WO2021253868A1 - 碳酸酯的硼氢化反应方法 - Google Patents

碳酸酯的硼氢化反应方法 Download PDF

Info

Publication number
WO2021253868A1
WO2021253868A1 PCT/CN2021/078341 CN2021078341W WO2021253868A1 WO 2021253868 A1 WO2021253868 A1 WO 2021253868A1 CN 2021078341 W CN2021078341 W CN 2021078341W WO 2021253868 A1 WO2021253868 A1 WO 2021253868A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
reaction
catalyst
borane
hydroboration
Prior art date
Application number
PCT/CN2021/078341
Other languages
English (en)
French (fr)
Inventor
薛明强
周帅
徐晓娟
康子晗
陈素芳
朱章野
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021253868A1 publication Critical patent/WO2021253868A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/11Lithium

Definitions

  • the invention relates to a borohydride reaction, in particular to a borohydride reaction method using carbonate and borane as raw materials.
  • the purpose of the present invention is to provide a new carbonate borohydride reaction method, which has a good substrate application range.
  • the technical solution adopted by the present invention is: a carbonate hydroboration reaction method, including the following steps, using carbonate and borane as raw materials, reacting to prepare amino borate in the presence of a catalyst.
  • the catalyst is used to catalyze the reaction of carbonate and borane to prepare borate.
  • the chemical structural formula of the catalyst is as follows: .
  • organolithium reagents such as n-butyllithium requires strict conditions, such as ventilation, dryness, waterproofing, and heat protection, and it is harmful to experimenters during use.
  • the storage of the deprotonated phenyl bridge-ketoimide lithium compound disclosed in the present invention Simple, routinely placed in a glass bottle and placed in a conventional reagent cabinet, it can be prepared in large quantities at one time, and then used directly afterwards, and it is harmless to experimenters during use.
  • the product obtained by the borohydride reaction of the carbonate of the present invention is a borate.
  • the hydroboration reaction of carbonate can be shown as follows: .
  • the specific method for the borohydride reaction of carbonate is to stir and react borane and carbonate for 1.5 to 2.5 hours, preferably 2 hours, under a nitrogen atmosphere at room temperature to 60 o C in the presence of a catalyst. Then contact with air to terminate the reaction and obtain borate esters with different substituents.
  • the borane is pinacol borane;
  • the carbonate is ethylene carbonate, propylene carbonate, dimethyl carbonate, dibenzyl carbonate, 1,3-dioxane -2-one.
  • the amount of the catalyst is 1% of the molar amount of the carbonate, and the molar ratio of the borane to the carbonate is 3.3:1.
  • the catalyst of the present invention comes from another invention application filed by the applicant on the same day, and the name of the invention is a deprotonated ⁇ -ketimide lithium compound and its preparation method.
  • the present invention utilizes the first disclosed lithium complex to catalyze the hydroboration reaction of carbonate and pinacol borane, thereby developing a class of highly efficient catalytic boron
  • the hydrogenation reaction method has simple structure and easy synthesis. It can catalyze the borohydride reaction of carbonate and borane with high activity at 60 o C.
  • the amount of catalyst is only 1% of the molar amount of carbonate, and the reaction can reach 90%.
  • the above yield compared with the existing catalytic system, reduces the amount of catalyst, the temperature is milder, and the yield is higher.
  • the raw materials involved in the present invention are all commercially available products. Under the preparation method of the present invention, the specific operation steps and test methods are conventional methods in the field; the reactions of the synthesis examples are all carried out in the air.
  • the method for preparing the above-mentioned catalyst lithium complex includes the following steps: mixing a small molecule organolithium solution with a ligand solution and then reacting to obtain a catalyst lithium complex; the chemical structural formula of the ligand is as follows: .
  • the small molecule organic lithium in the small molecule organic lithium solution, includes n-butyl lithium, and the solvent is an alkyl solvent, such as hexane; in the ligand solution, the solvent is an ether solvent, such as tetrahydrofuran.
  • the molar ratio of small molecule organolithium to ligand is 4:1, and this ratio has not been reported in the synthesis and application of ⁇ -ketimine anionic ligand.
  • the catalyst of the present invention comes from another invention application filed by the applicant on the same day, and the name of the invention is a deprotonated ⁇ -ketimide lithium compound and its preparation method.
  • ⁇ -Ketimines as an important class of non-locene ligands, are easy to synthesize. Their charge and steric effects can be conveniently controlled by changing the substituents at the ⁇ and ⁇ positions, and they can interact with metals through a variety of coordination methods. Coordination to form a variety of structural metal complexes and other characteristics.
  • ⁇ -diimine anionic ligands in organometallic chemistry, the application of ⁇ -ketoimine anionic ligands is less.
  • Existing reports focus on the complexes with single anion ⁇ -ketimine as the backbone. There has been no report on the compound (complex) of the double anion ⁇ -ketimine ligand so far.
  • Example 1 [L ph ' Li 4 (THF) 4 ] 2 catalyzes the reduction reaction of ethylene carbonate and pinacol borane: Add catalyst 5.84 mg to the reaction flask after dehydration and deoxygenation under an inert gas atmosphere (0.005 mmol), use a pipette to add ethylene carbonate (33.3 ⁇ L, 0.5 mmol), pinacol borane (239.4 ⁇ L, 1.65 mmol), THF (200 ⁇ L), and after reacting at 60 o C for 120 min, Use mesitylene (69.6 ⁇ L, 0.5 mmol) as the internal standard, stir evenly, use a dropper to pipette a drop into the NMR tube, and add CDCl 3 to make a solution. The calculated 1 H spectrum yield is 99%.
  • the nuclear magnetic data of the product 1 H NMR (400 MHz, CDCl 3 ) ⁇ 3.90 (s, 4H, OCH 2 ), 1.21 (s, 24H
  • Comparative example The catalyst is replaced with the same molar amount: .
  • Example 2 [L ph ' Li 4 (THF) 4 ⁇ ] 2 Catalyzes the reduction reaction of propylene carbonate and pinacol borane: Add catalyst 5.84 to the reaction flask after dehydration and deoxygenation under an inert gas atmosphere mg, use a pipette to add propylene carbonate (42.4 ⁇ L, 0.5 mmol), pinacol borane (239.4 ⁇ L, 1.65 mmol), THF (200 ⁇ L), and react at 60 o C for 120 min. Toluene (69.6 ⁇ L, 0.5 mmol) was used as the internal standard. After stirring evenly, pipette a drop into the NMR tube, and add CDCl 3 to make a solution.
  • the calculated 1 H spectrum yield is 99%.
  • Example 3 [L ph ' Li 4 (THF) 4 ] 2 catalyzes the reduction reaction of 1,3-dioxane-2-one and pinacol borane: under an inert gas atmosphere, it is dehydrated After deoxygenation treatment, 5.84 mg of catalyst was added to the reaction flask, and 1,3-dioxane-2-one (51.1 mg, 0.5 mmol), pinacol borane (239.4 ⁇ L, 1.65) were added sequentially with a pipette.
  • Example 4 [L ph ' Li 4 (THF) 4 ] 2 catalyzes the reduction reaction of dimethyl carbonate and pinacol borane: Add catalyst 5.84 to the reaction flask after dehydration and deoxygenation under an inert gas atmosphere mg, use a pipette to add dimethyl carbonate (42.2 ⁇ L, 0.5 mmol), pinacol borane (239.4 ⁇ L, 1.65 mmol), THF (200 ⁇ L), and react at 60 o C for 120 min. Trimethylbenzene (69.6 ⁇ L, 0.5 mmol) was used as the internal standard. After stirring evenly, pipette a drop into the NMR tube and add CDCl 3 to make a solution. The calculated 1 H spectrum yield is 95%.
  • the nuclear magnetic data of the product 1 H NMR (400 MHz, CDCl 3 ) ⁇ 3.55 (s, 3H, CH 3 ), 1.21 (s, 36H, OBpin).
  • Example 5 [L ph ' Li 4 (THF) 4 ] 2 catalyzes the reduction reaction of dibenzyl carbonate and pinacol borane: Add catalyst 5.84 to the reaction flask after dehydration and deoxygenation under an inert gas atmosphere mg, use a pipette to add dibenzyl carbonate (105.2 ⁇ L, 0.5 mmol), pinacol borane (239.4 ⁇ L, 1.65 mmol), THF (200 ⁇ L), and react at 60 o C for 120 min. Trimethylbenzene (69.6 ⁇ L, 0.5 mmol) was used as the internal standard. After stirring evenly, pipette a drop into the NMR tube and add CDCl 3 to make a solution.
  • the [L ph ' Li 4 (THF) 4 ] 2 complex is applied to the borohydride reaction of carbonate, with 1 mol% deprotonated phenyl bridged ⁇ -ketimine lithium compound as a catalyst, and the reaction temperature is 25-60 o C, the reaction time is 120 min, which can realize the efficient reduction of carbonate and pinacol borane.
  • the method for purifying boric acid ester of the present invention after the reaction, the reaction mixture in the reaction flask is filtered, the filtrate is put into a vacuum drying oven, and excess pinacol borane and solvent THF are removed under reduced pressure to obtain pure boron Acid ester products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

本发明涉及一种碳酸酯硼氢化反应,具体涉及一种以碳酸酯、硼烷为原料的硼氢化反应方法。β-酮亚胺作为一类重要的非茂基配体,具有易于合成,其电荷及空间效应可通过α位及β位的取代基的改变得以方便调控,以及可以通过多种配位方式与金属配位,从而形成结构多样性的金属配合物等特点。本发明提供新的碳酸酯硼氢化反应方法,有好的底物适用范围。

Description

碳酸酯的硼氢化反应方法 技术领域
本发明涉及一种硼氢化反应,具体涉及一种以碳酸酯、硼烷为原料的硼氢化反应方法。
背景技术
不饱和化合物的硼氢化反应一直是科研工作者们的研究热点,迄今为止,已经有大量文献报道了羰基化合物的硼氢化反应。酯由于空间位阻和电子效应,活性不如醛酮高,关于酯的硼氢化反应研究相对较少。碳酸酯作为酯的一种类别,其硼氢化反应也引起了人们的注意。目前已经开发出了主族金属Mg类催化剂,过渡金属Mn类配合物以及稀土金属配合物。2019年,Walter 课题组报道了一种锰类钳形类复合物[Mn(Ph 2PCH 2SiMe 2) 2NH(CO) 2Br]催化羧酸,碳酸酯以及 CO 2与频哪醇硼烷的还原反应[Erken, C.; Kaithal, A.; Sen, S.; Weyhermüller, T.; Hölscher, M.; Werlé , C.; Leitner, W. Nat. Commun. 2018, 9, 4521.]。同年,我们课题组使用商品化的LaN TMS作为催化剂,在温和的反应条件下实现了碳酸酯的高效还原[Xu, X.; Kang, Zi, Yan, D. and Xue, M. Chin. J. Chem. 2019, 37, 1142.]。2020年,Rueping课题组报道了使用碱土金属MgBu 2作为催化剂,可以实现碳酸酯的有效还原[Szewczyk, M.; Magre, M.; Zubar, V. and Rueping, M. ACS Catal. 2019, 9, 11634.]。
技术问题
本发明的发明目的是提供新的碳酸酯硼氢化反应方法,有好的底物适用范围。
技术解决方案
为达到上述目的,本发明采用的技术方案是:碳酸酯的硼氢化反应方法,包括以下步骤,以碳酸酯和硼烷为原料,在催化剂存在下,反应制备氨基硼酸酯。
催化剂在催化碳酸酯和硼烷反应制备硼酸酯中的应用。
本发明中,所述催化剂的化学结构式如下:
Figure 347685dest_path_image001
Figure 323731dest_path_image002
有机锂试剂比如正丁基锂存储需要严格的条件,比如通风、干燥、防水、防热,而且使用时对实验人员有危害,本发明公开的脱质子苯基桥连-酮亚胺锂化合物存储简易,常规放在玻璃瓶中,放入常规试剂柜即可,可以一次大量制备,后续直接使用,使用时对实验人员无害。本发明碳酸酯的硼氢化反应得到的产物为硼酸酯。
碳酸酯的硼氢化反应示意可如下:
Figure 333276dest_path_image003
上述技术方案中,碳酸酯的硼氢化反应的具体方法为,室温~60 oC下,在氮气氛围下,在催化剂存在下,将硼烷和碳酸酯搅拌反应1.5~2.5小时,优选2小时,然后接触空气终止反应,得到不同取代基的硼酸酯。
上述技术方案中,所述的硼烷为频哪醇硼烷;所述碳酸酯为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二苄酯、1,3-二氧杂环己烷-2-酮。
上述技术方案中,所述催化剂的用量为碳酸酯的摩尔量的1%,所述硼烷和碳酸酯的摩尔比为3.3:1。
本发明的催化剂来自于申请人同日提交的另一篇发明申请,发明名称为一种脱质子β-酮亚胺锂化合物及其制备方法。
有益效果
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明利用首次公开的锂配合物催化碳酸酯和频哪醇硼烷的硼氢化反应,从而开发出一类高效的催化硼氢化反应的方法,其结构简单,合成容易,可以在60 oC条件下高活性的催化碳酸酯和硼烷的硼氢化反应,催化剂用量仅为碳酸酯摩尔量的1%,反应可达90%以上的收率,与已有的催化体系相比,降低了催化剂用量,温度较温和,并且产率较高。
本发明的实施方式
本发明涉及的原料都是市售产品,在本发明制备方法下,具体的操作步骤以及测试方法都是本领域常规方法;合成例的反应都在空气中进行。
合成例:本发明中,上述催化剂锂配合物的制备方法包括以下步骤,将小分子有机锂溶液与配体溶液混合,然后反应,得到催化剂锂配合物;所述配体的化学结构式如下:
Figure 445588dest_path_image004
本发明中,小分子有机锂溶液中,小分子有机锂包括正丁基锂,溶剂为烷基溶剂,比如己烷;配体溶液中,溶剂为醚类溶剂,比如四氢呋喃。
本发明,小分子有机锂与配体的摩尔比为4∶1,该比例在β-酮亚胺阴离子配体的合成应用中未曾报道过。
具体的:间苯基桥连β-酮亚胺配体(L phH 2)的合成:
Figure 780755dest_path_image005
在三颈瓶中加入150 ml无水乙醇,10.8 g间苯二胺 (100 mmol),20.5 mL乙酰丙酮 (200 mmol),催化量对甲苯磺酸,加热回流24小时,得到红棕色液体及淡黄色固体混合物,抽滤,固体用无水乙醇重结晶,得淡黄色针状晶体24.5 g,得率90%,为配体L phH 21H NMR (400 MHz, CDCl 3): δ12.47 (2H, s, NH),7.32-7.27 (1H, m, ArH), 6.94-6.91 (2H, m, ArH), 6.86 (1H, s, ArH), 5.21 (2H, s, CH=C(CH 3)N),2.10 (6H, s, CH 3),2.01 (6H, s, CH 3)。 13C NMR (101 MHz, CDCl 3): δ196.54 (COCH 3), 159.62 (C=CH), 139.63 (Ar-C), 129.71 (Ar-C), 121.45 (Ar-C), 120.43 (Ar-C), 98.20 (=CH), 29.25 (CH 3), 19.94 (CH 3)。HRMS (ESI-MS) calcd. for C 16H 20N 2O 2 [M+H] +: 273.1558, found: 273.1633。
脱质子苯基桥连β-酮亚胺锂化合物[L ph Li 4(THF) 4] 2的合成:
Figure 244097dest_path_image006
在冰浴条件下,将正丁基锂的己烷溶液(19.40 mmol, 2.5 M)加入到L phH 2 (4.85 mmol)的四氢呋喃溶液中,溶液由淡黄色清液逐渐变为浅桔红色浊液,1分钟加完之后,在室温下反应12 h;反应结束后,对反应液加热(100 oC)使其变成桔红色清液,清液浓缩至浑浊后离心,将上层清液继续浓缩至碎晶产生,加热溶解,然后自然冷却至室温,封瓶,室温下静置1 h,析出淡黄色晶体[L ph Li 4(THF) 4] 2 {L ph = C 6H 4[N(CH 3)C=CHCO=CH 2] 2},常规分离干燥,得到2.13 g产物,产率75%,晶体结构见图1。熔点:194.6-196.7 oC。 1H NMR (400 MHz, C 2D 6SO): δ7.60-7.13 (2H, m, ArH), 7.00-6.96 (2H, m, ArH), 6.09 (2H, s), 4.55 (4H, s),1.69-1.66 (6H, m)。 13C NMR (101 MHz, C 2D 6SO): δ179.53, 163.77, 154.04, 129.35, 127.83, 117.68, 116.40, 95.55, 28.88, 21.95。IR (KBr): 2972.71, 2869.81, 1590.41, 1500.86, 1468.03, 1412.07, 1360.89, 1318.03, 1280.73, 1238.47, 1146.11, 1053.76, 1019.62, 970.28, 924.75, 887.93, 806.76, 748.66, 699.55, 643.56。
化合物[L ph Li 4(THF) 4] 2
Figure 808065dest_path_image007
本发明的催化剂来自于申请人同日提交的另一篇发明申请,发明名称为一种脱质子β-酮亚胺锂化合物及其制备方法。
β-酮亚胺作为一类重要的非茂基配体,具有易于合成,其电荷及空间效应可通过α位及β位的取代基的改变得以方便调控,以及可以通过多种配位方式与金属配位,从而形成结构多样性的金属配合物等特点。然而,与β-二亚胺阴离子配体在有机金属化学上的研究相比,β-酮亚胺阴离子配体的应用研究却较少。已有的报道集中在单负离子β-酮亚胺为骨架的配合物上。关于双负离子β-酮亚胺配体的化合物(配合物)迄今为止没有报道。
实施例一:[L ph Li 4(THF) 4] 2催化碳酸乙烯酯和频哪醇硼烷的还原反应:在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂5.84 mg(0.005 mmol),用移液枪依次加入碳酸乙烯酯 (33.3 μL, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在60 oC反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为99%。产物的核磁数据: 1H NMR (400 MHz, CDCl 3) δ3.90 (s, 4H, OCH 2), 1.21 (s, 24H, OBpin)。
对比例:催化剂更换为同摩尔量的:
Figure 774884dest_path_image008
在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂1.08 mg(0.005 mmol),用移液枪依次加入碳酸乙烯酯 (33.3 μL, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在60 oC反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为15%。
实施例二:[L ph Li 4(THF) 4}] 2催化碳酸丙烯酯和频哪醇硼烷的还原反应:在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂5.84 mg,用移液枪依次加入碳酸丙烯酯 (42.4 μL, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在60 oC反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为99%。产物的核磁数据: 1H NMR (400 MHz, CDCl 3) δ4.28-4.20 (m, 1H, CH 3CH), 3.71 (d, J = 5.6 Hz, 2H, OCH 2), 1.21 (s, 12H, OBpin), 1.20 (s, 12H, OBpin)。
实施例三:[L ph Li 4(THF) 4] 2催化1,3-二氧杂环己烷-2-酮和频哪醇硼烷的还原反应:在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂5.84 mg,用移液枪依次加入1,3-二氧杂环己烷-2-酮 (51.1 mg, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在室温(25 oC)反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为99%。产物的核磁数据: 1H NMR (400 MHz, CDCl 3) δ3.90-3.87 (m, 1H, CH 3CH), 1.82-1.75 (quin, J = 6.5 Hz, 2H, CH 2), 1.20 (s, 24H, OBpin)。
实施例四:[L ph Li 4(THF) 4] 2催化碳酸二甲酯和频哪醇硼烷的还原反应:在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂5.84 mg,用移液枪依次加入碳酸二甲酯 (42.2 μL, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在60 oC反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为95%。产物的核磁数据: 1H NMR (400 MHz, CDCl 3) δ3.55 (s, 3H, CH 3), 1.21 (s, 36H, OBpin)。
实施例五:[L ph Li 4(THF) 4] 2催化碳酸二苄酯和频哪醇硼烷的还原反应:在惰性气体氛围下,向经过脱水脱氧处理后的反应瓶中加入催化剂5.84 mg,用移液枪依次加入碳酸二苄酯 (105.2 μL, 0.5 mmol),频哪醇硼烷 (239.4 μL, 1.65 mmol),THF (200 μL), 在60 oC反应120 min后,以均三甲苯(69.6 μL, 0.5 mmol)为内标,搅拌均匀后,用滴管吸取一滴于核磁管中,加入CDCl 3配成溶液。经计算 1H谱产率为96%。产物的核磁数据: 1H NMR (400 MHz, CDCl 3) δ7.31-7.19 (m, 10H, ArCH), 4.88 (s, 4H, OCH 2), 1.22 (s, 24H, OBpin)。
本发明将[L ph Li 4(THF) 4] 2配合物应用于碳酸酯的硼氢化反应中,以1 mol% 脱质子苯基桥连β-酮亚胺锂化合物为催化剂,反应温度为25-60 oC,反应时间为120 min,可以实现碳酸酯和频哪醇硼烷的高效还原。
上述内标计算收率:
Figure 280951dest_path_image009
本发明硼酸酯的提纯方法:反应结束后,将反应瓶中的反应混合液过滤,滤液放入真空干燥箱中,通过减压除去过量的频哪醇硼烷和溶剂THF,得到纯的硼酸酯产物。

Claims (7)

  1. 碳酸酯的硼氢化反应方法,包括以下步骤,以碳酸酯和硼烷为原料,在催化剂存在下,反应制备硼酸酯;所述催化剂的化学结构式如下:
    Figure 178757dest_path_image001
  2. 根据权利要求1所述碳酸酯的硼氢化反应方法,其特征在于,所述碳酸酯的硼氢化反应得到的产物为硼酸酯。
  3. 根据权利要求1所述碳酸酯的硼氢化反应方法,其特征在于,碳酸酯的硼氢化反应的温度为室温~60 oC,时间为1.5~2.5小时。
  4. 根据权利要求1所述碳酸酯的硼氢化反应方法,其特征在于,所述的硼烷为频哪醇硼烷;所述碳酸酯为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二苄酯、1,3-二氧杂环己烷-2-酮。
  5. 根据权利要求1所述碳酸酯的硼氢化反应方法,其特征在于,所述催化剂的用量为碳酸酯的摩尔量的1%,所述硼烷和碳酸酯的摩尔比为3.3:1。
  6. 催化剂在催化碳酸酯和硼烷反应制备硼酸酯中的应用;所述催化剂的化学结构式如下:
    Figure 436563dest_path_image002
  7. 根据权利要求6所述的应用,其特征在于,反应的温度为室温~60 oC,时间为1.5~2.5小时,然后接触空气终止反应,得到产物硼酸酯。
PCT/CN2021/078341 2020-06-16 2021-02-27 碳酸酯的硼氢化反应方法 WO2021253868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010550177.4 2020-06-16
CN202010550177.4A CN111763226A (zh) 2020-06-16 2020-06-16 碳酸酯的硼氢化反应方法

Publications (1)

Publication Number Publication Date
WO2021253868A1 true WO2021253868A1 (zh) 2021-12-23

Family

ID=72722665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078341 WO2021253868A1 (zh) 2020-06-16 2021-02-27 碳酸酯的硼氢化反应方法

Country Status (2)

Country Link
CN (1) CN111763226A (zh)
WO (1) WO2021253868A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111760593A (zh) * 2020-06-16 2020-10-13 苏州大学 脱质子苯基桥连β-酮亚胺锂化合物在硼氢化反应中的应用
CN111763226A (zh) * 2020-06-16 2020-10-13 苏州大学 碳酸酯的硼氢化反应方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201958A1 (en) * 2010-08-05 2012-08-09 Air Products And Chemicals, Inc. Multidentate Ketoimine Ligands For Metal Complexes
CN102838628A (zh) * 2012-09-18 2012-12-26 华东理工大学 β-酮亚胺配体铝络合物及其制备方法和应用
CN104447725A (zh) * 2014-10-22 2015-03-25 浙江大学 一种手性含亚胺吡啶噁唑啉的化合物及其制备方法
CN105085380A (zh) * 2014-05-20 2015-11-25 中国科学院上海有机化学研究所 Nn配体、nn配体铁络合物、晶体、制备方法及应用
CN105384731A (zh) * 2015-10-16 2016-03-09 浙江大学 一种手性含胺甲基吡啶噁唑啉的化合物及其制备方法
CN105693647A (zh) * 2016-01-11 2016-06-22 浙江大学 一种手性含亚胺噁唑啉胺类的化合物及其制备方法
CN106040303A (zh) * 2016-06-30 2016-10-26 苏州大学张家港工业技术研究院 β–二亚胺基二价稀土硼氢配合物在催化酮与硼烷硼氢化反应中的应用
CN106243132A (zh) * 2016-09-18 2016-12-21 山西大学 一种金属Cu(I)配合物及其制备方法和应用
CN107602595A (zh) * 2017-09-27 2018-01-19 南京林业大学 一种β‑二亚胺一价镁化合物及其制备方法和在醛酮硼氢化中的应用
CN108373480A (zh) * 2018-04-16 2018-08-07 苏州大学 利用对甲基苯胺基锂制备硼酸酯的方法
CN109467498A (zh) * 2018-12-25 2019-03-15 苏州大学 基于正丁基锂的芳香族羧酸制备醇化合物的方法
CN110256474A (zh) * 2019-07-17 2019-09-20 苏州大学 三硅胺稀土配合物在催化碳酸酯和硼烷反应中的应用
CN110483560A (zh) * 2019-08-06 2019-11-22 河北科技大学 一种脂肪族烯烃硼氢化反应合成烷基硼酸酯的铁催化体系及其应用方法
CN111744551A (zh) * 2020-06-16 2020-10-09 苏州大学 锂配合物在腈的硼氢化反应中的应用
CN111747972A (zh) * 2020-06-16 2020-10-09 苏州大学 一种脱质子β-酮亚胺锂化合物及其制备方法
CN111763135A (zh) * 2020-06-16 2020-10-13 苏州大学 脱质子苯基桥连β-酮亚胺锂化合物在酯制备醇中的应用
CN111760593A (zh) * 2020-06-16 2020-10-13 苏州大学 脱质子苯基桥连β-酮亚胺锂化合物在硼氢化反应中的应用
CN111763226A (zh) * 2020-06-16 2020-10-13 苏州大学 碳酸酯的硼氢化反应方法
CN111909194A (zh) * 2020-08-19 2020-11-10 苏州大学 脱质子苯基桥连β-酮亚胺锂配合物催化酮氰硅化反应的方法
CN111992254A (zh) * 2020-08-19 2020-11-27 苏州大学 脱质子苯基桥连β-酮亚胺锂配合物在氰硅化反应中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164555B (zh) * 2016-06-30 2020-05-22 苏州大学 一种硼酸酯的合成方法
CN108948058B (zh) * 2017-03-17 2020-07-14 苏州大学 三茂稀土金属配合物作为催化剂在催化醛和频哪醇硼烷合成反应中的应用
CN106883256B (zh) * 2017-03-17 2018-12-21 苏州大学 一种利用三茂稀土金属配合物制备硼酸酯的方法
CN107474063B (zh) * 2017-08-14 2019-11-22 苏州大学 一种制备硼酸酯的方法
CN107930696B (zh) * 2017-11-10 2020-02-11 苏州大学 三甲茂稀土配合物在催化亚胺和硼烷的硼氢化反应中的应用
CN111320644B (zh) * 2018-09-27 2022-04-15 苏州大学 一种硼氢化反应制备硼酸酯的方法
CN109503641B (zh) * 2018-12-18 2021-01-01 苏州大学 基于苯胺基锂化合物制备硼酸酯的方法
CN110357914B (zh) * 2019-07-17 2022-02-25 苏州大学 三硅胺稀土配合物在催化酯和硼烷反应制备硼酸酯中的应用

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201958A1 (en) * 2010-08-05 2012-08-09 Air Products And Chemicals, Inc. Multidentate Ketoimine Ligands For Metal Complexes
CN102838628A (zh) * 2012-09-18 2012-12-26 华东理工大学 β-酮亚胺配体铝络合物及其制备方法和应用
CN105085380A (zh) * 2014-05-20 2015-11-25 中国科学院上海有机化学研究所 Nn配体、nn配体铁络合物、晶体、制备方法及应用
CN104447725A (zh) * 2014-10-22 2015-03-25 浙江大学 一种手性含亚胺吡啶噁唑啉的化合物及其制备方法
CN105384731A (zh) * 2015-10-16 2016-03-09 浙江大学 一种手性含胺甲基吡啶噁唑啉的化合物及其制备方法
CN105693647A (zh) * 2016-01-11 2016-06-22 浙江大学 一种手性含亚胺噁唑啉胺类的化合物及其制备方法
CN106040303A (zh) * 2016-06-30 2016-10-26 苏州大学张家港工业技术研究院 β–二亚胺基二价稀土硼氢配合物在催化酮与硼烷硼氢化反应中的应用
CN106243132A (zh) * 2016-09-18 2016-12-21 山西大学 一种金属Cu(I)配合物及其制备方法和应用
CN107602595A (zh) * 2017-09-27 2018-01-19 南京林业大学 一种β‑二亚胺一价镁化合物及其制备方法和在醛酮硼氢化中的应用
CN108373480A (zh) * 2018-04-16 2018-08-07 苏州大学 利用对甲基苯胺基锂制备硼酸酯的方法
CN109467498A (zh) * 2018-12-25 2019-03-15 苏州大学 基于正丁基锂的芳香族羧酸制备醇化合物的方法
CN110256474A (zh) * 2019-07-17 2019-09-20 苏州大学 三硅胺稀土配合物在催化碳酸酯和硼烷反应中的应用
CN110483560A (zh) * 2019-08-06 2019-11-22 河北科技大学 一种脂肪族烯烃硼氢化反应合成烷基硼酸酯的铁催化体系及其应用方法
CN111744551A (zh) * 2020-06-16 2020-10-09 苏州大学 锂配合物在腈的硼氢化反应中的应用
CN111747972A (zh) * 2020-06-16 2020-10-09 苏州大学 一种脱质子β-酮亚胺锂化合物及其制备方法
CN111763135A (zh) * 2020-06-16 2020-10-13 苏州大学 脱质子苯基桥连β-酮亚胺锂化合物在酯制备醇中的应用
CN111760593A (zh) * 2020-06-16 2020-10-13 苏州大学 脱质子苯基桥连β-酮亚胺锂化合物在硼氢化反应中的应用
CN111763226A (zh) * 2020-06-16 2020-10-13 苏州大学 碳酸酯的硼氢化反应方法
CN111909194A (zh) * 2020-08-19 2020-11-10 苏州大学 脱质子苯基桥连β-酮亚胺锂配合物催化酮氰硅化反应的方法
CN111992254A (zh) * 2020-08-19 2020-11-27 苏州大学 脱质子苯基桥连β-酮亚胺锂配合物在氰硅化反应中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAN LUO;SHENLUO ZANG;WEIWEI YAO;JING ZHENG;MENGTAO MA: "Recent Advances in Alkaline Earth Metal Catalyzed Hydroboration Reactions", SCIENTIA SINICA(CHIMICA), vol. 50, no. 6, 1 June 2020 (2020-06-01), pages 639 - 654, XP055882825, ISSN: 1674-7224 *
PAN HUIFEN: "The Synthesis and Catalytic Properties of Main Group-,Transition-and Rare Earth-Organometallic Compounds Based on β-Diketiminate Ligands", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 6, 1 August 2019 (2019-08-01), pages 1 - 105, XP055882832, DOI: 10.27351/d.cnki.gszhu.2019.002964 *
SUN YUE, GUAN RUI, LIU ZHAOHONG, WANG YEMING: "Recent Advances in Hydroboration of Alkenes Catalyzed by Fe, Co and Ni", CHINESE JOURNAL OF ORGANIC CHEMISTRY, vol. 40, no. 4, 19 December 2019 (2019-12-19), pages 899 - 912, XP055882830, ISSN: 0253-2786, DOI: 10.6023/cjoc201909035 *
XU, XIAOJUAN: "Tris(Bis (Trimethylsilyl) Amino) Lanthanide Complexes and the Deprotonated β-ketoimine Lithium Compound and Their Application in Hydroboration", CHINESE MASTER'S THESES FULL-TEXT DATABASE, no. 2, 15 February 2021 (2021-02-15), pages 1 - 133, XP055882722, ISSN: 1674-0246, DOI: 10.27351/d.cnki.gszhu.2020.003223 *

Also Published As

Publication number Publication date
CN111763226A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021253847A1 (zh) 脱质子苯基桥连β - 酮亚胺锂化合物在硼氢化反应中的应用
WO2021253868A1 (zh) 碳酸酯的硼氢化反应方法
CN111763135A (zh) 脱质子苯基桥连β-酮亚胺锂化合物在酯制备醇中的应用
WO2021253846A1 (zh) 一种脱质子β - 酮亚胺锂化合物及其制备方法
Yu et al. A Novel Palladium‐Catalyzed Asymmetric Cyclocarbonylation of Allylic Alcohols to γ‐Butyrolactones
Xue et al. Catalytic addition of amines to carbodiimides by bis (β-diketiminate) lanthanide (ii) complexes and mechanistic studies
Dröse et al. Synthesis and structural characterization of a homoleptic cerium (III) propiolamidinate
CN111992254A (zh) 脱质子苯基桥连β-酮亚胺锂配合物在氰硅化反应中的应用
CN111909194A (zh) 脱质子苯基桥连β-酮亚胺锂配合物催化酮氰硅化反应的方法
CN111744551A (zh) 锂配合物在腈的硼氢化反应中的应用
WO2022040891A1 (zh) 脱质子苯基桥连β-酮亚胺锂配合物在氰硅化反应中的应用
CN104650145A (zh) 手性膦配体以及包含该配体的金属催化剂和它们的应用
CN114478362A (zh) 一种手性吡啶醇衍生物的制备方法
CN114591185B (zh) 一种乙二醇和硝基芳烃选择性制备氨基醇的方法
WO2023077643A1 (zh) 一种手性多齿配体及其在不对称氢化的应用
CN112774734B (zh) 一种用于合成喹啉类化合物的铜催化剂及其制备方法
Sun et al. Synthesis of new Schiff base-camphorsulfonyl amide ligands and in situ screening in the asymmetric additions of organozinc reagents to aldehydes
CN111217847B (zh) 一种硫代硅烷配体及其制备方法和在芳基硼化催化反应中的应用
CN108948055B (zh) 一种8-甲基喹啉偕二硼化合物及其制备方法
CN111269272A (zh) 一种用于合成染料中间体的配合物及其制备方法
JP5407332B2 (ja) クォータピリジン誘導体の製造方法及びその中間体
Fan et al. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands
CN114602558B (zh) 一种金属铱类光催化剂及其制备方法和应用
EP4353357A1 (en) Catalytic compositions
CN116139934B (zh) 一种催化醛和酮硼氢化反应的高效催化剂及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825294

Country of ref document: EP

Kind code of ref document: A1