecutive symbols per time slot
  • slot number in the frame represents the number of the current time slot in the frame
  • symbol number in the slot indicates the number of the current symbol in the slot.
  • the HARQ process numbers of the remaining M-1 periods other than the initial period (or any one of the M period uplink resources) and the initial period (or the M period uplink resources) are the same.
  • step 304 if it is determined that the HARQ process allocation mode is the second allocation mode, allocate a HARQ process for each uplink resource period.
  • the network device allocates multiple HARQ processes to the terminal device, the multiple HARQ processes are allocated sequentially according to the order of uplink resource periods.
  • the HARQ process allocation mode is the first allocation mode
  • the process allocation mode is the second allocation mode
  • a hybrid automatic repeat request HARQ process is allocated for each uplink resource period, and the HARQ process number can be allocated according to the association relationship between the uplink resource and the beam, thereby avoiding data transmission.
  • the HARQ process conflicts, and can avoid the waste of HARQ processes caused by allocating too many HARQ process numbers, reduce overhead, save resources, and improve the efficiency and reliability of data transmission.
  • FIG. 4 is a schematic flowchart of a hybrid automatic repeat request (HARQ) process allocation method provided by an embodiment of the present application. It should be noted that the hybrid automatic repeat request (HARQ) process allocation method in the embodiment of the present application is executed by a network device. As shown in Figure 4, the method may include the following steps:
  • Step 401 configuring an association relationship between uplink resources and beams of a terminal device.
  • the uplink resource is a physical uplink shared channel PUSCH resource configured by the network device
  • the beam is a beam used by the network device to send downlink data.
  • the uplink resource is a configuration grant CG or a pre-allocated uplink resource PUR;
  • the identifier of the beam includes at least one of an SSB identifier and a CSI-RS identifier.
  • the association relationship is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; at least one beam with consecutive numbers Beams; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets Beam: a plurality of consecutive beams in the transmission cycle of a plurality of consecutive synchronization signal block SSB bursts.
  • one synchronization signal block SSB burst set transmission period may include at least one synchronization signal block SSB burst set.
  • the numbers of multiple consecutive beams in a synchronization signal block SSB burst set may be discontinuous, because the number of a beam may correspond to the number of one or more synchronization signal block SSBs, for example, in an SSB burst set, There are 8 SSBs, numbered 0-7, but there may be four beams in this burst set, and the beams are numbered 1/2/3/4/1/2/3/4, so in this burst
  • the numbers of multiple consecutive beams in the set may be 2/3/4/1.
  • the number of the beam is also the identifier of the beam.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods .
  • At least one uplink resource in one uplink resource period may be at least one frequency domain resource in one uplink resource period, at least one time domain resource in one uplink resource period, or at least one DMRS (Demodulation Reference Signal, demodulation signal) resource.
  • DMRS Demodulation Reference Signal, demodulation signal
  • the uplink resource when the uplink resource is a frequency domain resource, the PRB (Physical Resource Block, physical resource block) of each uplink resource is different; when the uplink resource is a time domain resource, the time slot or symbol of each uplink resource is different; When the uplink resource is a DMRS resource, each uplink resource corresponds to a different DMRS.
  • PRB Physical Resource Block, physical resource block
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to an uplink resource in at least one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in multiple consecutive uplink resource periods.
  • association relationship between the at least one beam and the at least one uplink resource may be any one of the above-mentioned association relationships between the at least one beam and the above-mentioned any one of the uplink resources, and only exemplary ones are written here.
  • the rest of the corresponding associations are similar to the three exemplary ones written, so they are not listed one by one.
  • Step 402 Send the association relationship to the terminal device, so that the terminal device allocates a corresponding hybrid automatic repeat request (HARQ) process for uplink resources according to the association relationship.
  • HARQ hybrid automatic repeat request
  • the association relationship is used to allocate the same HARQ process for at least one uplink resource corresponding to at least one beam.
  • the association relationship of sending configurations to the terminal equipment is: at least one beam in a synchronization signal block SSB burst set corresponds to at least one uplink resource in one uplink resource period, and is used for synchronizing with a Uplink resources in at least one uplink resource period corresponding to at least one beam in the signal block SSB burst set are allocated to the same HARQ process.
  • the association relationship of sending configurations to the terminal equipment is: at least one beam in a synchronization signal block SSB burst set corresponds to at least one uplink resource in one uplink resource period, and is used to communicate with one
  • the same HARQ process is allocated to at least one uplink resource in one uplink resource period corresponding to at least one beam in the synchronization signal block SSB burst set.
  • the association relationship of sending the configuration to the terminal device is: at least one beam in a synchronization signal block SSB burst set corresponds to at least one uplink resource in multiple consecutive uplink resource periods, and is used for The same HARQ process is allocated to at least one uplink resource in multiple consecutive uplink resource periods corresponding to at least one beam in one synchronization signal block SSB burst set.
  • the method of sending the remaining configured association relationship to the terminal device so that the terminal device allocates the corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship is the same as the written exemplary three Similar, no longer list them one by one.
  • HARQ hybrid automatic repeat request
  • the configured association relationship corresponding to at least one beam and at least one uplink resource is sent to the terminal device.
  • the HARQ process allocation manner further includes a second allocation manner, which is used to allocate a hybrid automatic repeat request (HARQ) process for each uplink resource period.
  • HARQ hybrid automatic repeat request
  • the network device sends the association relationship to the terminal device through an RRC Release message.
  • the terminal device can allocate the corresponding HARQ process for the uplink resource according to the association relationship, and the HARQ The process number is allocated according to the relationship between uplink resources and beams, thereby avoiding HARQ process conflicts during data transmission, and avoiding the waste of HARQ processes caused by allocating too many HARQ process numbers, reducing overhead, saving resources, and improving the efficiency and efficiency of data transmission. reliability.
  • FIG. 5 is a schematic flowchart of a hybrid automatic repeat request (HARQ) process allocation method provided by an embodiment of the present application. It should be noted that the hybrid automatic repeat request (HARQ) process allocation method in the embodiment of the present application is executed by a network device. As shown in Figure 5, the method may include the following steps:
  • Step 501 configure the association relationship between the uplink resource and the beam of the terminal device.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; at least one beam with consecutive numbers Beams; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets Beam: a plurality of consecutive beams in the transmission cycle of a plurality of consecutive synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods.
  • the association relationship is an association relationship corresponding to any one of the above-mentioned beams and any one of the above-mentioned uplink resources.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to an uplink resource in at least one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in one uplink resource period.
  • the association relationship is: at least one beam in one synchronization signal block SSB burst corresponds to at least one uplink resource in multiple consecutive uplink resource periods.
  • step 502 when it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode, send to the terminal device an association relationship corresponding to at least one configured beam and at least one uplink resource.
  • the association relationship is used to allocate the same HARQ process for at least one uplink resource corresponding to at least one beam.
  • the association relationship of sending configurations to the terminal equipment is: at least one beam in a synchronization signal block SSB burst set sending period corresponds to an uplink resource in at least one uplink resource period, and is used for The uplink resources in at least one uplink resource period corresponding to at least one beam in one synchronization signal block SSB burst set are allocated to the same HARQ process.
  • the association relationship of sending the configuration to the terminal device is: at least one beam in one synchronization signal block SSB burst set sending period corresponds to at least one uplink resource in one uplink resource period, for The same HARQ process is allocated to at least one uplink resource in one uplink resource period corresponding to at least one beam in one synchronization signal block SSB burst set.
  • the association relationship of sending the configuration to the terminal device is: at least one beam in a synchronization signal block SSB burst set sending period corresponds to at least one uplink resource in multiple consecutive uplink resource periods, It is used for allocating the same HARQ process to at least one uplink resource in multiple consecutive uplink resource periods corresponding to at least one beam in one synchronization signal block SSB burst set.
  • the method of sending the remaining configured association relationship to the terminal device so that the terminal device allocates the corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship is the same as the written exemplary three Similar, no longer list them one by one.
  • HARQ hybrid automatic repeat request
  • the network device sends the association relationship to the terminal device through an RRC Release message.
  • the association relationship between uplink resources and beams of the terminal equipment in the case that the hybrid automatic repeat request HARQ process allocation mode is determined to be the first allocation mode, at least one configured beam and at least one uplink resource are sent to the terminal equipment
  • the corresponding association relationship can allocate the HARQ process number according to the association relationship between the uplink resource and the beam, so as to avoid the HARQ process conflict during data transmission, and can avoid the waste of the HARQ process caused by the allocation of too many HARQ process numbers, and reduce the overhead. Save resources and improve the efficiency and reliability of data transmission.
  • the present application also provides a hybrid automatic repeat request HARQ process allocation device, because the hybrid automatic repeat request HARQ process provided by the embodiment of the present application
  • the allocation device corresponds to the methods provided in the above-mentioned several embodiments, so the implementation of the hybrid automatic repeat request HARQ process allocation method is also applicable to the hybrid automatic repeat request HARQ process allocation device provided in the following embodiments, in the following implementation Examples will not be described in detail.
  • FIG. 6 is a schematic structural diagram of a hybrid automatic repeat request (HARQ) process allocation device provided by an embodiment of the present application.
  • HARQ hybrid automatic repeat request
  • the hybrid automatic repeat request HARQ process allocation device 800 includes: a transceiver unit 610 and a processing unit 620, wherein:
  • a transceiver unit 610 configured to receive an association relationship between uplink resources and beams configured by the network device;
  • the processing unit 620 is configured to allocate a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship.
  • HARQ hybrid automatic repeat request
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • the processing unit 620 is specifically configured to: if it is determined that the hybrid automatic repeat request HARQ process allocation mode is the first allocation mode, according to the association between the at least one beam and the at least one uplink resource relationship, assigning a corresponding hybrid automatic repeat request (HARQ) process for uplink resources.
  • HARQ hybrid automatic repeat request
  • the processing unit is further configured to: allocate a hybrid automatic repeat request HARQ process for each uplink resource period when it is determined that the hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the processing unit 620 is specifically configured to: allocate the same HARQ process to at least one uplink resource corresponding to the at least one beam.
  • processing unit 620 is further configured to: determine the hybrid automatic repeat request (HARQ) process allocation manner according to the configuration or agreement of the network device.
  • HARQ hybrid automatic repeat request
  • the processing unit 620 is specifically configured to: determine that the hybrid automatic repeat request HARQ process allocation mode is the first when receiving the association relationship between the uplink resource and the beam configured by the network device Allocation.
  • the processing unit 620 is specifically configured to: determine the The hybrid automatic repeat request HARQ process allocation mode is the first allocation mode.
  • the processing unit 620 is specifically configured to: determine if the association relationship between the uplink resource and the beam configured by the network device is not received, or the uplink resource is not used for small data transmission SDT
  • the hybrid automatic repeat request HARQ process allocation mode is the second allocation mode.
  • the hybrid automatic repeat request HARQ process allocation device of this embodiment can receive the association relationship between the uplink resource and the beam configured by the network device, and according to the association relationship, allocate the corresponding hybrid automatic repeat request HARQ process for the uplink resource, and can assign The HARQ process numbers are allocated according to the relationship between uplink resources and beams, thereby avoiding HARQ process conflicts during data transmission, and avoiding the waste of HARQ processes caused by allocating too many HARQ process numbers, reducing overhead, saving resources, and improving data transmission efficiency. and reliability.
  • FIG. 7 is a schematic structural diagram of a hybrid automatic repeat request (HARQ) process allocation device provided by an embodiment of the present application.
  • HARQ hybrid automatic repeat request
  • the hybrid automatic repeat request HARQ process allocation device 700 includes: a processing unit 710 and a transceiver unit 720, wherein:
  • a processing unit 710 configured to configure an association relationship between uplink resources and beams of the terminal device
  • the transceiver unit 720 is configured to send the association relationship to the terminal device, so that the terminal device allocates a corresponding hybrid automatic repeat request (HARQ) process for the uplink resource according to the association relationship.
  • HARQ hybrid automatic repeat request
  • the association relationship between the uplink resource and the beam is: at least one beam corresponds to at least one uplink resource.
  • the at least one beam is any one of the following: at least one beam in a synchronization signal block SSB burst set; at least one beam in a synchronization signal block SSB burst set transmission period; consecutively numbered at least One beam; multiple consecutive beams in one synchronization signal block SSB burst set; multiple consecutive beams in one synchronization signal block SSB burst set transmission period; multiple consecutive beams in multiple consecutive synchronization signal block SSB burst sets beams; multiple consecutive beams in the transmission cycle of multiple synchronization signal block SSB bursts.
  • the at least one uplink resource is any one of the following: uplink resources in at least one uplink resource period; at least one uplink resource in one uplink resource period; at least one uplink resource in multiple consecutive uplink resource periods resource.
  • the processing unit 710 is further configured to: send the configured at least one beam and at least An association relationship corresponding to an uplink resource.
  • the hybrid automatic repeat request HARQ process allocation manner further includes a second allocation manner, and the second allocation manner is used to allocate a hybrid automatic repeat request HARQ process for each uplink resource period.
  • the association relationship is used to allocate the same HARQ process for at least one uplink resource corresponding to the at least one beam.
  • the hybrid automatic repeat request HARQ process allocation apparatus of this embodiment can send the association relationship to the terminal equipment by configuring the association relationship between the uplink resource and the beam of the terminal equipment, so that the terminal equipment can allocate the corresponding uplink resource for the uplink resource according to the association relationship.
  • the hybrid automatic repeat request HARQ process can allocate the HARQ process number according to the association relationship between the uplink resource and the beam, thereby avoiding the HARQ process conflict during data transmission, and avoiding the waste of the HARQ process caused by allocating too many HARQ process numbers. Reduce overhead, save resources, and improve the efficiency and reliability of data transmission.
  • the embodiment of the present application also proposes a communication device, including: a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device executes the The method shown in Fig. 3 embodiment.
  • the embodiment of the present application also proposes a communication device, including: a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device executes the The method shown in Fig. 5 embodiment.
  • the embodiment of the present application also proposes a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to Execute the methods shown in the embodiments shown in FIG. 2 to FIG. 3 .
  • the embodiment of the present application also proposes a communication device, including: a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to Execute the methods shown in the embodiments shown in FIG. 4 to FIG. 5 .
  • FIG. 8 is a schematic structural diagram of another hybrid automatic repeat request (HARQ) process allocation device provided by an embodiment of the present disclosure.
  • the hybrid automatic repeat request HARQ process allocation device 800 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, and can also support the terminal device to implement the above method chips, chip systems, or processors.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the hybrid automatic repeat request (HARQ) process allocation apparatus 800 may include one or more processors 801 .
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to allocate devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) to hybrid automatic repeat request HARQ processes. ) to control, execute computer programs, and process data of computer programs.
  • the hybrid automatic repeat request HARQ process allocation apparatus 800 may also include one or more memories 802, on which a computer program 803 may be stored, and the processor 801 executes the computer program 803, so that the hybrid automatic repeat request HARQ
  • the process distribution apparatus 800 executes the methods described in the foregoing method embodiments.
  • the computer program 803 may be solidified in the processor 801, and in this case, the processor 801 may be implemented by hardware.
  • data may also be stored in the memory 802 .
  • the hybrid automatic repeat request HARQ process allocation device 800 and the memory 802 can be set separately or integrated together.
  • the apparatus 800 for allocating HARQ processes may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 805 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the apparatus 800 for allocating HARQ processes may further include one or more interface circuits 807 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 801 .
  • the processor 801 runs code instructions to enable the hybrid automatic repeat request (HARQ) process allocation apparatus 800 to execute the methods described in the foregoing method embodiments.
  • HARQ hybrid automatic repeat request
  • the hybrid automatic repeat request HARQ process allocation device 800 is a terminal device: the transceiver 805 is used to execute step 201 in FIG. 2; step 301 in FIG. 3; the processor 801 is used to execute step 202 in FIG. 2; Steps 302 to 304 of .
  • the hybrid automatic repeat request HARQ process allocation device 800 is a network device, and the transceiver 805 is used to perform step 402 in FIG. 4; step 502 in FIG. 5; the processor 801 is used to perform step 401 in FIG. 4; Step 501.
  • the processor 801 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the hybrid automatic repeat request HARQ process allocation apparatus 800 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the hybrid automatic repeat request HARQ process allocation device described in the above embodiments may be a network device or a terminal device, but the scope of the hybrid automatic repeat request HARQ process allocation device described in this disclosure is not limited thereto, and hybrid automatic repeat request
  • the structure of the apparatus for requesting HARQ process allocation may not be limited by FIG. 6-FIG. 7 .
  • the hybrid automatic repeat request HARQ process allocation device may be an independent device or may be a part of a larger device.
  • the hybrid automatic repeat request HARQ process allocation device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the hybrid automatic repeat request (HARQ) process allocation device may be a chip or a chip system
  • the chip shown in FIG. 9 includes a processor 901 and an interface 902 .
  • the number of processors 901 may be one or more, and the number of interfaces 902 may be more than one.
  • Interface 902 used to transmit code instructions to the processor
  • the processor 901 is configured to run code instructions to execute the methods shown in FIG. 2 to FIG. 3 .
  • Interface 902 used to transmit code instructions to the processor
  • the processor 901 is configured to run code instructions to execute the methods shown in FIG. 4 to FIG. 5 .
  • the chip further includes a memory 903 for storing necessary computer programs and data.
  • An embodiment of the present disclosure also provides a communication system, which includes the device for assigning a HARQ process as a terminal device and the device for assigning a HARQ process as a network device in the foregoing embodiments in Figures 6-7 Or, the system includes the apparatus for allocating HARQ processes as terminal equipment and the apparatus for allocating HARQ processes as network equipment in the foregoing embodiment in FIG. 8 .
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product consists of one or more computer programs. When a computer program is loaded and executed on a computer, the processes or functions according to the embodiments of the present disclosure are generated in whole or in part.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media. Available media can be magnetic (e.g., floppy disk, hard disk, tape), optical (e.g., digital video disc (DVD)), or semiconductor (e.g., solid state disk (SSD) )wait.
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also use other names that the communication device can understand, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种混合自动重传请求HARQ进程分配方法及装置,通过接收网络设备配置的上行资源与波束的关联关系,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。

Description

混合自动重传请求HARQ进程分配方法及装置 技术领域
本申请涉及通信技术领域,特别是指一种混合自动重传请求HARQ进程分配方法及装置。
背景技术
在5G NR(New Radio,新空口)系统中,终端在处于空闲态或者非激活态时,可以通过网络配置的专属物理上行共享信道PUSCH(Physical Uplink Shared Channel)资源,将数据直接发送给网络侧,完成小数据传输(Small Data Transmission,SDT)。网络侧通过周期性分配的方式将专属PUSCH资源配置给终端。同时,网络侧还会为每个周期的专属PUSCH资源分配一个混合自动重传请求HARQ(Hybrid Automatic Repeat Request)进程,保证终端在不同的资源上能够使用不同的HARQ进程来缓存数据,进行数据重传。
发明内容
本申请第一方面实施例提出了一种混合自动重传请求HARQ进程分配方法,所述方法由终端设备执行,所述方法包括:
接收网络设备配置的上行资源与波束的关联关系;
根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程,包括:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述方法还包括:在确定所述混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,包括:为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
可选地,所述方法还包括:根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式。
可选地,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:在接收到所述网络设备配置的所述上行资源与波束的关联关系的情况下,确定所述混合 自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:在接收到所述网络设备配置的所述上行资源与波束的关联关系,且所述上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:在没有接收到所述网络设备配置的所述上行资源与波束的关联关系,或者所述上行资源不是用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第二分配方式。
本申请第二方面实施例提出了一种混合自动重传请求HARQ进程分配方法,所述方法由网络设备执行,所述方法包括:
配置终端设备的上行资源与波束的关联关系;
向所述终端设备发送所述关联关系,以使所述终端设备根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述方法还包括:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向所述终端设备发送配置的所述至少一个波束与至少一个上行资源相对应的关联关系。
可选地,所述方法还包括:所述混合自动重传请求HARQ进程分配方式还包括第二分配方式,所述第二分配方式用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述关联关系用于为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
本申请第三方面实施例提出了一种混合自动重传请求HARQ进程分配装置,所述装置包括:
收发单元,用于接收网络设备配置的上行资源与波束的关联关系;
处理单元,用于根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述处理单元具体用于:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述处理单元还用于:在确定所述混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述处理单元具体用于:为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
可选地,所述处理单元还用于:根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式。
可选地,所述处理单元具体用于:在接收到所述网络设备配置的所述上行资源与波束的关联关系的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述处理单元具体用于:在接收到所述网络设备配置的所述上行资源与波束的关联关系,且所述上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述处理单元具体用于:在没有接收到所述网络设备配置的所述上行资源与波束的关联关系,或者所述上行资源不是用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第二分配方式。
本申请第四方面实施例提出了一种混合自动重传请求HARQ进程分配装置,所述装置包括:
处理单元,用于配置终端设备的上行资源与波束的关联关系;
收发单元,用于向所述终端设备发送所述关联关系,以使所述终端设备根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述处理单元还用于:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向所述终端设备发送配置的所述至少一个波束与至少一个上行资源相对应的关联关系。
可选地,所述混合自动重传请求HARQ进程分配方式还包括第二分配方式,所述第二分配方式用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述关联关系用于为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
本申请第五方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例 所述的混合自动重传请求HARQ进程分配方法。
本申请第六方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第二方面实施例所述的混合自动重传请求HARQ进程分配方法。
本申请第七方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面实施例所述的混合自动重传请求HARQ进程分配方法。
本申请第八方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面实施例所述的混合自动重传请求HARQ进程分配方法。
本申请第九方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的混合自动重传请求HARQ进程分配方法被实现。
本申请第十方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第二方面实施例所述的混合自动重传请求HARQ进程分配方法被实现。
本申请第十一方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第一方面实施例所述的混合自动重传请求HARQ进程分配方法。
本申请第十二方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行第二方面实施例所述的混合自动重传请求HARQ进程分配方法。
本申请实施例提供的一种混合自动重传请求HARQ进程分配方法及装置,通过接收网络设备配置的上行资源与波束的关联关系,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图;
图3是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图;
图4是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图;
图5是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图;
图6是本申请实施例提供的一种混合自动重传请求HARQ进程分配装置的结构示意图;
图7是本申请实施例提供的一种混合自动重传请求HARQ进程分配装置的结构示意图;
图8是本申请实施例提供的另一种混合自动重传请求HARQ进程分配装置的结构示意图;
图9是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了更好的理解本申请实施例公开的一种混合自动重传请求HARQ进程分配方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代移动通信系统、5G新空口系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(Evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(Next Generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(Central Unit,CU)与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile  Phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-Driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
终端设备102在处于空闲态(IDLE)/非激活态(INACTIVE)的时候,可以通过网络设备101配置的专属PUSCH资源,即配置许可CG(Configure Grant)或预分配上行资源PUR(Preallocated Uplink Resource),将小数据直接发送给网络设备101。网络设备101通过RRC Release(Radio Resource Control Release,无限资源控制释放)消息给终端设备101配置在空闲态/非激活态时使用的上行资源以及该上行资源所在的小区和BWP(BandWidth Part,带宽部分)。网络设备101通过周期性分配的方式,将该上行资源分配给终端设备102。同时,网络设备101还会为每个周期的上行资源分配一个混合自动重传请求HARQ进程,保证终端设备102在不同的资源上能够使用不同的HARQ进程来缓存数据,进行数据重传。
网络设备101会通过不同的下行波束发送不同的信号,而当终端设备102在空闲态/非激活态通过该上行资源发送上行信号的时候,网络设备101需要知道终端设备102当前能接收到信号的下行波束信息,从而通过对应的下行波束将下行数据和控制信令发送给终端设备102。因此,终端设备102发送上行信号采用的上行资源需要与对应的下行波束进行绑定,从而使得网络设备101在接收到上行资源上的信号的时候,能够知道终端设备102能接收到下行信号的波束。多个周期的上行资源可以与多个下行波束进行绑定。在发送数据时,终端设备102在选择上行资源前,需要先选择符合信道质量要求的下行波束,然后再选择与该波束对应的上行资源进行上行发送。
在相关技术中,网络设备101为每个周期的上行资源分配一个混合自动重传请求HARQ进程,在一共配置多个HARQ进程的情况下,HARQ进程是按照上行资源周期顺序分配的,比如,网络设备101给终端设备102一共分配了4个HARQ进程,则每个上行资源周期1个HARQ进程,根据周期编号顺序(周期1/2/3/4/5/6/7/8),HARQ进程编号在每个上行资源周期的分配顺序为(1/2/3/4/1/2/3/4)。
如果将多个周期的上行资源与多个波束进行绑定,则终端设备102在实际发送的时候仅仅会选择1个波束以及在该波束对应的1个周期的上行资源进行发送,也就是终端设备102只使用1个HARQ进程,而其他的上行资源周期的HARQ进程则会闲置。更进一步的,当终端设备102再次进行上行数据发送的时候,终端设备102再次选择1个波束后,该波束对应的周期上行资源的HARQ进程编号可能与前一次数据发送的周期上行资源的HARQ进程编号冲突,从而导致新的数据覆盖掉相同HARQ进程中的前一次发送的数据,导致前一次发送的数据无法进行重传,而导致数据发送失败。
本申请的实施例中,通过接收网络设备配置的上行资源与波束的关联关系,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新 业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的混合自动重传请求HARQ进程分配方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图。需要说明的是,本申请实施例的混合自动重传请求HARQ进程分配方法由终端设备执行。如图2所示,该方法可以包括如下步骤:
步骤201,接收网络设备配置的上行资源与波束的关联关系。
其中,上行资源为网络设备配置的物理上行共享信道PUSCH资源,波束为网络设备发送下行数据采用的波束。
可选地,该上行资源为配置许可CG(Configure Grant)或者预分配上行资源PUR(Preallocated Uplink Resource);该波束的标识包括SSB(Synchronous Signal Block,同步信号块)标识和CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)标识中的至少一个。
在一些实施方式中,该关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,该至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
其中,一个同步信号块SSB突发集发送周期可以包括至少一个同步信号块SSB突发集。一个同步信号块SSB突发集中的多个连续的波束的编号可能是不连续的,因为,一个波束的编号可以对应一个或多个同步信号块SSB的编号,比如,在一个SSB突发集中,有8个SSB,编号分别为0-7,但是在这个突发集中的波束可能有四个,波束的编号为1/2/3/4/1/2/3/4,因此在这个突发集中多个连续的波束的编号可能是2/3/4/1。波束的编号也就是波束的标识。
可选地,该至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
其中,一个上行资源周期中的至少一个上行资源,可以是一个上行资源周期中的至少一个频域资源、一个上行资源周期中的至少一个时域资源或者一个上行资源周期中的至少一个DMRS(Demodulation Reference Signal,解调信号)资源。
可选地,该上行资源为频域资源时,每个上行资源的PRB(Physical Resource Block,物理资源块)不同;该上行资源为时域资源时,每个上行资源的时隙或者符号不同;该上行资源为DMRS资源时,每个上行资源对应的DMRS不同。
作为第一种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应。
作为第二种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与一个上行资源周期中的至少一个上行资源相对应。
作为第三种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应。
可以理解的是,该至少一个波束与至少一个上行资源相对应的关联关系,可以是上述任意一种至少一个波束与上述任意一种上行资源相对应的关联关系,在此只写出示例性的三种实施方式,其余的相对应的关联关系与写出的示例性的三种类似,故没有一一列举。
步骤202,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
在一些实施方式中,分配方法为:为与至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。也就是,与该至少一个波束相对应的至少一个上行资源上的HARQ进程相同。
作为第一种可能的实施方式,与一个同步信号块SSB突发集中的至少一个波束相对应的至少一个上行资源周期中的上行资源上的HARQ进程相同。
作为第二种可能的实施方式,与一个同步信号块SSB突发集中的至少一个波束相对应的一个上行资源周期中的至少一个上行资源上的HARQ进程相同。
作为第三种可能的实施方式,与一个同步信号块SSB突发集中的至少一个波束相对应的连续多个上行资源周期中的至少一个上行资源上的HARQ进程相同。
同样可以理解的是,根据其余的相对应的关联关系为上行资源分配HARQ进程的方法,与写出的示例性的三种类似,不再一一列举。
在一些实施方式中,该方法还包括根据网络设备的配置或者协议约定,确定混合自动重传请求HARQ进程的分配方式。
在确定该分配方式为第一分配方式的情况下,分配方法为:为与至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
在确定该分配方式为第二分配方式的情况下,分配方法为:为每一个上行资源周期分配一个HARQ进程。
在一些实施方式中,在接收到网络设备配置的所述上行资源与波束的关联关系的情况下,确定混合自动重传请求HARQ进程分配方式为第一分配方式。
在一些实施方式中,在接收到网络设备配置的上行资源与波束的关联关系,且上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
在一些实施方式中,在没有接收到网络设备配置的上行资源与波束的关联关系,或者该上行资源不是用于小数据传输SDT的情况下,确定混合自动重传请求HARQ进程分配方式为第二分配方式。
综上,通过接收网络设备配置的上行资源与波束的关联关系,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
请参见图3,图3是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图。需要说明的是,本申请实施例的混合自动重传请求HARQ进程分配方法由终端设备执行。如图3所示,该方法可以包括如下步骤:
步骤301,接收网络设备配置的至少一个波束与至少一个上行资源相对应的关联关系。
可选地,该至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块 SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
该至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
在本申请实施例中,该关联关系为上述任一种波束与上述任一种上行资源相对应的关联关系。
作为第一种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应。
作为第二种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与一个上行资源周期中的至少一个上行资源相对应。
作为第三种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应。
可以理解的是,其余的关联关系与写出的示例性的三种类似,在此不一一列举。
步骤302,根据网络设备的配置或者协议约定,确定混合自动重传请求HARQ进程分配方式。
可选地,根据网络设备的配置,隐式指示混合自动重传请求HARQ进程分配方式。
在一些实施方式中,在接收到网络设备配置的所述上行资源与波束的关联关系的情况下,确定混合自动重传请求HARQ进程分配方式为第一分配方式。
在一些实施方式中,在接收到网络设备配置的上行资源与波束的关联关系,且上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
在一些实施方式中,在没有接收到网络设备配置的上行资源与波束的关联关系,或者该上行资源不是用于小数据传输SDT的情况下,确定混合自动重传请求HARQ进程分配方式为第二分配方式。
步骤303,在确定混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
在本申请实施例中,根据至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,包括:为与至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。也就是,与该至少一个波束相对应的至少一个上行资源上的HARQ进程相同。
作为第一种可能的实施方式,与一个同步信号块SSB突发集中的至少一个波束相对应的至少一个上行资源周期中的上行资源上的HARQ进程相同。
同样可以理解的是,根据其余的相对应的关联关系为上行资源分配HARQ进程的方法,与写出的示例性的实施方式类似,不再一一列举。
在一些实施方式中,网络设备为终端设备配置了多个HARQ进程,终端设备根据该关联关系,按照HARQ进程编号的顺序依次分配。
以关联关系为“一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应”为例,进行详细描述,其余关联关系类似,在此不一一列举。为了方便描述,关联关系为“一个同步信号块SSB突发集中的N个波束与M个上行资源周期中的上行资源相对应”。
上行资源周期为T,是网络设备配置给终端设备的,该周期配置标识的计数单位为符号symbol,也就是配置周期T中的符号数,可以理解为周期T的计数单位为符号。N个波束与M个周期中的上行 资源相对应,则这N个波束与M个周期中的上行资源的关联周期称为1个SSB关联周期,表示为ssbAssocationPeriod=M*T。1个SSB关联周期中的上行资源上的HARQ进程是相同的,也就是,在1个SSB关联周期中,M个上行资源周期中每个周期的上行资源分配的HARQ都是相同的。如果网络设备为终端设备配置了多个HARQ进程,按照SSB关联周期的顺序,按照HARQ进程编号的顺序依次分配,比如,第一个SSB关联周期中的M个上行资源周期分配的HARQ进程编号为1,第二个SSB关联周期中的M个上行资源周期分配的HARQ进程编号为2,等等。
终端设备为上行资源配置的HARQ进程编号的计算方法如下:
假设配置可用的HARQ进程数为nrofHARQ-Processes,HARQ进程的起始编号为harq-ProcID-Offset(可以是取值大于或等于0的整数),则在每个SSB关联周期中的M个周期上行资源中,为起始周期上行资源(或M个周期上行资源中任一个周期上行资源)分配的HARQ进程编号为:
HARQ Process ID=[floor(CURRENT_symbol/ssbAssocationPeriod)mod nrofHARQ-Processes+harq-ProcID-Offset]。
其中,floor表示向下取整,mod表示取余,CURRENT_symbol表示当前符号,计算方法为:CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot)
其中,SFN(System Frame Number)表示系统帧号,numberOfSlotsPerFrame表示每帧中连续时隙数量,numberOfSymbolsPerSlot表示每时隙连续符号数量,slot number in the frame表示当前时隙在所在帧中的编号,symbol number in the slot表示当前符号在所在时隙中的编号。
可以理解的是,M个周期中,起始周期(或M个周期上行资源中任一个周期上行资源)之外的其余M-1各周期的HARQ进程编号与起始周期(或该M个周期上行资源中任一个周期上行资源)的HARQ进程编号相同。
步骤304,在确定混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
在一些实施方式中,在网络设备为终端设备分配了多个HARQ进程的情况下,按照上行资源周期的顺序,依次顺序分配该多个HARQ进程。
综上,通过接收网络设备配置的至少一个波束与至少一个上行资源相对应的关联关系,根据网络设备的配置或者协议约定,确定混合自动重传请求HARQ进程分配方式,在确定混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,在确定混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
请参见图4,图4是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图。需要说明的是,本申请实施例的混合自动重传请求HARQ进程分配方法由网络设备执行。如图4所示,该方法可以包括如下步骤:
步骤401,配置终端设备的上行资源与波束的关联关系。
其中,上行资源为网络设备配置的物理上行共享信道PUSCH资源,波束为网络设备发送下行数据采用的波束。
可选地,该上行资源为配置许可CG或者预分配上行资源PUR;该波束的标识包括SSB标识和CSI-RS标识中的至少一个。
在一些实施方式中,该关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,该至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
其中,一个同步信号块SSB突发集发送周期可以包括至少一个同步信号块SSB突发集。一个同步信号块SSB突发集中的多个连续的波束的编号可能是不连续的,因为,一个波束的编号可以对应一个或多个同步信号块SSB的编号,比如,在一个SSB突发集中,有8个SSB,编号分别为0-7,但是在这个突发集中的波束可能有四个,波束的编号为1/2/3/4/1/2/3/4,因此在这个突发集中多个连续的波束的编号可能是2/3/4/1。波束的编号也就是波束的标识。
可选地,该至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
其中,一个上行资源周期中的至少一个上行资源,可以是一个上行资源周期中的至少一个频域资源、一个上行资源周期中的至少一个时域资源或者一个上行资源周期中的至少一个DMRS(Demodulation Reference Signal,解调信号)资源。
可选地,该上行资源为频域资源时,每个上行资源的PRB(Physical Resource Block,物理资源块)不同;该上行资源为时域资源时,每个上行资源的时隙或者符号不同;该上行资源为DMRS资源时,每个上行资源对应的DMRS不同。
作为第一种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应。
作为第二种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与一个上行资源周期中的至少一个上行资源相对应。
作为第三种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应。
可以理解的是,该至少一个波束与至少一个上行资源相对应的关联关系,可以是上述任意一种至少一个波束与上述任意一种上行资源相对应的关联关系,在此只写出示例性的三种实施方式,其余的相对应的关联关系与写出的示例性的三种类似,故没有一一列举。
步骤402,向终端设备发送该关联关系,以使终端设备根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
在一些实施方式中,该关联关系用于为与至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
作为第一种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的至少一个上行资源周期中的上行资源分配相同的HARQ进程。
作为第二种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集中的至少一个波束与一个上行资源周期中的至少一个上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的一个上行资源周期中的至少一个上行资源分配相同的HARQ进程。
作为第三种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的连续多个上行资源周期中的至少一个上行资源分配相同的HARQ进程。
同样可以理解的是,向终端设备发送配置的其余的关联关系以使终端设备根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程的方法,与写出的示例性的三种类似,不再一一列举。
在一些实施方式中,在确定混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向终端设备发送配置的至少一个波束与至少一个上行资源相对应的关联关系。
在一些实施方式中,该HARQ进程分配方式还包括第二分配方式,用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
在一些实施方式中,网络设备通过RRC Release消息向终端设备发送该关联关系。
综上,通过配置终端设备的上行资源与波束的关联关系,向终端设备发送该关联关系,以使终端设备根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
请参见图5,图5是本申请实施例提供的一种混合自动重传请求HARQ进程分配方法的流程示意图。需要说明的是,本申请实施例的混合自动重传请求HARQ进程分配方法由网络设备执行。如图5所示,该方法可以包括如下步骤:
步骤501,配置终端设备的上行资源与波束的关联关系。
可选地,该至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
该至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
在本申请实施例中,该关联关系为上述任一种波束与上述任一种上行资源相对应的关联关系。
作为第一种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与至少一个上行资源周期中的上行资源相对应。
作为第二种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与一 个上行资源周期中的至少一个上行资源相对应。
作为第三种可能的实施方式,该关联关系为:一个同步信号块SSB突发集中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应。
可以理解的是,其余的关联关系与写出的示例性的三种类似,在此不一一列举。
步骤502,在确定混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向终端设备发送配置的至少一个波束与至少一个上行资源相对应的关联关系。
在一些实施方式中,该关联关系用于为与至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
作为第一种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集发送周期中的至少一个波束与至少一个上行资源周期中的上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的至少一个上行资源周期中的上行资源分配相同的HARQ进程。
作为第二种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集发送周期中的至少一个波束与一个上行资源周期中的至少一个上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的一个上行资源周期中的至少一个上行资源分配相同的HARQ进程。
作为第三种可能的实施方式,向终端设备发送配置的关联关系为:一个同步信号块SSB突发集发送周期中的至少一个波束与连续多个上行资源周期中的至少一个上行资源相对应,用于为与一个同步信号块SSB突发集中的至少一个波束相对应的连续多个上行资源周期中的至少一个上行资源分配相同的HARQ进程。
同样可以理解的是,向终端设备发送配置的其余的关联关系以使终端设备根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程的方法,与写出的示例性的三种类似,不再一一列举。
在一些实施方式中,网络设备通过RRC Release消息向终端设备发送该关联关系。
综上,通过配置终端设备的上行资源与波束的关联关系,在确定混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向终端设备发送配置的至少一个波束与至少一个上行资源相对应的关联关系,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
与上述几种实施例提供的混合自动重传请求HARQ进程分配方法相对应,本申请还提供一种混合自动重传请求HARQ进程分配装置,由于本申请实施例提供的混合自动重传请求HARQ进程分配装置与上述几种实施例提供的方法相对应,因此在混合自动重传请求HARQ进程分配方法的实施方式也适用于下述实施例提供的混合自动重传请求HARQ进程分配装置,在下述实施例中不再详细描述。
请参见图6,图6为本申请实施例提供的一种混合自动重传请求HARQ进程分配装置的结构示意图。
如图6所示,该混合自动重传请求HARQ进程分配装置800包括:收发单元610和处理单元620,其中:
收发单元610,用于用于接收网络设备配置的上行资源与波束的关联关系;
处理单元620,用于根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述处理单元620具体用于:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述处理单元还用于:在确定所述混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述处理单元620具体用于:为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
可选地,所述处理单元620还用于:根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式。
可选地,所述处理单元620具体用于:在接收到所述网络设备配置的所述上行资源与波束的关联关系的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述处理单元620具体用于:在接收到所述网络设备配置的所述上行资源与波束的关联关系,且所述上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
可选地,所述处理单元620具体用于:在没有接收到所述网络设备配置的所述上行资源与波束的关联关系,或者所述上行资源不是用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第二分配方式。
本实施例的混合自动重传请求HARQ进程分配装置,可以通过接收网络设备配置的上行资源与波束的关联关系,根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
请参见图7,图7为本申请实施例提供的一种混合自动重传请求HARQ进程分配装置的结构示意图。
如图7所示,该混合自动重传请求HARQ进程分配装置700包括:处理单元710和收发单元720,其中:
处理单元710,用于配置终端设备的上行资源与波束的关联关系;
收发单元720,用于向所述终端设备发送所述关联关系,以使所述终端设备根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
可选地,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
可选地,所述至少一个波束为下列中的任意一种:一个同步信号块SSB突发集中的至少一个波束;一个同步信号块SSB突发集发送周期中的至少一个波束;编号连续的至少一个波束;一个同步信号块SSB突发集中的多个连续的波束;一个同步信号块SSB突发集发送周期中的多个连续的波束;连续多个同步信号块SSB突发集中的多个连续的波束;连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
可选地,所述至少一个上行资源为下列中的任意一种:至少一个上行资源周期中的上行资源;一个上行资源周期中的至少一个上行资源;连续多个上行资源周期中的至少一个上行资源。
可选地,所述处理单元710还用于:在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向所述终端设备发送配置的所述至少一个波束与至少一个上行资源相对应的关联关系。
可选地,所述混合自动重传请求HARQ进程分配方式还包括第二分配方式,所述第二分配方式用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
可选地,所述关联关系用于为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
本实施例的混合自动重传请求HARQ进程分配装置,可以通过配置终端设备的上行资源与波束的关联关系,向终端设备发送该关联关系,以使终端设备根据该关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,能够将HARQ进程编号根据上行资源与波束的关联关系进行分配,从而避免数据传输时候的HARQ进程冲突,并且可以避免分配过多的HARQ进程编号导致HARQ进程浪费,减少开销,节约资源,提高数据传输的效率和可靠性。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图2至图3实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图4至图5实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图2至图3实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图4至图5实施例所示的方法。
请参见图8,图8是本公开实施例提供的另一种混合自动重传请求HARQ进程分配装置的结构示 意图。混合自动重传请求HARQ进程分配装置800可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
混合自动重传请求HARQ进程分配装置800可以包括一个或多个处理器801。处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对混合自动重传请求HARQ进程分配装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,混合自动重传请求HARQ进程分配装置800中还可以包括一个或多个存储器802,其上可以存有计算机程序803,处理器801执行计算机程序803,以使得混合自动重传请求HARQ进程分配装置800执行上述方法实施例中描述的方法。计算机程序803可能固化在处理器801中,该种情况下,处理器801可能由硬件实现。
可选的,存储器802中还可以存储有数据。混合自动重传请求HARQ进程分配装置800和存储器802可以单独设置,也可以集成在一起。
可选的,混合自动重传请求HARQ进程分配装置800还可以包括收发器805、天线806。收发器805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器805可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,混合自动重传请求HARQ进程分配装置800中还可以包括一个或多个接口电路807。接口电路1007用于接收代码指令并传输至处理器801。处理器801运行代码指令以使混合自动重传请求HARQ进程分配装置800执行上述方法实施例中描述的方法。
混合自动重传请求HARQ进程分配装置800为终端设备:收发器805用于执行图2中的步骤201;图3中的步骤301;处理器801用于执行图2中的步骤202;图3中的步骤302至304。
混合自动重传请求HARQ进程分配装置800为网络设备,收发器805用于执行图4中的步骤402;图5中的步骤502;处理器801用于执行图4中的步骤401;图5中的步骤501。
在一种实现方式中,处理器801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,混合自动重传请求HARQ进程分配装置800可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction  transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的混合自动重传请求HARQ进程分配装置可以是网络设备或者终端设备,但本公开中描述的混合自动重传请求HARQ进程分配装置的范围并不限于此,而且混合自动重传请求HARQ进程分配装置的结构可以不受图6-图7的限制。混合自动重传请求HARQ进程分配装置可以是独立的设备或者可以是较大设备的一部分。例如混合自动重传请求HARQ进程分配装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于混合自动重传请求HARQ进程分配装置可以是芯片或芯片系统的情况,可参见图9所示的芯片的结构示意图。图9所示的芯片包括处理器901和接口902。其中,处理器901的数量可以是一个或多个,接口902的数量可以是多个。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口902,用于代码指令并传输至处理器;
处理器901,用于运行代码指令以执行如图2至图3的方法。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口902,用于代码指令并传输至处理器;
处理器901,用于运行代码指令以执行如图4至图5的方法。
可选的,芯片还包括存储器903,存储器903用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图6-图7实施例中作为终端设备的混合自动重传请求HARQ进程分配装置和作为网络设备的混合自动重传请求HARQ进程分配装置,或者,该系统包括前述图8实施例中作为终端设备的混合自动重传请求HARQ进程分配装置和作为网络设备的混合自动重传请求HARQ进程分配装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。 在计算机上加载和执行计算机程序时,全部或部分地产生按照本公开实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (42)

  1. 一种混合自动重传请求HARQ进程分配方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收网络设备配置的上行资源与波束的关联关系;
    根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
  2. 根据权利要求1所述的方法,其特征在于,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个波束为下列中的任意一种:
    一个同步信号块SSB突发集中的至少一个波束;
    一个同步信号块SSB突发集发送周期中的至少一个波束;
    编号连续的至少一个波束;
    一个同步信号块SSB突发集中的多个连续的波束;
    一个同步信号块SSB突发集发送周期中的多个连续的波束;
    连续多个同步信号块SSB突发集中的多个连续的波束;
    连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
  4. 根据权利要求2所述的方法,其特征在于,所述至少一个上行资源为下列中的任意一种:
    至少一个上行资源周期中的上行资源;
    一个上行资源周期中的至少一个上行资源;
    连续多个上行资源周期中的至少一个上行资源。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程,包括:
    在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在确定所述混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程,包括:
    为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
  8. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:
    在接收到所述网络设备配置的所述上行资源与波束的关联关系的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:
    在接收到所述网络设备配置的所述上行资源与波束的关联关系,且所述上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
  11. 根据权利要求8所述的方法,其特征在于,所述根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式,包括:
    在没有接收到所述网络设备配置的所述上行资源与波束的关联关系,或者所述上行资源不是用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第二分配方式。
  12. 一种混合自动重传请求HARQ进程分配方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    配置终端设备的上行资源与波束的关联关系;
    向所述终端设备发送所述关联关系,以使所述终端设备根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
  13. 根据权利要求12所述的方法,其特征在于,所述上行资源与波束的关联关系为:至少一个波束与至少一个上行资源相对应。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个波束为下列中的任意一种:
    一个同步信号块SSB突发集中的至少一个波束;
    一个同步信号块SSB突发集发送周期中的至少一个波束;
    编号连续的至少一个波束;
    一个同步信号块SSB突发集中的多个连续的波束;
    一个同步信号块SSB突发集发送周期中的多个连续的波束;
    连续多个同步信号块SSB突发集中的多个连续的波束;
    连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
  15. 根据权利要求13所述的方法,其特征在于,所述至少一个上行资源为下列中的任意一种:
    至少一个上行资源周期中的上行资源;
    一个上行资源周期中的至少一个上行资源;
    连续多个上行资源周期中的至少一个上行资源。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向所述终端设备发送配置的所述至少一个波束与至少一个上行资源相对应的关联关系。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述混合自动重传请求HARQ进程分配方式还包括第二分配方式,所述第二分配方式用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
  18. 根据权利要求16所述的方法,其特征在于,所述关联关系用于为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
  19. 一种混合自动重传请求HARQ进程分配装置,其特征在于,所述装置包括:
    收发单元,用于接收网络设备配置的上行资源与波束的关联关系;
    处理单元,用于根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
  20. 根据权利要求19所述的装置,其特征在于,所述上行资源与波束的关联关系为:至少一个波 束与至少一个上行资源相对应。
  21. 根据权利要求20所述的装置,其特征在于,所述至少一个波束为下列中的任意一种:
    一个同步信号块SSB突发集中的至少一个波束;
    一个同步信号块SSB突发集发送周期中的至少一个波束;
    编号连续的至少一个波束;
    一个同步信号块SSB突发集中的多个连续的波束;
    一个同步信号块SSB突发集发送周期中的多个连续的波束;
    连续多个同步信号块SSB突发集中的多个连续的波束;
    连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
  22. 根据权利要求20所述的装置,其特征在于,所述至少一个上行资源为下列中的任意一种:
    至少一个上行资源周期中的上行资源;
    一个上行资源周期中的至少一个上行资源;
    连续多个上行资源周期中的至少一个上行资源。
  23. 根据权利要求20所述的装置,其特征在于,所述处理单元具体用于:
    在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,根据所述至少一个波束与至少一个上行资源相对应的关联关系,为上行资源分配对应的混合自动重传请求HARQ进程。
  24. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:
    在确定所述混合自动重传请求HARQ进程分配方式为第二分配方式的情况下,为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
  25. 根据权利要求23所述的装置,其特征在于,所述处理单元具体用于:
    为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
  26. 根据权利要求23或24所述的装置,其特征在于,所述处理单元还用于:
    根据所述网络设备的配置或者协议约定,确定所述混合自动重传请求HARQ进程分配方式。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:
    在接收到所述网络设备配置的所述上行资源与波束的关联关系的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
  28. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:
    在接收到所述网络设备配置的所述上行资源与波束的关联关系,且所述上行资源用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第一分配方式。
  29. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:
    在没有接收到所述网络设备配置的所述上行资源与波束的关联关系,或者所述上行资源不是用于小数据传输SDT的情况下,确定所述混合自动重传请求HARQ进程分配方式为第二分配方式。
  30. 一种混合自动重传请求HARQ进程分配装置,其特征在于,所述装置包括:
    处理单元,用于配置终端设备的上行资源与波束的关联关系;
    收发单元,用于向所述终端设备发送所述关联关系,以使所述终端设备根据所述关联关系,为所述上行资源分配对应的混合自动重传请求HARQ进程。
  31. 根据权利要求30所述的装置,其特征在于,所述上行资源与波束的关联关系为:至少一个波 束与至少一个上行资源相对应。
  32. 根据权利要求31所述的装置,其特征在于,所述至少一个波束为下列中的任意一种:
    一个同步信号块SSB突发集中的至少一个波束;
    一个同步信号块SSB突发集发送周期中的至少一个波束;
    编号连续的至少一个波束;
    一个同步信号块SSB突发集中的多个连续的波束;
    一个同步信号块SSB突发集发送周期中的多个连续的波束;
    连续多个同步信号块SSB突发集中的多个连续的波束;
    连续多个同步信号块SSB突发集发送周期中的多个连续的波束。
  33. 根据权利要求31所述的装置,其特征在于,所述至少一个上行资源为下列中的任意一种:
    至少一个上行资源周期中的上行资源;
    一个上行资源周期中的至少一个上行资源;
    连续多个上行资源周期中的至少一个上行资源。
  34. 根据权利要求31所述的装置,其特征在于,所述处理单元还用于:
    在确定所述混合自动重传请求HARQ进程分配方式为第一分配方式的情况下,向所述终端设备发送配置的所述至少一个波束与至少一个上行资源相对应的关联关系。
  35. 根据权利要求34所述的装置,其特征在于,所述混合自动重传请求HARQ进程分配方式还包括第二分配方式,所述第二分配方式用于为每一个上行资源周期分配一个混合自动重传请求HARQ进程。
  36. 根据权利要求34所述的装置,其特征在于,所述关联关系用于为与所述至少一个波束相对应的至少一个上行资源,分配相同的HARQ进程。
  37. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至11中任一项所述的方法。
  38. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12至18中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求12至18中任一项所述的方法。
  41. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现。
  42. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求12至18中任一项所述的方法被实现。
PCT/CN2021/125428 2021-10-21 2021-10-21 混合自动重传请求harq进程分配方法及装置 WO2023065251A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003311.1A CN116326182A (zh) 2021-10-21 2021-10-21 混合自动重传请求harq进程分配方法及装置
PCT/CN2021/125428 WO2023065251A1 (zh) 2021-10-21 2021-10-21 混合自动重传请求harq进程分配方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125428 WO2023065251A1 (zh) 2021-10-21 2021-10-21 混合自动重传请求harq进程分配方法及装置

Publications (1)

Publication Number Publication Date
WO2023065251A1 true WO2023065251A1 (zh) 2023-04-27

Family

ID=86058673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125428 WO2023065251A1 (zh) 2021-10-21 2021-10-21 混合自动重传请求harq进程分配方法及装置

Country Status (2)

Country Link
CN (1) CN116326182A (zh)
WO (1) WO2023065251A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896121A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种信息传输方法、装置及系统
CN109429551A (zh) * 2016-08-05 2019-03-05 诺基亚技术有限公司 5g波束组非连续接收
US20190280836A1 (en) * 2018-03-06 2019-09-12 Qualcomm Incorporated Beam management for autonomous uplink with analog beams
WO2021147913A1 (zh) * 2020-01-23 2021-07-29 维沃移动通信有限公司 信息上报方法、终端设备和网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429551A (zh) * 2016-08-05 2019-03-05 诺基亚技术有限公司 5g波束组非连续接收
CN107896121A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种信息传输方法、装置及系统
US20190280836A1 (en) * 2018-03-06 2019-09-12 Qualcomm Incorporated Beam management for autonomous uplink with analog beams
WO2021147913A1 (zh) * 2020-01-23 2021-07-29 维沃移动通信有限公司 信息上报方法、终端设备和网络侧设备

Also Published As

Publication number Publication date
CN116326182A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
CN113287263B (zh) 一种跳频方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023044808A1 (zh) Mbs业务中sps对应hpn的确定方法及其装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2023065251A1 (zh) 混合自动重传请求harq进程分配方法及装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023050211A1 (zh) 一种混合自动重传请求进程号的确定方法及其装置
WO2023115279A1 (zh) 数据传输方法及装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质
WO2024000201A1 (zh) 一种指示方法及装置
WO2023050392A1 (zh) 混合自动重传请求harq的发送方法、接收方法及装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2023201529A1 (zh) 资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961000

Country of ref document: EP

Kind code of ref document: A1