CN111653696A - 一种电池的制备方法及制得的电池 - Google Patents

一种电池的制备方法及制得的电池 Download PDF

Info

Publication number
CN111653696A
CN111653696A CN202010549750.XA CN202010549750A CN111653696A CN 111653696 A CN111653696 A CN 111653696A CN 202010549750 A CN202010549750 A CN 202010549750A CN 111653696 A CN111653696 A CN 111653696A
Authority
CN
China
Prior art keywords
battery
active material
positive electrode
core
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010549750.XA
Other languages
English (en)
Inventor
廖栋梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinda New Energy Technology Co ltd
Original Assignee
Shenzhen Xinda New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xinda New Energy Technology Co ltd filed Critical Shenzhen Xinda New Energy Technology Co ltd
Priority to CN202010549750.XA priority Critical patent/CN111653696A/zh
Publication of CN111653696A publication Critical patent/CN111653696A/zh
Priority to CN202011039371.2A priority patent/CN111969133A/zh
Priority to CN202110063805.0A priority patent/CN115663259A/zh
Priority to PCT/CN2021/090423 priority patent/WO2021253993A1/zh
Priority to US18/079,003 priority patent/US20230108607A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明公开一种电池的制备方法,涉及电池技术领域,本发明包括以下步骤:(1)制备卷芯或叠芯:将正极活性材料涂覆在正极集流体上,将负极活性材料涂覆在负极集流体上,进行辊压和烘干,分别制得正极极片和负极极片,将制得的正极极片、隔膜、负极极片依次卷绕或层叠呈卷芯或叠芯;(2)将制得的卷芯或叠芯置于模具中,注入封装剂的前驱体进行封装,注入电解质,待前驱体聚合后,即制得电池。本发明还提供上述制备方法制得的电池。本发明的有益效果在于:本发明使用柔性、防水、散热和阻燃材料对卷芯、叠芯进行封装,在源头上使制得的电池具有优异的防水性、散热性、阻燃性和柔性。

Description

一种电池的制备方法及制得的电池
技术领域
本发明涉及电池制备技术领域,具体涉及一种电池的制备方法及制得的电池。
背景技术
人类生活进入20世纪后,人类进入了电器时代。电成为了人类现代文明社会不可或缺的一部分,为了方便的存储电力,人类先后发明了许多的储能器件。例如,干电池、镍镉电池、镍氢电池和锂电池。特别是进入21世纪以后,储能器件由原来只给电子元器件供能,发展为消费电池(应用于消费电子元器件的储能器件)、动力电池和储能电池。随着社会的发展,对储能器件的性能要求也越来越多。在消费电子领域,越来越多的便携式电子元器件在人类的生活中扮演着日益重要的角色,因此希望储能器件具有良好的柔性。例如,小米的手环、apple的智能手表、智能衣服和各种头戴式耳机。目前这些电子设备都是使用的传统的锂电池进行供能。但是传统的电池为了满足性能要求只能将电池做小,从而造成的影响就是这些便携式电子元器件的待机时间很短,经常需要充电。在动力电池领域,目前使用锂电池、镍氢电池和铅酸电池作为动力电池。动力电池由于使用场景的特殊性,对电池的散热性、防水性、阻燃性和安全性要求很高。因此,人们急需一种方法可以制备出具有良好柔性,散热性、防水性、阻燃性的储能器件。
目前的市场上的电池一般采取四种封装方式包装:圆柱、方形、扣式和软包。其中封装材料使用钢壳、铝壳和铝塑膜对储能器件进行封装。采用钢壳、铝壳的电池散热性和阻燃性一般,因此目前使用钢壳、铝壳封装的锂电池作为动力电池的新能源汽车的电池系统的散热性能较差需要配备一个体系复杂的散热系统,也经常发生自燃事件。采用钢壳、铝壳和铝塑膜封装的锂电池作为动力电池,需要使用防水材料额外对电池进行防水封装。
在这四种封装方式中圆柱、方形、扣式这三种封装制备的电池完全不具有柔性,而采用软包方法封装制备的电池在特定条件下(电池的厚度很薄,最好厚度小于1mm)可以弯曲。但是通过这种方法制备出的超薄柔性电池具有以下三个问题:第一,电池的容量低,一般小于100mAh;第二,电池的比表面积大;第三,反复弯曲后由于为硬质材料的铝塑膜不能够及时释放应力,在表面会形成应力集中区最后造成电池短路引发安全事故。除了薄的软包电池具有柔性外另外一种方式也可以制备出柔性电池组:是先采用柔性材料制备好柔性的外壳,然后将电池组组装入这种柔性的外壳留出的特定位置后,最后使用胶水将电池组进行密封。如公开号为CN111129383A的专利申请和公告号为CN102544574A的专利,通过高温注塑成型制备柔性的外壳。但是这种方式制备的柔性电池具有以下几个缺点:第一,增加了电池的制备成本,同样容量的电池采用该方法制备的电池成本更高;第二,该方法不利于自动化的大规模生产;第三,该方法制备的电池由于增加了无效的材料,造成同样体积/质量能量密度更低。
发明内容
本发明旨在提出一种新的电池封装工艺,改善目前电池因为钢壳、铝壳和铝塑膜封装带来防水性差、柔性差、阻燃性差、散热性一般的问题。
本发明通过以下技术手段实现解决上述技术问题的:
本发明提供一种电池的制备方法,包括以下步骤:
(1)制备卷芯或叠芯:将正极活性材料涂覆在正极集流体上,将负极活性材料涂覆在负极集流体上,进行辊压和烘干,分别制得正极极片和负极极片,将制得的正极极片、隔膜、负极极片依次卷绕或层叠呈卷芯或叠芯;
(2)将制得的卷芯或叠芯置于模具中,注入封装剂的前驱体进行封装,注入电解质,待前驱体聚合后,即制得电池;所述封装剂包括硅胶、硅脂、环氧树脂、聚二甲基硅氧烷中的一种或多种。
有益效果:采用本发明中的制备方法,采用硅胶、硅脂、环氧树脂、聚二甲基硅氧烷对卷芯、叠芯进行封装,不仅可以使得电芯有很好的防水效果,还可以及时释放在每次弯曲时产生的应力,从而不会因为弯折过程中应力集中而造成电池短路,可以制备任意形状和容量的防水电池。当使用封装材料为硅胶时电池还有很好的阻燃效果。
由于在温度超过150℃下长时间处理电池,会使得性能发生快速衰减从而失效,且这种高温失效是不可逆的,本发明以封装剂在常温下对电池进行封装,能够有效降低电池的成本,并且不会在封装时破坏电池的性能。
本发明使用柔性、防水、散热和阻燃材料对卷芯、叠芯进行封装,在源头上使制得的电池具有柔性、防水性、散热性和阻燃性。
本发明对电芯制备过程进行改进,与现有技术制备的柔性电池相比,采用本发明中的工艺制备的电池对于相同容量的电池,采用本发明方法制得的电池能量密度更高、成本更低和更加安全,由于使用铝塑膜制备的超薄柔性电池,会在弯曲的过程中因为应力集中破坏电池结构,引发电池短路,而采用本发明中电池的制备方法,封装材料可以缓解释放应力从而避免这个问题,电池能量密度可以达到300Wh/kg以上,同时利于电池的大规模生产,降低生产成本。
优选地,所述电池的长度大于等于厚度的5倍。
有益效果:电池的长度方向指负极极片的长度方向,制得的电池具有优异的弯曲性能和柔性。
优选地,所述硅胶包括导热硅胶。
有益效果:当封装材料是硅胶中的导热硅胶时,电池还具有很好的散热性能。
优选地,将封装后的电池进行老化和化成。
优选地,所述老化步骤包括将封装后的电池置于25-80℃静置6-24h。
优选地,所述正极活性材料的制备方法包括以下步骤:将正极材料、粘结剂、导电剂和溶剂混合,即制得正极活性材料。
优选地,所述溶剂为N-甲基吡咯烷酮(NMP)。
优选地,所述负极活性材料的制备方法包括以下步骤:将负极材料、粘结剂、导电剂和溶剂混合,即制得负极活性材料。
优选地,所述溶剂为去离子水。
优选地,所述正极材料包括磷酸铁锂(LFP)、钴酸锂(LCO)、锰酸锂(LMO)、镍钴锰三元正极材料(NCM)、镍钴铝三元正极材料(NCA)、Ni(OH)2、NiO(OH)中的一种或多种。
优选地,所述负极材料包括人造石墨、天然石墨、中间相碳微球、碳硅负极、钛酸锂、储氢合金、氧化镉粉、锌片中的一种或多种。
优选地,所述电解质包括固态电解质和液体电解质。
优选地,所述液态电解质包括溶剂和锂盐,所述溶剂包括乙烯碳酸酯(EC)、丙烯碳酸酯(PC)、碳酸亚乙烯酯(VC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、乙酸乙酯(EA)、四氢呋喃(THF)、乙腈(AN)中的一种或多种,所述锂盐包括六氟磷酸锂(LiPF6)、双三氟甲基磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)、双草酸硼酸锂(LiBOB)、双(全氟乙基磺酰)亚胺锂(LiBETI)和三氟甲磺酸锂(LiCF3SO3)中的一种或多种。
优选地,所述液态电解质包括氢氧化钾水溶液或氢氧化钠水溶液。
优选地,所述固态电解质包括无机固态电解质、聚合物电解质和凝胶聚合物电解质。
优选地,所述粘结剂包括聚偏氟乙烯(PVDF)、聚氧化乙烯(PEO)、丁苯橡胶(SBR)、羧甲基纤维素钠(CMC-Na)、聚四氟乙烯(PTFE)、羟丙基甲基纤维素(HPMC)中的一种或多种。
优选地,所述导电剂包括碳纳米管(CNT)、炭黑(SP)、石墨粉、纳米碳纤维、石墨烯和镍粉中的一种或多种。
优选地,所述封装剂还包括添加剂,所述添加剂为硅胶色粉。
优选地,所述硅胶色粉的添加量为封装剂总量的0-10%。
优选地,将步骤(3)中注入封装剂的前驱体的模具置于真空环境下30min。
本发明所要解决的技术问题在于提供一种由上述制备方法制得的电池。
有益效果:本发明中的电池具有优异的防水性、散热性、阻燃性。
优选地,所述电池的长度大于等于厚度的五倍。
有益效果:电池具有优异的弯曲性能和柔性。
本发明中的制备获得的电池与现有技术中的电池相比,对于相同容量的电池,采用本发明的制备方法制得的柔性电池能量密度更高、成本更低,电池能量密度可以达到300Wh/kg以上。
附图说明
图1为本发明实施例中电池的正视图;
图2为本发明实施例中正极极片、隔膜、负极极片的叠放的结构示意图;
图3为实施例7中电池折弯测试图;
图4为本发明实施例1中制备的电池未弯折的充放电性能图;
图5为本发明实施例1中电池折弯100次后充放电性能图;
图6为本发明实施例1中电池100小时防水测试充放电性能图;
图中:叠芯或卷芯1;封装剂2;正极3;负极4;正极极片5;负极极片6;隔膜7。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
需要说明的是,在本文中,如若存在第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
实施例1
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以钴酸锂为正极材料,称取47.5g的钴酸锂(LCO)、1g的聚偏氟乙烯(PVDF)、1g的炭黑(SP)、0.5g的碳纳米管(CNT)和25g的N-甲基吡咯烷酮(NMP)混合分散,即制得正极活性材料;
(2)负极活性材料的制备:在氩气保护的手套箱中,以人造石墨为负极材料,称取23.5g的人造石墨、0.375g的羧甲基纤维素钠(CMC-Na)、0.625g的丁苯橡胶(SBR)、0.5g的炭黑(SP)和12.5g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正极活性材料涂覆在铝箔上,涂覆量为40mg/m2,将负极活性材料涂覆在铜箔上涂覆量为20mg/m2,分别在4.5Mpa、4.8Mpa条件下进行辊压后,于80℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;然后安装电池正极和电池负极,电池正极与电池负极的安装方式为现有技术;
(4)制备尺寸为3*30*80(厚度3mm、宽度30mm、长度80mm)的立方体空心模具;
(5)称取15g硅胶A胶,15g硅胶B胶,0.1g黑色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,然后将液体前驱体注入模具,在封装剂封装时预留一个口进行注液,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,注入的锂盐为1mol/L六氟磷酸锂(LiPF6)的电解液,溶剂为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1;注液后采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示,本实施例中封装剂2的前驱体为硅胶A胶和硅胶B胶;硅胶A胶和硅胶B胶(JH-908)购买自东莞市聚宏新材料科技有限公司;
(6)将步骤(5)中制备好的电池于老化房25℃静置24h,老化后对电池进行化成,本实施例中化成方法为现有技术。
对本实施例中的电池进行电化学性能测试,对电池的电压、内阻、容量进行测定,测定方法采用广州蓝奇电子实业有限公司的BK-600A电池内阻测试仪进行测量电池内阻和电压。容量用深圳市新威尔电子公司的高精度电池性能测试系统CT-4008-5V6A-S1设备进行测试。
测定结果:本实施例中制得的电池电压为4.197V、内阻为86.19mΩ、容量为508.76mAh。
实施例2
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以磷酸铁锂为正极材料,称取47.5g的磷酸铁锂(LFP)、1g的聚偏氟乙烯(PVDF)、1g的炭黑(SP)、0.5g的碳纳米管(CNT)和25g的N-甲基吡咯烷酮(NMP)混合分散,即制得正极活性材料;
(2)负极活性材料的制备:在氩气保护的手套箱中,以人造石墨为负极材料,称取23.5g的人造石墨、0.375g的羧甲基纤维素钠(CMC-Na)、0.625g的丁苯橡胶(SBR)、0.5g的炭黑(SP)和12.5g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正极活性材料涂覆在铝箔上,将负极活性材料涂覆在铜箔上,进行辊压后,于80℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;
(4)制备尺寸为8*36*20(厚度8mm、宽度36mm、长度20mm)的立方体空心模具;
(5)称取18g环氧树脂A胶(主剂),9g环氧树脂B胶(硬化剂),0.1g黑色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,然后将液体前驱体注入模具,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,注入的锂盐为1mol/L六氟磷酸锂(LiPF6)的电解液,溶剂为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1;注液后采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示,本实施例中封装剂2的前驱体为环氧树脂A胶和环氧树脂B胶;环氧树脂A胶和环氧树脂B胶(JH-301)购买自东莞市聚宏新材料科技有限公司;
(6)将步骤(5)中制备好的电池于老化房50℃静置12h,老化后对电池进行化成,本实施例中化成方法为现有技术。
采用实施例1中的方法对本实施例中的电池进行电化学性能测试。
测定结果:本实施例中制得的电池电压为3.727V、内阻为104.36mΩ、容量为518.37mAh。
实施例3
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以钴酸锂为正极材料,称取47.5g的钴酸锂(LCO)、1g的聚偏氟乙烯(PVDF)、1g的炭黑(SP)、0.5g的碳纳米管(CNT)和25g的N-甲基吡咯烷酮(NMP)混合分散,即制得正极活性材料;
(2)负极活性材料的制备:在氩气保护的手套箱中,以人造石墨为负极材料,称取23.5g的人造石墨、0.375g的羧甲基纤维素钠(CMC-Na)、0.625g的丁苯橡胶(SBR)、0.5g的炭黑(SP)和12.5g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正极活性材料涂覆在铝箔上,将负极活性材料涂覆在铜箔上,进行辊压后,于80℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;
(4)制备尺寸为3*30*80(厚度3mm、宽度30mm、长度80mm)的立方体空心模具;
(5)称取15g导热硅胶A胶,15g导热硅胶B胶,0.1g蓝色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,然后将液体前驱体注入模具,在封装剂封装时预留一个口进行注液,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,注入的锂盐为1mol/L六氟磷酸锂(LiPF6)的电解液,溶剂为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1;注液后采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示,本实施例中封装剂2的前驱体为导热硅胶A胶和导热硅胶B胶;本实施例中的导热硅胶A胶和导热硅胶B胶(JH-907)购买自东莞市聚宏新材料科技有限公司;
(6)将步骤(5)中制备好的电池于老化房80℃静置6h,老化后对电池进行化成,本实施例中化成方法为现有技术。
采用实施例1中的方法对本实施例中的电池进行电化学性能测试。
测定结果:本实施例中制得的电池电压为4.202V、内阻为98.658mΩ、容量为506.45mAh。
实施例4
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以三元材料NCM为正极材料,称取47.5g的三元材料NCM、1g的聚偏氟乙烯(PVDF)、1g的炭黑(SP)、0.5g的碳纳米管(CNT)和25g的N-甲基吡咯烷酮(NMP)混合分散,即制得正极活性材料;
(2)负极活性材料的制备:在氩气保护的手套箱中,以天然石墨为负极材料,称取23.5g的天然石墨、0.375g的羧甲基纤维素钠(CMC-Na)、0.625g的丁苯橡胶(SBR)、0.5g的炭黑(SP)和12.5g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正极活性材料涂覆在铝箔上,将负极活性材料涂覆在铜箔上,进行辊压后,于80℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;
(4)制备尺寸为3*30*80(厚度3mm、宽度30mm、长度80mm)的立方体空心模具;
(5)称取15g导热硅胶A胶,15g导热硅胶B胶,0.1g黑色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,然后将液体前驱体注入模具,在封装剂封装时预留一个口进行注液,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,注入的锂盐为1mol/L六氟磷酸锂(LiPF6)的电解液,溶剂为乙烯碳酸酯(EC)和碳酸二甲酯(DMC),乙烯碳酸酯与碳酸二甲酯的体积比为1:1;注液后采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示,本实施例中封装剂2的前驱体为导热硅胶A胶和导热硅胶B胶;
(6)将步骤(5)中制备好的电池于老化房50℃静置24h,老化后对电池进行化成,本实施例中化成方法为现有技术。
采用实施例中的方法对本实施例中的电池进行电化学性能测试。
测定结果:本实施例中制得的电池电压为4.216V、内阻为94.453mΩ、容量为506.45mAh。
实施例5
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以Ni(OH)2为正极材料,称取23.4g Ni(OH)2、1g的氧化钴(CoO)、0.3g的Y2O3和15g粘结剂浓度为2%的HPMC,混合分散,即制得正极活性材料;15g粘结剂浓度为2%的HPMC表示将15g HPMC溶解于NMP液体中,HPMC的质量浓度为2%;以CoO和Y2O3为导电剂;
(2)负极活性材料的制备:在氩气保护的手套箱中,以储氢合金为负极材料,称取23.5g的LaNi5储氢合金、0.625g的羧甲基纤维素钠(CMC-Na)、0.375g的丁苯橡胶(SBR)、0.25g的碳纳米管(CNT)和10g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正、负极活性材料分别涂覆在两片泡沫镍上,涂覆量分别为30mg/m2、20mg/m2,于11Mpa条件下进行辊压后,于60℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;
(4)制备尺寸为3*30*80(厚度3mm、宽度30mm、长度80mm)的立方体空心模具;
(5)称取15g导热硅胶A胶,15g导热硅胶B胶,0.1g黑色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,在封装剂封装时预留一个口进行注液,然后将液体前驱体注入模具,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,电解液为6mol/L的KOH水溶液,注液后采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示;本实施例中封装剂2的前驱体为导热硅胶A胶和导热硅胶B胶;硅胶A胶和硅胶B胶(JH-908)购买自东莞市聚宏新材料科技有限公司;
(6)将步骤(5)中制备好的电池于50℃静置24h,老化后对电池进行化成,本实施例中化成方法为现有技术。
采用实施例1中的方法对本实施例中的电池进行电化学性能测试。
测定结果:本实施例中制得的电池电压为1.297V、内阻为86.139mΩ、容量为510.671mAh。
实施例6
电池的制备方法,包括以下步骤:
(1)正极活性材料的制备:在氩气保护的手套箱中,以Ni(OH)2正极材料,称取23.4g Ni(OH)2、1g的氧化钴(CoO)、0.3g的Y2O3和15g粘结剂浓度为2%的HPMC,混合分散,即制得正极活性材料;15g粘结剂浓度为2%的HPMC表示将15g HPMC溶解于NMP液体中,HPMC的质量浓度为2%;以CoO和Y2O3为导电剂;
(2)负极活性材料的制备:在氩气保护的手套箱中,以LaNi5储氢合金为负极材料,称取23.5g的LaNi5储氢合金、0.625g的羧甲基纤维素钠(CMC-Na)、0.375g的丁苯橡胶(SBR)、0.25g的碳纳米管(CNT)、0.25g镍粉和10g的去离子水混合分散,即制得负极活性材料;
(3)将制得的正、负极活性材料分别涂覆在两片泡沫镍上,涂覆量分别为30mg/m2、25mg/m2,于11Mpa条件下进行辊压后,于60℃烘烤24h,即制得正极极片5和负极极片6,如图2所示,将正极极片5、隔膜7、负极极片6构成的叠层依次卷绕呈卷芯1,正极极片5在里层,负极极片6在外层;涂覆正极活性材料的正极极片5朝向隔膜7一侧,涂覆负极活性材料的负极极片6朝向隔膜7一侧;
(4)制备尺寸为3*30*80(厚度3mm、宽度30mm、长度80mm)的立方体空心模具;
(5)称取18g环氧树脂A胶,9g环氧树脂B胶,0.1g白色着色剂置于烧杯中,混匀制得液体前驱体,将卷芯1置于模具中心,卷芯1的长度方法沿模具长度方向设置,卷芯1的宽度方向沿模具的宽度方向设置,卷芯1的宽度为负极极片6的宽度,然后将液体前驱体注入模具,在封装剂封装时预留一个口进行注液,将模具置于真空环境下30min,30min后取出,静置4h,静置完成后,对电池进行注液,注液量为1.6g,电解液为6mol/L的KOH水溶液,注液后化成,对化成后的电池采用相同的封装剂对电池的开口进行第二次封装,封装后的电池如图1所示;本实施例中封装剂2的前驱体为环氧树脂A胶和环氧树脂B胶;环氧树脂A胶和环氧树脂B胶(JH-301)购买自东莞市聚宏新材料科技有限公司;
(6)将步骤(5)中制备好的电池于老化房50℃静置24h,老化后对电池进行化成,本实施例中化成方法为现有技术。
采用实施例1中的方法对本实施例中的电池进行电化学性能测试。
测定结果:本实施例中制得的电池电压为1.304V、内阻为106.459mΩ、容量为506.519mAh。
实施例7
本实施例与实施例6的区别之处在于:称取10g聚二甲基硅氧烷预聚体A和1g聚二甲基硅氧烷固化剂B,混匀制得液体前驱体,其中聚二甲基硅氧烷预聚体A和聚二甲基硅氧烷固化剂B均购买自天威泰达科技有限公司。
实施例8
对实施例1中制得的电池的充放电循环性能进行测定:
将实施例1中制得的电池命名为电池A、电池B和电池C,其中电池A作为空白对照组,电池B和C作为实验组分别进行弯曲测试和防水测试,其中电池B进行100次弯曲测试,将电池C在封住正极后把电池完全浸泡在自来水中100h。
弯折测试方法:如图3所示,第一步,将电池右半部分朝逆时针方向弯折30°同时将电池左半部分朝顺时针方向弯折30°,第一步完成记弯曲一次,第二步,将电池右半部分顺逆时针方向弯折30°,同时将电池左半部分朝逆时针方向弯折30°,第二步完成记弯曲一次。
图4、图5、图6分别为电池A、电池B、电池C的电池循环性能测试结果,图中实线分别表示放电容量,虚线分别表示充电容量和放电容量保持率,其中放电容量曲线位于最上方。
表1为实施例1中制得的电池的循环性能测试结果表
Figure BDA0002542097640000151
从表1、图3-图5可以看出,采用本发明的两种制备方法制得的电池,在经过大量折弯测试后和防水测试后仍然保持良好的电化学循环性能,因此,本发明制备的电池具有良好的柔性和防水性。
实施例3和实施例4中使用导热硅胶封装卷芯1,使电池在具有良好的柔性和防水性同时还具有良好的阻燃性和导热性,实施例2中使用环氧树脂封装卷芯1,电池具有良好的防水性能,但是由于电池结构设计的厚而短不具有柔性,实施例5由于采用环氧树脂进行封装,具有优异的柔性和防水性。实施案例1和6,制备的电池具有良好的柔性、防水性和阻燃性。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种电池的制备方法,其特征在于:包括以下步骤:(1)制备卷芯或叠芯:将正极活性材料涂覆在正极集流体上,将负极活性材料涂覆在负极集流体上,进行辊压和烘干,分别制得正极极片和负极极片,将制得的正极极片、隔膜、负极极片依次卷绕或层叠呈卷芯或叠芯;
(2)将制得的卷芯或叠芯置于模具中心,注入封装剂的前驱体进行封装,注入电解质,待前驱体聚合后,即制得电池;所述封装剂包括硅胶、硅脂、环氧树脂、聚二甲基硅氧烷中的一种或多种。
2.根据权利要求1所述的电池的制备方法,其特征在于:所述电池的长度大于等于厚度的5倍。
3.根据权利要求1所述的电池的制备方法,其特征在于:将封装后的电池进行老化和化成。
4.根据权利要求3所述的电池的制备方法,其特征在于:所述老化步骤包括将封装后的电池置于25-80℃静置6-24h。
5.根据权利要求1所述的电池的制备方法,其特征在于:所述正极活性材料的制备方法包括以下步骤:将正极材料、粘结剂、导电剂和溶剂混合,即制得正极活性材料。
6.根据权利要求1所述的电池的制备方法,其特征在于:所述负极活性材料的制备方法包括以下步骤:将负极材料、粘结剂、导电剂和溶剂混合,即制得负极活性材料。
7.根据权利要求1所述的电池的制备方法,其特征在于:所述硅胶包括导热硅胶。
8.根据权利要求1所述的电池的制备方法,其特征在于:将步骤(3)中注入封装剂的前驱体的模具置于真空环境下30min。
9.一种采用权利要求1-8中任一项所述的制备方法制得的电池。
10.根据权利要求9所述的电池,其特征在于:所述电池的长度大于等于厚度的5倍。
CN202010549750.XA 2020-06-16 2020-06-16 一种电池的制备方法及制得的电池 Withdrawn CN111653696A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010549750.XA CN111653696A (zh) 2020-06-16 2020-06-16 一种电池的制备方法及制得的电池
CN202011039371.2A CN111969133A (zh) 2020-06-16 2020-09-28 一种电池的制备方法及制得的电池
CN202110063805.0A CN115663259A (zh) 2020-06-16 2021-01-18 一种便携式储能器件的一体化封装方法
PCT/CN2021/090423 WO2021253993A1 (zh) 2020-06-16 2021-04-28 一种便携式储能器件的一体化封装方法
US18/079,003 US20230108607A1 (en) 2020-06-16 2022-12-12 Integrated packaging method for portable energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010549750.XA CN111653696A (zh) 2020-06-16 2020-06-16 一种电池的制备方法及制得的电池

Publications (1)

Publication Number Publication Date
CN111653696A true CN111653696A (zh) 2020-09-11

Family

ID=72351335

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202010549750.XA Withdrawn CN111653696A (zh) 2020-06-16 2020-06-16 一种电池的制备方法及制得的电池
CN202011039371.2A Pending CN111969133A (zh) 2020-06-16 2020-09-28 一种电池的制备方法及制得的电池
CN202110063805.0A Pending CN115663259A (zh) 2020-06-16 2021-01-18 一种便携式储能器件的一体化封装方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202011039371.2A Pending CN111969133A (zh) 2020-06-16 2020-09-28 一种电池的制备方法及制得的电池
CN202110063805.0A Pending CN115663259A (zh) 2020-06-16 2021-01-18 一种便携式储能器件的一体化封装方法

Country Status (1)

Country Link
CN (3) CN111653696A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253993A1 (zh) * 2020-06-16 2021-12-23 深圳信达新能源科技有限公司 一种便携式储能器件的一体化封装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207531A (zh) * 2022-08-24 2022-10-18 四川裕宁新能源材料有限公司 一种阻燃电池的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092457B2 (ja) * 2006-03-02 2012-12-05 ソニー株式会社 電池素子外装材、これを用いた非水電解質二次電池及び電池パック
JP5509684B2 (ja) * 2009-06-03 2014-06-04 ソニー株式会社 電池パック
JP6459306B2 (ja) * 2013-08-30 2019-01-30 凸版印刷株式会社 リチウムイオン電池用外装材
CN103715380B (zh) * 2013-12-30 2017-05-17 深圳市格瑞普电池有限公司 一种柔性穿戴式锂电池
US10930904B2 (en) * 2016-04-13 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Battery module, method for manufacturing battery module, and electronic device
CN106098978B (zh) * 2016-08-17 2018-09-21 徐嘉陵 一种锌空气电池结构及封装工艺
JP7146643B2 (ja) * 2017-01-23 2022-10-04 株式会社ダイセル 硬化性エポキシ樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253993A1 (zh) * 2020-06-16 2021-12-23 深圳信达新能源科技有限公司 一种便携式储能器件的一体化封装方法

Also Published As

Publication number Publication date
CN115663259A (zh) 2023-01-31
CN111969133A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN112002931B (zh) 一种柔性电池组的制备方法及制得的柔性电池组
CN201682023U (zh) 一种锂离子电池
US11658294B2 (en) Secondary battery and battery module, battery pack and apparatus comprising the secondary battery
TWI387148B (zh) 陽極及二次電池
WO2022133960A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
CN115863741B (zh) 一种储能装置、储能系统及用电设备
CN114497464B (zh) 一种锂离子电池正极脉冲预锂化方法及锂离子电池
CN111653696A (zh) 一种电池的制备方法及制得的电池
WO2021127997A1 (zh) 二次电池及含有该二次电池的装置
WO2022133963A1 (zh) 电池组、电池包、电学装置以及电池组的制造方法及制造设备
US20230411693A1 (en) Non-aqueous electrolyte and secondary battery, battery module, battery pack and electrical device containing the same
CN116632320A (zh) 一种锂离子电池及包含其的用电装置
JP7389245B2 (ja) 二次電池及び該二次電池を備える装置
CN112713301B (zh) 储能装置
JP7372981B2 (ja) 電気化学装置及びその電気化学装置を含む電子装置
CN116964766A (zh) 正极极片、二次电池、电池模块、电池包和用电装置
CN116914228B (zh) 电芯、电池和用电设备
CN113966558B (zh) 一种二次电池、其制备方法及含有该二次电池的装置
JP2019067513A (ja) 非水電解質二次電池及びその製造方法
CN220400655U (zh) 二次电池、电池模组及电池包
WO2022205221A1 (zh) 电池组、电池包、用电装置以及电池组的制造方法及制造设备
WO2024082291A1 (zh) 锂离子电池和用电装置
CN114335736A (zh) 一种异形电池及其制备方法
WO2024065276A1 (zh) 二次电池及其制备方法、用电装置
WO2024065808A1 (zh) 电池、其制备方法、及包含其的用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200911

WW01 Invention patent application withdrawn after publication