WO2021253994A1 - 一种柔性电池组的制备方法及制得的柔性电池组 - Google Patents

一种柔性电池组的制备方法及制得的柔性电池组 Download PDF

Info

Publication number
WO2021253994A1
WO2021253994A1 PCT/CN2021/090425 CN2021090425W WO2021253994A1 WO 2021253994 A1 WO2021253994 A1 WO 2021253994A1 CN 2021090425 W CN2021090425 W CN 2021090425W WO 2021253994 A1 WO2021253994 A1 WO 2021253994A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
flexible battery
single cells
battery
flexible
Prior art date
Application number
PCT/CN2021/090425
Other languages
English (en)
French (fr)
Inventor
廖栋梁
毛彦勇
李开帝
Original Assignee
深圳信达新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信达新能源科技有限公司 filed Critical 深圳信达新能源科技有限公司
Publication of WO2021253994A1 publication Critical patent/WO2021253994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/287Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of batteries, in particular to a method for preparing a flexible battery pack and the prepared flexible battery pack.
  • Lithium batteries currently on the market are generally packaged in four packaging methods: cylindrical, square, button and soft. Among them, cylindrical, square, and button batteries are not flexible, and soft-pack batteries have certain flexibility under certain conditions (soft-pack batteries with a thickness of less than 2mm have certain flexibility).
  • the patent with publication number CN102544574A discloses a flexible lithium ion battery and a packaging method thereof.
  • the flexible lithium ion battery includes a flexible casing and a battery body located inside the flexible casing.
  • the flexible casing uses a flexible plastic prepared by high-temperature injection molding.
  • the flexible batteries in the prior art have the following shortcomings: 1.
  • the capacity of the battery is generally below 100 mAh due to size constraints; 2.
  • the performance of the battery will be degraded after repeated bending and folding, and the contact between the positive and negative materials of the battery will change after folding. If it is not tight, the internal resistance of the battery will increase and the performance of the battery will be rapidly degraded; 3. It will cause safety problems.
  • the positive and negative materials of the battery are coated on the metal foil, the positive and negative of the battery after multiple bending and folding The electrode material will fall off from the copper or aluminum foil, pierce the diaphragm and cause a short circuit of the battery, which will cause safety problems; 4.
  • the battery’s diaphragm is porous and organic. The battery’s multiple bending and folding may cause the diaphragm to break, causing the positive and negative electrodes. Contact short-circuits create safety issues.
  • the technical problem to be solved by the present invention is that the flexible battery in the prior art will affect the performance of the battery after repeated bending, and a method for preparing a flexible battery pack is provided.
  • the present invention provides a method for preparing a flexible battery pack, which includes the following steps:
  • step (3) Put the battery pack in step (2) into a mold, and then inject the precursor of the encapsulant. After the precursor is polymerized at room temperature, a flexible battery pack is prepared.
  • a flexible battery pack of any shape and capacity can be prepared, so that the capacity of the flexible battery pack is not limited by size.
  • the output voltage and capacity of the battery are set through the internal winding core or stacked core in series and parallel, and the battery voltage is not limited by the voltage of the traditional battery cell.
  • the preparation method of the invention has simple operation and can be directly completed outdoors from the first packaging.
  • the number of the single cells is 2 to 99.
  • the gap between adjacent single cells is 0-10 mm.
  • the encapsulant includes one or more of silica gel, silicone grease or epoxy resin.
  • the battery performance will quickly decay and become invalid after the battery temperature exceeds 100°C.
  • the battery can be encapsulated at room temperature by using the above-mentioned encapsulant, and the battery performance can be prevented from failing due to rapid decay without affecting the battery performance.
  • the above materials are insulated and non-conductive, have good water resistance and good heat dissipation performance.
  • the solid flexible material formed after polymerization has a low thermal expansion rate of 10 -12 or less at room temperature, high compressive strength and tensile strength, and high dielectric constant withstand voltage.
  • the encapsulant further includes additives, and the additives are colorants, antistatic agents, antioxidants, flame retardants or lubricants.
  • the added amount of the colorant is 0-10% of the total amount of the encapsulant.
  • the shape of the mold is an annular shape, a cube shape or a rectangular parallelepiped shape.
  • the shape of the mold is an annular shape, it can be applied to electronic products such as bracelets and watches.
  • the single cell in the battery pack is provided with tabs, and the tabs are located at the same end or opposite ends of the cell.
  • the series-parallel connection of the single cells includes the series connection and parallel connection of battery packs.
  • the winding core includes a positive pole piece, a separator, and a negative pole piece wound in sequence, one or both sides of the positive pole piece are coated with a positive electrode active material, and one or both sides of the negative pole piece Coating the negative electrode active material, when one side of the positive pole piece is coated with the positive electrode active material, the side coated with the positive electrode active material is set toward the separator; when one side of the negative pole piece is coated with the negative electrode active material, the negative electrode active material is coated One side of the material faces the diaphragm.
  • the laminated core includes a positive pole piece, a separator, and a negative pole piece stacked in sequence, one or both sides of the positive pole piece are coated with a positive electrode active material, and one or both sides of the negative pole piece are coated with a positive electrode active material.
  • Cover the negative electrode active material when one side of the positive electrode plate is coated with the positive electrode active material, the side coated with the positive electrode active material is set toward the separator; when the side of the negative electrode plate is coated with the negative electrode active material, the negative electrode active material is coated One side faces the diaphragm.
  • the stacked core or winding core in the present invention can be a secondary battery cell, such as a lithium battery cell, a nickel-hydrogen battery cell, a nickel-cadmium battery cell, or a primary battery cell, such as a zinc-manganese dry battery cell. core.
  • a secondary battery cell such as a lithium battery cell, a nickel-hydrogen battery cell, a nickel-cadmium battery cell, or a primary battery cell, such as a zinc-manganese dry battery cell. core.
  • the positive and negative electrode materials of the existing flexible battery are easy to fall off from the current collector after multiple bending and folding, and puncture the diaphragm. After the battery is bent and folded for many times, the diaphragm may be damaged, resulting in a short circuit of the battery, thereby causing safety problems; the present invention is adopted.
  • the flexible battery prepared by the preparation method in has good flexibility, and the performance of the battery does not deteriorate after a large number of bending and folding.
  • the positive electrode active material includes one or more of lithium iron phosphate, lithium cobalt oxide, lithium manganate, nickel cobalt manganese ternary positive electrode material, and nickel cobalt aluminum ternary positive electrode material.
  • the negative electrode active material includes one or more of artificial graphite, natural graphite, carbon silicon negative electrode, and lithium titanate.
  • the electrolyte includes ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl formate ( One or more of MF), ethyl acetate (EA), tetrahydrofuran (THF), and acetonitrile (AN).
  • EC ethylene carbonate
  • PC propylene carbonate
  • VC vinylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • methyl formate One or more of MF
  • EA ethyl acetate
  • THF tetrahydrofuran
  • AN acetonitrile
  • the lithium salt in the electrolyte includes lithium hexafluorophosphate (LiPF 6 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bisfluorosulfonimide (LiFSI), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium bisoxalate borate (LiBOB), lithium bis(perfluoroethylsulfonyl) imide (LiBETI) and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) One or more.
  • LiPF 6 lithium hexafluorophosphate
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • LiFSI lithium bisfluorosulfonimide
  • LiClO 4 lithium perchlorate
  • LiAsF 6 lithium bisoxalate borate
  • LiBETI lithium bis(perfluoroe
  • a positive electrode tab and a negative electrode tab are provided on the single battery cell, the positive electrode tab and the negative electrode tab are located at the same end of the single cell, or the positive electrode tab and the negative electrode tab are respectively located at Both ends of the battery.
  • the positive pole tabs of adjacent single cells are connected by wires
  • the negative pole tabs of adjacent single cells are connected by wires
  • the mold into which the precursor of the encapsulant is injected in step (3) is placed in a vacuum environment for 0-180 minutes.
  • the technical problem to be solved by the present invention is to provide a flexible battery pack prepared by the above preparation method.
  • the performance of the flexible battery pack in the present invention does not decrease after repeated bending and folding, and can be bent (180 degrees) in opposite directions, and the capacity of the flexible battery pack is not limited by size.
  • the advantage of the present invention is that the preparation method of the present invention can prepare a flexible battery pack of any shape and capacity, so that the capacity of the flexible battery pack is not limited by the size.
  • the positive and negative electrode materials of the existing flexible battery are easy to fall off from the current collector after multiple bending and folding, and pierce the separator.
  • the separator of the lithium battery is porous organic matter. After the battery is bent and folded multiple times, the separator may be damaged, which may cause short circuit of the battery. Therefore, a safety problem occurs.
  • the flexible battery pack prepared by the preparation method of the present invention has good flexibility, the battery performance does not degrade after a large number of bending and folding, and can be folded in pairs.
  • the encapsulant is filled in the gap, and the encapsulant between the single cells can relieve the damage
  • the stress formed during the bending and folding process ensures that the performance of the flexible battery does not deteriorate after bending.
  • Figure 1 is a schematic diagram of the installation of the battery pack in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the installation of the battery pack in Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of the installation of the battery pack in Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of the installation of the battery pack in Embodiment 4 of the present invention.
  • FIG. 5 is a schematic diagram of the installation of the battery pack in Embodiment 5 of the present invention.
  • FIG. 6 is a schematic diagram of the installation of the battery pack in Embodiment 6 of the present invention.
  • FIG. 7 is a performance diagram of 100 charge-discharge cycles in Example 1 of the present invention.
  • Example 8 is a graph showing the performance of 100 charge-discharge cycles of the battery in Example 1 of the present invention after bending;
  • the preparation method of the flexible battery pack includes the following steps:
  • the negative electrode sheet is prepared on the copper foil, and the positive electrode sheet, the separator and the negative electrode sheet are prepared by a winding process. During the winding process, the positive electrode sheet, the separator and the negative electrode sheet are sequentially stacked and then wound, with the positive electrode sheet on the inner layer.
  • the separator is located between the positive and negative electrodes, and the negative electrode is on the outer layer, and then the core is encapsulated with aluminum plastic film for the first time;
  • LiPF 6 lithium hexafluorophosphate
  • step (2) Place the battery pack prepared in step (2) in a mold.
  • the specific shape of the mold is set according to actual needs.
  • the liquid precursor prepared in step (3) is injected into the mold, and then the mold is placed in a vacuum. Take it out after 30 minutes under the environment, and let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is produced.
  • the positive electrode 6 and the negative electrode 7 of the battery are installed on the outside of the battery, and they are respectively connected by wires.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured.
  • the measurement method uses the BK-600A battery internal resistance tester of Guangzhou Lanqi Electronic Industrial Co., Ltd. to measure the internal resistance of the battery And voltage.
  • the capacity is tested with the high-precision battery performance test system CT-4008-5V6A-S1 equipment of Shenzhen Xinweier Electronics Co., Ltd.
  • the voltage of the battery prepared in this example was 4.20V
  • the internal resistance was 66.47m ⁇
  • the capacity was 503.23mAh.
  • the preparation method of the flexible battery pack includes the following steps:
  • LiPF 6 lithium hexafluorophosphate
  • step (2) Place the battery pack prepared in step (2) in a mold.
  • the specific shape of the mold is set according to actual needs.
  • the liquid precursor prepared in step (3) is injected into the mold, and then the mold is placed in a vacuum. Take it out after 30 minutes under the environment, and let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is produced. For ease of use, any positive electrode tab 2 and any negative electrode tab 3 of the battery are exposed outside the encapsulant 5 in this embodiment.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured.
  • the measurement method is the same as that in Embodiment 1.
  • the preparation method of the flexible battery pack includes the following steps:
  • the ternary material NCM523 as the positive electrode active material, and use a coater to coat on the aluminum foil to prepare the positive electrode sheet, use artificial graphite as the negative electrode active material, and use the coater to coat
  • the negative electrode sheet is prepared on the copper foil, and the positive electrode sheet, the separator and the negative electrode sheet are prepared by a winding process. When the winding is formed, the positive electrode sheet, the separator and the negative electrode sheet are sequentially stacked and then wound, with the positive electrode sheet in the inner layer , The diaphragm is located between the positive and negative electrodes, and the negative electrode is on the outer layer, and then the core is encapsulated with aluminum plastic film for the first time;
  • LiPF 6 lithium hexafluorophosphate
  • the single cell 1 the size of the cell 1 is 3*14*36 (thickness, width, length, unit mm);
  • the electrolyte is ethylene carbonate (EC) and dimethyl carbonate (DMC), ethylene
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the precursors of the encapsulant 5 are epoxy resin A glue and epoxy resin B glue.
  • Epoxy A glue and epoxy resin B glue are prior art. After the two are mixed, they are polymerized and cured at room temperature; this embodiment
  • the epoxy resin A glue and epoxy resin B glue (JH-301) in the example were purchased from Dongguan Juhong New Material Technology Co., Ltd.;
  • step (2) Place the battery pack prepared in step (2) in a mold.
  • the specific shape of the mold is set according to actual needs.
  • the liquid precursor prepared in step (3) is injected into the mold, and then the mold is placed in a vacuum. Take it out after 30 minutes under the environment, and let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is produced. For ease of use, any positive electrode tab 2 and any negative electrode tab 3 of the battery are exposed outside the encapsulant 5 in this embodiment.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured, and the measurement method is the same as that in Embodiment 1.
  • the voltage of the battery prepared in this example was 8.40V
  • the internal resistance was 156.21 m ⁇
  • the capacity was 257.61 mAh.
  • the preparation method of the flexible battery pack includes the following steps:
  • the negative electrode sheet is prepared on the copper foil, and the positive electrode sheet, the separator and the negative electrode sheet are prepared by a winding process. During the winding process, the positive electrode sheet, the separator and the negative electrode sheet are sequentially stacked and then wound, with the positive electrode sheet on the inner layer.
  • the separator is located between the positive and negative electrodes, and the negative electrode is on the outer layer, and then the core is encapsulated with aluminum plastic film for the first time;
  • LiPF 6 lithium hexafluorophosphate
  • the single cell 1 the size of the cell 1 is 3*14*36 (thickness, width, length, unit mm);
  • the electrolyte is ethylene carbonate (EC) and dimethyl carbonate (DMC), ethylene
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the precursors of the encapsulant 5 are epoxy resin A glue and epoxy resin B glue.
  • Epoxy A glue and epoxy resin B glue are prior art. After the two are mixed, they are polymerized and cured at room temperature; this embodiment
  • the epoxy resin A glue and epoxy resin B glue (JH-301) in the example were purchased from Dongguan Juhong New Material Technology Co., Ltd.;
  • step (2) Place the battery pack prepared in step (2) in a mold, the specific shape of the mold is set according to actual needs, inject the liquid precursor prepared in step (3) into the mold, and then place the mold in air Let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is prepared. For ease of use, any positive electrode tab 2 and any negative electrode tab 3 of the battery are exposed outside the encapsulant 5 in this embodiment.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured, and the measurement method is the same as that in Embodiment 1.
  • the voltage of the battery prepared in this example was 4.20V
  • the internal resistance was 68.62m ⁇
  • the capacity was 518.15mAh.
  • the preparation method of the flexible battery pack includes the following steps:
  • the negative electrode sheet is prepared on the copper foil, and the positive electrode sheet, the separator and the negative electrode sheet are prepared by a winding process. During the winding process, the positive electrode sheet, the separator and the negative electrode sheet are sequentially stacked and then wound, with the positive electrode sheet on the inner layer.
  • the diaphragm is located between the positive and negative electrodes, and the negative electrode is on the outer layer, and then the core is encapsulated with aluminum plastic film for the first time;
  • LiPF 6 lithium hexafluorophosphate
  • the winding core is packaged for the third time to obtain four capacities. It is a 25mAh cell 1, the size of cell 1 is 62*190 (diameter 6.2mm, height 19mm); the electrolyte is ethylene carbonate (EC) and dimethyl carbonate (DMC), ethylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the volume ratio to dimethyl carbonate is 1:1, and the formation and encapsulation methods are all existing technologies;
  • thermally conductive silica gel A and 10g of thermally conductive silica gel B weigh and mix 10g of thermally conductive silica gel A and 10g of thermally conductive silica gel B, and add 0.1g of gray colorant to prepare the precursor of encapsulant 5; in this embodiment, the precursor of encapsulant 5 is thermally conductive silica gel A
  • thermally conductive silica gel B glue, thermally conductive silica gel A glue and thermally conductive silica gel B glue are the prior art, after the two are mixed, they are polymerized and cured at room temperature; the thermally conductive silica gel A glue and the thermally conductive silica gel B glue in this embodiment (JH-907) Purchased from Dongguan Juhong New Material Technology Co., Ltd.;
  • step (2) Place the battery pack prepared in step (2) in a mold.
  • the specific shape of the mold is set according to actual needs.
  • the liquid precursor prepared in step (3) is injected into the mold, and then the mold is placed in a vacuum. Take it out after 30 minutes under the environment, and let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is produced. For ease of use, any positive electrode tab 2 and any negative electrode tab 3 of the battery are exposed outside the encapsulant 5 in this embodiment.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured.
  • the measurement method uses the BK-600A battery internal resistance tester of Guangzhou Lanqi Electronic Industrial Co., Ltd. to measure the internal resistance of the battery And voltage.
  • the capacity is tested with the high-precision battery performance test system CT-4008-5V6A-S1 of Shenzhen Xinweier Electronics Co., Ltd.
  • the voltage of the battery prepared in this example was 4.20V
  • the internal resistance was 213.73 m ⁇
  • the capacity was 105.82 mAh.
  • the preparation method of the flexible battery pack includes the following steps:
  • the negative electrode sheet is prepared on the copper foil, and the positive electrode sheet, the separator and the negative electrode sheet are prepared by a winding process. During the winding process, the positive electrode sheet, the separator and the negative electrode sheet are sequentially stacked and then wound, with the positive electrode sheet on the inner layer.
  • the separator is located between the positive and negative electrodes, and the negative electrode is on the outer layer, and then the core is encapsulated with aluminum plastic film for the first time;
  • LiPF 6 lithium hexafluorophosphate
  • the winding core is packaged for the third time to obtain four capacities. It is a 25mAh cell 1, the size of cell 1 is 62*190 (diameter 6.2mm, height 19mm); the electrolyte is ethylene carbonate (EC) and dimethyl carbonate (DMC), ethylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the volume ratio to dimethyl carbonate is 1:1, and the formation and packaging methods are all existing technologies;
  • thermally conductive silica gel A and 10g of thermally conductive silica gel B weigh and mix 10g of thermally conductive silica gel A and 10g of thermally conductive silica gel B, and add 0.1g of black colorant to prepare the precursor of encapsulant 5; in this embodiment, the precursor of encapsulant 5 is thermally conductive silica gel A
  • thermally conductive silica gel B glue, thermally conductive silica gel A glue and thermally conductive silica gel B glue are the prior art, after the two are mixed, they are polymerized and cured at room temperature; the thermally conductive silica gel A glue and the thermally conductive silica gel B glue in this embodiment (JH-907) Purchased from Dongguan Juhong New Material Technology Co., Ltd.;
  • the battery pack prepared in step (2) is placed in a mold.
  • the shape of the mold in this embodiment is ring-shaped.
  • the liquid precursor prepared in step (3) is injected into the mold, and then the mold is placed Under a vacuum environment for 240 minutes, take it out after 240 minutes, and let it stand for 5 hours to complete the packaging of the battery, that is, the flexible battery pack in this embodiment is manufactured.
  • any positive electrode tab 2 and any negative electrode tab 3 of the battery are exposed outside the encapsulant 5 in this embodiment.
  • the electrochemical performance test is performed on the flexible battery pack in this embodiment, and the voltage, internal resistance, and capacity of the battery are measured, and the measurement method is the same as that in Embodiment 1.
  • the voltage of the battery prepared in this example is 4.20V
  • the internal resistance is 159.12m ⁇
  • the capacity is 186.37mAh.
  • the battery packs prepared in Example 1 were named as flexible battery pack A and flexible battery pack B, in which the flexible battery pack A was used as a control group without bending test, and the flexible battery pack B was used as an experimental group for bending test.
  • Bending test method The first step is to bend the right half of the battery 60° counterclockwise while bending the left half of the battery 60° clockwise; the second step is to turn the right half of the battery clockwise. Bend 60°, and at the same time, bend the left half of the battery 60° counterclockwise; the third step, repeat the bending test method, perform a 180° half-fold test after every 30 bend tests, and repeat the bend test 300 times, 10 A total of 310 tests were carried out in two half-fold tests.
  • Figures 7 and 8 are the battery cycle performance test results of the flexible battery pack A and the flexible battery pack B respectively.
  • the solid lines in Figures 7 and 8 represent the charge capacity and the discharge capacity respectively, and the charge capacity curve is above the discharge capacity curve.
  • Table 1 shows the cycle performance test results of flexible battery pack A and flexible battery pack B

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明公开一种柔性电池的制备方法,涉及锂电池技术领域,本发明包括以下步骤:(1)将卷芯或叠芯采用铝塑膜进行第一次封装并注入电解液,化成后进行第二次封装;(2)制备电池组:将注入电解液后的单体电芯串联、并联或串并联设置,单体电芯的个数为2个以上,相邻单体电芯之间间隔设置;(3)将步骤(2)中的电池组放入模具中,然后注入封装剂的前驱体,待前驱体在常温下聚合后,即制得柔性电池组。本发明提供上述制备方法制得的柔性电池组。本发明的有益效果在于:通过本发明的制备方法,通过相邻单体电芯之间间隔设置,并在相邻单体电芯之间的间隙填充封装剂,这样可以有效释放电池在反复弯曲折叠时产生的应力,从而保护柔性电池组在弯曲后性能不发生衰减。

Description

一种柔性电池组的制备方法及制得的柔性电池组 技术领域
本发明涉及电池技术领域,具体涉及一种柔性电池组的制备方法及制得的柔性电池组。
背景技术
随着社会的发展,电子元器件在人类的生活中扮演着日益重要的角色,其中便携式电子元器件给人们生活带来了极大的便利。随着便携式电子元器件的发展,例如便携式智能手表、电子标签、运动健身元器件和医疗健康设备等等,对具有柔性可弯曲的储能器件的出现越来越迫切。
目前的市场上的锂电池一般采取四种封装方式包装:圆柱、方形、扣式和软包。其中圆柱、方形、扣式电池不具有柔性,软包电池在特定的条件下具有一定的柔性(厚度小于2mm的软包电池具有一定的柔性)。公开号为CN102544574A的专利公开一种柔性锂离子电池及其封装方法,该柔性锂离子电池包括柔性外壳和位于柔性外壳内部的电池主体,柔性外壳使用高温注塑成型制备的柔性塑料。
但现有技术中的柔性电池具有以下缺点:1、受制于尺寸限制电池的容量一般在100mAh以下;2、电池在反复弯曲折叠后性能会衰减,折叠后电池正负极材料之间的接触变得不紧密,造成电池内阻增大从而使电池各项性能急速衰减;3、会引发安全问题,由于电池的正负极材料都是涂布在金属箔上,电池多次弯曲折叠后正负极材料会从铜箔或铝箔上脱落,刺穿隔膜造成电池短路,从而产生安全性问题;4、电池的隔膜是多孔的有机物,电池多次弯曲折叠后可能造成隔膜破损,从而造成正负极接触短路产生安全性问题。
发明内容
本发明所要解决的技术问题在于现有技术中的柔性电池在反复折弯后会影响电池的性能,提供一种柔性电池组的制备方法。
本发明通过以下技术手段实现解决上述技术问题的:
本发明提供一种柔性电池组的制备方法,包括以下步骤:
(1)将卷芯或叠芯采用铝塑膜进行第一次封装并注入电解液,化成后进行第二次封装,制得单体电芯;
(2)制备电池组:将注入电解液后的单体电芯串联、并联或串并联设置,所述单体电芯的个数为2个以上,相邻单体电芯之间间隔设置;
(3)将步骤(2)中的电池组放入模具中,然后注入封装剂的前驱体,待前驱体在常温下聚合后,即制得柔性电池组。
有益效果:通过本发明的制备方法,由于相邻单体电芯之间间隔设置,相邻单体电芯之间有间隙,封装剂填充在间隙内,并将电池组覆盖,制得的柔性电池组因为电池之间有封装剂的缓冲作用,可以缓解弯曲时产生的应力,从而保护电池在多次弯曲后性能不发生衰减。
采用本发明中的制备方法,可以制备任意形状和容量的柔性电池组,使得柔性电池组的容量不受尺寸的限制。
通过内部卷芯或叠芯串并联设置电池的输出电压和容量,电池电压不受传统电芯单体电压的限制。
本发明制备方法操作简单,从第一次封装开始可以在室外直接完成。
优选地,所述单体电芯的个数为2-99个。
优选地,相邻单体电芯之间的间隙为0-10mm。
优选地,所述封装剂包括硅胶、硅脂或环氧树脂中的一种或多种。
有益效果:电池温度超过100℃处理后电池性能会发生快速衰减从而失效,采用上述封装剂可以在常温下对电池进行封装,在不影响电池性能的情况下,可以防止电池性能因快速衰减而失效。上述材料绝缘不导电,防 水性好,散热性能好,聚合后形成的固态具有柔性材料的热膨胀率低常温下在10 -12以下、抗压强度和抗拉强度高、介电常数高耐电压。
优选地,所述封装剂还包括添加剂,所述添加剂为着色剂、抗静电剂、抗氧剂、阻燃剂或润滑剂。
优选地,所述着色剂的添加量为封装剂总量的0-10%。
优选地,所述模具的形状为圆环状、正方体状或长方体状。
有益效果:当模具的形状为圆环状时,可以将其应用于手环、手表类电子产品。
优选地,所述电池组中单体电芯上设有极耳,所述极耳位于电芯的同一端或者相对的两端。
优选地,所述单体电芯的串并联包括电池组的串联和并联。
优选地,所述卷芯包括依次卷绕的正极极片、隔膜和负极极片,所述正极极片的一侧或两侧涂覆正极活性材料,所述负极极片的一侧或两侧涂覆负极活性材料,当正极极片的一侧涂覆正极活性材料时,涂覆正极活性材料的一侧朝向隔膜设置;当负极极片的一侧涂覆负极活性材料时,涂覆负极活性材料的一侧朝向隔膜设置。
优选地,所述叠芯包括依次层叠的正极极片、隔膜和负极极片,所述正极极片的一侧或两侧涂覆正极活性材料,所述负极极片的一侧或两侧涂覆负极活性材料,当正极极片的一侧涂覆正极活性材料时,涂覆正极活性材料的一侧朝向隔膜设置;当负极极片的一侧涂覆负极活性材料时,涂覆负极活性材料的一侧朝向隔膜设置。
本发明中的叠芯或卷芯可以为二次电池单体电芯,如锂电池电芯、镍氢电池电芯、镍镉电池电芯,也可以为一次电池电芯,如锌锰干电池电芯。
有益效果:
现有的柔性电池在多次弯曲折叠后正负极材料易从集流体上脱落,刺穿隔膜,电池多次弯曲折叠后可能造成隔膜破损,导致电池短路,从而产 生安全性问题;采用本发明中的制备方法制得的柔性电池具有良好的柔性,且电池在大量的弯曲折叠后性能不发生衰减。
优选地,所述正极活性材料包括磷酸铁锂、钴酸锂、锰酸锂、镍钴锰三元正极材料、镍钴铝三元正极材料中的一种或多种。
优选地,所述负极活性材料包括人造石墨、天然石墨、碳硅负极、钛酸锂中的一种或多种。
优选地,所述电解液包括乙烯碳酸酯(EC)、丙烯碳酸酯(PC)、碳酸亚乙烯酯(VC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、甲酸甲酯(MF)、乙酸乙酯(EA)、四氢呋喃(THF)、乙腈(AN)中的一种或多种。
优选地,所述电解液中的锂盐包括六氟磷酸锂(LiPF 6)、双三氟甲基磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、双草酸硼酸锂(LiBOB)、双(全氟乙基磺酰)亚胺锂(LiBETI)和三氟甲磺酸锂(LiCF 3SO 3)中的一种或多种。
优选地,所述单体电芯上设有正极极耳和负极极耳,所述正极极耳和负极极耳位于单体电芯的同一端,或所述正极极耳和负极极耳分别位于电芯的两端。
优选地,相邻单体电芯的正极极耳之间通过导线连接,相邻单体电芯的负极极耳之间通过导线连接。
优选地,将步骤(3)中注入封装剂的前驱体的模具置于真空环境下0-180min。
本发明所要解决的技术问题在于提供一种由上述制备方法制得的柔性电池组。
有益效果:本发明中的柔性电池组在反复弯曲折叠后性能不发生衰减,可以对折弯折(180度),同时柔性电池组的容量不受尺寸限制。
本发明的优点在于:采用本发明中的制备方法可以制备任意形状和容量的柔性电池组,使得柔性电池组的容量不受尺寸的限制。
现有的柔性电池在多次弯曲折叠后正负极材料易从集流体上脱落,刺穿隔膜,锂电池的隔膜是多孔的有机物,电池多次弯曲折叠后可能造成隔膜破损,导致电池短路,从而产生安全性问题,采用本发明中的制备方法制得的柔性电池组具有良好的柔性,电池在大量的弯曲折叠后性能不发生衰减,且可以实现对折弯折。
本发明中的柔性电池组由于相邻单体电芯之间间隔设置,相邻单体电芯之间有间隙,封装剂填充在间隙内,单体电芯之间的封装剂,可以缓解在弯曲折叠过程中形成的应力,从而保证柔性电池在弯曲后性能不发生衰减。
附图说明
图1为本发明实施例1中电池组的安装示意图;
图2为本发明实施例2中电池组的安装示意图;
图3为本发明实施例3中电池组的安装示意图;
图4为本发明实施例4中电池组的安装示意图;
图5为本发明实施例5中电池组的安装示意图;
图6为本发明实施例6中电池组的安装示意图;
图7为本发明实施例1中100次充放电循环性能图;
图8为本发明实施例1中电池折弯后100次充放电循环性能图;
图中:单体电芯1;正极极耳2;负极极耳3;导线4;封装剂5;正极6;负极7。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
需要说明的是,在本文中,如若存在第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
实施例1
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以钴酸锂为正极活性材料,采用涂布机涂布在铝箔上制得正极片,以人造石墨为负极活性材料,采用涂布机涂布在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯,其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得容量为125mAh的单体电芯1,单体电芯1的尺寸3*14*36(厚度、宽度、长度,单位mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC), 乙烯碳酸酯与碳酸二甲酯的体积比为1:1,化成和封装方法均为现有技术;
(2)制备电池组:如图1所示,电池的正极极耳2和负极极耳3分别安装在单体电芯1的两端,将四个单体电芯1并联连接,相邻单体电芯1之间的间隙为2mm,相邻单体电芯1的正极极耳2之间通过导线4连接,相邻单体电芯1的负极极耳3之间通过导线4连接;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取10g硅胶A胶和10g硅胶B胶混合,制得封装剂5的前驱体;本实施例中封装剂5的前驱体为硅胶A胶和硅胶B胶,硅胶A胶和硅胶B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的硅胶A胶和硅胶B胶(JH-908)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,模具的具体形状根据实际需要设置,将步骤(3)中制得的液态前驱体注入模具中,然后将模具置于真空环境下30min,30min后取出,静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中在电池外侧安装电池正极6和负极7,分别通过导线连接。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法采用广州蓝奇电子实业有限公司的BK-600A电池内阻测试仪进行测量电池内阻和电压。容量用深圳市新威尔电子公司的高精度电池性能测试系统CT-4008-5V6A-S1设备进行测试。
测定结果:本实施例中制得的电池电压为4.20V、内阻为66.47mΩ、容量为503.23mAh。
实施例2
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以磷酸铁锂为正极活性材料,采用喷涂器喷涂在铝箔上制得正极片,以天然石墨为负极活性材料,采用喷涂器喷涂在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯, 其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得容量为125mAh的单体电芯1,单体电芯1的尺寸4*14*38(厚度、宽度、长度,单位mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1,化成和封装方法均为现有技术;
(2)制备电池组:如图2所示,电池的正极极耳2和负极极耳3分别安装在单体电芯1的两端,将四个单体电芯1串联连接,相邻单体电芯1之间的间隙为0mm,相邻单体电芯1的正极极耳2与负极极耳3之间通过导线4连接;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取10g硅胶A胶和10g硅胶B胶混合,制得封装剂5的前驱体;本实施例中封装剂5的前驱体为硅胶A胶和硅胶B胶,硅胶A胶和硅胶B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的硅胶A胶和硅胶B胶(JH-908)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,模具的具体形状根据实际需要设置,将步骤(3)中制得的液态前驱体注入模具中,然后将模具置于真空环境下30min,30min后取出,静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中将电池的任一正极极耳2和任一负极极耳3暴露在封装剂5外。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法与实施例1中相同。
测定结果:本实施例中制得的电池电压为14.8V、内阻为608.82mΩ、容量为128.61mAh。
实施例3
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以三元材料NCM523为正极活性材料,采用涂布机涂布在铝箔上制得正极片,以人造石墨为负极活性材料,采用涂布机涂布在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯,其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得容量为125mAh的单体电芯1,单体电芯1的尺寸3*14*36(厚度、宽度、长度,单位mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1,化成和封装方法均为现有技术;
(2)制备电池组:如图3所示,电池的正极极耳2和负极极耳3分别安装在单体电芯1的两端,将四个单体电芯1串联、并联连接(将两个串联的电芯并联设置),相邻单体电芯1之间的间隙为10mm,两个相邻单体电芯1的正极极耳2之间通过导线4连接、极极耳3之间通过导线4连接,然后将串联单体电芯1并联设置;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取12g环氧树脂A胶(主剂)和6g环氧树脂B胶(硬化剂)混合后,加入0.1g蓝色着色剂,搅拌后制得封装剂5的前驱体;本实施例中封装剂5的前驱体为环氧树脂A胶和环氧树脂B胶,环氧树脂A胶和环氧树脂B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的环氧树脂A胶和环氧树脂B胶(JH-301)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,模具的具体形状根据实际需要设置,将步骤(3)中制得的液态前驱体注入模具中,然后将模具 置于真空环境下30min,30min后取出,静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中将电池的任一正极极耳2和任一负极极耳3暴露在封装剂5外。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法与实施例1相同。
测定结果:本实施例中制得的电池电压为8.40V、内阻为156.21mΩ、容量为257.61mAh。
实施例4
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以钴酸锂为正极活性材料,采用涂布机涂布在铝箔上制得正极片,以人造石墨为负极活性材料,采用涂布机涂布在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯,其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得容量为125mAh的单体电芯1,单体电芯1的尺寸3*14*36(厚度、宽度、长度,单位mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1,化成和封装方法均为现有技术;
(2)制备电池组:如图4所示,电池的正极极耳2和负极极耳3分别安装在单体电芯1的两端,将四个单体电芯1并联连接,相邻单体电芯1之间的间隙为2mm,相邻单体电芯1的正极极耳2之间通过导线4连接,相邻单体电芯1的负极极耳3之间通过导线4连接;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取12g环氧树脂A胶(主剂)和6g环氧树脂B胶(硬化剂) 混合后,加入0.1g蓝色着色剂,搅拌后制得封装剂5的前驱体;本实施例中封装剂5的前驱体为环氧树脂A胶和环氧树脂B胶,环氧树脂A胶和环氧树脂B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的环氧树脂A胶和环氧树脂B胶(JH-301)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,模具的具体形状根据实际需要设置,将步骤(3)中制得的液态前驱体注入模具中,然后将模具置于空气中静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中将电池的任一正极极耳2和任一负极极耳3暴露在封装剂5外。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法与实施例1相同。
测定结果:本实施例中制得的电池电压为4.20V、内阻为68.62mΩ、容量为518.15mAh。
实施例5
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以钴酸锂为正极活性材料,采用涂布机涂布在铝箔上制得正极片,以人造石墨为负极活性材料,采用涂布机涂布在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯,其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得四个容量为25mAh的单体电芯1,单体电芯1的尺寸62*190(直径6.2mm,高19mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯 碳酸酯与碳酸二甲酯的体积比为1:1,其中化成和封装方法均为现有技术;
(2)制备电池组:如图5所示,电池的正极极耳2和负极极耳3安装在单体电芯1的同一端,将四个单体电芯1并联连接,正极极耳2和负极极耳3朝向同一侧,相邻单体电芯1之间的间隙为2mm,相邻单体电芯1的正极极耳2之间通过导线4连接,相邻单体电芯1的负极极耳3之间通过导线4连接;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取10g导热硅胶A胶和10g导热硅胶B胶混合后,加入0.1g灰色着色剂,制得封装剂5的前驱体;本实施例中封装剂5的前驱体为导热硅胶A胶和导热硅胶B胶,导热硅胶A胶和导热硅胶B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的导热硅胶A胶和导热硅胶B胶(JH-907)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,模具的具体形状根据实际需要设置,将步骤(3)中制得的液态前驱体注入模具中,然后将模具置于真空环境下30min,30min后取出,静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中将电池的任一正极极耳2和任一负极极耳3暴露在封装剂5外。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法采用广州蓝奇电子实业有限公司的BK-600A电池内阻测试仪进行测量电池内阻和电压。容量用深圳市新威尔电子公司的高精度电池性能测试系统CT-4008-5V6A-S1设备进行测试。
测定结果:本实施例中制得的电池电压为4.20V、内阻为213.73mΩ、容量为105.82mAh。
实施例6
柔性电池组的制备方法,包括以下步骤:
(1)在氩气保护的手套箱中,以钴酸锂为正极活性材料,采用涂布机涂布在铝箔上制得正极片,以人造石墨为负极活性材料,采用涂布机涂布 在铜箔上制得负极片,将正极片、隔膜和负极片通过卷绕工艺制备卷芯,其中卷绕成型时,将正极片、隔膜和负极片依次层叠后卷绕,正极片在里层,隔膜位于正负极之间,负极片在外层,然后采用铝塑膜对卷芯进行第一次封装;
对卷芯注入锂盐为1mol/L六氟磷酸锂(LiPF 6)的电解液,然后对卷芯进行第二次封装并进行老化和化成,化成后对卷芯进行第三次封装,制得四个容量为25mAh的单体电芯1,单体电芯1的尺寸62*190(直径6.2mm,高19mm);其中电解液为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1,化成和封装方法均为现有技术;
(2)制备电池组:如图6所示,电池的正极极耳2和负极极耳3分别安装在单体电芯1的两端,本实施例中将八个单体电芯并联连接;本实施例中正极极耳2、负极极耳3为现有技术;
(3)称取10g导热硅胶A胶和10g导热硅胶B胶混合后,加入0.1g黑色着色剂,制得封装剂5的前驱体;本实施例中封装剂5的前驱体为导热硅胶A胶和导热硅胶B胶,导热硅胶A胶和导热硅胶B胶为现有技术,二者混合后在常温下聚合反应固化;本实施例中的导热硅胶A胶和导热硅胶B胶(JH-907)购买自东莞市聚宏新材料科技有限公司;
(4)将步骤(2)中制得的电池组置于模具中,本实施例中模具的形状呈环状,将步骤(3)中制得的液态前驱体注入模具中,然后将模具置于真空环境下240min,240min后取出,静置5h,完成电池的封装,即制得本实施例中的柔性电池组。为方便使用,本实施例中将电池的任一正极极耳2和任一负极极耳3暴露在封装剂5外。
对本实施例中的柔性电池组进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法与实施例1相同。
测定结果:本实施例中制得的电池电压为4.20V、内阻为159.12mΩ、容量为186.37mAh。
实施例7
对实施例1中制得的柔性电池组的充放电循环性能进行测定:
将实施例1中制得的电池组命名为柔性电池组A、柔性电池组B,其中柔性电池组A作为对照组不进行弯曲测试,柔性电池组B作为实验组进行弯曲测试。
弯折测试方法:第一步,将电池右半部分朝逆时针方向弯折60°同时将电池左半部分朝顺时针方向弯折60°;第二步,将电池右半部分顺逆时针方向弯折60°,同时将电池左半部分朝逆时针方向弯折60°;第三步,重复弯曲测试方法,每30次弯曲测试后进行一次180°对折测试,反复进行300次弯曲测试,10次对折测试,共进行310次测试。
图7、图8分别为柔性电池组A、柔性电池组B的电池循环性能测试结果,图7、图8中实线分别表示充电容量和放电容量,其中充电容量曲线位于放电容量曲线上方。
表1为柔性电池组A、柔性电池组B的循环性能测试结果表
Figure PCTCN2021090425-appb-000001
从表1、图5和图6可以看出,采用本发明的两种制备方法制得的柔性电池组,在经过折弯测试后仍然保持良好的电化学循环性能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种柔性电池组的制备方法,其特征在于:包括以下步骤:
    (1)将卷芯或叠芯采用铝塑膜进行第一次封装后注入电解液,化成后进行第二次封装,制得单体电芯;
    (2)制备电池组:将注入电解液后的单体电芯串联、并联或串并联设置,所述单体电芯的个数为2个以上,相邻单体电芯之间间隔设置;
    (3)将步骤(2)中的电池组放入模具中,然后注入封装剂的前驱体,待前驱体在常温下聚合后,即制得柔性电池。
  2. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:所述单体电芯的个数为2-99个。
  3. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:相邻单体电芯之间的间隙为0-10mm。
  4. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:所述封装剂包括硅胶、硅脂、聚二甲基硅氧烷或环氧树脂中的一种或多种。
  5. 根据权利要求4所述的柔性电池组的制备方法,其特征在于:所述封装剂还包括添加剂,所述添加剂为着色剂、抗静电剂、抗氧剂、阻燃剂或润滑剂。
  6. 根据权利要求5所述的柔性电池组的制备方法,其特征在于:所述模具的形状为圆环状、正方体状或长方体状。
  7. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:所述电池组中单体电芯上设有极耳,所述极耳位于电芯的同一端或者相对的两端。
  8. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:所述单体电芯的串并联包括电池组的串联和并联。
  9. 根据权利要求1所述的柔性电池组的制备方法,其特征在于:将步骤(3)中注入封装剂的前驱体的模具置于真空环境下0-240min。
  10. 一种采用权利要求1-9中任一项所述的制备方法制得的柔性电池 组。
PCT/CN2021/090425 2020-06-16 2021-04-28 一种柔性电池组的制备方法及制得的柔性电池组 WO2021253994A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010548697.1A CN111653817A (zh) 2020-06-16 2020-06-16 一种柔性电池组的制备方法及制得的柔性电池组
CN202010548697.1 2020-06-16
CN202010960095.7 2020-09-14
CN202010960095.7A CN112002931B (zh) 2020-06-16 2020-09-14 一种柔性电池组的制备方法及制得的柔性电池组

Publications (1)

Publication Number Publication Date
WO2021253994A1 true WO2021253994A1 (zh) 2021-12-23

Family

ID=72345198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090425 WO2021253994A1 (zh) 2020-06-16 2021-04-28 一种柔性电池组的制备方法及制得的柔性电池组

Country Status (2)

Country Link
CN (3) CN111653817A (zh)
WO (1) WO2021253994A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653817A (zh) * 2020-06-16 2020-09-11 深圳信达新能源科技有限公司 一种柔性电池组的制备方法及制得的柔性电池组
CN112909404A (zh) * 2021-02-05 2021-06-04 盐城师范学院 一种柔性电池及其制备方法
CN113437348B (zh) * 2021-07-01 2022-11-04 上海大学 一种双向可弯曲柔性电池及制造方法
WO2023000277A1 (zh) * 2021-07-22 2023-01-26 京东方科技集团股份有限公司 柔性电池和电子设备
CN113809453B (zh) * 2021-09-09 2023-11-14 嘉兴极展科技有限公司 一种柔性可拉伸电池组的制作方法
CN114256500B (zh) * 2021-12-01 2024-03-15 中国电子科技南湖研究院 一种可裁切的带状柔性固态电池
CN114300796B (zh) * 2021-12-30 2024-05-28 三一技术装备有限公司 一种电池
CN115275308B (zh) * 2022-08-11 2023-03-14 扬州大学 柔性面型固态电池的一体成型装置及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824985A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
CN103824986A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
CN109103494A (zh) * 2018-07-24 2018-12-28 安普瑞斯(无锡)有限公司 一种可弯曲聚合物锂离子电池组
KR20190058003A (ko) * 2017-11-21 2019-05-29 주식회사 엘지화학 플렉시블 전지용 패키징, 이를 포함하는 플렉시블 전지 및 그 제조방법
CN110574216A (zh) * 2017-04-24 2019-12-13 A123系统有限责任公司 车辆电池
CN111653817A (zh) * 2020-06-16 2020-09-11 深圳信达新能源科技有限公司 一种柔性电池组的制备方法及制得的柔性电池组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682410B (zh) * 2013-12-23 2017-07-04 宁德新能源科技有限公司 一种可挠式电池组
CN103715380B (zh) * 2013-12-30 2017-05-17 深圳市格瑞普电池有限公司 一种柔性穿戴式锂电池
CN103872276B (zh) * 2014-03-25 2016-05-18 深圳市振华新材料股份有限公司 锂离子电池灌装聚合物组合物,灌装方法及锂电池和应用
CN105098249B (zh) * 2014-04-18 2018-03-13 比亚迪股份有限公司 柔性电池和具有其的柔性电池组
CN105810867B (zh) * 2016-05-10 2017-05-17 国防科学技术大学 固态聚合物锂电池组及其制备方法
CN106229540A (zh) * 2016-05-26 2016-12-14 江苏深苏电子科技有限公司 一种柔性锂离子电池及其制造方法
CN106207195B (zh) * 2016-09-20 2019-06-14 广东国光电子有限公司 一种叠片式柔性电池及其制作方法
JP7049547B2 (ja) * 2018-03-30 2022-04-07 エルジー エナジー ソリューション リミテッド フレキシブル二次電池用パッケージング及びそれを含むフレキシブル二次電池
CN110661035A (zh) * 2018-06-29 2020-01-07 成都市银隆新能源有限公司 一种单体电芯、柔性电池组及其制备方法
CN208690413U (zh) * 2018-07-24 2019-04-02 安普瑞斯(无锡)有限公司 一种可弯曲聚合物锂离子电池组
CN109449493A (zh) * 2018-11-02 2019-03-08 深圳市浩然电池有限公司 一种可弯曲穿戴式锂离子电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824985A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
CN103824986A (zh) * 2014-03-20 2014-05-28 东莞新能源科技有限公司 柔性电池组及其制造方法
CN110574216A (zh) * 2017-04-24 2019-12-13 A123系统有限责任公司 车辆电池
KR20190058003A (ko) * 2017-11-21 2019-05-29 주식회사 엘지화학 플렉시블 전지용 패키징, 이를 포함하는 플렉시블 전지 및 그 제조방법
CN109103494A (zh) * 2018-07-24 2018-12-28 安普瑞斯(无锡)有限公司 一种可弯曲聚合物锂离子电池组
CN111653817A (zh) * 2020-06-16 2020-09-11 深圳信达新能源科技有限公司 一种柔性电池组的制备方法及制得的柔性电池组
CN112002933A (zh) * 2020-06-16 2020-11-27 深圳信达新能源科技有限公司 一种柔性电池组的制备方法及制得的柔性电池组
CN112002931A (zh) * 2020-06-16 2020-11-27 深圳信达新能源科技有限公司 一种柔性电池组的制备方法及制得的柔性电池组

Also Published As

Publication number Publication date
CN111653817A (zh) 2020-09-11
CN112002931B (zh) 2022-03-18
CN112002933B (zh) 2022-08-09
CN112002931A (zh) 2020-11-27
CN112002933A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2021253994A1 (zh) 一种柔性电池组的制备方法及制得的柔性电池组
US9455477B2 (en) Non-aqueous electrolyte battery having polymer layers including graphite
TWI387148B (zh) 陽極及二次電池
US20110281143A1 (en) Lithium-ion storage battery
KR20140101429A (ko) 전지
CN103904381B (zh) 电池内部温度测量装置
CN104904058A (zh) 锂离子二次电池
US20110281142A1 (en) Lithium-ion power battery
US20220393291A1 (en) Battery module, battery pack, electrical apparatus, and manufacturing method and manufacturing device of battery module
CN109786832B (zh) 电解液添加剂、电解液及锂离子二次电池
CN102593545A (zh) 一种锂离子电池及其内部温度的测量方法
CN115863741B (zh) 一种储能装置、储能系统及用电设备
CN105706276B (zh) 非水电解质充电电池以及使用该非水电解质充电电池的蓄电电路
CN111653696A (zh) 一种电池的制备方法及制得的电池
JP2001273930A (ja) ポリマー電池の製造方法
WO2024073960A1 (zh) 电池、电池包及用电设备
WO2022000329A1 (zh) 一种电化学装置及电子装置
JP7389245B2 (ja) 二次電池及び該二次電池を備える装置
ES2923129T3 (es) Electrodo negativo para batería recargable de iones de litio y batería recargable de iones de litio
CN112448014A (zh) 一种超低温高容量二次锂电池及其制备方法
CN109346722A (zh) 一种新型可充电锰酸锂电池
JP7156507B2 (ja) 電池
CN114497464B (zh) 一种锂离子电池正极脉冲预锂化方法及锂离子电池
EP4376182A1 (en) Battery pack and electric device
CN116914228B (zh) 电芯、电池和用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824967

Country of ref document: EP

Kind code of ref document: A1